

Quick Python 3

Are you a programmer who wants to get started quickly in a new
language? This book is for you.

Are you a novice who wants to learn to program? This book is
not for you.

Are you a Python programmer who needs encyclopaedic
information? This book is not for you.

Like any mainstream language, Python has loops, if statements,
assignment statements, functions, etc. I’ll show you what these
look like in Python. I won’t waste your time telling you what
they’re good for.

Python has features you may not be familiar with—iterators, list
comprehensions, maybe even dictionaries. I’ll spend more time
on these.

I’ll cover some of the library functions I found most immediately
useful and tell you where to find more.

In short, this book will help you hit the ground running. Next
week, you’ll be ready to buy that Python encyclopedia.

http://taylorandfrancis.com
http://taylorandfrancis.com

Quick Python 3

David Matuszek

http://taylorandfrancis.com

First edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 David Matuszek

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their
use. The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and
let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,
now known or hereafter invented, including photocopying, microfilming, and recording, or in
any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks
and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data
Names: Matuszek, David L., author.
Title: Quick Python 3 / David Matuszek.
Other titles: Quick Python three
Description: First edition. | Boca Raton : CRC Press, 2023. |
Series: Quick programming series | Includes bibliographical references and index.
Identifiers: LCCN 2022036020 (print) | LCCN 2022036021 (ebook) | ISBN 9781032410920 (hbk) |
ISBN 9781032410913 (pbk) | ISBN 9781003356219 (ebk)
Subjects: LCSH: Python (Computer program language) | Computer programming.
Classification: LCC QA76.73.P98 M385 2023 (print) | LCC QA76.73.P98 (ebook) |
DDC 005.13/3‐‐dc23/eng/20220930
LC record available at https://lccn.loc.gov/2022036020
LC ebook record available at https://lccn.loc.gov/2022036021

ISBN: 978-1-032-41092-0 (hbk)
ISBN: 978-1-032-41091-3 (pbk)
ISBN: 978-1-003-35621-9 (ebk)

DOI: 10.1201/9781003356219

Typeset in Minion
by MPS Limited, Dehradun

www.copyright.com
www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov/2022036020
https://lccn.loc.gov/2022036021
https://doi.org/10.1201/9781003356219

To all my students,
past, present, and future

http://taylorandfrancis.com
http://taylorandfrancis.com

Contents

Author, xi

Preface, xiii

Chapter 1 ■ The Absolute Bare Minimum 1
1.1 Python and IDEs 1

1.2 IDLE 2

1.3 Variables 3

1.4 Important Data Types 3

1.5 Basic Arithmetic 4

1.6 Comparisons 6

1.7 Booleans 6

1.8 Lists 7

1.9 Strings 8

1.10 Comments 9

1.11 Statement Types 9

1.11.1 Assignment Statements 10
1.11.2 Print “Statements” 10
1.11.3 If Statements 11
1.11.4 While Loops 11

vii

1.11.5 For Loops 12
1.11.6 Import Statements 13

1.12 Input from the User 14

1.13 Functions 14

1.14 Syntax 15

1.15 Order of Execution 16

1.16 Summary 16

1.17 Wait, That’s It? 17

Chapter 2 ■ Better Tools 19
2.1 Object Notation 19

2.2 Lists 20

2.3 Tuples 22

2.4 Sets 23

2.5 Dictionaries 25

2.6 String Methods 27

2.7 Loops for Objects 28

2.7.1 Looping over Lists 28
2.7.2 Looping over Sets 29
2.7.3 Looping over Dictionaries 29

2.8 Handing Exceptions 30

2.9 Type Conversions 33

2.10 Scope 34

2.11 File I/O 36

2.12 Pickling 38

Chapter 3 ■ Classes 39
3.1 Classes and Inheritance 39

3.2 Constructors and Self 41

3.3 Subclasses 44

viii ▪ Contents

3.4 Printing Objects 45

3.5 Comparing Objects 47

3.6 Bindings 48

3.7 Shallow and Deep Copies 50

Chapter 4 ■ Getting Fancy 53
4.1 Statements 53

4.2 Identifiers 56

4.3 Type Hints 57

4.4 Numbers 58

4.5 Strings 59

4.6 F-strings 60

4.7 Bit Operations 61

4.8 List Comprehensions 62

4.9 Iterators 63

4.10 Generators 66

4.11 Parameters and Arguments 68

4.12 Functional Programming 69

Chapter 5 ■ Testing 73
5.1 Philosophy 74

5.2 Doctest 75

5.3 Unit Testing 77

5.4 Unit Test Example 80

5.5 Test Suites 81

Chapter 6 ■ Graphical User Interfaces 83
6.1 Dialogs 83

6.2 Tkinter 84

6.3 Creating Widgets 85

Contents ▪ ix

6.4 Putting Widgets Into the GUI 87

6.5 Tkinter Example 89

■ Afterword 91

Appendix A: string methods, 93
Appendix B: Numerical Functions, 97
Appendix C: Statistics, 101
Appendix D: Functions on Iterables, 103
Appendix E: Operating System Commands, 105
Appendix F: Unit Test Methods, 107

Index, 109

x ▪ Contents

Author

I ’M DAVID MATUSZEK, known to most of my students as
“Dr. Dave.”

I wrote my first program on punched cards in 1963, and
immediately got hooked.

I taught my first computer classes in 1970 as a graduate student in
computer science at The University of Texas in Austin. I
eventually received my PhD from there, and I’ve been teaching
ever since. Admittedly, I spent over a dozen years in industry, but
even then I taught as an adjunct for Villanova University.

I finally escaped from industry and joined the Villanova faculty
full time for a few years, and then moved to the University of
Pennsylvania, where I directed a master’s program (MCIT,
master’s in computer and information technology) for students
coming into computer science from another discipline.

Throughout my career, my main interests have been in artificial
intelligence (AI) and programming languages. I’ve used a lot of
programming languages.

I retired in 2017, but I can’t stop teaching, so I’m writing a series
of “quick start” books on programming and programming
languages. I’ve also written two science fiction novels, Ice

xi

Jockey and All True Value, and I expect to write more. Check
them out!

And hey, if you’re a former student of mine, drop me a note. I’d
love to hear from you!

david.matuszek@gmail.com

xii ▪ Author

mailto:david.matuszek@gmail.com

Preface

T HE PURPOSE OF THIS BOOK IS TO GET YOU, a programmer, up
and productive in Python as quickly as possible.

Don’t buy this book if:

• You aren’t already a programmer (in some language), or

• You want a comprehensive guide to Python.

With that out of the way, let’s get started.

xiii

http://taylorandfrancis.com
http://taylorandfrancis.com

C H A P T E R 1

The Absolute
Bare Minimum

1.1 PYTHON AND IDEs
Go to python.org and download the most recent version of
Python (it’s free). Install it on your computer as you would any
other program.

While you’re there, you might want to explore the online doc-
umentation. A couple of clicks will bring you to docs.python.
org/3/, and from there the Library Reference link will bring you
to a long list of modules, each containing numerous useful
methods.

Included in your Python download you will find a simple IDE
(Integrated Development Environment) called IDLE. You have
four choices:

• You can spend five minutes learning how to use IDLE. This
is what I recommend if you’re in a hurry.

DOI: 10.1201/9781003356219-1 1

http://python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://doi.org/10.1201/9781003356219-1

• If you are already familiar with a professional IDE such as
Eclipse, IntelliJ IDEA, NetBeans, or Jupyter Notebook, there
will be a choice of Python plugins you can use. You can spend
an indefinite amount of time choosing, downloading, installing,
and configuring your new plugin. This is what I recommend
after you have gained some familiarity with Python.

• You can run Python from the command line.

• There are several online Python compiler/editors that you
can use (search for “Python online”). These are great for
just trying a few things out.

1.2 IDLE
When you run IDLE, you get a “Shell” window, into which you
can type expressions or statements at the >>> prompt.

• If you type an expression such as 2+2, IDLE will respond
with 4 and a new prompt.

• If you enter a statement such as x=2+2, IDLE responds with
just a new prompt. (You can see the value assigned by
entering the expression x.)

This is a great way to test small amounts of code.

To write complete programs, choose File > New File and enter
your code there. You have to save the file before you can run it.
The extension .py will be added automatically to the file name,
or you can add it yourself. Run your program by choosing Run >
Run Module or by hitting F5.

Pro tip: Every time you make a change to your program,
you are prompted to save it again before you can run it. You
can skip this step by going to Preferences > General and,
where it says At Start of Run (F5), choose No Prompt.

2 ▪ Quick Python 3

Spend a few minutes looking over the menus; there are things in
there that can save you time. Notice that the menus differ ac-
cording to whether you are in a shell window or a file window.

1.3 VARIABLES
Variables do not have a type, and do not have to be declared.
Variables come into existence when you assign a value to them.

Example: best_value = 36

Convention: Variable names begin with a lowercase
letter or (in special cases) an underscore. For multi-word
variable names, most programmers use underscores
between words (as above), but some use “camelCase”
(sometimes called “studlyCaps”) such as bestValue.

Caution: Python’s built-in type names and function
names are not reserved words, and it is easy to override
them accidentally. For example, if you use the name
list or abs for a variable, you can no longer use those
names to create lists or find absolute values.

1.4 IMPORTANT DATA TYPES
The basic data types are similar to what you’re already used to:

• int (integers): 73, -15, 12345678901234567890. Integers may
be arbitrarily large.

• float (real numbers): 3.1416, 6.022e+23.

• bool (logicals, or booleans): True and False. Note that
these are capitalized.

• str (strings): "Hello World", 'Goodbye'. You can use
either single or double quotes. You can insert single quotes

The Absolute Bare Minimum ▪ 3

inside double-quoted strings, and vice versa. There is no
separate “character” type.

• list (array-like lists): [1, 2, "Buckle my shoe"]. Lists aren’t
exactly arrays, but you can treat them as such. Lists are zero
indexed, so if my_list holds the above list, my_list[0] is 1.

There is also a simple but unusual type:

• NoneType, with the single value None. None is an actual
value that can be assigned to variables; it is not a default
value for variables that have not yet been assigned a value.
In Python, every function returns a value, and None is most
often seen as the result of a function that does not explicitly
return a value.

Other data types (tuples, sets, and dictionaries) will be discussed
later.

1.5 BASIC ARITHMETIC
• Add (+), subtract (-), multiply (∗), and exponentiation

(∗∗). If both operands are integers, the result is an integer,
otherwise the result is a float.

• Divide (/). The result of a division using/is always a float.

• Integer divide (//). The result of dividing two integers is the
integer part of the result, rounded down. If either or both op-
erants of // are floats, the result is a float, rounded down to the
nearest integer value. Thus, 10 // 4 is 2, while 10.0 // 4 is 2.0.

• Modulus (%). The result of “modding” two integers is the
remainder of the division. Thus, 20 % 7 is 6, because 7 goes
into 20 twice, with 6 left over. If one or both operands of %
are floats, the result is a float. The % operator has nothing to
do with percentages.

4 ▪ Quick Python 3

• Order of precedence: In a complex expression,

• Exponentiations are done first, then multiplications
and divisions (including modulus), then additions and
subtractions.

• Multiple exponentiations are done right to left; that is,
2∗∗3∗∗4 means 2∗∗(3∗∗4).

• Other operations of the same precedence are done left to
right, so 10–5–2 means (10–5)–2.

• If in doubt, use parentheses to control the order of
operations.

Except in the case of / (which always yields a float), the result of
an operation will be an integer if both operands are integer,
otherwise it will be a float.

Caution: Languages do not all agree what the results
should be when using the // or % operators with nega-
tive numbers! Avoid this situation or, if you cannot
avoid it, experiment until you are sure of the rules in
Python. Then add an appropriate comment to your
code.

Style: Put spaces around all arithmetic and comparison
operators, including the assignment operator (=). This
makes your code easier to read.

Conversions between types can be made with the float, int,
round, and str functions. For example:

• float(123), float("123"), and float("123.0") all return
the floating-point number 123.0.

The Absolute Bare Minimum ▪ 5

• round(123.45678, 3) returns the floating point number
123.457, which is rounded to three digits after the decimal
point. This is useful for printing numbers more neatly.

• int(56.78) and int("56") both return the integer 56.
When converting from a float, the digits after the decimal
point are discarded.

• round(56.78) returns 57. The float is rounded to the
nearest integer.

• str(arg) will return a string version of its argument.
Almost anything, not just numbers, can be converted to a
string representation.

1.6 COMPARISONS
Comparisons:

• Equals (==), not equal (!=), less than (<), less than or equal
(<=), greater than (>), and greater than or equal (>=).

• Chaining: Unlike most languages, Python lets you chain
comparisons, for example, 2 < 3 < 4 > 2. All comparisons
are performed pairwise, and the result is True if every in-
dividual comparision is True.

1.7 BOOLEANS
The two boolean (logical) values are True and False.

Python has the boolean operators not, and, and or, with the
usual meanings. The and and or operators are short-circuit; that
is, the second operand is evaluated only if necessary.

• In 2 == 2 or f(x), the first part (2 == 2) makes the whole
expression True (because True or anything is True), so the
second part, f(x), is never evaluated.

6 ▪ Quick Python 3

• Similarly, in 2 == 5 and f(x), the first part (2 == 5) makes
the whole expression False, so the second part, f(x), is
never evaluated.

The comparison operators (<, <=, ==, !=, >=, >) also work with
booleans; True is greater than False.

In a numeric expression, True has the value 1 and False has the
value 0. In a boolean expression, all numeric zero values are
false, and all nonzero values are true. Using these facts will make
your code less explicit.

The special value None indicates “no value,” and is treated as false.

An if expression results in one of two values, depending on
whether the given condition is true. The syntax is:

valueIfTrue if condition else valueIf False

1.8 LISTS
A list is written as a sequence of values enclosed in square
brackets.

A list can be treated as if it were an array. If my_list is a list of
100 values, the first element is my_list[0] and the last element
is my_list[99]. You can use the bracket notation both to access
a list element and to change its value; for example,

my_list[5] = my_list[4] + my_list[3]

Conveniently, lists can be accessed from the other end, using
negative numbers: my_list[-1] is the same as my_list[99],
my_list[-2] is the same as my_list[98], and so on.

The Absolute Bare Minimum ▪ 7

The length of a list is given by the function len, so len(my_list)
is 100.

