

Quick Java

“We’ll be doing this next project in Java.”

Unfortunately, you’re a C++ programmer, or maybe a Python
programmer. How are you going to get up to speed in a hurry? There
are lots of Java books for beginners, telling you all about what a computer
is and how it represents everything in bits. You don’t need that. At the
other extreme, there are thousand-page tomes that you aren’t going to get
through in a few days, if ever. You need something in-between.

This book is intended to fill that gap. It’s written for the programmer
who doesn’t need to be taught how to program, just how to do it in
Java—and who needs to get started in a hurry.

Java is covered from the inside out. First, all the things that go inside a
class, most of which are practically identical to C++. After that, all the
various and complicated kinds of classes and interfaces and how they
relate to each other in large-scale programs.

Testing is essential, so (unlike most Java books) JUnit is covered in detail.
Then, in case you need to go in that direction, some functional
programming, a little about parallel programming, and more than
enough to get you started in building GUIs (graphical user interfaces)
and doing animation.

There’s a lot in this little book and, despite my best efforts, you won’t
learn Java in a weekend. But it should be a good start.

FEATURES

• Circular approach allows very fast entry into Java

• Full description of JUnit testing

• Summary of functional programming in Java

• Introduction to synchronization and parallel processing

• Extensive description of building GUIs

Quick Java

David Matuszek

http://www.crcpress.com
http://www.crcpress.com

Designed cover image: David Matuszek

First edition published 2024
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 David Matuszek

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data
Names: Matuszek, David L., author.
Title: Quick Java / David Matuszek.
Description: First edition. | Boca Raton : CRC Press, 2024. | Series: Quick programming |
Includes bibliographical references and index.
Identifiers: LCCN 2023011142 (print) | LCCN 2023011143 (ebook) | ISBN 9781032502779
(paperback) | ISBN 9781032515830 (hardback) | ISBN 9781003402947 (ebook)
Subjects: LCSH: Java (Computer program language)
Classification: LCC QA76.73.J38 M35257 2024 (print) | LCC QA76.73.J38 (ebook) |
DDC 005.13/3‐‐dc23/eng/20230609
LC record available at https://lccn.loc.gov/2023011142
LC ebook record available at https://lccn.loc.gov/2023011143

ISBN: 978-1-032-51583-0 (hbk)
ISBN: 978-1-032-50277-9 (pbk)
ISBN: 978-1-003-40294-7 (ebk)

DOI: 10.1201/9781003402947

Typeset in Minion
by MPS Limited, Dehradun

www.copyright.com
www.copyright.com
https://lccn.loc.gov/2023011142
https://lccn.loc.gov/2023011143
https://doi.org/10.1201/9781003402947

To all my students
past, present, and future

http://taylorandfrancis.com
http://taylorandfrancis.com

Contents

Author, xv

Preface, xvii

Versions, xix

Chapter 1 ■ A Lightning Tour of Java 1
1.1 Projects 1

1.2 First Glimpse: The Circle Class 2

1.3 Data 4

1.4 Operators 5

1.5 Program Structure 6

1.6 Statements 8

1.7 Program Execution 9

1.8 Hello World 10

Chapter 2 ■ Preliminaries 13
2.1 IDEs 13

2.2 Comments and Tags 14

Chapter 3 ■ The “Inner Language” of Java 17
3.1 Variables and Naming Conventions 17

3.2 Basic Data Types 19

3.2.1 Primitive Types 19
3.2.2 Arrays 19

vii

3.2.3 Strings 21
3.2.4 Exceptions 22
3.2.5 Operators and Precedence 23
3.2.6 Declarations and Casting 25
3.2.7 Constants 26
3.2.8 Methods 27
3.2.9 Methods Calling Methods 29
3.2.10 Overloading 30
3.2.11 Scope 30

3.2.11.1 Variables Declared in Classes 30
3.2.11.2 Variables Declared in Methods 31
3.2.11.3 Variables Declared in Blocks 32

3.3 Statement Types 32

3.3.1 Statements Also in C++ 34
3.3.1.1 Blocks 34
3.3.1.2 Assignment Statements 35
3.3.1.3 Method Calls and Varargs 36
3.3.1.4 If Statements 36
3.3.1.5 While Loops 38
3.3.1.6 Do-while Loops 39
3.3.1.7 Traditional For Loops 40
3.3.1.8 For-each Loop 41
3.3.1.9 Classic switch Statements 42
3.3.1.10 Labeled Statements 44
3.3.1.11 Break Statements 44
3.3.1.12 Continue Statements 45
3.3.1.13 Return Statements 46
3.3.1.14 Empty Statements 46

3.3.2 Statements Not in C++ 47
3.3.2.1 Assert Statements 47
3.3.2.2 Print “Statements” 48

viii ▪ Contents

3.3.2.3 Switch Statements and Expressions 49
3.3.2.4 Pattern Matching in switch Statements 50
3.3.2.5 Try-catch-finally 52
3.3.2.6 Throw Statements 53

3.3.3 Reading from a File 54
3.3.4 Try With Resources 55
3.3.5 Writing to a File 56

3.4 Classes and Objects 57

3.4.1 Some Useful Objects 58
3.4.1.1 String Objects 58
3.4.1.2 StringBuilder Objects 59
3.4.1.3 Using Scanner 60
3.4.1.4 Console 61
3.4.1.5 Objects, Generics, and Stacks 62
3.4.1.6 Maps 63
3.4.1.7 The Java API 64

3.5 Objects and Classes 66

Chapter 4 ■ The “Outer Language” of Java 69
4.1 Class Structure 69

4.1.1 A Simple Class 70
4.1.2 The Class Header 71
4.1.3 Interfaces I 72
4.1.4 Fields 73
4.1.5 Constructors I 74
4.1.6 Defining Methods 75
4.1.7 Example: Bank Account 77
4.1.8 References 78
4.1.9 Constructors II 80
4.1.10 Static 82
4.1.11 Escaping Static 84

Contents ▪ ix

4.1.12 The Main Method 84
4.1.13 A More Complete Example 86

4.2 Inheritance 88

4.3 Casting Objects 89

4.4 Overriding 90

4.4.1 Overriding toString 92
4.4.2 Overriding equals 93
4.4.3 Overriding hashCode 94

Chapter 5 ■ Advanced Java 97
5.1 Information Hiding 97

5.1.1 Reasons for Privacy 98
5.1.2 Getters and Setters 98
5.1.3 Private Constructors 99

5.2 The Inner Language 100

5.2.1 General 100
5.2.1.1 Ordering 100
5.2.1.2 Javadoc 101
5.2.1.3 Var Declarations 104
5.2.1.4 Namespaces 104

5.2.2 Data 105
5.2.2.1 Wrapper Classes 105
5.2.2.2 Integers 105
5.2.2.3 Doubles 107
5.2.2.4 Characters and Unicode 107
5.2.2.5 Booleans 109
5.2.2.6 Other Primitives 109
5.2.2.7 Arrays 110
5.2.2.8 Strings 111
5.2.2.9 Multiline Strings 112
5.2.2.10 Formatter 113
5.2.2.11 Regular Expressions 116

x ▪ Contents

5.2.3 Collections 117
5.2.3.1 Iterators 119

5.2.4 Additional Operators 120
5.2.4.1 instanceof 120
5.2.4.2 The Ternary Operator 120
5.2.4.3 Bit and Shift Operators 121
5.2.4.4 Increment and Decrement Operators 121

5.3 The Outer Language 122

5.3.1 Generic Classes 122
5.3.2 Interfaces II 124
5.3.3 Abstract Classes 126
5.3.4 Final and Sealed Classes 128
5.3.5 Inner Classes 129

5.3.5.1 Member Classes 129
5.3.5.2 Static Member Classes 130
5.3.5.3 Local Inner Classes 131
5.3.5.4 Anonymous Inner Classes 132

5.3.6 Enums 133
5.3.7 Records 135
5.3.8 Serialization 136
5.3.9 Modules 137
5.3.10 Build Tools 138

Chapter 6 ■ Functional Programming 141
6.1 Function Literals 141

6.2 Functional Interfaces 142

6.3 Implicit Functional Interfaces 144

6.4 Persistent Data Structures 144

Chapter 7 ■ Unit Testing 147
7.1 Philosophy 147

7.2 What to Test 148

Contents ▪ xi

7.3 JUnit 149

7.4 JUnit 5 Assertions 150

7.5 Testing Exceptions 152

7.6 Assumptions 153

7.7 Simple Test Example 153

Chapter 8 ■ GUIs and Dialogs 157
8.1 A Brief History 157

8.2 Dialogs 157

8.2.1 Message Dialog 158
8.2.2 Confirm Dialog 158
8.2.3 Input Dialog 158
8.2.4 Option Dialog 159
8.2.5 Color Chooser Dialog 160
8.2.6 Load File Dialog 160
8.2.7 Save File Dialog 161
8.2.8 Custom Dialog 162

Chapter 9 ■ How to Build a GUI Program 163
9.1 Event-Driven Programs 163

9.2 The Event Dispatch Thread 164

9.3 Import the Necessary Packages 164

9.4 Make a Container 165

9.5 Add a layout manager 166

9.6 Create components 168

9.7 Add listeners 169

9.8 Sample code 170

9.8.1 JFrame and JPanel 170
9.8.2 JEditorPane 171
9.8.3 JScrollPane 172
9.8.4 JTabbedPane 173
9.8.5 JButton 174

xii ▪ Contents

9.8.6 JTextField 175
9.8.7 JTextArea 175
9.8.8 JCheckBox 177
9.8.9 JRadioButton 177
9.8.10 JLabel 179
9.8.11 JComboBox 180
9.8.12 JSlider 180
9.8.13 JSpinner 181
9.8.14 JProgressBar 182
9.8.15 Menus 183
9.8.16 Keyboard Input 183
9.8.17 Mouse Input 185

9.9 DiceRoller 186

Chapter 10 ■ Threads and Animation 189
10.1 Threads 189

10.2 Synchronization 191

10.3 Timers 192

10.4 Property Changes 192

10.5 Swingworker 193

10.6 The Bouncing Ball 197

10.6.1 MVC 198
10.6.2 Controller 198
10.6.3 Model 199
10.6.4 View 200

Appendix A ■ Code for BouncingBall 201
Bouncing Ball: Controller 201

Bouncing Ball: Model 204

Bouncing Ball: View 206

Index, 209

Contents ▪ xiii

http://taylorandfrancis.com
http://taylorandfrancis.com

Author

I ’M DAVID MATUSZEK, known to most of my students as “Dr. Dave.”

I wrote my first program on punched cards in 1963 and immediately got
hooked.

I taught my first computer classes in 1970 as a graduate student in
computer science at the University of Texas in Austin. I eventually got
my PhD from there, and I’ve been teaching ever since. Admittedly, I
spent over a dozen years in industry, but even then I taught as an adjunct
at Villanova University.

I finally escaped from industry and joined the Villanova faculty full-time
for a few years, then I moved to the University of Pennsylvania, where I
directed a Master’s in Computer and Information Technology (MCIT)
program for students entering computer science from another discipline.
Throughout my career, my main interests have been in artificial
intelligence (AI) and programming languages. I’ve used a lot of pro-
gramming languages.

I retired in 2017, but I can’t stop teaching, so I’m writing a series of
“quick start” books on programming and programming languages. I’ve
also written three science fiction novels—Ice Jockey, All True Value, and
A Prophet in Paradise—and I expect to write more. Check them out!

And, hey, if you’re a former student of mine, drop me a note. I’d love to
hear from you at david.matuszek@gmail.com.

xv

http://taylorandfrancis.com
http://taylorandfrancis.com

Preface

I F YOU ARE AN EXPERIENCED PROGRAMMER, this book is your guide to
getting up to speed in Java in a hurry. Not just the language, but also

the basics of unit testing, graphical user interfaces, threads, animation,
and functional programming.

If you are coming from one of the C languages, you will find most of the
statement types familiar. These are clearly designated, so you can just
skim over that material.

If you are coming from C++, you will find the object-oriented concepts
are very similar, but the terminology is different.

If you are coming from another language, such as Python, there is very
little you can skip. Sorry.

Let’s get started!

xvii

http://taylorandfrancis.com
http://taylorandfrancis.com

Versions

T HIS BOOK IS ABOUT Java 8 and Java 17. Why those two?

Java 8 is the last version that is free for commercial use. If you are
programming for Android, Java 8 (also known as version 1.8) is the last
version you can use. For these reasons, additions to Java after version 8
will be noted as such.

As this book is being written, the current version is 17. A new version is
released every six months, so when you buy this book, the latest version
number is probably higher. This should not be a concern, because Java
“never throws anything away.” Newer versions do not invalidate older
versions, and the language changes gradually. In fact, Java 17 is an LTS
(Long Term Support) version, along with versions 8 and 11.

If you are uncertain which version of Java you have, you can execute this
from the command line:

java -version

or execute the following println statement from within a running Java
program:

System.out.println(System.getProperty("java.version"));

Since Java 9, you can also run jshell from the command line. This program
lets you execute Java statements (such as the above print statement) one at a
time. This is no way to write a program, but it’s handy for trying things out.

xix

If you have yet to download Java, it comes in two main varieties: the JRE
(Java Runtime Environment) is used to run existing programs, and the
JDK (Java Development Kit), which is used to create and run programs
(the JDK contains the JRE). Since you are reading this book, you almost
certainly want the JDK.

You can get the Java SE (Standard Edition) JDK from https://www.
oracle.com/java/technologies/downloads/.

Java 9 and beyond are (currently) free for personal use, but commercial
users should obtain a license from the Oracle Corporation.

xx ▪ Versions

https://www.oracle.com
https://www.oracle.com

C H A P T E R 1

A Lightning Tour
of Java

T HIS BOOK IS DESIGNED TO GET the experienced programmer in some
other language to start programming in Java as quickly as possible.

Consequently, this first chapter is very condensed and takes a great deal
for granted; you do not have to understand or remember everything in
the first reading. Later chapters will cover the same material more slowly
and in greater detail.

Note: Java is verbose, and code lines are often 80 to 100 char-
acters long. Such lines have been split into more but shorter lines
in an attempt to improve readability.

1.1 PROJECTS
A program, or project, consists of one or more packages. A package is a
directory or folder that contains Java files.

Java files contain classes, usually one class per file. A class describes a
new type of object, and bundles together the object’s fields (its data) and
its methods. A class has one or more constructors to create new objects
of that type.

DOI: 10.1201/9781003402947-1 1

https://doi.org/10.1201/9781003402947-1

A method is like a function, except that a method belongs to an object,
and (normally) works with the fields of that object. A method may
contain declarations of variables and will contain executable statements.

To summarize, here is how a project is organized:

• packages (directories) of files

• classes (generally one per file); each class contains:

• fields (the data)

• constructors, containing declarations and statements

• methods, containing declarations and statements

In addition to the above, packages in Java 9 and later can be organized
into even larger units, called modules. This is appropriate for programs
with large numbers of packages. The JDK (Java Development Kit) is huge,
consisting of about a hundred modules, hundreds of packages, and thou-
sands of classes. The single module relevant to this book is java.base.

Modules will be discussed briefly in section 5.3.9.

1.2 FIRST GLIMPSE: THE CIRCLE CLASS
The following program demonstrates the overall structure of a Java
program and provides an initial glimpse into what a Java program
looks like.

package examples.shapes;

public class Circle {
private int radius;

public Circle(int r) {
radius = r;

}

public double area() {
return Math.PI ∗ Math.pow(radius, 2);

}
}

2 ▪ Quick Java

The package declaration says that this code is in a folder (directory) named
shapes which is in a folder (directory) named examples. If any import
declarations were needed (none are), they would immediately follow this line.

The code defines a public class named Circle. The word public means
that the class can be used by any code throughout the program. Because
Circle is a public class, it must be on a file named Circle.java; this
allows other code to find it.

The Circle class has one integer instance variable named radius. Every
new Circle object that is created will have its own radius, and because
radius is marked private, it cannot be seen outside this class.

Next is a constructor. It is recognizable as a constructor because it has the
exact same name (Circle) as the class in which it occurs. It takes an
integer parameter r, saves the value of r in its own instance variable
radius, and returns a newly created Circle object. It does not use a
return statement.

Finally, there is a method area that takes no parameters. It computes
and returns the area of this circle.

Now that we have a Circle class, let’s use it.

package examples.shapes;

public class CircleApp {

public static void main(String[] args) {
int size = 10;
Circle c = new Circle(size);
double area = c.area();
System.out.printf(

"The area of a circle " +
"with radius %d is %7.2f",
size, area);

}
}

This class, CircleApp, happens to be in the same directory as the Circle
class.

A Lightning Tour of Java ▪ 3

CircleApp does not have an explicit constructor (it has an implicit one,
but ignore that for now). It does have a main method, which is the
starting point for the program. For complex reasons, the main method is
always defined as public static void main(String[] args)—just
memorize this for now; understanding will come later.

The main method then:

• Declares a local variable size as an integer and gives it a value of 10.

• Declares another local variable c of type Circle and uses the
keyword new to call the Circle constructor. It gets back a newly
created Circle object and assigns it to c.

• Asks c for its area, and assigns the result to the double (floating
point) variable area.

• Prints the result:

The area of a circle with radius 10 is 314.16

1.3 DATA
Every data value in Java is either a primitive or an object. There are eight
kinds of primitives, most of them numeric types. Objects are defined by
classes, and each class defines a new type of object.

The four most important types of primitive are: int (integers, or whole
numbers), double (numbers containing a decimal point), boolean (the
values true and false), and char (individual characters).

Two important types of object are strings and arrays. Strings are objects
defined by the String class, while arrays are defined using a more tra-
ditional syntax (but they are still objects.)

An obvious distinction between primitives and objects is that primitives
have operations: 3 ∗ n, big && round, and so on, while objects have
methods. (Exception: The + operator can be used to concatenate (“add”)
strings.)

4 ▪ Quick Java

Terminology: You don’t “call” a method. Instead, you “send a
message to an object,” where the “message” consists of the
method name and its parameters.

To send a message to an object, use dot notation like this: object.method
(parameters). For example, firstName.charAt(0).

Literal strings are enclosed in double quotes: "Hello". Character literals
are written in single quotes: 'a'.

All variables must be declared before use; this specifies their type. They
can also be defined, or given an initial value.

int count; // declaration
count = 0; // definition
int count = 0; // declaration + definition

All the values in an array must be of the same type. The type of the array
is written as the type of the elements, followed by empty brackets. For
example, int[] denotes an array of integers. The length of an array is
not part of the declaration; it is part of a definition.

int[] numbers = new int[100];

Arrays are zero-based. The first element in the above numbers array is
numbers [0], and the last element is numbers [99]. The length of this
array, 100, is given by numbers.length.

The values in a newly-declared array will all be zero (for numeric arrays),
false (for boolean arrays), or null (for arrays of objects). Because
characters are treated as numeric values, the values in an array of char
will be the character "NUL" whose code is zero.

1.4 OPERATORS
Java has the usual arithmetic operators: + (add), − (subtract, or unary
minus), ∗ (multiply), / (divide), and % (remainder, or modulus). The
multiplicative operators ∗, /, and % are done before the additive opera-
tors + and −. Operations of the same precedence are done left to right.

A Lightning Tour of Java ▪ 5

There is no exponentiation operator. Exponentiation is done by calling
the pow method in the Math module: Math.pow(r, 2).

Arithmetic expressions using only integers result in an integer result. If
the expression involves a double, the result will be a double.

Java has the boolean operators && (and), || (or), and ! (not). The
comparison operators <, <=, == (equals), != (not equal), >, and >= all
result in booleans. Booleans are not numbers, and you cannot use a
number where a boolean is expected.

See section 3.2.5 for more detailed information on operators.

1.5 PROGRAM STRUCTURE
A Java program consists of one or more classes. Each class is typically in
a file of its own, named after the class but with the.java extension. If a
class is named Example, it should be in a file named Example.java.

A Java file may contain a package declaration, which names the folder
that the file is in, and some import declarations, to give the current class
access to classes in other packages. (Classes in the same package don’t
need to be explicitly imported.) The code for the class follows these
initial declarations.

package teamMaker;
import java.util.HashSet;

Note: An asterisk (“star”) may be used to import all the classes in
a package, for example, import java.util.∗;.

A class is a recipe, or blueprint, for making objects. Classes contain
declarations, constructors, and methods.

public class ClassName {
declarations
constructors
methods

}

6 ▪ Quick Java

Classes marked public are available everywhere throughout the program.

A declaration consists of a type, a name, an optional equals sign, and a
value, and ends with a semicolon. It may be marked as public or private,
and in addition, it may be preceded by the word static.

public static double Avogadro = 6.0221409e+23;

If a variable is marked with static, there is only one of it, it belongs to
the class itself, and all objects of that class share this one variable.
Otherwise, it is an instance variable (also called a field), and every object
has a separate copy of that variable.

A constructor is used to create new objects whose type is ClassName.

ClassName(parameters) {
declarations
statements

}

A constructor is called with new ClassName(arguments). It always
returns a newly created object; a return statement is unnecessary, and if
used, it must be a “bare” return statement, not supplying a value. A
constructor typically does little more than assign values to the instance
variables of the new object.

A method is a callable chunk of code. It is like a function, except that it
belongs to an object (or to a class). The basic structure of a method is

returnType methodName(parameters) {
declarations
statements

}

The returnType may be any primitive or object type, or the keyword void.
If the returnType is void, the method will return when a return; state-
ment is executed, or when the end of the method is reached. But if the
method is to return a value, it must terminate with a return expression;

A Lightning Tour of Java ▪ 7

statement, where expression results in a value that can be put in a variable
of type returnType.

To send a message to an object (that is, to call one of its methods), use the
syntax object.methodName(arguments). The value of this expression will
be the value returned by the method (or null if no value is returned).

1.6 STATEMENTS
The most commonly used statements are assignment statements, blocks
(or compound statements), if statements, while loops, and for loops.
All statements except blocks must end with a semicolon. The println
method may be used to produce output.

A block combines any number of statements into a single compound
statement by enclosing them in braces, {}.

An assignment statement gives a value to a variable. If the variable has
not previously been declared, the type must be specified; the variable can
be used from the point of declaration to the end of the innermost en-
closing block.

An if statement tests a boolean condition and executes a statement if the
condition is true. It may have an else part, which will execute a dif-
ferent statement if the condition is false. Since each part controls a
single statement, that statement is typically a block.

if (2 + 2 == 4) {
System.out.println("All is well.");

} else {
System.out.println("What??");

}

A while loop evaluates a boolean condition. If the condition is true, it
executes a statement (usually a block), then comes back to the test. It
exits when the test evaluates to false.

int count = 10;
while (count > 0) {

8 ▪ Quick Java

System.out.println(count);
count = count - 1;

}
System.out.println("Blast off!");

A for loop sets an initial value, tests a boolean condition, executes a
statement if the condition is true, executes an update, and returns to the
test. It exits when the test returns false.

for (int i = 10; i > 0; i = i - 1) {
System.out.println(i);

}
System.out.println("Blast off!");

Note: The above statements require a boolean condition to serve
as a test. You cannot use a numeric value as a test.

The prevailing convention in the C family of languages is to put the
opening brace of a block by itself at the beginning of a line. In Java,
however, the style has always been to put the opening brace at the end of
the line, as in the examples above. “When in Rome, do as the Romans do.”

Java has no “print” statement, but the print and println methods can be
used as if they were statements. System.out.println(arg) takes a single
argument and sends it to standard output, followed by a newline character,
'\n'. System.out.print(arg) does the same but without the newline.

1.7 PROGRAM EXECUTION
The value of a good IDE (Integrated Development Environment) cannot
be overstated. NetBeans, Eclipse, IntelliJ IDEA, and Xcode (Mac only)
are all excellent. Of these, IntelliJ IDEA may be the easiest for a beginner.
Any IDE will provide a simple way to run your program.

The program will start execution at the main method of a public class.
The main method should have this exact header:

public static void main(String[] args) {

A Lightning Tour of Java ▪ 9

If you are not using an IDE, any plain text editor (not a word processor)
may be used to create a program. Each class should be on a separate file,
and the name of the file should be the name of the class with the.java
extension.

If you are using Java 11 or later, you can run a program by navigating to
the folder containing the Java file and opening a command/terminal
window. In that window, enter java fileName. The file should run and
produce output.

If the above does not work, you may need to first compile the file and
then run it. To do this, execute the pair of commands:

javac ClassName.java
java ClassName.class

If a program consists of multiple files, any file that is used by another file
must be compiled before the file that uses it can be compiled.

1.8 HELLO WORLD
To begin programming as quickly as possible, you can use the following
“Hello World” program as a framework. You don’t need to understand it
completely in order to get started.

public class MyClass {
String hello = "Hello World";
public static void main(String[] args) {

new MyClass().doSomething();
}
void doSomething() {

System.out.println(hello);
}

}

If saved on a file named MyClass.java, this program can be executed by
following the instructions in the previous section.

There are two methods, main and doSomething. The program begins
execution in the main method. The main method is in a “static context,”

10 ▪ Quick Java

which means it can’t directly use any methods or variables that aren’t
also static. To get out of static context, main creates a new object of type
MyClass and immediately calls its doSomething method; this is where
you would put your code. After all this, you can forget about the word
static until you have a use for it.

The declaration void doSomething() defines a method named
doSomething. It takes no parameters, as indicated by the empty
parentheses, and returns no value, as indicated by void. The method
body is enclosed in braces, {}, and consists of a call to the method
System.out.println with the argument hello. The println will print
"Hello World" to standard output, which (depending on how you are
running Java) should be somewhere on your screen.

Statements end with a semicolon. There are two statements in the above,
one to call doSomething and one to print Hello World.

The names MyClass and doSomething (but not main) may be replaced
with names of your choosing. By convention, class names always begin
with a capital letter, and method names with a lowercase letter.

With HelloWorld as a starting point, you can add methods and code to
make a useful program.

A Lightning Tour of Java ▪ 11

http://taylorandfrancis.com
http://taylorandfrancis.com

C H A P T E R 2

Preliminaries

I T CAN BE USEFUL TO THINK OF JAVA as consisting of an “inner language”
and an “outer language.” The inner language consists of data, methods,

and statements, and is all that is needed for a small program with only a
single class. The equally complex outer language consists of all the various
kinds of classes and interfaces used to organize a large program.

After some preliminaries, the next chapter describes the inner language
of Java (which is very like C or C++), and the following chapter describes
the outer language.

2.1 IDES

Section summary: The use of an IDE is strongly recommended.
If you don’t already use one, IntelliJ IDEA is one of the most
beginner-friendly.

You can create and run complex Java programs with nothing more than
a text editor and the command line, but this is doing things the hard way.

A professional Integrated Development Environment (IDE) is immeasurably
helpful in developing programs. A very basic IDE integrates a text editor, a
compiler, a debugger, and a code executor. A professional-level IDE will also
suggest applicable methods, provide instant documentation lookup, offer
corrections for mistakes, make automatic version backups, assist in

DOI: 10.1201/9781003402947-2 13

https://doi.org/10.1201/9781003402947-2

reorganizing code, and any number of other services. I have had students tell
me that they succeeded in my course only because their IDE wrote their
programs for them.

The objection to a professional IDE is that it’s a big, complicated pro-
gram that’s hard to learn (comparable to Microsoft Word, for example).
This is undeniably true. My recommendation is to get a good, full-
featured IDE and use it like a text editor that can run your programs.
There is no need to learn all its features right away.

The most popular Java IDEs are Eclipse, NetBeans, IntelliJ IDEA, and the
Mac-only Xcode. All are excellent and have ardent users; all have free
versions. All can be (and are) used for a number of other languages. Of
these, IntelliJ IDEA requires no prior knowledge of the interface but
simply guides the beginning user at each step.

That said, sometimes an IDE will simply refuse to work. This could be
the result of an upgrade, so that file versions are incompatible, or some
similar problem. (I have had this problem a lot with Eclipse.) Reinstalling
the IDE may help. Exploring all the possible settings may help. And, of
course, you can switch to a different IDE.

There are simpler IDEs, often written specifically for students, such as
BlueJ, JCreator, and DrJava. The advantage of a simpler IDE is that it is less
intimidating. The disadvantage is that it does less to help the programmer.

It has been said that the hardest program to write in any language is
“Hello World”; all subsequent programs are just elaborations of this one.
In the same way, once you successfully use a professional IDE to write
and execute a program, all the rest is just elaboration.

2.2 COMMENTS AND TAGS
There are three kinds of comments in Java.

• Comments beginning with // and continuing to the end of the line.

• When placed at the end of a line of code, they say something
about that line of code.

14 ▪ Quick Java

• When placed on a line by itself, they say something about the
code that follows.

• Many IDEs will comment out an entire block of code by putting
// at the beginning of each line.

• Comments beginning with /∗ and continuing up to ∗/.

• These are used for comments that won’t fit on a single line, and
they say something about the code that follows.

• They may also be used to put a comment in the middle of a line
of code.

• Comments beginning with /∗∗ and continuing up to ∗/.

• These are documentation (doc) comments. They are placed
immediately before the declaration of a class, method, interface,
or variable.

• Doc comments are usually written with an asterisk at the
beginning of each line after the first.

Documentation comments can contain tags such as @param and @return;
many of these are described in Section 5.2.1.2, Javadoc.

Example:

/∗∗
∗ Returns the sum of two numbers.
∗ @param a The first number.
∗ @param b The second number. Cannot be negative.
∗ @return the sum of the two numbers.
∗ @throws AssertionError if b is negative.
∗/
int add(int a, int b) {

assert b >= 0; // ignored unless -ea is set
while (b > 0) {

// Move a 1 from b into a
b -= 1;
a += 1;

}

Preliminaries ▪ 15

return a;
}

Javadoc is a program that extracts the information from doc comments
and tags and produces very professional-looking documentation, usually
but not necessarily as HTML. Non-doc comments are ignored.

16 ▪ Quick Java

C H A P T E R 3

The “Inner Language”
of Java

A JAVA PROGRAM CONSISTS OF ONE OR MORE CLASSES. This book uses
“inner language,” to mean what happens within a single, top-level

class. For simple programs, one class may be all that is needed.

3.1 VARIABLES AND NAMING CONVENTIONS
A variable is a name that can be assigned a value. A variable can have
different values at different times.

All variables must be declared. When a variable is declared, it is given a
type that tells what kind of values it can have. It may also be given an
initial value. An int variable can only have an integer value, a String
variable can only have a character string as its value, and so on.

Java is case-sensitive; that is, result, Result, and RESULT are three
different names. The names of the primitive types (int, double, etc.) are
all lowercase, while object type names such as String are capitalized.

An instance variable is one that is declared in a class but a separate copy
of it is “owned” by each individual instance, or object, of that class.

DOI: 10.1201/9781003402947-3 17

https://doi.org/10.1201/9781003402947-3

A class variable, or static variable, is declared in a class using the
keyword static. There is only one of it, not one per object, and it is
considered to be “owned” by the class itself, not by the individual objects.

A local variable is one that is declared within a method. It is available only
within that method. Parameters to a method are also local to that method.

A constant is a “variable” whose value cannot be changed. It is indicated
by adding the keyword final.

Many kinds of things in Java have names, not just variables. Proper naming
and capitalization helps the experienced Java programmer know what kind
of thing is being named. There are strong conventions for names:

• Variable names and method names are almost never abbreviated:
Use employee rather than emp; use yearEndBonus rather than
yebonus. (However, very common abbreviations can be used, such
as max and min.)

• Variable names and method names always begin with a lowercase
letter.

• Variable names and class names are usually nouns. Method names
are usually verbs, or begin with a verb.

• If a name consists of multiple words, the first letter of all words
except the first is capitalized, for example, firstName, totalCost.
(One common name for this style is camelCase.)

• Although legal, variable names never contain the underscore
(unless they are constants) or the dollar sign.

• In Java 9 and later, underscores in names are discouraged (except
for constants), and an underscore by itself is not a legal name.

