
M A N N I N G

Piotr Sarna
Cynthia Dunlop
Foreword by Bryan Cantrill
Afterword by Scott Hanselman

Blogs that get read

Blog post patterns covered in this book

“Bug Hunt” posts share the thrill of finding and fixing some elusive bug. Writing
a bug-hunting article serves to share knowledge, raise awareness about bugs you
encountered, and showcase your achievements.

“We Rewrote It in X” posts are all about rewriting an app in a new (and trendy!)
programming language, library, or framework. They promote both the rewritten
project and its new technology.

“How We Built It” posts share your most impressive engineering achievements.
Engineers writing about how they built things creates a valuable knowledge base
for the community, brick by brick (pun intended).

“Lessons Learned” posts share lessons learned from technical challenges.
Technical audiences love to learn. And one of the few things they love even more
than learning itself is learning from other people's mistakes instead of their own.

“Thoughts on Trends” posts are highly opinionated takes on industry trends.
They might reflect on the past, try to shape the future, and/or share insights on
whatever everyone is obsessing about today.

“Non-markety Product Perspectives” posts embed your product into a
genuinely intriguing and educational article. The reader learns something even if
they never touch your product—but now they’re so intrigued that they want to try
it anyway.

“Benchmarks and Test Results” posts 1) compare your company's product
against its competition, 2) compare something (e.g., infrastructure) using your
company's product, or 3) measure something independent of your products.

Writing for Developers

MANN I NG
Shelter Island

Writing for Developers

Piotr Sarna
Cynthia Dunlop

Blogs that get read

Foreword by Bryan Cantrill
Afterword by Scott Hanselman

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2025 Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

The author and publisher have made every effort to ensure that the information in this book was correct
at press time. The author and publisher do not assume and hereby disclaim any liability to any party for
any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result
from negligence, accident, or any other cause, or from any usage of the information herein.

	 Development editor: 	 Doug Rudder
Technical editor: 	 Eric Lippert

Review editor: 	 Radmila Ercegovac
	 Production editor: 	 Keri Hales

Copy editor: 	 Lana Todorovic-Arndt
Proofreader: 	 Olga Milanko

Typesetter: 	 Tamara ŠveliÊ SabljiÊ
Cover designer: 	 Marija Tudor

ISBN 9781633436282
Printed in the United States of America

To Wiktoria, Aurelia, and…

—Piotr

To David

—Cynthia

brief contents
Part 1		 Fundamentals...1

1 ■ Why write  3
2 ■ What to write  19
3 ■ Captivating readers  35

Part 2		 Nailing the writing process.....................................47
4 ■ Creating your working draft  49
5 ■ Optimizing your draft  78
6 ■ Getting feedback  120
7 ■ Ship it  131

Part 3		 Applying blog post patterns 153
8 ■ The “Bug Hunt” pattern  155
9 ■ The “Rewrote It in X” pattern  169

	 10	 ■ The “How We Built It” pattern  183
11	 ■ The “Lessons Learned” pattern  196
12	 ■ The “Thoughts on Trends” pattern  207
13	 ■ The “Non-markety Product Perspectives” pattern  220
14	 ■ The “Benchmarks and Test Results” pattern  232

vi

	 viibrief contents 	 vii

Part 4		 Promotion, adaptation, and expansion 247
15	 ■ Getting attention  249
16	 ■ From blog post to conference talk  276
17	 ■ So you want to write a book  293

A ■ Publishing and writing resources  310
B ■ AI uses and abuses  318

contents
foreword   xviii
preface   xx
acknowledgments   xxii
about this book   xxiv
about the authors   xxvii
about the cover illustration   xxviii

Part 1	 Fundamentals..1

1 Why write  3
1.1	 Why write engineering blog posts  4

Leaving your comfort zone  4 ■ Really understanding your
code  5 ■ Free peer review  5 ■ Personal brand boost  5
Career development  6 ■ Staying on top of the latest
technologies  7 ■ Improving your skills  8 ■ Attracting new
hires  8 ■ Attracting users for a developer-focused product  9
Write once, share everywhere   9 ■ Writing ≠ riches   9

1.2	 Why write: A personal perspective  10

1.3	 Excuses for not writing   11
Not a writer  11 ■ Not even a native English speaker  12
No time  13 ■ The project isn’t 100% completed  13
We don’t even have a product out yet   14 ■ It’s not new  14
It’s already available as a recorded talk   15 ■ Don’t want to leak
confidential details   15 ■ Nothing interesting to say  16

1.4	 The path forward   16

viii

	 ixcontents 	 ix

2 What to write  19
2.1	 Prioritizing ideas: The 3 Ps  20

2.2	 Topics, topics, everywhere   21
That cool thing you implemented  21 ■ A security incident
post-mortem  22 ■ How your infrastructure survived a traffic
spike (or didn’t)  23 ■ Bug hunting  23 ■ An open source
contribution  24 ■ A fun weekend project  24 ■ An interesting
design decision and tradeoff you made  24 ■ An architectural
shift you’re making  25 ■ Frustration and fatigue  26
Take a stand on some contentious topic  26 ■ Sweet numbers  27
Propose using something in an unexpected way  27 ■ Revisit
past predictions  28 ■ Capability clarification  28 ■ Capability
comparison  29 ■ Footgun prevention  30 ■ Why you’re
building something  30

2.3	 Increasing your trigger exposure  31
Social media  31 ■ Virtual communities  32 ■ Feeds and
subscriptions  33 ■ Team chat apps  33

Captivating readers  35
	  

	  
   
 

	  
 

   
   

	 .

 
	  

	  
 

   

	  
   

   

3 3.1 Standing out 36

3.2 Critical characteristics 37
Intriguing topic 37 ■ Distinctive educational core 38
Smooth delivery 39

3.3 Examples 40
A Search Engine in 80 Lines of Python 40 ■ Async Rust is a Bad
Language 41 ■ Python 3.13 Gets a JIT 42 ■ I Have Written a
JVM in Rust 43 ■ The Return of the Frame Pointers 44

Part 2 Nailing the writing process 47

494 Creating your working draft
4.1 Focus and challenges 50

4.2 Essential prep 51
 Getting a feel for how others approach the topic 52 ■ Getting a

feel for what the site publishes 53 ■ Defining your goal 54

4.3 Optional warmup 57
ticle 60 ■ Copying/pasting your notes 61

x contentsx

4.4	 Writing time   62
Getting words on the page  62 ■ Eliminating blockers  64

4.5	 PretendPiotr’s first attempt at the example blog post  66
Zig helped us migrate our data efficiently  66

4.6	 Filling in gaps  68
Did you actually cover what you intended to cover?  69
What else should you cover?   71 ■ What’s preventing it from
being viable?   75

4.7	 If you do nothing else   76

5 Optimizing your draft  78
5.1	 Focus and challenges  79

5.2	 Core (facts, focus, flow)  80
Facts  81 ■ Focus  83 ■ Flow  86

5.3	 Clarity  90
Targeting unclear bulky sentences  92 ■ Optimizing unclear
bulky sentences   92 ■ Grappling with grammar  101
Putting it all together in a process   102

5.4	 Components  103
Titles  103 ■ Introductions  107 ■ Endings  110
Headings  111 ■ Visuals  112 ■ Code  113

5.5	 Consumability  114
Keeping it human  114 ■ Making it scannable by humans  116

5.6	 If you do nothing else  117

6 Getting feedback  120
	  

	  

	  

	  
 

 
 

 

	  
   

6.1 Focus and challenges 121

6.2 Comparing writing review with code review 121

6.3 Selecting your reviewer(s) 122

6.4 Deciding when to start 123
How important and/or controversial is the topic? 124
Do you have a true “blocker” question? 124 ■ Do you feel like
you’ve done what you intended to do? 125 ■ Will there be time
for another review cycle after your tech reviewer finishes? 125

6.5 Preparing your reviewers 125
Providing background 125 ■ Specifying what you want
126

	 xicontents 	 xi

6.6	 Responding to reviewer comments  128

6.7	 Special steps for special cases  129
Nonnative English speakers  129 ■ Don’t know who to ask  129
Other organizations involved  130

6.8	 If you do nothing else   130

 
	  

	  

	  
     

     

	  
     

     
 

 

	  

	 .

 
	  

   
 

	  

	  
 

 
 

 
 

	  
   

   
 

7 Ship it 131
7.1 Focus and challenges 132

7.2 Read through the core content one final time 132

7.3 Preview in place 133
Title and headings 134 ■ Code 134 ■ Core images 135
Header image 136 ■ Videos 137 ■ Tables and lists 137

7.4 Manage metadata 138
Your keywords 138 ■ Title tag 141 ■ Meta description 142
URL 143 ■ Hyperlinks 144 ■ Images 145 ■ Taxonomies:
Categories, tags, and topics 146 ■ Featured (thumbnail)
images 148

7.5 If you do nothing else 151

Part 3 Applying blog post patterns 153

8 The “Bug Hunt” pattern 155
8.1 Purpose 155

Knowledge dump 156 ■ Global bug awareness 157
Bragging 157

8.2 Audience 157

8.3 Examples of “Bug Hunt” blog posts 158
 Hunting a NUMA Performance Bug 158 ■ Why Is My Rust

Build So Slow? 159 ■ How a Single Line of Code Made a 24-core
Server Slower Than a Laptop 159 ■ Lessons from Debugging a
Tricky Direct Memory Leak 160 ■ ZFS Is Mysteriously Eating
My CPU 161

8.4 Characteristics 161
vidence everywhere 162 ■ Expert friendly 164
Educational 164

xii contentsxii

8.5	 Dos and don’ts  164
Check if anyone (your boss, your boss’ lawyers) will be upset by your
transparency  165 ■ Do a technical deep dive  165
Be brutally honest about all your failures  165 ■ Include
numbers, benchmarks, metrics, and flame graphs  166
Don’t give away too much, too soon—keep the tension
building  166 ■ Don’t make overeager readers hunt too hard for
the fix  166 ■ Add breaking points wherever necessary  166
Don’t suck the life out of it  167 ■ Don’t forget to thank those who
helped along the hunt  167 ■ Extrapolate  167

9 The “Rewrote It in X” pattern  169
9.1	 Purpose  170

Evangelism  170 ■ Project promotion  171 ■ Community
development  172 ■ Ranting  172

9.2	 Audience  172

9.3	 Examples of “We Rewrote It in X” blog posts  173
Why I Rewrote My Rust Keyboard Firmware in Zig: Consistency,
Mastery, and Fun  173 ■ How Turborepo is Porting from Go to
Rust  174 ■ Why Discord Is Switching From Go to Rust  174
From Zero to 10 Million Lines of Kotlin  175 ■ Why
We at $FAMOUS_COMPANY Switched to $HYPED_
TECHNOLOGY  176

9.4	 Characteristics  176
Suitable for language newbies  177 ■ Practical  177
Tremendously templated structure  178

9.5	 Dos and don’ts  179
Start by explaining your rewrite motivation  179 ■ Provide
background on your project  180 ■ Don’t gloss over the rough
parts  180 ■ Share the resources you used  181

10	 The “How We Built It” pattern  183
	 10.1	 Purpose  184

Pioneering  185 ■ Flexing muscles  185 ■ Free peer
 

	  

	  

   

review 185

10.2 Audience 186

10.3 Examples of “How We Built It” blog posts 186
How Prime Video Updates its App for More Than 8,000 Device
Types 186 ■ Twitter’s Recommendation Algorithm 187

	 xiiicontents 	 xiii

How We Built Notification Rate Limiter for Eight Billion
Notifications Per Day for 400 Million Monthly Active Users  188
How We Built Scalable Spatial Data and Spatial Indexing in
CockroachDB  189 ■ Ship Shape  190

10.4	 Characteristics  191
Not always reproducible  191 ■ Serve as a knowledge base  191
Pluralis maiestatis  192 ■ inb4  192

10.5	 Dos and don’ts  193
Agree on the scope early  193 ■ Make graphics a first-class
citizen  193 ■ Don’t rush it  194 ■ Prepare for (un)constructive
criticism  194

11	 The “Lessons Learned” pattern  196
	 11.1	 Purpose  197

Self-reflection  197 ■ Storytelling  198 ■ Kickstart  198

11.2	 Audience  198

11.3	 Examples of “Lessons Learned” blog posts  199
25% or 6 to 4: The 11/6/23 Authentication Outage  199
Herding Elephants: Lessons Learned from Sharding Postgres at
Notion  200 ■ Something You Probably Want to Know About if
You’re Using SQLite in Golang  201 ■ Lessons Learned Scaling
PostgreSQL Database to 1.2bn Records/Month  201 ■ Lessons
from Stripe  202

11.4	 Characteristics  203
Diary-like  203 ■ Imprintable  204 ■ Reflections and
ruminations  204

11.5	 Dos & don’ts  204
Be humble  205 ■ Don’t forget  205 ■ Don’t turn on full diary
mode  205 ■ Encourage interaction  205

12	 The “Thoughts on Trends” pattern  207
	 12.1	 Purpose  208

Continuous delivery  209 ■ Retrospection  209 ■ Shaping
 

	  

	  
 

 

the future 209

12.2 Audience 209

12.3 Examples of “Thoughts on Trends” blog posts 210
 I Want Off Mr. Golang’s Wild Ride 210 ■ How to Think

he

xiv contentsxiv

Honeymoon  212 ■ Software Architecture is Overrated, Clear and
Simple Design is Underrated  213 ■ How io_uring and eBPF
Will Revolutionize Programming in Linux  214

12.4	 Characteristics  215
Opinionated and persuasive  215 ■ Provocative  216
Idiosyncratic  216

12.5	 Dos & don’ts  217
Be famous  217 ■ Consider the elements of persuasion  217
Be bold  218 ■ Roast  219 ■ Don’t just roast  219
Don’t just praise  219

13	 The “Non-markety Product Perspectives” pattern  220
	 13.1	 Purpose  221

Product placement  222 ■ Teaser  222 ■ Hiring  222

13.2	 Audience  222

13.3	 Examples of “Non-markety Product Perspectives” blog
posts   223

We Put a Distributed Database in a Browser—And Made a Game
of It!  223 ■ 32 Bit Real Estate  224 ■ System Dependencies
Are Hard (So We Made Them Easier)  225 ■ Why fsync():
Losing Unsynced Data on a Single Node Leads to Global Data
Loss  226 ■ So You Think You Want to Write a Deterministic
Hypervisor?  226

13.4	 Characteristics  227
Technical  228 ■ Behind the scenes  228 ■ Subliminal  228

13.5	 Dos & don’ts  229
Introduce yourself  229 ■ Don’t sell  229 ■ Be balanced but
don’t bash  230

14	 The “Benchmarks and Test Results” pattern  232
	 14.1	 Purpose  234

Benchmarketing  234 ■ Subtle benchmarketing  234
Community service  234

14.2	 Audience  235

14.3	 Examples of “Benchmarks and Test Results” blog posts  235
AWS Graviton2: Arm Brings Better Price-Performance than
Intel  235 ■ The Relative Performance of C and Rust  236

	 xvcontents 	 xv

Redpanda vs. Kafka: A Performance Comparison  237
The Effect of Switching to TCMalloc on RocksDB Memory
Use  238 ■ How Much Does Rust’s Bounds Checking Actually
Cost?  239

14.4	 Characteristics  241
Numeric and visual  241 ■ Guilty until proven innocent  241
Quasi academic   242

14.5	 Dos & don’ts  243
Read Brendan Gregg’s “Systems Performance”  243 ■ Show how
to reproduce the results  243 ■ Don’t exaggerate  243 ■ Don’t
neglect  243 ■ Boil it down, spell it out  244

Part 4	 Promotion, adaptation, and expansion ... 247

15	 Getting attention  249
	 15.1	 Choose your own adventure  250

15.2	 Sharing across social and virtual communities  251
Connecting with the community  252 ■ Sharing (and discussing)
your blog post  254 ■ Keeping it alive  260

15.3	 Publishing in selective tech publications  260
Why bother?  261 ■ Why not?  262 ■ Considerations   262
Tips  263

15.4	 Syndicating simulacra   264
Why bother?  264 ■ Why not?  265 ■ Considerations  265
Tips  265

15.5	 Guest blogging  266
Why bother?  266 ■ Why not?  266 ■ Considerations   267
Tips  267

15.6	 Participating in podcasts and livestreams  267
Why bother?  268 ■ Why not?  268 ■ Considerations  268
Tips  269

15.7	 Sharing at conferences  269

15.8	 Measuring the effects   270
The blog post   270 ■ How people are finding the blog post  272
Who’s reading and how  273 ■ Social and community
engagements  273

xvi contentsxvi

16	 From blog post to conference talk  276
	 16.1	 The path to speaking  277

Piotr’s path  277 ■ Why speak at conferences?  278
Why not?  279

16.2	 Identifying and evaluating opportunities  280
Fit  281 ■ Reach and promotion  281 ■ Logistics  281

16.3	 Submitting your proposal  282
Reusing/rethinking your blog post  283 ■ Submission tips  284

16.4	 Converting your blog post to a talk  285
Start with the most important takeaway  286 ■ Map out the slide
flow  286 ■ Develop individual slides  287 ■ Prepare speaker
notes  288

16.5	 Promoting the talk  289

16.6	 Rehearsing  289

16.7	 Delivering  290

16.8	 Following up  291

17	 So you want to write a book  293
	 17.1	 Why write a book?  294

You have a vision for a book that begs to be written  294
You want to anchor yourself as an expert  295 ■ You want an
excuse to immerse yourself in a topic  295 ■ You want to level
up your writing  296 ■ You have an innate urge to share and
teach  296

17.2	 Why not?  296
The topic isn’t well-suited to a book  297 ■ It’s just not a great fit
for you—at least not right now  297

17.3	 Alternatives to consider  297
Collaborate with co-authors  298 ■ Drip it out through blog
posts  299 ■ Become a technical reviewer  300

17.4	 Publishing considerations  300
Not all publishers are created equal   301 ■ Publishers bring
an impressive team of experts  301 ■ Working with publishers
is a multithreaded process   303 ■ If you work with a publisher,
it’s not just “your” book  303 ■ Highly specialized topics lend
themselves to self-publishing  304 ■ Self-publishing thrives

	 xviicontents 	 xvii

when supported by a brand   305 ■ Different options, different
considerations  305

17.5	 Navigating the proposal process  305
Get down to business  307 ■ Details, detail, details  307

17.6	 Go forth and write  308

appendix A	 Publishing and writing resources  310

appendix B	 AI uses and abuses  318

		 afterword	 334

		 index  336

foreword

“You’re not writing enough.”
 It was May 31, 2008, and I was at UC Berkeley, listening to Pat Helland eulogize data-
base pioneer Jim Gray. (Fittingly, I wrote about attending the tribute: https://mng
.bz/Dpln.) Over a year earlier, Gray had been tragically lost at sea and was presumed
deceased; the computer science community had now gathered to pay tribute to him,
and to the influence he had had on the domain and its practitioners.
 I had known Gray only by his works, but with each passing speaker, the throughlines
of his life emerged: not merely of an exceptional thinker and extraordinary researcher,
but of an engaged mentor; a connector; a bridge. Of the recollections, it was Helland
relaying being admonished by Gray that I found particularly resonant:

He always said, “write, write, write.” He looked at me and said, “Pat, you’re not writ-
ing enough.” For twenty years, he told me “You’re not writing enough.” And he was
right—and I still tell myself “You’re not writing enough.”

—Pat Helland, Tribute to Honor Jim Gray, May 31, 2008
 (https://mng.bz/NBvN)

Hearing Helland give voice to Gray’s words was a revelation for me: while I had always
viewed writing as personally important, Gray pointed me to its larger purpose of serv-
ing our collective craft. To write is not just to polish and sharpen our own thinking, but
also to collaborate with our fellow practitioners and to bridge to future generations—
to share our findings and perspectives so others can benefit from our experience and
wisdom, just like we have learned from others. In short, while it is our work that gives us
meaning, it is our writing that allows us to connect that meaning in an enduring way to
our broader community of practitioners.

xviii

https://mng.bz/Dpln
https://mng.bz/Dpln
https://mng.bz/NBvN

	 xixforeword 	 xix

So, we can tell ourselves Gray’s admonition—that we’re all not writing enough—but
where do we start? Writing begins with reading: if we are all not writing enough, we are
also certainly not reading enough. If one is to read with an eye toward writing, you have
an apt book in your (perhaps virtual!) hands: in this volume, Piotr and Cynthia give not
merely guidance on how to write, but suggestions of what to write—of unearthing the
narrative arcs that naturally occur within the work of software practitioners. Fittingly for
a book on technical writing, they have also loaded the book with specific examples of
writing in the wild that can serve as object lessons.

As you delve into this book, let it and its examples inspire you, but remember that
reading is but a waystation to writing; as Jim Gray would remind you, you’re not writing
enough!

—Bryan Cantrill,
Piedmont, California

preface
Engineering blogs feed and foster developers’ insatiable curiosity. Think of all the
times that a blog post

¡ Sparked an idea for a new approach or project

¡ Taught you about a new technology or tool that you ended up trying out

¡ Saved you from going down a disastrous path

¡ Led you to an Aha! moment in the depths of despair

¡ Gave your project an unexpected lift

¡ Pushed you to apply for a dream job

Engineering blogs clearly matter. And we’re both obsessed with them, from two rather
different angles (the engineering side and the writing side).
 This book began as a crazy idea, a challenge to ourselves. If we collaborated, with
our vastly different experiences and perspectives, could we come up with a resource
that would bring more, and better, engineering blogs into the world? Could we help
hesitant developers overcome the barriers preventing them from sharing their ideas in
writing? Could we also help experienced engineering blog writers increase their reach
and influence?
 We didn’t pretend to know all the secrets to creating amazing engineering blog posts
(we still don’t). But we wanted to think deeply about it, learn more, and share what we
knew. So, we committed to writing a book on it—as a “weekend project” that sprawled
into early mornings and evenings across different sides of the globe. And here we are.
 While this book focuses on writing engineering blog posts, the strategies you learn
will help you make all your technical communications clearer and more
compelling.
Software engineering involves a surprising amount of writing—commit messages, code

xx

	 xxipreface 	 xxi

comments, API docs, design docs, requests for comments [RFCs], progress reports, bug
report threads, code review comments, async team messages, user interactions, and
oh all the emails. Through these channels, strong writing skills will naturally increase
your influence as an engineer. That leads to more interesting engineering experiences,
which in turn leads to more interesting blog posts that further increase your influence.
It’s a “virtuous cycle.”

We’ve had a ton of fun writing this book, and we truly hope you enjoy reading it and
applying it to your writing. We look forward to reading what you write!

acknowledgments
If you’ve ever written an engineering blog post, we owe you—immensely! This book
wouldn’t exist if it weren’t for the community of developers sharing their experiences
through writing—educating and inspiring more people than they will ever know. Spe-
cial thanks to all the authors whose work we have highlighted throughout this book.

Bryan Cantrill, thank you for the fantastic foreword, distinguished history of great
blog posts…and talks…and innovations…and all that you do to foster a collaborative
engineering community. What else can we say—except that YOU need to write more.

Scott Hanselman, thank you for sharing your blogging brilliance, offering killer sug-
gestions, and providing the perfect sendoff!

We’d like to thank the entire team at Manning for supporting this project in more
ways than we ever anticipated. Doug Rudder, our developmental editor, served as wise
Obi-Wan throughout the various twists and turns of the process. Thank you for your
steady hand and valuable guidance. Our technical editor Eric Lippert made this a much
better book by calling out our blind spots and challenging our thinking with his keen
insights. There are clearly many stories to share if our paths ever cross, and we’d love
to hear them all. We’re thrilled that we finally had the pleasure of working with Jona-
than Gennick, our acquisitions editor. We deeply appreciate you taking a chance on our
crazy idea and can’t thank you enough for making this a reality. We also want to thank
the many, many other professionals at Manning who work behind the scenes to get well-
crafted books published, promoted, and sold: Ivan Martinović, Robin Campbell, Court-
ney Kimball, Aira Dučić, Keri Hales, Lana Todorovic-Arndt, Aleksandar Dragosavljević,
Alisa Larson, Radmila Ercegovac, Olga Milanko, Tamara Švelić Sabljić, and the rest of
the amazing Manning production crew.

xxii

	 xxiiiacknowledgments 	 xxiii

Many people provided valuable feedback on various drafts of the book, and we appre-
ciate their time and expertise: Abel Sen, Adam Koch, Adam Wendell, Alireza Aghamo-
hammadi, Andres Damian Sacco, Aniket Wattamwar, Ariel Otilibili, Bill LeBorgne,
Christopher Haupt, Eric Dickey, Felipe Provezano Coutinho, Fyodor Yarochkin, Gun-
jan Paliwal, Jared Duncan, Jason Content, Javid Asgarov, Jeremy Zeidner, Joel Luukka,
Jose Alberto Reyes Quevedo, Juan José Durillo Barrionuevo, Juan Luis Barreda, Mario
Pavlov, Mary Anne Thygesen, Matthew Greene, Monica Guimaraes, Nadir Doctor,
Narayanan Jayaratchagan, Nicolantonio Vignola, Ofek Shilon, Oleg Kopychko, Oliver
Korten, Owen Morris, Patrick Regan, Pradeep Chintale, Radhakrishna MV, Rick Bun-
nell, Roman Levchenko, Ruud Gijsen, Sachin Handiekar, Satish Prahalad Gururajan,
Shiroshica Kulatilake, Simon Verhoeven, Victor Durán, Vidhya Vinay, and William
Jamir Silva. Your suggestions helped make this a better book.

We’d especially like to thank Natalie Estrada (RISE Event Co) for reviewing chapter
16 and Brian Sletten (author of WebAssembly: The Definitive Guide) for reviewing chapter
17. It’s quite a luxury to have domain experts like you just a text or Slack away!

From Piotr: I would like to thank Avi Kivity, Glauber Costa, and Pekka Enberg for mak-
ing ScyllaDB such a good environment to start writing engineering blog posts by incen-
tivizing people with promises of glory (and death threats if they don't write regularly).

From Cynthia: I would like to thank Jonathan Boswell for leading me into this field;
Wayne Ariola for keeping me challenged (and sane) over the years, companies, and
continents; and Dor Laor for unintentionally bringing me and Piotr together.

about this book
This book will guide you to write more compelling engineering blog posts—ones that
get read, shared, discussed, and remembered. You benefit from two distinctly different
perspectives: an engineer who learned to enjoy writing and a writer who spent decades
collaborating with engineers. As long as you’re interested in writing and have distinc-
tive engineering experiences to write about, we can help!

We cover pragmatic strategies for optimizing all phases of the blogging process, from
planning to promoting. Specifically, we explore

¡	Identifying and prioritizing topics that make intriguing posts

¡	Getting a draft written and reviewed as painlessly as possible

¡	Making your ideas clearer and more convincing to technical readers

¡	Tapping the strengths of AI for revision while avoiding misuses and abuses

¡	Squeezing more value out of each blog post that you publish

¡	Using your blogging success as a stepping stone to additional opportunities

One of the best ways to improve your craft is to learn from the masters. Early in the
book, we discuss core characteristics shared across successful blog posts and show how
they’re applied in real-world examples. However, a captivating bug hunt article varies
dramatically from an opinion piece roasting a highly hyped technology, or an article
that shares how a team implemented an industry-changing algorithm. That’s why the
heart of the book involves in-depth analysis of these and other blog post “patterns”—
exploring examples, characteristics, and dos and don’ts for each. By the time you’re
done reading, you’ll start seeing these patterns everywhere and (we hope!) applying
them to shape your own blog posts.

xxiv

	 xxvabout this book 	 xxv

Who should read this book
This book is designed for developers, engineers, and technical leaders of all writing
skill levels—even if you’re not a native English speaker and never took a writing class
in your life. It assumes that you’re tackling intriguing engineering challenges and want
to share your experiences, achievements, and lessons learned with the community. It is
most likely to resonate with people who are

¡ Building the next big thing at a startup

¡ Working on intriguing projects at larger tech companies

¡ Spearheading open source projects

¡ Aspiring to any of the above

Note that this book does not focus on blogging for profit (e.g., writing freelance arti-
cles about what someone else developed). Also, it was not written with DevRel or Prod-
uct Marketing professionals in mind. However, people in those roles might find many
parts helpful—especially if they collaborate closely with engineers.

How this book is organized: A road map
This book includes 17 chapters divided into four parts, plus two appendixes.

Part 1: Fundamentals

¡ Chapter 1 explores the benefits of writing engineering blog posts and common
excuses for not writing them.

¡ Chapter 2 helps you identify topics for compelling blog posts.

¡ Chapter 3 shares critical characteristics of compelling blog posts.

Part 2: Nailing the writing process

¡ Chapter 4 walks you through capturing your ideas and getting to a working draft.