1.9 STRINGS
A string is written as a sequence of characters enclosed in quote
marks. Strings can be concatenated (added together) with the
+ operator; "Hello" + "World" gives "HelloWorld". You can
also leave out the + between literal (quoted) strings and just
separate them by spaces or tabs. (Newlines can also be used, if
the strings are enclosed in parentheses).

In Python, you can enclose strings in single quotes ('…'), double
quotes ("…"), triple single quotes ('''…''') or triple double quotes
("""…"""). You can insert single quotes inside double-quoted strings,
double quotes inside single-quoted strings, and either inside triple-
quoted strings. Triple-quoted strings may extend across more than
one line. Python usually uses single quotes when printing out results.

There is no separate “character” type.

Special characters can be included in strings by “escaping” them
(putting a backslash in front of them).

• \n is a “newline” character, however that is encoded on
your computer system.

• \t is a tab character. It is a single character, but the amount
of space that it represents depends on where tab stops are
set in the application used to look at the code.

• \" is a double quote character (useful inside double-quoted
strings).

• \' is a single quote character (useful inside single-quoted
strings).

8 ▪ Quick Python 3

• \\ is a backslash character.

• \uxxxx or\uxxxxxxxx is a Unicode character (four or eight
hex digits).

Strings can be indexed as if they were lists. 'HelloWorld'[0] is 'H'.

1.10 COMMENTS
Comments begin with a hash mark, #, and continue to the end of
the line.

1.11 STATEMENT TYPES
Indentation matters. Statements at the same level must be in-
dented exactly the same amount. Nested statements, for example,
statements within a loop body, must be indented relative to the
start of the loop. Where Java and the C family of languages use
braces, Python uses indentation.

Standard indentation is four spaces. You may not mix spaces
with tabs. However, any IDE and any good text editor can be set
to put in four spaces when you hit the Tab key on your keyboard.

The first line of a program may not be indented.

Each statement is written on a line by itself, but if the line contains
an unclosed (, [, or {, it may be continued on the next line.

If you want to put two statements on the same line, you can
separate them with a semicolon, ;. If you are used to a language
in which every statement ends with a semicolon, this will work in
Python, it just looks strange to seasoned Python programmers.

If you are using IDLE, it will automatically indent after any line
ending with a colon. If it fails to indent, that means you forgot
the colon.

The Absolute Bare Minimum ▪ 9

Alert. Although I have tried to keep code lines short, some
statements may wrap to the next line, especially if you are
reading this on a narrow screen. Don’t be fooled by this.

Alert. Copying and pasting code from the electronic
version of this book may not work. All the code has been
tested, but in some cases invisible formatting codes were
added to preserve the indentation.

Rather than talk in the abstract about syntax, it’s easier to just
look at examples of each of the statement types.

1.11.1 Assignment Statements
Assignment statements consist of a variable, an equals sign, and
an expression. For example,

x = 1

Assignment shortcuts use an operator and a single = sign.

• x += y is a shortcut for x = x + y

• x -= y is a shortcut for x = x - y

• …and so on, for each of the other binary operators.

The “walrus operator,” :=, is an assignment operator that can be
used within an expression, for example, x = (n := 3 ∗ n) + 1
multiplies the current value of n by 3, assigns the result back into
n, then adds 1 to that and puts the result into x. If n is initially
10, the result will be that n is set to 30 and x to 31.

1.11.2 Print “Statements”
Print “statements” are actually calls to a function named print,
but everybody uses them as statements. You can give print any

10 ▪ Quick Python 3

number of arguments, and they will all be printed on the same
line, with spaces between them.

For example, if x has the value 5, then the function call print
('x =', x) will print x = 5.

Each printed line ends with a newline character. If you instead
want the following print statement to continue on the same
line, use end="" as the last argument.

print() will print a blank line.

1.11.3 If Statements
If statements use the keywords if and (optionally) elif and
else.

if n == 1:
print("One")

elif n == 2:
print("Two")

elif n == 3:
print("Three")

else:
print("Many")
print("or maybe none at all")

You can use as many elifs as you like, each with an associated
condition, and you can have a final else. Each if, elif, or else
line ends with a colon (:). The statements under the control of
each case must be indented.

1.11.4 While Loops
While loops continue to execute as long as the condition is true.
For example,

The Absolute Bare Minimum ▪ 11

n = 5
while n > 0:

print(n)
n -= 1

print("Blast off!")

The walrus operator can be used in while loops. The above code
is equivalent to

n = 6
while (n := n - 1) > 0:

print(n)
print("Blast off!")

1.11.5 For Loops
For loops execute their body once for each element of a list,
string, tuple, or other iterable type.

for i in [5, 4, 3, 2, 1]:
print(i)

print("Blast off!")

or

for i in range(5, 0, -1):
print(i)

print("Blast off!")

The range function has three forms:

• range(b) will give the numbers 0, 1, 2, etc., up to but not
including b.

• range(a, b) will give the numbers a, a+1, a+2, etc., up to
but not including b.

• range(a, b, c) will give the numbers a, a+c, a+c+c, a+c+c+c,
etc., up to (or down to) but not including b.

12 ▪ Quick Python 3

Technical note: The value returned by range is not a list, but
rather an iterator (more on those later). If you need a list, use
list(range(…)).

1.11.6 Import Statements
Python has some functions already “built in.” For example, abs(n)
will give you the absolute value of the number n. If x is a list,
len(x) will return the length of the list; or if x is a string, len(x)
will return the number of characters in the string.

Many more functions are available but are not built in; you
have to import them from a module. (A “module” is just a file
containing code.) For example, the square root and natural
logarithm functions, sqrt and log, can be imported from the
math module.

from math import sqrt, log

Now if you want the square root of a number x, just say
sqrt(x).

For small programs, it is easy to import everything at once from
a module. For example,

from math import ∗

This form of import statement is not recommended for larger
programs. In addition to being less explicit, there is the risk of
inadvertently importing the same name (with different mean-
ings) from different modules.

The standard Python distribution comes with about 300 mod-
ules; many more are available, both commercial and free; several
of these are described in the appendices. Before writing code to

The Absolute Bare Minimum ▪ 13

solve problems in a given domain, it is a good idea to first check
to see what is already available.

1.12 INPUT FROM THE USER
To ask the user for input, you can call the function input
(prompt). For example,

name = input("What is your name? ")
print("Hello,", name)

You can omit the prompt, in which case the user will be left staring at
a blank screen and wondering why the program isn’t doing anything.

The result of a call to input is always a string. If you are ex-
pecting an integer or a float, you can use the int or float
functions to convert the string to the desired type. For example,

question = "How old are you, " + name + "? "
age = int(input(question))

If the user types in something that can’t be made into an integer,
an error will result. We’ll deal with error handling later.

1.13 FUNCTIONS
To define a function, use the word def, the name of the function,
a parenthesized list of parameters, and a colon. Follow this with
the indented body of the function. When you have a value to
return, put the value in a return statement. For example:

def largest(a, b, c):
"""Return the largest of a, b, and c."""
if a >= b and a >= c:

return a
elif b >= a and b >= c:

return b
return c

14 ▪ Quick Python 3

(We could have put the final return statement into an else part,
but there’s no need to. It will be executed if the if-elif statement
doesn’t do anything.)

The second line of the function is a docstring, used to document
the purpose of the function. By convention, triple-quoted strings
are used, even if the string is only a single line. If the docstring is
more than one line, all lines should be indented the same
amount, and the closing triple quote should be on a line by itself.

Docstrings should be written as full sentences. The first sentence
(ending in a period) is considered to be a summary line.
Documenting each function in this way is optional but strongly
recommended. For any function with a docstring, the function
help(function_name) will print that string.

Every function returns a value. If you don’t specify a return
value, the function will return None. (This is an actual legal value,
of type NoneType, so you can assign it to a variable, or ask if a
variable is equal to it.)

A function may be defined within another function, and is then
local to the containing function.

1.14 SYNTAX
There are no new concepts in what we’ve covered so far; it’s all
just syntax. Syntax is boring. How do you learn boring material?

Practice.

Pick some simple program to write, and write it. For example,
make change for any amount (in dollars, quarters, dimes, nickels,
and pennies). Determine whether an input number is prime or
composite. Find the average of numbers in a list. Whatever.

The Absolute Bare Minimum ▪ 15

Of course, this is optional. After all, if you can learn to ride a
bicycle by reading a book about it, you can learn Python without
programming in it.

1.15 ORDER OF EXECUTION
Not everything in a Python program has to be within a function;
you can (and usually will) have some “top-level” statements.
Very short programs may consist entirely of top-level state-
ments, with no function definitions.

Python programs are evaluated from beginning (first line) to end
(last line). Top level-statements will be evaluated as they occur.
Evaluating a function definition (def) causes the function to be
defined, but it won’t be executed until some other statement calls it.

Functions are defined dynamically, that is, when a def is eval-
uated, and must be defined before they can be called. As in most
languages, there is no restriction on the lexical ordering of
functions (the order in which they appear in a listing).

It is common for a program to consist of a collection of func-
tions, with the last line of the program being a single top-level
call to a “main” function. Often this “main” function is named
main, but not always.

1.16 SUMMARY
You should now be able to understand everything about the
following program.

Program to print prime numbers

def is_prime(n):
"""Test if a number n is prime."""
divisor = 2
while divisor ∗ divisor <= n:

16 ▪ Quick Python 3

if n % divisor == 0:
return False

divisor += 1
return True

def print_primes(limit):
for i in range(2, limit + 1):

if is_prime(i):
print(i, end=' ')

n = input("Print all primes up to: ")
print_primes(int(n))

If the is_prime function is called with 1, it will report True,
indicating that 1 is a prime number (it is not). Can you correct
this problem?

What will is_prime do if given a negative number?

1.17 WAIT, THAT’S IT?
Congratulations! If you’ve made it this far (and tried some of the
things out on your computer), you now know enough to write
some pretty complicated programs. Seriously.

Of course, if you stop here, any Python programs you write will be
complicated. Python has more data types, statement types, and
functions that will make your life easier and your programs sim-
pler. This section has been titled “The Absolute Bare Minimum”
for a reason.

Keep reading!

The Absolute Bare Minimum ▪ 17

http://taylorandfrancis.com
http://taylorandfrancis.com

C H A P T E R 2

Better Tools

2.1 OBJECT NOTATION
Lists and strings (which you have seen), and sets and dictionaries
(which are coming up soon) are objects. There is a special ter-
minology for talking about objects:

• A method is a function defined on an object.

• You don’t “call” methods, you send messages to an object.
This is unwieldy, so I like to say you talk to objects.

Along with this, there is a special notation for using objects:

1. Name the object you are talking to.

2. Put a period (.).

3. Write the method name, along with any arguments
(comma separated and in parentheses).

For example, if s is the string "Hello World", then s.lower() is
the string "hello world". You can think of this as saying, “Hey s,
give me a lowercase version of yourself.”

DOI: 10.1201/9781003356219-2 19

https://doi.org/10.1201/9781003356219-2

2.2 LISTS
A Python list is an indexable sequence of values, not necessarily
all of the same type. The first index is 0. You can create a list by
writing a comma-separated sequence of values enclosed in
brackets, [].

Examples:

• s = ["Mary", 23, "A+"]

• name = s[0] # name is now "Mary"

• s[1] += 1 # s is now ["Mary", 24, "A+"]

• The empty list is written as [].

You can create a list of an arbitrary size by “multiplying” it by an
integer. The integer must be to the right of the * operator.

• [0] * 4 # result is [0, 0, 0, 0]

• [None] * 100 # result is 100 None's

• [2, 4] * 3 # result is [2, 4, 2, 4, 2, 4]

If x is a list, and you say y = x, then y becomes another name for
the same list, not a copy of x. That is, any change you make to y
also changes x, and vice versa.

Here are two useful functions on lists:

• len(my_list) returns the number of elements in the list.

• sorted(my_list) returns a copy of the list with the elements
in ascending order.

20 ▪ Quick Python 3

Here are two useful methods on lists:

• my_list.append(value) adds value to the end of my_list
and returns None.

• my_list.pop() removes the last element of my_list and
returns it.

• my_list.sort() sorts the list and returns None.

You can take “slices” of a list, giving you a new list containing
some of the elements of the original list. If my_list is a list and i
and j are integers, then

• my_list[i:j] is a copy of the elements from my_list[i] up
to but not including my_list[j].

• my_list[i:] is a copy of the elements starting at my_list[i]
and continuing to the end.

• my_list[:j] is a copy of the elements starting at my_list[0]
up to but not including my_list[j].

• my_list[:] is a copy of the entire list.

Negative numbers can be used as indices, with -1 indicating the
last element of the list. A step size can be included, as my_list
[i:j:step], and the step may also be negative.

You can also use slice notation on the left-hand side of an as-
signment operator. If you assign a list of values to a slice, those
values replace the values in the slice. The list of values does not
have to be the same length as the slice it replaces. For example, if
x = [0, 1, 2, 3] and you assign x[1:3] = [11, 22, 33], the
result will be that x gets the value [0, 11, 22, 33, 3].

Better Tools ▪ 21

Pro tip: You can treat a string as a list of letters, for
example, "abcdef"[2:5] is "cde".

Since any value can be put in a list, you can make a list of lists,
for example, grades = [["Mary", "A+"], ["Donald", "C-"]].
To get individual elements, you have to index the outer and the
inner lists separately: grades[1] is ["Donald", "C-"], so
grades[1][0] is "Donald".

Caution: Do not attempt to make a list of lists by using a
construction such as [[None] * 3] * 2. It will appear to
work, but in fact every value in the outer list will be a
reference to the same inner list.

You can create a “two-dimensional” list with code like this:

x = [0] * 3
for i in range(0, 3):

x[i] = [0] * 5

The initial assignment creates an array of zeros, then the loop
replaces each zero with an array of zeros.

2.3 TUPLES
A tuple consists of zero or more values separated by commas and
enclosed in parentheses; for example, ("John", 23). When a
tuple is by itself on the left or right side of an assignment, the
parentheses may be omitted, for example,

a, b, c = 1, 2, 3

Technical note: A zero-tuple is written as (), while a
one-tuple is written by putting a comma after the single
value, like this: (3,). These forms probably aren’t very
useful in general.

22 ▪ Quick Python 3

Tuples are useful for keeping a small number of values together
as a single unit. For example, you might want to write a function
that returns the x-y coordinates of an object, or the largest and
smallest values in a list.

The built-in function divmod returns a tuple. Seven goes into 20
twice, with six left over (20 // 7 == 2 and 20 % 7 == 6). If you want
both these values, you can use divmod(20, 7), which returns the
tuple (2, 6).