• The names of constants are written in all capital letters. If the
constant name consists of multiple words, underscores are used
between the words. For example, END_OF_LINE_MARKER.

• Class names and interface names always begin with a capital letter,
and multiword names are camel case.

18 ▪ Quick Java

3.2 BASIC DATA TYPES
There are eight primitive data types: char, byte, short, int, long,
float, double, and boolean. All other values (arrays, strings, etc.) are of
some class, or object, type. The distinction is important.

3.2.1 Primitive Types
Here are the four most important and most used primitive types:

• An int is an integer, or “whole number.” It can hold numbers large
enough for most purposes (about plus or minus two billion). To
make very large numbers more readable, you can put underscores
between digits.

• A double is a 64-bit “real” (floating point) number. It can hold very
large and very small numbers, with about 17 digits of accuracy. It
may be written in scientific notation, with e or E denoting the
exponent: 6.0221409 × 1023 can be written as 6.0221409e+23. As
with integers, you can put underscores between digits.

• A char is a single character. Common characters can be written
simply by enclosing them in single quotes, for example, 'a'. Some
characters need to be represented by escape sequences, such as '\n'
for a newline.

• A boolean is a single true or false value.

The other four primitive types (long, short, byte, and float) aren’t
used in most programs, and will be discussed in section 5.2.2.6.

3.2.2 Arrays
An array is an ordered sequence of values, all of the same type. To access
the individual values in an array, use the syntax arrayName[index]. Legal
indices range from 0 (the first value in the array) to arrayName.length -1
(the last value).

The simplest syntax for declaring an array is either:

baseType[] arrayName;

The “Inner Language” of Java ▪ 19

or:

baseType arrayName[];

For example,

int[] scores;

This declares but does not define the scores variable. That is, its type
has been assigned, but no value of that type has been assigned to it. An
array variable that has been declared but defined will have the special
value null, and attempting to use it will result in an error.

To both declare and define scores, you can say:

int[] scores = new int[35];

Once an array is defined, you cannot change its size. However, the size of
an array is not part of its type, so an int array of any size can be assigned
to scores. Later, you might assign a different array, of a different size, to
scores. You can find the size of an array by asking it for its length
variable, array.length.

Arrays created as shown above will have its elements set to 0, false, or
null, for numeric, boolean, or object arrays, respectively. Alternatively,
an array can be created with specific values, using the syntax new type[]
{value, …}, for example,

int[] ary = new int[] {3, 1, 4, 1, 6};

or with the slightly simpler

int[] ary2 = {3, 1, 4, 1, 6};

The values in an array can themselves be arrays. There is a special syntax
for this, as in the following examples:

double elevation[][]; // declaration

20 ▪ Quick Java

elevation = new double[50][75]; // definition

elevation[49][74] = 123.45;

The elevation array can be referred to as a two-dimensional array, but it is
more accurately thought of as a one-dimensional array whose elements
happen to be arrays. Arrays may have three, four, or even more dimensions.

The first index in a multi-dimensional array is usually called the row
number, and the second index the column number. The above array has
50 rows with indices 0 to 49, and 75 columns with indices 0 to 74.

The values in an array must all be of the same type, but the array size is
not part of that type. The following code constructs a “triangular” array
of arrays, in which each sub-array is larger than the one preceding it:

int[] triangle = new int[10];
for (int i = 0; i < triangle.length; i++) {

triangle[i] = new int[i + 1];
}

3.2.3 Strings
A string literal is a sequence of zero or more characters enclosed in
quotation (double quote) marks. For example:

"" // an empty string
"hello" // a string containing five characters

Some characters cannot be entered directly in a character or string
constant; for example, double quotes within a string. These characters
can be included by escaping them (putting a backslash in front of them):

"He said, \"Don't go.\""

The important escape sequences are:

• \n is a “newline” character, however that is encoded on your
computer system (it is different on Windows than on Unix and
Macintosh).

The “Inner Language” of Java ▪ 21

• \t is a tab character, representing an arbitrary amount of white
space.

• \" is a double quote character (useful inside doubly-quoted strings).

• \" is a single quote character.

• \\ is a backslash character.

• \uxxxx is a Unicode character written as exactly four hex digits.

In addition, there are the seldom-used \b for backspace, \r for carriage
return, and \f for form feed.

Although escape sequences have to be typed using two or more characters,
each one counts as a single character, so "\"Who?\"".length() is 6.

Note: Arrays have a length field, array.length, but Strings
have a length method, string.length().

Strings literals are values, and can be saved in String variables:

String name = "We're doing Java";

Strings can be concatenated, or “pasted together,” with the + operator:

String fullName = firstName + " " + lastName;

A value of any type, when concatenated (“added”) to a string, is auto-
matically converted to a string.

String message = "There are" + count + "errors.";

Strings are immutable, that is, you cannot change the length or the
characters in a string; you can only create a new string.

3.2.4 Exceptions
Lots of things can go wrong in a program: dividing by zero, going outside the
bounds of an array, reading a file that isn’t there. When one of these things
happens, Java creates a type of object called an Exception. There are many

22 ▪ Quick Java

different subtypes of Exception, for example, ArithmeticException and
the all-too-common NullPointerException.

Exceptions are objects, just like strings and arrays are objects, and there
are two general kinds: checked and unchecked.

A checked exception is one that your program is required to deal with.
For example, if you try to read a file, Java knows that there are a lot of
things that could go wrong, and requires you to have code to handle it if
they do. The usual way to handle it is with a try-catch-finally
statement (see section 3.3.2.5). Basically, this statement says: “I’m going
to try to do this, but if it doesn’t work I will catch the exception and do
something appropriate.”

An unchecked exception is one that might happen, but you aren’t
required to check for it. These exceptions almost always result from bugs
in your program, such as going outside the bounds of an array, or trying
to use a null object. The solution is to debug the program.

3.2.5 Operators and Precedence
Java has the usual arithmetic operators, with the usual precedence
(multiplications before additions, etc.). Operators with the highest
precedence are done first and, with some exceptions, most operators are
left associative—that is, operators with equal priority are done left to
right. For example, 12 − 2 − 3 ∗ 4 == 10 − 12 == −2.

The most common operators, from highest to lowest precedence, are:

• Method calls and array indexing

• Arithmetic operations:

unary + and unary -

∗ (multiplication), / (division), and % (remainder, or modulus)

+ (addition) and - (subtraction)

• Boolean (logical) operators:

! (not)

The “Inner Language” of Java ▪ 23

&& (and)

|| (or)

• Inequality tests:

< <= >= > (less than, less or equal, greater or equal, greater than)

• Equality tests:

== (equal to) and != (not equal to)

• Assignment operators:

= (simple assignment)

+=, -=, *=, /=, and %= (x op= y is short for x = x op y).

The unary and assignment operators are right associative—operators of
equal precedence are done right-to-left. For example, a = b += c means a =
(b += c).

As usual, parentheses can be used to explicitly specify an order of
operations. There are a number of other operators in Java, but since very
few programmers know the complete precedence table, it is better to use
parentheses to make the order of operations clear.

Less important operators (++, -‐, ?:, and the shift and bit manipulation
operators) will be discussed later—see sections 5.2.4.4 (++ and -‐),
5.2.4.2 (?:), and 5.2.4.3 (bit and shift), respectively.

When arithmetic is done using only integral types (including char), the
result is an int. Arithmetic using a double with any numeric type results
in a double.

The boolean operations && and || are short-circuit operations: If the
result is known after evaluating the left operand, the right operand is not
evaluated. Thus, in the expression f(x) && g(x), if f(x) is false then
the result has to be false, so g(x) is not evaluated. Similarly, in the
expression f(x) || g(x), if f(x) is true then the result has to be true,
so g(x) is not evaluated.

24 ▪ Quick Java

3.2.6 Declarations and Casting
Every variable must be declared, along with its type and an optional
initial value. For example,

• int count = 0, size;

• double min, max, average;

• char c;

Java will complain if it thinks you might be using a variable before it has
been given a value. If Java doesn’t catch this mistake, the value used will
be zero for numeric types or false for booleans.

A char variable can hold any of about 65000 UTF-16 characters (see
section 5.2.2.4). Characters are stored internally as numbers, and can be
used in arithmetic as if they were integers. You can write a UTF-16
character in hexadecimal as '\uxxxx', where xxxx is a hexadecimal
number in the range '\u0000' to '\uffff'. For example, '\u0041' is
'A', and '\u03A3' is 'Σ'.

Among the above types, a double is considered to be wider than an int,
and an int is wider than a char. A value of one type can be assigned to a
variable of a wider type. That is, a char value can be assigned to an int
variable or a double variable, and an int variable can be assigned to a
double variable. This is called upcasting.

To go in the other direction, that is, to assign a wider value to a narrower
type of variable, you must cast (or downcast) the value to the desired
type. Do this by putting the name of the desired type in parentheses
immediately before the value. For example,

int i = 0;
double d = 2.71828;
i = (int)d;
System.out.println(i); // prints 2

In the above example, the fractional part is lost.

The “Inner Language” of Java ▪ 25

A cast affects the one immediately following value: (int)2 ∗ d casts only
the 2 to an int (which it already is). To cast an expression, put parentheses
around it: (int)(2 ∗ d).

As another example, consider:

char ch = (char)('a' + 1); // result is 'b'

The cast is necessary because the result type of 'a' + 1 is int.

When casting to a narrower type, it is the programmer’s responsibility to
ensure that the value will fit in that narrower type, or the results will be
quite unexpected. For example, a byte can hold only values between −128
and 127, but the cast (byte)1000 is legal and results in −24.

A boolean is not a numeric type, and cannot be cast to or from any other
type.

3.2.7 Constants
Putting the word final in front of a variable declaration makes it into a
constant; its value cannot be changed. For example,

final int DAYS_IN_A_WEEK = 7;

Java provides some built-in constants, such as Math.PI and Math.E.

Constants help avoid the use of “magic numbers”—numbers in code
whose meaning may not be absolutely clear. If the code adds 29 to a
variable, the question arises, why 29?

However, it is silly to name a constant after its value, for example,

final int TWELVE = 12;

because this does nothing to improve the clarity of the code.

26 ▪ Quick Java

3.2.8 Methods
A method is like a function, except that it belongs to a class. This gives it
special access to the variables and other methods of that class. The syntax is

/**
* documentation comment
*/

access returnType methodName(parameterList) {
declarations
statements

}

There is no special keyword to begin the definition of a method. A
method definition consists of:

1. An optional documentation comment to tell the user what the
method does and how to use it.

2. An optional access specifier (see section 4.1.2). Default is package
access.

3. The return type of value to be returned by the method, or void if
the method does not return a value.

4. The method name. Method names should begin with a lowercase
letter.

5. A parenthesized, comma-separated parameter list. If there are no
parameters, the parentheses must still be present. Each parameter
consists of:

• The type of value expected for that parameter, and

• The name of the parameter.

6. The body of the method, consisting of a pair of braces, {}, con-
taining any number of declarations and executable statements.

Here is an example:

/**
* A leap year is a year divisible by 4 but not

The “Inner Language” of Java ▪ 27

* by 100, unless it is also divisible by 400.
*/
boolean isLeapYear(int year) {

if (year % 4!= 0) return false;
if (year % 100!= 0) return true;
return year % 400 == 0;

}

In the body of the method you can have declarations of variables, with
or without an initial value, for example,

int count = 0;

All such declarations are local to the method, that is, they can be seen
and used only within the method. Variable declarations are usually put
first in the method body. A method may make use of the values given to
its parameters, its local variables, and any fields defined by the class it
is in.

Note: If a parameter or local variable has the same name as a
field of the class, it will shadow (hide) the field. This is com-
monly done in constructors, and can be done for similar pur-
poses in methods.

To make a complete program, there must be at least one “starting” class
that contains the following special method:

public static void main(String[] args) { … }

There can be multiple methods with the same name, so long as they have
different numbers of parameters or different parameter types. Java looks
at both the name and the parameters (but not the return type) to decide
which method to use.

If the method is declared to return a value of a certain type, it must use a
return statement with a value of the correct type (or a value that can be
widened to the correct type). It may not reach the end of the method
without executing a return statement.

28 ▪ Quick Java

Within the method, the statements can refer to any fields of the class, any
parameters, and any local declarations. The keyword this refers to “this”
object, the one executing the method. When there is a local variable or
parameter with the same name as a field, then name by itself refers to the
local variable or parameter, while this.name refers to the field.

Note to Python programmers: The keyword this is like self
in Python. The two differences are that this is a keyword, not a
variable name, and that the word this can usually be omitted.

If a method is declared to be void (have no return value), then the
method can finish either by executing return; with no value specified,
or by reaching the end of the method.

Note: void is not a value, so return void; is not allowed

3.2.9 Methods Calling Methods
Methods belong to objects, so to “call” a method, you technically “send a
message to an object.” Do this by naming the object, putting a dot, then
putting the name of the method and, in parentheses, the correct number
and types of arguments. Each argument is an expression (possibly a
single value or variable).

obj.methodName(arguments)

There must be one argument for each parameter, and it must be of a type
that can be assigned to that parameter. The called method returns a
result that can be used in further expressions.

When a method calls another method in the same class (so that the
object is “talking to itself”), the obj can be the keyword this, or it can be
omitted. For example, if isLeapYear is in the same class as
printLengthOfYear, then in printLengthOfYear you can say either
this.isLeapYear(year) or simply isLeapYear(year).

public void printLengthOfYear(int year) {
int days = 365;
if (isLeapYear(year)) { // "this." omitted

The “Inner Language” of Java ▪ 29

days = 366;
}
System.out.println(year + " has " +

days + " days.");
}

3.2.10 Overloading
Methods may be overloaded. That is, a class can have two or more
methods with the same name, so long as the methods have a different
number of parameters or different types of parameters. For example, a
class might have two or more methods named bump.

The types do not have to match up exactly. If there is no exact match, but
the argument(s) can be widened to an appropriate type, then the method
can be used. For example, the bump(int n) method could be called with
char argument, but not with a double argument.

If we were to add a bump(char n) method, then a bump message with a char
argument would call this new method, not the one expecting an int argument.

Constructors, like methods, can be overloaded.

Many of the methods provided by Java are overloaded. For example,
there are nine versions of System.out.print(arg) and ten of
System.out.println(arg). These methods have a separate version for
each of boolean, char, double, float, int, long, Object, String, and
char[]. (No separate versions are provide for byte and short, because
these can be widened and used by the int method.) There is one additional
version of println that takes no argument, and prints a blank line.

3.2.11 Scope
Every variable has a scope, which is the part of the program in which the
variable may be used. The scope depends on where the variable is declared.

3.2.11.1 Variables Declared in Classes
Variables that are declared within a class are available everywhere within
the class. If a variable is declared with an initial value, that value may be
used in subsequent declarations.

30 ▪ Quick Java

public class MyClass {
int x = 5;
int y = x + 1; // can use x here
int z = w + 1; // but this is illegal
// now we can use x, y, and z
int w = 3;
// now we can also use w
…

}

Here’s one way to think of it. When a class is first used, Java goes
through and executes all the top-level declarations (that is, those not in
methods), in the order that they appear. After that, the methods in the
class are available for use.

Exception: static methods in a class (such as the main method)
can only use static variables in that class.

3.2.11.2 Variables Declared in Methods
A block or compound statement is a group of declarations and/or
statements enclosed in braces, {}.

A method consists of a header and a body; the body is a block.

public double average(double x, double y) {
double sum = x + y;
return sum / 2;

}

The parameters (in this example, x and y) can be used everywhere in the
method, but are not available outside the method. Variables declared
within the body (sum in this example) follow the scope rules for blocks
(see the next section).

The parameters and the variables declared within the body are local
variables; they are created when the method is invoked (used), and
discarded when the method returns. Local variables do not retain their
values from one invocation (call) of the method to the next; each
invocation starts all over again.

The “Inner Language” of Java ▪ 31

3.2.11.3 Variables Declared in Blocks
A variable declared within a block is accessible (can be used) from the
point of declaration to the end of the block. For example:

{
x = 1; // illegal!
int x; // scope of "x" starts here
x = 2; // legal

} // scope of "x" ends here
x = 3; // illegal!

Variable declarations are usually put first in a block.

3.3 STATEMENT TYPES
Java and C++ both borrowed heavily from the C language, and many of
the statement types are identical.

One significant difference is that, in Java, the condition (test) of an if,
for, while, or do-while statement must be an expression that results in
a boolean value, not any other type.

Java is usually formatted to put the opening brace of a control statement
on the same line as the control statement, and the closing brace aligned
with the control statement (see below for examples). In addition, Java
programmers are encouraged to use braces even when the block consists
of only a single statement.

Note: Statements may be labeled for access by break and con-
tinue statements (see sections 3.3.1.1 and 3.3.1.12), but there is
no goto statement.

The following statements are not in C++, or differ significantly from
those in C++. See section 3.3.2 for detailed descriptions.

● assert booleanExpression;

● assert booleanExpression: expression;

● switch (expression) {

32 ▪ Quick Java

case labels1 -> action1

case labels2 -> action2

…
case labelsN -> actionN

default -> actiondef

}

● System.out.println(value);

● System.out.print(value);

● try {
statements

}
catch (ExceptionType variable) {

statements
} // there may be multiple catch clauses
finally {

statements
}

● throw Exception;

Here is a list of the statements that are essentially the same as those in
C++.

● variable = expression;

● expression;

● { statements }

● if (condition) {
statements

}

● if (condition) {
statements1

} else {
statements2

}

● while (condition) {
statements

}

The “Inner Language” of Java ▪ 33

● for (initialization; condition; update) {
statements

}

● for (variable: collection) {
statements

}

● do {
statements

} while (condition)

● switch (expression) {
case value1:

statements1
case value2:

statements2
…
default:

statementsdef
}

● label: statement;

● break;

● break label;

● continue;

● continue label;

● return value;

● return;

● ; // empty statement

3.3.1 Statements Also in C++
If you are coming from C++ or one of the other C type languages, you
probably already know everything in this section. It’s all the normal
loops, conditional statements, assignments, blocks, and so forth. Feel free
to skip ahead to section 3.3.2, Statements Not In C++.

3.3.1.1 Blocks
A compound statement, or block, is some number (possibly zero) of
declarations and statements, enclosed in braces, {}.

34 ▪ Quick Java

Control statements, such as if statements and loops, control the ex-
ecution of a single statement. If you want to control more than just one
statement, you must enclose those statements in braces, {}, to make
them into a (single) compound statement.

Style: Standard Java style is to put an opening brace at the end of a
line, never on a line by itself. The closing brace should be indented
the same amount as the line containing the opening brace.

The body of a class or method must always be a block.

Good style dictates that statements within a block be indented relative to
the start of the block. The usual indentation for Java is four spaces.

3.3.1.2 Assignment Statements
An assignment statement assigns a value to a variable. For example, if x
is of type int, then

x = 5;

gives x the value 5.

The value of a variable, but not its type, may be changed. For example,
the assignment statement

x = 10;

will give x the new value 10.

For each arithmetic operator op, the expression

variable op= expression;

is shorthand for

variable = variable op expression;

For example, x += 1; adds 1 to x.

The “Inner Language” of Java ▪ 35

3.3.1.3 Method Calls and Varargs
Method calls can be used as statements, because they can have side ef-
fects. For example, if a is an array, a.sort() sorts the array.

Methods that have no side effects should not be used as statements,
because they don’t do anything. If str is the string "Hello", the ex-
pression str.toUpperCase() returns the string "HELLO", and this can
be assigned to a variable, but does not change the value of str. Hence,
using str.toUpperCase() as a statement does nothing.

You can write a method that takes a variable number of arguments, or var-
args. Simply put three dots after the type name of the last parameter. When
the method is called, Java puts all those last values into an array for you.

public double average(double… args) {
double sum = 0;
for (double arg: args) {

sum += arg;
}
return sum / args.length;

}

The call average(10.0, 20.0, 30, 41.0) will return 25.25.

3.3.1.4 If Statements
An if statement tests a condition. If the condition is true, the following
statement (typically, a compound statement) is executed. If the condition
is not true, the if statement does nothing. The syntax is:

if (condition) {
statements

}

For example, the following if statement resets x to zero if it has become
negative.

if (x < 0) {
x = 0;

}

36 ▪ Quick Java

An if statement may also have an else clause. If the condition is true,
the statement following the condition is executed. If the condition is not
true, the statement following the keyword else is executed. Both state-
ments are typically compound statements. The syntax is:

if (condition) {
some statements

}
else {

some other statements
}

For example,

if (x % 2 == 0) {
x = x / 2;

}
else {

x = 3 * x + 1
}

It is good style to always use the braces, even if they include only a single
statement. However, if either part contains just one (non-compound)
statement, it is legal to omit the braces. If you do this, you should put the
single statement on the same line as the if or the else.

if (x % 2 == 0) x = x / 2;
else x = 3 * x + 1;

Java, unlike Python, has no single keyword as an abbreviation for
else if.

if (x < 0) {
System.out.println("x is negative");

} else if (x > 0) {
System.out.println("x is positive");

} else {
System.out.println("x is zero");

}

The “Inner Language” of Java ▪ 37

3.3.1.5 While Loops
A while loop is a loop with the test at the top. The syntax is:

while (condition) {
statements

}

First, the condition is tested; if it is false, nothing more is done, and the
loop exits without ever executing the statements. If the condition is true,
the statements are executed, then the entire loop (starting with the test)
is executed again.

For example, the number of digits in a nonzero number can be com-
puted by:

int countDigits(int number) {
int count = 0;
while (number != 0) {

number = number / 10;
count += 1;

}
return count;

}

The braces indicate a block of statements. If there is only one statement,
the braces may be omitted; however, it is good style to always include the
braces.

Normally, the statements controlled by the loop must affect the condi-
tion being tested. In the above example, number is compared to 0, and
the statements in the loop change the value of number. If the controlled
statements never make the condition false, then the loop never exits, and
the program “hangs” (stops responding). This is a kind of error is
commonly, if inaccurately, called an infinite loop.

Two additional statement types, break and continue (see sections
3.3.1.11 and 3.3.1.12), can also control the behavior of while loops.
These statements can be used with statement labels.

38 ▪ Quick Java

3.3.1.6 Do-while Loops
A do-while loop is a loop with the test at the bottom, rather than the
more usual test at the top. The syntax is:

do {
statements

} while (condition);

First, the statements are executed, then the condition is tested; if it is
true, then the entire loop is executed again. The loop exits when the
condition gives a false result.

This kind of loop is most often used when the test doesn’t make any
sense until the loop body has been executed at least once. For most
purposes, the while loop is preferable.

For example, suppose you want to choose a random number between 0
and 1000 that is divisible by 7. You cannot test the number until after
you have chosen it, so do-while is appropriate.

Random rand = new Random();
int x;
do {

x = rand.nextInt(1000);
} while (x % 7 != 0);

As with a while loop, an infinite loop will result if the exit condition is
never satisfied.

The do-while loop is a little harder to think about than a while loop.
Since we want a number that is divisible by 7, the loop has to test that the
number is not divisible by 7.

Unlike other kinds of control statement, the braces in a do-while are
required, even if only a single statement is in the loop.

The following code does not work:

The “Inner Language” of Java ▪ 39

do {
int x = rand.nextInt(1000);

} while (x % 7 != 0); // error

Variables declared within a block are local to that block. If the variable x
is declared within the braces of the do-while loop, it cannot be used in
the condition, which lies outside of the block.

Two additional statement types, break and continue, can also control
the behavior of do-while loops. These statements can be used with
statement labels.

3.3.1.7 Traditional For Loops
A for loop is a loop with the test at the top. The syntax is:

for (initialization; condition; update) {
statements

}

The initialization is performed first, and only once. After that, the
condition is tested and, if true, the statements are executed and the
update is performed; then control returns to the condition. In other
words, the for loop behaves almost exactly like the following while
loop:

initialization;
while (condition) {

statements;
update;

}

The initialization is typically either an assignment to a previously
declared variable, for example, i = 0, or a combined declaration and
assignment, for example, int i = 0. The update is typically an assign-
ment statement such as i += 1.

The scope of any variable declared in the initialization (that is, where the
variable can be used), is the entire for statement.

40 ▪ Quick Java

The braces indicate a block of statements. If there is only one statement,
the braces may be omitted; however, it is good style to always include the
braces.

As an example, an array can be declared and its contents written out by:

int[] ary = {3, 1, 4, 1, 6};
for (int i = 0; i < ary.length; i += 1) {

System.out.println(ary[i]);
}

Also legal, but much less commonly used, the initialization and the
update may each consist of two or more assignments. For example,

for (int i = 1, j = 100; i < j; i = 2 * i, j -= 1) {
System.out.println("i = " + i + ", j = " + j);

}

Two additional statement types, break and continue, can also control
the behavior of for loops. These statements, described in sections
3.3.1.11 and 3.3.1.12, can be used with statement labels.

3.3.1.8 For-each Loop
A for-each loop does not involve any explicit testing; it simply goes
through every element of an array, in order. This is simpler and more
convenient when the index location of the elements is not needed. The
syntax is:

for (type variable: array) { statements }

As with a traditional for loop, the type must be omitted if the variable
has been previously declared. Also, as with the traditional for loop, the
scope of the variable is the entire for statement. For example, every
element in a String array names can be printed out as follows:

for (String name: names) {
System.out.println(name);

}

The “Inner Language” of Java ▪ 41

The for-each loop can also be used with iterable objects (see
section 5.2.3.1).

3.3.1.9 Classic switch Statements
Just as the if statement provides a choice between two blocks of code,
based on a boolean value, the switch statement provides a choice
between several blocks of code, based on an integer, character, string, or
Enum value.

Note: This section describes the “traditional” switch statement,
available in all versions of Java. For the newer (and better)
version available in Java 14 and beyond, see section 3.3.2.3.

The syntax is fairly complex:

switch (expression) {
case constant1:

statements1;
break;

case constant2:
statements2;
break;

…
case constantN:

statementsN;
break;

default:
statementsdef;

}

Operation is as follows. The expression is evaluated, then compared to
each case constant in order. When a constant is found that is equal to
the expression, execution begins with the following statements, and
continues until either a break or a return is encountered, or until the
end of the entire switch statement.

The value of the expression must be one of the integer types (including
char), or a string, or an Enum value (see section 5.3.6). The constants
may be integers, characters, literal strings, or Enum values.

42 ▪ Quick Java

The break statement is not required at the end of each case, just
strongly recommended. Without a break, control will “fall through”
into the next group of statements. This is seldom what you want to
happen. On the rare occasion that this really is the desired behavior,
you should include a comment that the omission is intentional, oth-
erwise you or someone else may “correct” this apparent problem at
some later date.

If the same code should be executed for one or more constants, rather
than duplicating the code, one case constant: can be followed imme-
diately by the next, for example,

case "yes":
case "Yes":
case "YES":

some statements

In Java 14 and later, the above can be abbreviated to

case "yes", "Yes", "YES": some statements.

The default case is optional, and should come last; it will be executed if
no earlier matching expression is found. If no matching expression is
found and there is no default case, the switch statement exits without
doing anything.

It is good style always to include a default case, even if you believe that
all possibilities have been covered. The default case might be empty, or it
could include the statement assert false; to indicate that this code
should never be reached. (Assert statements are covered in section
3.3.2.1.)

The statements may be any sequence of zero or more statements. It
is not necessary to use braces to group the statements (including the
following break statement) into a compound statement, although this
is sometimes done.

The “Inner Language” of Java ▪ 43

Here is a contrived example:

int i = 3;
String s;

switch (i) {
case 1:

s = "one";
break;

case 2:
s = "two";
break;

default:
s = "many";

}

This will result in s being set to "many".

3.3.1.10 Labeled Statements
The syntax of a labeled statement is

identifier: statement;

Any statement may be labeled with an identifier, but it really only makes
sense to label loop statements and switch statements. Labels are used in
conjunction with the break and continue statements.

3.3.1.11 Break Statements
A break statement is used to prematurely exit the immediately enclosing
loop (of any kind) or switch statement.

It can also be used to exit nested loops and/or switch statements. To do
this, put a label (see previous section) on the loop or switch statement
you want to exit, and put the label after the word break:

break label;

Given an array of numbers, consider the problem of finding two different
numbers such that one is exactly ten times the other. The following code
solves this problem.

44 ▪ Quick Java

int i, j = 0;
int[] ary = {7, 30, 9, 20, 3, 5};
id: for (i = 0; i < ary.length; i += 1) {

for (j = 0; j < ary.length; j += 1) {
if (i!= j && ary[i] == 10 * ary[j]) {
break id;

}
}

}
System.out.println(ary[i] + ", " + ary[j]);

Some programmers dislike the break statement, and indeed, there is
usually a better way to solve a problem without using it.

3.3.1.12 Continue Statements
A continue statement is used to go from the middle of a loop to the
beginning of the next time through the loop. That is, the continue
statement causes the enclosing loop to return to the test of a while loop, to
the increment and test of a for loop, or to the beginning of a do-while
loop.

If the continue statement is within nested loops, it can be used to go to
the beginning of a particular loop. To do this, put a label on the desired
loop, and put that label after the word continue.

continue label;

The following code computes the average of the positive values in the
array ary, ignoring the zero and negative values.

int[] ary = {10, 20, 5, -1, 30, -12, 50};
double sum = 0;
int count = 0;

for (int i = 0; i < ary.length; i += 1) {
if (ary[i] <= 0) continue;
sum += ary[i];
count += 1;

}
double average = sum / count;

The “Inner Language” of Java ▪ 45

While there is nothing actually wrong with the continue statement,
refactoring the code to remove it almost always results in a simpler and
more understandable program.

3.3.1.13 Return Statements
When a method is defined, it must specify the type of the value to be
returned. If no value is to be returned, the keyword void must be used in
place of a type name, and the use of a return statement is optional.
Examples:

int add(int a, int b) {
return a + b;

}
void print(int x) {

System.out.println(x);
return; // superfluous

}

The syntax of the return statement is either simply

return;

for a void method, or

return expression;

for a method that returns a value. The type of the expression must be the
same as, or narrower than, the type that the method is supposed to return.

For example, if a method is supposed to return a double value, the
return statement may use an int expression; the result will be converted
to a double as the method returns.

3.3.1.14 Empty Statements
Although of very limited use, Java does allow the use of an “empty” statement,
consisting of a semicolon by itself. The following statements are equivalent:

for (n = 1; n < 1000; n = 2 * n) {}

46 ▪ Quick Java

and

for (n = 1; n < 1000; n = 2 * n);

Either statement results in n being set to 1024.

3.3.2 Statements Not in C++
The following statements are either not in C++ at all, or they are suffi-
ciently different to warrant additional explanation.

3.3.2.1 Assert Statements
The assert statement is unusual in that it usually “doesn’t do anything.”
Rather, it is a form of executable documentation: you are asserting that
something is true. There are two forms:

assert booleanExpression;
assert booleanExpression : expression;

Execution is as follows. The booleanExpression is evaluated, and if true,
control just passes to the next statement. But if it is false, an
AssertionError is thrown. If the second form is used, the value of the
expression (which may be any type) is included in the error message.

By default, assertions are treated like comments. To make assert state-
ments executable, use the VM flag -enableassertions or its abbrevia-
tion -ea.

Note: When running from a command line, VM (Virtual
Machine) flags may be placed after the word java. When run-
ning from an IDE, flags will be a configuration option.

The purpose of the assert statement is to state some condition that you
believe will always be true at that point in the program. It should not be
used to check for possible error conditions that you believe could
happen; for that, you should throw an exception (see section 3.3.2.6).

It is a good idea to get into the habit of putting in assert statements, as
appropriate, when you write the code.

The “Inner Language” of Java ▪ 47

There is little point in using the second form (with expression) unless
you have something useful to add. For example, if you believe that some
array index i is always within the array bounds, you might say

assert i >= 0 && i < myArray.length:
"Bad array index:" + i;

Finally, the idiom assert false; can be used to indicate that you
believe that a certain section of code (for example, the default case of a
switch statement) can never be reached. However, it is a syntax error
to put this (or any other) statement in a location that the Java com-
piler knows cannot be reached, such as immediately following a
return statement.