¡ Chapter 5 helps you optimize the draft so it resonates with your target readers.

¡ Chapter 6 is all about getting the feedback you want/need before publication.

¡ Chapter 7 delineates what to check as you send the post off into the world.

Part 3: Applying blog post patterns

¡ Chapter 8 analyzes “Bug Hunt” blog posts that share the thrill of finding and fix-
ing some elusive bug.

¡ Chapter 9 analyzes “Rewrote It in X” blog posts that are all about rewriting an app
in a new programming language, library, or framework.

¡ Chapter 10 analyzes “How We Built It” blog posts that share your most impressive
engineering achievements.

¡ Chapter 11 analyzes “Lessons Learned” blog posts that share lessons learned
from technical challenges.

¡ Chapter 12 analyzes “Thoughts on Trends” blog posts that are highly opinion-
ated takes on industry trends.

xxvi about this bookxxvi

¡	Chapter 13 analyzes “Non-markety Product Perspectives” blog posts where the
product is embedded into a genuinely intriguing and educational article.

¡	Chapter 14 analyzes “Benchmarks and Test Results” blog posts that share various
flavors of benchmarks and tests.

Part 4: Promotion, adaptation, and expansion

¡	Chapter 15 presents options for squeezing more value from your blog post.

¡	Chapter 16 shares strategies for presenting conference talks based on your blog
post.

¡	Chapter 17 provides an honest look at what to consider if you’re intrigued with
becoming a book author.

Appendixes

¡	Appendix A runs through publishing options and noteworthy writing/reviewing
tools.

¡	Appendix B shares generative AI uses and abuses to consider.

liveBook discussion forum
Purchase of Writing for Developers includes free access to liveBook, Manning’s online
reading platform. Using liveBook’s exclusive discussion features, you can attach com-
ments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the
author and other users. To access the forum, go to https://livebook.manning.com/
book/writing-for-developers/discussion. You can also learn more about Manning’s
forums and the rules of conduct at https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions lest their interest stray! The forum and
the archives of previous discussions will be accessible from the publisher’s website as
long as the book is in print.

Other online resources
As a not-so-subtle hint to our readers, we created https://writethat.blog. We’ll be con-
tinuously updating this site with intriguing engineering blog posts, including Piotr’s
pundit commentary. It also points to a GitHub repo where we’ll keep a living list of
links to the examples referenced throughout this book as well as other resources that
might be helpful as you write that blog.

https://livebook.manning.com/book/writing-for-developers/discussion
https://livebook.manning.com/book/writing-for-developers/discussion
https://livebook.manning.com/discussion
https://writethat.blog

about the authors
Piotr Sarna is a fearless technologist who dives headfirst into fun engineering chal-
lenges such as forking SQLite for modern distributed apps, introducing Rust & Wasm
into C++ projects, and contributing to the Linux kernel. He’s an experienced book
author, tech reviewer, speaker, and blog author. Piotr graduated from University of
Warsaw with an MSc in computer science.

Cynthia Dunlop has been writing for and with developers for 20+ years, covering
topics across C/C++, Java, testing, DevOps, and back-end infrastructure. She’s behind
several technical books, hundreds of articles, and countless blog posts. Cynthia holds a
BA from UCLA and an MA from Washington State University, where she taught writing
once upon a time.

xxvii

about the cover illustration
The figure on the cover of Writing for Developers is “Likanien,” or “A man from Lika,”
taken from Balthasar Hacquet’s Images and Descriptions of Southwestern and Eastern
Wenda, Illyrians, and Slavs, published in 1815.

In those days, it was easy to identify where people lived and what their trade or station
in life was just by their dress. Manning celebrates the inventiveness and initiative of the
computer business with book covers based on the rich diversity of regional culture cen-
turies ago, brought back to life by pictures from collections such as this one.

xxviii

Part 1

Fundamentals

What factors help blog posts get read to the end, shared, and discussed?
How can you find and prioritize promising blog post topics that complement
your specific engineering experiences? And what kind of benefits might you
gain once you translate your ideas into your own captivating blog posts? The first
chapters of this book answer those questions:

¡	Chapter 1 explores the benefits of writing engineering blog posts, as well as
common excuses for not writing them.

¡	Chapter 2 helps you identify topics for compelling blog posts.

¡	Chapter 3 shares critical characteristics of compelling blog posts.

1Why write

This chapter covers

¡	The benefits of writing engineering blog posts
¡	Excuses for not writing
¡	A general book overview

Sharing technical experiences and expertise is an integral part of engineering cul-
ture. For developers interested in writing words as well as writing code, engineering
blogs open up intriguing new possibilities. From startups to big tech, people write
blog posts for a variety of reasons that we’ll explore more deeply in a bit:

¡	Connecting with the community

¡	Advancing the state of the art

¡	Expanding career opportunities

¡	Gaining recognition as an expert in a particular niche

¡	Building interest in products and projects

¡	Simply collecting and clarifying their thoughts

3

4  

1.1	

1.1.1	

C

Although some engineers already enjoy writing about their achievements, many are
still flat-out terrified by the thought of publishing. That’s fair. Most engineers never
set out to become writers. And while writing code might seem distinctly different from
writing words, there are actually many commonalities and your skill at coding can help
you with writing.
 Moreover, if you’re already working on complex technical problems, seeing how far
you can push your technology of choice, and/or building the next big whatever, you’re
already about 95% of the way to delivering an interesting engineering blog post. As
long as you’re building the deep technical experience that’s fundamental, there are
many tricks that can help you capture your insights in blog posts that get read and
remembered. That’s where this book comes in.
 We’re here to help you write technical blog posts that stand out, fast. You’ll read
about the core blog post patterns that are most common today (e.g., “The Bug Hunt,”
“How We Built It,” “Lessons Learned,” “We Rewrote It in X,” “Thoughts on Trends”),
dos and don’ts for each, and pragmatic ways to capture your ideas in a written piece that
keeps readers engaged. In addition to detailed examples of what works and why, we’ll
share strategies for how to make the biggest impact with minimal revision time, how
to thoroughly refine a critical work, and how to squeeze more value from your writing
time and effort.
 While this book focuses on engineering blogs, its strategies help you make all
your technical communications clearer and more convincing. That includes various
flavors of writing such as commit summaries, code review comments, docs, proposals,
reports,requests for comments (RFCs), presentations, even videos if you’re so inclined.

 But first things first. Why write engineering blog posts at all? Some benefits are less
obvious than others. Let’s start with the many ways writing blog posts can help you and
then zero in on a personal perspective (Piotr’s).

Why write engineering blog posts
If you want to start writing but are desperately looking for a compelling motive to
finally take action, you’ve come to the right place. And if you’re an experienced writer
who has fallen out of practice, perhaps a few moments reflecting on the benefits will
inspire you to reprioritize writing.

Leaving your comfort zone

Enjoying small personal challenges is often “a thing” for programmers. It may manifest as

¡ Coding daily HackerRank challenges

¡ Participating in the Advent of Code

¡ Enduring personal all-night hackathons

¡ Finishing the 100 pushups program

¡ Catching up on those long-abandoned piano lessons

So, why not write a blog post or two, just to show yourself that you can do it? Get-
ting started requires an act of willpower, and the outcome is just as satisfying as finally

5Why write engineering blog posts

	

	

	

figuring out the asymptotically optimal solution for an algorithmic problem you’ve
been trying to solve for hours.

1.1.2 Really understanding your code

Want to see if you really understand your code? Try explaining it to someone else. Writ-
ing a blog post can help you with that.
 First of all, you need to articulate the problem and solution in natural language.
That’s proven to be a helpful debugging mechanism, which even earned an adorable
name: rubber duck debugging. Instead of talking to a bathtub toy, you can write your
thoughts down for other people to read and learn from.
 Writing a blog post sometimes exposes that your code has a terrible logical fallacy,
missed a corner case, or was designed incorrectly. Quite often, blogging becomes yet
another part of the iterative programming technique. Describing the design and imple-
mentation becomes just a phase of development, followed by returning to the code to
fix the mistakes and rethink incorrect assumptions.
 All those blog posts also improve knowledge retention. If you can just redirect some-
body to your blog post instead of explaining your design decisions over and over one-
on-one, it saves everyone’s time. And if you move on, it’s nice to know that people who
take over the code can onboard themselves with your articles describing how you found
and fixed the problems. You also tend to get your work vetted by the community, as
described in the next section.

1.1.3 Free peer review

Code review is a vital part of most successful programming projects. Very few people
have the superhero brains capable of hacking a complicated system on their own and
maintaining it later. The more people review the code, the better. A small number of
reviewers can lead to bias, especially in small startup companies where like-minded
people collaborate on a common problem.
 Writing a public blog post is an implicit call for (unsolicited) help. One certain thing
about the online community of programmers is that they love pointing out other peo-
ple’s mistakes and suggesting their own ideas as ultimate sources of truth.
 Our dear colleague Pekka Enberg often jokingly says: “Don’t read the comment sec-
tions on the orange site” (referring to the distinctive coloring theme of the Hacker
News web page). Although the online commentary is negative more often than not, it’s
still just as valuable, maybe even more so. Comment sections on various web pages are
accurately called “cesspits” and other derogatory terms. Yet, among all the vitriol, you
can often find genuine suggestions on how to improve. It’s quite common for authors
to publish an errata for both the blog post and the corresponding code because some-
body was kind enough to point out a mistake in the comment section.

1.1.4 Personal brand boost

Thousands of self-proclaimed life coaches infiltrating social media sites try to convince
you that improving your personal brand is very important, especially if you want to

6  

1.1.5	

C

earn tens of thousands of dollars a day, just like them. Writing blog posts isn’t a direct
line to wealth (see the “Writing ≠ riches” section), but it certainly is a good start for
earning recognition and respect across the tech community.
 Publishing a blog post is usually naturally followed by promoting it on social media.
You’ll want to share your own blog post in a non-cringey way (we’ll talk more about this
later), and the publisher (often your company) will most likely promote it, too. That’s a
prime opportunity to slowly build your audience and get noticed. A good blog post can
earn you the label of “that person who wrote an interesting article on XYZ.” This builds
the foundation for a personal brand.
 That seed audience helps expand your reach. If you write additional blog posts or
comments on topics that resonate with this group, they’re likely to share your posts
across their own network. Rinse and repeat, and you’ll be an influencer writing viral
content in no time (or, in reality, you’ll gain a reputation for writing blogs worth read-
ing and sharing). Having a large group of regular readers also increases the chances of
your blog post landing on the trending list of an article aggregator, like Hacker News or
Reddit.
 Once you’ve reached some critical mass of exposure, interesting people start
approaching you, and leaders in that space begin to recognize you as an expert. Blogs
are a prime hunting ground for publishers, conference organizers, and other talent
scouts. It’s not uncommon for a single successful blog post to spark invitations to meet-
ups, conferences, discussion panels, podcasts, and similar. Others might just contact
you with a congratulatory note. Regardless of the reason, each such contact is an oppor-
tunity to stay in touch with a community peer who cares about what you’ve been work-
ing on.
 If you have a personal web page, a list of your published blog posts is a great addition
to it. And if you don’t have a personal web page, the fact that you can list your published
blog posts is a great excuse to go and build one!

Career development

C

7Why write engineering blog posts

	

or shows some nice engagement via Medium claps, social media reactions, and similar,
it’s even more prestigious. Put yourself in the hiring manager’s shoes. Would you rather
spend time on someone who has authored an intelligible blog post on a technology that
the team uses or someone who simply tosses the technology name into a long laundry
list of “competencies”?
 Blogs are also helpful for internal advancement. Wish leaders who don’t read code
had some idea what you’ve accomplished and the challenges you faced? This is your
chance. Moreover, publishing a compelling blog post could help make the case for
a promotion. For example, completing and communicating a significant technical
achievement is often a key factor for promotion to staff engineer. And remember the
pain of completing the “what you did this year” section of the dreaded annual perfor-
mance review forms? Having blog post URLs is quite handy when it’s time to remember
what you did and explain complex projects in n characters or less.
 Moreover, the writing skills that you develop and refine while working on blogs
help your career in other ways too. For example, if you want your design decisions to
be adopted, you will need to communicate their merit in writing so your ideas can be
reviewed asynchronously by multiple stakeholders. Being able to produce correct code
is one thing. If you want to have a greater influence, you often need to convince others
(and sometimes yourself as well) that your proposed specification, architecture, and
design all make sense.

1.1.6 Staying on top of the latest technologies

Readers turn to tech blogs to learn about modern technology, bleeding-edge software,
and the latest groundbreaking hardware. When a new CPU architecture gets released,
you can expect to see a surge of articles describing how it works (or doesn’t), whether
it’s a good fit for some specific use cases, whether it was a life-changing performance
boost for somebody, or whether it was rather disappointing after running some real-
life benchmarks.
 Given that there’s a sizable audience hungry for new content about new technolo-
gies, why not volunteer to learn and share something interesting? That’s a very healthy
environment for an engineer—staying up to date with modern technology quickly pays
off. It not only helps you with your daily duties but also increases the chances you’re still
a valuable asset on the job market in case you ever want (or require) a career change.
We all know firsthand that it’s quite tempting to become lazy in a cushy programming
job (please don’t tell my boss that I typed that), and regular blogging about the latest
technologies is a perfect solution for this.
 Weekend programming projects also help—twofold. Of course, they help you stay
up-to-date with the latest tech. But what’s more important here, they’re great mate-
rial for a blog post. A fair number of popular technical blog posts are just descriptions
of unusual (reverse-engineering a Christmas lights controller), nerdy (a new toy Raft
implementation), melancholic (one about your good ol’ gameboy™), or otherwise
impressive weekend projects.

8  

1.1.7	

1.1.8	

C

Improving your skills

Blog posts are a perfect training ground for all kinds of skills, not just technical ones.
The process of putting your thoughts into words simultaneously boosts your writing,
language, and engineering skills.

W

Writing proficiency comes with practice. The more you write, the better you become at
expressing ideas, structuring content, and crafting clear sentences. Consistent practice
(and feedback—if you’re lucky enough to have somebody review your work) contributes
significantly to your writing skills. It also helps you find and polish your writing style.
 With each post you write, the next one becomes easier and more natural, like another
entry in your diary. Every time you write, you’re essentially considering and navigating
countless decisions with every word, sentence, and revision. Each negotiation builds up
a personal knowledge base that you can subconsciously tap the next time you’re stuck.
And confronting your own writing challenges prepares you to provide constructive
feedback for other people’s blog posts. That, in turn, creates a healthy writing culture
among your colleagues and peers.

L

Regular writing sessions provide an opportunity to enhance language skills in the con-
text of your work. This is especially valuable for nonnative English speakers. You’ll be
forced to think hard about vocabulary (both technical and nontechnical), grammar,
and overall proficiency. It’s a great exercise, especially in the age of automatic gram-
mar-checking software and all kinds of tools for finding synonyms, antonyms, and all
the other -nyms. Rather than mechanically accepting suggestions, you learn as you go!

E

Writing a blog post creates internal pressure to verify all the information you’re about
to publish under your name. It compels you to research the topic, double-check that
the code snippets are sensible and correct, and browse the internet for similar articles.
And that’s great! It is motivation to learn in its purest form because if you don’t do it,
you may make a fool of yourself online. You usually won’t, of course, but try to explain
that to your impostor syndrome. In the rare event that you actually do make a fool of
yourself, remember there’s lots of educational value in feeling ashamed, followed by
acknowledging the failure and correcting the problem.

Attracting new hires

C

9Why write engineering blog posts

	

	

	

1.1.9 Attracting users for a developer-focused product

If you’re working on a developer-focused product and you want it to be broadly adopted,writing
an engineering blog post about it is an effective way to reach and educate target users.

Spending thousands of dollars on carefully crafted paid ads for a developer-fo-cused product
is typically like throwing money into the wind. Most ads are blocked, and those that evade

defense mechanisms like pi-holes and whatnot are likely to breed con-tempt. An interesting
blog, however, could actually meet the eyeballs of your target users.

To be clear, we’re not suggesting you use a technical blog to try to sell the reader on why
your product is the most amazing thing ever. That’s actually worse than all the pretty ads

because a markety blog is much easier to shame on Hacker News or other comment
sections of choice. But if you write authentic blog posts that share how you engineered your

differentiators or implemented critical architectural changes, there’s
a good chance they will earn some eyeballs. And that added exposure could let new
users know that you exist or motivate on-the-fence users to finally take the plunge.

1.1.10 Write once, share everywhere

You have a limited amount of time on this planet. Why waste your precious minutes repeat-
ing the same thing over and over again? Capture it in a blog. Think about all the critical
points that need to be covered, express them clearly in a written blog, and tada! You never
need to do it again. Just link back to the blog post whenever appropriate, for example:

¡ Writing one-on-one emails and Slack messages to new hires, forgetful colleagues,
or confused users

¡ Referencing the topic in user docs, commit summaries, code review comments,
and problem reports

¡ Chiming in on relevant social media discussions or forum threads

¡ Providing context in a subsequent blog post you write

By blogging your thoughts, you’re reaching more people with less typing (or talking).
Scott Hanselman, a highly influential and prolific tech blogger, is a well-known cham-
pion of this idea. As he explains it in “Do they deserve the gift of your keystrokes?”
(https://mng.bz/aVBj): “If you email someone one-on-one, you’re reaching that one
person. If you blog about it, you get the message out on the web itself, and your key-
strokes travel farther and reach more people. Assuming you want your message to
reach as many people as possible, blog it. You only have so many hours in the day.”
 If you later decide to extend or adjust your take on the topic, simply update the
related post. You don’t need to track down the 21 miscellaneous places you have already
discussed this topic and try to get them all in sync—until the next update.

1.1.11 Writing ≠ riches

Note that we deliberately didn’t mention all the money you’ll make by writing blog
posts. Some of the listed benefits, especially building your brand, could certainly have
a financial benefit. And if you’re a consultant, regular blogging is fundamental for

https://mng.bz/aVBj

10  

1.2	

C

showcasing your expertise. But reports of thriving paid newsletters and best-selling
tech books are the exception, not the rule. The underlying economics are surprisingly
discouraging.
 For some insider insight on the economics of being a full-time content creator, see
the candid blogs published by two of the most successful and well-known tech authors.
Gergely Orosz, who runs The Pragmatic Engineer newsletter that has been the #1 paid
tech Substack newsletter for a few years running, has shared specific income stats in sev-
eral blog posts (start with “I removed all affiliate links from my blog: numbers” [https://
blog.pragmaticengineer.com/affiliates/]). Martin Kleppmann, the author of the best-
selling (currently no. 1) O’Reilly book Designing Data Intensive Applications, reflects on
the unexpected success of his book in light of the reality of book publishing in “Writing
a book: is it worth it?” (https://mng.bz/gA5e).

Why write: A personal perspective
C

https://blog.pragmaticengineer.com/affiliates/
https://blog.pragmaticengineer.com/affiliates/
https://mng.bz/gA5e

	 11Excuses for not writing

	

	

 Two months passed, and I delivered another feature. This time, I proactively volun-
teered to write another blog post, something that would have been unimaginable for
the two-months-ago me. From then on, it was muscle memory to write a blog post draft
after implementing anything even remotely interesting. Engineering leaders encour-
aged everyone to write, and impressive efforts received praise from the team as well as
the company co-founders. Sometimes the posts even went viral in the programming
world, bringing yet more validation and an occasional dopamine rush.
 Looking back, I’m extremely grateful that I was gently forced to write that first blog
post. The same company also had a very healthy public speaking culture, and I found
that flipping blog posts into presentation decks and speaker notes was surprisingly sim-
ple. (More on this in chapter 16.)
 I couldn’t resist writing dozens more posts and speaking at various virtual and
in-person conferences. Some of the blog posts landed on the front page of Hacker
News, which provided surprising insight into how blogging can open the door to some
interesting career opportunities. It seems that just a few 15-minute-ish bursts of Hacker
News fame can almost instantly change recruitment outreach from spammy LinkedIn
messages into personal outreach from well-known tech leaders offering senior positions.
 Blogging also fit nicely into an internship program that the company ran for the stu-
dents at the University of Warsaw. My blogging experience helped me mentor students
through what was often the most daunting success criteria: writing a blog post describ-
ing the project, its design decisions, and results. Some of these interns’ posts ended up
trending on Hacker News, providing them with an early insight into the crazy world of
the aforementioned Hacker News fame.
 The connections I made along the way were also important—other people who write
and read blog posts often work for interesting companies or start their own. And I got
to know quite a few of them! I was invited to one of the design meetings working on
standardizing WebAssembly and its WASI subproject, met a few co-founders from the
generative AI world, casually chatted with authors of tech books I really admire, and was
offered a tech reviewer gig. And this was just a start.
 Totally hooked by this point, I convinced my colleagues to co-author a book on data-
bases. That’s how Database Performance at Scale came to life. And now, here I am, writing
drafts for the first chapters of a new book, barely a month after the last one was released.
Still worth it!

1.3 Excuses for not writing
Given all these great benefits, why isn’t every engineer blogging? Let’s take a look at a
few of the most common reasons for not writing at all, or for not writing specific blog
posts that a teammate might have suggested.

1.3.1 Not a writer

Maybe you’re not an experienced writer. But you are an engineer working on really
interesting projects with the potential to influence your global peers, building other
amazing things. People read engineering blogs to discover what’s possible, identify

12  

 

 

1.3.2	

C

new ways of approaching their challenges, and prepare for what’s next. The goal is to
inform and maybe inspire—not entertain the reader with your eloquent prose.
 To start, you just need something interesting to share. Since you’re working as a
developer, you’re most likely covered in that respect (if you truly don’t think you have
anything worth writing about, see all the topic triggers in chapter 2).

NOTE Will Larson’s blog post “Writers Who Operate” (https://lethain.com/
writers-who-operate/) takes a detailed look at how technical professionals who
remain deep in the trenches are best positioned to write the valuable content
that advances the industry.

People (especially engineers) are sometimes intimidated by the thought of writing.
If they’ve endured an unnecessarily painful blog-writing process that dragged on for
weeks or months, it’s easy to understand how they might be reluctant to start another.
Other times they’re trapped in analysis paralysis, staring at a blinking cursor without a
clear idea of how to translate the tangle of thoughts in their head into an article that
some unknown reader will understand. Or maybe they’re still haunted by a time when
an academic paper returned bloody with redlined grammatical nitpicks.
 It doesn’t have to be that hard. We’ll show you how to focus your efforts on what
matters most (getting your point across clearly and convincingly) while delegating time
drains such as checking punctuation usage to automation and AI.

NOTE To be clear, we are absolutely not going to recommend that you use AI
to actually generate any text for your blog posts. We’ll even provide specific
examples of what happens when you attempt to do so (spoiler: it ranges from
banality to hilarity). But there are ways that AI can assist with reviewing and
revising what has already come out of your brain. That’s what we’ll cover in this
book.

Not even a native English speaker

C

https://lethain.com/writers-who-operate/
https://lethain.com/writers-who-operate/

	 13Excuses for not writing

	

	

¡ Many of your future readers are not native English speakers either. They care
about the engineering aspect of your post being interesting, not its grammar and
grace.

¡ Chances are that your company already employs a few native English speakers
who’d be happy to review and fix any linguistic inconsistencies.

¡ If the only negative feedback you receive from your technical blog post is about
grammar nitpicks—great job! It’s clear proof that the engineering part is flawless.

1.3.3 No time

Even if your manager prioritizes writing, your other responsibilities don’t magically
disappear when you’re ready to write. Maybe you get up early to spend some time on it
while you’re focused and refreshed—but then pesky bug reports and customer prob-
lems end up taking precedence. And by the time it all settles down, you’re likely not
in the mindset to tackle something outside your comfort zone, like writing. But maybe
you can carve out some decent blocks of time here and there. For example,

¡ Waiting for code to compile or tests to run

¡ That canceled meeting

¡ When you’re blocked on your current task but not ready to take on a new one

¡ When your vacation starts in two days, so there’s no point in starting a major new
project now

How much time do you really need? Writing can be a never-ending task if you let it.
There’s no clear point of completion like the moment when your code compiles and
passes some rudimentary test. You could spend days, months, or even years continu-
ously tweaking something far past the point of diminishing returns. Or you could just
get it done.
 If you’re spending months on a blog post, you’re either suffering from a crazy cor-
porate communications review process or you’re sitting on some prime opportunities
to streamline your writing process. Let’s hope it’s the latter—that means we can help!

1.3.4 The project isn’t 100% completed

You probably don’t need to postpone writing about your project until it’s released into
production, maybe even a few versions along to make sure it’s stable. Of course, reach-
ing a major project milestone is a great time to write about it. You’re probably remiss
if you pass up the opportunity to share at least a short blog post at every pivotal point.
 But releases aren’t the only opportunity to write. What about all the discoveries lead-
ing up to that point? The architectural decisions behind the design and a discussion
of the tradeoffs? The reason why you’re working on this in the first place? Some hard-
fought lessons learned that your users won’t care about but could save your engineering
peers some major headaches?
 We could go on and on (and we will, as we run through blog post ideas in the
next chapter). But the bottom line here is that if it’s a nontrivial project, there are

14  

1.3.5	

1.3.6	

C

probably quite a few interesting angles if you venture beyond the standard “we released it”
blog post.

We don’t even have a product out yet

You certainly can write blog posts before you have an MVP or even a clear idea how
to build one. But should you? The critical factor here is whether your company is in
stealth mode or eager to build buzz. If it’s the former, you’re excused from
publishing blog posts related to your product. That doesn’t mean you can’t start
planning and even drafting what you’ll publish when the time is right, though.

 Once you’re ready to start getting some attention, there’s a range of blog post angles
you could take:

¡ Announce your existence and vision (likely reserved for founders).

¡ Tease your vision with a bold what-if article that marks your territory and signals
something groundbreaking is in the works.

¡ Declare your manifesto, the core principles guiding your path forward.

¡ Start challenging the status quo—with or without explaining what a better
approach should involve or your specific vision for a better way.

¡ Delineate your technical goals.

¡ Tease some initial breakthroughs.

¡ Describe what you’ve selected as your tech stack and why.

You could also get into the various topics mentioned in the previous section. Again,
we’ll cover more ideas—with examples—in the next chapter.

It’s not new

C

	 15Excuses for not writing

New perspectives on not-so-new concepts are also totally valid. Different people
explain things in different ways. As Phil Eaton put it, “Even if you’re writing about a
popular topic, there’s still a chance your post gets through to someone in a way other
posts do not” (https://notes.eatonphil.com/is-it-worth-writing-about.html). For exam-
ple, two wildly popular Hacker News posts in 2023 were interesting takes on memory
allocation and load balancing (https://samwho.dev/memory-allocation/ and https://
samwho.dev/load-balancing/, respectively). Those two topics have been discussed for
ages. But the author, Sam Rose, invested tremendous thought and time in explaining
these concepts in a unique way: with visualizations and even interactive playgrounds.
And the effort paid off. The notoriously snarky comment section was actually teeming
with compliments.

All that being said, there are some topics you just don’t want to touch (like that soft
cheese that’s been nestled in the corner of your fridge for way too long). Don’t waste
your time writing about technologies and concepts that are clearly past their prime
unless you truly have something groundbreaking to say.

1.3.7	 It’s already available as a recorded talk

Fantastic. Writing a blog post will be simple then!

 

	

 We can guarantee that everyone in your target audience has not already found and
watched your video. Moreover, those who did watch it won’t remember every word. Why
not consider extending its reach by also making it available as a blog post?
 Different people prefer to consume information in different ways. Many people
would rather watch a video, where you get a better sense of the speaker’s personality
and know exactly how much time you need to commit from start to finish.
 But others prefer to read. A written article enables considerably more control over
how the information is consumed. You can easily reread critical parts and just skim
over details that don’t seem relevant. There’s no need to grab headphones or rely on
notoriously poor AI captioning. And you can always copy/paste the actual article text
(not poor AI transcriptions) into a tool that translates it into your native language or
summarizes it.

NOTE Another advantage of reading versus watching: AI-driven transcription/
captioning for technical topics is often comically bad. Here’s just one of many
gems we’ve come across in conference video captioning: “It is possible to go to
sleep by blocking in io_uring” became “It is possible to go to sleep by blocking
and I owe urine.” Enough said.

Both written and video formats are valuable, and they can even link to one another to
improve the reader’s/viewer’s comprehension of the topic. We’ll cover the “blog post
to talk” path in detail later in this book.

1.3.8 Don’t want to leak confidential details

You definitely should tread carefully here. No blogging benefits are worth the risk
of violating a non-disclosure agreement (NDA) or compromising your company’s

https://notes.eatonphil.com/is-it-worth-writing-about.html
https://samwho.dev/memory-allocation/
https://samwho.dev/load-balancing/
https://samwho.dev/load-balancing/

16  

1.3.9	

1.4	

C

competitive advantage. If you’re working in a sensitive environment, you might still be
able to write about topics such as:

¡ Your personal take on a concept, challenge, or trend that affects the broader
industry

¡ Interesting tips and tricks that your team learned about working with popular
tools

¡ How users are applying publicly announced product capabilities and what value
they’re gaining from them

We’re not attorneys, though. Before you invest any substantial time thinking about
what to write, talk to your boss and get clarity on what’s appropriate.