Here are some of the things you can do with tuples:

• x = (1, 2, 3) # x now holds the tuple (1, 2, 3)

• x = 1, 2, 3 # same as above

• a, b, c = x # a is now 1, b is 2, and c is 3

• a, b, c = "xyz" # a is now "x", b is "y", and c is "z"

• y = x[1] # y is now 2 (tuples are zero-indexed)

• z = x[1:] # ok to use slices; z is now (2, 3)

• a, b = b, a # the values of a and b are interchanged

Tuples are immutable: You cannot change their contents. For
example, if x is (1, 2, 3), then x[0] = 5 is illegal.

2.4 SETS
A set is a collection of values, not necessarily all the same type. A
set literal is written as braces around a comma-separated list. For
example:

s = {10, "ten", "X"}

Better Tools ▪ 23

The empty set (the one with no elements) cannot be written as
{}, because that’s an empty dictionary (see the next section). Use
set() instead.

Sets have two important properties:

• Sets have no duplicate elements. A value is either in the set,
or it is not in the set. In fact, in and not in are operators,
so you could ask 10 in s (which is True) or "TEN" not in s
(also True).

• The order of elements in a set is unspecified, so you cannot
index into a set.

You can use a for loop to go through each element of the set in
turn, as long as you don’t care in what order the elements are
processed.

for elem in s:
print(elem)

If the order of elements is important, use a list rather than a set. To
convert between lists and sets, use the list and set functions.

If you are familiar with sets from mathematics, Python provides
the most common operations: union, intersection, difference,
and set difference. These can be written either as operators or as
method calls.

• set1 | set2 or set1.union(set2) returns the set of elements
that are in either set1 or set2, or both.

• set1 & set2 or set1.intersection(set2) returns the set of
elements that are in both set1 and set2.

24 ▪ Quick Python 3

• set1 - set2 or set1.difference(set2) returns the set of
elements that are in set1 but not in set2.

• set1 ^ set2 or set1.symmetric_difference(set2) returns
the set of elements that are in exactly one of the sets.

• set1.issubset(set2) returns True if every element of set1
is also in set2.

• set1.issuperset(set2) returns True if every element of
set2 is also in set1.

The comparison operators (<, <=, ==, !=, >=, >) can also be used
to test subset/superset and equality/inequality relationships be-
tween two sets. set1 < set2 is True if set1 is a proper subset of
set2, that is, set1 is a subset of set2 but not equal to it.

Elements can also be added to a set or removed from a set.

• set.add(element) adds element to set. If element is already
in set, this does nothing.

• set.discard(element) removes element from set if it is
present. If element isn’t in set, this does nothing.

• set.remove(element) removes element from set, or raises a
KeyError if element isn’t in set.

• set.pop() removes and returns an arbitrary element from
set, or raises a KeyError if set is empty. Your code should
not depend on some particular element being returned.

• set.clear() removes all elements from set.

2.5 DICTIONARIES
A dictionary (of type dict) provides a fast way of looking
something up. A dictionary literal is written as zero or more

Better Tools ▪ 25

key:value pairs enclosed in braces, { }. For example, you might
define a “phone book” dictionary as follows:

phones = {"Alice":5551212, "Jill":5556789, "Bob":5559999}

Keys must be unique; you can have only one value associated
with a key. Values do not have to be unique; many keys may
have the same value.

Once you have a dictionary, there are three ways of looking
something up in it. Pay special attention to where parentheses ()
are used and where brackets [] are used.

• phones["Jill"] will return 5556789. If the key is not
found, for example if you try phones["Xavier"], a
KeyError will result.

• phones.get(key) works like phones[key], except that if the
key is not found, the value None is returned.

• phones.get(key, default_value) returns the value asso-
ciated with key, or the default_value if there is no such key.

You can add something to the dictionary by assignment:

phones["Xavier"] = 5556666

This also works for changing the value associated with the key. For
example, you could update someone’s phone number this way.

There is a special command, del, for removing something from
a dictionary:

del phones["Xavier"]

26 ▪ Quick Python 3

The del command will give a KeyError if the key is not in the
dictionary, so check before using del. (You can use the in and
not in set operators to test if a key is in the dictionary.)

As with sets, the elements of a dictionary are stored in whatever order
Python thinks best. It may vary from one implementation to another.

Not everything can be used as a key. Keys must be immutable.
That’s a long discussion in itself, but the short form is this:
strings, numbers, tuples, and booleans make good keys. Any
object for which the components may change (such as lists, sets,
and dictionaries) may not be used as keys.

2.6 STRING METHODS
Most of the things you can do with strings are methods, not
functions. That is, they have the form string.method (arguments).

There are a lot of string methods. Many of the most useful are
listed in Appendix A. Here, we discuss only a couple of the most
useful and/or confusing string methods.

• string1.split(string2) returns a list of the substrings of
string1 that are separated by string2. If the string2 argument
is omitted, whitespace is used as the separator. This saves
typing when you want a list of strings. For example, 'one two
three'.split()returns the list ['one', 'two', 'three'].

• string.join(list_of_strings) returns a single string, with the
elements of the list_of_strings separated by string. For ex-
ample, '<='.join(['a', 'b', 'ab']) returns the string
'a<=b<=ab'. This can be confusing to read because string is
most often either a single blank, ' ', or an empty string, ''.

A formatted string, or f-string, is prefixed with f or F. In an
f-string, any expression surrounded by braces, {}, is replaced by

Better Tools ▪ 27

its value. For example, the string 'pi is {round(pi, 4)}.'
results in 'pi is 3.1416.'.

To put a brace character in an f-string, double it.

2.7 LOOPS FOR OBJECTS
Iterables, such as lists, tuples, sets, and dictionaries can be iter-
ated over with for loops.

2.7.1 Looping over Lists
If you want to do something with every element of a list or other
iterable type, you can use a for loop. A simple for loop looks like
this:

for e in my_list:
print(e)

If you need to work with not only the elements in the list, but
also their position in the list, you can use a more complicated
version of the for loop:

for i in range(0, len(my_list)):
print(my_list[i], "is at", i)

The enumerate function provides a better way to get (index,
value) tuples. The above code can be replaced with

for index, value in enumerate(my_list):
print(value, "is at", index)

Note that parentheses around the returned tuples are optional.

Simpler is generally better, so don’t use a loop that gets indices
unless you really need them.

28 ▪ Quick Python 3

2.7.2 Looping over Sets
The simple form of the for loop works for sets:

for e in my_set:
print(e)

The enumerate method also works for sets. However, it is worth
repeating that sets cannot be subscripted and should always be
treated as having no definite order.

2.7.3 Looping over Dictionaries
The simple loop also works for dictionaries, but in this case,
what is assigned to the loop variable is just the key, not the entire
key:value pair:

for k in my_dict:
print(k) # prints just the keys

To make this more explicit, you could use the keys method of a
dictionary:

for k in my_dict.keys():
print(k) # prints just the keys

You can also just print the values by using the values method:

for v in my_dict.values():
print(v) # prints just the values

You can print both keys and values by looping over just the keys
and, for each key, looking up the value:

for k in my_dict:
print(k, "->", my_dict[k])

Better Tools ▪ 29

Dictionaries have an additional method, items. This method
appears to return a list of (key, value) tuples:

for t in my_dict.items():
print(t) # prints (key, value) tuples

In reality, what items returns is not a list, but is a dynamic view
of the dictionary items. Each item returned is in fact a (key,
value) tuple, but if you change the contents of the dictionary
while looping through it, you could get some unexpected and
unwelcome results.

Tuples can be unpacked directly in the for loop. The par-
entheses around the tuple may be omitted.

for k, v in my_dict.items():
print(k, "is", v)

2.8 HANDING EXCEPTIONS
Errors happen. A program may try to divide a number by zero,
or send a message to None, or read in a file that isn’t there. When
this happens, Python will raise an exception.

Every exception type has a name. In Python, there is almost no
distinction between an “error” and an “exception.” Either, if not
handled, will cause the program to terminate.

If you know where an error is likely to occur, you can deal with
it. For example, you might use the input function to ask the user
for an integer. Whatever the user types will be returned as a
string, which you can convert to an integer by using the int
function—unless the user types in something other than digits,
in which case you will get a ValueError.

30 ▪ Quick Python 3

To handle this problem, you can use the try-except or
try-except-finally statement. It has this general form:

try:
code that could go wrong

except SomeErrorType:
what to do if it goes wrong

finally:
what to do afterwards

The finally part is optional. If present, it will be executed
whether or not the error occurs.

Here’s an example:

number = None
while number is None:
try:

n = input("Enter an integer: ")
number = int(n)

except Exception:
print("Try again!")

print("Your number is", number)

In detail, here’s how the above example works:

• The variable number is set to None.

• Upon entering the while loop, number equals None, so the
body of the loop is executed.

• The input function waits for the user to enter something,
then stores it (as a string) in n.

• The int function tries to convert the string n into a
number.

Better Tools ▪ 31

• If int succeeds,

• The result is put into number, the except part is
skipped, and control returns to the top of the loop,

• Since number is no longer equal to None, the loop
exits.

• If int fails,

• int raises an exception,

• Control goes to the except part, skipping over any
statements that may remain in the try part,

• "Try again!" is printed out, and control returns to
the top of the loop,

• Since number is still equal to None, the loop body is
executed again.

• When the user enters a valid integer, the loop exits and
prints out the number the user entered.

Here are some important points to remember:

• If an error occurs anywhere between try and except,
control goes immediately to the except part. Any re-
maining code in the try part will not be executed.

• The code in a finally part will always be executed. If code
in the try or except part executes a return statement, the
code in finally will be executed before the function
returns.

If an error occurs in a function, but the error is not within a
try-except statement, then the exception is passed up to the
calling location. If that location is within a try-except statement,
the exception is handled there, otherwise that function will also

32 ▪ Quick Python 3

immediately return to its calling location. In this way, each
function carries the exception to its calling location, all the way up
the call sequence, until one of them catches the exception. If the
exception is never caught, the program terminates with an error.

Python defines a large number of exception types, so that you
can do something different for each exception type. For simple
programs you can just use the catch-all type Exception, but this
is not recommended for larger programs.

Usually, the hard part of handling errors is figuring out what to
do when they occur.

2.9 TYPE CONVERSIONS
When called as a function, a type name serves as a constructor.
Given an argument of a different type, the function will (when
possible) return a value of the named type. For example:

• int(5.7) # returns 5

• int("5") # returns 5

• float(5) # returns 5.0

• float("5.7") # returns 5.7

• bool("False") # returns True

• The following things are considered false: False, None,
0, 0.0, empty strings, empty lists, empty sets, empty
tuples, and empty dictionaries.

• str([1, 2, 3]) # result is '[1, 2, 3]'

Other data types that can be used as conversion functions are
list, set, tuple, and dict (dictionary).

Better Tools ▪ 33

• When you convert from a dict to any of the other types,
you get only the keys, not the values.

• You can convert a list, set, or tuple to a dict only if the
elements are grouped in twos, for example, a list of 2-tuples
(tuples with two elements).

• Sets have no intrinsic ordering, so converting to or from a
set does not necessarily preserve the order of the elements.

The function type(x) will return a value that can be compared
to the name of a type (not to a string representation of that
name). For example, the test type(5) == int will return True,
but type(5) == "int" will return False.

The function isinstance (value, type) tests whether value is
of the named type. To test whether the value is one of a number
of simple types, the type may be a tuple of those types, (type1,
type2, …), or a type union, type1 | type2 | …, in which case
isinstance tests whether value is of any of the named types in
the tuple. However, instanceof cannot test for a genericized
type such as list[int].

2.10 SCOPE
The scope of a name is the part of the program in which the
name has meaning and can be used. Python’s scope rules are
unusual; they follow an “LEGB rule”: Local, Enclosed, Global,
Built-in. To understand this rule, it helps to remember that (1)
variables are defined by being assigned a value and (2) functions/
methods may be nested within other functions/methods.

• Variables may be declared to be global or nonlocal by a
statement of the form global var1, …, varN or nonlocal
var1, …, varN. The declaration must precede any use of
the variable.

34 ▪ Quick Python 3

• Local: A variable is local to a function if it is a parameter,
or if it is assigned a value within that function and not
explicitly declared to be global or nonlocal.

• Enclosed: A variable in a function can refer to a variable
declared in an enclosing function, provided either (1) the
variable is not assigned a value in this function or (2) it is
declared in a nonlocal statement.

• Global: A variable declared at the top level (not in a
function or method) is global, and can be referenced
throughout the program. A variable in a function can refer
to a global variable, provided either (1) the variable is not
assigned a value in this function or in an enclosing function
or (2) it is declared in a global statement.

• Built-in: A variable not declared otherwise in the program
might be a built-in variable. Some examples are list,
print, and divmod.

When a variable is nonlocal (enclosed) or global, it is good
documentation to declare it as such, even when the variable is
not assigned a value within the function.

Global variables are generally regarded as undesirable and
should be avoided wherever possible. Functions that use global
variables are:

• no longer self-contained, and can be understood and de-
bugged only in context;

• harder to test because the test must include code to set the
globals properly; and

• harder to reuse in another project because they are context-
dependent.

Better Tools ▪ 35

Globals can be avoided by adding extra parameters to functions,
and by adding instance variables to classes.

Some programmers use the convention of starting the name of
every global variable with an underscore. This convention does
not affect the actual scope of the variable.

2.11 FILE I/O
To read or write a file, you must do three things: (1) open the
file, (2) use the file, and (3) close the file.

• with open (file_name, mode) as file: statements will
open the file, execute the statements once, then close the
file. This is the easiest and safest way to process a file.

• The mode is one of:

• 'r' to read the file (this is the default if mode is
omitted).

• 'w' to erase and write the file.

• 'a' to append to the end of an existing file.

• 'r+' to both read and write.

• 'rb', 'wb', 'ab', 'rb+' to do binary input/output.

• Since the statements part is executed only once, it ty-
pically consists of a loop that processes each line in turn.

• Indentation is as usual: the statements are indented
under the with line.

• file = open(file_name, mode) opens and returns (in
variable file) a reference to the named file; mode is a
described for with open.

36 ▪ Quick Python 3

• file.read() will read in and return the entire file as a single
string, including any newline characters.

• file.readline() reads and returns a line of text, including
the terminating newline (if any). If the empty string is re-
turned, the end of the file has been reached.

• file.readlines() reads the entire file and returns it as a list
of strings, including terminating newlines.