3.3.2.2 Print “Statements”
There are two “statements” that can print a message to the user. They are

System.out.println(value);

and

System.out.print(value);

The difference is that print just prints a string representation of the
value, while println prints that string followed by a newline character.
That is, the next thing printed after a print will be on the same line, but
the next thing printed after a println will be on a new line.

Although print and println are used as if they were statements, they
are actually methods that have the side effect of displaying something on
your screen. (Method calls which do not have side effects can also be
used as statements, but this is usually pointless, since the return value is
ignored.)

If the value is an object type, print and println will call its
toString method to get a printable representation of the object. This
gives you considerable control over how your objects are printed (see
section 4.4.1).

48 ▪ Quick Java

It is often convenient to construct a string (using “+” to join the parts)
directly in the parameter list of a call to print or println. Anything
“added” to a string will be converted to a string.

System.out.println("The sum is" + sum);

Technical note: System is the name of a class in the java.lang
package, and out is an object of type PrintStream in the System
class. The PrintStream class has several methods, including
print and println. You don’t need to know this in order to use
the methods.

Printing to the screen is easy, but getting input from the keyboard
requires the use of a Scanner object, covered in section 3.4.1.3.

3.3.2.3 Switch Statements and Expressions
Java 14 introduced a significantly improved version of the switch state-
ment. (The old version is still available.) The new version can be used
either as a statement or as an expression that returns a value. The syntax is:

switch (expression) {
case constants1 -> action1

case constants2 -> action2

…
case constantsN -> actionN

default -> actiondef

}

The expression must result in an integer, String, or Enum value.

The constants are comma-separated lists of one or more values of the
same type as expression. Constants may not be duplicated.

The switch, whether used as a statement or as an expression, evaluates
the expression, chooses a case whose constant is equal to that of ex-
pression, and executes the one action associated with that constant. If no
constant matches, the default action is executed.

The “Inner Language” of Java ▪ 49

Note: Unlike the “classic” switch statement, there is no “fall
through” to the next action.

When switch is used as a statement, each action is a single statement,
possibly a compound statement. The default case is optional; if no con-
stant is matched and there is no default case, the statement does nothing.

When switch is used as an expression, each action may be

• An expression of the correct type to be used as the value of the switch.

• A compound statement, containing a statement of the form yield
expression. The yield acts rather like a return statement in a
method; it causes the switch to exit with the expression as its value.

• A throw statement.

When switch is used as an expression, it must either return a value or
throw an exception. In practical terms, this means that either the default
case is required, or the constants include every possible value of an Enum.

The following nonsensical example illustrates the use of switch as an
expression.

long nonsense = switch (i) {
case 1 -> 1000000000000L;
case 2 -> 17 * x;
case 3, 4 -> 'a';
case 5 -> {

System.out.println("Five!");
yield 55;

}
case 6 -> throw new RuntimeException();
default -> -1;

};
System.out.println(nonsense);

3.3.2.4 Pattern Matching in switch Statements
As mentioned in the previous section, Java 14 introduced a new form of
the switch statement, as well as a switch expression, using arrows (->)

50 ▪ Quick Java

instead of colons (:). Java 17 greatly expands what switch statements
and expressions can do, using pattern matching.

Warning: Pattern matching is a preview feature of Java 17. This
means (1) it may change or disappear in future versions of Java,
and (2) you may have to set the enable-preview flag in order to
use it.

Despite the name, pattern matching has nothing to do with regular ex-
pressions. Instead, the switching is done on the type of an expression,
and the result of the expression is assigned to a new variable.

switch (expression) {
case Type1 variable1 -> action1
case Type2 variable2 -> action2
…
case TypeN variableN -> actionN
default -> actiondef

}

The value of the expression must be a supertype of the case Types. When
a matching Type is found, the value of the expression is assigned to the
corresponding variable, and the action (expression or statement) is
executed.

Unlike earlier versions of the switch statement, any object type may be
used as a case type, including null. Primitives, however, cannot be used.

A guarded pattern allows us to perform an additional test on the value,
after its type has been selected. This has the form

case Type variable && guard -> action

where the guard is a boolean expression using the value of the variable.
If the boolean expression is complicated, it should be enclosed in
parentheses.

Here’s an example, using a switch expression.

The “Inner Language” of Java ▪ 51

String s = switch (shape) {
case Rectangle r && r.width == r.height ->

"It's a square';
case Rectangle r ->

'It's a rectangle';
case Triangle t ->

'It's a' + t.width + 'by' +
t.height + 'triangle.';

default -> 'It's a shape.';
};
System.out.println(s);

3.3.2.5 Try-catch-finally
Code that can throw a checked exception must either be in a method that
is declared to throw that exception, or it must be in the try part of a
try-catch-finally statement. Syntax is as follows:

try {
code that might throw the exception

}
catch (SomeExceptionType variable) {

code to handle this kind of exception
}
catch (SomeOtherExceptionType variable) {

code to handle this other exception type
}
finally {

code that is always done before leaving
}

There may be as many catch blocks as desired, to catch different types of
exceptions; the finally block is usually optional. But if there are no
catch blocks, a finally block is required.

First, the code in the try block is executed. If it completes normally
(without an exception or error), the catch blocks are skipped. But if
an exception or error occurs while executing the try block, execution
goes immediately to the first catch block that can handle that kind of
exception.

52 ▪ Quick Java

Whether or not the code in the try block completes normally, the
finally block (if present) is always executed. If the code in the try
block or one of the catch blocks attempts to exit some other way (via a
return, break, or continue statement), the finally block “steps in the
way” and executes before that exit statement can occur.

3.3.2.6 Throw Statements
When Java detects that an error has occurred, it creates an Exception object
and throws it. Your code can also deliberately create and throw exceptions.
Typically you would create a new exception in the throw statement.

throw new ExceptionType(message);

Note: This differs from C++ in that, in Java, only Throwable
types (Exceptions and Errors) can be thrown.

In this section we consider only one simple example.

Suppose that if variable b is negative, it means something has gone
wrong. You might write:

if (b < 0) {
throw new Exception("b is negative");

}

This code creates an object of the very general type Exception (there are
many more specific exception types) and immediately throws the
Exception.

Some exception types are checked. If you execute code that could pos-
sibly throw a checked exception, Java insists that you do something
about it; it is a syntax error if you don’t. One thing you can do is to put
the offending code in the try part of a try-catch statement.

Alternatively, you can say that your method (possibly) throws the ex-
ception. Then whatever called your code has to deal with the exception;
it’s no longer your responsibility.

The “Inner Language” of Java ▪ 53

int myMethod(int a, int b) throws Exception {
if (b < 0) {

throw new Exception("b is negative");
}
// other stuff

}

Now the code that calls myMethod must either call it in the try part of a
try-catch statement, or the header of that calling method must include
a throws part. In this way the exception may be passed up many levels of
method calls before it is finally handled. If it reaches all the way up to the
main method and the main method doesn’t handle it, the program ter-
minates with an error.

Note: One special group of exceptions, the RuntimeException
and its subclasses, are unchecked exceptions; that is, they do not
have to be caught or mentioned in the method header.
Unchecked exceptions are usually the result of an error in the
program.

Exceptions in Java are complicated and expensive, so they should be
reserved for handling problem situations; they should not be used as part
of the “normal” flow of control.

3.3.3 Reading from a File
The basic approach to reading from or writing to a text file is (1) open
the file, (2) use the file, and (3) close the file. Each of these steps could
raise an exception which must be handled.

The FileReader class has methods that will read characters and return
them as integers. This is inconvenient, so the usual way to read files is to
wrap a BufferedReader around a FileReader object.

A BufferedReader has the following methods (among others):

• readLine() reads and returns one line (as a String), or null if the
end of the file has been reached.

54 ▪ Quick Java

• read(charArray,index,n) fills the character array with n charac-
ters, starting at index. The return value is the number of characters
actually read.

• close() closes both the BufferedReader and the associated
FileReader. Closing an already-closed reader does not throw an
exception.

Aside from dealing with exceptions, a BufferedReader can be used like
this:

FileReader fr = new FileReader(file);
BufferedReader br = new BufferedReader(fr);
String line = br.readLine();
br.close();

The file argument to the FileReader constructor may be either a File
object or a string representing a path to the file. If the file doesn’t exist,
the constructor will throw an FileNotFoundException.

The constructor for a BufferedReader will not throw an IOException,
but any use of readLine, read, or close could do so.

3.3.4 Try With Resources
The try-with-resources statement is an extension of the try-catch-
finally statement that provides a more convenient way of closing
resources after using them. Instead of writing

try { … }

write

try (resource declarations) { … }

There may be any number of (closable) resource declarations, separated
by semicolons. For example,

try (FileReader fr = new FileReader("/Users/dave/test.txt");
BufferedReader br = new BufferedReader(fr);) {

The “Inner Language” of Java ▪ 55

String line = br.readLine();
System.out.println(line);

}
catch (IOException e) { }

With this construction, the FileReader and BufferedReader will be
automatically closed after use, whether or not an exception has occurred.

If this code occurs in a method that is marked as throwing an IOException,
the catch clause is not required. A finally clause is optional but not
usually needed.

Note: The above path has the form it does because this code was
tested on a Macintosh. On a Windows machine, paths typically
begin with C: and use double backslashes rather than forward
slashes.

Java 9 introduced a shorter version of the try-with-resources statement
that is sometimes useful. In this version, if the resources have been
previously declared and are final or “effectively final,” they can simply
be named. For example, if BufferedReader br and FileReader fr
have already been defined and are effectively final, then the following
simpler form works:

try (br; fr) {
line = br.readLine();
System.out.println(line);

}
catch (IOException e) { }

Note: A variable is final if it has been declared with the final
keyword. A variable is effectively final if there is no code to
change it after it has been declared.

3.3.5 Writing to a File
To write to a text file, you can use a FileWriter, which has a write
(string) method and a close() method. The following example uses a
try-with-resources statement to automatically close the file.

56 ▪ Quick Java

try (FileWriter fw = new FileWriter(
"/Users/dave/test2.txt")) {

fw.write("Hello\n");
fw.write("Goodbye");

} catch (IOException e) {}

The above code segment will create the file test2.txt if it does not
already exist, and will replace any existing contents of that file with the
two lines Hello and Goodbye. To add to the end of an existing text file,
use FileWriter's append(string) method.

3.4 CLASSES AND OBJECTS
A Java program consists of some number of objects interacting with one
another, yet all executable code is in classes. So, what is the relationship
between classes and objects?

Simply, each class defines a type, and objects are values of that type.
Here is an analogy: A class is like a recipe, while objects are the things
you can make by following the recipe. Once you have the recipe (class),
you can make many things (objects) from it. Almost everything in a
class is devoted to describing what is in the object, and what it can do.

A class contains fields, constructors, and methods.

• The fields (or instance variables) are the data belonging to the
object.

• The constructors create new objects of that type. To call a con-
structor, use the keyword new.

• The methods are code to manipulate that data.

The purpose of a constructor is to make a new object in a valid state. It
does this by accepting values (as parameters) and saving those values in
the instance variables, and typically little else. It might do some limited
computation to get the object set up properly, but that’s all. Any future
manipulation of the object will be done by the methods.

The “Inner Language” of Java ▪ 57

3.4.1 Some Useful Objects
Every Java program must have at least one class, and that class must have
a public static void main(String[] args) method, which is where
the program begins execution. Before we get into writing any additional
classes (what I refer to as the “outer language” of Java), this section will
introduce several useful predefined classes.

Java provides a large number of packages, containing a very large number
of already written and tested classes. This is great, because it means a lot of
good code is ready for your use; but it also means you need to learn your
way around those packages. This book will help with that. For starters,
there are two main packages you need to know about:

• java.lang contains the most fundamental classes, and is auto-
matically imported into any program you write.

• java.util contains most of the data structures you will need.

3.4.1.1 String Objects
A string is a sequence of zero or more characters. Instead of calling a
constructor, as is done with most objects, a string is created by putting
characters inside double quote marks. Other than that, a string is an
ordinary object. The data are the characters in the string, and there are a
few dozen methods for working with that string.

For example, suppose you have

String language = "Java";

You can get the length of this string by using the length() method:

int numChars = language.length();

To send a message to an object: Name the object, put a dot, then say
what method you want the object to execute, and what arguments (if
any) the method needs.

58 ▪ Quick Java

I find the formal terminology awkward, so I like to say we “talk” to an object.
We “tell” it something, or “ask” it something. In the above, we said, “Hey,
language, what is your length?” Similarly, language.charAt(0) says,
“Hey, language, what is your first character?” and language.toUpperCase
() says, “Hey, language, give me an all caps version of yourself.”

Unlike many objects, strings are immutable—they cannot be altered.
Methods like toUpperCase never change the original string; they always
return a new String object.

3.4.1.2 StringBuilder Objects
A more typical object is the StringBuilder. Strings are immutable, so if
you make thousands of modifications to a string, you are actually cre-
ating thousands of new strings. This can be expensive. It is more efficient
to use a mutable (modifiable) StringBuilder object.

To create a new StringBuilder object (or any other kind of object), use the
keyword new, the name of the class, and any required arguments. Like this:

StringBuilder builder = new StringBuilder("Java");

StringBuilder has lots of methods for changing the string data, all of
which use the standard dot notation. For example, to add text to the end,
you can say

builder.append("Script");

Here are a few of the many methods you can use:

• charAt(index) — returns the char at the specified index.

• insert(index, string) — puts the string into the StringBuffer
starting at the index.

• replace(start, end, string) — replaces the characters from start
to end-1 with string.

• delete(start, end) — deletes the characters from start up to, but
not including, end.

The “Inner Language” of Java ▪ 59

When you are finished, you can ask the StringBuilder object to return
a String version of itself.

language = builder.toString(); // now "JavaScript"

Almost all provided classes and objects keep their data private, and the
only way to access their data is by using the methods they provide. When
they do make data available it is usually as a constant, for example
Math.PI and Math.E in the Math class. This is good practice in general.

3.4.1.3 Using Scanner
Since it is fairly simple to produce output that the user sees, using the
methods print and println, you might think it is easy to get input from
the user. It isn’t.

To read input from the user, first import the Scanner class.

import java.util.Scanner;

(Remember that imports go before the class declaration). Next, define
an object of this type:

Scanner scanner = new Scanner(System.in);

The System.in argument says the scanner is to take input from the
keyboard. (The argument could also be a file, or even a string, which is
nice for testing purposes. We don’t explore those options here.)

A scanner can read in either “tokens” or lines. A token is any sequence of
characters bounded by whitespace (spaces, tabs, newlines), while lines
are bounded by newline characters.

To read in tokens, a scanner has the methods next() (reads a token as a
string), nextInt(), nextDouble(), and nextBoolean(). It also has
methods for a number of other types, not including char. An Input
MismatchException will result if the user enters a value of the wrong type.

One way to avoid errors is to check the type of the next token by
“looking ahead” at it, with the methods hasNextInt(), hasNextDouble

60 ▪ Quick Java

(), hasNextBoolean(), or just hasNext(). Or, calls to the scanner can
be made inside a try-catch statement.

The method nextLine() will read in, as a string, the next line.

Caution: Tokens are delimited by whitespace, while lines are
delimited by newlines; but newlines are a kind of whitespace. If a
token is read at the end of a line, a following nextLine() will
return an empty string.

You seldom need more than one Scanner. If you want to make use of a
scanner in several different classes or packages, use a public static
variable to hold the Scanner object, and put it in an accessible class.

Scanners should be closed after use: scanner.close().

As with most of the classes described in this book, the Scanner class has
many more methods than are mentioned here. For example, a scanner
may use regular expressions to tell it what to read.

3.4.1.4 Console
The class java.io.Console provides a much simpler way to read input
from the user than the Scanner class, but it has a significant disadvantage:
It requires the presence of an interactive “console.” Depending on how the
Java program is being executed, a console may or may not be present. In
many cases, Console can be used when running from the command line,
but not when running from an IDE.

The constructor call new Console() will return null if no console is
available. Otherwise, here are some of the operations available on the
new console:

• readLine() returns one line, as a string.

• readLine(formatString, value, … , value) formats and displays a
string to be used as a prompt, then reads and returns one line.

• Format strings are described in section 5.2.2.10. A plain string,
with no interpolated values, can also be used.

The “Inner Language” of Java ▪ 61

• readPassword() returns one line in a character array (that is, a
char[]), without displaying what is typed.

• readPassword(formatString, value, … , value) formats and dis-
plays a string to be used as a prompt, then reads and returns one
undisplayed line in a character array. A plain string can also be used.

• printf(formatString, value, …, value) formats and displays a string.

• writer() returns a PrintWriter associated with this console.

• A Console object does not itself have print and println
methods, but these messages can be sent to the PrintWriter
returned by writer().

3.4.1.5 Objects, Generics, and Stacks
The most general type of object is Object. If you declare an array of
Object, you can put any kind of object into it—strings, stacks, threads,
whatever. Or you can be more specific, and declare an array of (for
example) String, and the array can then hold only strings.

Along with arrays, Java has various types of Collections: Stacks, Lists,
HashMaps, and so on. Originally, any type of object could be pushed onto a
Collection, and there was no way to be more specific. When you got a
value out of the collection, you got an Object, and had to cast it to the
correct type. For backwards compatibility, this style is still allowed.

For example, Java has a Stack type (in the java.util package), with
operations push and pop (among others).

Stack stuff = new Stack();
stuff.push("abracadabra");
stuff.push(new File("abc.txt"));
File foo = (File)stuff.pop();
String spell = (String)stuff.pop();

In modern code, it is preferable to be specific as to what type of values may
be put into a stack. This is done by using type parameters, or generics. The
type parameter is put into angle brackets after the object type.

62 ▪ Quick Java

Stack<String> words = new Stack<String>();
words.push("abracadabra");
words.push(new File("abc.txt")); // not legal

To minimize redundancy, the type parameter in the definition (that is,
after the word new) can be an empty “diamond,” <>.

Stack<String> words = new Stack<>();

Note: In the version of Java I am using, apparently even the “dia-
mond” can be omitted, but this is not an announced feature of Java.

As an added bonus, when you retrieve an object from a genericized
collection, you no longer have to cast it to the correct type.

String word = words.pop();

The genericized type name can be used wherever an “ordinary” type name
can be used, such as in the declaration of a method. For example,

int find(String target,
Stack<String> words) { … }

3.4.1.6 Maps
One of the most useful objects in the java.util package is the HashMap.

A map is a lookup table, or dictionary; it associates keys with values. For
a contact list, the key might be a person’s name, and the value that
person’s phone number.

HashMap<String, Integer> phones = new HashMap<>();
phones.put("Joan", 555_1212);

Note: The above works because, although a primitive cannot be
used where an object is required, Java will “wrap” the int value
555_1212 into an Integer object.

A HashMap is a particular kind of Map which supports extremely fast
lookups. Any object types can be used as keys.

The “Inner Language” of Java ▪ 63

Note: If the keys are user-defined objects which have a user-
defined equals method, then those objects must also have a
user-defined hashCode method that gives equal hash codes for
equal objects.

A few of the important operations on a HashMap are:

• map.put(key, value) — adds the key/value pair to the map,
possibly replacing a previous value.

• map.putIfAbsent(key, value) — adds the key/value pair to the
map, unless the key is already in it with a non-null value.

• map.get(key) — returns the value associated with the key, or null
if the key isn’t in the map.

• map.getOrDefault(key,defaultValue) — returns the value
associated with the key, or defaultValue if the key isn’t in the map.

• map.size() — returns the number of key/value pairs in the map.

• map.clear() — removes all entries from the map.

• map.remove(key) — deletes the key and its associated value from
the map.

• map.keySet() — returns a Set “view” of all the keys in map.

Note: A view is like a “window” into the object, and changes as
the object changes. In the above, the Set returned by keySet can
be used just like an “ordinary” set, except that changing the
contents of map will change the values in the set.

3.4.1.7 The Java API
The Java API (Application Programmer Interface) is a huge resource
consisting of about seven thousand classes, organized into about two
hundred packages. It is important to be able to find your way around this
resource and make use of it.

To find the documentation, search online for “java se 17 api” or similar. One
of the top hits should be something like “Overview (Java SE 17 & JDK 17).”

64 ▪ Quick Java

https://docs.oracle.com
https://docs.oracle.com

(If you are programming for Android or similar, you will want the Java SE 8
documentation instead.) Following that link should take you to a page with
a long list of modules; click on the one for java.base. Bookmark this page;
it is a good starting point. If you are interested in GUI development, also
bookmark the link to java.desktop.

One of the packages on the java.base page, very near the top of the list,
is java.lang. This package is necessary for every Java program and is
automatically imported into every Java program. Click on java.lang to
go to a page listing all the classes in this package.

The java.lang page contains a brief description of the purpose of the
package, and very brief descriptions of what some of the classes are for.
Following that is a list of “Related Packages,” followed by a tabbed list of
classes. For purposes of illustration, choose either “All Classes and
Interfaces” from the tabbed list (probably already selected) or “Classes.”

You will see some of the classes we have already mentioned, such as
Character and Exception. Scroll down and click on String.

Right under Class String you will see that its superclass is java.lang.
Object (clickable) and that it has implemented some interfaces (also
clickable). The methods inherited from Object will not be described on
this page (unless they have been overridden), but they will be listed
further down. Methods from the interfaces are described below, along
with all the other methods.

Next is a brief explanation of string objects, a field summary, a list of
constructors, and further down a tabbed list of lists, one of which is “All
Methods.” If that tab isn’t already selected, then click it.

We will pick one method on this page to examine. Scroll down to the line
that looks like Table 3.1:

TABLE 3.1 Short indexOf entry in Java API

int indexOf(String str) Returns the index within this string of the first
occurrence of the specified substring.

The “Inner Language” of Java ▪ 65

https://docs.oracle.com
https://docs.oracle.com
https://docs.oracle.com
https://docs.oracle.com
https://docs.oracle.com
https://docs.oracle.com
https://docs.oracle.com
https://docs.oracle.com
https://docs.oracle.com
https://docs.oracle.com

This line says that the indexMethod takes a String as a parameter,
and returns an int result. After this, there is a brief description of
what the method does—a longer description is further down the page.
What is only implied (because this is a method in the String class) is
that indexOf is a message you send to a String: For example,
story.indexOf("Toby") searches the string story for the string
"Toby".

In this line, indexOf and String are bold, meaning that they are
clickable. Often, the description is all you need, but you can click on the
method name to jump down to a detailed description.

There will be a lot on these pages you don’t understand. That’s fine; the
important thing is to get comfortable exploring the documentation, and
using the parts you do understand. If you are working a lot with strings,
it is worthwhile to look through the methods to find ones you might use.

One important word to know is “deprecated.” A deprecated method is
one that still works, but has been supplanted by something newer and
better. Don’t use deprecated methods if you can avoid it. Usually there is
a link to the newer, shinier version.

3.5 OBJECTS AND CLASSES
The syntax of classes and objects will be discussed later, but it is helpful
to begin with some understanding of what these things are.

Before object-oriented programming, data and functions would be dis-
tributed throughout a program, perhaps grouped to some extent, but
with no formal organization. Object-oriented programming provides that
organization.

An object is a “thing.” Some objects represent things in the real world,
such as a Customer or a Date. Most objects represent things in the
“computer world,” such as a String or a HashMap. Some things are in-
between, such as a Calendar. Each object has some data, called fields,
describing this particular object, and it has some methods, defining what
the object can do.

66 ▪ Quick Java

A method is a function that belongs to an object (or, in some cases, to a
class). The methods manipulate the data of the object in various ways,
such as updating it or providing information about it. Originally, Java
had no actual functions; it only had methods.

A class defines a type of object. It tells what fields are in each object, and
what methods operate on that object.

For example, if you were to write the software to maintain an online
store, you might have:

• An Inventory object to maintain a list of Item objects you have for
sale.

• Numerous Item objects, each with a price, a description, a
shippingWeight, a numberOnHand, and so on.

• An Order object might be a list of Items being ordered by a
Customer. You might have methods to add an Item to this order
and to remove an Item from it.

• Each Customer object could have a name, a currentOrder (of type
Order), an amountOwed, and so on.

Each class has at least one constructor for making new objects of that
type. To create a new Item object, you may have to provide the con-
structor with a description of the item, its shipping weight, its price, and
whatever else is important about the item.

Key concept: Object-oriented programming is all about creating
a society of cooperating, active “agents” (called “objects”) that,
working together, accomplish the desired task.

In Java almost everything, and certainly all executable code, is in classes.

An interface is a list of methods that a class may choose to implement.
Interfaces are described in section 4.1.3 and 5.3.2; for now, it is not too
misleading to think of an interface as a kind of class.

The “Inner Language” of Java ▪ 67

http://taylorandfrancis.com
http://taylorandfrancis.com

C H A P T E R 4

The “Outer Language”
of Java

T HE EARLIER SECTIONS OF THIS book focussed on what can be done
within a single “top level” class. A typical Java program consists of

multiple top-level classes, and may also use abstract classes, interfaces,
any or all of the four types of inner class, as well as the specialized Enum
class. While it is not standard terminology, you can think of this
structure as the “outer language” of Java.

4.1 CLASS STRUCTURE
A class defines a type of object. It tells what data objects of that type
contain and what methods they have. Here are the most important parts
of a class definition:

access class ClassName {
fields
constructors
methods

}

Every object has a type, and the name of that type is the same as the
ClassName. If you define a class Item, then every object created from
that class will be of type Item.

DOI: 10.1201/9781003402947-4 69

https://doi.org/10.1201/9781003402947-4

Normally, every top-level class goes in a separate file, and the name of the
file must be the name of the class, with the extension.java.

Note: More than one top-level class can be put in a file, but only one
of them can be public, and that is the one the file must be named
after. However, one class per file is the recommended organization.

4.1.1 A Simple Class
We will begin by looking at a simple example of a class; later sections will
describe each of the parts of a class in detail.

The name of the class is Password, and each object created from the class
will hold one password. The method matches will tell us if a password is
correct, and the reset method will allow us to change it. Without fur
ther ado, here’s the class:

public class Password {
private String password;

public Password(String password) {
this.password = password;

}
public boolean matches(String attempt) {

return attempt.equals(password);
}

boolean reset(String oldPassword,
String newPassword) {

if (matches(oldPassword)) {
password = newPassword;

}
return password.equals(newPassword);

}
}

The name of the class is Password, and it is public, so it can be seen and
used anywhere in the project.

The class has a field named password, of type String. It is private, so it
cannot be seen or used outside this class.

70 ▪ Quick Java

Next in the class is a constructor. It has the same name, Password, as the
class that it is in, and it will return a Password object. (Constructors do
not use an explicit return statement.)

Notice that the constructor has access to two different variables, both
named password. One is the field, or instance variable, while the other is
a parameter. This may look strange, but it is quite commonly done,
especially in constructors. To distinguish between them, the name
password by itself refers to the parameter, while this.password refers
to the instance variable.

Next is a method named matches, which will return a boolean (true or
false) value. Because strings are objects, the matches method must
compare them using equals.

Note: Although using == to compare strings often works, it won’t
work here; see section 5.2.2.8 for an explanation. You should
always use equals to compare strings.

Finally, there is a reset method that takes two strings as parameters and
tells whether the reset succeeded. It is not marked public, protected,
or private, so it has package access—it can be used by any class in the
same package.

4.1.2 The Class Header
The class header may be as simple as the word class followed by the
name of the class, or it may be as complex as the following:

access class ClassName extends SuperClass
implements Interface1, … , InterfaceN

The access may be either public or omitted:

• public: Can be seen and used anywhere in the project.

• package: (default, no keyword) Can be seen and used by any classes
in the same package (directory). The package keyword, which
specifies which directory this class is in, cannot be used here.

The “Outer Language” of Java ▪ 71

There are two additional access types:

• protected: Can be seen and used by any classes in the same
directory, and by any subclasses of this class, wherever they may be.

• private: Can be seen and used only within this one class and, if in
an inner class, by its enclosing classes.

Fields and methods can be labeled with any one of the above access
types, with “package” as the default. Local variables of a method cannot
be so labeled; they’re just local.

By convention, the ClassName should begin with a capital letter. It defines
a type; every object created from this class will be of type ClassName.

Classes are arranged in a hierarchy, with the Object class at the root
(top) of the hierarchy. Every class except Object extends one other class,
called its superclass, and inherits data and methods from that superclass.
If the superclass is omitted, Object is assumed.

Briefly, inheritance means that if class B extends class A, then all the data
and methods in A are also part of B. B can extend what it receives from A
by defining additional data and methods. This will be examined in detail
in section 4.2.

The class may also implement some interfaces, as described briefly in the
next section.

4.1.3 Interfaces I
An interface is a list of methods—just the method headers, not the body. A
class that implements an interface must supply those methods, with the
same headers but also with a body. For example, the String class imple
ments the CharSequence interface, and that interface requires the String
class to supply several methods, among them charAt(index), length(),
and isEmpty().

A class may extend another class, thus inheriting all its fields and methods.
Similarly, an interface may extend another interface, thus inheriting
additional methods to be implemented.

72 ▪ Quick Java

The purpose of an interface is to provide a common set of methods used
by similar classes. For example, StringBuilder (see section 3.4.1.2) also
implements CharSequence, therefore it also has the methods charAt
(index), length(), and isEmpty(), along with many others not pos
sessed by the String class.

The syntax of interfaces will be described in section 5.3.2.

4.1.4 Fields
A class typically contains fields (or more accurately, field declarations).
This is where data is kept. It is the values in these fields that make one
object different from another object of the same type.

A field declaration looks like this:

static access type fieldName = expression;

If the word static is present, then there is only one copy of the variable
being defined, and it is shared by all instances of the class. Otherwise,
every object created from this class has its own copy of the fieldName
variable. In the Password class mentioned earlier, every object of that
type has its own password field.

Terminology: An object is an instance of its class, so a field
belonging to an object is also called an instance variable. A static
variable belongs to the class itself, and is also called a class variable.

The access can be omitted (“package” access), or it can be either public,
protected, or private.

Most fields should be marked private. Any fields that are not private can
be accessed by other classes. As a program is being developed, or later
updated, other classes may come to depend on these non-private variables,
and this (possible) dependency makes it difficult or impossible to update
or modify the class without the danger of breaking some code somewhere.
Instead, all access to fields should be under the control of the methods in
the class. This is how it is done in the Java-supplied classes, and how you
should do it.

The “Outer Language” of Java ▪ 73

Note: Private fields are private to the class, not to the object.
Objects have no privacy from other objects of the same type. For
example, code in the Password class (see section 4.1.1) can
access not only this.password, but also john.password, ja
ne.password, and so on.

The type of a field can be the name of any primitive type (int, double,
etc.) or the name of any class type (String, Exception, Password, etc.).

By convention, each fieldName should begin with a lowercase letter.

The expression, if present, is typically just a simple value, though it can
be an expression involving any fields defined above it.

Examples:

String name;
double length = 22.75;
private int count = 0;

4.1.5 Constructors I
The purpose of a constructor is to create an object in a valid state. No
other work should be done in a constructor.

A constructor looks a lot like a method, but the returnType and
methodName are replaced by the ClassName. The syntax is

/** documentation comment */
access ClassName(parameterList) {

declarations
statements

}

In a constructor, the keyword this refers to the object being constructed.

A constructor typically doesn’t declare any local variables; all it does is
use its parameters to assign values to the instance variables. For con
venience, it is common for the parameters to have the same names as the

74 ▪ Quick Java

instance variables, so a constructor may consist of little more than some
assignments of the form this.name = name;.

For example, you might have a class Customer that starts out like this:

public class Customer {
String name;
String address;
double amountOwed = 0;

/** Here is the constructor */
Customer(String name, String address) {

this.name = name;
this.address = address;

}
}

Here, this.name and this.address refer to the instance variables,
while name and address refer to the parameters.