Nothing interesting to say

There are two variations of this: 1) you don’t believe that a particular blog post idea
or draft is interesting, and 2) you don’t feel that you can write something interesting
enough to publish. Let’s tackle them in turn.
 Sometimes you’ll hit a wall on a specific idea, and that’s fine. Publishing a specific
blog post that doesn’t add value could tarnish your “brand” as well as that of the blog
hosting it. If a particular article just isn’t clicking, feel free to set it aside. You can always
revisit it later if you have an epiphany. And even if you never publish it, chalk it up as a
learning experience.
 However, chances are that every engineer has the experiences and/or opinions to
fuel at least a handful of interesting blog posts. Please don’t give up until you’re done
reading the extensive “what to write about” discussion in chapter 2.

The path forward
C

	 17Summary

and revision process. Knowing that not every blog post warrants extensive revision time,
we suggest what to prioritize when you just need to get it done fast as well as ways to give
an exceptionally high profile post a little extra polish.
 Those core strategies should serve you well across all types of blog posts—across all
types of technical writing, really. But sometimes, the devil is in the details. Just like dif-
ferent programming languages have different principles, paradigms, and priorities,
so do different types of blog posts. A good “Look at this amazing engineering feat we
pulled off” blog post requires a somewhat different approach than a good “Why what
everyone thinks about blah is wrong” blog post, for example. That’s why we’ll go deeper
into seven common blog post patterns—sharing targeted best practices for each based
on what seems to be resonating in the field.
 Once you have a blog post—in any pattern—in progress, it’s time to think about
things such as promotion, adaptation, and extension. No matter what amazing feats or
groundbreaking ideas lie buried within your blog, it will have limited effect if your tar-
get readers can’t find it. You spent some fraction of your life writing a blog post; why not
invest a little more time to maximize its payoff? We’ll share a range of options, from easy
boosts that take just a few minutes to more extensive refactoring and extension oppor-
tunities you can apply to work that you’re particularly proud of.
 Beyond that, the path leads beyond blogs. An effective blog post makes for a smooth
transition into speaking opportunities at industry conferences. And once you’ve hit
your stride with blogging, you might even consider writing a technical book. We’ll cover
both of those options in detail, sharing commonly overlooked considerations, opportu-
nities, and lessons learned.
 No matter which options you pursue, the strategies you learn for planning, creating,
and revising technical content with your target audience in mind will help you commu-
nicate more clearly and convincingly across

¡ Async communications with teammates and curious/contentious users

¡ Doc tasks that inevitably land on your lap

¡ Proposals and code review comments where you’re trying to persuade someone
to do something new or differently

¡ Progress reports (especially as you try to explain that it really is much more com
-plicated than everyone anticipated)

¡ Performance reviews where you’re forced to capture a year’s worth of work in
n words to (hopefully) justify a salary increase or promotion

¡ The various job application materials and screeners you’ll be obsessing over if
the performance review did not yield the desired result

Summary

¡ Writing blog posts offers a broad array of benefits ranging from building connec-
tions across the tech community to honing your skills and advancing your career.

18 Chapter 1  Why write

¡	Most of the reasons cited to avoid writing blog posts (not a writer, not a native
English speaker, it’s not completed, it’s not new, and so forth) don’t hold up
under closer scrutiny.

¡	This book helps engineers draft compelling blog posts fast by sharing lessons
learned from popular blog posts alongside pragmatic writing strategies targeting
engineers.

2What to write

This chapter covers

¡	A simple litmus test for checking a topic’s potential
¡	A healthy list of topic ideas to get you started
¡	How to keep the topic ideas flowing

Selecting a promising topic is the single most important task for creating an engi-
neering blog post that gets read. A catchy title, eloquent sentences, solid code exam-
ples, even cool interactive elements—none of that matters if you’re not covering a
topic that’s a good fit for both you and your readers. The flip side of that: if you pro-
vide an impressive level of technical insight on a topic your readers truly care about,
slight imperfections (like a few rough sentences) will likely be forgiven.

How do you find these perfect topics? They’re probably lurking all around your
daily work; you just need to start identifying them as such.

This chapter focuses on how to build a healthy list of ideas that you—you in par-
ticular, not some generic engineer—should be able to develop into compelling blog
posts. We start by providing a memorable litmus test for deciding what types of topic

19

20 Chapter 2  What to write

ideas have the most potential. The bulk of the chapter focuses on getting the ideas flow-
ing, sharing all sorts of ways you might find inspiration in your daily work and across
broader industry discussions. We close by discussing ways to keep a steady flow of fresh
ideas on your radar.

2.1	 Prioritizing ideas: The 3 Ps
There’s certainly no shortage of engineering blog posts out there. And with genera-
tive artificial intelligence (AI) ready to spin off a virtually endless supply of mindlessly
regurgitated ideas, it’s getting even harder to rise above all the noise.

You’ll get a detailed look at a handful of characteristics that make a blog post stand
out, get read, and ultimately get remembered in the next chapter. But as we mentioned
at the beginning of this chapter, your topic choice is paramount. If you want to earn a
spot in the world of respected engineering blog posts, it’s absolutely nonnegotiable that
you choose a topic that’s rooted in your own experiences—something that you can pro-
vide a uniquely interesting perspective on.

To set yourself up for success, remember this handy little test when you’re evaluating
potential blog post topics. Does your topic meet at least one of the “3 Ps”? Is it about
something that you’re particularly proud of, pained by, or passionate about?

Let’s unpack those a little:

¡	Proud of—What accomplishments are you eager to show off to your engineering
peers? What’s really going to impress your users or fellow contributors?

¡	Pained by—What challenges have been causing constant headaches and blocking
you from forward progress?

¡	Passionate about—What else gets your blood racing?

These are the forces that drive compelling engineering blog posts—giving rise to the
unique technical insights that your peers are hoping to gain and the convincing per-
spective that should keep them hooked.

We can’t guarantee that your blog post will bring instant fame if your topic passes this
3 Ps test. But if you try to force a blog post about something that you’re not personally
proud of, pained by, or passionate about, we can pretty much guarantee that it won’t
yield great results.

A virtually effortless way to test a topic idea
Want a virtually effortless way to test the response to a topic idea? Float it out as a social
post. If it takes off, that’s a good indicator that a related blog post could gain some nice
traction. If it doesn’t strike a chord initially, don’t despair (yet). Try a few more times and
variations before you give up. Social media is fickle.

Here’s an example of a playful post that garnered a surprising level of attention (yes, we
turned it into a blog post):

	 21Topics, topics, everywhere

An example of how a social
media post can test the level
of interest in a topic

	

	

2.2 Topics, topics, everywhere
If you’re working as an engineer, you probably already have a ton of blog post content in
your head (even if you don’t recognize it as such yet). We hope that as you read this sec-
tion, you’ll jot down some initial thoughts and start seeing blog post topics everywhere.
 We focus mainly on topic triggers from the work you’re doing every day: not just the
cool things you built, but also colossal failures, bug hunts, difficult design decisions,
high-stakes architectural shifts, and other fun stuff. We also look at triggers from broader
industry controversies and challenges. These will most likely be read by your engineer-
ing peers. We close with a few ideas for blog posts specifically targeting your users (far
beyond the standard “we released a thing—it’s great” blog post). See figure 2.1 for a
preview of topic ideas.
 This is an extensive, but certainly not exhaustive, list of topic triggers. Consider it a
starting point, and let your imagination go wild (as long as you hit at least one of those
3 Ps!).

2.2.1 That cool thing you implemented

A fairly obvious inspiration, and yet it’s often ignored. If you recently implemented
something cool, write about it! The definition of cool is quite broad, on purpose.
It might mean a technological breakthrough so impressive that you’ll immediately
get a call from the Millennium Prize committee. It can also be a useful feature that
your

22 Chapter 2  What to write

2.2.2	

Figure 2.1  Some of the many
topics that might make for
compelling blog posts

Epic feats
Book reviews

Epic fails

Look what I built

Bugs

Tradeoffs

Venting

Architectural shifts

Ranting

Sweet numbers Anything to the extreme

Anything unexpected

Predictions

Clarifications
Comparisons Rationales

Supporting

Contributions

Learning

Hard truths
Footguns

community or customers have been anticipating for a while. Or it can be a tool that
made life easier for your colleagues. Whatever it was, if you implemented something,
there’s a tangible result that begs to be described in a blog post.
 For example, assume your company’s most popular product is an end-to-end
encrypted messaging app. The encryption part was delivered during a hypergrowth
stage by a team of 64 new hires back in 2019, so everyone agreed that the only sup-
ported algorithm was going to be ROT13. After all, there’s a fair chance nobody would
ever notice its questionable security. The implementation is simple, which also makes
it rock solid, right? When you joined the team a few years later, you reimplemented
the core encryption module with an algorithm that isn’t crackable by an average pre-
schooler. Definitely worth a blog post! Also, please be either very diplomatic in the “pre-
vious implementation” section or strategically forget to mention the details.
 This topic idea feeds the “How We Built It” pattern, which is the subject of chapter 10.
It might also lead to the “Non-markety Product Perspectives” pattern (see chapter 13).

A security incident post-mortem

People absolutely love reading about other people’s problems. Did you discover a bug
that led to a security incident—a personal data leak or data loss? A blog post dissect-
ing such a situation immediately triggers a primitive reflex in your reader’s brainstem
to grab some popcorn and bask in somebody else’s serious trouble, while reveling in
the fact that their life isn’t so hard after all. And ruthless human nature aside, security
incidents are often really interesting from a technical point of view. They are natu-
rally engaging and offer educational value as well. Other developers are encouraged to
revisit their own code and see whether their projects could have suffered the same fate
if they were less lucky.

 For example, imagine that a user logged in as normal and happened to see another
user’s data. Also assume this was discovered by a decent human being—someone
who didn’t use the data for malicious reasons and just reported the incident straight

	 23Topics, topics, everywhere

	

	

to security@your-fancy-company-name.ai. This incident will damage your company
’s reputation, but the penalty will be even more severe if you fail to disclose any
details.
Your users will find out sooner or later. If your leaders decide to embrace it, they
might be desperately seeking someone to write a high-profile article divulging more
details. This could very well be you, assuming that you have access to all the interesting
technical bits:

¡ Why did the incident happen?

¡ How did you discover it?

¡ How did you fix it?

¡ How did you ensure it would never happen again?

¡ Can it affect other projects?

Regardless of the specifics, this is going to be an interesting read. This topic idea feeds
the “Lessons Learned” pattern, which is the subject of chapter 11.

2.2.3 How your infrastructure survived a traffic spike (or didn’t)

Depending on the situation, this could easily go one of two ways. If the stuff hits the
fan, you can probably draft a rather compelling “we learned our lesson” type of blog
post and hopefully save someone else from the pain that you suffered. A good example
of such a blog post is a description of why your system suffered from downtime, for how
long, what you learned, how you’re preventing it from happening again (you hope!),
and how deeply sorry you are for all the affected users. Or, if all went well, it could be
a shameless boast of how perfectly you predicted the future, ensuring that the Black
Friday spike was drama free and didn’t even register as an anomaly in your metrics.
 Both are good writing material in their own way. Traffic spikes are common, and
their infrastructure-related side effects are common as well. It might sound like bad
news, but it’s good from the writer’s perspective—it just means more inspiration for
technical blog posts.

This topic idea feeds the “Lessons Learned” pattern, which is the subject of chapter 11.

2.2.4 Bug hunting

Looking for an elusive bug for five straight days is the most infuriating part of com-
puter programming. On the other hand, it’s a requirement for achieving the unfor-
gettable peace of mind and blissful state you reach right after zeroing in on the root
cause. What’s more, a bug hunting adventure is also a perfect plot for a blog post, or
even a whole series of them.

Such articles are the computer science world’s equivalent of detective stories. Some read them
for the thrill; others read them for the educational aspect. In any case, one thing is certain:

those kinds of stories often land on the front page of news aggregators.
Note that this trigger is related to the security post-mortem one, but it’s much broader.
The bug in question can also be a sudden performance regression that hap-pens only on a

certain CPU architecture, a mysterious bug that disappears as soon as

24  

2.2.5	

2.2.6	

2.2.7	

C

you try to pinpoint its root cause (a.k.a. a heisenbug), or even a really convincing
false negative in tests. This topic idea feeds the “Bug Hunt” pattern, which is the
subject of chapter 8.

An open source contribution

Programmers are often particularly proud of their open source contributions—and
rightly so! It shows the world that you’re capable of implementing things that aren’t
covered by five layers of nondisclosure agreements. It’s also a public contribution to
software that other developers use and appreciate.
 The beauty of open source is that since the code is, well, open, it’s fine to describe it
in detail in a blog post, provide snippets, and even explain how to use it in a pet project.
And writing such a blog post not only gives you an avid audience across the project’s
community, but it also attracts more eyeballs to the project. Talk about win-win!
 You could even write about something as simple as a bug fix. Next time you hit an
unexpected bug in an open source project and decide to roll up your sleeves and post a
fix (instead of just complaining about it online), please share how you fixed it and why.
You’re a decent human being, and every single maintainer of every single open source
project is grateful that you decided to take the “I fixed it!” path rather than the entitled
“I need it so you guys need to fix it—so what if you don’t get paid for the work” path.
(Believe it or not, the latter one gets maintainers frustrated occasionally.)

This topic idea feeds the “How We Built It” pattern, which is the subject of chapter 10.

A fun weekend project

A nice tool or gadget that you built in your spare time is perfect blog post material. A
weekend project is something that developers do for fun, so just hearing about one
evokes positive reactions in your readers. Quite likely, it will also remind many of your
readers that it’s been quite a while since they worked on an interesting side project.
They will probably treat your piece as inspiration and be grateful for it.
 Describing how you achieved your goal can be just as much fun as implementing the
project. And let’s be honest: we’ve all taken on certain side projects mainly so we could
brag about them later. Well, a blog post is a perfect outlet for that bragging.
 There’s also a pragmatic/professional twist here. Maybe you’re worried that you’ve
suffered permanent brain damage from too many days spent shifting around outdated
enterprise Java code of questionable quality just to bump up the “passed tests” ratio?
And to check whether the synapses are still firing, you spend weekends transforming a
Raspberry Pi into a full-fledged DIY home security system? Maybe somebody from the
microcontroller industry will read your blog post and reach out with a nice job offer
that’s much better aligned with your true passion.

This topic idea feeds the “How We Built It” pattern, which is the subject of chapter 10.

An interesting design decision and tradeoff you made

Some design decisions are straightforward. If updating your dependencies makes your
project both safer and faster, it’s a no-brainer. Those kinds of moves can sometimes

	 25Topics, topics, everywhere

justify a blog post, but more often, they are only briefly mentioned as part of a larger
restructuring. Building your whole article around the idea that “we updated the Java
version from one that reached end-of-life five years ago to a slightly fresher one that’s
still supported” is more likely to trigger a duh reaction in your readers—but you’re look-
ing for a wow, or at least a huh reaction. Fortunately, many design decisions require gen-
uine tradeoffs, and those are way more interesting for both the writer and the reader.

For example, latency-minded engineers want to see every last bit of performance
squeezed out of a project, even at the expense of developer experience. But many others
aren’t willing to make that sacrifice; they’d be fully willing to take a hit on performance
if it means the product will be super easy for them to use. Sometimes, the tradeoff might
seem formidable but be perfectly justified in specific cases. That’s great—nonobvious
decisions lead to more interesting articles.

More specifically, put yourself in the shoes of someone designing a database. On
the one hand, you could let users store unstructured data (looking at you, document
stores). That decision would make for a great developer experience, enabling develop-
ers to get up to speed fast and change the shape of their data often. Or, you could take
a totally different approach and implement strict rules governing how the data is struc-
tured. With efficient indexes created in all the right places, the database can perform
tenfold faster than the unstructured one previously described. But the tradeoff is the
pain inflicted on users: now they’re stuck worrying about whether their database sche-
mas are in the right shape.

Each approach has its merits. Why did you choose one option over the other? What
do users gain and lose, and how might they compensate for what’s lost? That’s all great
fodder for an interesting blog post, or maybe even two: a technical one for your fellow
engineers and a more practical one for users.

This topic idea could feed into a few different patterns: the “How We Built It” pattern
(chapter 10), “We Rewrote It in X” (chapter 9), and/or the “Non-markety Product Per-
spectives” pattern (chapter 13).

2.2.8	 An architectural shift you’re making

Moving off a giant cloud provider to on-premises? Or maybe it’s just migrating to a new
serverless database in hopes of keeping up with the influx of new users? Describe your
experience; your peers around the world have likely also thought about it a lot.
 The main blocker against large architectural decisions is that they’re large and
architectural. That means everything can go wrong. And we all know who’s going to
be blamed for it. Hint: It’s not any of the five managers who enthusiastically approved
your decision, already imagining how the CEO will be praising them for slashing
infrastruc-ture costs.

 Engineers facing these decisions rightfully search the internet for similar use cases,
trying to estimate the risk-versus-gain ratio. This trigger is also a natural follow-up of
“How your infrastructure survived a traffic spike (or didn’t).” If it didn’t, a shift is in
order—and everyone who enjoyed reading about your first adventure will surely be
eager to hear how it influenced your architecture and infrastructure.

26 Chapter 2  What to write

	

	

 This topic idea feeds into a variation of the “We Rewrote It in X” blog pattern, which
is the subject of chapter 9. It could also feed the “Lessons Learned” pattern (chapter
11) or the “Non-markety Product Perspectives” pattern (chapter 13).

2.2.9 Frustration and fatigue

A new programming language appears. Its community grows, it is ergonomic, and it
introduces some fresh ideas on how to make programmers’ lives better. A few start-
ups decide to bet on it as an emerging standard, and you join one of those startups.
Quite soon, the honeymoon phase ends, and you realize that you just want to travel
back in time and stay with C forever. You really just want to use raw pointers and pass
everything by value. You genuinely miss the days spent hunting segmentation faults—it
wasn’t that bad, was it?
 This is a common storyline, and it applies to every language that ever became pop-
ular, from R and Python to Rust and Zig. But that doesn’t make it a bad read, though!
In fact, it makes your take on this story even more appealing. If you feel the frustration,
chances are that your readers empathize. From there, two things could happen:

¡ Your readers will feel better—a problem shared is a problem halved.

¡ Somebody will point out that your problems are already solved in a way you
didn’t know. Bonus: This presents a great opportunity to write a follow-up blog
post where you admit that you were wrong, and the shiny new language is indeed
amazing.

Blog posts written by disappointed developers who relentlessly roast some technology
often stimulate discussion and occasionally incite flame wars between that technolo-
gy’s zealots and its livid opponents.
 Not convinced that the world needs yet another commentary on the same old topic?
Then go search for “async Rust sucks.” You’ll find all sorts of articles such as:

¡ “It’s just me or rust async is still really hard?” (sic!)

¡ “Async Rust is a bad language”

¡ “Why asynchronous Rust doesn’t work”

¡ “Think twice before using async Rust”

None of these articles looks particularly distinctive. Yet each time one is published, it
attracts a new round of attention on various aggregators and forums. If you can chan-
nel your frustration and fatigue into an interesting new angle on a controversial topic,
go for it. If you can crank out a draft in the heat of the moment, even better!
 This topic idea could feed the “Lessons Learned” pattern, which is the subject of
chapter 11, or the “Thoughts on Trends” pattern, which is the subject of chapter 12. It
might also follow a blog post on the “We Rewrote It in X” pattern, covered in chapter 9.

2.2.10 Take a stand on some contentious topic

This trigger works especially well when your stand doesn’t fit the mainstream narrative.
If the last 15 most popular articles meticulously described all kinds of problems with

	 27Topics, topics, everywhere

	

	

asynchronous Rust programming, fat chance yet another one that repeats the same
old talk track will stand out. However, a title saying “Async Rust does not, in fact, suck”
draws attention and is also very polite to the community.
 Technical matters are rarely black and white, and everyone uses and experiences
technologies differently. If you disagree with the popular opinion and feel you have
good reasons to do so, go ahead and describe it in a blog post! What do we mean by
“a good reason”? For instance, if everyone on the internet seems to hate a particular
framework, but you have actual hands-on experience with it (and it was a pleasure to
work with). For politeness points, be sure to focus on detailing your own experiences,
not dismissing others’ views or pains. Writing articles on contentious topics is also a nice
opportunity to get to know other proponents of your line of thought—they might reach
out after reading your article.
 This topic idea feeds the “Thoughts on Trends” pattern, which is the subject of chap-
ter 12. It could also feed the “Lessons Learned” pattern, which is covered in chapter 11.

2.2.11 Sweet numbers

If your recent contribution sped up user requests tenfold, and you have repeatable
benchmarks to verify your claims, by all means share this! Virtually any quantifiable
improvement could make for an eye-catching blog post. Beyond speed metrics, you
might write about

¡ Squeezing thousands more virtualized environments into a single computer by
optimizing the image size

¡ Slashing your company’s cloud spend

¡ Reducing the amount of data loaded upon each web page refresh from mega-
bytes to bytes

The technical audience loves numbers. However, these readers also love nitpicking
benchmarks and trying to prove they were preconceived, fake, subjective, and “ran
on your laptop, so it doesn’t count.” Wherever the numbers come from, they may be
worth a blog post if they are impressive (and look even more impressive in colorful
graphs).
 This topic idea feeds the “Benchmarks and Test Results” pattern, which is the subject
of chapter 14.

2.2.12 Propose using something in an unexpected way

Already intriguing, huh? And this is just a vague blog post inspiration, not even a real
headline. The key part is “unexpected,” which immediately draws attention to your
blog post. Many readers will assume your content is educational and valuable, ergo
worth reading. Some will visit your blog post only to prove to themselves (and you) that
it was not, in fact, unexpected. They thought of it 15 years ago and classified it as a bad
idea even back then. Your blog post now offers them the opportunity that they’ve been
waiting for: the perfect comment section for sharing their insight with the world!
 What might constitute unexpected usage?

28 Chapter 2  What to write

	

	

¡ Encoding data in images to transfer hidden messages. It’s called steganography
,which makes this blog post idea an irresistible combination of a smart word
and an unexpected usage of something. Use it with caution!

¡ Compiling a 1990s-era video game to WebAssembly, so it can be played in a
browser. Extra points for nostalgia.

¡ Transforming your Raspberry Pi into a homemade curtain opener to enjoy being
woken up by sunlight and the soothing buzz of a $1 DC motor. (If you don’t find
the sound a cheap DC motor makes soothing, consider a career outside of the
tech industry.)

This topic idea feeds the “How We Built It” pattern, which is the subject of chapter 10.

2.2.13 Revisit past predictions

Although the annual tradition of publishing tech predictions might seem trite, revisit-
ing past predictions about the future sparks retrospection and lively discussion. It’s
fine if your predictions were ridiculously wrong. In fact, a good rule of thumb is
that the further off you were, the better the blog post is going to be!

 Articles focused on the fact that the author was right 10 years ago tend to be boastful
and boring. People can’t help but point out that it might have been pure coincidence
(and meanwhile you were probably wrong about hundreds of other things). However,
if your predictions were embarrassingly wrong, there’s a good chance the article will be
funny, with an air of “look how young and naïve I was.”
 This trigger works best if you can refer back to past predictions published in articles
or even social media posts. And if you made a series of past predictions, you now have
fodder for a whole series of analysis posts. Continue publishing your annual predic-
tions, and you can keep the cycle going in perpetuity, including high-profile posts that
feature milestone anniversaries (e.g., 5, 10, or 20 years).
 Maybe you didn’t make any past predictions yourself? Feel free to comment on some
particularly prescient—or preposterous—predictions that you’ve stumbled on and feel
passionately about. If you’re commenting on past predictions by the tech equivalent of
an “influencer,” be prepared for an attentive (and potentially antagonistic) audience.
 This topic idea likely feeds the “Thoughts on Trends” pattern, which is the subject of
chapter 12.

2.2.14 Capability clarification

You took days or years off your life painstakingly implementing some groundbreaking
product capability (such as the one that landed you the Millenium Prize referenced
earlier). Then you read or overheard some misguided explanation of it—maybe from
a user, maybe from someone on your company’s own support or sales team. Maybe it
was even something you personally (yet hastily) documented to deem it done-done.
 First, take a deep breath. Next, take this as a sign that you should probably dedicate
a little more time to ensure that it’s properly explained. Remember that you’re biased
by spending all this time working on that particular feature in that particular field.
It

	 29Topics, topics, everywhere

	

might sound obvious to you what cross-entropy or ReLU means and why it’s a crucial
part of your cool new artificial intelligence model, but the average reader would first
need to look up every second word you say. No wonder they misunderstand (and mis-
use) it later!
 Beware that your users probably won’t care about all the same things that your engi-
neering peers do. It’s totally valid to write about the same capability in two different
blog posts for two different audiences: one highlighting your engineering acumen to
your peers and the other helping the user understand what’s in it for them. Also, don’t
think that it’s ever too late to introduce something or describe it differently. Most read-
ers won’t care if you implemented the capability a while ago; they’re mainly curious
about whether it will make their lives easier, given their specific technical requirements
and challenges. And if you still think newness is essential, take a look at the decades-old
articles that still trend on Hacker News at least weekly.
 Many engineers shy away from writing user-targeted blog posts, particularly if their
organization has a dedicated product team for introducing releases and promoting
new capabilities. But you, the engineer who knows this thing inside and out, hold the
keys to the deeper no-spin information that users really want, especially if you’re build
-ing products for the dev community. Engineers are known to be notoriously bad
at marketing (cue the saying that if it were up to engineers, sushi would be described
as“cold dead fish.”) And that’s precisely why skeptical users would just love to read
your technical take on product capabilities!

 This topic idea feeds the “Non-markety Product Perspectives” pattern, which is the
subject of chapter 13.

2.2.15 Capability comparison

You probably won’t just wake up one day wanting to write “How the XYZ I worked on
compares to some other product’s ZYX.” But you’ll likely be forced into it sooner or
later. Why? Users like to compare features as they comparison shop. To better under-
stand the differences, they might seek information from the following:

¡ Online forums, where anyone seeking attention might share their infinite wisdom
on how what you implemented compares to what someone else implemented.

¡ Your sales team, who then taps your product marketing team for their best guess
at why yours is the best ever, for anyone and everyone.

¡ The other company’s sales team, which leads to the same thing with a different
bias.

¡ Generative AI, which will spew a few banal paragraphs about each, then politely
state, “It’s important to note that the choice between XYZ and ZYX depends on
your specific use cases and requirements.”

As you can imagine, none of these end well. Once this causes your organization enough
pain, it will become your own personal pain. You’ll get some urgent request for a blog
post or presentation, likely as you’re struggling to complete your latest project, take

30 Chapter 2  What to write

	

	

time off, or at some other inconvenient time. Why not get ahead of it? Just crank out
one of these blog posts each time you implement a capability that might be perceived
as similar to something else.
 Even if you’re not the expert on how every product addresses this somewhat similar
thing, you are the world’s top expert on how you did it. That puts you far ahead of
all the previously referenced people who have no clue what any of the developers did
(but are confidently explaining it anyway). A blog post based on this trigger could start
with a quick overview of what you and your teammates already know about the other
imple-mentations (or learn after some swift research). Then, it might go deep into
why you took your chosen path, why it matters, and what types of technical
requirements your approach is best suited for.

 This topic idea feeds the “Non-markety Product Perspectives” pattern, which is the
subject of chapter 13. It could also feed the “Benchmarks and Test Results” pattern,
which is covered in chapter 14.

2.2.16 Footgun prevention

You don’t love getting interrupted to field yet another incident of users shooting them-
selves in the foot with some capability you worked on? Perhaps they keep asking for
the whole database contents in one piece, even though it’s clearly documented as an
antipattern. Or maybe users sometimes experience mysterious database concurrency
spikes even though the client side has nicely fixed concurrency. After yet another late-
night diagnosis, you discover that, yet again, it’s because someone “optimized” the
default driver configuration that you carefully crafted when you designed the driver—
to the point where it ends up resending requests before the original ones were con-
firmed to have failed.
 Next time, jot it down as a blog post idea. Then write it up, once and for all, so you
never have to deal with it again. Maybe you can start off with a brief overview of why you
implemented that capability in the first place and some of the key assumptions and
decisions made as you built it. Then, you can take a detailed look at some of the misuses,
abuses, and mistakes that are making your life miserable. Finally, tell them what you’ll
be doing with all the time you’ve now saved yourself (or maybe just gloat silently).
 This topic idea feeds the “Non-markety Product Perspectives” pattern, which is the
subject of chapter 13.