• Input files may be iterated over: for line in file:
statements will read each line in the file, assign it to the
variable line, and execute the statements. The statements
are indented as usual.

• file.write (string) writes the string to the file, and returns
the number of characters written.

• file.close() closes the file. Mandatory. Leaving the file
open when you are done with it is likely to cause problems.

As an example, here is some code to count the number of lines in
a text file.

count = 0
with open(file_name, 'r') as f:

while f.readline():
count += 1

For historical reasons, the character or characters used to denote
a “newline” ('\n') are not the same on Windows files, old
Macintosh files, and Mac OS X/Linux files. Reading or writing
text files (non-binary files) will automatically convert platform-
specific line endings to the current platform. Reading or writing
binary files as if they were text files will corrupt them. Text
files, on the other hand, can be read and written as binary
without harm.

Better Tools ▪ 37

2.12 PICKLING
Serializing (sometimes called marshalling) an object is turning it
into a linear stream of bytes. This can be done to save an object on
a file, or to transmit it to another process. The byte stream can be
deserialized (unmarshalled) to reconstruct the original object.

The most common way to serialize Python objects is called
pickling. Python can also use JSON and XML for serialization,
but these do not support as many object types.

Python values and most built-in objects can be pickled, including
user-defined classes and functions at the top level of a module.
Recursive and interconnected objects can be pickled. Generators,
lambda functions, database connections, and threads are a few
things that cannot be pickled.

To pickle or unpickle objects, first import pickle, then use the
following methods:

• pickle.dump (object, file) — Saves object onto the file,
which must have been opened in 'wb' (write binary) mode.

• variable = pickle.load (file) — Reconstructs the object
previously written to file, which must have been opened in
'rb' (read binary) mode.

• str = pickle.dumps (object) — Saves object into the
variable str as a string.

• object = pickle.loads (str) — Reconstructs the object
previously written to the string str.

Pickling is not secure. A pickle file can contain code objects and data
to attack your system. Make sure that anything you unpickle comes
from a trusted source and has not been tampered with in transit.

38 ▪ Quick Python 3

C H A P T E R 3

Classes

A CLASS DEFINES A NEW type, along with a constructor for
making values of that type. Values of that type are objects,

and each such object will contain the variables and methods
described in the class.

Here is an analogy: A class is like a cake recipe, while objects are
the cakes you can make by following the recipe. The variables in
the Cake class might include sugar, flour, and butter, while the
methods might include mix, bake, and serve.

3.1 CLASSES AND INHERITANCE
The syntax for defining a class is

class ClassName (superclass):
variable and method definitions

Classes are arranged in a hierarchy, with the object class at the
top. Every class (except object itself) has a superclass, and it
inherits variables and methods from that superclass. That is, all

DOI: 10.1201/9781003356219-3 39

https://doi.org/10.1201/9781003356219-3

variables and methods defined in (or inherited by) the superclass
are available to the new class.

For example, you might define a class Person with variables
name and age and a method greet. Every object of this type will
have its own copies of those variables, and its own reference to
the greet method. If you then create a class Customer as a
subclass of Person, every object of type Customer will have its
own name and age variables and a greet method, plus whatever
additional variables and methods you declare in Customer(for
example, a list of purchases).

The special class object is the “root” of all classes. If you omit
superclass when you define a class, it defaults to having the
superclass object. Every class inherits from object, either di-
rectly or indirectly.

Terminology: As a noun, “instance” means the same as
“object.” However, we usually use “instance” when
talking about a particular object (john is an instance of
Person), or when we are using the word as an adjective
(name is an instance variable of the class Person).

Terminology: “Field” and “attribute” are other names for
“instance variable.”

Example (very bad) class definition:

class Person(object):
name = 'Joe'
age = 23

def say_hi(self):
print('Hello, Joe.')

40 ▪ Quick Python 3

• To create an instance (object) of a class, use the name of the
class as if it were a function name, for example, p = Person().
Used in this way, the class name acts as a constructor; it
constructs a new object.

• We can access the fields of object p using dot notation:
p.name is 'Joe' and p.age is 23.

• We can modify the fields of p, for example by saying
p.name = 'Jack'.

• We can use dot notation to “talk to” the object p, or more
formally, “send a message to” the object p: p.say_hi() tells
p to say_hi, and p will respond by printing Hello, Joe..

Convention: Class names always begin with a capital letter,
and variable and function names always begin with a lower-
case letter.

Unfortunately, every newly created instance of this class will be
exactly the same. We would like to create instances of Person
with different inital values for name and age. To do this, we have
to explore a special variable: self.

3.2 CONSTRUCTORS AND SELF
If you are familiar with classes and objects in some other language,
then classes and objects are very similar in Python—except you
may have trouble with the word self, which seems to be required
everywhere.

Remember that each object we create from a class has its own
copy of each of the fields (instance variables) of that class. If we
have two Person objects named joe and jane, then each of
them will have a name field and an age field.

Briefly, the name self used inside a class definition is the particular
object we are talking to.

Classes ▪ 41

Every method within a class must have self as its first parameter.

Here’s a better class definition:

class Person(object):

def __init__(self, name, age):
self.name = name
self.age = age

def say_hi(self):
print('Hello', self.name)

When you construct an object, you probably want to specify the
values of its instance variables. For example, each Person object
should be created with its own name and its own age. This is
done by including a special method named __init__ in the class
definition. (That’s init with two underscores before and two
after.)__init__ is an initializer—it is called automatically from
the constructor when you construct a new object.

Technical note: Python has a number of dunder methods,
which begin and end with double underscores. Dunder
methods are used internally, and seldom called directly.

To create an object, use the name of the class as if it were a
function name, and supply values for all the parameters
except self. Inside the __init__ method, use the form self.
variable = value to initialize instance variables.

In the above example, we would create an object jill by saying
jill = Person('Jill', 30). Inside the initializer __init__, a
name instance variable is created by assigning a value to
self.name, and an age instance variable is created by assigning
a value to self.age.

42 ▪ Quick Python 3

Outside the class definition, we “talk to” an object by using dot
notation, for example, jill.age or jill.say_hi(). But inside
the class definition, the object is talking to “itself,” so we say
self.age and self.say_hi().

So, what is self? It is an explicit first parameter of every method,
and a prefix argument of every message we send to an object. In
the definition of say_hi, self must be given as the first para-
meter; when we say jill.say_hi(), jill is the argument
passed to the method as the value of self (see Figure 3.1).

If a method refers to an instance variable in the same class, the
word self must be used. If one method of a class calls another
method of the same class, the word self must be used. Any
variables (or methods) not tagged with the name self are just
local to the method they are in.

def get_older(self):
self.age += 1

def get_much_older(self, years):
for i in range(0, years):

self.get_older()

Technical note: self is just a parameter name, so in
theory you could replace it with any other name. This
would be strongly against convention.

FIGURE 3.1 The word self as a prefix argument.

Classes ▪ 43

Unlike some other object-oriented languages, an object does not
have a fixed and unvarying set of instance variables. You can add
an instance variable to an object simply by assignment; for ex-
ample, you could say jill.occupation = 'scientist'. This
affects only jill; other Person objects are unchanged. Similarly,
you can use the del operation to remove an instance variable
from a particular object.

Important debugging note: When defining and using
classes and objects, the most common error is supplying too
many arguments or not enough arguments. This is almost
always the result of forgetting to use self somewhere.

Comparison with Java: Java’s this is equivalent to the
Python’s self, with two differences: (1) this is a key-
word, but self is a variable name; and (2) this is usually
implicit, but self must be explicitly used every time.

3.3 SUBCLASSES
A class inherits all the instance variables and methods of its
superclass. (It is a subclass of its superclass.) For example, you
might define a Friend class as a subclass of Person.

class Friend(Person):
def smile(self):

print('¯_(^-^)_/¯')

meg = Person('Margaret', 25)
bob = Friend('Robert', 33)

When you create meg as an instance of Person, meg will have the
say_hi, get_older, and get_much_older methods and the
__init__ initializer, but not the smile method. When you
create bob as a Friend, bob will have all these things, and will
also have a smile method.

44 ▪ Quick Python 3

You can override (replace) any inherited method by providing
another method with the same name, for example,

def say_hi(self, extra):
print('Hi!', extra)

If you override a method in a subclass, you can still access the
overridden method by using super() as a prefix. For example,

def say_hi(self, extra):
super().say_hi()
print(extra)

You usually write a subclass when you want everything in its
superclass, but you want the subclass to have additional in-
formation in it. For example, a Friend object is a Person, so it
should have a name and an age, but maybe you also want it to have
a nickname. In this case you will need to write a new __init__
method, overrriding the inherited one.

In the initializer for Friend you could copy and paste all the
work done in the initializer for Person, but it is much better
style to just call that initializer. In this case you do call __init__
directly. For example, the Friend initializer might look like this:

def __init__(self, name, age, nick):
super().__init__(name, age)
self.nickname = nick

If you write a subclass because you want only some of the things
in its superclass, but not all of them, this is an indication that
your classes would benefit from being reorganized.

3.4 PRINTING OBJECTS
The print method takes any number of arguments, converts
each argument into a string by calling its __str__ method, and

Classes ▪ 45

prints them. (As with __init__, that’s two underscores before
and after the name.)

All classes have a __str__ method inherited from object. It is a
good idea to override this method. If you don’t, your objects will
be printed something like this:

<__main__.Friend object at 0x1064728d0>

In the case of a Friend object, your method might look some-
thing like this:

def __str__(self):
return self.name + "'s age is " + str(self.age)

and print(meg) would result in:

Margaret's age is 19

In the above, Margret’s age is an integer, and we can’t add an
integer to a string, so we had to explicitly convert her age to a
string by calling the function str(self.age). Once you’ve de-
fined the method __str__ in your class, you can call the function
str on objects of that class, for example by saying str(meg).

Similar to str(x), the repr(x) function returns a string re-
presenting the object x, as defined by its __repr__(self)
method. The difference is that str is used by the print method
and should provide a humanly readable string, whereas the repr
method is used during debugging and development, and should
be detailed and unambiguous.

__str__ and __repl__ are inherited “dunder” methods which
you can override with your own versions, then call indirectly
with str(x) and repl(x).

46 ▪ Quick Python 3

3.5 COMPARING OBJECTS
The equality (==) and inequality (!=) operators work well for
Python’s built-in object types. When you define your own
classes, however, == will return False when comparing two
distinct objects (but see below).

It is important to keep in mind the distinction between equal
and identical.

• Two objects a and b are equal if every part of a is the same as
the corresponding part of b; if you change a, b might or might
not change. Testing for equality requires testing all the parts.

• If a and b are identical, then they are just two different
names for the same object; changing that object by doing
something to a means that b also sees the change. Testing
for identity just involves testing whether a and b both refer
to the same location in memory.

• Assignment, a = b, never makes a copy of an object b; it just
makes a refer to the same object as b.

• When you use an object as an argument to a function, the
function gets a reference to the original object, not a copy.

• a is b tests whether a and b refer to the same object; a is
not b tests whether they are different (but possibly equal)
objects.

For your own class, you can define equality and ordering by
defining some special methods in the class. (All these names use
double underscores.)

• __eq__(self, other) should return True if you consider
the objects self and other to be equal, and False other-
wise. Identical objects should be considered to be equal

Classes ▪ 47

(you can test identity with the is operator). This method
will be called when your objects are compared using ==.

• __ne__(self, other) will be called when objects are
compared using !=.

• __lt__(self, other) will be called when objects are
compared using <.

• __le__(self, other) will be called when objects are
compared using <=.

• __ge__(self, other) will be called when objects are
compared using >=.

• __gt__(self, other) will be called when objects are
compared using >.

These methods are all independent. Defining some of them
does not automatically define others. For example, if you define
an __eq__ method, __ne__ does not magically pop into being. If
you define one of these methods, you should define all six.

We usually think of the comparison operators as comparing
sizes, or magnitudes; but if you define your own comparison
operators, you can use them for any kind of ordering you like.
This has already been done for strings; the operators use lex-
icographical (alphabetical) ordering, with all capital letters less
than all lowercase letters.

3.6 BINDINGS
In a technical sense, every value in Python is an object. However,
some objects are immutable: They cannot be changed. For ex-
ample, the number 5 is immutable; you cannot change a 5 to a 6.
If you have a variable x whose value is 5 (we say x is bound to 5),
you can use an assignment statement to change the binding of x
to 6, but 5 is still 5.

48 ▪ Quick Python 3

When you do an assignment, you bind the variable to a value. If
you then assign that variable to a new variable, the binding is
simply copied.

a = 5 # bind a to 5
b = a # copy a's binding into b
a = 6 # change the binding of a
print(b) # b is still bound to 5

Numbers, strings, booleans, and tuples are immutable. A list,
however, is mutable: You can change the values in a list, but it’s still
the same list. Sets, dictionaries, and most other objects are mutable.

Binding works the same way for mutable objects as it does for
immutable objects.

a = [1, 2, 3] # bind a to the list
b = a # copy a's binding into b
a = [4, 5, 6] # change the binding of a
print(b) # b is still bound to [1, 2, 3]

Changing the values in a mutable object does not change any
variable bindings.

a = [1, 2, 3] # bind a to the list
b = a # copy a's binding into b
a[0] = 99 # change the list, not the bindings
print(b) # b still bound to the same list,

but the list is now [99, 2, 3]

When a function is called, the values of the arguments in the call
are bound to the parameters of the function; in other words,
those values are assigned to the parameters. When a function
returns, it does not copy the parameter values back into the
argument list, but any mutable objects passed to the function
could have been changed in the function.

Classes ▪ 49

def foo(a, b):
a[0] = 99
b = [7, 8]

a = [1, 2, 3]
b = [1, 2, 3]
foo(a, b)
print(a, b) # [99, 2, 3] [1, 2, 3]

As a general style rule, functions should return a value but not
mutate their arguments, while methods may mutate their argu-
ments. For example, the following are built in:

• obj.sort() is a method that sorts the object obj and re-
turns None, while

• sorted(obj) is a function that leaves obj unchanged but
returns a sorted copy.

3.7 SHALLOW AND DEEP COPIES
Objects can contain references to other objects. If we copy the
object, we normally get a shallow copy: the references in the
object are copied, but not the referenced objects themselves.

grades = [["Mary", "A+"], ["Don", "C-"]]
grades2 = grades[:]
grades2[0] = ["Bob", "B"]
grades2[1][1] = "F"
print(grades) # [['Mary', 'A+'], ['Don', 'F']]
print(grades2) # [['Bob', 'B'], ['Don', 'F']]

Here’s what happened:

• grades is a list of two references, one to the list ["Mary",
"A+"], and one to the list ["Don", "C-"].