The constructor is called with the keyword new. For example,

Customer c = new Customer("Jane", "jane@aol");

The newly created object is returned as the value of the call to the
constructor. No return statement is necessary in a constructor.

4.1.6 Defining Methods
A method is like a function, except that it belongs to a class. Like a
function, it takes parameters and may return a value. The syntax is

/** documentation comment */
access returnType methodName(parameterList) {

declarations
statements

}

With minor exceptions, methods contain all the executable code of a
program.

The “Outer Language” of Java ▪ 75

The optional documentation comment should tell the user what the
method does and how to use it. It should describe any restrictions on the
parameter values, and what to expect of the return value. It should not
talk about how the method is implemented. The documentation (doc)
comment may also contain tags to add specific kinds of information:
The @param tag describes a parameter, @return describes the result, and
@throws describes an exception that may be thrown. Additional tags are
described in section 5.2.1.2.

The access tells what other classes can use this method. It can be public,
“package” (default), protected, or private.

The returnType tells what kind of value is returned by the method. If the
method does not return a value, the keyword void is required.

By convention, the methodName should begin with a lowercase letter.
Methods may be overloaded; that is, there can be multiple methods with
the same name, so long as they have different numbers of parameters or
different parameter types. Java looks at both the name and the param
eters (but not the return type) to decide which method to use.

Each element in the parameterList must be a variable name preceded by
its type (for example, String password). A primitive type is passed in
“by value”: The method gets an independent copy of the value. An object
type is passed in “by reference”: The method gets a reference to the actual
object, not a copy of it (see section 4.1.8)

If a method does not take parameters, the parentheses must still be
present.

In the body of the method you can have declarations of variables, with
or without an initial value, for example,

int count = 0;

Unlike fields, variables cannot have an access specifier; all variables are
local to the method, and cannot be seen or used outside the method.
Variable declarations are usually put first in the method body.

76 ▪ Quick Java

Within the method, the statements can refer to any fields of the class, any
parameters, and any local declarations.

4.1.7 Example: Bank Account
The following (seriously oversimplified) example of a bank account class
demonstrates the use of methods and the various ways that variables can
be accessed.

public class Account {
private int funds = 0;

void deposit(int amount) {
if (amount > 0) {

funds += amount;
}

}

void withdraw(int amount) throws Exception {
if (funds >= amount) {

funds -= amount;
} else {

throw new Exception("Insufficient funds");
}

}

int getBalance() {
return funds;

}

void transferFrom(Account other, int amount)
throws Exception {

other.withdraw(amount);
deposit(amount);

}

public static void main(String[] args)
throws Exception {

Account john = new Account();
Account mary = new Account();
john.deposit(100);
mary.transferFrom(john, 75);
System.out.println(john.getBalance());

}
}

The “Outer Language” of Java ▪ 77

As is right and proper, all access to and modification of the field funds is
handled by methods in the same class. When money is taken from a
different account other, it is done by asking the other object to with
draw money.

The following line suggests one reason that fields should be private:

john.funds = 1_000_000;

Another reason is that if something unexpected were to happen to a
private funds variable, the error must be somewhere within the class. If
funds is not private, the error could be in any part of the program that
can access this class.

The withdraw method can throw an exception. The transferFrom
method could use a try-catch statement to handle the exception, but
since it doesn’t, it has to pass the exception on “upward.” The main method
does the same thing, but “upward” from here means to the operating
system, which will cause the program to crash—not ideal behavior.

There are additional places where an exception can and should be
thrown, for example, when withdrawing a negative amount of money.

Also worth noting is that the funds variable represents money as an
integer amount (possibly in cents). Money should always be represented
exactly, not approximately; using a double could lead to legal problems.

A class like this would not normally contain a main method; I put one in
(temporarily) to do some very simple testing. For a much better approach
to testing, see section 7.7.

4.1.8 References
In order to work with objects, it is critical to understand the concept of
references.

Each variable in a program has a fixed, limited amount of memory in
which to store its data. An int gets 4 bytes (32 bits), and a double gets 8
bytes (64 bits). The same holds true for objects: A variable of an object

78 ▪ Quick Java

type (String, array, Customer, etc.) gets only 4 bytes. This obviously
isn’t enough for most objects.

Instead, each object is stored in a particular area of memory called the
heap, where it can occupy as many bytes as it needs. What is actually
stored in the variable is a reference to that location in the heap, typically
implemented as a memory address.

Note: A reference is similar to a pointer in other languages. The
main difference is that arithmetic cannot be done on references.

When a primitive value is copied from one variable into another, it is
duplicated. Each variable has its own copy of the value (see Figure 4.1).

After the assignment b = a, the variable b has a copy of the value from a,
and either variable can be modified independently.

When an object is copied from one variable into another, it is again a
simple value that is copied; but that value is a reference to an object, not
the object itself (see Figure 4.2).

After the assignment obj2 = obj1, both variables refer to the same
object. Either reference can be used to “talk to” and change the object,
and the data in the object will be the same regardless of which reference
is used to view it.

FIGURE 4.1 Assignment of a primitive.

FIGURE 4.2 Assignment of an object.

The “Outer Language” of Java ▪ 79

The same thing happens when a method is called. If a primitive value is
given as an argument, the method gets a copy of that value, but if an
object is given as an argument, the method gets a copy of that reference.

It is seldom necessary to make a copy of an object, and there is no built-
in, easy way to do it. If a copy must be made, probably the best way is to
add a copy constructor in the class definition. A copy constructor is a
constructor that takes an object of the same type as its parameter, and
copies all the data values from it into the new object. This must be done
carefully, because some of the fields of the copied object may be them
selves references to other objects.

4.1.9 Constructors II
When an object is constructed, it is actually constructed in layers, with
Object being the foundation layer for every object.

If you have a Customer class, and this class extends Person, and Person
extends Object, then when you create a new Customer object, here’s
what happens:

• The constructor for Customer calls the constructor for Person.

• The constructor for Person calls the constructor for Object.

• The constructor for Object creates and returns a basic object.

• The constructor for Person adds the data and methods needed
for a Person object, and returns it.

• The constructor for Customer adds the data and methods needed
for a Customer object, and returns it.

The result is that the Customer object inherits all the data and methods
from Person, and all the data and methods from Object. It can use these
things just as if they were defined here in the Customer class.

The first action in any constructor must be to call a constructor for its
superclass. You can write an explicit call like this: super(parameters);.
A call like this must be the very first line in your constructor because the
foundation must be built before you can begin adding to it.

80 ▪ Quick Java

If you don’t explicitly call a constructor for the superclass, Java supplies
an implicit (“invisible”) call for you. If you could see it, it would look like
this: super();.

Trap: Java provides an invisible constructor with no parameters
if and only if you don’t write a constructor for the class. Other
code could depend on that invisible constructor. If you later
write an explicit constructor, the invisible constructor will dis
appear, probably resulting in errors in previously working code.

If the Person class has an explicit constructor that takes parameters, and
you write Customer as a subclass of Person, you must write a con
structor that calls the Person constructor with the proper arguments.

public class Customer extends Person {
private double amountOwed = 0;
private String otherInfo;

/** Here is the constructor */
Customer(String name, String address,

String otherInfo) {
super(name, address); // required
this.otherInfo = otherInfo;

}
}

In this example, Customer objects have the instance variables name and
address because they are inherited from the Person class. These vari
ables should not be declared again in the Customer class.

You can have multiple constructors for a class, distinguished by the
number and/or types of the parameters. Each constructor can be inde
pendent of the others. Often, however, one of these constructors does
most of the work, and you would like the other constructors to call it.
You can do this by using the keyword this instead of super.

If, in a constructor, you say this(parameters) as the very first action, then
that other constructor will be called, and it is responsible for calling the

The “Outer Language” of Java ▪ 81

superclass constructor. Constructors can be “chained” in this way, and
only the last constructor in the chain will call the superclass constructor.

4.1.10 Static
An object bundles together data about a thing, and methods to operate
on that thing. But objects are defined by classes, and a class may have its
own data and methods.

Terminology: A class variable is a variable (field) that belongs
to the class itself. A class method is one that is not associated
with any particular object. These are indicated by the word
static in their declaration.

There is only one copy of each static variable, shared by all objects of that
class. Static variables are used to say something about the class or
something that is the same for every object in the class.

access static type fieldName = expression;
access static returnType methodName(parameterList) { … }

Suppose you had a Customer class, and each Customer object holds
information about that particular customer. Now suppose you wanted to
keep track of how many customers you have; that is, how many times a
Customer object has been created. You can add a howMany field to the
class, but it doesn’t make sense for every Customer object to have its own
(possibly different) value for howMany. The solution is to add a howMany
field, but make it static.

public class Customer {
private String name;
private String address;
private double amountOwed = 0;
private static int howMany = 0;

Customer(String name, String address) {
this.name = name;
this.address = address;

82 ▪ Quick Java

howMany += 1;
}

}

Now, since howMany is a class variable, we don’t need a particular object
to call it; we can say Customer.howMany.

Note: We don’t need an object of the class to use its static fields
and methods, but if we have one, we can use it. That is, if
richGuy is a Customer object, we can say richGuy.howMany and
get the same result as Customer.howMany, or the same as
poorGuy.howMany. This can seem confusing because it is
sending a message to a particular object, but getting a response
from the object’s class.

Static methods (another name for class methods) work the same way;
they are attached to the class, not to particular objects. We can “talk”
(send a message) to the class directly, or indirectly by talking to any
object of that class. For example,

static int getHowMany() {
return howMany;

}
…
int customers;
// All of the following lines are equivalent
customers = Customer.getHowMany();
customers = richGuy.getHowMany();
customers = poorGuy.getHowMany();

Static methods do not belong to any particular object (instance), so they
cannot use instance variables or instance methods; they can only use
static variables and static methods. If a static method has access to an
object, however, it can “talk to” (send messages to) that object, and it can
use dot notation to directly access any non-private fields of that object.

Methods that don’t depend on anything in the class, but are in it simply
because every method has to be somewhere, should also be made static.

The “Outer Language” of Java ▪ 83

static double feetToMiles(double feet) {
return feet / 5280.0;

}

4.1.11 Escaping Static
Java is object-oriented, not “class-oriented.” That is, objects are used a
lot, and classes are used almost entirely for defining and creating objects.

However, a Java program always begins in a “static context,” the public
static void main(String[] args) method. Because it is static, it
cannot use instance variables or instance methods (which belong to some
object, or “instance”).

If what you want to do is simple enough, you might want to just write
one class with a handful of methods. In that case, you can make every
method and field static, but this gets annoying in a hurry. Alternatively,
you can create one object of the class that you are in, and call a non-static
method on that object. That is what we did very early in this book.

public class MyClass {
public static void main(String[] args) {

new MyClass().run();
}
void run() {

System.out.println("Hello World");
}

}

This program starts, as does every Java program, in the static method
main. Then it creates a new MyClass object and immediately calls
that object’s run method. Now everything else can proceed from the
run method, and you are no longer forced to make everything static.
(I used the name “run” for this method, but you can name it whatever
you like.)

4.1.12 The Main Method
We are now in a position to explain the absurdly complex main method.
It looks like this:

84 ▪ Quick Java

public class MyClass {
public static void main(String[] args) { … }

The name of the class is MyClass, so it must be in a file named
MyClass.java. Compiling it results in a new file, MyClass.class, which
is ready to execute. From your favorite operating system, you or your
IDE tries to execute this file. How?

• public: The class and the method must both be public, that is,
available from anywhere. In particular, it has to be available to your
operating system.

• static: Compiling the program defines the class MyClass (and any
other classes in your program), but there are no objects yet, just
classes. Since there are no objects, neither are there any instance
methods. But the main method is static and it belongs to the class
MyClass, which does already exist. Therefore, the operating system
can send the message main to the class MyClass.

• void: The main method does not return a result.

• main: The operating system always starts a Java program by sending
it the message main(arguments). Specifically, since it is trying to
run a program on the file named MyClass.class (compiled from
MyClass.java), it sends the message main to the class MyClass.

• More than one class can have a main method, so you can have more
than one possible starting point in a program. For example, you
might have one program to both encode and decode messages and
have a main method in both an Encoder class and a Decoder class.

• (String[] args): The main method can take arguments, either
from the command line or from the IDE. Arguments are separated
by spaces, and come in as strings. It’s okay if there are no
arguments—zero-length arrays are legal in Java.

As an example of one of the simplest Java programs you can have,
suppose you have the following program on a file named MyClass.java
in a folder named myPackage:

The “Outer Language” of Java ▪ 85

package myPackage;

public class MyClass {
public static void main(String[] args) {

System.out.println(args[0] + args[1]);
}

}

If you are in a folder/directory containing the folder myPackage, you can
compile this program with:

javac myPackage/MyClass.java

You can run it by saying:

java myPackage/MyClass abc 123

And the result will be:

abc123

4.1.13 A More Complete Example
The following is a complete, if rather pointless, example of a program
that uses classes and objects.

This code is in a file named Counter.java, in a folder (directory) named
tools. The names of folders and files must exactly match the names of
packages and classes. (Your IDE will take care of this for you.) There may
be, and probably are, other classes in this same package/folder.

package tools;

/**
* A simple counter class
*/
public class Counter {

private int count; // a field

/** Constructor to make a Counter
* object with an initial value.
*/

86 ▪ Quick Java

public Counter(int initial) {
count = initial;

}

/** increments the counter by n. */
public void bump(int n) {

count += n;
}

/** increments the counter by 1. */
public void bump() {

bump(1);
}

/** returns the value of the counter. */
public int getCount() {

return count;
}

}

The class describes a new type, the Counter type.

The class has one field, int count. Every object made from this class will
have its own count field, so you can have multiple counters keeping
track of different values. The constructor takes a parameter initial to
use as the initial value of count.

The class has three methods, two named bump and one named getCount.
These are declared public so they can be used from outside the package.
The bump() method adds 1 to the count field, while the bump(int n)
method adds n to the count field; neither returns a value. The getCount
method returns the current value of count.

To complete the example, let’s write a program to test our Counter class.

package toolUser;
import tools.*;

public class CounterTest {
public static void main(String[] args) {

Counter c1 = new Counter(0);
Counter c2 = new Counter(100);

The “Outer Language” of Java ▪ 87

c1.bump(2);
c1.bump(8);
c2.bump(100);
c2.bump();
System.out.println(c1.getCount() + ", " +

c2.getCount());
}

}

This class is in a separate folder, named toolUser. The second line says
to import, or make available, everything in the tools package.

The package and import statements go at the beginning of the file,
before the class definition.

The next line declares a class CounterTest, which is public so that it
can be used by classes in different packages.

The class CounterTest contains a public static void main method, so
this is where the program will begin execution.

The next lines declare variables c1 and c2 of type Counter, create new
Counter objects with different initial values, and assign them to the variables.

The following lines use dot notation to send several bump messages, with
different parameters, to the c1 and c2 objects.

Finally, the println statement asks each of c1 and c2 to fetch their
value, and prints "10, 201" as the result.

4.2 INHERITANCE
Classes form a treelike hierarchy, with Object at the root. Every class,
except Object, has one and only one immediate superclass, and that
class has its own immediate superclass, and so on all the way up to
Object at the root; all of these are superclasses of the class. The keyword
extends denotes the immediate superclass.

When you define a class you can specify its superclass. If you don’t specify
a superclass, Object is assumed. Thus, the following are equivalent:

88 ▪ Quick Java

class Person { … }
class Person extends Object { … }

Classes inherit all the fields and all the methods of their superclasses.
Every class has not only its own fields and methods but also every field
and every method available to all of its superclasses. Hence, a class
may contain much more information than is obvious from the class
definition.

For example, if you have a Person class that has a name field, and you
write a Customer class that extends Person, then every Customer object
also has a name field. If your Person class has a visit method, then
every Customer object also has a visit method.

Inherited methods can be overridden (replaced) by declaring a method
with the same name and the same number and types of parameters; see
section 4.4 for more details.

Constructors are not inherited.

4.3 CASTING OBJECTS
Recall that numeric values can be cast (converted) from one type to
another. An int value can be put into a double variable with no trouble
because a double is in some sense “wider” than an int. But to put a
double value into an int variable, it must be explicitly cast to an int by
putting (int) in front of the variable; for example, int pi = (int)
Math.PI;.

Smartly, objects of one type can be put into a variable of a different type
if and only if one of the types is an ancestor (superclass) of the other.
Upcasting is casting to an ancestor type, and can happen automatically;
downcasting is casting to a descendant type, and an explicit cast is
required. For example, if BirthdayCake extends Cake and Cake extends
Object, then the following assignments are possible:

BirthdayCake myCake = new BirthdayCake();
Cake cake = myCake;
Object obj = myCake;

The “Outer Language” of Java ▪ 89

myCake = (BirthdayCake)cake;
myCake = (BirthdayCake)obj;
cake = (Cake)obj;

The usual reason for upcasting is to put an object into a collection of more
general objects; for example, to put a birthday cake into an array of cakes.
The birthday cake does not lose its special features (candles, for example), but
those features are unavailable from a variable of the more general type Cake.

When downcasting an object, Java inserts an implicit check that the object
really is an object of the intended type, and throws a ClassCastException
if it is not. When the object is in a variable of the more specific type, the
added features (fields and methods) are again available.

You can test if an object is of a given type or supertype with the in
stanceof operator.

myCake instanceof BirthdayCake // true
myCake instanceof Cake // true
myCake instanceof Object // true

An instanceof test can be used to test whether a variable can be cast to
a certain type, but it doesn’t perform the cast.

if (obj instanceof BirthdayCake) {
BirthdayCake bc = (BirthdayCake) obj;
… use bc here

}

Starting with Java 14, this can be abbreviated as

if (obj instanceof BirthdayCake bc) {
…use bc here

}

4.4 OVERRIDING
Objects inherit methods from their superclasses, and Object is the root
superclass of all objects, therefore every object inherits all the methods
defined in the Object class.

90 ▪ Quick Java

If an inherited method is not exactly what is desired, it can be overridden
(replaced) by a different method with the same name and the same
number and types of parameters. To do this,

1. Write the annotation @Override directly before the method.

• An annotation is an instruction to the compiler. The @
Override annotation asks the compiler to check that the name
and parameter list match with those of an inherited method
because, if they don’t, you are simply defining another method,
not overriding one.

2. Write a method with the same name, same number of parameters,
and same types of parameters (in the same order) as the method
you wish to override.

• The parameter names don’t have to be the same, and the over
riding method may even have a different return type.

3. Make sure the new method is at least as public as the method it
overrides. (The sequence is private, “package,” protected, and
public.) If the inherited method is public, any method that
overrides it must also be public.

It is usually a good idea, when defining your own objects, to override
three of the methods inherited from Object:

• toString() returns a String representation of this object.

• equals(obj) tests if this object is equal to object obj.

• hashCode() returns an int hash code for this object.

The inherited versions of these methods are fairly useless; they exist so
that they can be overridden. By defining them in Object, Java can be
sure that every object has some version of these methods.

If your class overrides an inherited method, that inherited method is still
available to you: just prefix the method call with super. That is,

The “Outer Language” of Java ▪ 91

super.methodName(parameters) will ignore the local method
methodName and use the inherited version.

An inherited field can be shadowed (hidden) by declaring a field with the
same name. This is usually done because the programmer did not realize
the field already exists; and if the shadowed field is never needed, the
mistake is harmless. When a variable is shadowed, super.fieldName
gives access to the inherited field.

4.4.1 Overriding toString
Every object has a toString method, inherited from Object. It is called
automatically when “adding” an object to a string and when trying to
print an object. You can also call it directly.

The inherited toString method is pretty useless. It’s there primarily as a
placeholder so that you can override it with a more useful version.

Here is a possible toString method for the Counter object:

@Override
public String toString() {

return "My count is " + count;
}

The inherited toString method is public, therefore the version that
overrides it must be public.

The inherited toString takes no parameters and returns a String
result, so the version that overrides it must do the same.

If any of these aspects do not match the inherited toString method, you
may have a valid method that overloads but doesn’t override the inherited
one. If the method is annotated with @Override, this kind of error will be
caught.

While a toString method can be used to present information to the
user, other methods are usually written for that purpose. The real value
of toString comes during debugging when it can show the actual
contents of objects.

92 ▪ Quick Java

4.4.2 Overriding Equals
Every object inherits an equals method from Object, but what that
method actually tests for is identity. According to this method, two
objects are “equal” if and only if they are the same object, occupying the
same location in memory. This is also what the == comparison operator
does when applied to objects.

Important: For objects, == is always an identity test, not an
equality test. The equals method is also an identity test, unless it
has been overridden for that particular class of objects.

Continuing to use our Counter class as an example, here is what a typical
equals method would look like:

@Override
public boolean equals(Object obj) {

if (obj == this) return true;
if (! (obj instanceof Counter)) return false;
Counter that = (Counter)obj;
return this.count == that.count;

}

1. First, we say that we are overriding some method, then we give it
the exact same header as the method we are trying to override. (The
parameter obj may have a different name, but everything else must
be the same.)

2. An extremely common error is to specify the wrong type of
parameter. We normally want to compare this Counter to another
Counter, so it makes sense for equals to use a Counter parameter.
However, this doesn’t work. To override a method that has an
Object parameter, the parameter must be of type Object. If it isn’t,
the method may be legal, but it will not override equals.

3. Next we see if we are comparing the Counter object to itself. The
keyword this refers to the object currently executing the method;
that is, if we were testing c1.equals(c2), the word this refers to
c1. The == operator tests for identity; it isn’t necessary here, but it’s
a very fast test for a common situation.

The “Outer Language” of Java ▪ 93

4. Since the method will take any kind of object as a parameter, we
probably want to return false if the method is called with an
Octopus instead of a Counter.

5. If we get past the tests, we know that the parameter obj holds a
Counter object, but the type of the variable obj is still Object.
It would be an error to say obj.count, because not all objects
have a count field. We have to cast obj to a Counter object and
save it in a variable of type Counter in order to use it. (I like
to use the variable name that, but almost any other name
would do.)

6. Finally, we have two Counter objects that we can compare. This
test could be quite complex, but for our simple Counter objects
we’ll just test if their count fields are equal.

The equals method should define an equivalence relation. That is, it
should have the following three properties for any objects obj1 and obj2:

• Reflexive: obj1.equals(obj1) should always be true.

• Symmetric: obj1.equals(obj2) should always give the same result
as obj2.equals(obj1).

• Transitive: If obj1.equals(obj2) and obj2.equals(obj3), then it
should be the case that obj1.equals(obj3).

Unfortunately, symmetry can only be “mostly” achieved. If obj1 is an
object but obj2 is null, then obj1.equals(obj2) should give false,
but obj2.equals(obj1) would result in a NullPointerException.
Symmetry could be achieved by making both of these result in a
NullPointerException, but that hardly seems useful.

Fortunately, any reasonable definition of equals is likely to satisfy these
properties, insofar as they can be satisfied in Java.

4.4.3 Overriding HashCode
There is a “rule” in Java that if you override equals, you should also
override hashCode.

94 ▪ Quick Java

A hash code is an arbitrary integer assigned to an object. It has no more
meaning than, say, a phone number. Hash codes are used by a number of
classes, such as HashSet and HashMap. If you never use these classes, and
never give your code to anyone who might, there is no need to override
hashCode; but it’s cheap and easy to do, so you should anyway.

The point to remember is that equal objects must have equal hash codes.
If you use only part of an object to test for equality, use those same parts
to create a hash code. This is absolutely necessary for classes like
HashMap to work correctly.

It is not, repeat not, the case that unequal objects must have different
hash codes. It’s better if they do, but relatively harmless if they don’t. If
you use a hash code of zero for every object, your code may run a
thousand times slower, but it will still work.

We have defined two Counter objects to be equal if they have the same
count value, so the hashCode method practically writes itself.

@Override
public int hashCode() {

return count;
}

If you have a Customer class with a name field, and if the name fields of
two customers have to match for them to be considered equal, you can
use the hash code of name for the hash code of your customer.

@Override
public int hashCode() {

return name.hashCode();
}

If your equals method for Customer also requires other fields to be
equal, that’s okay; equal customers will still get equal hash codes. If three
or four of your customers are named “John Smith,” that will make no
practical difference in execution times.

The “Outer Language” of Java ▪ 95

http://taylorandfrancis.com
http://taylorandfrancis.com

C H A P T E R 5

Advanced Java

J AVA IS A LARGE, COMPLEX LANGUAGE. This section is “advanced” only in
the sense that you don’t really need to know most of this material in

order to get started in the language. In fact, many of the features
described here were not even present in the original version of Java; they
are later additions.

5.1 INFORMATION HIDING
Information hiding—providing each section of code access to only the
information it needs to know—is important in programming.

Information is not hidden for any nefarious reason; it is done to limit the
amount of information a human has to deal with. Think of driving a car:
It would be much more difficult if you had to pay attention to the details
of timing, gear ratios, suspension, and so on. Instead, you are given easy
access to only the information you need to drive.

Information hiding also reduces dependencies among code. If the
internal structure of an object is not available, other classes cannot have
code that depends on that structure.

In the same way, each class and each method should provide services to
the code that uses them, while hiding the details of its operation.

DOI: 10.1201/9781003402947-5 97

https://doi.org/10.1201/9781003402947-5

5.1.1 Reasons for Privacy
Fields in an object all have package access by default; I consider this to be
a design flaw in Java. Fields should be private by default. Since they are
not, the programmer should mark every field private unless there is a
reason to make it more public.

Here are five reasons for this statement:

1. It is the responsibility of each class to ensure the validity (con-
sistency) of its objects, and it does not have full control if its
variables are not private.

2. If a private variable in a class gets an erroneous value, the error
must have been caused by something in the class, not something
outside the class. This simplifies debugging.

3. If all the fields of an object are private, all manipulation of an object
is centralized in the methods of that object.

4. If all fields of an object are private, the internal representation of
that object can be changed without affecting any other classes. For
example, the representation of points on a plane might be changed
from rectangular coordinates to polar coordinates. This is not
possible if other objects are already accessing the object’s fields.

5. Making the fields private is a form of information hiding. It limits
but also simplifies what can be done to the object in other classes.

For example, consider a class Person with an instance variable weight.
Presumably, weight should never be negative. If an error occurs that
causes it to become negative, and the variable is private, then we know
the error must have occurred within the class Person, and nowhere else.
But if weight is not private, the error could be anywhere (in, say, a
Product that is guaranteed to help a person lose ten pounds a week).

5.1.2 Getters and Setters
For access to private data, getter and setter methods are often employed.
These have the standardized form

98 ▪ Quick Java

access type getName() and
access void setName(arg)

The getter and setter methods for a weight variable might look like this:

public int getWeight() {
return weight;

}

public void setWeight(int weight)
throws IllegalArgumentException {

if (weight < 0) {
throw new IllegalArgumentException();
}

this.weight = weight;
}

Often these methods do nothing more than get or set the value with the
given Name, with the expectation that they may be extended later.

The use of getters and setters does incur a slight loss in performance.
However, they give you the freedom to revise and update the structure
of your objects without having to worry about what other classes may
be accessing the fields of those objects. It also gives you a lot more
flexibility. For example, your object could lie about its weight.
Similarly, the getter and setter could use pounds but actually store the
weight in kilograms.

public double getPounds() {
return kilograms / 2.2;

}

While this may seem like a lot of additional typing for minor gains in
safety and flexibility, a professional IDE will create getters and setters for
you with a couple of menu clicks, and you can then edit them as needed.

5.1.3 Private Constructors
If you call a constructor for a class, you will get an object of that class.
Period. However, there may be circumstances where this is not what you
want to have happen.

Advanced Java ▪ 99

You may have a class that contains only static methods and variables.
In that case, there is no reason ever to create an object of the class.
However, if you do not supply a constructor, Java automatically supplies
one for you. In this case, the solution is to supply a private
constructor—it doesn’t have to do anything, it just has to exist. Since you
have supplied a constructor, even though it’s one that nobody can use,
Java doesn’t supply a constructor, and no objects can be created.

Another situation is when you want only one unique object to be created.
In that case, a private constructor and a public method to call it may be a
good solution.

public class OneScanner {
static Scanner scanner = null;
private OneScanner() { } // constructor
static Scanner instanceOf() {

if (scanner == null) {
scanner = new Scanner(System.in);

}
return scanner;

}
void close() {

scanner.close();
scanner = null;

}
}
…
Scanner myScanner = OneScanner.instanceOf();

The same approach can be used if you want to check the parameters used
for a constructor before actually constructing an object.

5.2 THE INNER LANGUAGE

5.2.1 General
5.2.1.1 Ordering
Within a class, variables and methods may be declared in any order, but
the following ordering is commonly used:

• static variables

100 ▪ Quick Java

• instance variables

• static methods

• instance methods

Within a block, however, variables are available only from the point of
declaration to the first closing brace.

{
x = 1; // not legal here
int x;
x = 2; // legal here

}
x = 3; // not legal here

The braces around a class or interface do not form a block, but the body
of a method is a block, so the above ordering rule applies.

5.2.1.2 Javadoc

A documentation comment, or doc comment, is a comment that
can be used by the javadoc program to produce professional-
looking documentation. This is how the official Java documen-
tation is produced.

Doc comments should be written for the benefit of the programmer who
needs to use your code. That programmer does not care how your code
works, only that it does work. Implementation details should be put in
internal comments; they do not belong here.

If your .java files are in a folder named (say) myProgram, then you can
simply execute javadoc myProgram from the command line. This will
produce several HTML pages which you can view in any browser.

A doc comment must begin with /**, end with */, and be placed directly
before a class, interface, field, constructor, or method declaration. It
consists of a textual description and some optional tags; which tags can
be used depends on the kind of thing being documented. If the

Advanced Java ▪ 101

documented item is genericized, the type variables can be specified with
tags. Because javadoc produces HTML by default, HTML tags can be
included in doc comments.

A doc comment for a class should provide general information about
what kind of object it represents.

A doc comment for an interface should tell what capabilities it provides.

A doc comment for a field should describe the data held by the field.
Most fields should be private; javadoc can be set to include or to
ignore information about private fields and methods.

A doc comment for a constructor should tell how its parameters are
used.

A doc comment for a method should tell the user what the method does
and how to use it, not how it is implemented.

Doc comments may contain javadoc tags. Here are the most common
ones:

• @author Author name (for classes and interfaces)

• @version date or version number (for classes and interfaces)

• @param name purpose (for describing a parameter of a method or
constructor; use one tag for each parameter)

• @param typeParameter purpose (for type parameters of genericized
classes, methods, and constructors; use one tag for each type
parameter)

• @return description (for methods, to tell what is expected of the
result)

• @throws exceptionType description (for exceptions possibly
thrown by methods or constructors; use one tag for each exception
type)

102 ▪ Quick Java

• @exception is a synonym for @throws

• @deprecated text (should tell why this class or method should no
longer be used, and should suggest an alternative)

A good IDE can generate skeletal doc comments for you, so all you have
to do is fill in the details.

The doc comment for a method should begin with a verb phrase, for
example, “Finds the median value.” In other words, write the doc
comment as if it began with the words “This method … .”

Python programmers: Java differs from Python style, which
would be to write the doc comment as an imperative statement:
“Find the median value.”

Use the word this when referring to the current object, for example,
“Returns the numerator of this fraction.”

The @param and @return tags do not need to mention the type
of the parameters or of the return value, because javadoc will do
that.

If it is too difficult to write the doc comment for a method, or if a method
is in sections separated by comments, this may be an indication that the
method is trying to do too many things. A good IDE can help you break
the method up into separate well-named methods, each with a single
purpose.

Classes are organized into packages, with each public class on a separate
file. To provide documentation that describes the entire package, you can
write a file with the specific name package-info.java. This file typically
consists of a documentation comment plus one line identifying the
package and its location, like so:

documentation comment
package full.path.to.packageName;

Advanced Java ▪ 103

5.2.1.3 Var Declarations
With newer versions of Java, variables declared in a method with an
initial value may be specified with var rather than an explicit type. That
is, instead of

int[] numbers = new int[100];

you can say

var numbers = new int[100];

This works because the type is obvious from the initial value.