2.2.17 Why you’re building something

The nature and scope of this trigger varies as wildly as the things you might be building.
If you’re a junior engineer working on a stable product, it might involve something as
granular as detailing why you’re extending the query language with a new filtering
option. If you’ve been voluntold to lead a next-generation-of-some-core-component
project, write to share the rationale with the users who will ultimately be affected.
Bonus: you might also catch the interest of some enthusiastic community contributors
who offer their feedback and assistance. Or, if you’re a founder or founding engineer,
you could line up a series of blog posts that explain the very reason for your company’s

	 31Increasing your trigger exposure

	

	

existence, placing it on the radar of potential users, employees, investors, media, and
influencers well before you have a product to show.

In any case, the same core questions should get the blog post ideas flowing:

¡ What’s wrong with the status quo?

¡ What elements are working well and should be preserved?

¡ What other attempts have been made to address this problem?

¡ Did something change recently to make the previous approach less viable?

¡ What would the ideal approach look like, and what would it enable people to do?

¡ What are your technical goals and guiding principles?

¡ How will you implement it?

¡ Who should be most interested in it?

¡ How might users apply it?

 ¡ How will you measure its improvement over the alternative thing?

Answers to just one of these questions might be fodder for multiple blog posts!
 This topic idea feeds the “Non-markety Product Perspectives” pattern, which is the
subject of chapter 13.

2.3 Increasing your trigger exposure
People go to great lengths to avoid asthma and allergy triggers. But blog post triggers
are things to be embraced, not evaded.

 It’s important to keep tabs on what’s new and what people are already talking about
in your specific area of interest. This is how you can spot emerging trends and be among
the first to start thinking and writing about them. And by keeping your finger on the
pulse of a discussion, you can make sure that your take on it actually advances the con-
versation in some interesting way. Addressing the existing dialogue head-on will win
you more friends and upvotes than unintentionally repeating it out of ignorance.
 This section provides tips for exposing your brain to a steady stream of blog post
topic triggers. Before we get into specific ways to unearth diamonds in the rough across
social media, RSS feeds, and the like, here are two overarching recommendations:

¡ Make sure you have a centralized place to save your ideas! This can be a simple
text file or an app designed to save articles and/or social posts across platforms.
Scribble them in a physical notepad if you wish! It doesn’t matter how you do it;
just find some system that works for you.

¡ Set up reminders to browse these areas at some interval that makes sense for you.
Also, timebox this browsing so you avoid getting sucked too deep down the rabbit
hole.

2.3.1 Social media

We know, this realm is riddled with problems. But you need to hold your nose and find
some tolerable path forward if you want to stay on top of what people are talking about

32  

2.3.2	

C

and connect with potential readers. We discuss the connecting angle in chapter 15.
Here, let’s look specifically at monitoring social media discussions.
 The following sections offer a few ideas for making social media more productive
(from a blog post topic trigger perspective, at least).

T

Figure out how to get ahead of the recommendation algorithms. Does your platform
of choice allow you to build and monitor lists of accounts you trust? Can you craft
some nice searches (maybe using quotation marks to target precise terms) and book-
mark the resulting URLs? Can you use or create tools that yield better results by going
through the platform’s API? Whatever it takes! You’re an engineer; you can certainly
figure out clever ways to gain more control over what you see.

C

Start following a carefully selected group of accounts (perhaps as a list; see the previ-
ous section), then expand cautiously from there. It’s better to create a list of two peo-
ple who post a few interesting things per month than get a constant barrage of posts
you don’t care about. If someone in that initial “circle of trust” reposts something inter-
esting, peruse that other account and add it if it looks promising. Don’t hesitate to cut
your ties if an account you’re following does not understand the concept of TMI (over-
sharing too much personal information). Carefully monitor what you’re fed, especially
at first, then prune and shape as needed. Aim for a bonsai tree, not a wilderness.

Venture out into the wild (occasionally)
If you’re ever feeling particularly brave or just have a little time to kill before (during?)
a meeting, take a look at what the algorithms recommend for you. Maybe you’ll dis-
cover something unexpectedly interesting. If nothing else, you can validate your deci-
sion to generally avoid algorithm-driven “for you” feeds.

Virtual communities

C

	 33Increasing your trigger exposure

Figure 2.2  An example of the range of topics that might be covered on the front page of Hacker News

	

	

2.3.3 Feeds and subscriptions

Once you identify reliably solid idea sources through the previously mentioned means,
go ahead and follow them directly. Using your aggregation tool of choice, slurp in the
source’s updates (by means of RSS feeds, ActivityPub, or the AT protocol) and voilà—
you get some centralized page or inbox chock full of articles to scan, and maybe even
read. Depending on the tool, you might also gain ways to fine-tune your feed, track
read versus unread items, take notes, and so on.
 And then there’s newsletter subscriptions. The very thought of an engineer willfully
opting into an email newsletter would have seemed outrageous a few years ago. How-
ever, you can now find quite a few high-quality newsletters on dev and tech topics. Some
of them are even so valuable that people are willing to pay for them (e.g., The Pragmatic
Engineer and Software Design: Tidy First?). How do you find these newsletters? Ask your
peers and keep your eyes and ears open in the previously mentioned areas.

2.3.4 Team chat apps

If you don’t already have one, create a channel in your team messaging app for sharing
interesting (not necessarily “good”) articles and social posts. The internal comment
threads will likely be much spicier than whatever was originally shared. Beyond being a
good source of blog post ideas, these discussions are also helpful for reading the room.
If you decide to write a heated retort to some “future of whatever” blog post that every-
one else on your team thinks is the smartest thing ever, it’s probably wise to know what
you’re getting into before you decide to click Publish.
 To put this into action, just create a #blog channel and invite everyone to join. That
creates mild social pressure on your colleagues to participate. Some people will start

34 Chapter 2  What to write

slow and only engage in discussions of whether a suggested blog post is a good idea.
Others will take the bait and suggest their own ideas right away.

Messages with the potential to become full-blown articles might look like

¡	“Hey, somebody posted that he’s frustrated because there’s no decent open
source tool for stress-testing GraphQL databases, and we developed one last
week.”

¡	“I reverse-engineered my infrared sauna last week—I can post some tech details
if anyone’s interested.”

¡	“I described our distributed architecture at a local meetup last week, and like 200
people asked me for a write-up.”

An increasing number of companies are (still) hiring remote engineers, and chat apps
have become the natural successor to coffee breaks in the kitchen. They are also the
perfect refuge for programmers who have an otherwise unproductive day (happens to
all of us, don’t worry). A quick round of email + chat app + GitHub issue tracker checks
makes you feel as if you did something important for the company. While lurking for
new dad jokes in the #random channel isn’t very productive, brainstorming ideas in
#blog is!

Additionally, chat apps often allow addressing everyone with an equivalent of Slack’s
@here, which helps get more attention for the most recent blog post ideas. A chatbot
that pings a random user every other week and gently urges them to share a blog post
idea is also a good stimulus for keeping the channel alive (and lively).

Summary

¡	Selecting a promising topic is the single most important task for creating an engi-
neering blog post that gets read.

¡	The best topic ideas are those that 1) are rooted in your own experiences and 2)
you are proud of, pained by, or passionate about.

¡	You probably already have a ton of blog post content in your head, even if you
don’t recognize it as such yet.

¡	Beyond that cool thing you implemented, blog post idea inspiration can come
from epic failures, bug hunts, fun weekend projects, difficult design decisions,
footgun prevention, and much more.

¡	A carefully controlled approach to tracking social media, virtual communities,
and feeds can yield a steady stream of blog post idea triggers.

3Captivating readers

This chapter covers

¡	The difficulties of—and opportunities in—reaching 	
interested readers

¡	The critical characteristics of blog posts that
	 readers open, read, share, and remember
¡	How popular blog posts from the past year

exemplify these critical characteristics

The previous chapter presented ideas on what to write. Now let’s shift focus to what
engineers and other technical readers want to read. A compelling topic is essential
for getting that initial click. But what will compel people to actually read the com-
plete article, consider it valuable, and hopefully even share it with their colleagues
and peers across social media and virtual communities?

A captivating bug hunt article will vary dramatically from an article where a well-
known industry expert roasts a highly hyped technology, or one that shares how a
team implemented an industry-changing algorithm. That’s why this book provides

35

36  

 

3.1	

C

in-depth analysis of these and other blog post patterns, sharing examples, characteris-
tics, as well as specific dos and don’ts for writing your own blog posts in those patterns.
We’ll launch into those pattern-specific deep dives in part 3 of this book.
 But across patterns, several core characteristics are shared by the blog posts that
stand out: the articles that engineers talk about and that ultimately become part of the
industry’s knowledge base. That’s what we explore in this chapter.
 We don’t pretend to know some secret n-step formula for guaranteed success, and
this certainly is not an attempt at (yet another) spammy “Definitive Guide to
Trending on Hacker News.” But we did spend quite a lot of time looking at what
tends to trend,monitoring industry discussions, and debating this with our
engineering peers. Based on that, we’re sharing the three core things we believe are
essential. We hope our hum-ble proposal gets more people thinking about this topic
and ultimately sparks a produc-tive discussion.

NOTE This chapter focuses on what makes an article stand out. The remain-
der of this book (particularly parts 2 and 3) looks at pragmatic ways to ensure
your own blog posts embody these characteristics.

Standing out
Consider the following:

¡ Around 1300 articles are submitted to Hacker News every day (https://news
.ycombinator.com/item?id=33454140; “dang” is a Hacker News moderator).

¡ Anyone can now automatically generate an article on any topic and in any writing
style using free generative AI chatbots.

¡ Any company or individual willing to pay for AI writing platforms can automat-
ically spew thousands of uninspired formulaic articles in an attempt to capture
search traffic.

But despite all the noise, engineers with insatiable curiosity still take the time to dis-
cover, read, share, and discuss deeply technical articles. And now that everyone has
seen the alternative (articles created with generative AI), truly insightful articles are
appreciated even more. Reading such blog posts is a primary means of tracking what’s
new, solving problems, and deepening domain expertise. According to recent esti-
mates, around 10M people visit Hacker News each day, curious to see what’s trending
(and especially what’s controversial, with popcorn in hand). Beyond that, people are
also seeking and discovering articles across

¡ The evolving landscape of social media platforms and other virtual communities

¡ Various newsletters that share recommended articles

¡ #techchat-like channels on internal messaging apps

¡ RSS and Atom feeds they have set up

The opportunity to reach interested readers is definitely there for the taking. So, how
do you tap it?

https://news.ycombinator.com/item?id=33454140
https://news.ycombinator.com/item?id=33454140

	 37Critical characteristics

	

	

3.2 Critical characteristics
We propose that standout articles share the following characteristics:

¡ Intriguing topic

¡ Distinctive educational core

¡ Smooth delivery

Let’s examine each characteristic in turn. Then we’ll explore how they’re carried out
in five real-world examples.

3.2.1 Intriguing topic

An interesting topic is imperative for readers to notice your article. When browsing
for their next thing to read, readers look at the title and estimate whether the topic
is intriguing enough to engage. In those few precious seconds before switching to
another title, they judge whether the topic is valuable, that is, educational, controver-
sial, and/or in line with their field expertise.

D

One way to make your engineering blog post stand out is to challenge the status quo. Tak-
ing a controversial stand on a widely assumed truth is likely to spark interesting discussions
and lure readers in. Even people not generally interested in the topic will be tempted to
read it for fear of missing out on the latest global flame war. For example, claiming that
async Rust sucks secured a Hacker News front page spot for many blog posts.

E

While disruptive articles often burn bright and then die out, articles that broaden a
reader’s perspective tend to snowball in effect. Eye-opening articles might

¡ Add novel insight into a well-known subject (e.g., a new approach to testing dis-
tributed systems)

¡ Introduce a whole new intriguing topic that the reader never even considered
before but now desperately wants to learn about (thanks to your irresistible blog
post title)

Both of those approaches invite the readers to explore new territories, a treat no engi-
neer can resist.

R

Readers of engineering blogs like to deep dive into their niche. If the topic touches
challenges similar to the ones they work with day to day, they’re likely to at least skim
through it. An article that deepens readers’ understanding of a technology they’re
interested in, or shows an interesting alternative to what they are currently working
with, has a good chance of getting read and discussed.
 Describing a general problem makes the article relevant to a broader audience, but
it’s also less relevant to any single reader than a more specific piece. There’s a tradeoff.
If you want to hedge your bets, consider writing both kinds of blog posts: some touching

38  

3.2.2	

C

general subjects (e.g., a programming language) and some very specific to a technical
niche (e.g., firmware for smart fridges). Also, try writing some posts geared to experts
as well as others that help beginners get started with your area of expertise (especially if
it’s a growing domain).

Distinctive educational core

A good engineering blog post leaves readers with the satisfaction of having learned
something new. Readers tend to remember this feeling and will often become loyal
readers once you’ve proven that you have valuable insights to share.
 The learned information should be useful, genuine, and transparent. The most
grievous mistake is to try and slip in a pure marketing ploy disguised as an informa-
tive post. Readers will sense it, publicly shame you for it, and be justified in doing so.
Good posts come from authors’ genuine motivation to share knowledge. It’s fine if that
shared knowledge relates to your new product, but there’s no place for ulterior motives
to mislead.

E

Imagine one of those generic articles that’s so obviously AI generated you can feel it
from the first paragraph. A good engineering blog post should be the exact opposite.
Bring some unique value that readers can’t easily find, or ask perplexity.ai about: your
experience, a controversial opinion, an unorthodox way of accomplishing something
technical. A quality engineering blog post should be (much) more than glorified doc-
umentation sprinkled with one or two references to Wikipedia articles.

D

Not every reader is interested in complicated technical details (not all the time, at
least). And yet, they always appreciate it when authors clearly possess deep knowledge
in the area they’re writing about. The best articles include insights that stem from a
deep understanding of the subject, fun facts, explaining common misunderstandings,
and so on. It’s fine for an author to be extremely opinionated in a field as long as it’s
also clear that they’re highly experienced in it.
 At the same time, great blog posts give readers enough information to form their own
views and draw their own conclusions rather than blindly accept the author’s. That’s
why it’s so important to provide counterweight—for example, in the form of detailing
drawbacks, pitfalls, and antipatterns alongside advantages and recommendations.

P

Engineers are pragmatic beings. While they love reading purely theoretical academic
papers, they love hands-on knowledge even more. This could come in the form of

¡ A useful script making everyday hacking easier

¡ A nice open source library

¡ A list of good practices before releasing software

¡ A book recommendation

¡ A list of steps on how to reproduce interesting results at home

	 39Critical characteristics

If something can be applied immediately after reading the blog post, it’s likely to be
appreciated by the audience.

3.2.3	 Smooth delivery

Reading articles is supposed to be educational, but it’s also a form of entertainment.

An article shouldn’t be boring, painful, excruciatingly long, or otherwise cringeworthy.
The audience tends to expect an up-to-date, engaging, and light read.

E

Assuming that your intriguing topic and title lured a reader in, the job is only half
done. Before they can learn something, readers need to read the article, and an engag-
ing writing style is key here. A peer-to-peer conversational tone generally works better
than being overly formal. Be authentic, and add side notes and personal comments
wherever applicable. Last but not least, do not force the jokes; the forced ones are not
funny by definition.
 If you can find a way to connect with the reader, go for it! Readers appreciate a per-
sonal perspective they can relate to (and maybe commiserate with). Clear language,
organized structure, and a logical flow also help keep the reader’s attention. If the
reader gets lost in a chaotic narrative, they might just give up on the article.

A

Aesthetics are important in engineering blog posts. Some might claim that engineers
only care about good content and only read blog posts straight from RSS feeds deliv-
ered straight to their terminals anyway. In practice, a nicely stylized blog post is more
likely to be read to completion and remembered. How do you make it nice?

¡ Use white space to logically split the paragraphs and sections.

¡ Ensure that section headers stand out so that readers can quickly scan through
the article or navigate to a section they want to read (or reread).

¡ Make sure the graphics are high resolution, readable, not blurred.

¡ Use a consistent theme for charts whenever possible.

Some articles are purposely stylized as a single block of text. While cool in theory, that
usually just annoys readers, particularly those searching for a specific section. On the
other side of the spectrum, an overload of brightly colored charts will make the blog
post resemble one of those scammy websites that try to convince you to enter a lottery
to win a “guaranteed” iPhone. And if the article, including code samples, isn’t readable
both in light and dark mode (looking at you, Medium), technical readers will not be
pleased.

U

Reading blog posts from 2010 is tricky. On the one hand, they are often full of inter-
esting discoveries, still surprisingly applicable to current technologies. On the other
hand, half of the hyperlinks are likely to be long dead, and there’s no comparison with
newer technology. It doesn’t have to be like that though! Blog posts can, and should,
be updated.

40  

3.3	

3.3.1	

C

 The update could occur as a new section labeled “June 2057 Update,” a link to a
follow-up article, or just a revival of dead links (e.g., by replacing the bygone ones with
their eternal web.archive.org mirrors.) It’s also customary for blog posts to retroactively
include links to online discussions about them, allowing new readers to join (or at least
skim through) the Q and A.
 Keeping old articles alive and up-to-date is definitely valuable if they still receive any
real traffic. As a bonus, those updates can conveniently lead readers to your newer blog
posts related to that same topic.

H

Judging from online comments, interactivity is highly valued. Clickable charts with cus-
tomizable parameters, 3D visualizations, step-by-step guides, and games all contribute
to your article being truly consumed, shared, and remembered. Readers appreciate
when they can engage with the content, zoom into interesting bits, and observe how
the results change when they tinker with the parameters. It makes reading the article
feel like playing a video game, and it’s fair to assume engineers can’t resist clicking
through it to see what happens.
 Bartosz Ciechanowski’s blog (https://ciechanow.ski/) is an absolute masterpiece in
that respect, with interesting physical phenomena visualized in an interactive way. And
Sam Rose (https://samwho.dev/) takes this same spirit of interactive visualization and
applies it to foundational programming concepts (e.g., load balancing, memory alloca-
tion, hashing).

Examples
To explore how these characteristics converge, let’s look at how popular blog posts
check all three boxes in one compelling article. We’ve selected the following five exam-
ples from the top 25 engineering blog posts on Hacker News (according to points) in
the past year. The wild variation across these examples highlights that there are many
possible ways to achieve these critical characteristics. Your own approach will differ
based on your purpose for writing, topic, experiences, and personality.

A Search Engine in 80 Lines of Python

C

https://ciechanow.ski/
https://samwho.dev/
https://mng.bz/5O0q

	 41Examples

	

are intrigued by search engines, but never dove into specifics. Terms such as “rank”
and “inverted index” are patiently explained with examples.

D
This article oozes educational value—it’s basically a step-by-step guide on how to imple-
ment a search engine, intertwined with theory. The theoretical part is explained in an
approachable manner, even for search engine newbies. Code samples are priceless,
especially because they aren’t just samples; combined, they form a complete imple-
mentation of a usable search engine.

S
Clean, clear, and straight to the point. This blog post’s appearance and writing style are
exactly what you would expect from someone who implemented a functional search
engine in 80 lines of code. Within less than 10 centimeters from the top of the page,
you can read or access the following:

¡ What drove the author to start this project and write this post

¡ The related Hacker News discussion

¡ The author’s background, services, and other writing

¡ The blog’s word count and estimated reading time

The minimalist feel continues throughout the article, which is no small feat given that
it’s 4,000+ words long. Lengthier code samples are tucked away into expandable ele-
ments, making it simple for the reader to quickly parse the article. A quick scan sug-
gests that the article was carefully crafted with the reader experience in mind: crisp
headings, short paragraphs, syntax-highlighted code, and even MathJax-embedded
formulas that are accessible to screen readers. The author also spares the readers from
all the details that didn’t make it into the final implementation: all the mistakes,
dead ends, and the usual trial-and-error casualties. There’s no superfluous
information here.
 From the first sentence, it’s clear that this is not ChatGPT. A real person who seems
like a rather pleasant human being wrote this. There’s no ulterior motive: he was curi-
ous, wanted to learn, and decided to share. Even better, he decided to learn by initiating
a project that helps the underdog: smaller websites. Throughout, the language is con-
cise yet conversational. It’s direct, honest, and confident—walking the reader through
the impressive implementation without sounding the slightest bit boastful.
 Moreover, the post was apparently updated at least twice in the past few months. It
was updated once with a Hacker News discussion link, then updated again to reference
a similar implementation that the author discovered after the initial publication.

3.3.2 Async Rust is a Bad Language

Author: Matt Kline
Source: Matt Kline’s Bit Bashing Blog (https://bitbashing.io/async-rust.html)
 This article is a rant (in a purely positive sense) on asynchronous programming in Rust
being notoriously unergonomic. It includes a detailed introduction to why asynchronous

https://bitbashing.io/async-rust.html

42  

3.3.3	

C

programming is useful and how it’s designed in Rust as well as other languages. It follows
with a list of well-known problems faced by developers who use async Rust.

I
Rant is by definition a disruptive artistic form. The title immediately draws attention
as a simple, but heavily opinionated accusation. Rust itself is a polarizing factor in the
software engineering community; some people passionately love it, and others passion-
ately dismiss it as too fancy and complex. Thus, a blog post sharing a negative opinion
on a whole aspect of the language is automatically intriguing for lots of readers.

D
The first part of the post is an excellent primer on parallelism and concurrency. The
post is also full of links to relevant documentation, recommended blog posts (and a
book!) about async Rust, and code examples. The author shares his unique perspective
as a Rust fan, but not so much an async Rust fan.

S
In stark contrast to the previous example, this article takes a bold and dramatic
approach. But it’s as perfectly suited for a Rust rant as the previous minimalist article
was for a minimalist search engine implementation.
 This article is irreverent, through and through. That’s clear from the unconven-
tional choice to make the title serve double duty as the first sentence of the article. The
headings are consistently (and sneakily) clever—for example, “pain.await.” Offbeat
images abound, ranging from the always impudent Monty Python, to Mel Brooks’ satir-
ical Spaceballs, to CubeDrone comics, and even a child’s crayon drawing. The language
is colloquial, even saucy at times.
 With so much going on, there’s a huge risk of it all becoming an annoying distraction.
But that never happens. Every element helps the author to make his point—and to do
so in a memorable way. The author’s personality is front and center, as it should be in
an article in the “Thoughts on Trends” blog post pattern that’s covered in chapter 12.
Still, he uses “we” throughout to emphasize that we’re all in the same (sinking) boat with
async Rust.
 Even if you don’t care one bit about async Rust, you might be compelled to read this arti-
cle. It’s hard to imagine any reader who would not be curious to see where the bold asser-
tion leads and discover how all these crazy images play out in a deeply technical article.

Python 3.13 Gets a JIT

C

https://mng.bz/6YK5

	 43Examples

	

recognized as “a thingy that makes programs faster,” even by people who aren’t deeply
interested in compiler internals. The author also argues with “what people tend to
think” JIT is, which may be an eye-opening moment for readers.

D

This article is a comprehensible introduction to JIT as a general technique, as well as
a specific variant of it: a copy-and-patch JIT. Code samples are clear even though they
explain compiling Python programs to bytecode, which is a fairly low-level concept.
There are lots of useful links pointing to open source projects (including a Python dis-
assembler implemented by the author), documentation, and academic papers.

S

This one’s for you, the reader. The author is serving as the humble interpreter here,
working hard to help readers across the massive Python community understand the
significance of something they might have never heard of until now.
 The headings anticipate the readers’ likely questions, and the sections provide clear
answers. Acronyms are explained and historical background is recapped. Carefully
selected hyperlinks allow readers to go as deep down the rabbit hole as they wish. Read-
ers who pay attention will note a link to a live compiler UI where they can go hands-on
and “run all sorts of fun optimizations on the code, like constant propagation and loop
hoisting.”
 The author’s deep involvement in the project shines through in his language, as
does his optimism about what this means for the Python community. He seems genu-
inely passionate about this project and eager to help others get the most out of this new
development.
 A bonus here: the author notes that the pull request for this change was committed
on Christmas. If you follow that hyperlink, you’ll find what is likely the world’s first
“‘Twas the Night Before Christmas”-themed pull request comment.

3.3.4 I Have Written a JVM in Rust

Author: Andrea Bergia
Source: Andrea Bergia’s Blog (https://mng.bz/o0yj)
 This article describes the process of implementing a Java Virtual Machine (JVM) in
Rust. It explains the general architecture of the project, as well as specific implementa-
tion details.

I

Back in the day, publishing an “I wrote <anything> in Rust” post was already intriguing
enough to hit the front page of all the engineering news aggregators. In this case, it’s
doubly intriguing because implementing a JVM from scratch is quite a complex task.
It promises a deep dive into Java language internals, but does it deliver on its promise?

D

Yep. This article is actually just a prologue to a series of eight posts. But even on its own,
it explains the basics of how Java works, and how one can implement a fully functional

https://mng.bz/o0yj

44  

3.3.5	

C

virtual machine for it. Code samples are all over the place, and there’s a nice visualiza-
tion of how a simple garbage collection algorithm works. The project is open source,
and the post takes advantage of that fact by linking to specific implementations in rel-
evant places. And it’s all based on the author’s personal project, drawing on his rather
unique experience writing a JVM in Rust as a way to learn the language.

S

The playful opening immediately reveals two things:

¡ The author has pulled off something rather ambitious.

 ¡ He’s going to be describing it in a fun, somewhat self-deprecating tone.

Who could resist?
 The author shares what ran through his mind as he tackled various parts of this task.
He provides full transparency into what he did and why, including what didn’t work
out as expected. The article is nicely organized, with a clean look, clear writing that’s
informal and conversational, effective visualizations of the GC algorithm, and really
sharp-looking code examples.
 Even though the article introduces an eight-part blog series, it’s not just a tease.
Readers leave with a fundamental understanding of all the key elements and also have
the chance to zoom in more closely on whatever elements intrigue them most. All arti-
cles in the series clearly link back to the series’ Table of Contents page. Another nice
touch: prominent tags at the top of each article provide easy access to more content on
related topics.

The Return of the Frame Pointers

C

https://mng.bz/n0X8

	 45Summary

S
This is story time at its finest. The depth of stories behind and within this post truly set
it apart from any blog post that any other human could write on this topic. The first
sentence, “Sometimes debuggers and profilers are obviously broken, sometimes it’s
subtle and hard to spot,” hints that some interesting story awaits. It does. But first, a
Gregg specialty: a flame graph. Two flame graphs, actually. The first one is nicely anno-
tated, calling the reader’s attention to the problem that stems from libc compilation
without frame pointers. Click that annotated image, and you get an interactive flame
graph. Expand the “longer explanation” link for even more details. And this is all just
halfway through the article’s introduction!
 By the time you complete the introduction, you know the crux of the story: frame
pointers are back, (re)solving flame graph problems and helping continuous profilers,
too. Readers don’t have to continue, but they want to. Eyes are instantly pulled
down the page by two side-by-side stack-trace-walking images from Gregg’s famous BPF
book.
Then the stories continue; for example,

¡ Quotes and commits that explain why gcc was changed to stop generating frame
pointers back in 2004

¡ His (at the time) colleague’s 2004 perspective on why applying this change to
x86-64 (64-bit) was a bad idea

¡ How Java’s lack of frame pointer support affected Netflix’s performance analysis
in the 2010s, as well as workarounds that Gregg created to compensate

¡ How a seemingly straightforward proposal to bring back frame pointers in 2022
unexpectedly led to a heated debate with 116 discussion threads

Gregg shares each story succinctly yet personably. It feels like a TED-talk-length fireside chat
(get comfortable but not too cozy). You can sense the frustration in his narrative, as well as
his deep involvement in over 20 years of frame pointer discussions and repercussions.
 At the end, Gregg offers an appendix: his detailed writeup trying to persuade Fedora
to restore frame pointers. There’s also an integrated comments section with uncom-
monly civil and productive discussion, including some comments that led to post
updates. And if you poke around the navigation, you can binge-read his blog posts dat-
ing back to 2005. All the posts, old and new, share this same classic layout that perfectly
complements Gregg’s reputation as a long-standing industry expert.

Summary

¡ With the onslaught of AI-generated slop, it’s harder than ever to get your article
noticed, but truly thoughtful posts are even more valued and appreciated.

¡ Engineering blog posts that get noticed, read, shared, and remembered feature
the following critical characteristics:

– Intriguing topic

– Distinctive educational core

– Smooth delivery

46 Chapter 3  Captivating readers

¡	An intriguing topic can be disruptive, eye-opening, or highly relevant to the read-
er’s interests.

¡	A distinctive educational core provides exclusive, deep, and pragmatic knowl-
edge that readers can’t easily access elsewhere.