50 ▪ Quick Python 3

• The assignment to grades2 makes a new list containing
copies of those references.

• The assignment to grades2[0] changes the first reference
in grades2 to a new list, ["Bob", "B"].

• grades2[1] is still a copy of the reference in grades[1], and
both refer to the same list ["Don", "C-"], so the assignment
to grades[1][1] changes the contents of that list.

Python provides a deepcopy method to make a completely in-
dependent deep copy of an object, to any level. This works even
for cyclic objects, that is, objects that contain themselves.

import copy
grades3 = copy.deepcopy(grades)
grades3[1][1] = "D+"
grades is unchanged

Classes ▪ 51

http://taylorandfrancis.com
http://taylorandfrancis.com

C H A P T E R 4

Getting Fancy

4.1 STATEMENTS
This section describes Python statements that have not been
previously covered, or that have more options than have pre-
viously been covered.

• import

• import module — makes the named module available,
after which an object or method named name in that
module may be accessed by module.name. This pre-
vents problems when the same name is imported from
more than one module.

• from module import names — imports the given names,
which do not need to be prefixed by module and a dot.

• from module import ∗ — imports all names from
module. Use with caution, as it may import names you
are not even aware of.

• import module as modname — makes the named
module available, but instead of module.name you
would use modname.name.

DOI: 10.1201/9781003356219-4 53

https://doi.org/10.1201/9781003356219-4

• from module import name1 as name2 — imports
name1 but renames it to name2.

• assert expression1, expression2

• Does nothing if expression1 is true, but raises an
AssertError if expression1 is false. The optional
expression2 is used as a message by the AssertError.

• The assert statement is best thought of as “executable
documentation.” It can be used at the beginning of a
function to express what is required of the parameters,
or in the middle or at the end to claim something about
what has just been computed. It can also be used as a
built-in test case.

• var1, ... , varN = expr1, ... , exprN

• Simultaneous assignment. The variables on the left are
assigned the values of the expressions on the right. There
must be exactly as many variables as expressions. This is
just a special case of tuple packing and unpacking.

• a, b = b, a is a particularly simple way to swap the
values of a and b.

• break

• If break is executed within a while or for loop, it
causes the loop to exit.

• If break is executed within nested loops, only the in-
nermost loop is exited.

• If the loop exits because of a break, a following else
clause will not be executed. (Possibly unique to Python,
loops may have an else clause.)

54 ▪ Quick Python 3

• continue

• If continue is executed within a while or for loop, any
remaining statements within the loop are skipped over,
and control returns to the top of the loop (to the test in a
while loop, or the next value in a for loop).

• continue within nested loops applies to the innermost loop.

• del variable

• Causes the variable to cease to exist (become unbound).

• else:

• Both a while loop and a for loop may be followed by an
else clause. The code in the else clause is executed
when the loop exits normally, but is not executed if the
loop terminates as the result of a break or a return.

• exec(arg)

• Executes a string, a file that has been opened, or a code
object arg. Code objects are not covered in this book.

• exec is actually a function, but it returns None as its
value, so it is often used as if it were a statement.

• exec is not secure, so do not use it if there is any chance
that the arg contains malicious or harmful code.

• nonlocal variables

• Functions may be nested inside other functions. By
default, an inner function can access but not change the
variables of an enclosing function. If the inner function
declares variables to be nonlocal, it can both access
them and change them.

• The rules are very similar to those of local and global
variables.

Getting Fancy ▪ 55

• pass

• The pass statement does nothing. It is occasionally
useful when the syntax requires the presence of a
statement, but there is nothing in particular to be done.

• An ellipsis (three dots, ...) is the same as pass.

• print(expr1, ... , exprN, sep=sepString, end=endString,
file=outputFile)

• Evaluates and prints the expressions, with sepString between
them, and endString after the last expression, on outputFile.
The keyword arguments sep, end, and file may be
omitted, with the default values ' ' (a single space), '\n'
(a newline), and stdout, respectively.

• raise

• raise Exception raises the named Exception, which
might be handled later by a try-except statement.
Python provides a large number of exception types, or
you can define your own by subclassing Exception.

• raise Exception(expression) raises the named Exception,
and uses the result of the expression as a message in the
exception.

• raise by itself in an except clause re-raises the same
exception.

4.2 IDENTIFIERS
Identifiers begin with a letter or underscore and may contain
letters, underscores, and digits; case is significant. Unicode
characters may be used.

By convention, class names begin with a capital letter. Other names
do not.

56 ▪ Quick Python 3

In a class, you often want private instance variables—that is,
fields that cannot be accessed or altered except from within the
class. There is no way to do this in Python. Instead, some pro-
grammers have adopted the convention of putting an underscore
as the first character in the name of a variable that they wish to
be private, or two underscores if they really, really wish it were
private. This is the programming version of putting a note on
your front door that says, “Please don’t burgle my house.”

A variable name may consist of a single underscore. This name is
often used when a variable is required but not actually used for
anything.

for _ in range(0, 3):
print(“Hello!”)

Built-in “dunder” names begin and end with two underscores.
You should not name your own variables and methods this way.

4.3 TYPE HINTS
Python is a dynamically typed language. That is, the type of a
variable name is the type of whatever value it holds at the moment.

Beginning with Python 3.5, you can enter type hints to specify
what type of value a variable is expected to hold. These hints are
treated as comments; they have absolutely no effect on the run-
ning program. Some IDEs can use type hints to do some static
code checking, and this may become more prevalent in the future.

The following example demonstrates the syntax for hinting the
types of variables, parameters, and function return values.

def indent(line: str, amount: int) -> str:
indented_line:str = ' ' ∗ amount + line
return indented_line

Getting Fancy ▪ 57

To construct more complex type hints, import the typing
module.

from typing import List, Set, Dict, Union, Optional

With this import, you can use type hints such as List[int], Set
[int], Dict[str, str], Union[int, float], and Optional[str],
as well as more complex type hints such as List[Set[int]]. The
Union type hint specifies that the value may be any of the listed types,
while the Optional type hint specifies that the value is either the
given type or None.

A type hint may be assigned a name, after which the name can be
used as a type hint. This can be very helpful for documenting
complex data structures.

Number = Union[int, float]

4.4 NUMBERS
A decimal integer consists of either the number 0, or a sequence
of digits not beginning with 0.

A binary integer consists of binary digits (0, 1), beginning with
0b or 0B.

An octal integer consists of a sequence of octal digits (0 to 7),
beginning with 0o or 0O.

A hexadecimal integer consists of a sequence of hex digits (0 to
9 and a to f or A to F), beginning with 0x or 0X.

A floating point (“real”) number includes a decimal point, an
exponent suffix, or both. The exponent consists of the letter e or E,
an optional sign, and one or more digits, for example, 1.7e-12.

58 ▪ Quick Python 3

An imaginary number consists of a decimal integer or a floating
point number, suffixed by j (not i) or J.

A complex number consists of the sum or difference of an in-
teger or floating-point number and an imaginary number.

To convert a string to a number, use the functions int(s),
float(s), and complex(s). A ValueError will result if the string is
malformed; in particular, a string representing a complex number
cannot contain any spaces: 3+5j is okay, but 3 + 5j is not).

To convert a number to a string, use str(x) for a decimal
representation, or bin(i), oct(i), or hex(i) for a string re-
presentation of the integer i as binary, octal, or hexadecimal,
respectively.

To convert a number to or from a Unicode character, use the
functions chr(n) or ord(c), respectively.

4.5 STRINGS
A string is written as a sequence of zero or more characters
enclosed in single quotes ('...'), double quotes ("..."), triple
single quotes ('''...'''), or triple double quotes ("""...""").
It can be treated as a list of characters.

Triply-quoted strings may extend across several lines, and in-
clude the line breaks as part of the string, unless the line break is
immediately preceded by a backslash (\).

A raw string is a string prefixed with r or R. In a raw string the
backslash does not escape characters; all characters stand for them-
selves. This is especially useful when writing regular expressions.

Regular expressions in Python follow the POSIX standards, and
are usually written as raw strings. They will not be covered here.

Getting Fancy ▪ 59

The function eval(string) evaluates string as a Python expres-
sion and returns the result. If you use this, be sure string does
not contain malicious code.

4.6 F-STRINGS
There are three ways of formatting a string: Using f-strings,
using the format method, and using the old-style % formatting.
Generally the f-string method is recommended.

A formatted string, or f-string, is prefixed with f or F. In an
f-string, any expression surrounded by braces, {}, is replaced by
its value.

• print(f'Area is {5∗7/2}.')

• Prints: Area is 17.5.

In Python 3.8 and later, if an expression in braces ends with an
equals sign, the expression as well as the result is printed.

• print(f'Area is {5∗7/2=}.')

• Prints: Area is 5∗7/2=17.5.

If you actually want to print braces inside an f-string, escaping
them with a backslash does not work. Instead, double them
('{{' or '}}').

Formatting codes can be used. For example, the format :9.3f
means to display a floating point number in 9 total spaces, with 3
digits after the decimal point.

• print(f'Area is {5∗7/2:9.3f}.')

• Prints: Area is 17.500.

60 ▪ Quick Python 3

The syntax of the formatting codes is quite complex, and will not
be covered here. Instead, we will just give a few simple examples.

f'{"abc":6}' is 'abc '
f'{"abc":>6}' is ' abc'
f'{123:6d}' is ' 123'
f'{123:<6d}' is '123 '
f'{pi:6.2f}' is '3.14'
f'{pi:<6.2f}' is '3.14 '

The syntax of the format method is string.format(values). As
with an f-string, the string contains braces, but the braces con-
tain formatting codes, not expressions. For example:

print('pi is {:8.4f}'.format(pi))

This code will print the string 'pi is 3.1416', with three
spaces between the word is and the 3.

Besides formatting codes, the braces in the string given to the
format method may contain simple integers. Each integer is
taken as an index into the list of values. So, for example,'
{1} {0} {1}'.format(1, 2) returns the string '2 1 2'.

The old-style % formatting uses the % percent sign both within
the string to denote substitution locations and after the string as
an operator. For example,'%s = %i' % ('x', 7) results in the
string 'x = 7'. This formatting style is no longer recommended
and will not be discussed further here.

4.7 BIT OPERATIONS
The following bit operators may be applied to integers.

• ~ bitwise complement

• & bitwise and

Getting Fancy ▪ 61

• | bitwise or

• ^ bitwise exclusive or

• << left shift (right operand is the amount to shift the left
operand)

• >> right shift (right operand is the amount to shift the left
operand)

These operators work on the binary representation of integers;
that is, each integer is represented as a binary number. The in-
teger 0 consists of all zero bits, and -1 consists of all one bits.

• Bitwise complement changes every 1 to a 0 and every 0 to a 1.
Numerically, the result is the same as changing the sign of the
number, then subtracting 1.

• Bitwise and gives a 1 when the corresponding bits of both
operands are 1, and 0 otherwise.

• Bitwise or gives a 1 when the corresponding bits of one or
both operands are 1, and 0 otherwise.

• Bitwise exclusive or gives a 1 when the corresponding bits
of the two operands are different, and 0 otherwise.

• Left shift moves all bits to the left, filling in with zeros.

• Right shift moves all bits to the right, with some dis-
appearing off the left end, and zeros coming in on the right.

4.8 LIST COMPREHENSIONS
A list comprehension is a way of computing a list from a col-
lection of values. The collection may be a list, a tuple, a set, the
keys of a dictionary, a string, or anything that can be stepped
through. A list comprehension may include optional if tests.

62 ▪ Quick Python 3

• [expression for variable in collection] is a new list
formed by binding each value in the collection in turn to
the variable, then evaluating the expression.

• [expression for variable in collection if condition] is a
new list formed by binding each value in the collection in
turn to the variable, then if the condition is satisfied with
this binding, evaluating the expression.

List comprehensions are powerful and worth getting to know.
Here are some simple uses:

• To apply an expression to every element of a list: [2 ∗ x for
x in [1, 2, 3]] returns [2, 4, 6].

• To remove unwanted elements from a list:
[x for x in [1, 0, 2] if x > 0] returns [1, 2].

4.9 ITERATORS
An iterable object is any object that can be stepped through.
Iterable objects include lists, sets, tuples, strings, dictionaries,
ranges, and files. An iterator is an object that keeps track of
where it is in stepping through an iterable object, and provides
the next value as needed.

For example, you can get a list iterator by saying it = iter([2,
3, 5]). You can step through the elements of this list by re-
peatedly calling next(it); this will return 2, then 3, then 5. Yet
another call to next(it) will raise a StopIteration exception.

This is exactly how a for loop works. It starts by getting an
iterator for an iterable object such as a list or range. Then it uses
the iterator to get a single value from the object, executes the
loop body, then returns to the iterator to get the next value. The
for loop exits when it gets a StopIteration exception.

Getting Fancy ▪ 63

You can make your own objects iterable. To do this:

• The iterable class must contain an __iter__ method to
create and return a new iterator object, in a state where all
items are yet to be delivered.

• The iterator class contains at least two methods:

• an __init__ method which takes the iterable as a
parameter, saves it in an instance variable, and does
whatever other setup is necessary;

• a __next__ method to find or compute the next value.
It should raise a StopIteration exception if called
when there are no more values to be returned.

• These classes can be combined, so that the iterable object is
its own iterator. In this case, the class contains a __next__
method, and the __iter__ method just returns self.

As a simple example, we can write an iterable class MyList which
holds a list, and an iterator class Reverser which will iterate
through the list in reverse order.

class MyList():
def __init__(self, ls):

self.ls = ls

def __iter__(self):
return Reverser(self.ls)

class Reverser():
def __init__(self, ls):

self.ls = ls
self.index = len(self.ls)

def __next__(self):
self.index = self.index - 1

64 ▪ Quick Python 3

if self.index >= 0:
return self.ls[self.index]

raise StopIteration

The iterator’s job is to keep track of where it is in the iteration,
using its own variables and not those of the iterable object. The
iterator shouldn’t affect or modify the iterable object. This rule
allows two or more iterators to run simultaneously on the same
object without interfering with each other.

If the classes are combined so that the iterable is its own iterator,
then only one iterator at a time can be supported.