The var declaration can also be used in the two kinds of for loop and in
the try-with-resources statement. It cannot be used for class or instance
variables (those declared within a class but not within a method).

Although var presumably is an abbreviation of “variable,” it can be
combined with final to declare constants.

5.2.1.4 Namespaces
Names are kept in namespaces, and the names in one namespace are
independent of the names in other namespaces. Thus, for example, a
variable may have the same name as a method without causing any
conflict. Java uses six different namespaces:

• package names

• type names

• field (variable) names

• method names

• local variable names (including parameters)

• labels

In an instance method, a field name may be distinguished from a local
variable name by prefixing the field name with the keyword this. Other

104 ▪ Quick Java

names are assigned to namespaces according to how they are used in the
code; for example, a method name is always followed by parentheses.

5.2.2 Data
5.2.2.1 Wrapper Classes
Primitive values in Java are not objects, so you can’t talk to them (send a
message to them) the way you would to an object. To make up for this
lack, each primitive type has a corresponding wrapper class. Those
classes are: Boolean, Byte, Character (not Char), Double, Float,
Integer (not Int), Long, and Short. The wrapper classes are in ja-
va.lang, which is automatically imported into every program.

Wrapping and unwrapping happen automatically. If a method expects an
Object as an argument, but you call it with a primitive, the primitive will
automatically be “wrapped” into the correct kind of object. Similarly, if
you try to add 1 to an Integer object, that object will be unwrapped to
an int.

Trap: If a and b are Integer (not int) values, the test a==b tests
whether a and b are equal for values less than 128, but tests for
identity (whether a and b are the same object) for larger values.
The equals method, a.equals(b), tests for equality in all cases.

Each wrapper class has some useful static constants and methods.
Since they are static, you use them by talking to the class, in many
cases providing the primitive as an argument to a method. For example,
there is a special double value named NaN (Not A Number), held in the
static constant Double.NaN. If you have a double variable d and you
want to know if it holds this value, you can ask Double.isNaN(d).

5.2.2.2 Integers
An int is a 32-bit integer that can hold numbers in the minus two billion
to plus two billion range. If you need or want the exact limits, they are
given by Integer.MIN_VALUE and Integer.MAX_VALUE.

Integers are usually written in decimal, using an optional sign and the
digits 0 to 9.

Advanced Java ▪ 105

An octal number is any number whose first digit is a 0. It may have an
optional sign and the digits 0 to 7. For example, the number written as
0123 is the same as the decimal 83.

A hex or hexadecimal number begins with an optional sign and either
0x or 0X, followed by the digits 0 to 9 and A to F (or a to f).

To improve the readability of long numbers (decimal, octal, or hex), you
can put underscores in the number, but only between digits:
1_000_000_000. These underscores are ignored.

To convert a String to an int:

• Integer.parseInt(string) — The string may begin with a plus or
minus, but all remaining characters must be digits. In particular,
underscores are not allowed.

• Integer.parseInt(string, radix) — Same as above, but the
string need not represent a decimal number. The radix may be any
integer between 2 and 36.

There are a number of ways to convert an integer intValue to a String:

• The easiest way is to “add” an empty string to it: intValue + "".

• Integer.toString(intValue) — Returns a string representation of
a decimal number; a negative number will begin with a minus sign.

• Integer.toBinaryString(intValue) — Returns a string repre-
sentation of an unsigned binary number.

• Integer.toOctalString(intValue) — Returns a string repre-
sentation of an unsigned octal number.

• Integer.toHexString(intValue) — Returns a string representa-
tion of an unsigned hexadecimal number.

• Integer.toString(intValue, radix) — Returns a string repre-
sentation of a number in the given radix, with a minus
sign if intValue is negative. Characters used as digits are
0123456789abcdefghijklmnopqrstuvwxyz.

106 ▪ Quick Java

5.2.2.3 Doubles
A double is a 64-bit “real” (floating point) number, with an optional
exponent. As with integers, a double value may contain underscores, but
only between digits. The wrapper class for a double is Double.

Some useful static values from the java.lang.Double class are:

• Double.MIN_VALUE — the smallest number that can be represented
as a double.

• Double.MAX_VALUE — the largest number that can be represented
as a double.

• Double.MIN_EXPONENT — the smallest allowable (negative)
exponent.

• Double.MAX_EXPONENT — the largest allowable exponent.

• Double.NEGATIVE_INFINITY — the result of dividing a negative
number by zero.

• Double.POSITIVE_INFINITY — the result of dividing a positive
number by zero.

• Double.NaN (Not A Number) — the result of dividing zero by zero,
or several other meaningless operations. This is the only value that is
not equal to itself. To test for it, you can use Double.isNaN(value).

The method Double.parseDouble(string) will convert a string repre-
senting a double number into an actual double. The string may contain
leading and trailing whitespace, but not underscores.

5.2.2.4 Characters and Unicode
A character encoding is an agreed-upon mapping between characters
and integers: 'A' is 65, 'B' is 66, and so on. Java uses Unicode internally,
specifically UTF-16. Unicode is complicated, and a bit of history might
help to make sense of it.

One of the earliest character encodings was ASCII, American Standard
Code for Information Interchange. It used one byte per character. A byte
is eight bits, but ASCII used only 7 of them because it was based on a

Advanced Java ▪ 107

seven-bit teleprinter code. Seven bits was enough to represent 128
characters, which seemed like enough at the time.

Unfortunately, that left one bit free, and if that extra bit were set to 1 rather
than 0, another 128 characters could be added: dashes, “smart quotes,”
French characters, and so on. So every manufacturer did so, and did it
differently, with the result that, say, smart quotes on a Windows machine
came out as garbage characters on the Macintosh, and vice versa. You still
see the occasional garbage character today, from people who unknowingly
use some platform-specific encoding for non-ASCII characters.

Today, almost everything uses Unicode, which is adequate for most of
the languages of the world. Unicode includes mathematical symbols,
arrows, traffic signs, emojis, and more.

When Java adopted Unicode, Unicode used two bytes, 16 bits, per char-
acter. The ASCII character set is a subset of Unicode—'A' is still 65, and
so on. This allowed for 65536 characters, which was enough until Chinese,
Japanese, Arabic, and a few other languages were added to the mix.

Terminology: In Java, a code point is a numerical encoding of a
Unicode character that can fit in two bytes; that is, '\u0000' to
'\uFFFF'. A supplementary character is one that requires more
than two bytes. Java can handle supplementary characters, after a
fashion, but most of the methods in the Character class can
only work with code points.

Internally, Java represents strings using single-byte characters when it can,
two-byte characters when it must, and more bytes when it has no other
choice. Fortunately, it does a good job of hiding this complexity from the
programmer. Character methods that take a “code point” as an argument
take either an “ordinary” character or a number less than 65536.

A char is a primitive type, so it cannot be treated like an object. To make
up for this lack, the java.lang package contains a Character class
with many static methods. These include Character.isX(char), where
isX is one of isDigit, isLetter, isLetterOrDigit, isLowerCase,

108 ▪ Quick Java

isUpperCase, and isWhitespace. Each of these methods can take either a
character or an integer as an argument.

Besides the static methods in the Character class that do things like test
if a character is a digit, or test if a character is a letter in some language,
there are two of some interest:

• Character.getName(n) — Returns the name of the Unicode char-
acter whose integer value is n. For example, Character.getName
('é') returns the string "LATIN SMALL LETTER E WITH ACUTE".

• Character.codePointOf(string) — Returns the numeric value of
the character whose Unicode name is string. For example, given the
string "LATIN SMALL LETTER E WITH ACUTE", the return value is
233, that is, (int)'é'.

5.2.2.5 Booleans
Booleans are simple. There are only two boolean values, true and false.
The static method Boolean.toString(boolean) will return one of the
two strings "true" or "false".

If you have been programming in a language that allows integers to stand
in for booleans (for example, using 0 to mean “false”), that doesn’t work
in Java.

There is a method Boolean.parseBoolean(string), but it is equivalent
to the simpler string.equals("true").

5.2.2.6 Other Primitives
Here are the other four primitive types:

• A long is a 64-bit integer that can be up to about nineteen digits
(about plus or minus nine quintillion). To write a literal long value,
suffix it with L. Numbers with this many digits are best written with
underscores; for example, 146_603_833_310_800L.

• A short is a 16-bit integer in the range -32_768 to 32_767.

• A byte is an 8-bit integer in the range -128 to 127.

Advanced Java ▪ 109

• A float is a 32-bit “real” (floating point) number with only about 8
digits of accuracy and a much smaller range of values.

These additional primitive types exist for the purpose of saving storage
or, in the case of long, for dealing with very large integers.

Note: For integer values too large even for long variables, there
is a java.math.BigInteger class; see section 10.5 for an ex-
ample that uses this class.

Numeric types are ordered from “wider” to “narrower”: double, float,
long, int, char, short, byte. A value of one type can be assigned to a
variable of a wider type: floats to doubles, and so on.

A value of one type may not “fit” into a variable a narrower type; bits
could be lost. To ensure that the programmer really means to make this
assignment, Java requires an explicit cast. Casting does not prevent er-
rors, it just allows a questionable assignment. For example, the cast
(byte)250 is legal, and results in the value -6.

Most arithmetic on short or byte values is done by first promoting the
values to int values, so the result is an int value that must be downcast
to the proper type. For example, if sh is of type short, then instead of

sh = sh + 1;

you would need to say

sh = (short)(sh + 1);

The shorthand forms op= that combine arithmetic with assignment
avoid the need for a cast. This is legal:

sh += 1;

5.2.2.7 Arrays
Arrays are objects, and they have a length field, but most of the methods
on arrays are just those inherited from Object. However, the class
java.util.Arrays provides a number of useful static methods.

110 ▪ Quick Java

• Arrays.toString(array)— Returns a string representation of the
array. The array may be of any type.

• Arrays.deepToString(array)— Returns a string representation
of the array. The array must be an array of objects. This is the
method to use for multidimensional arrays.

• Arrays.sort(array)—Sorts the array in ascending order, and
returns void. The array may be of any primitive type except
boolean, or any object type that implements Comparable. (A large
number of Java-supplied objects do implement Comparable).

• Arrays.binarySearch(array, key)— Searches the sorted array
for the key and returns the index at which it is found. If the key
isn’t found, the method returns the negative index -p-1, where p is
the position that the key would be, if it were in the array. The array
may be numeric or any object type that implements Comparable,
but it may not be a boolean array.

• Arrays.equal(array1, array2)— Tests whether two arrays of the
same type are equal to each other. Arrays of objects are compared
using that object’s equals method.

As noted earlier, an interface is a list of methods that a class can choose
to implement.

The Comparable interface requires one method, compareTo(Type obj),
where Type is the name of the class in which it is implemented. For
example, if the Person class implements the Comparable interface, it
must provide a method compareTo(Person obj). The result returned by
this method should be negative, zero, or positive according to whether
this object is less than, equal to, or greater than obj.

If comparing on some numeric attribute of the objects (say, a person’s
age), the compareTo method can simply return this.age - obj.age.

5.2.2.8 Strings
Strings are objects. There are about fifteen constructors for strings, but
the usual way to make a string is just to put some characters between

Advanced Java ▪ 111

double quotes. Once this is done, you can send messages to the string in
the usual way.

For example, if s is a string, you can ask how many characters it has by
saying s.length(). You can get an uppercase version of it by asking
s.toUpperCase(). You can ask if it contains “Java” as a substring by
asking s.contains("Java"). And so on, and so on.

It is useful to remember that strings are immutable objects. There is no
message you can send to a string that will change the characters of that
string. Methods like toUpperCase return a new string, but leave the
original string untouched.

Strings have an equals method that you can and should use when
comparing strings. If s and t are strings, you can ask s.equals(t) and get
the results you expect. But there are two potential traps.

Trap #1. You can’t send a message to a null object. If s is null,
s.equals(t) will result in an error. But if t is null and s isn’t,
the method correctly returns false. Therefore, if you are com-
paring a String variable to a literal string, it’s better to send the
equals message to the literal string, and make the variable an
argument.

Strings are immutable, so if you write the same string in several places in
the program, it only needs to be stored once. Java works hard to intern
identical strings, making only one copy of that string.

Trap #2. Because strings are interned, the test s == t (which for
objects is a test of identity rather than equality) almost always
works. Sometimes Java’s interning strategy fails, and this test
will report false for equal strings. Therefore, don’t use == for
strings.

5.2.2.9 Multiline Strings
A text block, also known as a multiline string, is a special syntax for
writing a string literal. It first appeared in Java 13. Here is an example:

112 ▪ Quick Java

System.out.println("1234567");
String textBlock = """

First line
Middle line

Last line
""";

System.out.println(textBlock);

This example will print:

1234567
First line

Middle line
Last line

Whitespace is important in determining how a text block is printed. The
first statement, which prints 1234567, is just to show in what columns
the following lines begin.

• The text block begins with three double quotes. These double
quotes must be the last things on that line.

• The lines keep their relative indentation. In this example, the first
and last lines are indented four spaces relative to the middle line.

• The indentation of the leftmost line (in this example, the middle
line), is determined by the position of the closing triple double
quotes.

• If the leftmost line in the text is indented more than the closing
quotes, it will be indented that much in the string. In this ex-
ample, the middle line starts two spaces over from the closing
quotes, so it will have two spaces in front of it.

• If the closing quotes are indented at least as much as the leftmost
line, or if they are on the same line as the last line of text, then
the leftmost line will not begin with spaces.

5.2.2.10 Formatter
Sometimes you want more control over printing than System.out.print
and System.out.println give you. For example, you might wish to print

Advanced Java ▪ 113

numbers in neat columns. The java.util.Formatter class gives you this
extra control.

The basic use of a Formatter is as follows:

Formatter f = new Formatter();
f.format(formatString, value, …, value);
System.out.print(f);
f.close();

In this code,

1. The first line creates a new Formatter object, which is used to
build up a string, and saves it in variable f.

2. In the second line, the formatString is expected to contain format
specifiers (see below). The values are substituted into the
formatString according to its format specifiers, then the resultant
string is added to the Formatter object f.

3. The third line calls the formatter’s toString() method and prints
the result.

4. The last line releases the resources associated with the formatter.

Here’s an example:

Formatter f = new Formatter();
f.format("The value of %s is %7.4f", "pi", Math.PI);
f.format(" and %s is %6.4f.", "e", Math.E);
System.out.println(f);
f.close();

This will print out:

The value of pi is 3.1416 and e is 2.7183.

In the above example, "pi" is substituted for the %s and the value of
Math.PI for the %7.4f; the number occupies 7 character positions, 4 of

114 ▪ Quick Java

them after the decimal point. The next statement does almost the same
thing for Math.E, but only leaves room for 6 characters.

A Formatter accumulates all the strings sent to its format method, and
has a toString method that can be used by print and println state-
ments. It should be closed when you are done with it.

If you want to format and print a single string, the printf method will
do that:

System.out.printf(formatString, value, … , value);

A format specifier has the following syntax (illegal spaces added for
clarity):

% index$ flags width conversion

The optional index$ lets you choose which value (counting from 1, not
0) to put in this place. For example, the format code %2$s says to put the
second value in this place, as a string.

The optional width is the number of character positions to use. For
floating point numbers, replace width with totalWidth.fractionWidth to
specify the total number of character positions to use and the number of
digits after the decimal point.

Here are the available flags (which are optional):

'-' left justification

'#' alternate format (for octal and hex numbers)

'0' pad with zeros instead of spaces

' ' (A space character) to add a leading space to a positive number

'+' positive numbers are preceded by a plus sign

Advanced Java ▪ 115

',' numbers include grouping separators

'(' negative numbers are enclosed in parentheses

and a few of the possible conversions (one of which must be present):

%b boolean

%c character

%d integer

%e scientific notation

%f floating point

%s string

%tc complete date and time

%n a newline on this platform

%% the character %

There is a great deal more to the Formatter class than this. In particular,
there are more than 30 conversions specified for dates and times.

5.2.2.11 Regular Expressions
A regular expression describes a pattern that describes some number of
strings. For example, the regular expression c[aou]t describes the three
words “cat,” “cot,” and “cut.” Regular expressions can be used to test,
search, and manipulate strings.

Regular expressions are highly standardized and are available in many
programming languages. If you are familiar with regular expressions, this
section will tell you how to use them in Java; but if not, you can still use
the following methods with strings that do not contain punctuation.

Java has a java.util.regex.Pattern class, but several methods in the
String class take a properly formatted string (written below as regex)
and treat it as if it were a regular expression. These methods are:

116 ▪ Quick Java

• string.matches(regex)—Tests whether this string matches the
regex pattern.

• string.replaceFirst(regex, replacement)—Returns a string in
which the first substring that matches regex has been replaced by
replacement.

• string.replaceAll(regex, replacement)—Returns a string in which
every substring that matches regex has been replaced by replacement.

• string.split(regex)—Strings matched by regex act as separators;
the substrings thus separated are returned in an array.

• string.split(regex, limit)— Returns an array of not more than
limit matching substrings.

You can use these methods without knowing the syntax of regular ex-
pressions. All you need to remember is that many punctuation marks
have special meanings in regular expressions, but letters, digits, and
spaces do not. So any regex composed only of letters, digits, and spaces
stands for itself.

Unfortunately, Java strings use a backslash to escape certain characters,
such as \n for newline, while regular expressions use a backslash for
certain character classes, such as \d for a digit. This makes regular ex-
pressions somewhat hard to write in Java.

To put a backslash into a string in Java, you need to double it: \\. Thus,
to insert the two characters "\d" into a Java string, you must type the
three characters "\\d". Other character classes can be handled similarly.

5.2.3 Collections
Java provides a large number of collection types, including sets, lists,
maps, stacks, queues, and deques. These types all implement the
java.util.Collection interface. This is a great help in learning to use
these types because it means they all have many of the same methods.

Note: Although arrays are undeniably collections, they predate
the Collection interface and do not implement it.

Advanced Java ▪ 117

Only objects, not “primitives” (numbers, characters, and booleans) can
be put into a collection.

Using these collections is slightly more complex than it might appear.
Many of the Collection types, including Set, List, Map, Queue, and Deque,
are themselves interfaces, not classes. This means that you can declare
a variable of that type, but you cannot create one; you can only create an
object of an implementing class. Thus you will often see code such as

Set<Item> items = new HashSet<>();

The above code declares items to be a Set, with all the Set operations, but
not any operations unique to HashSet. If at some later point another
implementation is desired, such as TreeSet, then the implementation may
be changed without any harm to the code that uses the items variable.

Stack, Vector, and PriorityQueue also implement the Collection
interface, but they are classes, so objects of these types may be created
directly.

Here is a very brief summary of some of the Collection types, along
with a typical implementing class.

• Set, HashSet — a collection of values with no duplicates, in no
particular order.

• List, ArrayList — an ordered sequence of values, possibly with
duplications.

• Map, HashMap — a mapping of keys to values.

• Stack — a last in, last out data structure.

• Queue, LinkedList — a first in, last out data structure.

• PriorityQueue — a “least” (highest priority) value out first.

• Deque, ArrayDeque — values may be inserted and deleted at ei-
ther end.

• Vector — a resizable, array-based sequence of values.

118 ▪ Quick Java

Here are some of the methods listed in the Collection interface, and
therefore available to all objects of the above types: add(object), addAll
(collection), remove(object), removeAll(collection), clear(), con-
tains(object), equals(object), size(), and toArray().

5.2.3.1 Iterators
An iterable object is any object that can be stepped through. All of Java’s
collection types are iterable objects. This includes various kinds of lists
and sets but does not include arrays.

An iterator is an object that can step through an iterable object, pro-
viding the elements of that object one at a time. Iterators can only be
used once; they cannot be reset to start over.

Java has three kinds of iterators.

• Enumeration is outdated and will not be discussed here. Use
Iterator instead.

• Iterator is an interface that can be used with any kind of col-
lection. It provides the methods next(), hasNext(), and
remove().

• ListIterator is an interface for various types of lists. It supports
traversing a list both forward and backward, as well as adding,
removing, or modifying list elements.

Iterators are not thread safe (see section 9.2).

The method c.iterator() will return an iterator for a collection c. The
c.hasNext() method will return true if c has any remaining elements,
and if it does, c.next() can be used to return the next value.

List list = new LinkedList();
list.add("one");
list.add("two");
list.add("three");
Iterator iter = list.iterator();

Advanced Java ▪ 119

while (iter.hasNext()) {
System.out.println(iter.next());

}

The method c.remove() will remove the last element returned by next
from the collection. Not all collection types allow this operation.

5.2.4 Additional Operators
With the exception of the instanceof operator, Java’s operators are one,
two, or three non-alphabetic characters.

5.2.4.1 instanceof
The instanceof operator tests whether a given object can be cast to a
given type, but it’s up to the programmer to actually perform the cast:

if (obj instanceof String) {
String s = (String)obj;
… use s …

}

Since Java 14, these can now be combined:

if (obj instanceof String s) {
… use s …

}

5.2.4.2 The Ternary Operator
Java has a ternary operator, which is like an if-then-else for expressions
rather than for statements. That is, it can be used as an expression or as
part of an expression.

The syntax is:

booleanExpression ? valueIfTrue: valueIfFalse

For example:

larger = a > b ? a: b;

120 ▪ Quick Java

or even

String s = "n is " + (n % 2 == 0 ? "even": "odd");

The valueIfTrue and valueIfFalse do not need to be the same type, but
either type must be legal in the context.

Ternary expressions can be nested, but parentheses should be used to
make the nesting easier to read.

5.2.4.3 Bit and Shift Operators
Any of the integer types may be treated as a sequence of bits. If i and j are
integer values, then the following operations are provided:

• ~i — inverts every bit of i, that is, changes every 0 to a 1 and every 1
to a 0. Numerically, this is the equivalent of -i - 1.

• i & j — “ands” the corresponding bits together. Each resultant bit is
1 if and only if both bits are 1.

• i | j — “ors” the corresponding bits together. Each resultant bit is 0
if and only if both bits are 0.

• i ^ j — “exclusive ors” the corresponding bits together. Each
resultant bit is 1 if and only if the two bits are different.

• i << j — shifts the bits of i to the left j places. Numerically, this is
the equivalent of i * 2j.

• i >> j — shifts the bits of i to the right j places, with the leftmost bit
(the sign bit) duplicated. Numerically, this is the equivalent of i / 2j.

• i >>> j — shifts the bits of i to the right j places, with zeros coming
to the left.

The shorter integer types are converted to 32-bit integers before the
above operations are performed, so the result is always an int value.

5.2.4.4 Increment and Decrement Operators
The increment operator, ++, adds one to a variable. It can be used as either
a prefix operator or a postfix operator, that is, either as ++x or as x++.

Advanced Java ▪ 121

The decrement operator, --, subtracts one from a variable, and can also
be used as a prefix or postfix operator.

Used as a standalone statement, or as the increment (or decrement) part
of a for loop, the prefix and postfix versions do the same thing. They
behave differently when used as part of an expression.

The prefix versions add or subtract one to the variable before using it in
an expression. The postfix versions add or subtract one to the variable
after using it in an expression. This can get very confusing; the statement

x = x++;

leaves x unchanged. Don’t use these operators in an expression without
good reason.

5.3 THE OUTER LANGUAGE
In the earliest versions of Java, there was just one kind of class, the “top
level” class that we have been discussing up to now. Modern Java has
additional class types: enums, records, final classes, sealed classes, abstract
classes, and four different kinds of inner classes. In addition, modules give
an even higher level of organization to classes than just packages.

5.3.1 Generic Classes
A generic or parameterized class is one which takes one or more type
parameters enclosed in angle brackets, < >. Within the class, a type var-
iable may be used almost anywhere a type name would otherwise be used.

In section 3.4.1.5 we discussed the use of a generic class, the Stack.
Generic classes were introduced in Java 5, and a number of pre-existing
classes (Stack, ArrayList, HashMap, etc.) were parameterized. For
backward compatibility, you can create and use objects of a parameter-
ized class without type parameters, but the compiler will produce
warning messages.

To define your own generic class, use the syntax:

class ClassName<TypeVariable, … , TypeVariable> { … }

122 ▪ Quick Java

A type variable is like an ordinary variable, except that it holds a type
rather than a value. Type variables are usually written as single capital
letters. Within the class definition, the type variables can be used in
almost any place where ordinary type names can be used.

Here’s an example of a genericized class:

import java.util.*;

public class Box<T> {
private List<T> contents;

public Box() {
contents = new ArrayList<T>();

}

public void add(T thing) {
contents.add(thing);

}
public T grab() {

if (contents.size() > 0) {
return contents.remove(0);
}
else return null;

}
}

Now you can create a Box that can hold only a specific type of object, for
example, a String.

Box<String> box = new Box<String>();

You can use a type variable, such as T above, almost anywhere you can
use the name of a type. But there are a few exceptions:

• You cannot declare static variables of a type variable: static T thing;

• You cannot return a type variable from a static method:
static T getValue() { return someT;}

Advanced Java ▪ 123

• You can declare, but not instantiate, an array of a type variable:
T[] values = new T[10];

• You cannot create a generic array:
Box<T> boxes[] = new Box<T>[10];

• A generic class cannot extend (be a subclass of) Throwable.

The above code defines box to be a box of strings, so if you call box.grab
(), you know you are going to get a string (or maybe null). But within
the Box class T could be any type of object, so you can only use the
methods and fields defined in the Object class. If you need more than
this, you can use bounded type parameters.

The syntax <T extends A> “bounds” the type of T. It specifies that type
T must be either class A itself, or a subclass of A, or a class that
implements interface A. For example, you might say <T extends
Comparable>, and this would allow you to use the compareTo method of
the Comparable interface on objects of type T.

Another legal syntax is <T extends A & B & C>, where A is the name of a
class or interface, and the additional names are names of interfaces.

Generics do not exist in the compiled code. If you declare and use a
variable of type Box<String> and another variable of type Box<Double>,
these will be compiled separately.

5.3.2 Interfaces II
An interface is a list of abstract methods—methods that have a header,
but no body. Any class that implements the interface must supply
complete methods, with the same header (parameter names may be
different) and a body.

An interface, like a class, defines the name of a type. Variables of that
type can hold any object of a class that implements that type. For
example,

List<String> names = new ArrayList<String>();

124 ▪ Quick Java

In this example, List is an interface, so you cannot create objects of type
List; but ArrayList is a class that implements List, so you can create
objects of this type. Now you can use the methods specified in the List
interface (add, remove, contains, etc.) with names. If you later decide
that names should be a Stack (a class that also implements List), you
can change the declaration to

List<String> names = new Stack<String>();

and no other changes in the code are required (except possibly for what
you need to import).

Note: Interfaces may also contain non-abstract static and
default methods. Default methods can be used as is, or can be
overridden in an implementing class. These features are not
covered in this book.

In section 5.3.1 we defined a Box class with add and grab methods. We
might later decide to write an unrelated Shelf class that also has these
two methods, and then a Cabinet class, also with add and grab methods.
Each of these classes might store its contents in a completely different
way, possibly in a list or a two-dimensional array. The classes may also
have different data and additional, unique methods.

We can write a generic interface, which we’ll call Storage, to specify the
methods these classes must provide.

interface Storage<T> {
public void add(T thing); // no body
public T grab(); // no body

}

Now each of these classes can implement the new interface, with its own
versions of the add and grab methods.

class Box<T> implements Storage<T> { … }
class Shelf<T> implements Storage<T> { … }
class Cabinet<T> implements Storage<T> { … }

Advanced Java ▪ 125

What this gives us is the ability to write methods that take a Storage
parameter as an argument and use that parameter’s add and grab
methods. The interface name Storage can be used just as if it were the
name of a superclass.

void method rearrange(Storage<T> storage) {
// code that uses add and grab

}

Because rearrange works for any class that implements Storage, we
don’t have to write separate rearrange methods for each of the three
classes Box, Shelf, and Cabinet.

The syntax for defining an interface is:

accessType interface Name { … }

where the accessType must be either public or unspecified (“package”).

An interface may contain constants (final variables). All variables
declared within an interface are automatically public, static, and final,
and must be assigned a value. The keywords public, static, and final
can be used but would be redundant. In the same way, the methods in an
interface may (redundantly) be declared with the abstract specifier.

In some interfaces, such as the Collection interface, you will find
methods that are listed as “optional.” This does not mean that an im-
plementing class can omit these methods. Rather, it is a suggestion that the
provided method can just throw an UnsupportedOperationException.

5.3.3 Abstract Classes
Suppose we want to write a method clear() to remove everything from
a Box object. We might write:

public void clear() {
T thing;
do {

thing = grab();
} while (thing != null);

}

126 ▪ Quick Java

This could go in the Box class, but what if we want to use it for other
Storage types? If we put it in the Box class, then it only works for Box
objects. We certainly don’t want to put identical copies of this method in
all the classes that can use it.

One solution is to change the Storage interface into an abstract class.

abstract class Storage<T> {
public abstract void add(T thing); // no body
public abstract T grab(); // no body
public void clear() {

T thing;
do {

thing = grab();
} while (thing != null);

}
}

An abstract class is one that may contain abstract methods, each of which
must be marked with the keyword abstract. An abstract class is an
intermediate between a class (in which all methods are fully defined) and
an interface (in which no methods are fully defined).

With this change the Box, Shelf, and Cabinet classes no longer
implement the interface Storage, they extend the abstract class Storage.

class Box<T> extends Storage<T> { … }
class Shelf<T> extends Storage<T> { … }
class Cabinet<T> extends Storage<T> { … }

Because abstract classes are “incomplete” (they are missing some method
implementations), you cannot create objects directly from such classes.
Abstract classes exist in order to be subclassed, and the subclasses can
provide the missing method definitions.

To prevent a class from being instantiated directly, but only through
subclasses, a class may be declared abstract even if it doesn’t contain any
abstract methods.

Advanced Java ▪ 127

5.3.4 Final and Sealed Classes
As noted earlier, a variable may be final, meaning that its value cannot
be changed. Similarly, a final method cannot be overridden in any
subclass, while a final class cannot be subclassed.

public final class Human {
final String species = "Homo sapiens";
final String getSpecies() {

return species;
}
// other methods …

}

Interfaces cannot be final, since the whole point of an interface is to
allow classes to implement it.

Starting with Java 16, a class may be sealed, which means that the class
definition specifies exactly which subclasses it has. (A class with no
subclasses cannot be sealed, but it can be final.)

public sealed class Thing
permits Animal, Vegetable, Mineral { … }

The three subclasses must be in the same package or module as the
Thing class. As a convenience, if all the subclasses are in the same file as
the sealed class, then the permits clause can be omitted.

All subclasses of a sealed class must be either final, sealed, or non-
sealed. A final class cannot have subclasses; a sealed class must have
exactly the subclasses listed; and a non-sealed class may or may not
have subclasses.

final class Animal extends Thing { … }

sealed class Vegetable extends Thing
permits Carrot { … }

final class Carrot extends Vegetable { … }

non-sealed class Mineral extends Thing { … }
class Quartz extends Mineral { … }

128 ▪ Quick Java

Interfaces may also be sealed; the permits clause lists the classes that are
permitted to implement it. Interfaces may be implemented by classes and
records, or extended by other classes. Aside from replacing the word class
with the word interface, the syntax and requirements are the same.

5.3.5 Inner Classes
Originally, all classes in Java were “top-level” classes, that is, not defined
within another class. Java has since acquired four types of inner classes—
member, static member, local inner, and anonymous inner.

5.3.5.1 Member Classes
A member class is one that is defined within another class, as a com-
ponent of that class. It may have the same access modifiers as variables
(public, protected, package, static, final). Aside from its location,
which makes it local to the enclosing class, a member class can be used
just like a top-level class.