¡	Smooth delivery involves engaging writing, appealing design, up-to-date infor-
mation, and interactive elements when possible.

¡	Five popular engineering blog posts demonstrate the many possible ways that
authors might achieve these critical characteristics.

Part 2

Nailing the
writing process

Ready to start writing your own captivating blog post? Part 2 covers prag-
matic strategies for optimizing all phases of the blogging process: planning, draft-
ing, revising, reviewing, and publishing. We suggest what to prioritize when you
really need to get it done fast, as well as ways to polish the article a bit more when
you have the luxury of time:

¡	Chapter 4 walks you through capturing your ideas and getting to a working
draft.

¡	Chapter 5 helps you optimize the draft, so it resonates with your target
readers.

¡	Chapter 6 is all about getting the feedback you want/need before
publication.

¡	Chapter 7 delineates what to check as you send the post off into the world.

4Creating your
working draft

This chapter covers

¡	Starting with your goal top of mind
¡	Preparing to write
¡	Cranking out a draft, fast
¡	Getting past blockers
¡	Tapping AI for fast feedback on what’s missing
¡	Determining whether your draft is ready to move 	

forward

Once you have a compelling topic idea and understand what’s required for a blog
post to stand out, it’s time to start writing! In this chapter, you will learn how to crank
out a working draft, step-by-step. Consider this working draft your MVP (minimum
viable product). As with any MVP, you want to focus on getting the core components
in place so your work can be reviewed and improved. In this case, that means you
need to capture your thoughts in writing as rapidly as reasonable, given your expe-
rience and goals. From there, you can step back, take a look, and address any major
omissions or oversights. Once all the basics are in place, you can shift focus to criti-
cizing and optimizing what you’ve captured. That’s covered in chapter 5.

49

50  

4.1	

 

C

 Throughout this part of the book, we’ll provide concrete examples by planning, writ-
ing, and optimizing a fake blog post. The topic is using the Zig language to implement a
shiny new database migration tool.

Focus and challenges
Whether you’re writing or programming, you can only make so much headway with
what’s in your head. Conceptually, it’s all crystal clear and flawless. But then, the reality
often falls short of your lofty vision. You need to get your ideas on screen, into an edi-
tor, before you can start properly checking and troubleshooting them. And translating
ideas into words/code tends to surface unforeseen challenges as well as spark new
(often better) ideas.
 With writing, the most common problem is being unable to start even a single sen-
tence because nothing sounds right. Conversely, it’s just as easy to go down the rabbit
hole and write three pages of interesting but absolutely unrelated notes. Translating
ideas into code has equivalent problems. Sometimes you get stuck at the design stage.
Other times, you spend a few hours making the code way more generic and universal
than it ever needs to be or wasting way too much time on trivial details such as variable
names (i.e., “bikeshedding”).
 In any case, the initial attempt is rarely a flash of genius immediately manifesting
itself as a masterpiece. But once you have something concrete, even if it’s messy, you can
take the steps required to transform mess into masterpiece (well, the tech blog or code
equivalent, at least).
 That’s why it’s so important to quickly complete a working draft—with rough
attempts at all the critical elements, particularly the intriguing technical tidbits. There
is absolutely zero pressure to make it great at this point. Just make it exist by extracting
the ideas from your head. Create a document with the raw materials you can shape into
a compelling technical blog post, and complete it fast so you can shift gears to making it
good enough for publication. Then, get it done.

NOTE The programming equivalent of this approach is Kent Beck’s famous
“Make it work, make it right, make it fast.” Different stages require different
mindsets and different strategies. You can’t do it all, all at once (not well, at
least).

You might need to unlearn some things to achieve this. For example, you shouldn’t
delay your progress by obsessing over things such as

¡ A clever title and catchy introduction

¡ Eloquent sentences

¡ Grammar nitpicks

¡ Pretty diagrams

If those things come to you naturally, great. If not, just move along anyway. Why? Well,
that’s because

	 51Essential prep

¡	There are more important things to focus on at this point. If your draft isn’t yet
providing a distinctive perspective and drawing on your specialized expertise,
who cares how nicely your sentences flow? You have other problems to address
first.

¡	Hyperfocusing on superficial details now will delay the completion of a draft,
and you need that draft done before you can start identifying and addressing
major problems (such as insufficient technical depth).

¡	It’s just too early, and you might be overengineering things that you don’t ulti-
mately need. It would be like spending days on performance optimization before
you even ran a unit test, or months on perfecting some capability that users don’t
actually want.

This phase of the writing process is all about creation and addition. The only time crit-
icism is allowed here is to expose major problems and determine what else you should
add to resolve them. Once you think your draft contains everything it needs, we’ll get
it fit for publication. At that point, you will have full permission to unleash your inner
critic.

NOTE  We’re deliberately using the term “working draft” versus “first draft.”
There’s only going to be one draft, which you incrementally evolve based on
the time and effort you wish to spend.

4.2	 Essential prep
Hopefully, you’re so eager to start writing that the thought of preparation annoys you.
But we promise: if you spend a little upfront time on this prep (plan for 30 minutes or
less), it will pay off in a ton of time saved later, as well as a better draft and, ultimately, a
better blog post.

For example, if you define your goal upfront,

¡	Your initial draft will be better.

¡	It helps you determine what to cut to improve focus.

¡	It helps you get more valuable review feedback.

¡	You’ll have some clear criteria for determining when it’s good enough to ship.

Before you start, ensure that it’s safe to proceed
Before you even begin to develop that great blog post idea, take a few moments to con-
sider if there are any good reasons to hold back. If you’re contemplating writing about
a topic that might not be well-received by your team, your boss, or anyone else in your
organization (or partner ecosystem), feel out the situation. Even if you plan to publish
the article on your personal site instead of on the company’s engineering blog, be sure to
explore any potential resistance before proceeding. This could save you from the pain of
spending time on something that’s just not feasible, at least not right now.

52 Chapter 4  Creating your working draft

(continued)

What are some examples of potentially delicate situations?

¡	You’re working in a stealth startup or on an unannounced project and you plan to
reference it, maybe even vaguely, in some shape or form.

¡	You’re thinking about sharing even a hint of closed source code in a highly com-
petitive industry.

¡	You’re disclosing an idea that might be submitted for a patent, but your company
isn’t ready for the “one-year-after-disclosure” clock to start ticking yet.

¡	You’re considering writing about how you discovered a security vulnerability that’s
not yet safely patched.

Ask questions first, write later. There are many points in your life when it’s fine to ask for
forgiveness, not permission. This probably isn’t one of them.

If you’re certain that you’re allowed to discuss a topic but still don’t want the post asso-
ciated with your real name and bio, feel free to write under a pseudonym. This shroud of
anonymity provides a safe mode for inexperienced writers who are particularly shy about
sharing their thoughts in published posts. It allows people to have their content evalu-
ated solely on its own merit—without any bias based on the author’s personal identity.
And it can provide the freedom required to write the scathing roasts that could be career
limiting in certain circles. Regardless of the motivation, be sure to enable Whois domain
privacy protection to ensure that details such as the email and address associated with
your domain aren’t readily accessible. And thanks to Scott Hanselman for this tip!

4.2.1	

	

	

	

Getting a feel for how others approach the topic

First, set aside a few minutes to search for similar articles on your topic. Don’t be
alarmed if you see other people writing about the same general topic. That’s good—it’s
a sign that you’re going to be adding to a conversation that already has an audience.
You don’t have to read every word ever written on the topic; you’re already an expert
on your experiences with the topic, and that’s what you’ll be focusing on, right? If not
,go back and reread chapters 2 and 3!

 Quickly scan the articles that strike you as similar or interesting companions, then jot
down some notes for each:

1 How does the article approach the topic?

2 How does your approach differ?

3 Do you want to read it in full (later!) and potentially reference it in your own
 blog post?

If there’s a lot to cover, generative AI can help you summarize articles for speedy triage.
For example, you could use a prompt such as “Summarize this article in 100 words or
less. Please state what you believe to be its target audience and its goal.” Then, you can
use the results of that first-level review to prioritize which ones you want to scan with
your human eyeballs and brain.

	 53Essential prep

Example 4.1
We want this book to provide concrete examples. That’s why the real Piotr (Sarna) is tak-
ing on an alter ego, PretendPiotr, to author a fake blog post about a fake Zig-based data
migration tool. Here’s an idea of how PretendPiotr might respond to the above questions
for one of the (also fake) articles he might have stumbled upon in his research: “Our C++
project is now supported for your architecture—with Zig.”

Question 1: How does the article approach the topic?

PretendPiotr: The article starts with a short introduction to the C++ project that was pre-
viously supported only for the most popular environment: x86-64 CPU running Linux.
Then, it shows how Zig’s novel approach to cross-compilation allows the project to be
successfully compiled for more processor architectures and operating systems—without
changing anything in the source code.

Question 2: How does your approach differ?

PretendPiotr: Both blog posts are going to praise Zig, but with a couple of notable
differences:

¡	My blog post will describe implementing a project in Zig from scratch. The other
one uses Zig’s compiler to give an existing project cross-compilation superpowers.

¡	My blog post is also going to have a healthy dose of skepticism—not pure praise.

Question 3: Do you want to read it in full (later!) and potentially reference it in your own
blog post?

PretendPiotr: I already read it, twice. Most modern blog posts hardly take more than five
minutes to read and less than a minute to skim through the keywords. I’ll reference this
in my article—in the section that glorifies Zig’s design decision to make cross-compilation
one of the core features of the language.

	

 

4.2.2 Getting a feel for what the site publishes

If you plan to publish this article somewhere other than your personal web site (for
example, on your company’s engineering blog, or on a community-hosted blog), try to
find at least a handful of other engineering blog posts published there. Are they gener-
ally the same length and approach that you were envisioning for your own?

NOTE See appendix A for a rundown of some popular sites for publishing
engineering blog posts.

If there’s a specific human editor you can contact, ask that person if there are any hard
and fast guidelines you need to follow with respect to word count, graphics, style, and
similar. Also, see if they’re at liberty to share what other engineering blog posts were
highly successful.
 If you do ask about previous successes, be sure to define what you mean by success-
ful. We’ll cover metrics much more in chapter 15. For now, just be aware that there are

54 Chapter 4  Creating your working draft

many different ways to measure blog post success, so be clear what you’re asking about.
You might want to know which engineering blog posts had the most views, best social
engagement, or kept people reading the longest. At the same time, the blog editor
might be measuring success by a metric such as “conversions”: how many people who
read your blog post signed up for the free trial. Make sure you’re on the same page
before you get a list of “top performers.”

Also, now’s the perfect time to learn about any strict editorial guidelines preventing
you from doing what you want to do. For example, if your company is a core supporter
of the SomeLanguge Foundation, don’t expect to publish your “SomeLanguge is Dead”
opinion piece on their corporate engineering blog.

NOTE  If you’re planning to write on a delicate topic, please (re)read our
“Before you start” note at the beginning of this chapter.

If you stumble upon some condition or restriction that doesn’t sit well with you, see if
exceptions can be made. If not, consider whether it’s worth adapting your approach—
or perhaps time to seek out other publication options.

4.2.3	 Defining your goal

Writing involves you, your topic, and your reader. That means there are three relation-
ships to consider:

¡	You + your topic

¡	Your reader + your topic

¡	You + your reader

You’ve definitely got the you + your topic relationship covered. But there are two other
relationships to think about here: your reader + your topic and you + your reader (see
figure 4.1)

You

Your reader Your topic

Figure 4.1  It’s not all about you + your
topic: writing also involves you + your
reader and your reader + your topic.

	

	

	

T

Before you start writing, spend a few minutes thinking about

 1 Who do you want to read this?

2 What do they know about what you’re planning to write?

3 Why do they care about what you’re planning to write?

	 55Essential prep

4	 Why should they care about your perspective on it?

5	 What do you want them to do differently or think about differently after reading
your blog post?

Example 4.2
Here’s how PretendPiotr thought about these questions for the fake Zig blog post.

Question 1: Who do you want to read this?

The audience includes a few social groups:

¡	Users of the two databases in question (the one migrated from and the one
migrated to)—They might be interested in using my new tool for migration.

¡	Developers interested in learning and promoting Zig—It’s emerging as a possible
alternative to C, and lots of people are interested in getting to know it.

¡	The “Hacker News crowd”—Readers who hungrily throw themselves at anything
that uses the latest buzzwords. At the time of writing this book, Zig was one of
those magic words.

Question 2: What do they know about what you’re planning to write?

Let’s split it up for each social group described above.

Users looking to move data to the new database should know the fundamentals of
working with both databases by this point, and likely know about some existing ways to
migrate data from one database to another.

The people who are here for Zig presumably know that Zig is a cool language for new proj-
ects. What they don’t know is

¡	Which Zig features were particularly useful for implementing a database migra-
tion tool

¡	If any Zig-specific quirks were annoying to work with
¡	Whether the project can be considered production ready, even though Zig is a rel-

atively young language with a dynamically evolving standard

The Hacker News crowd likely knows absolutely nothing about the topic, but they are
eager to post their vitriol-filled insights in the comment section the second this article
lands on the front page.

Question 3: Why do they care about what you’re planning to write?

The database users might be looking for a tool that solves some pain points in the exist-
ing state-of-the-art solutions, making data migration easier. Even if they don’t use this
tool, they might be inspired to look for similar ones, or try and create one themselves. The
Zig folks are interested in new use cases for Zig and genuinely want to help its adoption
to new domains. They probably want to learn more about why I selected it for this use
case and how it turned out, from both a performance perspective and a developer experi-
ence perspective. And the last (and certainly least [valuable]) category just wants to post
passive-aggressive comments.

56 Chapter 4  Creating your working draft

(continued)

Question 4: Why should they care about your perspective on it?

Well, as the tool author and a database developer (as in, a developer who is skilled in
using databases), I’m an expert in the matter. I can write about how it solves a real prob-
lem that database users have (data migration) and open problems make for interesting
reading.

Zig evangelists are interested in every single user’s opinion on the language—and having
a pulse, I qualify as such. Zig is still evolving, and its standard is very young, so any user
perspective can help shape the language specification. A newcomer’s opinion is import-
ant for people who are shaping a new industry standard. And since I’m experienced in C,
C++, and Rust but new to Zig, I think my perspective on some of the interesting design
decisions made by the Zig designers is worth diving into.

Finally, I think we’ve already established that the comment section raiders just want a
new comment section to infest.

Question 5: What do you want them to do differently or think about differently after
reading your blog post?

I want database users to use my migration tool. I don’t really want to change anything in
the Zig folks. But if my struggles make them realize that more users might have problems
with some language quirk, maybe they’re open to making changes in the specification,
and that could make my next Zig project easier to write. Since the last few subsections
were all about making fun of the orange site’s comment section veterans, let’s give them
a break here. And jokes aside, the comment section is also quite a great place to discuss
the matter online with the post author or get constructive criticism once in a (very long)
while!

	

	

W

Now that you’re done thinking through all that, write down the two most important
sentences that will never make it into your blog post:

1 What’s the goal of this blog post?

2 Why is your perspective on this topic interesting?

Don’t skip this! Seriously, write down your responses before you move on.
 The first sentence is something you’ll return to quite a few times—for instance,
when deciding what more you need to add, what you should cut, and when requesting
a review. It should draw heavily from your responses to questions one and five from the
previous list (Who do you want to read this? and What do you want them to do differently or
think about differently after reading your blog post?)
 The second sentence will help you highlight the angle that sets your blog post apart
from all the others that fellow humans (and possibly machines) write about that same
topic. This one should be inspired by your responses to questions three and four from
the previous list (Why do they care about what you’re planning to write? and Why should they
care about your perspective on it?). In addition, it should hint at the “distinctive educational

	 57Optional warmup

core” attribute referenced in chapter 3. What deep technical details will you be sharing
that aren’t easily found elsewhere?

Example 4.3
Here are PretendPiotr’s responses for the fake blog post.

Question 1: What’s the goal of this blog post?

There are actually two goals: 1) convince database users to try out the migration tool,
and 2) show that it’s possible to create something useful with Zig.

Question 2: Why is your perspective on this topic interesting?

I’m the migration tool author and I’ve used it for real database migrations—plus I’m an
experienced C, C++, and Rust programmer working on my first Zig project.

 

	

	

NOTE Does your blog topic align with any of the blog post patterns discussed
in this book? If so, now’s a great time to review the related dos and don’ts.

4.3 Optional warmup
If you don’t yet feel ready to begin capturing sentences, there are a few ways to start
making progress anyway: outlining, mindmapping, working from the model of another
article, and copy/pasting your notes. We’ll start with outlining, since many people find
it helpful to jot down a very rough and informal skeleton to structure their thoughts
before writing. But we’ll present a few other options, too.
 Some people find that mindmapping (visually mapping out how your thoughts are
connected) helps them generate and organize ideas. Others find inspiration in trying
to imitate the general structure of a model article—something with a similar “story
framework” that might be on a totally different topic. And then there’s always the ulti-
mate low-effort solution to conquering the curse of the blinking cursor: copy/paste
fragments from your emails, issue reports, code commits, and other random notes.
 There’s no “right approach” here. You might find zero value in the approach that
your teammate swears by. And you might find that different approaches are more or less
valuable in different scenarios, depending on where your head is at. Sometimes, you
might have a burning idea that you know exactly how to approach—so just start writing.
But there will be other times when you’re simply overwhelmed by all the ideas tangled
up in your head. When that happens, remember that a rudimentary outline or mind-
map could be a useful tool to unblock yourself.

4.3.1 Outlining

Outlining doesn’t have to involve formal-looking Roman numeral hierarchies with
multiple levels of indents—though if that helps you, you’re welcome to do it that way.
An outline is really just a list of the points you want to write about, organized in the

58 Chapter 4  Creating your working draft

order you plan to cover them. The goal is to help you structure your ideas, and you can
use any format you wish to accomplish that.

Outline creation is simply a matter of

¡	Creating a skeleton

¡	Hanging ideas on the skeleton

You can block out the high-level framework first and then fill in all the details later. Or
you can do a detailed mind dump on one section before moving onto the next. And
each section of your outline can be as brief or as detailed as you like. Nobody is judging
you here. It’s totally fine to end up with a multi-layer hierarchy of points for some sec-
tions and minimal details in others.

Add your outline to the file that will become your working draft. Then you can later
flesh out the various sections without hopping back and forth among tabs. Plus, you
instantly become the proud owner of a nonempty “My Great Blog Post” file, so you
can honestly say that you’ve started on it. Consider your outline complete whenever it
captures and organizes the main ideas floating around your head. If you think of some
other detail later (before you start writing), add it to the appropriate part of the outline
so you don’t forget about it.

4.3.2	

Example 4.4
Here’s an example outline for the Zig data migrator blog post:

Zig helped us migrate our data efficiently

¡ The problem statement
– Migration costs
– Developer experience with migrations
– Proposed solution

¡ We built it with Zig
– The good parts:

C interoperability—priceless for Postgres extensions
Smooth debugging—all C tools work
Cross-compilation is s-m-o-o-t-h

– The not-so-good parts:
Complicated C macros make the Zig translator choke
No destructors

 The ecosystem is extremely young
– The verdict

¡ Summary

Mindmapping

As shown in figure 4.2, mindmapping visually represents how your thoughts are con-
nected. It’s especially helpful for taming chaos. Like outlining, it’s partly brainstorming

	 59Optional warmup

and partly organizing. Unlike outlining, there’s no sense of logical flow from a begin-
ning to an end. Despite all the lines in the diagram, it’s a nonlinear approach. You start
with your main topic and then let it all flow from there.

Mindmapping

Whiteboards
at stuffy

meetingsConnections

Non-linear,
mad

rantings

Maybe could
be sections,
paragraphs?

Start
anywhere

Seriously? No - I'm an
engineer!

Childhood
art

projects

Branch out

Figure out
what I want

to cover

I'm so
ready to

write now

Brilliance

Kinda like
system

diagrams

 Figure 4.2 Mindmaps might seem awkward, but some people find them helpful.

Top to bottom, right to left, or every which way—it doesn’t matter. Just place the main
topic somewhere on a screen or actual page, keep branching out from there, and see
what you end up with. There’s no right or wrong way to do it.
 After you complete a mindmap, you might decide to create an outline to give it a
more formal structure and linear flow. Or go straight to writing. This is all about what-
ever feels right—for you, at the given moment, for this particular blog post.
 If you’ve never done it before, mindmapping will likely feel awkward and unnatural
at first. Almost everyone has written some type of outline in their life. Mindmapping is a
lot less common. You might have been exposed to it via whiteboard exercises in painful
group brainstorming sessions, but don’t let that scare you away from trying it in this
context. Also, mindmaps might feel a bit artsy compared to the clear logic of outlines.
If so, think about it this way: you’re mapping out the equivalent of a rough system archi-
tecture diagram for your blog post.
 You can choose from a number of mindmapping tools that offer templates, magic
alignment, and other nifty features. If you expect you’ll be doing a lot of mindmapping,
consider whether such a tool would help you. But don’t feel compelled to use a special
tool. Good old pen and paper can work just as well for mapping out your ideas for a blog

60 Chapter 4  Creating your working draft

post. And you might very likely find that the ideas flow faster when you’re not wrestling
with an unfamiliar UI.

Example 4.5
Here’s an example mindmap for the Zig data migrator blog post:

My migrator
tool

FakeDB

Migration
woes

Working
w Zig

How we
built it

So cool

Probably
lots of people

migrating

FakeDB
vs

Postgres

So slow!

Transformation
required

Spark
tool

$$$$$

CMake
pain

"man"
conflict

Too
easy to

ruin Linux

And all for a helper
bin that was never

used

Difft
data
types

The beginning of a mindmap for our Zig data migrator blog post

Note that our mindmap was already getting large, so we conveniently left the Zig branch
undeveloped.

4.3.3	 Working from a model article

“Working from a model article” is a nicer way to say “stealing someone else’s good
ideas.” But you’re not stealing their technical insights, just the way they’ve opted to

	 61Optional warmup

organize their blog post. The topic of the model article doesn’t have to be at all related
to what you plan to write about. In fact, it’s probably best if it’s not related. That makes
it even easier to avoid blurring the line between inspiration and imitation.

The key ingredient for getting started here is finding that model article. If you’re
inspired by multiple articles, even better—you can take the best ideas from each and blend
them all into something superior to any individual instance. Take a look at how the model
articles are structuring their ideas, abstract it a bit, and reverse engineer an outline.

Example 4.6
Here’s how PretendPiotr took a “We wrote it in Rust” blog post and reverse-engineered it
into something he could use for his Zig data migrator blog post:

“The Title”

¡	The problem statement
– Problem 1
– Problem 2
– Proposed solution

¡	We built it with $LANGUAGE
– The good parts:

Good part A
Good part B
Good part C

– The not-so-good parts:
Bad part A
Bad part B
Bad part C

– The verdict
¡	Summary

4.3.4	 Copying/pasting your notes

From a logistical standpoint, it’s helpful to have your various notes all in one place.
And if that place happens to be in some fenced-off sandbox area of your draft, you’ve
also broken through the blank page barrier. Congrats!
 Feel free to copy anything that sparks ideas or includes details you want to cover. For
example,

¡ The Slack thread that triggered this topic idea

¡ GitHub issues or pull request comments related to your topic

¡ Your notes on your teammates’ comments and questions about the topic

¡ A summary of test results and links to the files with more details

¡ A social media discussion about the controversy you’re about to comment on

62 Chapter 4  Creating your working draft

Example 4.7
Here are some tidbits that PretendPiotr might copy in for the fake Zig data migrator blog
post:

¡	A link to Loris Cro’s blog post, “Cross-compile a C/C++ Project with Zig” (https://
mng.bz/vJYq)

¡	This screenshot from the Reddit post, “How does zig magically cross compile with-
out target shared libraries” (https://mng.bz/4pzg)

¡	This screenshot from an internal Slack conversation

4.4	

4.4.1	

Writing time
At this point, you’re as ready as you’ll ever be. Dive in and just do it!
 Your mission here is simply to get sentences into an editor: to translate what’s in your
head into words that you (and others) can review and optimize. As we mentioned ear-
lier in this chapter, you don’t need to make it great; you just need to make it exist.

Getting words on the page

In fact, you don’t even need to write it in the traditional sense of opening a doc and
typing out sentences. Yes, some people draft blog posts by grabbing a beverage of

https://mng.bz/vJYq
https://mng.bz/vJYq
https://mng.bz/4pzg

	 63Writing time

choice, sitting down at their desk, and writing an article from start to finish. But that’s
not always how it happens in reality. Let’s look at a few circuitous ways to get words on a
page, some of which are better than others:

¡ Rubber duck dictation

¡ Chatting with a human

¡ Writing in your native language

R

The same rubber duck that led you to that aha moment when debugging is also an
amazing writing assistant. Dust off the duck, turn on a voice transcription program,
and narrate your blog post idea to your captivated (and captive) audience.
 If you’re a good verbal explainer, this is a great way to capture ideas in a way that
sounds friendly and conversational. But if you’re the stereotypical engineer who hates
to talk, this option (and the next one) might not be ideal. In that case, stick with the
traditional “sit down and type” path.

C

This is the same idea as rubber ducking, except that you narrate your blog post idea to
a real live human instead of a bathtub toy. The advantage: actual feedback. You can tell
when your audience seems intrigued, surprised, amused, or just bored to death. And
if your human happens to be a trusted colleague, they might question some of your
assertions, request clarifications, point out omissions, and offer other feedback that’s
beyond your rubber duck’s innate abilities.
 Having this early feedback is great for learning how your readers might react and
discovering what questions and objections you should probably address. However,
the downside of getting this valuable feedback is that your transcription will likely be
choppy and require a bit of reorganization. Not a problem, just prepare yourself. If
you’re not sure how to get it back into a logical flow, try creating a new high-level out-
line, then copy/paste the bits into the appropriate order.

W

We’re listing this as an option only because we want to address it. It’s a bad
option.
Even if your inner monologue runs in your native language, try to capture your ideas
in English.
 Why? First, the translation will be tedious. Translations for text with technical terms
are invariably awkward, and good engineering blog posts should include a healthy
amount of technical terms. Moreover, once an awkward translation is imprinted in your
brain, it’s usually much harder to come up with the natural-sounding equivalent than
if you just started with English in the first place. And a final reason: the more you prac-
tice writing in English, the more (and the faster) you’ll improve. Just write. Remember,
there’s no need for perfect sentences at this early phase, not even from native English
speakers.
 By all means, keep your favorite translation app nearby and use it for specific words
and sentences when you’re stuck. And when it comes time for review, look for a friendly

64  

4.4.2	

C

native English speaker who can help you spot and improve the sentences that just don’t
sound right. Also, rest assured that the grammar checkers and AI tools of the world
are actually quite good at spotting and even explaining many common grammatical
mistakes and awkward phrasings. Consider them a rudimentary (yet totally free and
nonjudgmental) first line of defense.
 The bottom line: try to write it in English, but don’t spend too much time worrying
about grammar or phrasing at this point. We’ll get to that later in the process (and in
later chapters).

T

Once you have words on a page, spend less than five minutes applying these quick fixes
that will help you (and your reviewers) parse what you wrote:

¡ Scan the doc for paragraphs that are longer than about 2 inches or 5 centime-
ters. If you can quickly spot some logical breaking point, go ahead and hit the
Return/Enter key.

¡ Zoom out to the page view. If any page has one or zero headings, determine
where it might make sense to squeeze in more, then add them.

Don’t force it and don’t overthink it, especially at this point. We’ll look more care-
fully at both headings and paragraph length in the next chapter. For now, just break
it up into manageable chunks so that you will have an easier time seeing what’s on the
screen. Note that you might need to perform some minor tune-ups later to ensure
there’s a natural flow in and out of the added headings.

Eliminating blockers

Writing can be hard. The words will not always (not ever?) just flow perfectly. But don’t
let that stop you. Your goal here is to keep moving toward completion. If you context
switch or take a break every time you get stuck, the writing process will drag out much
longer than it needs to. Here are tips for making progress, even when you’re blocked
or just generally frustrated.

R

Now’s not the time for editing. Once you get something written, you can always go
back and fix it later. And you might end up cutting that part anyway, so don’t waste
time prematurely overengineering it. That would be the equivalent of painstakingly
optimizing code that ultimately gets cut because it was solving the wrong problem.
 Here are some practical tips for resisting the urge to edit:

¡ Set some arbitrary (yet highly specific) goal such as “I want to draft these few
paragraphs in the next 20 minutes,” then set a timer (pomodoro, phone, etc.)
and try to beat the clock.

¡ Disable spell check and grammar check for now if you can’t ignore it.

¡ Become self-conscious about your tendencies to fiddle with the text and try to
stop.

	 65Writing time

¡ If you catch yourself spending too much time deliberating over particular words
or sentences, mark anything that you want to fix later with a color highlight or a
comment and move on.