A for loop may use any iterable object. In for loops, the
StopIteration exception does not result in an error; it merely
terminates the for loop. For example,

ls = MyList([1, 2, 3, 4])
for e in ls:

print(e)

Alternatively, you can use the iter and next methods directly,
and handle the StopIteration exception yourself. This is es-
sentially what the previous for loop is doing.

ls = MyList([1, 2, 3, 4])
it = iter(ls)
while True:

try:
print(next(it))

except StopIteration:
break

An iterator can be used only once; when it raises the
StopIteration exception, it’s done, and cannot be reset. Instead
of resetting an iterator, you can simply create another one.

Getting Fancy ▪ 65

If you have an iterator it that returns a finite number of values
and you need a list of those values, just say list(it).

4.10 GENERATORS
A generator is a kind of iterator. It generates values one at a
time, as needed, but it isn’t necessarily tied to a particular kind of
object.

One kind of generator expression looks just like a list compre-
hension, except that the enclosing brackets are replaced by
parentheses. Generators may be used wherever an iterator may
be used, such as in a for loop. Example:

word = 'generator'
gen = (c for c in word if c in 'aeiou')

for i in gen:
print(i, end=' ')

This code will print e e a o.

Caution: A generator is a kind of iterator, so after it
returns all its values, it is “used up.” If the above for
loop were called a second time, it would not print any-
thing, because the variable gen would hold an empty
generator.

You can write functions that act as generators, by using yield in-
stead of return. Here is an example generator for powers of 2:

def powers_of_two():
n = 2
for i in range(0, 5):

yield n
n ∗= 2

66 ▪ Quick Python 3

When this function is called, it returns a generator, not a
number. You can use this generator in a for loop, the same way
g was used above, and you will get the values 2, 4, 8, 16, and 32.

gen = powers_of_two()
for n in gen:

print(n)

Since e is an iterator, you can use next(gen) to get the next
value. In this case you will have to handle the exception yourself.

gen = powers_of_two()
while True:

try:
print(next(gen))

except StopIteration:
break

Here’s how this works:

• The call gen = powers_of_two() returns a generator and
puts it in gen.

• The first call of next(gen) executes the generator down to
the yield statement, and returns the yielded value, just like
a normal return statement. But in addition, the generator
remembers where it left off.

• A subsequent call to next(gen) will cause the generator to
resume execution where it left off, that is, immediately after
the yield statement. All the values of local variables will
have been retained. As far as the generator is concerned, it
is as if the yield had never happened. In this example, the
for loop keeps running.

• You can have multiple yield statements in a generator.
The function will remember at which yield it left off, and
will continue from there.

Getting Fancy ▪ 67

• Just as with iterators, a generator will raise a StopIteration
exception when there are no more values to return. This
happens automatically when it reaches the end of the func-
tion, or if it reaches a return statement.

4.11 PARAMETERS AND ARGUMENTS
With no additional syntax, arguments (expressions in a function
call) are matched to parameters (variables in a function defini-
tion) by position. The first parameter gets the value of the first
expression, and so on.

Parameters in a function definition may be:

• A simple variable name, matched and bound to an argu-
ment by position. Positional parameters must precede any
other parameters.

• variable=value, to give a default value for missing
arguments.

• ∗args, to accept multiple arguments as a single tuple. By
convention, the name args is usually used for this purpose.

• ∗∗kwargs, to accept multiple keyword arguments as a
dictionary. By convention, the name kwargs (keyword ar-
guments) is usually used for this purpose.

∗args or ∗∗kwargs can only be used as the last parameter, as
either one collects all remaining arguments.

Arguments in a function call may be:

• An expression.

• name=value, to give a value to the parameter with that name.
This is called a named argument or keyword argument.

68 ▪ Quick Python 3

If both positional and keyword arguments are used, all po-
sitional arguments must precede keyword arguments.

• ∗iterable, to pass the values of an iterable as separate
arguments.

• ∗∗dictionary, to pass in values to multiple parameters by
name.

Starting with Python 3.8, arguments can be forced to be posi-
tional only. A single slash, /, in place of a parameter means that
all earlier arguments must be positional. An asterisk, ∗, in place
of a parameter means that all arguments after that must be
keyword. For example, given the function

def foo(a, b, /, c, d, ∗, e, f):
print(a, b, c, d, e, f)

Arguments for a and b must be by position only; arguments for
e and f must be keyword arguments. Arguments for c and d may
be either (but since positional arguments must precede keyword
arguments, d cannot be positional if c is keyword).

Many of the functions described in the official Python doc-
umentation appear to have a single asterisk as a parameter, for
example, os.remove(path, ∗, dir_fd=None). This is a doc-
umentation convention to indicate that the subsequent argu-
ments can only be given as named arguments. It does not mean
you should put an asterisk in the function call.

4.12 FUNCTIONAL PROGRAMMING
Definitions of functional programming differ, but in general
include the following:

• Functions are objects, and can be treated like any other
value.

Getting Fancy ▪ 69

• Variables are single-assignment; once given a value, they
are never changed.

• All functions are pure; the value returned by a function
depends only on the arguments given to it, and if called
again with the same arguments, it will produce the same
value. This excludes any use of global variables or other
external factors, such as the system clock.

Functional programming is widely regarded as an ivory-tower
technique, not suitable for day-to-day programming. This is not
the place to challenge that viewpoint, other than to note that all
modern programming languages support functional program-
ming to some extent.

In this book we consider only the first point above: that functions
are objects. We will consider only a single example of such a use.

The following function will find the largest value in a nonempty
list of values:

def biggest(values):
big = values[0]
for v in values:

if v > big:
big = v

return big

Since > can also be used to compare strings, this function can be
used to find the lexicographically largest string in a list of strings.
But for almost any other purpose (finding the smallest number,
the longest string, etc.) you have to write another, almost iden-
tical function.

Instead of writing more and more functions, we can replace the >
with a generic test:

70 ▪ Quick Python 3

def most(values, more):
best = values[0]
for v in values:

if more(v, best):
best = v

return best

def larger(a, b):
return a > b

And we can call the most function like this:

most([1, 6, 1, 8, 0], larger)

or like this:

def longer(a, b):
return len(a) > len(b)

most(["a", "generic", "list"], longer)

This still results in a lot of little functions such as larger and
longer. Python also provides literal functions, sometimes called
anonymous functions because they have no name. Literal
functions are intended to be used only in the one place that they
are written. For historical reasons, a literal function is introduced
by the keyword lambda. For example,

lambda a, b: len(a) > len(b)

and it can be used like this:

print(most(["a", "generic", "list"],
lambda a, b: len(a) > len(b)))

Getting Fancy ▪ 71

A lambda expression consists of the keyword lambda, any number
of parameters, a colon, and a single expression. In this example the
result of the expression is a boolean, but it could be of any type.

Python has a number of built-in functions that take a function as
a parameter. Here are some of the most generally useful:

• map(function,iterable) returns an iterator whose next
function will get the next value of the iterable, apply the
function to it, and return the result.

• filter(predicate,iterable) returns an iterator whose
next function will return the next value of the iterable that
satisfies the predicate.

• functools.reduce(binaryFunction, iterable) applies
binaryFunction to the first two elements of the iterable. It then
repeatedly applies binaryFunction to the current result and the
next member of iterable, returning a single value as the result.
(Note: reduce must be imported from functools.)

Examples: If my_list is [3, 1, 4, 1, 6], then

• map(lambda x: x ∗ x, my_list) will return the values 9,
1,16, 1, 36.

• filter(lambda x: x > 1, my_list) will return the values
3, 4, 6.

• reduce(lambda x, y: x + y, my_list) will return 15.

72 ▪ Quick Python 3

C H A P T E R 5

Testing

C ODE HAS TO BE TESTED. It is unusual for any significant piece
of code to run correctly the first time.

One all-too-common approach is to try out the code as it is
being written, conclude that everything is correct, and do
nothing to preserve the tests. This does nothing to future-proof
the code against more subtle errors, and makes it more difficult
to modify the code as requirements change.

A test framework is software that:

1. allows tests to be written in a simple, standardized
form; and

2. allows the tests to be run with an absolute minimum of
effort.

In the following sections we will discuss two frameworks, doctest
and unittest.

DOI: 10.1201/9781003356219-5 73

https://doi.org/10.1201/9781003356219-5

5.1 PHILOSOPHY
Use of a proper test framework has a large number of advantages:

• Code is much more likely to be correct.

• Code typically takes less time to produce, because debug-
ging time is reduced.

• Functions written to be tested tend to be much smaller and
single purpose.

• Functions written to be tested provide a clean separation
between computation and I/O.

• The existence of a test suite (a collection of tests) makes it
easier and safer to modify the code at some later date.

A good test framework gives the programmer the ability to run
the tests quickly, usually with a single button click, and see with a
single glance if there are any errors. Any tests that require more
than this will not be run frequently, if at all, thus negating the
value of having them.

To write testable code,

• Write many small functions that each do one thing, rather
than a few large functions that do a lot of things.

• Write the tests as you go. Many authorities recommend
writing the tests before writing the code to be tested; this helps
clarify what the code is supposed to do, and also helps the
programmer see the interface from the users point of view.

• It can be difficult or impossible to write tests for pre-
existing or legacy code.

74 ▪ Quick Python 3

• Minimize the use of global variables, and avoid them en-
tirely if you can. Functions whose values depend only on
their arguments are much easier to test in isolation.

• Strictly separate functions that do computation from
functions that do input or output, and test only the former.

• Functions that do I/O involve the programmer, so they
prevent the use of single-click testing. While there are
techniques for testing these functions, those are ad-
vanced techniques not covered here.

5.2 DOCTEST
A lot of testing is done on an ad hoc basis—the programmer
types in function calls at the Python prompt (>>>), and looks to
see if the result is correct. Doctest provides a very low-effort
way to preserve these tests.

To use doctest, simply copy the ad hoc tests done at the prompt,
including the >>> prompt, and paste them into the doc comment
for the function being tested. The following get_digits function
returns a list of all the digits in an integer or a string:

def get_digits(number):
"""Return a list of digits in an int or string."""
string = str(number)
return [x for x in string if x.isdigit()]

Then the programmer might run some tests:

>>> get_digits("124c41")
['1', '2', '4', '4', '1']
>>> get_digits(1213141)
['1', '2', '1', '3', '1', '4', '1']

To use doctest, the ad hoc tests done at the Python prompt are
copied and pasted into the docstring.

Testing ▪ 75

def get_digits(number):
"""Return a list of digits in an int or string."""
>>> get_digits("124c41")
['1', '2', '4', '4', '1']
>>> get_digits(1213141)
['1', '2', '1', '3', '1', '4', '1']
"""
string = str(number)
return [x for x in string if x.isdigit()]

To run these tests again, use:

import doctest
doctest.testmod()

The testmod method will locate all the ad hoc tests in the
comments and run them again. It will print information about
all failed tests; if all tests pass, testmod doesn’t print anything
(though it does return a summary result).

Notes:

• Exceptions raised by a test can be tested just like any other
result, by copying the printed result into the docstring.

• The >>> prompt may begin in any column, but the output
must begin in the same column.

• For code that extends over multiple lines, the ... continuation
prompt should also be copied into the docstring.

• Tabs in the output will be converted to spaces, causing the
doctest to fail.

• A blank line in the output is taken as the end of the output.

Tests may be put in a separate file and executed with the
doctest.testfile(path) method.

76 ▪ Quick Python 3

While doctest is a least-effort way to preserve some tests, it isn’t
as flexible as unit testing.

5.3 UNIT TESTING
A unit test is a test of the methods in a single class. A test case
tests the response of a single method to a particular set of inputs.
To do unit testing,

• import unittest

• import fileToBeTested or
from fileToBeTested import *

• Reminder: If you use from file import * then you
don’t have to precede every function call with the name
of the file it was imported from.

• Write a class SomeName(unittest.TestCase). Within
the class,

• Define methods setUp(self) and tearDown(self), if
wanted. These are both optional.

• Provide one or more testSomething(self) methods.
You may include other methods, but the names of test
methods must begin with test.

• At the end of the test file, put unittest.main().

Here’s what unittest.main() does. For each and every method
whose name begins with test, the unittest.main method calls
setUp() if you have provided one, then calls the test method,
then calls tearDown() if you have provided one. So, every test is
sandwiched between setUp and tearDown.

The purpose of the setUp method is to make sure everything is
in a known, pristine state before calling the test method. In this

Testing ▪ 77

way you can make sure that the results of running one test do
not affect the results of a later test.

The purpose of tearDown is to remove artifacts (such as files) that
may have been created. It is used much less frequently than setUp.

Each test method should typically test only one function, though it
may call that function many times. If a function behaves differ-
ently for different kinds of input (for example, positive or negative
numbers), it’s a good idea to write multiple test methods.

Here is a trivial example of a test method:

def test_add(self):
self.assertEqual(4, add(2, 2))
self.assertEqual(0, add(2, -2))

It is conventional to put the expected result (4 or 0) first, and the
function call (add) last.

If any assertion in a test method fails, the test fails and the re-
maining assertions in that method are not tested. For this reason,
test methods should not become too long.

If the method to be tested is in a class C, and you used import C
rather than from C import *, you must also use the class name,
for example, self.assertEqual(4, C.add(2, 2)).

Here are the most commonly used assertion methods:

• self.assertEqual(expected, actual)

• self.assertAlmostEqual(expected, actual) for floating
point numbers.

• self.assertTrue(boolean) and self.assertFalse
(boolean).

78 ▪ Quick Python 3

More assertion methods are given in Appendix F.

You can test whether a function raises an exception when it is
supposed to, but this test has a special form. This is necessary
because arguments to a function are evaluated before the func-
tion is called. For example, if you said

self.assertRaises(ZeroDivisionError, 5/0)

then the argument 5/0 would be evaluated and would raise the
exception before assertRaises can be called.

The solution is to pass the function name in separately from its
arguments:

self.assertRaises(exception, function_name, arguments)

This allows the assertRaises function to call the function to be
tested within a try-except block, and handle it appropriately.

When testing is not being done, a common idiom is to put a call
to the main function as the last line in the code file, for example,
main(). This causes the main method to run immediately after
the file is loaded. When doing unit testing, this is undesirable.
Instead, replace that line with

if __name__ == '__main__':
main()

and put the following code at the end of the test file:

unittest.main()

In this way, the program will be run if loaded from the program
file, and the tests will be run if loaded from the test file.