Variables and methods defined in a class are available throughout that
class. This is still the case inside the inner class; the code of a member
class has full access to the variables and methods of the containing class.

public class OuterClass {
int outerVariable = 0;
public OuterClass(int number) { // constructor

outerVariable = number;
}

class MemberClass {
int innerVariable = 20;

int getSum(int parameter) {
return outerVariable + innerVariable +

parameter;
}

}

public static void main(String[] args) {
OuterClass outer = new OuterClass(100);
MemberClass inner = outer.new MemberClass();
System.out.println(inner.getSum(3));

Advanced Java ▪ 129

outer.run();
}
void run() {
MemberClass localInner = new MemberClass();
System.out.println(localInner.getSum(4));
}

}

When the main method runs, the results will be 123 and 124.

5.3.5.2 Static Member Classes
A static member class is defined like a member class but with the key-
word static. Despite its position inside another class, a static member
class is actually an “outer” class—it has no special access to names in its
containing class.

To refer to the static inner class from a class outside the containing class,
use the syntax OuterClassName.InnerClassName.

A static member class may contain static fields and methods.

public class OuterClass {
int outerVariable = 100;
static int staticOuterVariable = 200;

static class StaticMemberClass {
int innerVariable = 20;

int getSum(int parameter) {
// Cannot access outerVariable here
return innerVariable +

staticOuterVariable + parameter;
}

}

public static void main(String[] args) {
OuterClass outer = new OuterClass();
StaticMemberClass inner =

new StaticMemberClass();
System.out.println(inner.getSum(3));

130 ▪ Quick Java

outer.run();
}
void run() {

StaticMemberClass localInner =
new StaticMemberClass();
System.out.println(localInner.getSum(5));

}
}

When the main method runs, the results will be 223 and 225.

5.3.5.3 Local Inner Classes
A local inner class is defined within a method, and the usual scope rules
apply to it. It is only accessible within that method, therefore access
restrictions (public, protected, package) do not apply. However,
because objects (and their methods) created from this class may persist
after the method returns, a local inner class is not allowed to use
parameters or non-final local variables of the method.

public class OuterClass {
int outerVariable = 10000;
static int staticOuterVariable = 2000;

public static void main(String[] args) {
OuterClass outer = new OuterClass();
System.out.println(outer.run());

}
Object run() {

int localVariable = 666;
final int finalLocalVariable = 300;

class LocalClass {
int innerVariable = 40;

int getSum(int parameter) {
// Cannot access localVariable here
return outerVariable +

staticOuterVariable +
finalLocalVariable +
innerVariable + parameter;

}

Advanced Java ▪ 131

@Override
public String toString() {

return "I'm an instance of LocalClass";
}

}

LocalClass local = new LocalClass();
System.out.println(local.getSum(5));
return local;

}
}

When the main method runs, the results will be 12345 (printed from the
run method) and "I'm an instance of LocalClass" (printed from the
main method).

5.3.5.4 Anonymous Inner Classes
An anonymous inner class is one that is declared and used to create
exactly one object (typically as a parameter to a method), all within a
single statement.

An anonymous inner class may extend a class:

new SuperClass(parameters) { class body }

Here, SuperClass is not the name of the class being defined (that class
has no name), but rather the name of the class being extended. The
parameters are the parameters to a constructor for that superclass.

Alternatively, an anonymous inner class may implement an interface:

new Interface() { interface body }

Inner classes are frequently used as event listeners. The example below
uses an anonymous inner class (ActionListener) as a button listener.

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.*;

132 ▪ Quick Java

public class OuterClass extends JFrame {

public static void main(String[] args) {
OuterClass outer = new OuterClass();
JButton button =

new JButton("Don't click me!");
button.addActionListener(

new ActionListener() {
public void actionPerformed(

ActionEvent event) {
System.out.println("Ouch!");

}
});
outer.add(button);
outer.pack();
outer.setVisible(true);

}
}

Because anonymous inner classes occur within a method, they break up
the flow and add several lines to the method. Consequently, the actual
code within an anonymous inner class should be kept very short.

5.3.6 Enums
An enum (enumeration) is a kind of class. It has a superclass, Enum, from
which it inherits some methods. An enum has all the features of an
“ordinary” class (fields, constructors, methods, etc.), except that an enum
has a fixed, finite number of instances (objects) of the class, defined directly
within the class itself. In other words, when you define an enum, you also
define all its possible values, and you cannot later create additional values.

An enum is appropriate when you need a variable that represents one of a
fixed set of values—for example, the months of a year. They provide type
safety: You cannot, for instance, assign a Coin value to a Month variable.

The simplest form of enum consists of a list of constants, each of which is
one of the values of the enum. For example,

enum Weekday { SUN, MON, TUE, WED, THU, FRI, SAT }

Advanced Java ▪ 133

This example defines the type Weekday and seven instances (values) of
that type. Each of these is a unique constant. Because they are unique, it
is okay to compare them with == as well as with the equals method.

In the Weekday example, each of the instances (SUN, MON, etc.) has been
created by (implicitly) calling the default Weekday constructor. As with
any class, you can write your own constructors; however, (1) those
constructors will be private, and (2) you call them, not by saying new, but
by giving the instance name followed by a parameter list. For example,

public enum Coin {
private final int value;
PENNY(1), NICKEL(5), DIME(10), QUARTER(25);
Coin(int value) { this.value = value; }
public int value() { return value; }

}

In the above,

• value is a field. It is a constant, but it can be a different constant for
each instance of the enum.

• PENNY(1), NICKEL(5), and so on, are constants, created by calls to
the constructor. They must precede constructors and methods in
the enum.

• Coin(int value) is a private constructor that assigns a number to
the value field.

• value() is an ordinary method.

Some inherited methods you can use with enumerations are:

• boolean equals(Object obj) tests if this enum object is equal
to obj.

• String toString() returns the printable name of this object, for
example, "PENNY".

• int ordinal() returns the position of this object in the enu-
meration (starting from 0).

134 ▪ Quick Java

• static EnumType valueOf(String name) returns the object
whose printable name is name.

• static EnumType[] values() returns an array of all instances of
this EnumType.

5.3.7 Records
A record is a kind of class, available in Java since version 14. The purpose
is to encapsulate a small amount of constant data in a full-featured class.
As an example,

record Range(int min, int max) { }

The above is a complete record declaration; you don’t need to put
anything inside the braces (although you may if you wish).

For this declaration, the compiler will generate a complete class with:

• Two private final int fields named min and max,

• A constructor with min and max as parameters,

• The getter methods min() and max(), and

• The methods equals(object), hashCode(), and toString().

You can replace the default constructor with your own, using the usual
syntax for constructors. Another option is to write a compact constructor.

public Range {
assert min <= max;

}

A compact constructor gets its parameters from the record declaration,
and automatically saves them as private final fields.

You can override any or all of the generated methods with your own, so
long as they have the same signature. You can also add fields, initializers,
and methods, but they must all be static.

Records may be inner classes or local to a method.

Advanced Java ▪ 135

5.3.8 Serialization
A serializable object is one that can be converted to a sequence of bytes,
usually so that it can be written to a file. To read it again, it has to be
deserialized. This allows objects to be stored on a file for future use.

In order for an object to be serializable,

• It must implement the java.io.Serializable interface. This is a
marker interface—one that doesn’t list any methods, so none have
to be defined in order to implement it.

• Every field of the object must be either serializable or transient (see
below).

• Strings, arrays, and “wrapped” primitives are all serializable, as
are many Java-supplied objects such as HashMap. Check the Java
documentation if you are unsure.

• A field of the object is considered serializable if it is an object
that has an accessible no-argument constructor to initialize its
fields when it is deserialized.

• To keep a field from being serialized, mark it as transient. This
is useful to keep sensitive information from being stored or sent
across a network. It is also sometimes used for fields whose value
is derived from other fields. Upon deserialization, transient fields
are given a default value.

Here’s the basic approach to writing out an object.

FileOutputStream file = new FileOutputStream(pathToFile);
ObjectOutputStream stream = new ObjectOutputStream(file);
stream.writeObject(object);

To read in a serialized object, the exact same classes used by the object
must be present. Here’s the basic approach to reading in an object.

FileInputStream file = new FileInputStream(pathToFile);
ObjectInputStream stream = new ObjectInputStream(file);
object = (type) stream.readObject();

136 ▪ Quick Java

These methods can throw an IOException or a ClassNotFoundException,
so these must be handled, and the stream and file should be closed
after use.

If the definitions of the relevant classes change after serialization, the
deserialized results can be incorrect. To ensure consistency, the serial-
izable class should have a version number associated with it.

access static final long serialVersionUID = longValue;

5.3.9 Modules
A package is a collection of related classes. A very large program,
however, may consist of hundreds of packages. To make a class in one
package available to a class in another package, it had to be made
public, which makes it available everywhere. This isn’t generally
desirable.

Java 9 introduced modules, which provide additional restrictions on
visibility. A module is a directory containing any number of packages,
along with a top-level file named module-info.java. This file contains
the text:

module moduleName {
directives

}

where the moduleName must be unique, may not contain underscores,
and usually has the same name as the directory it is in.

When packages are in a module, the keyword public makes an element
available to other packages in the same module, not everywhere.

To use a package in one module from a package in a different module,
the first module must export the package, and the second must require
the package. For example, a directory named giveModule may contain
packages src/com/xyz/giver and src/com/xyz/secret, along with
this module-info.java file:

Advanced Java ▪ 137

module giveModule {
exports com.xyz.giver;
exports com.xyz.secret to takeModule;

}

This specifies that the giver package can be used by anyone that requires
it, while only the takeModule module can require the package secret.

Note: Windows uses backslashes rather than forward slashes to
indicate directory structure, while Java uses dots.

In this example, the directory containing the taker package also con-
tains this module-info.java file:

module takeModule {
requires transitive giveModule;

}

The optional word transitive implies that any module which requires
takeModule will also have access to giveModule.

Modules may not have circular dependencies. If module A requires
module B, module B cannot require module A.

All the Java-supplied packages have been organized into about 100 modules,
and every module declaration automatically requires java.base.
The java.base module consists of 32 packages, including java.lang,
java.util, java.io, and java.math.

5.3.10 Build Tools
Java programs must be compiled (turned into byte code) before they can
be executed. The javac file command will compile a single file (which
must have the.java extension) into a file of byte code with the.class
extension.

However, all but the simplest programs consist of multiple classes, each
on a separate.java file. A file cannot be compiled successfully until all of

138 ▪ Quick Java

the classes it depends on have been compiled. Moreover, compilation can
be time-consuming, so we don’t want to compile everything each time
one little change is made. But if one Java file is changed and re-compiled,
files that depend on it must also be re-compiled. Re-compiling these files
may lead to re-compiling still more files.

A build tool takes as input a list of file dependencies, and compiles or re-
compiles only those files that need it. Ant, Maven, and Gradle are
popular build tools. If you are using an IDE, one or both of these tools
will be built-in for you, and you can let the IDE do the work.

Advanced Java ▪ 139

http://taylorandfrancis.com
http://taylorandfrancis.com

C H A P T E R 6

Functional
Programming

T HE BASIC IDEA OF functional programming is that functions are values,
and can be treated as such. Functions can be stored in variables, passed

as arguments to methods, returned as the result of a method, combined to
form new functions, and applied in part or in full to arguments. Along with
this is the idea that data is immutable; functions applied to data produce
new data rather than changing existing data.

There are three factors that add to the complexity of functional pro-
gramming in Java. First, Java is designed around methods, which are
associated with classes; functions are a recent inclusion. Second, primi-
tives are treated differently from objects, which leads to a combinatorial
explosion of methods. Third, Java’s data structures are all mutable, which
is inconsistent with the general practice of functional programming.

6.1 FUNCTION LITERALS
Starting in Java 8, you can define a lambda expression (also called a
function literal) as follows:

(parameters) -> expression

or

DOI: 10.1201/9781003402947-6 141

https://doi.org/10.1201/9781003402947-6

(parameters) -> statement

• Each of the parameters consists of a type (int, etc.) and a name,
although in many cases, the type declaration may be omitted or
replaced with var, and Java will figure out the correct type.

• If there is only one parameter, and the type is not specified, the
parentheses may be omitted.

• If there are no parameters, empty parentheses, (), are required.

• The statement may be a compound statement (enclosed in braces)
and may contain return statements.

• Functions cannot be defined at the top level; they can only be
defined within methods (or within another function).

The method reference operator, ::, is a way of “wrapping” a method
inside a functional interface, so that it can be used as if it were a function.

Essentially, x :: m is an abbreviation of x -> x.m(…), where m has an
unspecified number of parameters. If there is more than one method
named m, method resolution is performed in the usual way, by the types
and number of parameters.

6.2 FUNCTIONAL INTERFACES
A functional interface is any interface that declares exactly one abstract
method, called its SAM (Single Abstract Method). For example, the
Comparable interface declares the compareTo(T) single abstract method,
the Runnable interface declares run(), and the ActionListener interface
declares actionPerformed(actionEvent).

The most common use of function literals is to pass them into methods as
arguments. However, a method must specify the type of each of its
parameters. In the case of a function literal, the type will always be the name
of some kind of functional interface, but that name isn’t obvious. Java
provides 43 types of functional interfaces, each with an associated SAM.

For example, suppose the lambda expression is x -> x ∗ x, and x is an
integer. Then the type of this lambda expression is IntUnaryOperator,

142 ▪ Quick Java

and the associated SAM is applyAsInt(int). As a trivial example, we
can define this method:

void run(IntUnaryOperator fun, int n) {
System.out.println(fun.applyAsInt(n));

}

When we call this method with run(x -> x ∗ x, 12), it will print 144.

For a more interesting example, we will define a map method that applies
a function to each element of an integer array and returns an integer
array of the results.

import java.util.function.IntUnaryOperator;
import java.util.Arrays;

public class FunctionTest {

public static void main(String[] args) {
FunctionTest test = new FunctionTest();
int[] a = new int[] {1, 2, 3, 4, 5};
Mapper map = new Mapper();
int[] b = map.apply(a, x -> x ∗ x);
System.out.println(Arrays.toString(b));

}
}

@FunctionalInterface
interface ForEach {

int[] apply(int[] a, IntUnaryOperator f);
}

class Mapper implements ForEach {
public int[] apply(int[] a, IntUnaryOperator f) {

int[] b = new int[a.length];
for (int i = 0; i < a.length; i += 1) {

b[i] = f.applyAsInt(a[i]);
}
return b;

}
}

Functional Programming ▪ 143

In this example, ForEach is a functional interface with one SAM, apply.
(The annotation @FunctionalInterface is optional, but recommended
because it helps Java check for errors.) The apply method is public and
abstract, but we can omit these keywords because every method in an
interface is automatically public and abstract.

The Mapper class implements ForEach, so it has to supply an apply
method.

The main class creates an integer array a and a Mapper object map. It
then calls Mapper’s apply method, giving it the array a and the
function x -> x ∗ x as parameters. The result is the new array b, which
is then printed.

6.3 IMPLICIT FUNCTIONAL INTERFACES
Functional interfaces don’t have to be annotated with @
FunctionalInterface. Any interface that has exactly one abstract
method is a functional interface.

One use for this is in programming graphical user interfaces.
The ActionListener interface has one SAM, actionPerformed
(ActionEvent e), and this is used by many user interface elements, such
as javax.swing.JButton. The traditional way to associate an action
with a button is something like

myButton.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {

doSomething();
}});

Since ActionListener is a functional interface, the above can be sim-
plified to:

myButton.addActionListener(e -> doSomething());

6.4 PERSISTENT DATA STRUCTURES
An immutable data structure is one which cannot itself be changed but
can be modified to produce a new data structure. For example, strings in

144 ▪ Quick Java

Java are immutable. If in addition, the new data structure shares some or
all of the unmodified parts with the original data structure, it is said to be
persistent.

For example, if a persistent hash table contains 100 entries, and one of
them is changed, the new hash table may share the other 99 elements
with the original hash table; but each appears to the program to be a
separate, independent hash table.

“Pure” functional programming makes heavy use of persistent data
structures. Java does not provide any, so this limits the value of func-
tional programming in Java.

Functional Programming ▪ 145

http://taylorandfrancis.com
http://taylorandfrancis.com

C H A P T E R 7

Unit Testing

7.1 PHILOSOPHY
Testing is an essential part of programming. You can do ad hoc testing
(testing whatever occurs to you at the moment), or you can build a test
suite (a thorough set of tests that can be run at any time).

People naturally want to minimize effort, and building a test suite is
additional effort. However, experiments repeatedly show that writing test
suites takes less time and effort than debugging without a test suite, and
results in far more reliable code. In addition, the existence of a test suite
makes it much easier to maintain and modify the program, particularly
after a few months have passed.

Besides, debugging is even less fun than writing tests.

Deadlines are often used as an excuse for not doing thorough testing—
“There isn’t time!” This is a flawed argument, since thorough testing
reduces total programming time.

That said, programmers are human, and they will only do adequate
testing if (1) the tests are easy to write, and even more importantly, (2)
the tests are effortless to run. A good test framework such as JUnit makes
both of these things possible.

DOI: 10.1201/9781003402947-7 147

https://doi.org/10.1201/9781003402947-7

It is very difficult to write tests for methods that were not written with
testing in mind. To be testable:

• Methods should do only one thing, not a large variety of things.
The simpler the method, the simpler the test.

• Methods should be as self-contained as possible. They should not
depend on context any more than absolutely necessary. They
should not require other methods to execute before this one. Tests
that can be run in isolation are much easier to write than those that
require elaborate setup.

• Methods should absolutely not require any interaction with the
programmer. Tests that require more than a single button click to
run will be run much less often, if at all.

• Methods should not do any input/output. There are advanced
techniques, not covered here, for testing input/output methods
without demanding programmer interaction.

Fortunately, rules for writing testable methods are also rules for a good
programming style.

It is good practice to write the tests for a method concurrently with
writing the method. Some even advocate writing the tests before writing
the method, as this helps clarify what the method is supposed to do.

After a method has been written and tested, additional errors may be
discovered. There is a specific technique for dealing with this situa-
tion. First, write a test that demonstrates the error; then fix it. This is
useful because, for whatever reason, some errors have a habit of
recurring.

7.2 WHAT TO TEST
Testing should cover both the common cases and the edge cases, where
things are most likely to go wrong.

For example, if you have a method isPrime to decide whether a number is
a prime, you might decide to test whether isPrime(28) is false and

148 ▪ Quick Java

isPrime(29) is true. Having done that, it is probably redundant and even
a bit silly to also test whether isPrime(30) is false and isPrime(31)
is true.

You might, however, want to check that isPrime(15) is false, in case the
method somehow decides that all odd numbers are prime. It’s also worth
checking worth checking that isPrime(2) is true, in case the method
decides that all even numbers are non-prime. In fact, 2 is an edge case,
since it is the only even prime number.

Another edge case is isPrime(1), which should be false. Although it passes
the general test (not divisible by any number other than itself and 1),
mathematicians define 1 as not a prime number.

Other edge cases are zero and negative numbers. Primality is not
defined for these numbers, and the programmer must decide what to
do in these cases (and preferably, test that that is what actually hap-
pens). If the decision is “that can’t happen anyway”, the appropriate
thing to do is to put the statement assert n > 0; at the beginning of
the isPrime method, and test that an inappropriate call throws an
exception.

Reminder: assert statements (see section 3.3.2.1) are “free” in
that they are treated just like comments, and do not add to code
size or execution time, unless they are explicitly enabled in the
run-time configuration setting.

7.3 JUnit
JUnit is a well-established test framework. To use it, here’s the general
approach:

1. Define a class to hold the tests, and import the test framework.

2. Include any number of test methods, annotated (preceded) by
@Test. Each test will call one or more assertion methods.

3. If any of the tests manipulate global variables, you should have a
method annotated with @BeforeEach to initialize them.

Unit Testing ▪ 149

4. Execute the class. The class does not define a main method;
that is in the JUnit framework. When run, JUnit will produce a
report that either (1) says all tests passed or (2) tells which tests
failed.

If you have written the tests properly, they will not ask you for input or
otherwise interrupt the running of the tests.

7.4 JUnit 5 Assertions
A unit test is a test of a single class. It is an ordinary class that imports a
test framework and annotates some of its methods to mark them for
special processing. First, do the following:

import org.junit.jupiter.api.∗;
import static org.junit.jupiter.api.Assertions.∗;
import static org.junit.jupiter.api.Assumptions.∗;

The first import statement makes the annotations available, the second
makes the test methods (such as assertEquals) available, and the third
makes assumptions (described later) available.

Next, write the methods that will be used by JUnit. Each method should
be public void, should take no parameters, and should have one of the
following annotations:

• @BeforeAll annotates a static method that will be run only once
before any tests are run. This is used when the tests use expensive
resources; for example, it might open a database.

• @BeforeEach annotates a method that will be run before each and
every test. It should reset any global variables to a pristine state so
that the execution of one test does not influence the results of some
other test.

• @Test marks a method as a test method. Ideally, each test method
tests a single method in the class being tested. Sometimes there are
several tests for the same method, testing different kinds of input.
Sometimes a test method has to depend on the correct functioning
of some methods in order to test other methods.

150 ▪ Quick Java

• @AfterEach annotates a method that will run after each test. This is
rarely used.

• @AfterAll marks a static method that executes after all tests
have been run. Its purpose is to close any resources opened by @
BeforeAll.

• @DisplayName(string) can be put before the test class or in front of
individual tests, to use string in place of the class name or test
method name when reporting results.

The test methods (those annotated with @Test) are ordinary code but
contain one or more assertions. The assertions available for use in the
@Test methods include:

• assertEquals(expected,actual) compares values of any type. For
comparing objects, it uses their equals method.

• assertEquals(expected,actual,delta) compares floating point
numbers, where delta is the absolute amount by which the two
numbers may differ and still be considered equal.

• assertArrayEquals(array1,array2) compares two arrays. For
arrays of objects, this does a deep comparison. For arrays of floating
point numbers, there may be an additional delta argument.

• assertTrue(booleanExpression) and assertFalse(booleanExpression).

• assertSame(object1,object2) and assertNotSame(object1,ob-
ject2) are tests of identity, that is, whether object1 and object2 are
references to the same object.

• assertNull(object) and assertNotNull(object).

• assertTimeout(ms,function) fails if the function (not method)
takes longer than ms milliseconds.

• Example: assertTimeout(100, () -> slowMethod(x, y));

• fail(message) and fail(exception).

All of these tests except fail may take an optional last argument
message.

Unit Testing ▪ 151

Note: The fail method (which, yes, causes the test to fail) is
useful for writing tests that use more complex logic.

A test method may contain as many assertions as desired. However, if
one fails, the remaining assertions in that method are not executed, so it
is better not to have too many. Instead, write additional test methods to
test different aspects of the method.

If you have a class containing a number of methods, most good IDEs will
write a skeletal test class for you, so that you only have to add the
assertions.

A test class may also contain unannotated methods. These are ignored by
JUnit but may be used by the test methods.

7.5 TESTING EXCEPTIONS
If a method might throw an exception, you should test whether it does
throw that exception when it should. However, the obvious way of
writing the test does not work.

assertThrows(exception, methodCall); // wrong!

The problem is that the parameters to assertThrows are evaluated
before the method is called, so if the methodCall throws an exception,
assertThrows never gets a chance to catch it and deal with it.

There are two ways to solve this problem. The more convenient way, in
modern Java, is for the second argument to assertThrows to be a
function that calls the method. Like so:

assertThrows(exception, () -> methodCall);

This works because the function is passed to assertThrows, which then
executes the function to cause the exception to happen. For example,

assertThrows(ArithmeticException.class,
() -> divide(0, 0));

152 ▪ Quick Java

Note: The first argument to assertThrows must be a class, but
exceptions such as ArithmeticException are type names, not
classes. The.class suffix returns the class itself.

If you do not have functions available, the same test can be written as
follows:

try {
divide(0, 0);
Assertions.fail();

}
catch (ArithmeticException e) { }

7.6 ASSUMPTIONS
In addition to assertions, JUnit 5 provides three kinds of assumptions.

• assumeTrue(booleanExpression)

• assumeFalse(booleanExpression)

If the test is not met, the test method returns without executing the
remainder of the method, and the test is considered “not applicable”
rather than either succeeding or failing.

• assumingThat(booleanExpression, function)

If the booleanExpression is true, the function will run; otherwise, it
won’t. Either way, the test method will continue.

Note: Assertions within the function will have no effect.

Example: assumeTrue(System.getProperty("os.name")
.equals("Mac OS X"));

7.7 SIMPLE TEST EXAMPLE
The following code tests a very simple class, Account, which was used as
an example in section 4.1.7. It has a constructor and the methods
deposit, withdraw, and getBalance (and transferFrom, which is not

Unit Testing ▪ 153

tested here.) The code for the Account class is not repeated here, but it
can be easily inferred by looking at the test cases.

package account;

import org.junit.jupiter.api.∗;
import static org.junit.jupiter.api.Assertions.∗;

public class AccountTest {
Account account; // must be global

@BeforeEach
public void setup() {

this.account = new Account(); // global
}

@Test
public void openAnAccount() {

assertEquals(0, account.getBalance());
}

@Test
public void testDeposit() {

account.deposit(100);
assertEquals(100, account.getBalance());
account.deposit(70);
assertEquals(170, account.getBalance());;

}

@Test
public void testIllegalDeposit() {

account.deposit(-10000);
assertEquals(0, account.getBalance());

}

@Test
public void goodWithdrawal() throws Exception {

account.deposit(100);
account.withdraw(35);
assertEquals(65, account.getBalance());

}

@Test
@DisplayName("Exception test, old style")
public void badWithdrawal() {

try {

154 ▪ Quick Java

account.withdraw(35);
fail("Did not throw exception");

}
catch (Exception e) { }

}

@Test
@DisplayName("Exception test, new style")
public void badWithdrawal2() {

assertThrows(Exception.class,
() -> account.withdraw(35));

}
}

Ideally, each method in Account should be tested individually. This isn’t
always feasible. In the above, money has to be added to the account
before withdrawals can be tested.

Unit Testing ▪ 155

http://taylorandfrancis.com
http://taylorandfrancis.com

C H A P T E R 8

GUIs and Dialogs

A GRAPHICAL USER INTERFACE, or GUI (pronounced “gooey”), provides
interaction with the user beyond simple text entry and printing.

GUIs provide familiar buttons, text fields, menu items, and so on,
common to almost all user-facing programs.

8.1 A BRIEF HISTORY
GUIs have been available from the very first Java implementation. The
original GUI toolkit was the AWT, the Abstract Window Toolkit, which
was platform-specific and quite primitive.

Later came Swing, a much better, platform-independent toolkit. It was
built “on top of ” AWT, and many of the AWT packages are still needed
in Swing applications.

A third toolkit, JavaFX, was released in 2008. It was originally intended
to replace Swing. While it is still available as part of the OpenJFX project,
it has been dropped from the standard releases of Java. For this reason,
our description of GUI programming uses Swing.

8.2 DIALOGS
A dialog is used to get a simple response from the user. Dialogs can be
used without having to create a full-fledged GUI. To determine the
location of the dialog on the screen, a parent component must be
specified; if it is null, the dialog will be centered on the screen.

DOI: 10.1201/9781003402947-8 157

https://doi.org/10.1201/9781003402947-8

There are four kinds of JOptionPane dialogs: Confirm, Input, Message,
and Option. Additional dialog types are provided for choosing a color
(import java.awt.Color), or for loading or saving a file (various classes
from java.io). You can also create your own custom dialog.

All provided dialogs are modal, that is, the user must respond to them
before anything else can be done in the application. Custom dialogs may
be modal or nonmetal.

8.2.1 Message Dialog
A message dialog is a modal dialog with a single OK button.

To display a JOptionPane message dialog, import javax.swing.
JOptionPane and do the following:

JOptionPane.showMessageDialog(parent,
"This is a message dialog.");

8.2.2 Confirm Dialog
A confirm dialog is a modal dialog with Cancel, No, and Yes buttons. The
return result will be an integer equal to one of YES_OPTION, NO_OPTION, or
CANCEL_OPTION.

To display a JOptionPane confirm dialog, import javax.swing.
JOptionPane and do the following:

int yesNo = JOptionPane.showConfirmDialog(
parent,
"Do you really want to do that?");

if (yesNo == JOptionPane.YES_OPTION) {
System.out.println("Action confirmed");

}

8.2.3 Input Dialog
An input dialog is a modal dialog that provides a place for the user to
enter a single line of text and has Cancel and OK buttons.

158 ▪ Quick Java

To display a JOptionPane input dialog, import javax.swing.JOptionPane
and do the following:

String userName =
JOptionPane.showInputDialog(
parent, "What is your name?");

8.2.4 Option Dialog
An option dialog is a modal dialog that displays a number of buttons,
each labeled with a string taken from an array of strings. Clicking on a
button returns an index into that array.

To display a JOptionPane option dialog, import javax.swing.JOptionPane
and do the following:

Object[] options = new String[] {
"Java", "Python", "C++"

};
int option = JOptionPane.showOptionDialog(

parent,
"Choose an option:", // message
"Option Dialog", // title
JOptionPane.YES_NO_OPTION, // option type
JOptionPane.QUESTION_MESSAGE, // message type
null, // icon
options, // array of strings or components
options[0]); // initial selection

The option type may be one of DEFAULT_OPTION, YES_NO_OPTION,
YES_NO_CANCEL_OPTION, or OK_CANCEL_OPTION. The message type may
be one of ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE,
QUESTION_MESSAGE, or PLAIN_MESSAGE.

If the user just closes the dialog, the integer JOptionPane.CLOSED_
OPTION is returned.

GUIs and Dialogs ▪ 159

8.2.5 Color Chooser Dialog
To declare and use a JColorChooser, import java.awt.Color and
javax.swing.JColorChooser and do the following:

JColorChooser colorChooser = new JColorChooser();
Color chosenColor =

colorChooser.showDialog(parent,
"Choose a color:",
Color.WHITE);

8.2.6 Load File Dialog
A file chooser is a dialog that can be used to navigate to a particular file,
either to read from it or to write to it. This section shows example code
for reading from a text file.

Necessary imports: javax.swing.JFileChooser, java.io.File, java.
io.BufferedReader, java.io.FileReader, and java.io.IOException.

To display a JChooser load file dialog:

JFileChooser chooser = new JFileChooser();
chooser.setDialogTitle("Load which file?");

To get a reader for the chosen file:
BufferedReader br = null;
int result = chooser.showOpenDialog(parent);
if (result == JFileChooser.APPROVE_OPTION) {

File file = chooser.getSelectedFile();
try {

if (file != null) {
String fileName = file.getCanonicalPath();
FileReader fr = new FileReader(fileName);
br = new BufferedReader(fr);

}
}
catch (IOException e) { }

}

160 ▪ Quick Java

To read the first line of the file:

String line = "";
try { line = br.readLine(); }
catch (IOException e) { }

See section 3.3.3 for more ways to read from a file. Close the FileReader
and BufferedReader when you are done.

8.2.7 Save File Dialog
The code for writing to a text file is similar to the code for reading from a
text file (see the previous section). You need to use a save dialog instead
of an open dialog, and a PrintWriter instead of a FileReader.

Necessary imports: javax.swing.JFileChooser, java.io.File, java.io.
PrintWriter, java.io.FileOutputStream, and java.io.IOException.

To display a JChooser save file dialog:

JFileChooser chooser = new JFileChooser();
chooser.setDialogTitle("Save file as?");

To get the file chosen in a JChooser save file dialog:

int result = chooser.showSaveDialog(parent);
PrintWriter pr = null;
if (result == JFileChooser.APPROVE_OPTION) {

File file = chooser.getSelectedFile();
String fileName;
try {

if (file!= null) {
fileName = file.getCanonicalPath();
FileOutputStream stream =

new FileOutputStream(fileName);
pr = new PrintWriter(stream, true);

}
}
catch (IOException e) { }

}

GUIs and Dialogs ▪ 161

To write to the file:

pr.println("Test line");
pr.close();

8.2.8 Custom Dialog
If none of the supplied dialogs is exactly what you need, you can define on
your own. What you need to import will depend on what widgets you use;
the following code uses javax.swing.JDialog, javax.swing.JFrame,
and several components that will be covered later.