G

There’s no rule that you have to start writing with the introduction. Introductions are
often intimidating, even to experienced writers. And sometimes the draft ends up tak-
ing a somewhat different direction than you anticipated. In that case, the introduction
you wrote for your original plan would have to be reworked anyway.
 We’ll talk a bit about introductions in chapter 5. For now, here are two
recommendations:

¡ Don’t worry about creating some clever hook. Write what comes to mind.

¡ If you’re not sure how to start, just skip it for now and return to it later.

This same strategy applies beyond introductions. You hereby have permission to start
anywhere and skip any section that you’re struggling with. Do you feel like you can
knock off a certain section quite effortlessly? Start there. Maybe there’s a test result,
concept, or other idea that you’re not sure how to explain yet? Skip it.

D

To keep your momentum going, you might want to skip more than problematic sec-
tions. You could also skip

¡ Code examples

¡ Graphics

¡ References you want to work in

¡ Details you’re hoping a team member will add

¡ Specific words or phrases that aren’t coming to mind right now

¡ Whatever else happens to slow you down

When you skip something, be sure to drop some sort of prominent “TODO” place-
holder in the doc as a reminder. This way, there’s no need to worry about forgetting it
later.

G

“Give yourself a break” can be interpreted in two ways. We mean both here.
 First, we mean “stop being so hard on yourself.” Remember that you’re currently
writing the rough draft of a blog post, something that nobody except you will probably
ever see in its current state. Even the final version of that blog post does not need to be
perfect. No matter how much you labor over it, it won’t be fast-tracked to the Smithso-
nian for display in a glass case. You need to deliver intriguing technical insights to your
intended audience in a way that keeps them interested and engaged. You don’t need to
provide the definitive answer to everything related to your topic. Share what you know
at this point, and don’t be afraid to admit what you’re still curious about. You might end

66  

4.5	

 

4.5.1	

C

up sparking a discussion in the comment section and/or giving someone else an idea
for their next blog post!
 Second, we mean “step away from writing for a bit.” If you’re truly hopelessly stuck
and frustrated, work on something else, take a walk, sit in a sauna—whatever helps clear
your mind!

PretendPiotr’s first attempt at the example blog post
Here’s PretendPiotr’s first attempt at the example blog post, written with delivery
speed in mind and cranked out in under 30 minutes. It’s not perfect, nor does it need
to be. It exists, and it can get PretendPiotr to the next phase. Also, it provides some
nice fodder for our discussions.

NOTE This is the first working draft, exactly as it flowed. We wanted to show
something authentic, so it wasn’t proofread or copy-edited like the rest of the
book text. In the blog, “we” = PretendPiotr speaking on behalf of his fictional
team.

Zig helped us migrate our data efficiently

C

	 67PretendPiotr’s first attempt at the example blog post

of CMake in order to compile some helper binary written in C++, which ended up
not being used later anyway. The author also decided to helpfully name the tool man,
as in Migration Automation eNgine, which is an obvious clash with Linux’s existing
man tool, which stands for manual. Apparently, the author either used some arcane
Linux distribution that didn’t come with man preinstalled, or decided his tool is more
important and justifies stealing the name, but the fact is, compiling and installing the
tool without care is likely to ruin your operating system. In other words, we did not
enjoy it. At all.

P

It took us the aforementioned two days to establish that the existing migration machin-
ery is far from ideal. Thus, it took us approximately two seconds to reach the obvious
conclusion: let’s write a tool that actually works and is fun to work with!

W

If you read this post’s introduction, you already know we’re into bleeding edge tech.
Zig is an emerging C language competitor, with broad open source community sup-
port, dynamically developed – a perfect candidate to write our migration tool in. A
fair part of our tool is a Postgres extension, all written in Zig. The rest exports the data
we need via HTTP, which, granted, isn’t perfectly optimal, but also makes the process
easier to debug, load balance, and so on. Since FakeDB is capable of receiving HTTP
traffic, that’s all we need to perform our migrations.

T

Zig advertises its C interoperability as a core feature, and it really works. It actually
feels magical to “import” a C header straight into a Zig program, and use it as if it were
a module written natively in Zig. The compiler transpiles (compiles to another lan-
guage) the header into Zig and exposes it in a developer-friendly way. We were able to
use Postgres’ official C headers for implementing our extension in Zig. Amazing!
 Debugging Zig is also a treat, if you’re already used to debugging C. Everything still
works – gdb, perf, you name it. On top of that, Zig has a more elaborate system for
asserting preconditions and invariants, which makes the debugging process a little bit
smoother than C used to be. Zig is not Rust, and it happily lets you dereference null point-
ers (although its type system tries to prevent obvious cases of that), and use previously
freed memory, so we had a dubious pleasure of long debugging sessions – just us, gdb,
and the ninth cup of coffee – but it was comforting to see all the existing tools just work.
 One of the mind-blowing things about Zig is that cross compilation (ergo compil-
ing the code to target CPU architecture and operating system different than the setup
the compiler runs on) is also a core feature of the language. And it’s s-m-o-o-t-h. Most
of our cloud fleet runs on Arm processors, and our engineers tend to work on x86-64
machines, so it was extremely ergonomic to be able to “just” compile everything locally
for a different architecture, and see it work out of the box. Kudos to the author of “Our
C++ project is now supported for your architecture – with Zig,” who inspired me to try
Zig and its cross-compilation superpowers!

68  

4.6	

C

T

Zig is interoperable with C alright, but it’s patience has limits. By patience we mean the
type system, which is a little more strict than C. Zig also (thankfully) doesn’t have C’s
preprocessor macros that let you do literally anything with program text. Importing
the postgres.h header was actually a little bit more complicated than “just” declaring an
import, because Zig initially failed to transpile the code, due to layers of layers of layers
of layers of complicated C macros. Fortunately, the way it works in Zig is that the gener-
ated code is available to the developer, so we were able to fix a few places ourselves.
 Another thing we didn’t enjoy that much was the lack of destructors. That’s one
thing we feel C++ and Rust got right: when something goes out of scope, its destructor
is implicitly called. Zig doesn’t prefer anything implicit, which is fine, but it just doesn’t
work well in this particular case. Our code leaked memory in a few places precisely
because we forgot to spray a few defer calls in all the right places. Note that Zig also
enforces all heap allocations to be explicit, which is a fantastic design decision. And it
would work great, except we still needed to interoperate with Postgres’ code and use its
own allocators, and those are not (yet?) hacked in Zig.
 One more hopefully temporary downside is that the ecosystem is really young. Com-
pared to Rust or C++ it simply lacks libraries and tools that would be very helpful for
programmers. It does come with HTTP support in its standard library, and that’s great,
but we also wanted to add a thin custom encryption layer, forced down our throats with
all the SOC2 requirements, and that we just needed to implement by linking to a Rust
implementation.

T

The choice of Zig was 100% worth it! Our tool, named FancyMigratorName, works, is
open sourced, and already has a microscopic community around it. We were able to suc-
cessfully migrate our legacy cluster in 4h, which is a major win over the previous 24 days
estimation. Next week we felt a little too optimistic about the tool and almost lost users’
data from another legacy cluster, but that’s a story for a separate blog post, stay tuned!

S

Out of our frustration with the existing tooling, we developed an open source migration
tool to move data from Postgres to a FakeDB cluster. We chose Zig to implement it, and
the road, though bumpy, was fun and successful! Try our tool, FancyMigratorName, at
https://example.com/fancymigratorname, and share your experience with us!

Filling in gaps
C

	 69Filling in gaps

	

 

	

	

	

¡ Did you actually cover what you intended to cover?

¡ What else should you cover?

 ¡ What’s preventing it from being viable?

Let’s cover each in turn.

4.6.1 Did you actually cover what you intended to cover?

The reality of what you wrote doesn’t always match your intentions. That’s often a good
thing: you probably had new and better ideas pop into your mind as you were heads
down writing and intentionally pivoted accordingly. Nice work! But honestly, some-
times ideas just get lost in the shuffle, so be sure to check for that before moving on.
 First, return to your prep work. Review the two sentences you wrote earlier in this
chapter (your goal and differentiator), as well as any outlines, mindmaps, or other
notes you made. Do you feel like you thoroughly covered what you wanted to cover? Did
you inadvertently skip some key points? Get it all in there now.

NOTE For example, when drafting the fake blog post shown in section 4.5,
PretendPiotr almost forgot about his plans to mention the article “Our C++
project is now supported for your architecture—with Zig.” It happens.

Next, let’s have some fun. Do the inverse with AI, your speedy, free, always available
reviewer. If you’re comfortable doing so, feed your blog post to your favorite genera-
tive AI tool and see how the AI take on your article matches what you were hoping to
get across. Use prompts such as

¡ What do you believe is the goal of this article and why?

¡ Summarize this article in one paragraph

¡ Who do you believe is the audience for this article?

How well do those assessments match your intentions? If it all seems reasonably close,
rest assured that you’re getting your ideas across. But if there’s a significant mismatch,
try to figure out why. Maybe the AI is just hallucinating. Or maybe it’s picking up on
the fact that a certain idea needs additional detail and elaboration. If you believe it’s
warranted, extend and clarify your draft to get your point across.

E

Here’s the feedback that ChatGPT provided for the current state of the example blog
post, along with Piotr’s comments.

P Prompt: What do you believe is the goal of this article and why?

Response: The goal of this article appears to be multifaceted:

1 Informing the Audience: The article aims to inform the audience about the chal-
 lenges faced by the author’s team in migrating data from legacy Postgres clus-
 ters to FakeDB. It discusses the limitations and inefficiencies of existing migration
 tools and outlines the specific issues encountered during their migration process.

70  

	

	

	

	

	

C

2 Advocacy for Zig: The article serves as a platform to advocate for the use of Zig
 programming language in solving real-world problems, particularly in the context of
 data migration. It highlights the benefits and features of Zig, such as its interopera-
 bility with C, debugging capabilities, and support for cross-compilation.

3 Promotion of FancyMigratorName: The article promotes the author’s newly devel-
 oped migration tool, FancyMigratorName, which is built using Zig. It presents the
 tool as a solution to the challenges described earlier, emphasizing its efficiency
 and success in reducing migration time from 24 days to 4 hours.

4 Community Engagement: By inviting readers to try out the FancyMigratorName tool
 and share their experiences, the article aims to engage the community and poten-
 tially grow the user base for the tool. It also hints at the formation of a “microscop-
 ic community” around the tool, indicating potential for further collaboration and
 development.

Piotr’s response
It did correctly grasp that I was advocating for Zig and promoting the migration tool.
It looks like the blog post’s goal is getting across and no changes are necessary in that
area. However, it’s also interesting to note that the response is riddled with meaning-
less “points” and borderline tautologies. For instance, the omniscient AI claims that
one of the goals of this blog post is “informing the audience.” That’s true, but that’s the
goal of every single blog post, so the statement is trivially true.

P Prompt: Summarize this article in one paragraph.

Response: The article recounts the challenges faced by a team when migrating data
from legacy Postgres clusters to FakeDB, highlighting the inefficiencies and frustra-
tions with existing migration tools. In response, the team develops FancyMigrator-
Name, an open source migration tool built using Zig, a programming language known
for its C interoperability and debugging capabilities. While Zig presents some chal-
lenges, such as strict type systems and a young ecosystem, the team finds it ulti-
mately worth the effort, as FancyMigratorName significantly reduces migration time
from an estimated 24 days to just 4 hours. The article encourages readers to try the
tool and share feedback, serving as both a solution to a common problem and an
example of the effectiveness of Zig in practical application.

C

	 71Filling in gaps

	

 

me. If this was a real article, I would probably ask a colleague to take a look at it before I
considered changing anything.
 From the author perspective, it is reassuring that the AI review understood the
general idea of the article. However, it got some things obviously wrong, which is a bit
disturbing. And at times it felt like a subtly broken echo chamber. Even though these
particular AI responses didn’t do much to help improve this particular article, I think
it’s still a worthwhile exercise for quickly confirming whether you’re on the right track,
without bugging any actual humans (yet).

4.6.2 What else should you cover?

At this point, you should be pretty certain that what was in your head is represented on
the page. But maybe your readers might expect more. For example, readers might feel
suspicious (or at least somewhat unfulfilled) when

¡ You’re discussing performance, but do not include any specific performance
metrics— numbers, benchmarks, flame graphs, and so forth.

¡ You’re discussing performance and showed benchmarks but don’t mention
whether tests were run on a powerful server or your old laptop (or you fail to
explain why you used something other than a realistic production environment).

¡ You’re discussing an architectural shift, but do not address the migration chal-
lenges or the tradeoffs of the new approach.

¡ You’re discussing an internal tool you built, but don’t share details on how it
affected your real-world processes.

¡ You’re discussing a new approach to a problem but do not cover the challenges
with the original one.

¡ You’re discussing a practice with known security risks, but never once mention
security.

These omissions would likely surface if you had multiple peers carefully read your draft
and provide feedback. In reality, getting decent feedback from just one person is chal-
lenging. Getting great feedback from multiple people on a reasonable timeline—don’t
count on it.

NOTE We’ll talk all about navigating the review process in chapter 6.

Peer review by at least one colleague is undeniably valuable, and we’ll talk about how
to make it faster and more focused in due time. But for this initial review aimed solely
at uncovering major gaps and omissions, there’s a quick workaround: generative AI.
 Driven by large language models (LLMs), generative AI is an expert at knowing what
words are typically associated with the words you are using. Since it has likely read mil-
lions of tech blog posts and related technical articles, it should have a fundamental
understanding of what your human readers might be anticipating.
 Feed your blog post to your favorite AI tool (again, only if you’re comfortable doing
so) and see what it thinks is missing. Use prompts such as

72  

	

	

C

¡ Does this engineering blog post have any logical gaps?

¡ What are some problems with this engineering blog post?

¡ Are there any paragraphs in this engineering blog post that require additional
detail?

Don’t expect all the feedback to be spot on. Quite likely, it will recommend a lot of
things that are either so trivial that you wouldn’t bother or so obvious that you already
ruled them out (for example, suggesting that your blog post about a shiny new capa-
bility should include details about some still-mythical real-world use case). But if you
can expose just one valid concern with a 15-second prompt + copy/paste exercise, it’s
worth a few moments of your time.

E

Here’s the feedback that ChatGPT provided for the current state of the example blog
post, along with Piotr’s comments.

P Prompt: Does this engineering blog post have any logical gaps?

Response: While the engineering blog post provides a comprehensive overview of
the challenges faced in migrating data from a legacy Postgres cluster to FakeDB and
introduces a new solution developed in Zig, there are a few logical gaps worth noting.

Firstly, the article doesn’t delve into specific technical details regarding how Fancy-
MigratorName solves the challenges mentioned. It briefly mentions using Zig’s C
interoperability and HTTP support but lacks in-depth explanations or examples of how
these features were utilized in the tool’s development.

Secondly, there’s a lack of discussion about potential risks or drawbacks associated
with using Zig for this task. While the article acknowledges some challenges encoun-
tered during development, such as dealing with complex C macros and the lack of
certain language features, it doesn’t thoroughly explore the implications of these lim-
itations or how they were mitigated.

Lastly, the article could benefit from providing more context or comparison with alter-
native solutions. While it critiques existing migration tools and praises Zig for its
advantages, it doesn’t provide a nuanced comparison with other programming lan-
guages or frameworks that could potentially be used for similar tasks. This would
help readers better understand why Zig was chosen over other options and the trade-
offs involved.

C

	 73Filling in gaps

	

	

	

	

	

	

 The “more context” gap can just be folded into “no technical details,” and is not
very helpful on its own. The part about no “nuanced comparison” of Zig and other lan-
guages is technically true, but it’s off-topic. The article compared Zig to Rust and C++ a
few times, but a nuanced comparison of any of those languages is enough material for a
book, not a paragraph in a blog post.

P Prompt: What are some problems with this engineering blog post?

Response: While the engineering blog post effectively communicates the team’s
experience in developing FancyMigratorName using Zig, there are several potential
problems or areas for improvement:

1 Lack of Objectivity: The blog post appears overly enthusiastic about Zig and the
 FancyMigratorName tool, which may come across as biased or promotional rather
 than offering a balanced perspective on the challenges and limitations of the cho-
 sen approach.

2 Insufficient Technical Detail: While the blog post provides a high-level overview of
 the team’s experience, it lacks detailed technical insights into how FancyMigrator-
 Name was developed, such as specific code examples, architecture diagrams, or
 performance benchmarks, which could limit its usefulness to developers seeking
 practical guidance.

3 Lack of Clarity: The article jumps between discussing the challenges of migrating
 data from a legacy Postgres cluster to FakeDB, the shortcomings of existing migra-
 tion tools, the benefits of Zig for this task, and the development process of the new
 migration tool. This lack of focus can make it difficult for readers to follow the main
 points and understand the overarching narrative.

4 Lack of External Validation: While the blog post mentions the successful migration
 achieved with FancyMigratorName, it does not provide external validation or tes-
 timonials from other users or organizations who have used the tool, which could
 enhance its credibility and reliability.

By addressing these issues and providing a more balanced, detailed, and informative
account of the team’s experience, the engineering blog post could offer greater value
to readers and stakeholders interested in data migration and software development
using Zig.

Piotr’s response:
Let’s dissect each accusation separately.

¡ Lack of Objectivity —True, but full objectivity was never a goal. The article was
intended to be enthusiastic about both Zig and the developed migrator tool. I
realize that the unbridled enthusiasm for FakeDB could get the blog post some
attention in the Hacker News comments, particularly among the FakeDB lovers/
haters. However, I don’t think that’s a bad thing since it aligns with the goal of
catching the attention of the Hacker News crowd.

¡ Insufficient Technical Detail —Makes sense. This is the same problem mentioned
in the “logical gaps” feedback and discussed in the previous section. If this was

74 Chapter 4  Creating your working draft

a real blog post, I would certainly take this into account and revise the article
accordingly.

¡	Lack of Clarity—Personally, I think the various threads fit together just fine. But,
I’m the author, and the author is always biased by being the expert on the topic.
To be safe, I would probably discuss this accusation with a human reviewer.

¡	Lack of External Validation—Lack of testimonials for a brand-new niche open
source project is expected. I feel that adding a “testimonial” would make the arti-
cle look like yet another marketing piece (which is probably what ChatGPT was
trained on and how it came up with this suggestion).

P 	 Prompt: Are there any paragraphs in this engineering blog post that require additional
detail?

	

	

	

	

	

Response: Yes, there are a few paragraphs in the engineering blog post that could
benefit from additional detail to provide a more comprehensive understanding of the
team’s experience and the development process:

1 Proposed Solution: While the paragraph mentions the decision to write a new mi-
 gration tool using Zig, it could provide more insight into why Zig was chosen over
 other programming languages or frameworks. Additionally, it would be helpful to
 include some details on the specific features or capabilities of Zig that made it
 well-suited for the task, beyond just its C interoperability and cross-compilation
 features.

2 The Good Parts: While the paragraph highlights the benefits of using Zig, such as
 its C interoperability and debugging capabilities, it could be enhanced with con-
 crete examples or anecdotes illustrating how these features facilitated the devel-
 opment of FancyMigratorName. Additionally, providing specific instances of how
 Zig’s cross-compilation feature was leveraged to target different architectures
 would add depth to the discussion.

3 The Not-So-Good Parts: This paragraph briefly touches on some drawbacks of Zig,
 such as its stricter type system and lack of destructors, but could benefit from
 further elaboration on how these limitations were addressed or mitigated during
 the development process. Additionally, providing examples of specific challenges
 encountered and how they were overcome would offer valuable insights for readers
 considering using Zig for similar projects.

4 The Verdict: While the paragraph concludes with a positive assessment of the de-
 cision to use Zig and the success of FancyMigratorName, it could be strengthened
 by including metrics or data to quantify the improvements achieved, such as the
 percentage reduction in migration time or the number of successful migrations
 performed using the tool. Additionally, discussing any lessons learned or areas for
 future improvement would add depth to the conclusion.

By providing additional detail in these paragraphs, the engineering blog post could
offer readers a more nuanced understanding of the team’s experience and the fac-
tors that contributed to the development and success of FancyMigratorName.

	 75Filling in gaps

	

Piotr’s response
¡ Proposed Solution —Not very helpful. The description of Zig’s advantages isn’t

“just” C interoperability and cross-compilation features—these are the two major
reasons why Zig was chosen, along with the fact it’s bleeding edge technology,
which was also mentioned.

¡ The Good Parts —Anecdotes are a nice (though generic) suggestion. Their only
disadvantage is that they bloat the blog post. If the post is already long enough, it
might be better to omit anecdotes that don’t really make the article more educa-
tional or entertaining. Also, anecdotes should come naturally. If they’re forced
or forged, they would look artificial and redundant.

¡ The Not-So-Good Parts —It makes sense to point out the lack of details about how
the problems with Zig were overcome. The blog post did mention that I handled
the issues with incorrectly translated C macros by editing the code manually. I
didn’t add more details because they would bore the reader. Plus, they’re not
very human-readable, which is usually an issue with machine-translated code. A
good compromise here would be to add a hyperlink to the fixes in order to please
any readers who are (over)eager to learn all the details.

¡ The Verdict —It’s true that the verdict did not mention a percentage of migration
time reduced, but the article did mention four hours vs. 24 days. I think read-
ers get the gist without requiring the exact math. The suggestion to explicitly
include lessons learned and areas of future improvement is a very solid piece of
advice. If this was a real blog post, I would extend the article to include both.

4.6.3 What’s preventing it from being viable?

Last but certainly not least, think hard about these fundamental questions and extend
the draft to address them before you proceed:

¡ Does it highlight your specialized experiences and expertise? Remember what you wrote
in the second critical sentence in the prep phase (Why your perspective on this
topic is interesting?). Now’s the time to check that you’ve captured that in your
draft. If generative AI or some other engineer with totally different experiences
might have written something strikingly similar, strongly consider adding more
differentiating elements and more details that draw from your unique experi-
ences (e.g., more context, examples, commentary, and so on).

¡ Does it advance your reader’s understanding of the topic and include sufficient technical
details? Think back to your intended audience, what they already know about
your topic, why they care about your topic—you did think about all that earlier
in section 4.2.3, right? Put yourself in your readers’ shoes and be honest: is there
enough detail to keep them interested and teach them something new? If not,
think about what you can add to change that. For example, in some cases, you
could add code snippets from one of those online playgrounds that let your read-
ers execute the code and see what it does and why. Or think about the interesting

76  

 

4.7	

C

implications of key points or findings you presented and then add that additional
commentary to the draft. If you’re truly stuck here, look for a colleague who can
add more compelling details and make them a co-author.

Don’t expect generative AI to help you at all with this evaluation. Look at it critically
and trust your gut instinct. If you really have deep-seated doubts, ask a trusted col-
league or peer for a quick look. If you take this path, use an angle like “Hey, I wrote this
thing to [your_goal]. Do you think [your_target_audience] would find it interesting?”

NOTE If you determine that the draft needs more depth and differentiators,
you might want to skip ahead to the “Facts” discussion in chapter 5, which pro-
vides strategies and some specific examples.

Consider this the final gate for shifting from creation and addition into review and
publication. The hard part is done. Now you can heckle yourself, revise the blog post
accordingly, and get it out.

If you do nothing else
In each of these “nailing the writing process” chapters, we’re including an “If you do
nothing else” section at the end. It highlights the absolute least that you should do in
the given phase and is intended as a quick reference for more experienced blog post
authors who are impatient and want to get straight to it. And it’s also helpful for blog
writing emergencies–like when you’ve been voluntold to write that super high-visibil-
ity “incident postmortem” blog post, and it needs to go from vague idea to published
within a matter of minutes. Or for when everyone is talking about that new cryptocur-
rency, which takes an approach so unique they will surely replace the Bitcoin + Ethe-
reum duopoly next week (they promise!), and you want to strike while the discussion
is still raging.

Here’s the absolute least that you should do to create a decent working draft:

¡ Think about why you’re writing this, what audience it’s for, and how it’s distinctive.

¡ Get a hot mess of a draft down fast, add some headings, and break up massive
paragraphs.

¡ Identify and address logical gaps or underdeveloped points—consider using
generative AI to help.

¡ Extend it as needed to ensure it draws on your experiences, adds to the conversa-
tion, and is detailed enough to achieve your goal.

Summary

¡ Prepare for writing by thinking about your goal, your audience, and what inter-
esting perspective you have to offer.

¡ Tap outlining, mindmapping, and other preparation practices to get the ideas
flowing, or skip them and just dive right in.

	 77Summary

¡	If you happen to be more of a talker than a writer, capture your words by talking
to a colleague (or your trusty rubber duckie).

¡	Focus on getting your ideas in writing rapidly, without delaying to deliberate over
low-level details.

¡	Skip things when you get stuck and leave placeholders so you don’t forget.

¡	It doesn’t need to be pretty—you just need to get the raw ingredients down so
you can move forward.

¡	You can use generative AI for fast feedback on whether your point is getting
across and if you’re guilty of any major oversights

¡	Before you exert any energy optimizing the draft, make sure that it’s sharing
unique experiences and expertise that advance readers’ understanding.

5 Optimizing your draft

This chapter covers

¡	Shifting from capturing what’s in your brain to 	
communicating with your reader

¡	Catching your target readers’ interest and guiding 	
them to the end

¡	Prioritizing optimizations that matter the most for 	
technical audiences

¡	Helping your reader better understand what you’re 	
trying to communicate

At this point, you’re past the hard part: the creation. Most people breathe a sigh of
relief, maybe use a grammar checker to resolve egregious errors, and call it done. But
you’re currently reading a book on writing blog posts, so you’re clearly not most people.
 This chapter outlines ways to make your blog post more compelling, whether you
have just 5 minutes or more than 5 hours to spend whipping it into shape. We tried
to capture the essence of the internal monologue that comes naturally after writing
and reviewing a healthy amount of engineering blog posts and other forms of tech-
nical writing.

78

	 79Focus and challenges

	

 Ultimately, it all comes down to taking the brain dump you created in the previous
chapter and making it seem custom crafted for your target reader. You want to present
your reader with something that fills in any knowledge gaps between what the two of
you know, satisfies their curiosity, and makes it simple (hopefully even enjoyable) for
them to grasp what they were hoping to learn when they clicked your article.
 This chapter is extensive, but don’t worry. We don’t expect you to consciously think
about all these optimizations for any given blog post. When you read the chapter, aim
for a general understanding of what’s possible. As you’re actively optimizing a blog post,
return to this chapter and decide what you want to focus on. Over time, you won’t need
to refer to this chapter at all. You will have developed an annoying critical voice in your
head, pointing out problems with all the enthusiasm and snarkiness of those who fre-
quent comment sections—or at least of that annoying teammate who can be a real pain
but is usually right. And what you learn is applicable far beyond blogs. For example, it
will help you communicate more clearly and concisely as you’re

¡ Interacting with teammates, users, and others across your community

¡ Sharing your opinions via proposals, reports, or code review comments

¡ Promoting yourself in performance reviews and hiring processes

To make the discussion concrete, we’ll draw on the fake Zig blog draft introduced in
chapter 4 (section 4.5) plus reference additional examples as appropriate. And to help
you focus your limited time, we’re classifying the optimizations into four groups, starting
with those we believe have the greatest effect on the typical engineering blog post reader:

¡ Core —Given your goal and target reader, is your draft appropriately focused, log-
ically organized, and sufficiently supported with technical details?

¡ Clarity —Are your sentences clearly and efficiently communicating your ideas to
your target reader? And are your paragraphs focused and digestible (tight para-
graphs with one idea per paragraph)?

¡ Components —Do the different structural parts do what they need to do? For exam-
ple, does the title attract the right reader, does the introduction entice them to
read on, and does the end tie it up nicely while providing a clear path forward?

¡ Consumability —Does your article sound like a living, breathing human being in
conversation with another human being? How can you help the reader better
parse the article as 1) they scan it to assess whether they really want to read it; 2)
they’re actively reading it amid constant threats to their attention; and 3) they
return to it later, searching for some interesting tidbit to apply or share?