Testing ▪ 79

5.4 UNIT TEST EXAMPLE
In file get_digits.py:

def get_digits(number):
"""Return a list of digits in an int or string."""
string = str(number)
return [x for x in string if x.isdigit()]

def main():
s = input("Enter something: ")
digits = get_digits(s)
print("Digits found:", digits)
if digits != []:

main()

Call main() if and only if started from this file
if __name__ == '__main__':

main()

In file get_digits_test.py:

import unittest
from get_digits import *

class test_get_digits(unittest.TestCase):

def test_get_digits(self):
s = get_digits("<0.12-34 56abc789x")
self.assertEqual(list("0123456789"),

get_digits(s))
self.assertEqual(list("1230"),

get_digits(1230))
unittest.main()

80 ▪ Quick Python 3

5.5 TEST SUITES
Unit tests can be combined into a test suite. If the file test-
foo.py contains the class TestFoo, and the file testbar.py
contains the class TestBar, the test suite can be written like this:

import unittest
import testfoo, testbar

def suite():
suite = unittest.TestSuite()
suite.addTest(

unittest.makeSuite(
testfoo.TestFoo))

suite.addTest(
unittest.makeSuite(

testbar.TestBar))
return suite

if __name__ == '__main__':
test_suite = suite()
runner = unittest.TextTestRunner()
runner.run (test_suite)

Testing ▪ 81

http://taylorandfrancis.com
http://taylorandfrancis.com

C H A P T E R 6

Graphical User
Interfaces

6.1 DIALOGS
There are several GUI (Graphical User Interface, pronounced
“gooey”) systems that can be used with Python. This chapter
discusses Tkinter, which comes bundled with the standard
Python distribution.

Many programs do not require a full GUI, just a dialog box or
two. Tkinter provides a number of these. To use them, import
messagebox, simpledialog, and/or filedialog from tkinter.

• messagebox.showinfo(title, message)

• messagebox.showwarning(title, message)

• messagebox.showerror(title, message)

• All the above are essentially the same; the difference is
which icon is displayed. All provide for a title, a message,
and an OK button.

DOI: 10.1201/9781003356219-6 83

https://doi.org/10.1201/9781003356219-6

• result = messagebox.askyesno(title, question)

• This provides No and Yes buttons, which return False
or True, respectively.

• result = simpledialog.askfloat(title, message)

• result = simpledialog.askinteger(title, message)

• result = simpledialog.askstring(title, message)

• Allows the user to enter a floating point number, integer,
or string. Provides Cancel and OK buttons; if the dialog
is canceled, the value returned is None.

• input_file = filedialog.askopenfilename(initialdir=
path, title=title)

• Asks for a file to be read in. If an initialdir argument
is provided, navigation starts from that point.

• output_file = filedialog.asksaveasfilename(initialdir=
path)

• Asks for a location in which to save a file. If an
initialdir argument is provided, navigation starts
from that point.

6.2 TKINTER
GUI programs work differently than programs without a GUI.
Instead of all code under control of a main method, the program
creates a GUI, and thereafter everything that happens is a result
of some user interaction with the GUI. For example, the user
clicks a button, and that causes certain code to be executed.

Start with

from tkinter import *
import tkinter.ttk

84 ▪ Quick Python 3

After that, your code should create a “root” window,

top = Tk()

Next, populate the window with widgets (see below).

Finally, turn over execution to the GUI:

top.mainloop()

There are three main tasks to be performed:

1. Create some widgets (buttons, text areas, etc.).

2. Arrange the widgets in the window.

3. Associate code with some of the widgets.

You can execute some initialization code before calling mainloop,
but once you call mainloop, the GUI is in control.

A minor annoyance is that whenever Tkinter is used to build a
GUI, it must display a “root window.” This is a small window
that appears on your screen and has no function. To eliminate it,
create a root window yourself and immediately hide it. This only
needs to be done once.

import tkinter
root = tkinter.Tk()
root.withdraw()

6.3 CREATING WIDGETS
The window that opens when you run a GUI program is a
container: it can contain widgets (buttons, text areas, etc.). A
frame is a container that you can put inside a window, or in
another frame.

Graphical User Interfaces ▪ 85

There are 15 types of widgets in Tkinter, each with many op-
tions, indicated with option=value. This will cover only the
most common types and options. In the following, we assume
that the window is called top.

• fr = Frame(parent, option, ...)

• This is a container for widgets. The parent may be the top-
level window (top) or another Frame. Some useful options
are bg=color, the background color (as a color name or hex
number) and bd=n, the border width in pixels.

• but = Button(parent, text=string, command=function_
name)

• Creates a button containing the string, which when
clicked will call the named function. Parameters cannot
be supplied to the function.

• lab = Label(parent, text=string)

• Creates a label that can be displayed but not edited by
the user.

• To change the text, use lab.configure(text=new_text).

• ent = Entry(parent, width=n)

• Creates a rectangle large enough to display approxi-
mately n characters, into which the user can type a single
line of text. More than n characters may be entered, but
they may not all be visible.

• To retrieve the text, call ent.get().

• txt = Text(parent, width=num_characters, height=num_
lines)

• Creates a rectangle num_characters wide and num_lines
high, into which the user can type multiple lines of text.

86 ▪ Quick Python 3

Any number of lines may be entered, but only the spe-
cified number will be visible.

• To retrieve the text, call txt.get(1.0, END).

• To delete all text, use txt.delete(1.0, END).

• To insert text, use txt.insert(END, text).

• var = IntVar()

• Defines var as an IntVar(see Checkbutton below).

• chk = Checkbutton(parent, text=string, variable=var,
command=function)

• The var must have been defined with IntVar().

• Creates a checkbox with the given text.

• var.get() will return 1 if checked, 0 if not checked.

6.4 PUTTING WIDGETS INTO THE GUI
There are three methods for arranging widgets into the main
window and into frames: pack, grid, and place. Only one of
these methods should be used in any given window or frame.

Complex layouts can be created by putting multiple frames into
the window and/or into other frames, and using different layouts
for the window and for each frame.

widget.pack(options) just adds the widget to the window or
frame. Options are:

• side=side where side is one of LEFT, RIGHT, TOP, or BOTTOM
to add widgets starting from that side.

• expand=True to expand the widget to fill available space.

Graphical User Interfaces ▪ 87

• fill=how to expand the widget, where how is X (hor-
izontally), Y (vertically), BOTH, or NONE.

widget.grid(options) adds the widget into a grid (two-
dimensional table). Options are:

• row=n The row to put the widget in. Default is the first
available row.

• column=n The column to put the widget in; default is 0.

• rowspan=n The number of rows the widget should occupy.

• columnspan=n The number of columns the widget should
occupy.

• ipadx=n, ipady=n The amount (in pixels) to pad the
widget, horizontally and vertically.

• sticky=d Where to put the widget if in a larger space. d is
one of N, S, E, W, NE, SE, NW, SW.

widget.place(options) specifies exactly where to place each
widget. Options are:

• x=pixels, y=pixels The x and y position of the anchor point
of the widget, relative to the parent.

• anchor=d Which part of the widget the x and y refer to,
where d is one of N, S, E, W, NE, SE, NW, SW. The default is NW
(top-left corner).

• bordermode=OUTSIDE to take the parent’s border into ac-
count when positioning the widget, else INSIDE (INSIDE is
the default).

• height=pixels, width=pixels The height and width of the
widget, in pixels.

88 ▪ Quick Python 3

• relx=float, rely=float The x and y position, as a fraction
between 0.0 and 1.0, of the width and height of the parent.

• relwidth=float, relheight=float The size of the widget, as
a fraction between 0.0 and 1.0, of the width and height of
the parent.

6.5 TKINTER EXAMPLE
Here is a program for rolling a single die. When executed, the
window should appear at the top-left corner of your screen. Exit
the program by closing the window.

from tkinter import *
import tkinter.ttk
from random import randint

def roll():
n = str(randint(1, 6))
result.configure(text=n)

top = Tk()

roll_button = Button(top, text='Roll', command=roll)
result = Label(top, width=12)

roll_button.grid(row=0)
result.grid(row=1)

Graphical User Interfaces ▪ 89

http://taylorandfrancis.com
http://taylorandfrancis.com

Afterword

T HIS LITTLE VOLUME HAS covered the basics of Python 3. Unlike
many Python books, it has also introduced functional pro-

gramming, unit testing, and GUI implementation with Tkinter.

Python has a large number of library routines to explore. As with
any language, there are plenty of surprises in odd corners in both
the syntax and semantics.

Beyond this, there are a large number of Python packages readily
available—NumPy for scientific applications, NLTK for natural
language processing, and SciPy for machine learning, to name a
few of the most popular.

If you have made it this far in this book, and have tried out
things as you went, you should have a solid foundation for
learning more, and going wherever your interests and require-
ments take you.

Happy programming!

DOI: 10.1201/9781003356219-7 91

https://doi.org/10.1201/9781003356219-7

http://taylorandfrancis.com
http://taylorandfrancis.com

Appendix A:
String Methods

H ERE ARE SOME OF THE string methods available from the
string module (in alphabetical order):

• string.center(int) returns a copy of string centered in a
string of length int.

• string.count(substring) returns the number of non-
overlapping occurrences of substring in string.

• string.endswith(suffix) returns True if string ends with
suffix.

• string.find(substring) returns the index of the beginning
of the first occurrence of substring in string, or -1 if not
found.

• string.format(values) returns a string with the values in-
serted into placeholders of the form {index} or {variable}.
Placeholders may contain an optional :formatting_code.

• string.isalnum() tests whether all characters are alpha-
numeric (letters or digits).

93

• string.isalpha() tests whether all characters are alphabetic.

• string.isdigit() tests whether all characters are digits.

• string.isidentifier() tests whether string is a nonempty
string consisting of letters, digits, and/or underscores, and
does not begin with a digit.

• string.islower() tests whether all letters in string are
lowercase—False if the string contains no letters.

• string.isprintable() tests whether the string does not
contain control characters.

• string.isspace() tests whether all characters are whitespace
(spaces, tabs, newlines, some Unicode characters)—False if
string is the empty string.

• string.isupper() tests whether all letters in string are
uppercase—False if the string contains no letters.

• string.join(list_of_strings) returns a single string, with
the elements of the list_of_strings separated by string.

• string.ljust(int) returns a copy of string left-justified in a
field of length int.

• string.lower() returns a copy of string with all letters
lowercased.

• string1.partition(string2) returns a 3-tuple: (the part of
string1 before string2, string2 itself, the part after string2).

• string1.replace(string2, string3) returns a copy of string1
with all occurrences of string2 replaced by string3.

• string.rjust(int) returns a copy of the string right-
justified in a field of length int.

94 ▪ Appendix A: String Methods

• string1.split(string2) returns a list of the substrings of
string1 that are separated by string2. If string2 is omitted,
whitespace is used as the separator.

• string.splitlines() returns a list of the lines in string,
discarding newline characters.

• string.startswith(prefix) returns True if string starts
with prefix.

• string.strip() returns a copy of string with all leading
and trailing whitespace removed.

• string.upper() returns a copy of string with all letters
uppercased.

In addition: A string may be treated as a list of characters, so all
of the list methods can be applied to strings.

Appendix A: String Methods ▪ 95

http://taylorandfrancis.com
http://taylorandfrancis.com

Appendix B:
Numerical Functions

H ERE ARE SOME BUILT-IN functions on numbers; you don’t
need to import these.

• abs(x) returns the absolute value of a number x (or the
magnitude of a complex number).

• bin(int) returns a binary string representation of int.

• chr(int) returns the character whose Unicode representa-
tion is int. The inverse operation is ord.

• divmod(x, y) returns the tuple (x // y, x % y) for integers.

• float(x) converts a string or integer x to a floating point
number.

• hex(int) returns a hexadecimal string representation of int.

• int(x) converts a string x to an integer, or truncates a float
x to an integer.

• oct(int) returns an octal string representation of int.

97

• pow(x, y) returns x raised to the power y.

• round(float) returns the integer nearest to the given float
value.

• round(float,int) returns float rounded to int digits after
the decimal point.

The math module includes a lot of methods that are not available
by default. Here are some of them.

• math.ceil(x) returns the smallest integer greater than or
equal to x.

• math.floor(x) returns the largest integer smaller than or
equal to x.

• math.trunc(x) returns the integer value obtained by
dropping everything after the decimal point.

• math.gcd(a, b) returns the greatest common divisor of the
two arguments.

• math.factorial(n) returns the product of the first n
positive integers.

• math.comb(n, k) returns the number of possible subsets of
size k from a set of n elements.

• math.perm(n, k) returns the number of possible ordered
sequences of size k, where the elements are drawn without
replacement from a set of n elements.

• math.sqrt(x) returns the square root of x.

• math.log(x), math.log2(x), math.log10(x), math.log
(x, b) return the logarithm of x to the base e, 2, 10, or b,
respectively.

• math.exp(x) returns ex.

98 ▪ Appendix B: Numerical Functions

• The trignometric functions math.sin(x), math.cos(x),
math.tan(x), math.asin(x), math.acos(x), and
math.atan(x), where x is in radians.

• The hyperbolic functions math.sinh(x), math.cosh(x),
math.tanh(x), math.asinh(x), math.acosh(x), and
math.atanh(x), where x is in radians.

• The conversion functions math.degrees(radians) and
math.radians(degrees).

• The math module also defines the constants math.pi,
math.e, and math.tau.

Here are some of the functions that you get if you import the
random module:

• random.choice(seq) returns an element chosen randomly
from the sequence seq.

• random.shuffle(seq) shuffles the sequence seq in place
(that is, the original list is changed).

• random.random() returns a random floating point number
r in the range 0.0 ≤ r < 1.0.

• random.randint(a, b) returns a random integer r in the
range a ≤ r ≤ b.

Reminder: If you import the functions individually or by using
the from module import * version of the import statement, you
can leave off the module prefix (in this case, math. and random.).

Appendix B: Numerical Functions ▪ 99

http://taylorandfrancis.com
http://taylorandfrancis.com

Appendix C:
Statistics

H ERE ARE SOME OF THE functions provided by the statistics
module.

• statistics.mean(data) returns the mathematical “average”
of the data, computed by adding the values and dividing their
sum by the number of values.

• statistics.median(data) returns the “middle” number of
the data, such that half the values are less than or equal to it, and
half are greater than or equal to it. If there are an even number
of values, the result is the mean of the two middle values.

• statistics.mode(data) returns the number that occurs
most often in the data (or if a tie, the first such number).