To create a JDialog custom dialog:

JFrame parent = null;
boolean isModal = true;
JDialog myDialog =

new JDialog(parent, isModal);

To populate a custom dialog just like you would a JPanel:

myDialog.add(new JLabel(" Your text "),
BorderLayout.CENTER);

JButton closeButton = new JButton("Close");
myDialog.add(closeButton, BorderLayout.SOUTH);

A custom dialog should have some listeners:

closeButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

myDialog.setVisible(false);
}

});

To display the JDialog custom dialog:

myDialog.pack();
myDialog.setVisible(true);

162 ▪ Quick Java

C H A P T E R 9

How to Build a GUI
Program

H ERE IS THE GENERAL FORMULA FOR BUILDING a GUI program:

1. Import the necessary packages.

2. Create a window in which to display things—usually a JFrame.
Optionally create some JPanels to put in the JFrame.

3. Use the setLayout(manager) method to choose a layout manager
for each JFrame and JPanel. The layout manager is in charge of
putting things in the correct places in the window or panel.

4. Create some Components, such as buttons, panels, etc.

5. Ask the layout manager to place the components.

6. Write some Listeners and attach them to your components. When a
user interacts with a component, one or more Events will occur, and
your Listener can execute some code to handle the event.

7. Display the window.

9.1 EVENT-DRIVEN PROGRAMS
A program without a GUI is in complete control, from beginning to end.
It may use some dialogs to interact with the user, but the program is
always in control.

DOI: 10.1201/9781003402947-9 163

https://doi.org/10.1201/9781003402947-9

A GUI program is different—it is event-driven. The program does some
initialization, creates the GUI, then waits for something to happen—a
mouse click, a key press, a timer signal, the completion of a file transfer,
and so on. Each time one of these things occurs, an event is created.
There may be dozens or even hundreds of events each second, most of
which are ignored. The program defines a listener for each event it cares
about, does something in response to that event, then goes back to
“listening” for the next event of interest.

9.2 THE EVENT DISPATCH THREAD
Java programs run in multiple threads, (code executing concurrently)
and Swing is not thread safe—it does not prevent simultaneous access
to data, which can result in data corruption. Running a Swing program
directly from the main thread can result in rare but unpredictable
errors. Unless you are doing parallel programming, all you really need
to know is how to run Swing from a special event dispatch thread.
Here’s how:

import javax.swing.SwingUtilities;
import javax.swing.JFrame;

public class MyGUI extends JFrame implements Runnable {

public static void main(String[] args) {
SwingUtilities.invokeLater(new MyGUI());

}

public void run() {
// add components to this JFrame
pack();
setVisible(true);

}
}

The name MyGUI can be changed, but run is a method required by the
Runnable interface.

9.3 IMPORT THE NECESSARY PACKAGES
The Swing components are in javax.swing.*, so you always need to
import that for a Swing application.

164 ▪ Quick Java

Swing is built on top of AWT and uses a number of AWT packages,
including most of the layout managers, so you need to import java.awt.*.

Most listeners also come from the AWT, so you also need to import
java.awt.event.*.

A few listeners, such as DocumentListener and ListSelectionListener,
are specific to Swing, so if you use them you need to import
javax.swing.event.*.

For more complex GUIs, there are additional java.awt.something and
javax.swing.something packages that you may need to import.

Note: The x in javax originally stood for “experimental,” but
once Swing came into widespread use, it was undesirable to
rename the package.

9.4 MAKE A CONTAINER
A container is a graphical area that can hold visible components. A
component is something that can be added to a container.

Two important subclasses of Container are JFrame and JPanel.

For an application, the main (outermost) container is typically a JFrame:

JFrame frame = new JFrame(); // or
JFrame frame = new JFrame("Text for title bar");

You can create a JFrame in the class that contains the public static
void main method, but it’s often more convenient to have this class
extend JFrame.

A JPanel is both a container (it can have components added to it) and a
component (it can be added to containers). Each JPanel has its own
layout manager. All but the simplest windows consist of a JFrame
containing several JPanels, with each JPanel containing one or more
widgets (visible GUI components).

How to Build a GUI Program ▪ 165

To create a JPanel:

JPanel panel = new JPanel(); // default: flow layout
JPanel panel = new JPanel(layoutManager);

9.5 ADD A LAYOUT MANAGER
Every container (JFrame or JPanel) has a layout manager associated
with it. You can use the default layout manager or specify a different one.
Here are the layout managers we will cover in some detail:

• BorderLayout (see Figure 9.1) — This is the default layout man
ager for a JFrame. It provides five areas into which you can put
up to five components; any area without a component simply
disappears.

• FlowLayout (see Figure 9.2) — This is the default layout manager
for a JPanel. It just adds components from left to right, top to
bottom.

• GridLayout (see Figure 9.3) — This puts components into a
rectangular grid, with all areas being the same size and shape.

FIGURE 9.1 A BorderLayout.

FIGURE 9.2 A FlowLayout.

166 ▪ Quick Java

Since there are only a few more kinds of layout managers, they are listed here:

• BoxLayout — Puts components in a single row or single column.

• CardLayout — Uses a JComboBox widget to choose which JPanel to
display.

• GridBagLayout — Allows precise control of layout, but is very
difficult to use.

• GroupLayout — Works with horizontal and vertical layouts separately.

• SpringLayout — Allows precise control of relationships between
components.

To use a layout manager other than the default, call container.setLayout
(layoutManager). For example:

myPanel.setLayout(new GridLayout(rows,columns));

Once the layout manager has been determined, components can be
added. The method to use depends on the type of layout manager.

• For a flow layout, use container.add(component);

• For a grid layout, use either container.add(component); or con
tainer.add(component,index); where the index is a single integer
starting at 0.

• For a border layout, use container.add(component, BorderLayout.
area); where the area is one of NORTH, SOUTH, EAST, WEST, and CENTER.
The border areas take up only as much space as necessary to lay out
their components, and the center gets all the remaining space.

A JTabbedPane (see section 9.8.4) is not a layout manager but is a good
alternative to CardLayout.

FIGURE 9.3 A GridLayout.

How to Build a GUI Program ▪ 167

9.6 CREATE COMPONENTS
A widget is a GUI control, such as a button or text area, intended for the
user to interact with. Widgets are components; they can be added to a
container such as a JPanel or JFrame.

Figure 9.4 shows some of the more commonly used widgets.

An active widget is one that causes the program to do something
whenever it is used. Buttons and most menu items are active: Clicking on
an active widget has an immediate effect.

A passive widget is one that accepts information but doesn’t immediately do
something with it; it just holds on to the information until the program asks
for it. Text fields, text areas, check boxes, and radio buttons are almost always
passive. Some widgets, like combo boxes, can be either active or passive.

A widget is made active by attaching a listener to it.

Style rule: Don’t confuse the user by attaching listeners to
widgets that are almost always passive.

Style rule: When the user clicks an active widget, it should be
obvious that some action has occurred. This can be fairly subtle; for
example, many editors display an asterisk next to the file name when
a file is modified, and remove the asterisk when the file is saved.

FIGURE 9.4 Commonly used widgets.

168 ▪ Quick Java

A tooltip is a small text message that pops up when the user hovers over
a component, usually to give a little more information about the purpose
of the component. Tooltips can be added to almost any component.

widget.setToolTipText("Purpose of widget");

9.7 ADD LISTENERS
Once a GUI program is started up, it typically does nothing more until
an event occurs. If there is a listener for that event, the listener executes
some block of code to completion, then nothing more happens until the
next event occurs.

Many events are handled “automatically,” by built-in listeners. If you
type a character while the focus is on a text field, somewhere under the
hood there is a listener that responds to the event by drawing that
character in the text field. If you click a button, the button “depresses”
(changes appearance) as the result of some built-in listener. However, all
these built-in listeners do is change the appearance of the text field or
button. To have the button do something useful, you must add a listener
to it that will execute some code when the button is clicked.

Generally speaking, you shouldn’t add listeners to passive widgets like
text fields or checkboxes. Instead, just ask for their value when you need
to know it.

Different widget types have different kinds of listeners. A JButton
should have an ActionListener, while a JSlider might have a
ChangeListener.

Some listeners, such as ActionListener, are functional interfaces—they
define exactly one abstract method. For these listeners, you can simply
supply a function, for example,

addActionListener(event -> code)

Other listeners are not functional interfaces, typically because they
specify more than one method. For these, you must define a class that
implements all the methods, and provide an object of that class—for
example, see the implementation of KeyListener in section 9.8.16.

How to Build a GUI Program ▪ 169

You can also write listeners for mouse clicks, mouse movement, and key
presses, but you don’t need to unless you are doing something unusual.

9.8 SAMPLE CODE
Swing is complex. It has many different types of widgets, each of which
must be handled slightly differently. The approach taken in this section is
to provide a complete sample code for a selection of the more important
widgets. In most cases, the code can be adjusted with a few simple
tweaks.

When using the widget causes an event to occur, my sample code calls a
handleEvent method (not provided) that I wrote for testing purposes.
This should be replaced with your code for handling the event.

9.8.1 JFrame and JPanel
The easiest way to create a Swing GUI is to have your main class extend
JFrame.

To extend your main class:

public class Examples extends JFrame {...}

Alternatively, to create a new JFrame:

JFrame myFrame = new JFrame();

To specify a standard action to take when a JFrame is closed:

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

or HIDE_ON_CLOSE, DISPOSE_ON_CLOSE, or DO_NOTHING_ON_CLOSE.

To specify a custom action when the JFrame is closed:

addWindowListener(new Closer());
private class Closer extends WindowAdapter {

public void windowClosing(WindowEvent we) {
update(); // your method

}
}

170 ▪ Quick Java

To make some JPanels to put in the JFrame:

JPanel controlPanel = new JPanel();
JPanel outputPanel = new JPanel();
JPanel[] panels = new JPanel[numberOfPanels];

To change the layout manager for the JFrame:

setLayout(new BorderLayout());

To add components to the JFrame (for example, to the NORTH area):

add(controlPanel, BorderLayout.NORTH);

The last step is usually to cause the JFrame to be sized, laid out, and
made visible:

pack();
setVisible(true);

The above code assumes that it is in a class that extends JFrame.
Alternatively, you can create a JFrame and save it in a variable, then send
messages to that variable. In particular, the messages setDefaultClose
Operation, getContentPane, pack, and setVisible should be sent to
the JFrame.

Technical note: It is actually the “content pane” of a JFrame that
holds the components; the setLayout and add methods pass
these calls along to the content pane. Very old code may still
refer to the content pane explicitly.

9.8.2 JEditorPane
An editor pane is a special kind of container that supports editing plain
text (text/plain) or hypertext (text/html). It implements the key
board shortcuts for cut, copy, and paste, but not undo/redo.

The construction uses somewhat complex nesting. In the example
below, the JFrame contains the JScrollPane scroller which
contains the JPanel content which contains the JEditorPane
editor.

How to Build a GUI Program ▪ 171

To declare and define a JEditorPane:

JEditorPane editor = new JEditorPane();

To declare and define a JPanel to serve as the view of a JScrollPane:

JPanel content = new JPanel();

To declare and define a JScrollPane holding the JPanel:

JScrollPane scroller = new JScrollPane(editor);

To set the JEditorPane to display HTML:

EditorKit kit =
JEditorPane.createEditorKitForContentType(

"text/html");
editor.setEditorKit(kit);

To add the JEditorPane editor to the content JPanel:

content.setLayout(new BorderLayout());
content.add(scroller, BorderLayout.CENTER);

By putting the JScrollPane in the CENTER of the JFrame, and not
putting anything around the edges, the JScrollPane will fill up the
entire JFrame.

To set and get the text of a JEditorPane:

editor.setText("This is <i>Sample</i> text");
String myText = editor.getText();

9.8.3 JScrollPane
A scroll pane can be used to hold any large component that you might
want to scroll (in this example, a previously defined JEditorPane named
editor).

To declare and define a JPanel to serve as the view of a JScrollPane:

JPanel content = new JPanel();

172 ▪ Quick Java

To declare and define a JScrollPane holding the JPanel:

JScrollPane scroller = new JScrollPane(content);

To set the initial size of the JScrollPane:

scroller.setPreferredSize(new Dimension(600, 600));

To add the JEditorPanel to the JPanel and the JScrollPanel to the
JFrame:

content.setLayout(new BorderLayout());
content.add(editor, BorderLayout.CENTER);
add(scroller); // to the JFrame

To tell the JScrollPane to scroll to a particular character position (by
sending a message to the component contained in the JScrollPane):

editor.setCaretPosition(0);

9.8.4 JTabbedPane
A tabbed pane (Figure 9.5) is a container that has tabs like a typical
browser window, where clicking each tab reveals different components.
It can be used in place of CardLayout.

To create a tabbed pane and set its size:

JTabbedPane tabbedPane = new JTabbedPane();
tabbedPane.setPreferredSize(

new Dimension(300, 150));

FIGURE 9.5 A JTabbedPane.

How to Build a GUI Program ▪ 173

To make some icons to put in the tabs:

ImageIcon smiley =
new ImageIcon("Resources Root/smiley.png");

ImageIcon frowny =
new ImageIcon("Resources Root/frowny.png");

To add the tabs, each holding some (previously defined) panel, with
optional text, icon, and tooltip.

tabbedPane.addTab("Smile", smiley,
panel0, "Tooltip 0");

tabbedPane.addTab("Tab 1", null,
panel1, "Tooltip 1");

tabbedPane.addTab(null, frowny,
panel2, null);

To programmatically switch to a tab, use either:

tabbedPane.setSelectedIndex(index);

or

tabbedPane.setSelectedComponent(panel);

9.8.5 JButton
A button is typically shown as a rectangle with rounded corners, con
taining text. Buttons should always be treated as active widgets.

To declare and define a JButton:

private JButton myJButton =
new JButton("This is a JButton");

To add the JButton to a panel:

someJPanel.add(myJButton);

To add a listener to the JButton:

myJButton.addActionListener(event ->
handleEvent("JButton"));

174 ▪ Quick Java

In this and the following examples, the action being taken is a call to the
method handleEvent(string). That method call is just a placeholder; it
should be replaced with your own code.

9.8.6 JTextField
A text field is a rectangle into which a single line of text can be entered. A
text field can hold an arbitrary number of characters, although the
rectangle may be too small to display them all.

To declare and define a JTextField:

private JTextField myJTextField =
new JTextField("Example JTextField";);

To add the JTextField to a panel:

someJPanel.add(myJTextField);

To add a JToolTip to a JTextField (or any other JComponent):

myJTextField.setToolTipText("My tooltip");

To set the contents of a JTextField:

myJTextField.setText("This is new text");

To get the contents of a JTextField:

String myText = myJTextField.getText();

To add a listener to the JTextField:

myJTextField.addActionListener(event ->
handleEvent("JTextField"));

It’s usually better to treat a JTextField as a passive widget and use
getText() when the value is needed.

9.8.7 JTextArea
A text area is a rectangle into which multiple lines of text can be entered.
A text area can hold an arbitrary amount of text, although the rectangle

How to Build a GUI Program ▪ 175

may be too small to display all of it. Scroll bars are not automatically
added to a JTextArea.

To declare and define a JTextArea:

private JTextArea myJTextArea =
new JTextArea(rows, columns);

To add the JTextArea to a panel:

someJPanel.add(myJTextArea);

To set the contents of a JTextArea:

myJTextArea.setText(
"New text for the JTextArea,\n" +
"and it may contain newlines.");

To add to the contents of a JTextArea:

myJTextArea.append("Ehh...that's all, folks!");

To get the contents of a JTextArea:

String myText = myJTextArea.getText();

To add a listener to the Document associated with the JTextArea:

myJTextArea.getDocument().addDocumentListener(
new MyJTextAreaListener());

To provide the listener (as an inner class) for the JTextArea’s Document:

public class MyJTextAreaListener
implements DocumentListener {
public void insertUpdate(
DocumentEvent arg0) {

handleEvent("JTextArea");
}
public void removeUpdate(
DocumentEvent arg0) {

handleEvent("JTextArea");
}

176 ▪ Quick Java

public void changedUpdate(
DocumentEvent arg0) {

handleEvent("JTextArea");
}

}

Note: You can’t attach a listener to the JTextArea itself. Besides,
it’s usually better to treat a JTextArea as a passive widget and
use getText() when the value is needed.

9.8.8 JCheckBox
A checkbox is a small square box with an associated label. The box is either
checked (has a checkmark in it) or is empty. Each checkbox represents a
single yes-no choice and is independent of any other checkboxes.

To declare and define a JCheckBox:

private JCheckBox myJCheckBox =
new JCheckBox("This is a JCheckBox");

To add the JCheckBox to a panel:

someJPanel.add(myJCheckBox);

To find out if a JCheckBox is checked:

boolean checked = myJCheckBox.isSelected();

To add a listener to the JCheckBox:

myJCheckBox.addItemListener(event ->
handleEvent("JCheckBox"));

It’s usually better to treat a checkbox as a passive widget and use
isSelected() when the value is needed.

9.8.9 JRadioButton
A radio button is a small open circle with an associated label. The circle
is either selected (filled in) or is empty. Radio buttons are used to select

How to Build a GUI Program ▪ 177

one alternative from among several. Each radio button belongs to a
button group, so selecting any radio button in the group unselects all the
others.

If the program does not specify one particular radio button to be initially
selected, then when the program runs, none are selected. Once a selec
tion has been made, it is normally impossible to return to a state where
none are selected.

To declare and define some JRadioButtons:

private JRadioButton myJRadioButton1 =
new JRadioButton("radio 1");

private JRadioButton myJRadioButton2 =
new JRadioButton("radio 2");

To declare and define a ButtonGroup to hold the JRadioButtons:

private ButtonGroup myButtonGroup = new ButtonGroup();

To add the JRadioButtons to a ButtonGroup:

myButtonGroup.add(myJRadioButton1);
myButtonGroup.add(myJRadioButton2);

To add the JRadioButtons to a panel:

someJPanel.setLayout(new GridLayout(2, 1));
someJPanel.add(myJRadioButton1);
someJPanel.add(myJRadioButton2);

To initially select some JRadioButton:

myJRadioButton1.setSelected(true);

To find out which JRadioButton is selected:

boolean selected1 = myJRadioButton1.isSelected();
boolean selected2 = myJRadioButton2.isSelected();

178 ▪ Quick Java

To add listeners to the JRadioButtons:

myJRadioButton1.addItemListener(event ->
handleEvent("JRadioButton1"));

myJRadioButton2.addItemListener(event ->
handleEvent("JRadioButton2"));

It’s usually better to treat radio buttons as passive widgets and use
isSelected() when the selected value is needed.

9.8.10 JLabel
Checkboxes and radio buttons have associated labels, but other widgets
do not. You can add labels to things, but those labels are normally
completely inactive; their only purpose is to provide guidance to the
user.

To declare and define a JLabel:

JLabel myJLabel = new JLabel("This is a JLabel");

To add the JLabel to a panel:

labelPanel.add(myJLabel);

There is no specific listener for a JLabel. In the unlikely event that you
need to listen for mouse clicks on a JLabel, you can add a mouse listener
to either the JLabel itself, or to the JPanel that contains the JLabel.
Like so:

labelPanel.addMouseListener(
new MouseAdapter() {
@Override
public void mouseClicked(
MouseEvent e) {

handleEvent("JLabel");
}

});

How to Build a GUI Program ▪ 179

9.8.11 JComboBox
To declare and define a JComboBox:

private JComboBox myJComboBox =
new JComboBox(
new String[]{"Java", "Python",

"JavaScript"});

To add the JComboBox to a panel:

someJPanel.add(myJComboBox);

To add a listener to the JComboBox:

myJComboBox.addActionListener(event -> {
String selection =
(String) myJComboBox.getSelectedItem();

handleEvent(selection);
});

9.8.12 JSlider
A slider (Figure 9.6) is a scale that can be manipulated by either the user
or the program.

To declare and define a JSlider:

private JSlider myJSlider =
new JSlider(SwingConstants.HORIZONTAL,

0, 50, 20);

To add the JSlider to a panel:

someJPanel.add(myJSlider);

FIGURE 9.6 A JSlider.

180 ▪ Quick Java

To set some characteristics of the JSlider:

myJSlider.setMajorTickSpacing(10);
myJSlider.setMinorTickSpacing(2);
myJSlider.setPaintTicks(true);
myJSlider.setPaintLabels(true);

To set the value of a JSlider:

myJSlider.setValue(45);

To get the value of a JSlider:

int temp = myJSlider.getValue();

To add a listener to the JSlider:

myJSlider.addChangeListener(event ->
handleEvent("JSlider"));

The JSlider can be treated as either an active or a passive widget.

9.8.13 JSpinner
A spinner (Figure 9.7) selects a number from a given range of numbers.

To declare and define a numeric JSpinner:

int min = 10, max = 30, step = 2, initValue = 20;
SpinnerModel model =

new SpinnerNumberModel(initValue, min,
max, step);

private JSpinner myJSpinner = new JSpinner(model);

To add the JSpinner to a panel:

someJPanel.add(myJSpinner);

FIGURE 9.7 A JSpinner.

How to Build a GUI Program ▪ 181

To set the value of a JSpinner:

myJSpinner.setValue(20);

To get the current value of a JSpinner:

int value = (int)myJSpinner.getValue();

To add a listener to the JSpinner:

myJSpinner.addChangeListener(event ->
handleEvent("JSpinner"));

It’s usually better to treat a JSpinner as a passive widget and use
getValue() when the value is needed. Note that the resultant value must
be cast to an int.

9.8.14 JProgressBar
A progress bar is a long, thin rectangle that is gradually “filled in” as an
operation progresses. When properly set up, it should finish filling at the
same time as the operation ends.

To declare and define a numeric JProgressBar:

JProgressBar myProgressBar =
new JProgressBar(min, max);

or

JProgressBar myProgressBar =
new JProgressBar(); // 0 to 100

To overlay a percent complete message on the progress bar:

myProgressBar.setStringPainted(true);

To add the JProgressBar to a panel:

someJPanel.add(myProgressBar);

182 ▪ Quick Java

To set the value of a JProgressBar:

myProgressBar.setValue(20);

To get the current value of a JProgressBar:

int value = myProgressBar.getValue();

9.8.15 Menus
The menu bar of an application holds menus, and each menu holds
menu items (see Figure 9.8).

To declare and define a JMenuBar, a JMenu, and a JMenuItem:

JMenuBar myJMenuBar = new JMenuBar();
JMenu myJMenu = new JMenu("Menu");
JMenuItem myJMenuItem = new JMenuItem("Menu Item");

To set up the JMenuBar with the JMenu and JMenuItem:

myJMenuBar.add(myJMenu);
myJMenu.add(myJMenuItem);

To add the JMenuBar (with the JMenu and JMenuItem) to the window:

this.setJMenuBar(myJMenuBar);

To add a listener to the JMenuItem:

myJMenuItem.addActionListener(event ->
handleEvent("JMenuItem"));

9.8.16 Keyboard Input
For typing into text fields, text areas, editor panes, and so on, all the
user’s key presses are handled automatically; the programmer doesn’t

FIGURE 9.8 A JMenuItem in a JMenu.

How to Build a GUI Program ▪ 183

have to do anything. For other uses, you may wish to add a KeyListener
to a Container of your choice.

To do some routine setup:

JPanel panel = new JPanel();
panel.setPreferredSize(new Dimension(300, 200));
JLabel label = new JLabel("Type here");
panel.add(label);
add(panel, BorderLayout.CENTER); // to JFrame

To define a KeyListener and attach it to a JPanel:

KeyListener listener = new KeyListener() {
@Override
public void keyPressed(KeyEvent e) {
System.out.println(
"Pressed " + e.getKeyCode());

}
@Override
public void keyTyped(KeyEvent e) {
System.out.println(
"Typed:" + e.getKeyChar());

}
@Override
public void keyReleased(KeyEvent e) {
System.out.println(
" Released: " + e.getKeyCode());

}
};
panel.setFocusable(true);
panel.addKeyListener(listener);

Notes:

• When a character is typed, the event handlers keyPressed,
keyTyped, and keyReleased are called, in that order. When other
keys (shift, option, up arrow, etc.) are typed, only keyPressed and
keyReleased are called.

• All three methods can use getKeyCode(), which returns an int.

184 ▪ Quick Java

• The keyTyped method (only) can use the getKeyChar method to
return the char.

• A Container must have “focus” in order to respond to events.
Usually, this occurs by clicking on it or tabbing to it.

• To determine which key was pressed, you can compare the key code
to any of a large number of constants in the KeyEvent class, such as
VK_A, VK_SHIFT, or VJ_DOWN. Non-English keyboards have the keys
arranged differently, but the VK (virtual keyboard) values are
independent of the keyboard arrangement.

9.8.17 Mouse Input
All of the common widgets handle mouse events automatically.
However, if you wish to do something special, such as point at specific
parts of an image, you can write your own mouse listeners. There are
separate listeners for clicks, movement, and scrolling.

The MouseListener interface specifies five public void methods:
mouseEntered, mouseExited, mousePressed, mouseReleased, and
mouseClicked. Each of these receives a MouseEvent argument (see
below). The only one of these methods you are likely to care about is
mouseClicked, but MouseListener is an interface, so you have to
provide them all, even if they don’t do anything.

The MouseMotionListener interface specifies two public void
methods, mouseMoved and mouseDragged, both with a MouseEvent
argument.

The MouseEvent object has the following methods (among others):

• getButton() returns one of the values MouseEvent.BUTTON1,
MouseEvent.BUTTON2, or MouseEvent.BUTTON3.

• getX() and getY() return the mouse location, in pixels, relative to
the top-left corner of the component that has the listener. X values
increase as the mouse pointer moves to the right, and Y values
increase as the mouse pointer moves down.

How to Build a GUI Program ▪ 185

• getXOnScreen() and getYOnScreen() return the mouse location
relative to the top-left corner of the display screen.

• getClickCount() returns the number of closely-spaced mouse
clicks.

The MouseAdapter class provides empty versions of all of the above
methods, so you can extend this class and override any of the methods
you care to use. See section 9.8.10 on the JLabel widget for an example
of using a MouseAdapter.

There is also a MouseWheelListener interface. It requires a
mouseWheelMoved method with a MouseWheelEvent parameter. Since a
JScrollPane is almost always more convenient, this interface is not
covered here.

9.9 DICEROLLER
Here is a complete (but very small) Swing application:

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.Random;

public class DiceRoller extends JFrame {
static Random rand = new Random();
JButton rollButton;
JTextField result;

public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {

new DiceRoller().createAndShowGUI();
}

});
}

void createAndShowGUI() {
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

186 ▪ Quick Java

rollButton = new JButton("Roll 'em!");
getContentPane().add(rollButton, BorderLayout.NORTH);
result = new JTextField("You haven't rolled yet.");
getContentPane().add(result, BorderLayout.SOUTH);
pack();
setVisible(true);
rollButton.addActionListener(event -> {

int number = rand.nextInt(6) + 1;
result.setText("You rolled a " + number);

});
}

}

How to Build a GUI Program ▪ 187

http://taylorandfrancis.com
http://taylorandfrancis.com

C H A P T E R 10

Threads and Animation

U SEFUL CLASSES THAT HAVE BEEN DESCRIBED in varying levels of detail are
StringBuilder, Scanner, Stack, and HashMap. This section

describes some additional classes and methods that are important for
writing concurrent programs and for doing animation.

Every one of these classes is far richer than this section would suggest.
Only the basics are described here.

10.1 THREADS
A thread is the flow of control in a program. Modern operating systems
are multiprocessing: they do many things at the same time. This might
be accomplished by assigning different threads to different cores, or by
interrupting one thread to turn over execution to another. Even a simple
Java program uses multiple threads and hides the details so you don’t
have to think about them. You can, however, directly create and
manipulate threads.

A Thread is an object representing a flow of control. When you step
through a program, you are following a thread. Threads are just like any
other object; you can create them and send messages to them. Every
program uses threads.

There are two ways to create another Thread and start it running:

DOI: 10.1201/9781003402947-10 189

https://doi.org/10.1201/9781003402947-10

• Write a class that extends Thread and overrides the public void
run() method.

• Create an object of this class.

• Send the object the (inherited) start() message.

• Write a class that implements Runnable and overrides the public
void run() method.

• Create an object obj of this class.

• Create a new Thread(obj).

• Send the Thread the start() message.

A Thread can be in one of four states (see Figure 10.1):

• Ready: all set to run

• Running: actually doing something

• Waiting, or blocked: needs something

• Dead: will never do anything again

Execution is controlled by the Java scheduler, but you can request it to do
some things. A call to start() is one such request. Another is that you can
request the current Thread to pause for a given number of milliseconds.

Thread.sleep(milliseconds);

It is possible for this call to raise an InterruptedException.

try {Thread.sleep(1000);}
catch (InterruptedException e) { }

FIGURE 10.1 States of a thread.

190 ▪ Quick Java

Warning: The very first version of Java allowed one Thread to
control other Threads with the methods stop, suspend, and
resume. This was immediately recognized as a Bad Idea, and
those methods were immediately deprecated. Never use them!

A simple alternative to using deprecated methods is for one thread to set
a flag that can be read by another thread.

boolean okToRun = true;
secondThread.start();

public void run() {
while (firstThread.okToRun) {...}

}

10.2 SYNCHRONIZATION
There are many cases when it is desirable to have many processes
(threads) running in parallel. For example, other work could be done
while a slow database access or file transfer is in process.

Subtle, irreproducible errors can result when a value is being changed by
one thread while being accessed by a different thread, or when two
threads both try to update the same value. To avoid this situation, Java
introduces the concept of synchronization, which simply means giving
one thread temporary but exclusive access to a value or set of values.

You can synchronize on an object:

synchronized (obj) { code }

Here, synchronized is being used as a statement. No other code can
synchronize on object obj until the code finishes.

Note 1: It often makes sense to synchronize on the object you
want to access or modify, but this is not a requirement. Any
object can be used for synchronization, and the code might
access or modify completely unrelated values.

Threads and Animation ▪ 191

Note 2: Synchronizing on an object prevents only other threads
synchronizing on the same object from running. Unsynchronized
code, or code synchronizing on other objects, is not affected.

You can synchronize a method:

synchronized void methodName(arguments) { code }

In this case, synchronized is being used as a method modifier; it syn
chronizes on the object this.

Synchronizing on an object means that the thread gets a “lock” on that
object, and no other thread can synchronize on it until the code finishes
and the lock is released. While it has the lock, the thread can also use any
other methods that synchronize on the same object. Again, there is no
protection from unsynchronized code, or from code that synchronizes
on some other object.

The point of multithreading is to allow different threads to run at the
same time, so long as they are not attempting to access the same objects.
Synchronization is expensive, and it is very difficult to maintain cor
rectness while pursuing efficiency.

10.3 TIMERS
A javax.swing.Timer is used to schedule code for repeated execution.
The constructor takes two parameters: an int time in milliseconds,
which is used to set both the initial delay and the time between events;
and an ActionListener (usually an anonymous inner class) to do
something at each “tick” of the Timer.

Timer timer = new Timer(40, event -> doSomething());

There are a number of messages that can be sent to a Timer, including
stop(), start(), setDelay(ms), and restart().

10.4 PROPERTY CHANGES
A java.beans.PropertyChangeSupport object is one way that an
object can inform other objects that it has been updated.

192 ▪ Quick Java

Terminology: A bean is any Java class that (1) has a no-argument
constructor, (2) has at least some “properties” (private fields) that
have getters and setters, and (3) is serializable. Saying that a class is
a bean is simply saying that it has these characteristics.

Basic operation is as follows:

1. Create a new PropertySupportObject(bean), where bean is the
object to be “watched” or “listened to.”

2. Each time the bean completes an update, it should send the mes
sage firePropertyChange(propertyName,oldValue,newValue)
to the PropertySupportObject. This is probably best done within
the bean itself.