5.1 Focus and challenges
In chapter 4, we urged you to hold back your criticism so you could focus on rapid
creation. Now you can finally unleash your inner critic, but please promise to put it to
good use: creating a better experience for your readers!
 It’s easy to deconstruct and doubt every thought, sentence phrasing, and detail to the
point where you just get frustrated and give up. Don’t. If you’ve got a working draft of

80  

5.2	

C

a blog post sharing your distinctive thoughts and experiences on an interesting topic,
you’re quite likely sitting on a resource that someone, somewhere would love to read and
learn from. Instead of indiscriminately tearing down your work to the point where you
feel it’s not good enough, try to put yourself in the shoes of your target reader. What will
help them find your blog post, understand it, and hopefully appreciate it enough to share
it? Questioning and criticizing your draft from that perspective will make it even better.
 That focus leads all too naturally to the first challenge: there’s a pretty sizable gap
between you and your reader at this point. If you selected a topic carefully, you’re the
world’s top expert on the specific information that you’re conveying to the reader. That
means you’re quite qualified to explain it but also that it’s easy to forget what the reader
doesn’t (yet) know. Keeping this gap in mind is critical when assessing whether an intro-
duction is compelling, a statement is sufficiently explained and supported, a sentence is
clear, and so on. You will get the best return on your blog writing investment if you make
the blog-reading experience easier for your reader. But making something simple for a
reader requires some thought and effort on your part. Cue the famous quote by Blaise
Pascal: “If I had more time, I would have written a shorter letter.”
 And that leads to the second challenge of this phase—time management. Given the
myriad possibilities for every sentence, indecision and perfectionism can easily suck you
into a revision vortex. Even if you somehow have the luxury of time, don’t spend weeks
or months revising a blog post. It’s just not necessary. You will hit the point of diminish-
ing returns soon enough. It’s the same as with code: once you make it correct and clear,
obsessive refactoring probably won’t pay off well enough to justify the opportunity cost.
 If you prioritize the types of optimizations that matter most for an engineering blog
(for example, supporting your points with interesting technical tidbits versus worry-
ing about split infinitives such as “to boldly go”), you can get it done and move on to
the next thing. There’s no value in letting a technical article age in a dark cellar. If it’s
this close, just get it published before some industry shift makes it less interesting or
relevant.

Core (facts, focus, flow)
Roleplaying game time! Remember that target reader you envisioned when planning
the blog post? Put yourself in their shoes. You’re now that target reader, reading this
blog post for the reasons you anticipated earlier. Imagine all the things that might
make you

¡ Doubt that you’ll learn what you were hoping to learn

¡ Suspect that the author is somehow trying to trick you

¡ Need to reread parts in confusion and/or frustration

¡ Decide to take “just a quick break” from reading

¡ Generally think that the author is a rambling, ranting fool

This section is all about prompting you to spot these core issues so that you can improve
the reader experience. We’ll cover

	 81Core (facts, focus, flow)

¡	Facts—Supporting your points with technical details from your own experience,
experiments, and trusted industry knowledge

¡	Focus—Concentrating on the material that truly advances your goal and cutting
the rest

¡	Flow—Ensuring there’s a logical, easy-to-follow path through the parts

5.2.1	 Facts

If your technical blog post lacks the necessary technical details, that’s the first thing
you should address. We’re using the term “facts” as shorthand for pretty much any-
thing that a reasonable person in your target audience would accept as true: your expe-
riences, code examples, test results, respected research, and other trusted industry
knowledge.

As you probably already know, readers of technical articles are rather snarky and
skeptical. You can safely assume that your reader won’t trust you. Don’t take it person-
ally; they don’t trust anyone. But do be proactive and write with this skepticism in mind.
That means including an appropriate amount and variety of facts to combat target
readers’ cries of “That’s not true!” and “How do you really know that?”

Ensure that each arguable statement is supported by facts

If you try to tell technical readers what to think, they’ll roast you. Instead, focus on pro-
viding enough facts for them to make their own decisions. How does this play out in a
blog post? Table 5.1 lists some examples.

Table 5.1  Supporting arguable statements with facts

Instead of just stating Do this instead (or in addition)

“This optimization yielded an impressive
performance boost.”

Share the results of fair benchmark tests (before and after).

“NewLanguage is more intuitive than
OldLanguage.”

Share NewLanguage vs. OldLanguage code examples.

“ShinyNewThing is worth a try.” State: “Our experiences with ShinyNewThing showed that …”

“It’s difficult to do [this thing].” Explain: “Doing [this thing] requires you to deal with [all
these other things],” or “We really struggled with [these hard
details].”

“Migration is simple and seamless.” Detail the steps required and also call out any conditions that
could introduce complexity.

“The code clearly smells.” Highlight the problematic parts of the code and explain why it
can be considered an antipattern.

With that in mind, rescan your working draft and look for any arguable statements that
aren’t sufficiently supported by facts. Specifically, find and review any statement that
expresses an opinion or communicates something that a reasonable person in your tar-
get audience might doubt or disagree with. Next, ensure that each of those statements

82  

 

 

C

is followed by details that could feasibly convince a reasonable person to reach the
same conclusion. Grill yourself with a few rounds of why to get the juices flowing.

TIP Want the AI perspective? Prompt it with something like “Are there any
statements in this engineering blog post that do not seem adequately sup-
ported by facts?”

If you find any points that need additional support, there are several options:

¡ Think about what additional details you can share from your own experience.
What specific things occurred that led you to think and write that? While others
might have different experiences, nobody can deny the validity of your experi
-ences. Weave them into your article as you see it.

¡ Consider adding code examples, test results, or whatever else could earn the
trust of your skeptical target readers.

¡ Track down external sources that could help: solid research, good explanations of
why something is how it is, blog posts that share similar experiences, and so forth.

¡ Admit defeat and cut it from the article. With a harsh audience, your article is
only as strong as its weakest link. Give them just one small thing to attack, and
they will move in for the kill, even if the rest of your article is absolutely bullet-
proof. If you really can’t find facts to defend one of your points, delete that point
so that it doesn’t undermine the credibility of your entire article.

TIP See chapter 14 for details on communicating results from benchmarks
and tests.

What about the fake Zig blog post? Does it need any additional facts? Perhaps it would
benefit from

¡ A screenshot with metrics showing how slow the migration used to be with the
old tooling

¡ Code snippets highlighting where Zig worked well

¡ Code examples of bad Zig produced by the compiler when translating from C

¡ Another screenshot with metrics showing the improvement brought by the new
C

https://mng.bz/QVee
https://mng.bz/QVee

	 83Core (facts, focus, flow)

 

	

problem of unpredictable latencies. He showed this in the context of the 2022 World
Cup finals, where Argentina, with Lionel Messi, took on France. Ingram decided to
capture monitoring graphs showing 1) the massive spikes in the number of Discord
messages sent during each key moment of the game, and 2) how their database han-
dled it all without breaking a sweat. These graphs and the surrounding story were fea-
tured in the clutch moment of Ingram’s blog post. Since the article was published,
there have been countless third-party videos retelling Discord’s database migration
experience, and that story about the World Cup latencies is referenced in each and
every spinoff!

W
The TigerBeetle blog post “We Put a Distributed Database in the Browser—And Made
a Game of It!” (by Phil Eaton and Joran Dirk Greef; https://mng.bz/XVKM) is 100%
focused on an interactive example they built to demonstrate how powerful determinis-
tic simulation is for testing distributed systems. The authors brilliantly figured out that
since their system is built to allow simulating time and events for testing, the same rules
of simulation can be applied to present the tests as an interactive game. It’s obviously
engaging for readers (duh, it’s a game!), but it also sneakily helps people develop an
intuition on how deterministic simulation tests work. It’s educational content at its fin-
est because lots of readers prefer to play a game with funny beetles rather than read
(and try to actually understand) a few long academic papers on simulation testing.

NOTE We analyze this blog post further in chapter 13.

5.2.2 Focus

The next thing to focus on: focus. Bloated code could affect performance, but the
computer will trudge on. Humans aren’t that patient. They started reading based on
what your title and introduction promised. Every time you seem to be taking a scenic
side trip—or totally bypassing something they wanted to see—you’re giving the reader
an excuse to lose faith and give up.

C

It’s fine if you veered off in unexpected directions while you were writing your draft.
That’s a common part of the creative process, and it often yields better outcomes. But
for your reader’s sake, please tie in (or cut out) any meandering side paths before you
proceed.
 Return to that simple one-sentence goal you stated in chapter 4, and make sure it’s
in your line of vision. Make it nice and big on one of your monitors or scribble it on a
separate piece of paper if you like. Also, in case it’s not explicitly expressed in your goal,
think about the audience you had in mind when planning this article and why they
would want to read it. What’s in focus for one audience could be entirely superfluous
for another.
 Now skim the draft section by section, paragraph by paragraph, and hunt down any-
thing that doesn’t clearly and logically relate to that goal. Of course, you can make up

https://mng.bz/XVKM

84  

 

	

C

some crazy connection for almost anything. But if you were forced to justify that con-
nection in front of a jury of your skeptical peers, would you be able to convince them?

TIP Want the AI perspective? Prompt it with something like “Can you identify
any parts of this article that seem less relevant to its main goal of [your goal]?”

In some cases, adding a few words or a new sentence can tie diversions into the core of
the article. But if it’s too much of a stretch for the specific audience you’re targeting,
the diversion needs to go. Sorry.
 Maybe you’re really proud of something you wrote, but it doesn’t fit well in this arti-
cle? Consider repurposing it then. The paragraph that was a distraction in your blog
post could have a nice life of its own as a social media post, as a discussion thread, or
even grow into its own follow-up blog post. If you truly can’t bear the thought of remov-
ing some tangential material from your blog post, at least set it apart from the main text
(e.g., in a “note” box).
 Here are some examples of side paths that could have made it into the fake blog post
and how we might have dealt with each:

¡ An anecdote about our debugging session —If we had a specific fun tidbit that was
directly related to Zig versus C debugging, we might share it in a separate boxed-
off sidebar.

¡ More details on our adoption of FakeDB —If there was already a dedicated article on
this, it would be great to just link to it. Otherwise, we would skip these details.

¡ A quick tutorial on how to use the new migrator tool —This extra detail would throw
the article out of balance. However, it would be nice to have the conclusion link
to a separate page with an easy-to-follow quickstart guide. We already link to the
source code, but this would be a nice addition.

P

Providing a glimpse into your specific project and challenges is a great way to connect
with readers. People flock to engineering blog posts to hear first-hand real-world per-
spectives. Readers with similar backgrounds can’t resist comparing notes, and read-
ers from totally different worlds are likely curious about what’s going on outside of
their daily tasks. Providing an ample amount of context early on in the blog post helps
readers decide if they’re interested. It’s also key for the scene setting that’s sometimes
required to understand the full significance of the achievement you’re sharing.
 Does your draft hit the Goldilocks zone of just enough context but not too much?
Figuring that out requires remembering who your intended audience is and what they
already know about your topic (we talked about defining this in chapter 4).
 As the author of the blog post, you’re in an odd spot. You probably know more about
this particular topic than anyone else alive. This could hurt you in two totally different
ways:

1 It could lead you to omit critical information because you forget how little the
 target reader really knows.

	 85Core (facts, focus, flow)

	

 

2 It could lead you to overload the poor reader with too much information because
 you assume they are as enthusiastic about the topic as you are.

As you scan your draft from your readers’ perspective, first see whether you’ve included any
background information that your target reader a) would already know or b) might not
care about. In either case, hyperlinks are often a good compromise, allowing those who
need or want more details to drill down, while keeping the article succinct and focused.
 Returning to the fake Zig blog post, things that would qualify as too much context
might include:

¡ Details on why the team moved from Postgres to FakeDB

¡ An explanation of FakeDB (assuming it truly is as popular as the article claims)
and Postgres

¡ A comparison of database migration strategies (online or offline)

Next, think hard about what background information you’re missing. We performed a
broad and very rudimentary “what’s missing” exercise like this at the end of chapter 4
with the help of AI. Here, think specifically about what background is really required
to help your target audience understand and appreciate your article. For example,
would the reader benefit from more background on

¡ The project you’re working on, such as who uses the project and what sets it apart
from alternatives?

¡ Your tech stack, maybe with an architectural diagram or two?

¡ Some hint of who you are, and why your perspective on this topic is worth
reading?

¡ Somewhat esoteric tools, technologies, and concepts they must understand to
get your article’s main point?

Again, feel free to tap hyperlinks whenever possible to keep the context-setting concise.

TIP Want the AI perspective? Prompt it with something like “Are there any
parts of this engineering blog post that could benefit from more context or
perhaps some hyperlinks for additional information? The target reader is
[your target reader].”

Looking back at the fake blog post, one major oversight stands out: the article never
defined who “we” are. Who developed this migration tool? Trusted industry veterans or
some newbies playing around? Data migrations are stressful business-critical projects.
The blog post wants to convince readers to adopt this tool for their own data migra-
tions, but the readers will probably be hungry for some background on who wrote the
tool. Assuming that “we” actually refers to a small team of well-known engineers, fresh
off some famous exit, this can be resolved pretty easily. We could change the first sen-
tence to something like “The team at AwesomeNewCo, a spin-off from NowRichyRich,
has been happily using…” Then, we could hyperlink “team at AwesomeNewCo” to the
web page that showcases the team’s true awesomeness.

86  

5.2.3	

C

C

Shift your focus to photography for just a moment. Sometimes, upon reviewing your
photos, you notice that one detail is particularly interesting, and you want to feature
it more prominently. Other times, some tourist photobombed your once-in-a-lifetime
shot, and you need to salvage it somehow. Cropping is your friend.
 This applies to writing, too. After a blog post is drafted, the writing equivalent of
some quick photo cropping might help make your original take more eye-catching and
compelling. Feel free to do a little cropping around the edges to focus your readers’
attention on the details that will be most interesting to them.

For example, the fake Zig blog post could be cropped in a few different ways:

¡ Crop out most of the Zig material and focus solely on the data migration tool.

¡ Crop out most of the database migration tool material and focus on lessons
learned during that first foray into Zig.

¡ Crop that Zig-focused version even further and make the post all about work-
ing with Zig’s strict type system (this would require substantial expansion of that
topic as well as cropping out the unrelated material).

Flow

Finally, consider flow: how the different parts of your article are ordered and appear to
relate to one another. Your reader will certainly appreciate your work on improving the
focus—that’s like reviewing your standard “cool local things to do” recommendation list
and customizing it for your weekend guest’s interests and abilities. By also optimizing
the flow, you ensure that everything is logically organized and ordered. Continuing the
analogy, that’s like crafting a step-by-step itinerary that covers all of your guest’s interests,
while making the best use of their limited time. But enough analogies—let’s get into it.

M

Here’s the first and most fundamental test of whether your reader will understand
the article’s flow: Can you explain it? If you, the mastermind behind this article, can
’t clearly articulate how it moves from one part to the next, it’s highly unlikely that
the reader could possibly figure it out.

 Try to walk your anticipated target reader through the flow at a high level. Speak
through it or write it down—it doesn’t matter. Cover details such as

¡ Why you’re starting where you start

¡ What you cover first and why

 ¡ What you shift to next, and how that relates to the previous thing

C

	 87Core (facts, focus, flow)

considers the Zig pros and cons we encountered, and then we wrap up by inviting our
readers to try out the tool we built in Zig.”

If that was easy for you, fantastic. Now you just need to ensure the reader can under-
stand the underlying flow (as discussed in the next section). If not, you might be able to
address the problems by

¡	Shuffling some parts around

¡	Thinking more about the connections and adding some sentences (or even para-
graphs) to clarify

¡	Eliminating any sections that don’t really connect (as covered in the focus discus-
sion from the previous section)

Provide clear signposts to the reader

Once you’re at a point where the flow makes sense to you, ensure that the connections
in your head are coming across to the reader. The best place to start is the start.

When a reader clicks your article, it’s as if they stepped off the subway in a new loca-
tion. They’re not certain this is where they want to be, and they’re unsure of the path
forward. If you really want them to proceed through your post, orient them a bit in your
introductory paragraphs. Help them immediately understand where they’ve landed,
where they’re going, and what they’re going to experience along the way.

The fake Zig blog post doesn’t orient readers at all. It jumps right into a database dis-
cussion without any mention of Zig. The readers who clicked the article solely because
they saw Zig in the title might initially wonder if they landed in the right place.

In contrast, Gwen Shapira does a superb job of orienting the reader in this intro-
duction-ending paragraph from her blog post, “Transaction Isolation in Postgres,
explained” (https://mng.bz/yo0E). She writes, “I’m going to start by explaining what
problem transaction isolation is even trying to solve. Then I’ll explain the standard iso-
lation levels as they appear in the SQL92 standard and are still mostly used today. Then
we’ll talk about the problems with SQL92 levels and how Postgres handles isolation and
these problems today. Grab some tea and we’ll start.”

Next, check if your headings give the reader a good sense of the flow you just
explained to yourself in the previous section. They should call out the different parts
of the article in terms that make sense to the reader. Headings that are heavy on terms
the readers don’t yet understand won’t help your readers orient themselves. When in
doubt, try to anticipate what question is running through your reader’s head at that
point in the article and work that into a heading (see table 5.2 for examples).

Table 5.2  Helpful vs. unhelpful headings

Unhelpful heading Better option

pg_fakedb Why we built a FakeDB <> Postgres migration tool in Zig

@cImport and translate-c How we achieved C interoperability

catch unreachable Comparing Zig’s error handling to Rust’s

https://mng.bz/yo0E

88  

 

C

Here are a few starters you can use for heading inspiration if you’re stuck:

¡ A brief primer on…

¡ Why we decided to…

¡ Earlier evolutions of our…

¡ How we previously…

¡ The problem(s) with…

¡ How we’re approaching…

¡ So why…

¡ What we learned from…

¡ What’s next for…

The fake Zig blog post does a nice job of using helpful headings. Perhaps the heading
“The Verdict” could be revised to “The Verdict: 100% Worth It” to provide a lot more
information with just a few more words.
 Finally, within the paragraphs and sentences of your article, be sure to overcommu-
nicate how each new idea relates to what came before it. Every part and every sentence
should be clearly connected if you want the reader to follow along to the end. This can
be a lifeline for a reader who gets distracted or lost. Connect the dots for them.

TIP Want the AI perspective? Prompt it with something like “Are there any
awkward transitions” or “Do you see any places where the target reader, ([your
target reader]), might get lost?”

Here are some examples of ways that you can connect new ideas to what you were
talking about before (we’ll abbreviate this as $WYWTAB):

¡ To achieve $WYWTAB, we had to…

¡ By implementing $WYWTAB, we…

¡ $WYWTAB allowed us to…

¡ But there was a problem with $WYWTAB…

¡ The hardest part of $WYWTAB was…

¡ After $WYWTAB, we decided it was time for…

It can also be helpful to link individual sentences together using transitional words
and phrases. They help the reader quickly assess where you’re going next. While
phrases such as “moreover” or “as expected” indicate that everything is unfolding with-
out drama, phrases such as “remarkably” or “interestingly” alert the reader that they
should pay (even closer) attention to what follows. It’s like when you’re watching a
horror movie, and the ominous music starts to play.
 Here are some words you could use to help your perpetually distracted readers pre-
pare for the next idea:

again / as expected / certainly / consequently / essentially / evidently / fortunately /
furthermore / interestingly / moreover / naturally / nevertheless / regrettably /

	 89Core (facts, focus, flow)

 

remarkably / significantly / similarly / surprisingly / typically / ultimately / undeni-
ably / understandably

The fake Zig blog post connects sentences together quite smoothly. Each sentence
flows naturally from the previous one. This is apparent right from the first paragraph.
We’ve bolded the transitions here for emphasis:

We’ve been happily using FakeDB for all of our services way before it was cool—some
of our early pipelines even ran pre-release versions in production, because we trusted
FakeDB’s development team so much. Thankfully, the risk of being early adopters paid
off, as FakeDB is now the de-facto standard for highly concurrent workloads. There’s
just one problem though, and it stems from the fact we sometimes need to move data
from our legacy Postgres clusters: migrating all data back to FakeDB is S-L-O-W.

F

If you’re writing the movie script for a summer blockbuster, you can get away with
saving the big reveal or plot twist for the very end. Once your audience has paid who-
knows-how-much for a ticket and popcorn, they’re most likely going to be sitting there
until the credits roll.
 You shouldn’t assume such a captive audience for your blog post though. Even if you
set up nice guideposts to lead readers through, some people will inevitably click away
or just lose your post in a sea of open tabs. That’s why it’s so essential to place critical
information at the start of your blog post (i.e., to “frontload” it). This is also known as
using an “inverted pyramid” structure. For more on the inverted pyramid approach, see
Amy Schade’s “Inverted Pyramid: Writing for Comprehension” article for the Nielsen
Norman Group (https://mng.bz/aVBY).

NOTE Bug-hunting blog posts are an exception to this rule (as discussed in
chapter 8). Don’t prematurely reveal the culprit; it deprives the reader from
experiencing the thrill of the hunt!

At the very least, you want your readers to grasp what your blog post is about and whether
it’s interesting and useful to them. Ultimately, you want to make sure it registers in their
brain as something worth reading now or revisiting later. Don’t make them read through
2000 words to realize that you accomplished something truly amazing. Every detail
shouldn’t be revealed upfront, but do try to offer tidbits that entice the reader to continue.
 Somewhere in the introduction, be sure to touch upon the two critical questions you
answered in chapter 4:

¡ What’s the goal of this blog post? Your introduction should clearly restate your goal in
terms of the reader. What’s in it for them? What will they get out of reading this?

¡ Why is your perspective on this topic interesting? Again, restate this in terms that the
reader cares about. For example, maybe you could work it into an explanation of
why you’re writing this article.

There are usually ample opportunities to mention details about who you are and what
you’ve been working on in the course of a natural introduction. For example, consider

https://mng.bz/aVBY

90  

 

5.3	

C

the following excerpt from Liz Fong-Jones’s blog post, “Scaling Kafka at Honeycomb”
(https://mng.bz/M1ym). Liz is a well-known engineer, currently Field CTO at Honey-
comb, so her byline alone already piques the interest of many readers. She also shares
some specific technical details on why her perspective on scaling Kafka is so interesting:

When you send telemetry into Honeycomb, our infrastructure needs to buffer your
data before processing it in our “retriever” columnar storage database. For the entirety
of Honeycomb’s existence, we have used Apache Kafka to perform this buffering func-
tion in our observability pipeline. In this post, we’ll review the history of how we got
here, why we’re so picky about Kafka software and hardware, and how we qualified
and adopted the new AWS Graviton2-based storage instances. Lastly, at the end of
this post, we’ll discuss the decrease in price per megabyte of throughput after the cumu-
lative optimizations we’ve made in the past two years. Let’s dive in.

Note that her introduction concludes with a nice preview of what’s ahead, similar to
the one in the Gwen Shapira blog post referenced earlier.
 Also, if part of the reason why your perspective is interesting comes from the fact that
you’re working at ReallyCoolStartup that’s known for XYZ, don’t assume that everyone
who reads your blog post will know about ReallyCoolStartup, even if your blog post
is published on the ReallyCoolStartup company blog. If your article happens to take
off on social media or Hacker News, it’s likely to be read by many people who have no
clue what ReallyCoolStartup is or does (and few will take the time to learn before they
start commenting). Strongly consider providing a super short overview of what’s so cool
about ReallyCoolStartup, even if it’s just an aside within a broader sentence. For exam-
ple, you could write something like “At ReallyCoolStartup, which focuses on XYZ, we
recently…”

TIP Want the AI perspective? Prompt it with something like “Do you think
the introduction of this article would motivate [your target reader] to read this
engineering blog post? Why?”

How did the fake Zig blog post perform with respect to frontloading? Not so well. This
article is backloaded more than frontloaded. It doesn’t

¡ Tell the reader what’s in it for them

¡ Mention Zig, which is a primary focus of the article

¡ Provide any context about who is writing it

¡ Share any differentiators whatsoever

Based on that introduction, the reader can only glean that this article will cover some-
thing about a faster way to migrate data from Postgres to FakeDB.

Clarity
C
 C

https://mng.bz/M1ym

	 91Clarity

if you can’t implement it in code that the compiler understands, you won’t be able to
make that idea a reality.
 When you wrote your working draft, you captured your thoughts in sentences on the
page. Great, that was a critical first step. Now it’s time to reread those sentences with
your reader in mind and tighten them up as needed to ensure that your meaning isn’t
muddled.
 You don’t need to spend tons of time revising every sentence to the point where
it’s so eloquent you’d want to print and frame it. But your reader will appreciate any
time you spend making sure that your ideas are communicated clearly and concisely. It
will make their reading experience faster, simpler, and more enjoyable. For example,
consider the difference between reading the original and revised examples that follow.
(The original is extreme, but it’s actually a real excerpt from a draft we came across).

Original: To overcome the scaling challenges we were facing, such as the lack of a
centralized system interface for keeping and managing the growing number of busi-
ness rules, as well as a previously loosely coupled infrastructure of third-party ser-
vices whose many failures were impacting our sales process, around two years ago
we decided to create a single platform to manage all aspects of our process for selling
directly to consumers.

Revised: Two years ago, we decided to build a centralized B2C sales platform. As the
business scaled, we wanted to centrally manage the growing number of business rules
and cut the dependencies on unreliable third-party services.

The original was difficult to process—but it captured his ideas and led the way to a
clearer statement later on. It provided something we could debug.
 Think of your dear readers. If you can convert clunky sentences into clear ones, your
readers can understand your thoughts better and reach the end of your article faster.
And this scales. Assume that with 15 minutes of sentence tuneup, you can save each
reader 1 minute of reading time. Now assume a blog post that attracts 1,000 readers
(or over 20,000, if it trends on Hacker News). The 1,000 to 20,000+ minutes (over 333
hours!) you’ve saved your global engineering peers is a nice return on investment from
your 15-minute sentence tuneup.

After you read this section, you should be able to quickly improve sentence clarity by

¡ Reading sentences out loud, with the takeaways from this section in your head

¡ Applying the method we introduce for improving the clarity of the clunkiest
sentences

¡ Using a tool such as Grammarly to spot any mechanical problems you’ve
overlooked

Before you begin, remember that sentences, like code, can easily be overengineered
past the point of diminishing returns. Don’t overdo it. You could spend hours or days
rewriting every sentence, but you have other things to do, and perfect is the enemy of
good. Focus on making fast fixes to the following categories of sentences, and move on:

¡ Most prominent (e.g., the introduction)

92  

5.3.1	

5.3.2	

C

¡ Most important (e.g., key findings and takeaways)

¡ Most muddled (e.g., whatever came out embarrassingly awful the first time)

Targeting unclear bulky sentences

Let’s start by talking about unclear bulky sentences: the written equivalent of code bloat.
It’s all too easy to write convoluted sentences. When you’re writing your draft, the words
don’t always pop into your brain in the ideal order, and sometimes, they’re not even the
right words at all. But as long as you end up with some words, any words to remind you of
what you were thinking, you achieved your initial goal of extracting your thoughts from
your brain. You still need to clarify your thoughts for your reader, though.
 Before you can improve the article’s overall clarity, you need a good grasp of what
types of sentences are the top candidates for optimization. Here are some high-level
traits to look out for:

¡ Overly long sentences (e.g., any sentence you can’t read out loud, start to finish,
without wanting to take a second breath)

¡ Sentences with multiple prepositional phrases (e.g., “We were collaborating on
integration across environments from the start of our project…”)

¡ Bureaucratic-sounding sentences built around a weak, passive verb (e.g., “The
bug was then located.” versus “We found the bug!”)

¡ Any other time the action (the verb) and the actor (the subject performing that
action) are unclear, too far from one another, or revealed too late in the sentence
(e.g., “Ultimately the problem, which we later realized was actually a great oppor-
tunity for improving our process, was that coding standards were neither defined
nor followed.”)

Some sentences might check multiple boxes!

Optimizing unclear bulky sentences

Now comes the fun part: optimizing your clunkiest sentences. Think of it as a sentence
engineering challenge, and there’s even a process you can apply to do this methodi-
cally. That process is based on the Paramedic Method introduced by Richard Lanham,
a professor at UCLA.
 We wanted some nicely convoluted sentences to workshop throughout these steps,
so we asked ChatGPT to badly rework a paragraph from the fake Zig blog post. It did
not disappoint! Here’s the AI-“enhanced” example that we’ll use:

An additional drawback with Zig is the young state of the ecosystem, though we hope
that this is not going to continue over the long term. Juxtaposed with Rust or compared
against C++, there is a conspicuous dearth of libraries and tools that would be very
helpful to programmers. It is great that it provides HTTP support within its standard
library. However, with all the SOC2 requirements, it needed to be secured by means of
a thin custom encryption layer. In the end, it was decided that the best solution was
implementing it by means of a link to an existing Rust implementation.

	 93Clarity

NOTE  Don’t plan to perform these steps for every sentence in your article! It’s
most likely overkill. Use this strategy as a tool to tighten your most important
sentences (e.g., your introduction, and the paragraph stating your findings).

Step 1: Bold the prepositions

Looking at excessive prepositions and “to be” verbs (the focus of step 2) is a great
way to identify unclear bulky sentences. It’s also your best source of clues on how to
improve them.