For example,

from statistics import *
a = [1, 2, 3, 4, 5, 5, 78]
print(f"{mean(a)=}, {median(a)=}, {mode(a)=}")

101

prints:

mean(a)=14, median(a)=4, mode(a)=5

Here are some more functions:

• statistics.stdev(data) returns the sample standard
deviation.

• statistics.variance(data) returns the sample variance.

Using the same value for a as above,

print(f“{stdev(a):6.2 f}, {variance(a):6.2 f}”)

prints:

28.26, 798.67

The statistics module also includes functions for working
with normal distributions.

102 ▪ Appendix C: Statistics

Appendix D:
Functions on Iterables

H ERE ARE SOME FUNCTIONS that take iterable objects (lists, sets,
tuples, strings, dictionaries, ranges, files, and possibly others).

• all(iterable) returns True if every element of iterable
evaluates to a true value.

• any(iterable) returns True if at least one element of
iterable evaluates to a true value.

• filter(test, iterable) returns an iterator for the items in
iterable that pass the test.

• len(iterable) returns the number of elements in iterable.

• list(iterable) returns a list of the elements in iterable, in
the same order.

• map(function, iterable) returns an iterator. Each value
returned by the iterator will be the result of applying the
function to the corresponding value of the iterable.

• max(iterable) returns the largest value in iterable.

103

• min(iterable) returns the smallest value in iterable.

• set(iterable) returns a set of the values in iterable.

• sorted(iterable) returns a list of the elements in iterable,
in sorted order.

• sum(iterable) returns the sum of the values in iterable.

• tuple(iterable) returns a tuple of the elements in iterable,
in the same order.

• zip(iterable1,…,iterableN) returns an iterator of N-tuples,
where the first tuple contains the first value in each iterable,
the second tuple contains the second value in each iterable,
and so on. Iteration stops when any one of the iterables runs
out of values.

• element in iterable returns True if element is in iterable.

• element not in iterable returns True if element is not in
iterable.

Functions that take an iterable object can, in general, also take an
iterator or a generator. If this is done, the iterator or generator
will be passed in its current state, which may or may not be at the
start of the iterable.

Some of the above functions have to examine every element of
the iterable (max, for example). Others, like any, may or may not
examine every element. Care should be taken not to call such a
function with an iterator or generator that produces an infinite
number of values.

104 ▪ Appendix D: Functions on Iterables

Appendix E:
Operating System
Commands

H ERE ARE A FEW OF THE functions available when you import os:

• os.getcwd() gets the current working directory.

• os.chdir(path) changes the current working directory to
path. Paths (given as strings) may be absolute or relative.

• os.listdir(path='.') returns a list containing the
names of the entries in the directory '.'.

• Note that path(not italicized) is a keyword, not a vari-
able that can be replaced by some other name. In other
functions, path (italicized) represents a variable con-
taining a string, or the string itself.

• os.mkdir(path, mode=0o777, dir_fd=None) creates a
directory named path with numeric mode 0o777.

105

• The mode is a Unix-style three-digit octal code. The
three bits of each digit specify read, write, and execute
permissions for owner, group, and world.

• os.remove(path, dir_fd=None) deletes the single file path;
not for directories.

• os.rmdir(path, dir_fd=None) removes (deletes) the empty
directory path.

• os.rename(src, dst) renames the file or directory src to dst.

• os.walk(top, topdown=True, onerror=None, followlinks=
False) generates the file names in a directory tree by walking
the tree either top-down or bottom-up. For each directory
in the tree rooted at directory top (including top itself), it yields
a 3-tuple (dirpath, dirnames, filenames).

106 ▪ Appendix E: Operating System Commands

Appendix F:
Unit Test Methods

T HE FOLLOWING ARE SOME of the methods available in unittest,
most of which are self-explanatory.

• assertEqual(a, b)

• assertNotEqual(a, b)

• assertAlmostEqual(a, b) # for floating point numbers

• assertAlmostEqual(a, b, places)

• assertTrue(x)

• assertFalse(x)

• assertIs(a, b) # tests for identity

• assertIsNot(a, b)

• assertIsNone(x)

• assertIsNotNone(x)

• assertIn(a, b)

107

• assertNotIn(a, b)

• assertIsInstance(a, b)

• assertNotInstance(a, b)

• assertRaises(exception, function, arguments)

All calls to these methods must be prefixed with self..

Each of these methods has an optional final parameter, which may
be any expression. It is used as a message in the AssertionError
to provide any necessary additional information.

These methods are not called directly. Instead, they should be put
in one or more methods whose names begin with self.. Executing
unittest.main() will find and execute all such methods.

108 ▪ Appendix F: Unit Test Methods

Index

*args, 68
**dictionary, 69
% formatting, 60
*iterable, 69
**kwargs, 68
... (pass), 56
>>> (prompt), 2
__eq__, 47
__ge__, 48
__gt__, 48
__init__, 42, 45
__iter__, 64
__le__, 48
__lt__, 48
__ne__, 48
__next__, 64
__repr__, 46
__str__, 45

ad hoc testing, 75
add (set method), 25
and, bitwise, 61
anonymous function, 71
append (list method), 21
arguments, 68
arithmetic, 4
askfloat (tkinter method), 84
askinteger (tkinter method), 84

askopenfilename (tkinter
method), 84

askyesno (tkinter method), 84
assert statement, 54
assertAlmostEqual (unittest

method), 78
assertEqual (unittest method), 78
assertRaises (unittest method), 79
assertTrue (unittest method), 78
assignment statements, 10
asterisk as parameter, 69
asterisk in documentation, 69
attribute, 40

bicycle, riding, 16
biggest example, 70
bin function, 59
binary input/output, 36
bindings, 48
bit operators, 61
bool, 3
Booleans, 6
break statement, 54
built-in variables, 35
Button (tkinter object), 86

cake recipe, 39
camelCase, 3
chaining, 6

109

characters, special, 8
Checkbutton (tkinter object), 87
class, 39
clear (set method), 25
close (file method), 37
comments, 9
comparison of sets, 25
comparisons, 6
complement, bitwise, 61
complex number, 59
constructor, 39, 41
constructor, type name as, 33
container, 85
continue statement, 55

decimal integer, 59
deep copy, 51
deepcopy (list method), 51
def, 14
defining functions, 14
del (dictionary operator), 26
del statement, 55
deserializing, 38
dialog box, 83
dict, 25
dictionary, 25
difference (set method), 25
discard (set method), 25
divmod function, 23
docstring, 15
doctest, 75
dot notation, 19, 34, 41
dump (pickle method), 38
dumps (pickle method), 38
dunder methods, 42
dynamic typing, 57
dynamic view of dictionary, 30

Eclipse, 2
elif, 11
else clause, 55

empty list, 20
empty set, 24
enclosed scope, 34
Entry (tkinter object), 86
enumerate (list function), 28
enumerate (set function), 29
equal objects, 47
eval function, 60
exception, 30
exceptions, passing up, 32
exclusive or, bitwise, 62
exec function, 55
exponentiation, 4
extension, 3

f-string, 60, 27
false, values considered, 33
field, 40
file I/O, 36
filedialog, 84
filter function, 72
finally always executed, 32
float, 3
floating point number, 58
for loops, 12
format (string method), 60
formatted string, 27
formatting codes, 60
frame, 85
Frame (tkinter object), 86
functional programming, 69
functions, defining, 14
functools, 72

generator, 66
generator expression, 66
genericized type, 34
get (dictionary method), 26
get_digits example, 75, 80
global scope, 35
grades example, 50

110 ▪ Index

Graphical User Interface, 83
grid (tkinter method), 88
GUI, 83

handling exceptions, 30
help function, 15
hex function, 59
hexadecimal integer, 58
hierarchy, 39

IDE, 1
identical objects, 47
identifiers, 56
IDLE, 1
if expression, 7
if statements, 11
imaginary number, 59
immutable, 27, 48
import statement, 13, 53
in (dictionary operator), 27
indentation, 9
inheritance, 39
initializer, 42
input function, 14
instance, 40
instance variable, 40
int, 3, 6
integer division, 4
Integrated Development

Environment, 1
IntelliJ IDEA, 2
intersection (set method), 24
IntVar (tkinter object), 87
is_prime example, 16
isinstance function, 34
issubset (set method), 25
issuperset (set method), 25
items (dictionary method), 30
iter function, 63
iterable object, 63
iterator, 63

ivory tower technique, 70

join (string method), 27
JSON, 38
Jupyter Notebook, 2

keys (dictionary method), 29
KeyError, 27
keyword arguments, 68

Label (tkinter object), 86
lambda, 71
left shift operator, 62
LEGB rule, 34
len function, 20
lexical ordering, 16
Library Reference, 1
list, 4, 7, 20
list comprehension, 62
list iterator, 63
list of lists, 22
list slicing, 21
list, multiplying, 20
literal function, 71
load (pickle method), 38
loads (pickle method), 38
local scope, 35
logicals, 3
looping over dictionaries, 29
looping over lists, 28
looping over sets, 29

main function, 16
mainloop (tkinter method), 85
map function, 72
marshalling, 38
messagebox (tkinter method), 83
messages, 19
method, 19
module, 13
modulus, 4

Index ▪ 111

most example, 71
mutable, 49

named argument, 68
negative indices, 7, 21
NetBeans, 2
New File, 2
newline, 37
next function, 63, 66
None, 4
NoneType, 4
nonlocal scope, 35
nonlocal statement, 55
not enough arguments, 44
not in (dictionary operator), 27
number, convert to string, 59
numeric types, 58

object, 19, 33
oct function, 59
octal integer, 58
one-tuple, 22
open (file function), 36
Optional type, 58
or, bitwise, 62
order of execution, 16
order of precedence, 5
overriding methods, 45

pack (tkinter method), 87
parameters, 68
pass statement, 56
Person example, 40
philosophy of testing, 74
phones example, 26
pickling, 38
place (tkinter method), 88
pop (list method), 21
pop (set method), 25
positional parameters, 68
Preferences, 2

prime numbers, 16
print function, 56
print statements, 10
printing objects, 45
private variables, 57
prompt to save, 2
proper subset, 25
pure function, 70
python.org, 1

quoted strings, 3, 8, 59

raise statement, 56
raising an exception, 30
range function, 12
raw string, 59
read (file method), 37
readline (file method), 37
readlines (file method), 37
reduce function, 72
regular expression, 59
remove from a set, 25
repr function, 46
right shift operator, 62
roll example, 89
round function, 6
Run Module, 2

scope, 34
self, 41
send messages, 19
serializing, 38
set, 23
set literal, 23
set operations, 24
setUp (unittest method), 77
shallow copy, 50
shell window, 2
short-circuit, 6
showerror (tkinter method), 83
showinfo (tkinter method), 83

112 ▪ Index

showwarning (tkinter method), 83
simpledialog, 84
simultaneous assignment, 54
single assignment, 70
slash as parameter, 69
slicing, 21
sort (list method), 21, 50
sorted function, 20, 50
split (string method), 27
StopIteration exception, 63, 65
str, 3
str function, 46
string methods, 27
strings, 8, 59
studlyCaps, 3
subclass, 44
super(), 45
superclass, 39
symmetric_difference (set

method), 25
syntax, 15

tearDown (unittest method), 77
test case, 77
test framework, 73
test suite, 74, 81
test_add example, 78
testable code, 74
testfile (doctest method), 76
testmod (doctest method), 76
Text (tkinter object), 86
this (Java keyword), 44
tkinter, 83, 84
tkinter example, 89
too many arguments, 44

triply-quoted strings, 59
try-except-finally

statement, 31
tuple, 22
two-dimensional list, 22
type, defined by class, 39
type conversions, 33
type function, 34
type hints, 57
typing module, 58

underscore convention, 36
Unicode, 59
union (set method), 24
unit test, 77
unit testing, 77
unittest.main, 77
unmarshalling, 38

values (dictionary method), 29
ValueError exception, 30
variables, 3

walrus operator, 10, 12
while loops, 11
widgets, 85
with open (statement), 36
write (file method), 37

XML, 38

yield, 66

zero-tuple, 22

Index ▪ 113

http://taylorandfrancis.com
http://taylorandfrancis.com

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Author
	Preface
	Chapter 1. The Absolute Bare Minimum
	1.1 Python and IDEs
	1.2 IDLE
	1.3 Variables
	1.4 Important Data Types
	1.5 Basic Arithmetic
	1.6 Comparisons
	1.7 Booleans
	1.8 Lists
	1.9 Strings
	1.10 Comments
	1.11 Statement Types
	1.11.1 Assignment Statements
	1.11.2 Print "Statements"
	1.11.3 If Statements
	1.11.4 While Loops
	1.11.5 For Loops
	1.11.6 Import Statements

	1.12 Input from the User
	1.13 Functions
	1.14 Syntax
	1.15 Order of Execution
	1.16 Summary
	1.17 Wait, That's It?

	Chapter 2. Better Tools
	2.1 Object Notation
	2.2 Lists
	2.3 Tuples
	2.4 Sets
	2.5 Dictionaries
	2.6 String Methods
	2.7 Loops for Objects
	2.7.1 Looping over Lists
	2.7.2 Looping over Sets
	2.7.3 Looping over Dictionaries

	2.8 Handing Exceptions
	2.9 Type Conversions
	2.10 Scope
	2.11 File I/O
	2.12 Pickling

	Chapter 3. Classes
	3.1 Classes and Inheritance
	3.2 Constructors and Self
	3.3 Subclasses
	3.4 Printing Objects
	3.5 Comparing Objects
	3.6 Bindings
	3.7 Shallow and Deep Copies

	Chapter 4. Getting Fancy
	4.1 Statements
	4.2 Identifiers
	4.3 Type Hints
	4.4 Numbers
	4.5 Strings
	4.6 F-Strings
	4.7 Bit Operations
	4.8 List Comprehensions
	4.9 Iterators
	4.10 Generators
	4.11 Parameters and Arguments
	4.12 Functional Programming

	Chapter 5. Testing
	5.1 Philosophy
	5.2 Doctest
	5.3 Unit Testing
	5.4 Unit Test Example
	5.5 Test Suites

	Chapter 6. Graphical User Interfaces
	6.1 Dialogs
	6.2 Tkinter
	6.3 Creating Widgets
	6.4 Putting Widgets into the GUI
	6.5 Tkinter Example

	Afterword
	Appendix A. String Methods
	Appendix B. Numerical Functions
	Appendix C. Statistics
	Appendix D. Functions on Iterables
	Appendix E. Operating System Commands
	Appendix F. Unit Test Methods
	Index