• The propertyName is a String, and the oldValue and newValue
can be the values of the entire bean object, or of some part of it.

• This method will only cause a PropertyChangeEvent to occur if
the oldValue and the newValue are different.

3. To add a listener to the bean, send the message add
PropertyChangeListener(listener) to the PropertySupportObject.
Any number of listeners may be added.

4. To listen to a bean, a class must implement Property
ChangeListener and override the inherited public void
propertyChange(PropertyChangeEvent event) method.

• The event parameter has the accessible fields event.propertyName,
event.oldValue, and event.newValue. The latter two are of type
Object, so should be cast to the desired type.

It isn’t necessary for a class to have all the bean characteristics in order to
use the above classes and methods.

10.5 SwingWorker
A worker thread provides a means of running a long-running process on
a background thread so that the main thread can continue to do work.
This is particularly important in a GUI (graphical user interface) pro
gram, where a long-running process can make the GUI unresponsive.

Threads and Animation ▪ 193

The SwingWorker class provides a simple way to create a worker thread.
There are three threads involved:

• The current thread creates and starts a SwingWorker, then con
tinues to run without interruption.

• The worker thread executes the long-running code.

• The event dispatch thread handles all the GUI events.

To begin, create a class (for example, Worker) that extends SwingWorker
with two type parameters T and V, where T is the type of value to be
computed by the worker thread and V is a type that can be sent to the GUI.

To keep the example short, we will not use a GUI. The long-running
process typically is some file or database manipulation, but for our ex
ample, we will try to find one factor of a big integer.

import java.math.BigInteger;
import javax.swing.SwingWorker;

class Worker extends SwingWorker<BigInteger, Void> {
private BigInteger big;

Worker(BigInteger big) { // constructor
this.big = big;

}

@Override
public BigInteger doInBackground() {

return findFactor(big);
}

// Here is our long-running process
BigInteger findFactor(BigInteger big) {

if (big.mod(BigInteger.TWO).equals
(BigInteger.ZERO)) {
return BigInteger.TWO; // 2 is a factor

}

BigInteger divisor = new BigInteger("3");
while (big.divide(divisor).compareTo(divisor) >= 0) {

194 ▪ Quick Java

if (big.mod(divisor).equals(BigInteger.ZERO)) {
return divisor;

}
divisor = divisor.add(BigInteger.TWO);

}
return BigInteger.ZERO;

}
}

In the class header T, the type of value to compute, is a BigInteger,
while V is unused.

The class has a constructor which accepts and stores the data it is to
use—in this case, a BigInteger to try to factor. It has one necessary
method, T doInBackground().

The doInBackground method could contain the long-running code, but
we have put that in a separate method, findFactor, called from
doInBackground. The findFactor method tries to find and return one
factor of a BigInteger, big, but it will return zero if big is prime. We
have not previously discussed the BigInteger class, but its methods
(add, divide, etc.) are mostly self-explanatory.

The main class, FactorFinder, uses Worker.

import java.math.BigInteger;

public class FactorFinder {

public static void main(String[] args) {
new FactorFinder(args[0]);

}

public FactorFinder(String bignum) {
BigInteger factor = BigInteger.ZERO;
BigInteger big = new BigInteger(bignum);
System.out.println("Trying to factor " + big);

// Use the SwingWorker
Worker worker = new Worker(big);
worker.execute();
while (!worker.isDone()) {

Threads and Animation ▪ 195

twiddleThumbs();
}
try { factor = worker.get(); }
catch (Exception e) { }

// Show the results
if (factor.equals(BigInteger.ZERO))

System.out.println("\n" + big +
" is prime");

else
System.out.println("\n" + big + " = " +

factor +" x " +
big.divide(factor));

}

public void twiddleThumbs() {
try { Thread.sleep(1000); }
catch(InterruptedException e) {}
System.out.print('.');

}
}

The main method gets a number, as a String, from the command line
(or from a setting in the IDE). It makes a BigInteger from the string,
creates a Worker object with this BigInteger, and tells the Worker
object to execute().

Note: A good number to try is "41758540882408627201."

Once a second, twiddleThumbs method asks the worker object if it
isDone(), and if not, it prints out a period. The only purpose of this is to
show that the current thread continues uninterrupted. In a GUI, we
might instead update a progress bar.

Eventually, the get() method returns a result. If called before the worker
thread is finished, the current thread stops and waits for it to finish; this
isn’t what is generally desired. The get() method could throw an
InterruptedException or an ExecutionException, so get() is put in
a try-catch statement to handle these.

Finally, the result is printed.

196 ▪ Quick Java

10.6 THE BOUNCING BALL
Animation is performed by displaying a series of still images, one after
the other, with minor changes between each image and the next. A
bouncing ball is the “Hello world” of animation—a small disk that
moves steadily across a window, and “bounces” (changes direction)
when it encounters an edge of the window. Our version (see
Figure 10.2) will have two buttons, Run to start the animation and
Stop to pause it.

Our implementation uses the MVC model, with the unimaginatively
named classes Model, View, and Controller. The controller sets up the
GUI and creates objects of the other two types; the model controls the
position of the ball; and the view displays the ball in the window.

The model is treated as a “bean” (although it does not have all the
characteristics of a bean), and PropertyChangeEvents are used to keep
the model as independent as possible from the rest of the code.

In the following we mention only the main points of the Bouncing Ball
program; the complete code is in an appendix.

FIGURE 10.2 The Bouncing Ball example.

Threads and Animation ▪ 197

10.6.1 MVC
MVC, or Model-View-Controller is a useful design pattern when one
thread is used to control another thread, such as when doing animation.

Terminology: A design pattern is simply a way of organizing code
that has been found to be generally useful. MVC is considered
here in order to introduce some useful objects and interfaces.

The model is the code doing the actual work of the simulation, anima
tion, or whatever. It should be free of any input/output, and completely
independent of both the view and the controller. If there is a GUI, it
should be completely unknown to the model.

The view displays information about what is going on in the model. In
the case of an animation, it displays the current frame of the animation.

The controller is used to send commands or information to the model.

The model, view, and controller can be implemented as three separate
classes, but in small GUI programs, it is often convenient to combine the
controller and view into a single class.

10.6.2 Controller
The controller’s main job is to set up the GUI, so it extends JFrame and
adds Run and Stop buttons. It creates the model and the view. Since the
view has to know about the model, but the model doesn’t have to know
about the view, the model is created first.

model = new Model();
view = new View(model);

Since the ball is to bounce off the edges of the window, it has to know
where those are. The top and left edges are at 0; the right edge is the width
of the window, and the bottom edge is the height of the window. If the
window is resized, the new values must be fetched and sent to the model.

this.addComponentListener(new ComponentAdapter() {
@Override

198 ▪ Quick Java

public void componentResized(ComponentEvent e) {
model.setLimits(view.getWidth(),

view.getHeight());
}

});

10.6.3 Model
The model has four basic variables: the x and y position of the ball, and the
amount that each of these changes from one frame (still picture) to the next.
For convenience in drawing the ball, the x and y coordinates are given as the
top left corner of a square enclosing the ball. For convenience in creating a
single object for the viewer to see, the x and y are enclosed in a Point object.

private Point position = new Point(0, 0);
private int dx = 6; // change in x
private int dy = 4; // change in y

The model uses a Timer to add dx to x and dy to y at 40-millisecond
intervals, or 25 times a second. This is sufficient to give the illusion of motion.

timer = new Timer(40, new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {

makeOneStep();
}

});

At each step, the x position is advanced by dx, and the y position by dy.
A “bounce” occurs when the ball goes too far to the left or too far to the
right, and this is accomplished by changing the sign of dx.

position.x += dx;
if (position.x < 0 || position.x >= xLimit) {

dx = -dx;
position.x += dx;

}

The code for updating position.y is almost identical.

The model represents a ball bouncing around within a bounding box. It
is irrelevant to the model that the bounding box corresponds to the edges

Threads and Animation ▪ 199

of a window. It is perfectly legal to draw outside a window; anything
drawn there simply isn’t visible.

To make the new position available to other classes, the model has a
PropertyChangeSupport object (named pcs). This is public so that it
can be accessed by the view class.

public PropertyChangeSupport pcs;

Each time the model completes a step, it tells pcs to fire off an event
containing the new value of the ball’s position.

this.pcs.firePropertyChange("position", null,
position);

10.6.4 View
The task of the view class is simply to clear the window and draw a ball in it
each time it receives a PropertyChangeEvent. This means it has to “listen”
for those events. To do this, it implements PropertyChangeListener.

public class View extends JPanel
implements PropertyChangeListener {…}

It has to provide a listener for the events:

@Override
public void propertyChange(

PropertyChangeEvent event) {
position = (Point) event.getNewValue();
repaint();

}

But this isn’t enough; one more step is required: The View class is now a
listener, but the same PropertyChangeSupport object used earlier must
be told about it.

model.pcs.addPropertyChangeListener(this);

You can think of the View as “subscribing” to the series of events sent out
by pcs.

200 ▪ Quick Java

Appendix A:
Code for BouncingBall

BOUNCING BALL: CONTROLLER

/**
* This is an example of the basic "Bouncing
* Ball" animation, making use of the Model-
* View-Controller design pattern and the
* Timer and PropertyChangeSupport classes.
*/

import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.ComponentAdapter;
import java.awt.event.ComponentEvent;
import java.util.Timer;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JPanel;

/**
* The Controller sets up the GUI and handles
* the controls (in this case, buttons).
* @author David Matuszek
*/

201

public class Controller extends JFrame {
JPanel buttonPanel = new JPanel();
JButton runButton = new JButton("Run");
JButton stopButton = new JButton("Stop");
Timer timer;

/**
* The Model is the object that does all
* the computations. It is independent
* of the Controller and View objects.
*/
Model model;

/**
* The View object displays what is
* happening in the Model.
*/
View view;

/**
* Runs the bouncing ball program.
* @param args Ignored.
*/
public static void main(String[] args) {
Controller c = new Controller();
c.init();
c.display();

}

/**
* Sets up communication between the
* Model and the View.
*/
private void init() {
model = new Model();
view = new View(model);

}

/**
* Displays the GUI.
*/
private void display() {
layOutComponents();

202 ▪ Appendix A: Code for BouncingBall

attachListenersToComponents();
setSize(300, 300);
setVisible(true);
setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);
}
/**
* Arranges the components in the GUI.
*/
private void layOutComponents() {
setLayout(new BorderLayout());
this.add(BorderLayout.SOUTH, buttonPanel);
buttonPanel.add(runButton);
buttonPanel.add(stopButton);
stopButton.setEnabled(false);
this.add(BorderLayout.CENTER, view);

}

/**
* Attaches listeners to the components
* and schedules a Timer.
*/
private void attachListenersToComponents() {

// The Run button starts the Model
runButton.addActionListener(event -> {
runButton.setEnabled(false);
stopButton.setEnabled(true);
model.start();

});
// The Stop button pauses the Model
stopButton.addActionListener(event -> {
runButton.setEnabled(true);
stopButton.setEnabled(false);
model.pause();

});
// When the window is resized,
// the Model is given the new limits
this.addComponentListener(

new ComponentAdapter() {
@Override
public void componentResized(

ComponentEvent arg0) {

Appendix A: Code for BouncingBall ▪ 203

model.setLimits(view.getWidth(),
view.getHeight());

}
});

}
}

BOUNCING BALL: MODEL

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.Point;
import javax.swing.Timer;
import java.beans.*;

/**
* This is the Model class for a bouncing ball.
* It defines a PropertyChangeSupport object.
* @author David Matuszek
*/
public class Model {

private Point position = new Point(0, 0);
private int xLimit, yLimit;
private int dx = 6;
private int dy = 4;
private Timer timer;
public PropertyChangeSupport pcs;

public Model() {
pcs = new PropertyChangeSupport(this);
position = new Point(0, 0);
timer = new Timer(

40, new ActionListener() {
@Override
public void actionPerformed(

ActionEvent e) {
makeOneStep();

}
});
timer.stop();

}

204 ▪ Appendix A: Code for BouncingBall

/**
* Sets the "walls" that the ball should
* bounce off from.
* @param xLimit The right wall (in pixels).
* @param yLimit The floor (in pixels).
*/
public void setLimits(int xLimit,

int yLimit) {
this.xLimit = xLimit - 20;
this.yLimit = yLimit - 20;
position =

new Point(Math.min(position.x, xLimit),
Math.min(position.y, yLimit));

}

/**
* @return The balls X position.
*/
public Point getPosition() {

return position;
}

/**
* Tells the ball to start moving. This is
* done by starting a Timer that periodically
* tells the ball to make one "step."
*/
public void start() {

timer.start();
}

/**
* Tells the ball to stop where it is.
*/
public void pause() {

timer.stop();
}

/**
* Tells the ball to advance one step
* in the direction that it is moving.
* If it hits a wall, its direction
* of movement changes. The method

Appendix A: Code for BouncingBall ▪ 205

* then fires a PropertyChange event.
*/
public void makeOneStep() {

// Do the work
position.x += dx;
if (position.x < 0 ||

position.x >= xLimit) {
dx = -dx;
position.x += dx;

}
position.y += dy;
if (position.y < 0 ||

position.y >= yLimit) {
dy = -dy;
position.y += dy;

}
this.pcs.firePropertyChange(

"position", null, position);
}

}

BOUNCING BALL: VIEW

import java.awt.Color;
import java.awt.Graphics;
import java.awt.Point;
import java.beans.*;
import javax.swing.JPanel;

/**
* The View displays what is going on in
* the Model. In this example, the Model
* is only a single bouncing ball.
* @author David Matuszek
*/
public class View extends JPanel

implements PropertyChangeListener {
Point position = new Point(0, 0);
/** This is what we will be viewing. */
Model model;

206 ▪ Appendix A: Code for BouncingBall

/**
* Constructor. Adds a listener for
* PropertyChange events.
* @param model The Model whose working
* is to be displayed.
*/
View(Model model) {

this.model = model;
model.pcs.addPropertyChangeListener(this);

}

/**
* Displays what is going on in the Model.
* Note: This method should NEVER be
* called directly; call repaint() instead.
* @param g The Graphics on which to paint.
* @see javax.swing.JComponent#paint(
* java.awt.Graphics)
*/
@Override
public void paint(Graphics g) {

g.setColor(Color.WHITE);
g.fillRect(0, 0, getWidth(), getHeight());
g.setColor(Color.RED);
position = model.getPosition();
g.fillOval(position.x, position.y, 20, 20);

}

/**
* Repaints the JPanel when a
* PropertyChangeEvents is received.
* @param evt Contains the ball's position.
*/
@Override
public void propertyChange(

PropertyChangeEvent evt) {
position = (Point) evt.getNewValue();
repaint();

}
}

Appendix A: Code for BouncingBall ▪ 207

http://taylorandfrancis.com
http://taylorandfrancis.com

Index

Note to editor: To help you distinguish the computer font (Inconsolata) from the text
font, I have made the computer font larger and blue. Notice in particular that all the
symbols in the first group (from ! to ~) should be in the computer font. For the edited
index, the color should be removed and the same font size used throughout.
Note: Page numbers in bold indicate defined terms.

! (not), 6
& (bitwise and), 121
&& (and), 6
++ (add 1), 121
−− (subtract 1), 121
:: (method reference operator), 142
<< (left shift)@, 121
>> (right shift with sign fill), 121
>>> (right shift with zero fill), 121
^ (exclusive or), 121
| (bitwise or), 121
|| (or), 6
~ (bitwise not), 121

abstract classes, 126
abstract method, 124
access specifier, 27
AccountTest example, 153
active widget, 168
ad hoc testing, 147
annotation, 91
annotations in JUnit, 150
anonymous inner classes, 132
Ant, 139
API (Application Programmer

Interface), 64
applyAsInt, 143

arguments, 29
arithmetic operators, 5
ArithmeticException, 23
array, 19
ArrayList class, 118
Arrays class, 110
ASCII, 107
assert statement, 32, 47
assertion methods, 149
assignment statement, 8, 35
assumptions, 153
AWT (Abstract Window Toolkit), 157

backslashes, doubling, 117
bank account example, 77
bean, 193
BigInteger, 110
BirthdayCake class, 89
bit operators, 121
block, 8, 31, 34
BlueJ, 14
body, of a method, 31
boolean, 19
boolean values, 109
BorderLayout, 166
Bouncing Ball example, 197
bounded type parameter, 124

209

Box class, 123
brace style, 35
break statement, 34, 44
BufferedReader, 54
build tools, 138
button, 174
button group, 178
byte (numeric type), 19, 109
byte code, 138

C and C++ languages, 32
camelCase, 18
case-sensitive names, 17
cast, 25
casting numbers, 110
casting objects, 89
char type, 19
Character class, 108
character classes (in regular

expression), 117
character encoding, 107
checkbox, 177
checked exception, 23, 53
Circle class, 2
CircleApp class, 3
class, 1, 6, 67, 69
class header, 71
class method, 82
class variable, 18, 73, 82
ClassCastException, 90
code point, 108
Coin example, 134
Collection, 62
collection types, 117
color chooser dialog, 160
column, 21
combo box widget, 180
comments, 14
compact constructor, 135
Comparable, 111
comparison operators, 6
component, 165
compound statement, 31, 34
concatenation, 4, 22
condition (test), 32
confirm dialog, 158

Console, 61
constant, 18, 26
constants, in an interface, 126
constructor, 1, 7, 74, 80

invisible, 81
syntax of, 74

container, 165
continue statement, 34, 45
Controller (Bouncing Ball), 198
copy constructor, 80
Counter class, 86
custom dialog, 162

decimal integers, 105
declaration, 2, 5, 7
declare an array, 19
decrement operator, 121
default case, 43
define an array, 20
definition of variable, 5
deprecated method, 66
Deque interface, 118
deserialization, 136
design pattern, 198
dialogs, 157
diamond, 63
DiceRoller example, 186
dictionary, 63
do-while loop, 34, 39
documentation (doc) comments, 15,

76, 101
dot notation, 5, 29, 58
double (numeric type), 19
Double class, 107
downcasting numbers, 25
downcasting objects, 89
DrJava, 14

Eclipse, 9, 14
edge cases, 148
editor pane, 171
effectively final, 56
empty statement, 34, 46
enable-preview flag, 51
enableassertions flag, 47
enum, 133

210 ▪ Index

Enumeration, 119
equals method, 91
equivalence relation, 94
escape sequences, 21
escaping static, 84
event, 164
event dispatch thread, 164, 194
event-driven program, 163
Exceptions, 22
exceptions, handling, 52
executable documentation, 47
exponentiation, 6
exports (a package), 137
extends, 72

FactorFinder example, 195
field, 1, 7
field declarations, 73
file chooser, 160
FileReader, 54–56
final variables, 18, 26
final classes, 128
final methods, 128
float (numeric type), 19, 110
FlowLayout, 166
for loop, 9, 34, 40
for-each loop, 41
ForEach, 144
format specifier, 114
Formatter class, 113
function literal, 141
functional interface, 142, 169
functional programming, 141
FunctionalInterface annotation, 144

generic class, 62, 122
getter method, 98
Gradle, 139
Graphical User Interface (GUI), 157
GridLayout, 166
guarded pattern, 51
GUI (Graphical User Interface), 157

handleEvent method, 170
hashCode method, 91, 94

HashMap class, 62, 63, 118
header, 31
heap, 79
Hello World program, 10
hexadecimal numbers, 106
hierarchy, 72, 88
hypertext, 171

IDE (Integrated Development
Environment), 9, 13

identity, 93
if statement, 8, 33, 36
immediate superclass, 88
immutable strings, 22, 59, 112
immutable data structure, 144
increment operator, 121
infinite loop, 38
information hiding, 97
inheritance, 72, 88
inner classes, 129
inner language, 17
input dialog, 158
instance variable, 3, 7, 17, 73
instanceof operator, 90, 120
int (integer) type, 19, 105
IntelliJ IDEA, 9, 14
Interface, 67, 72, 124
IntUnaryOperator, 142
isLeapYear, 28
iterable object, 119
iterator, 119

Java API, 64
java.base, 2, 65, 138
java.lang, 65, 105, 138
java.util, 6, 138
javac command, 10, 138
javadoc, 16, 101
javadoc tags, 102
JavaFX, 157
JButton, 174
JCheckBox, 177
JComboBox, 180
JCreator, 14
JDK (Java Development Kit), xx

Index ▪ 211

JEditorPane, 171
JFrame, 165, 170
JLabel, 179
JMenu, 183
JMenuBar, 183
JMenuItem, 183
JPanel, 165, 170
JProgressBar, 182
JRadioButton, 177
JRE (Java Runtime Environment), xx
JScrollPane, 172
jshell, xix
JSlider, 180
JSpinner, 181
JTabbedPane, 173
JTextArea, 175
JTextField, 175
JUnit, 147, 149
JUnit test example, 153

keyboard input, 183
keys, 63

Label widget, 179
labeled statement, 44
lambda expression, 141
layout manager, 163, 166
left associative, 23
length, of string and array, 22
List, 62
List interface, 118
listener, 164, 169
ListIterator interface, 119
load file dialog, 160
local inner classes, 131
local variable, 18, 31
long (numeric type), 109
long, 19
LTS (Long Term Support), xix

magic number, 26
main method, 84
map, 63
Map interface, 118

map method, 143
Mapper class, 144
marker interface, 136
Maven, 139
member classes, 129
menus, 183
message dialog, 158
method, 1, 7, 27, 67, 75
method reference operator (::), 142
modal dialog, 158
Model (Bouncing Ball), 199
module, 2, 122, 137
money, representation of, 78
mouse input, 185
multiline string, 112
multiprocessing, 189
MVC (Model-View-Controller), 198

namespaces, 104
NaN (Not A Number), 107
NetBeans, 9, 14
new keyword, 75
newline, ‘\n’, 9
non-sealed classes, 128
NUL, 5
NullPointerException, 23, 94

Object, 1, 4, 66, 69
object assignment, 79
Object-oriented programming, 67
octal numbers, 106
operators, 24
option dialog, 159
Oracle, xx
outer language, 69
overloading methods, 30
overriding, 90
overriding equals, 93
overriding hashCode, 94
overriding toString, 92

package (access type), 71
package (directory), 1, 137
package-info.java, 103
parameter, 18

212 ▪ Index

parameter list, 27
parameterized (generic) class, 62, 122
passive widget, 168
Password class, 70
Pattern class, 116
pattern matching, 50
permits clause, 128
persistent data structure, 144
pointer, 79
precedence, 23
preview feature, 51
primitive, 4
print and println, 48
printf method, 115
printLengthOfYear, 29
PriorityQueue class, 118
privacy, reasons for, 98
private, 72
private constructor, 99
progress bar, 182
project, 1
property changes, 192
protected, 72
public, 71

Queue interface@, 118

radio button, 177
reading a file, 54
recipe analogy, 57
record, 135
reference, 78
reflexive, 94
regular expression, 116
require (a package), 137
return statement, 7, 34, 46
return type, 7, 76
right associative, 24
row, 21
RuntimeException, 54

SAM (Single Abstract Method), 142
save file dialog, 161
Scanner, 60
scope, 30

scroll pane, 172
sealed classes, 128
sending a message, 5, 8
serialization, 136
serialVersionUID, 137
Set interface, 118
setter method, 98
shadowing, 8, 92
shift operators, 121
short (numeric type), 19, 109
short-circuit operations, 24
side effect, 48
slider, 180
spinner, 181
Stack class, 62, 118
Static, 7, 82
static context, 84
static member classes, 130
static methods, 83
static variables, 18
Storage interface, 125
String, 58
string literal, 21
String type, 111
StringBuilder, 59
super method, 80, 91
superclass, 72, 88
supplementary character, 108
Swing, 157
SwingWorker, 193
switch expression, 49
switch statement:

classic, 32, 42
new, 49

symmetric, 94
synchronization, 191

tabbed pane, 173
tags, 102
talking to an object, 59
ternary operator, 120
Test annotation, 149
test framework, 147
test suite, 147
testable methods, 148

Index ▪ 213

testing exceptions, 152
text area, 175
text block, 112
text field, 175
this method, 81
thread safe, 164
thread, 164, 189
thread states, 190
throw statement, 33, 53
Timers, 192
Token, 60
tooltip, 169
toString method, 91
transient, 136
transitive (module), 138
transitive (property), 94
triangular array, 21
try-catch-finally statement, 33, 52
try-with-resources statement, 55
two-dimensional array, 21
type, 19
type parameter, 62, 122
type variable, 122, 123

unchecked exception, 23, 54
Unicode, 108
unit test, 150

upcasting numbers, 25
upcasting objects, 89
UTF-16, 107

var declarations, 104
varargs, 36
variable, 17
Vector class, 118
version number, 137
View (Bouncing Ball), 200
View, 64
void, 7, 11
void method, 46

Weekday example, 133
while loop, 8, 33, 38
whitespace, 60
widget, 165, 168
width of a number, 25
worker thread, 193
wrapper classes, 105
writing a file, 56

Xcode, 9, 14

zero-based (array), 5

214 ▪ Index

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Author
	Preface
	Versions
	Chapter 1. A Lightning Tour of Java
	1.1 Projects
	1.2 First Glimpse: The Circle Class
	1.3 Data
	1.4 Operators
	1.5 Program Structure
	1.6 Statements
	1.7 Program Execution
	1.8 Hello World

	Chapter 2. Preliminaries
	2.1 IDEs
	2.2 Comments and Tags

	Chapter 3. The "Inner Language" of Java
	3.1 Variables and Naming Conventions
	3.2 Basic Data Types
	3.2.1 Primitive Types
	3.2.2 Arrays
	3.2.3 Strings
	3.2.4 Exceptions
	3.2.5 Operators and Precedence
	3.2.6 Declarations and Casting
	3.2.7 Constants
	3.2.8 Methods
	3.2.9 Methods Calling Methods
	3.2.10 Overloading
	3.2.11 Scope
	3.2.11.1 Variables Declared in Classes
	3.2.11.2 Variables Declared in Methods
	3.2.11.3 Variables Declared in Blocks

	3.3 Statement Types
	3.3.1 Statements Also in C++
	3.3.1.1 Blocks
	3.3.1.2 Assignment Statements
	3.3.1.3 Method Calls and Varargs
	3.3.1.4 If Statements
	3.3.1.5 While Loops
	3.3.1.6 Do-while Loops
	3.3.1.7 Traditional For Loops
	3.3.1.8 For-each Loop
	3.3.1.9 Classic switch Statements
	3.3.1.10 Labeled Statements
	3.3.1.11 Break Statements
	3.3.1.12 Continue Statements
	3.3.1.13 Return Statements
	3.3.1.14 Empty Statements

	3.3.2 Statements Not in C++
	3.3.2.1 Assert Statements
	3.3.2.2 Print "Statements"
	3.3.2.3 Switch Statements and Expressions
	3.3.2.4 Pattern Matching in switch Statements
	3.3.2.5 Try-catch-finally
	3.3.2.6 Throw Statements

	3.3.3 Reading from a File
	3.3.4 Try With Resources
	3.3.5 Writing to a File

	3.4 Classes and Objects
	3.4.1 Some Useful Objects
	3.4.1.1 String Objects
	3.4.1.2 StringBuilder Objects
	3.4.1.3 Using Scanner
	3.4.1.4 Console
	3.4.1.5 Objects, Generics, and Stacks
	3.4.1.6 Maps
	3.4.1.7 The Java API

	3.5 Objects and Classes

	Chapter 4. The "Outer Language" of Java
	4.1 Class Structure
	4.1.1 A Simple Class
	4.1.2 The Class Header
	4.1.3 Interfaces I
	4.1.4 Fields
	4.1.5 Constructors I
	4.1.6 Defining Methods
	4.1.7 Example: Bank Account
	4.1.8 References
	4.1.9 Constructors II
	4.1.10 Static
	4.1.11 Escaping Static
	4.1.12 The Main Method
	4.1.13 A More Complete Example

	4.2 Inheritance
	4.3 Casting Objects
	4.4 Overriding
	4.4.1 Overriding toString
	4.4.2 Overriding Equals
	4.4.3 Overriding HashCode

	Chapter 5. Advanced Java
	5.1 Information Hiding
	5.1.1 Reasons for Privacy
	5.1.2 Getters and Setters
	5.1.3 Private Constructors

	5.2 The Inner Language
	5.2.1 General
	5.2.1.1 Ordering
	5.2.1.2 Javadoc
	5.2.1.3 Var Declarations
	5.2.1.4 Namespaces

	5.2.2 Data
	5.2.2.1 Wrapper Classes
	5.2.2.2 Integers
	5.2.2.3 Doubles
	5.2.2.4 Characters and Unicode
	5.2.2.5 Booleans
	5.2.2.6 Other Primitives
	5.2.2.7 Arrays
	5.2.2.8 Strings
	5.2.2.9 Multiline Strings
	5.2.2.10 Formatter
	5.2.2.11 Regular Expressions

	5.2.3 Collections
	5.2.3.1 Iterators

	5.2.4 Additional Operators
	5.2.4.1 instanceof
	5.2.4.2 The Ternary Operator
	5.2.4.3 Bit and Shift Operators
	5.2.4.4 Increment and Decrement Operators

	5.3 The Outer Language
	5.3.1 Generic Classes
	5.3.2 Interfaces II
	5.3.3 Abstract Classes
	5.3.4 Final and Sealed Classes
	5.3.5 Inner Classes
	5.3.5.1 Member Classes
	5.3.5.2 Static Member Classes
	5.3.5.3 Local Inner Classes
	5.3.5.4 Anonymous Inner Classes

	5.3.6 Enums
	5.3.7 Records
	5.3.8 Serialization
	5.3.9 Modules
	5.3.10 Build Tools

	Chapter 6. Functional Programming
	6.1 Function Literals
	6.2 Functional Interfaces
	6.3 Implicit Functional Interfaces
	6.4 Persistent Data Structures

	Chapter 7. Unit Testing
	7.1 Philosophy
	7.2 What to Test
	7.3 JUnit
	7.4 JUnit 5 Assertions
	7.5 Testing Exceptions
	7.6 Assumptions
	7.7 Simple Test Example

	Chapter 8. GUIs and Dialogs
	8.1 A Brief History
	8.2 Dialogs
	8.2.1 Message Dialog
	8.2.2 Confirm Dialog
	8.2.3 Input Dialog
	8.2.4 Option Dialog
	8.2.5 Color Chooser Dialog
	8.2.6 Load File Dialog
	8.2.7 Save File Dialog
	8.2.8 Custom Dialog

	Chapter 9. How to Build a GUI Program
	9.1 Event-Driven Programs
	9.2 The Event Dispatch Thread
	9.3 Import the Necessary Packages
	9.4 Make a Container
	9.5 Add a Layout Manager
	9.6 Create Components
	9.7 Add Listeners
	9.8 Sample Code
	9.8.1 JFrame and JPanel
	9.8.2 JEditorPane
	9.8.3 JScrollPane
	9.8.4 JTabbedPane
	9.8.5 JButton
	9.8.6 JTextField
	9.8.7 JTextArea
	9.8.8 JCheckBox
	9.8.9 JRadioButton
	9.8.10 JLabel
	9.8.11 JComboBox
	9.8.12 JSlider
	9.8.13 JSpinner
	9.8.14 JProgressBar
	9.8.15 Menus
	9.8.16 Keyboard Input
	9.8.17 Mouse Input

	9.9 DiceRoller

	Chapter 10. Threads and Animation
	10.1 Threads
	10.2 Synchronization
	10.3 Timers
	10.4 Property Changes
	10.5 SwingWorker
	10.6 The Bouncing Ball
	10.6.1 MVC
	10.6.2 Controller
	10.6.3 Model
	10.6.4 View

	Appendix A. Code for BouncingBall
	Bouncing Ball: Controller
	Bouncing Ball: Model
	Bouncing Ball: View

	Index