Prepositions are connector words that tie an object to the rest of the sentence. Each
preposition precedes the object that it’s talking about. But this isn’t a grammar book.
Here’s what’s important: clusters of prepositions and prepositional phrases inevitably
make sentences difficult to read. They’re often a sign that you’re trying to tack too
many things onto one poor sentence (aim for one sentence, one idea, period). It gets
monotonous, and it adds dead weight that buries the sentence’s main point. Sentences
with lots of prepositions sound like they were written by committee, with everyone tack-
ing on some part just to show that they contributed.

NOTE  If you can say “[the_word] my desk” or “[the_word] the meeting,” then
[the_word] is probably a preposition!

To complete step 1, find the prepositions in a sentence or paragraph you want to opti-
mize, then bold them. Just guess—you don’t have to be 100% accurate.

Here’s an example of bolding the prepositions, using the ChatGPT-“enhanced” excerpt:

An additional drawback with Zig is the young state of the ecosystem, though we hope
that this is not going to continue over the long term. Juxtaposed with Rust or com-
pared against C++, there is a conspicuous dearth of libraries and tools that would
be very helpful to programmers. It is great that it provides HTTP support within its
standard library. However, with all the SOC2 requirements, it needed to be secured
by means of a thin custom encryption layer. In the end, it was decided that the best
solution was implementing it by means of a link to an existing Rust implementation.

Now read that aloud, overemphasizing each of the bolded words. Do this a few times
with a few different examples, and you won’t be able to unhear it. Then don’t be sur-
prised if you instinctively start using fewer prepositions as you write.

Common prepositions
Not sure what’s a preposition? Here’s a list of common ones for fast reference:

about / above / across / after / against / along / among / around / as / at / before /
behind / beneath / beside / between / by / during / for / from / in / into / like / near / of /
off / on / out / over / through / to / toward / under / upon / with / within / without

Even a single preposition can muddle the meaning. For example, a phrase such as “a
careless way of coding” could be stated much more directly as “careless coding.” “Is

94 Chapter 5  Optimizing your draft

indicative of” could become “indicates.” Prepositions are not evil per se. But in excess,
they’re often a symptom of a larger problem.

Step 2: Highlight the “to be” verbs

Like excessive prepositions, “to be” verbs commonly figure into unclear bulky sen-
tences. They often perform the inglorious task of burying the sentence’s real action
and actor (the person or thing performing that action).

“To be” verbs (e.g., is, was, has, had) vaguely highlight a state of existence rather than
express a real action. Sentences that revolve around such verbs often use passive instead
of active voice, which shifts the focus from the subject performing the action to the thing
receiving the action. It sounds suspiciously like it’s trying to hide something or avoid
assigning blame (which it often is). Here’s the difference:

¡	Passive—“The bug was then located.”

¡	Active—“We found the bug!”

NOTE  Another fun rule of thumb: if you can add “by zombies” to the end of
a sentence and it still makes sense, then your sentence uses passive voice. For
example, “The bug was then located by zombies.”

There’s nothing wrong with using passive “to be” verbs in moderation. In fact, it’s the
preferred option when you don’t know who did something or you don’t want to men-
tion who did it (e.g., “The build was broken, so we started to investigate why.”) Just
don’t overuse and abuse them. You can often find a better alternative: a stronger verb
that shares more information, more concisely and directly.

To complete step 2, identify and highlight the forms of “to be.” Use color highlight-
ing if you’re working in an editor that allows it, or just use italics if you prefer.

“To be” verbs
Not sure what a “to be” verb looks like? Here’s a quick reference:

am / is / are / was / were / be / being / been

Here’s that same ChatGPT-“enhanced” excerpt with “to be” verbs underlined:

An additional drawback with Zig is the young state of the ecosystem, though we hope
that this is not going to continue over the long term. Juxtaposed with Rust or com-
pared against C++, there is a conspicuous dearth of libraries and tools that would
be very helpful to programmers. It is great that it provides HTTP support within its
standard library. However, with all the SOC2 requirements, it needed to be secured
by means of a thin custom encryption layer. In the end, it was decided that the best
solution was implementing it by means of a link to an existing Rust implementation.

We could certainly make this paragraph more direct and readable by tackling some
of those “to be” verbs. Read the sentence aloud again, lingering and cringing on each
of the underlined verbs (as well as the prepositions). Do it a few times, and this will be

	 95Clarity

 

stuck in your head forever, too. If all goes well, you will naturally catch yourself when
you find yourself leaning on a lazy “to be” verb when there are much better alternatives.

NOTE You don’t need to change anything in your sentences (yet). This step,
and the previous one, are designed to help you target sentences that could bene-
fit from optimization, provide clues on how to fix them, and make you start winc-
ing whenever you read a sentence that abuses prepositions and “to be” verbs.

S

Now it’s time to rein in those sentences. At its core, a sentence communicates some
action: a subject did a thing. If your reader can’t immediately tell who/what is perform-
ing some action and what action they’re performing, then you’re burdening them with
extra work to unravel what you really meant. This won’t be appreciated.
 To complete step 3, think about the actor and the action in your flagged (and now
marked-up) sentences. Then find a verb that concisely captures the actor’s action. Try
to look beyond the weak “to be” verbs and find something more precise and powerful.
 For example, let’s look at the first sentence in the ChatGPT-“enhanced” excerpt:
“An additional drawback with Zig is the young state of the ecosystem, though we hope
that this is not going to continue over the long term.” Who or what is the subject? Some
candidates are

¡ The drawback

¡ Zig

¡ The ecosystem

¡ The author’s team (the “we”)

After thinking about it, it seems like it’s really about “Zig’s young ecosystem.” So what is
that young ecosystem doing? Based on the context, it seems like it might be “complicat-
ing adoption.” Now let’s put it together using an active verb. That yields:

“Zig’s young ecosystem complicates adoption”

For another example, consider the final sentence: “In the end, it was decided that the
best solution was implementing it by means of a link to an existing Rust implementa-
tion.” Where’s the actor and action here? Hidden. With all the prepositions and “to
be” verbs, we have a lot of words but no stated actor and a buried action. It seems the
actor is actually “we” (the author’s team) and the action is “implementing it by means
of a link,” which could be expressed simply as “linked.” That gives us a new core of

“We linked to an existing Rust implementation.”

S

Now expand on that core and reintroduce any remaining essential elements from the
original sentence. Try to avoid adding too many words at the start of the sentence; gen-
erally, the faster the reader reaches the subject and verb, the better. And while you’re
tacking the original bits back on, you might as well try to simplify them, particularly by
eliminating excessive prepositions and rethinking “to be” verbs.

96 Chapter 5  Optimizing your draft

In our first example, we might end up with, “Another drawback: Zig’s young ecosys-
tem complicates adoption. We hope this improves.” In the second one, we might end
up with, “Ultimately, we implemented that encryption layer by linking to an existing
Rust implementation.”

Step 5: Cut (or replace) the remaining useless words

Finally, think hard about what else you might cut. Are there any words that aren’t add-
ing value—either enhancing the readers’ understanding of the subject or making the
article more pleasant to read? If so, strongly consider cutting them.

NOTE  Sometimes, there’s a tradeoff between being ultra concise and achiev-
ing the desired authentic tone. As we cover in section 5.5.1, a conversational
tone makes the article much more consumable than some bland impersonal
article would be. If words add value in that respect, they’re not “useless,” and
you shouldn’t feel compelled to cut them.

In our first example, we ended up with “Another drawback: Zig’s young ecosystem
complicates adoption. We hope this improves.” Does it add any value to share that
the team hopes this improves? Not really. It would be more interesting if it were sup-
ported with some facts, like the project’s GitHub star history showing a nice trend up
and to the right (see figure 5.1). For example, we could incorporate that detail as fol-
lows: “Another drawback: Zig’s young ecosystem complicates adoption. But this could
change soon given the surging interest in Zig.”

Figure 5.1  This image
could be added to the
fake Zig blog post
to demonstrate the
surging interest in Zig.

Revisiting the second example, there’s not too much to cut in “Ultimately, we imple-
mented that encryption layer by linking to an existing Rust implementation.” “Ulti-
mately” is not essential, but it’s a nice linking word that indicates the team considered
multiple options first and determined this was the best approach. We’ll keep it.

	 97Clarity

But we could safely kill “existing.” After all, the team couldn’t just link to some-
thing that did not exist. However, it might be more interesting to replace “existing”
with the name of the specific implementation that was used, plus a link. For example:
“Ultimately, we implemented that encryption layer by linking to the RustyEncryp-
tion Rust implementation.” Now, readers considering similar projects have a starting
point for their own encryption library research. But wait: Do we really need to say “the
RustyEncryption Rust implementation”? “Rust implementation” can be inferred from
the context, and if readers want to know more, they can click the hyperlink we’re add-
ing. Let’s simplify it: “Ultimately, we implemented that encryption layer by linking to
RustyEncryption.” Table 5.3 recaps how those two sentences have evolved.

Table 5.3  Original vs. revised sentences

Before After

An additional drawback with Zig is the young state
of the ecosystem, though we hope that this is not
going to continue over the long term.

Another drawback: Zig’s young ecosystem compli-
cates adoption. But this could change soon given
the surging interest in Zig. [Star History image]

In the end, it was decided that the best solution
was implementing it by means of a link to an exist-
ing Rust implementation.

Ultimately, we implemented that encryption layer
by linking to RustyEncryption.

And for fun, let’s tackle a couple other unwieldy sentences from the fake blog post,
too, as shown in table 5.4:

Table 5.4  More original vs. revised sentences

Before After

Zig is not Rust, and it happily lets you dereference
null pointers (although its type system tries to
prevent obvious cases of that), and use previously
freed memory, so we had a dubious pleasure of
long debugging sessions, just us, gdb, and the
ninth cup of coffee – but it was comforting to see
all the existing tools just work.

Unlike Rust, Zig happily lets you dereference
null pointers (but its type system tries to prevent
egregious offenses). It also lets you use previously
freed memory. We abused these freedoms, which
led to the dubious pleasure of long debugging ses-
sions: just us, gdb, and the ninth cup of coffee. At
least all the existing tools still just work.

One of the mind-blowing things about Zig is that
cross compilation (ergo compiling the code to
target CPU architecture and operating system dif-
ferent than the setup the compiler runs on) is also
a core feature of the language.

Zig’s cross compilation is mind-blowing. You can
compile code to a target CPU architecture and
operating system different than the setup your
compiler runs on.

Note that we didn’t remove every “to be” verb or preposition, and you don’t need to
either. Taking a hard look at them is a means to an end (sentence clarity), not a goal
in and of itself. Also note that we left a few nonessential words because we very deliber-
ately wanted to preserve the author’s friendly and personable voice rather than make
the article seem too detached and dull. The discussion of why and how to make it
sound human continues in section 5.5.1.

98 Chapter 5  Optimizing your draft

Calculating the lard factor
Richard Lanham uses the “lard factor” to measure success in revision with the Para-
medic Method. To calculate it, take the word reduction you achieved and divide it by the
original number of words. In the case of the second example (linking to RustyEncryption),
we get a lard factor of 57%:

23 - 10 = 13 / 23 = .5652 or 57%

Plus, we ended up adding a link that readers might find useful!

Don’t cut words for the sake of brevity. Just ensure that every word is justified and pull-
ing its own weight.
 When you’re hunting down words to eliminate or replace, pay special attention to
the following:

¡ The “blah blah is that” opening —This is also known as “throat clearing” or “the
slow windup.” It’s just extra words that you’re forcing the reader to read before
reaching your point. It manifests itself in sentences such as “the fact of the matter
is that…” and “what is most notable here is that…”

¡ Redundancies —Don’t use two words when one can achieve the same effect (e.g.,
basic fundamentals, end result, merge together, past history, new innovations).

¡ Very + word —Given the hundreds of thousands of words (at least) in the English
language, there is likely one that’s a better match to whatever you’re trying to
express than “very + whatever.” This is one place where generative AI excels. Just
prompt it with something like “Please suggest 30 words that mean ‘very strange’”
and select the one you like.

¡ The phrase that should have been a word —Why force your reader to read three or
four words when one would do the trick? For example,

– In light of the fact that > Since

– Despite the fact that > Although

– In the event that > If

¡ Double negatives —Double negatives require twice as much brain power to process
than the alternative. Moreover, it’s generally easier for the brain to process some-
thing in the affirmative. For example,

– It’s not impossible for… > It’s possible that… (or Possibly)

– No tests without failures… > Only failing tests…

¡ Superlatives and extremes —Never use superlatives or extremes; it’s always the worst
approach. But seriously, it’s usually difficult to prove that you are indeed the only,
best, fastest, or easiest whatever or that you always or never do something. And
if you can’t prove it, you will lose your readers’ trust. Plus, you’re likely to incite
the comment section vitriol that we’ve mentioned many times by now. If you do

	 99Clarity

choose to use superlatives, know that they will be perceived as “fighting words,”
so be prepared for the fight that follows.

S

Even after all of that, there are still a million more things you could fine-tune. But what
else should you focus on? If you have the time and desire, we recommend looking for
the following clarity killers that are common in engineering blog posts.

¡ Muddled modifiers —Clarify what modifiers are modifying. Otherwise, the reader
might misinterpret your meaning. For example,

– Debugging the code, the error became clear. (The error was debugging the
code for you? Great!)

– Coding quickly makes you a better programmer. (Do you need to code with
blazing fast speed to become a better programmer? Or will any pace of coding
make you a better programmer before long?)

– I’ll read the proposal and schedule your presentation tomorrow. (What’s
happening tomorrow? The reading? Or should you be ready to present
tomorrow?)

¡ Disconnects —If you start saying something, finish it before you move on to the
next idea. Don’t leave your reader hanging. Keep your subject close to your verb
and your verb close to its object. For example,

– We weren’t entirely shocked that John, after six months of frustration with
endless feature creep, changing deadlines, and stakeholder turnover, quit.

– The new algorithm, which can significantly reduce the computational com-
plexity and memory footprint of deep learning models by surgically removing
redundant connections, had a serious bug.

¡ Vague/incorrect it/that references —Unless the context makes it totally clear what
each “it” or “that” refers to, you might want to specify. For example,

– It’s somewhere in the repo but it’s broken. (What’s broken? The thing some-
one is looking for or the repo itself?)

– The report mentioned a major issue, but it lacked a resolution (Did the report
fail to include a resolution? Or was the major issue unresolved?)

¡ Punctuation overload —A sentence that’s technically correct could be made intimi-
dating by the sheer amount and variety of punctuation. For example,

– Push more logic into the database itself: letting it process as much as possi-
ble locally—which is (usually) great for “performance”—and then return the
results to the users... or some middleware.

– Some databases (e.g., PostgreSQL) implement their own binary format on top
of the TCP/IP stack; others (e.g., Amazon DynamoDB) build theirs on top
of HTTP—that’s a bit more verbose, but also more versatile (as well as more
compatible with browsers).

100 Chapter 5  Optimizing your draft

¡	Startling shifts—Choose your verb tense and how you’re addressing the user, then
keep it consistent throughout the article. For example,

– Starting with “This provides you with” then shifting to “Users gain the ability to”

– Starting with “We were in the middle of a meeting” then shifting to “And then
everything suddenly stops”

¡	Inconsistent tech terms—If something is known by multiple terms, by all means
include them all in the article, ideally when you introduce the thing. This helps
the readers determine if you’re really talking about the same thing if you say
“po-tay-to” and they “say po-tah-to.” But don’t arbitrarily change terms through-
out the article. For example,

– Define it upfront as “The blah (also known as blahblah and blahblahblah).”

– Don’t randomly switch around by calling it “the blah” in one sentence and
“the blahblahblah” in another.

¡	Perplexed paragraphs—One paragraph, one idea. If you can’t clearly state the point
of a paragraph, you can’t expect your reader to grasp it. A paragraph could have
one big idea with supporting facts and details. Or it could unite several closely
related ideas that build on one another. But if a paragraph randomly wanders off
into an orthogonal idea, start a new paragraph so the shift is clear to the reader.

Common errors in English
Every language has its quirks. English certainly has its fair share of similar words with dis-
tinctly different meanings. Fortunately, there’s a great reference you can tap if you want
quick clarification: Paul Brians’ Common Errors in English Usage (https://brians.wsu
.edu/common-errors/). Can’t remember the difference between adverse and averse?
It’s and its? Less and fewer? This site explains all that and much more.

 G
Now for fun, let’s take a look at how AI would revise the entire convoluted paragraph
that we started with. When prompted “Make this more direct and clearer,” it did a fairly
decent job. It got us from this

An additional drawback with Zig is the young state of the ecosystem, though we hope
that this is not going to continue over the long term. Juxtaposed with Rust or compared
against C++, there is a conspicuous dearth of libraries and tools that would be very
helpful to programmers. It is great that it provides HTTP support within its standard
library. However, with all the SOC2 requirements, it needed to be secured by means of
a thin custom encryption layer. In the end, it was decided that the best solution was
implementing it by means of a link to an existing Rust implementation.

to

Zig’s ecosystem is still young, lacking compared to Rust or C++. The shortage of librar-
ies and tools is noticeable, though we hope this changes in the long run. While it does

https://brians.wsu.edu/common-errors/
https://brians.wsu.edu/common-errors/

	 101Clarity

offer HTTP support in its standard library, we needed to add a custom encryption
layer to meet SOC2 requirements. After evaluating options, linking to an existing
Rust implementation emerged as the most effective solution.

It didn’t introduce the two more substantial improvements that we made (replacing
the “we hope” bit with the GitHub star history and providing a link to the specific
Rust implementation used). A human brain is required to realize that those additional
details might be interesting—and weave them in. Still, the improvement is decent
given the low effort required. We certainly don’t recommend that you feed your work
to AI and then blindly copy in the revision. But if you’re stuck, you might want to see
what AI suggests. Even if it doesn’t suggest something better, seeing some potential
revisions might trick your brain into generating more of its own ideas.

In appendix B, we’ll have a little more fun with using generative AI for revision.

5.3.3	 Grappling with grammar

Your grammar does not need to be perfect, but it certainly helps to have a good ref-
erence handy in case you want to check something—especially if you’re not a native
English speaker. One that we recommend is A Writer’s Reference by Diana Hacker (no
Hacker News pun intended). It’s available as a nice spiral-bound book with tabs and
indexes to help you quickly answer whatever question you have. It’s a classic, and any
used edition should work fine for your writing purposes. Once you see how the book
is organized, it will be faster to find your answer here than by searching the internet.

What about writing tools like Grammarly and lesser-known alternatives (we provide
a rundown in appendix A)? They don’t find everything. Sometimes they even suggest
the wrong thing and then tell you to change it back, sending you in an infinite loop. But
you’d be remiss not to use one. They do catch many mistakes (particularly incorrect
punctuation, misspelled words, and missing words) faster and more accurately than
most humans could.

  Figure 5.2 In the fake Zig blog post, Grammarly instantly caught two things we
would correct: incorrect article usage and a simple mixup between it’s and its.

102  

5.3.4	

	

	

	

	

	

C

Consider whatever option you select as an essential but fallible tool. Like a static anal-
ysis checker that’s not yet tuned for your needs and preferences, it will report prob-
lems you don’t care about, and it’s dangerous to assume that the absence of reported
problems means everything is just perfect. Always scan the findings to see if it caught
something interesting. But certainly question anything that seems fishy, and know that
it will inevitably miss things.
 Another option is to tap generative AI. You can ask an AI chatbot to clarify specific
grammatical points (e.g., “Please explain the rule for when to use an article.”) This is
usually spot on. Also, you can feed it a sentence or even your entire article and ask it to
point out grammatical errors. But beware; based on our experiences

¡ It likely won’t report everything in one try. You might need to go through a few
iterations of finding and fixing, or use a very carefully worded prompt, before it
reveals everything it noticed.

¡ The recommendations are sometimes nonsense and implementing them would
actually make the sentences worse.

Our take: it’s worth seeing what AI reports, just in case it happens to catch something
that’s clearly valid. As long as you can quickly spot the real problems among the noise,
it’s a means of free checking that might quickly surface something you missed. But
always review the results with suspicion. We’ll discuss this more, with examples, in
appendix B.
 Honestly, the best way to find missing words and other awkwardness is to read your
draft out loud. If that’s too embarrassing or impractical, at least whisper it audibly to
yourself. You might feel silly doing a dramatic reading of your own blog post. But you’d
be surprised by how many things you catch when you mouth it and hear it out loud ver-
sus when it’s just a voice in your head. Keep your trusty grammar guide nearby in case
something sounds weird and you want to investigate further.

Putting it all together in a process

Throughout this section, we discussed a lot of things to look for, as well as a variety of
ways to find and fix them. Here’s how we recommend putting it all together:

1 Review the targeting criteria in section 5.3.1.

2 With those criteria in mind, read your draft out loud (really!) and flag any sen-
 tences that could obviously benefit from revision. If you have trouble reading a
 sentence naturally, in a single breath, you should flag it.

3 Of all the flagged sentences, determine which ones are most critical (e.g., sen-
 tences from your intro or the paragraph revealing your most impressive findings).

4 Use the process described in 5.3.2 to optimize those target sentences. Timebox it
 to a reasonable amount of time and stick to it.

5 Look at the problems your grammar-checking tool reports and fix what makes
 sense. Consider asking generative AI for a grammar check, too.

	 103Components

6	 Read the blog post out loud again, as slowly and dramatically as you can bear. If
anything else critical jumps out at you, pause to fix it, and then proceed with your
soliloquy.

Congratulations, you’ve done your due diligence! Now onto the next.

5.4	 Components
Zooming out a bit, let’s look at the various components of the blog post: the higher-
level components that either include or enhance the sentences we just looked at are

¡	Titles

¡	Introductions

¡	Endings

¡	Headings

¡	Visuals

¡	Code

As with sentences, you could go down the rabbit hole overengineering these compo-
nents well past the point of diminishing returns. Instead of trying to make them per-
fect, aim to make them effective. To get you there, let’s focus on what each component
should achieve, then look at some tips for accomplishing that goal.

5.4.1	 Titles

Titles need to draw in your target readers. If your title doesn’t catch the reader’s atten-
tion, pique their curiosity, and intrigue them enough to click, then your blog post
won’t get read, no matter how great it is.
 There are exceptions, of course. If an industry luminary happens to share your arti-
cle in a social media post that’s something like “This is the most important thing on
BLAH that I’ve ever read—check it out: LINK,” then your title matters much less. But
it’s generally safe to assume that the weight of the world rests on your title.
 Let’s be realistic. Sometimes you’ll feel that your working draft ended up “good
enough” based on your intuition, and you’ll skip all the review/optimization steps for
core and clarity. That’s fine. In fact, that’s great—with enough practice, that will all come
naturally. But don’t ever publish without spending at least a few minutes thinking about
the title. It’s too important, and it’s also a very fast and easy way to make a big difference.
 Try to force yourself to create a long list of title variations, at least 10 or so. Don’t keep
overwriting the same title; you risk losing good ideas that you might want to mix and
match into a final title. In some separate area in the same doc, a different one, or on
a good old piece of paper, just try to crank out title variations that follow these recom-
mendations (which we will explore in turn next):

¡ Intrigue your target readers without misleading them.

¡ Would catch your target readers’ attention in a random list of blog post titles
(think Hacker News).

¡ Feature at least one term that your target readers might be looking for.

104  

C

Before we dive into the details, note the focus on target readers. Chapter 4 prompted
you to consider and define who you expected to read the article. This should be a pri-
mary consideration for your title. If your target audience is truly “anyone on Hacker
News,” you’d want to go with a broad, maybe somewhat mysterious title. But if you’re
writing specifically for readers who obsess over the nuances of consensus algorithms
in the context of database internals, you’re going to need a rather specific terminol-
ogy-laced title. A title misfire will prevent you from reaching the right readers, and
attracting the wrong readers is a surefire way to stir up negative comments.

I

When technical readers judge the article by its title, they consider whether they believe
the article will help them learn about a topic that interests them. Otherwise, they won’t
bother spending their time on it.
 For your title, aim to highlight a challenge, pain, technology, or engineering feat
that lies at the intersection of 1) what your target readers care about and 2) what your
article addresses. Remember how the last chapter urged you to define what’s so special
about your take on your selected topic and why your reader would be interested in your
perspective on it? That should be your guide for what to feature in your title.
 Don’t bury your differentiators. If your article presents something surprising or
counterintuitive, a unique perspective, a contrarian opinion, or a new way to approach
a longstanding problem, then definitely mention that in the title! There’s no shame in
enticing people to read by highlighting what’s special about your article.
 However, never tease something that you don’t ultimately deliver on. For instance, if
you promise a result like “Read This Post to Learn a Shocking Truth About A/B Testing”
and your blog post doesn’t actually include any groundbreaking information, people
will notice. You’ll not only lose readers for this blog post. You’ll get snarky comments
referencing clickbait. And you’ll breed distrust that could very likely deter people from
reading your subsequent blog posts.
 Consider ad blockers too. You’re targeting a technical audience, experienced in cre-
ative ways of avoiding ads when they browse the internet. The following qualities can get
your title filtered out (for a good reason!):

¡ Profanity

¡ WORDS IN ALL CAPS

¡ Excessive exclamation marks!!!!!!!

¡ Emojis 😊✈️🙌
¡ Words with erotic or obscene connotations

¡ Hyperlinks directly in the title (yes, it happens)

The above traits also make the title seem clickbaity to a human. If you use them in your
title, ad blockers are actually doing you a favor by preventing you from getting purely
negative online feedback. The bottom line: don’t do it.

What should you do instead? The most intriguing titles tend to be

	 105Components

¡ Short and crisp —No “fluff” words that don’t pull their own weight.

¡ Playful, provocative, or mysterious —If you enjoy wordplay, this is your chance.

 ¡ Technical and targeted —Something a broader audience would never “get.”

Here are a few examples of particularly intriguing titles:

¡ “Moore’s Scofflaws” by Bryan Cantrill (https://oxide.computer/blog/moores
-scofflaws)

¡ “Ship Shape” by Kerry Halupka and Rowan Katekar (https://mng.bz/gA5n)

¡ “Is Something Bugging You?” by Will Wilson (https://mng.bz/eVxZ)

¡ “Dumpster Diving the Go Garbage Collector” by Natalie Serrino (https://blog
.px.dev/go-garbage-collector/)

¡ “Lies We Tell Ourselves to Keep Using Golang” by Amos Wenger (https://mng
.bz/pxm0)

Another strategy is to use a multipart title—a short catchy phrase and a more descriptive
phrase, separated by a colon. For example, “Herding elephants: Lessons learned from
sharding Postgres at Notion” (which we’ll discuss in chapter 11). The initial part, on its
own, would attract people looking to herd large animals—presumably not the target
reader. The analogy is a fun introduction to the descriptive title that follows the colon.

E

Once your blog post is published, you can’t control where it shows up and with what
information. The only thing you can control is that its title will (most likely) be
shown.
Read your title with that in mind. If your target reader sees your title, without any con-
text in some random list or feed, would that title alone get them to click?
 If your article happens to hit the front page of Hacker News, readers will decide to
click—or not—based only on your title and the domain of where it’s hosted. No cool
image, no description, nothing. And it’s the same in many other news aggregators and
newsletters, at least the ones that attract the technical audience you’re presumably try-
ing to reach. Some popular lists (e.g., This Week in Rust) don’t even display a domain.
 If you’re working for a household-name tech leader, you can probably publish a post
titled “How [BigTech] [anything],” and people will be curious enough to click. Not so if
you’re at a little-known startup. In that case, you probably need to add more descriptive
and/or intriguing words.

T

Blog posts have a predictable life cycle. Upon publication, they’re shared across aggre-
gator and social sites, where they take off (or not) based on upvotes and endorsements.
In this arena, having a catchy, somewhat mysterious title might help you stand out
within a sea of options.
 Once the newness wears off, your blog post likely won’t be featured on lists or feeds.
Still, any time someone searches for a matching term, it could have a chance to draw
attention.

https://oxide.computer/blog/moores-scofflaws
https://oxide.computer/blog/moores-scofflaws
https://mng.bz/gA5n
https://mng.bz/eVxZ
https://blog.px.dev/go-garbage-collector/
https://blog.px.dev/go-garbage-collector/
https://mng.bz/pxm0
https://mng.bz/pxm0

106 Chapter 5  Optimizing your draft

Highlighting appropriate search terms (a.k.a. keywords) in the title is especially
important at this point of the blog post’s lifecycle. If you want your blog post to live
a long and healthy life, keywords matter. You don’t need to resort to the tricky search
engine optimization (SEO) strategies that, along with AI-generated content, are
responsible for most of the junk you receive in search results. But you really should

¡	Think about what terms your target readers might be searching when they’re
exploring a question or problem that your blog post addresses

¡	Consider featuring at least one of those terms in your title (and the others in your
introduction and headings)

TIP  If you feel strongly about using a catchy title without a recognizable key-
word, you could try launching with that catchy title, then retitling the article
later.

Don’t pander to machines. But if your article covers topics that people are searching
for or talking about, be sure to highlight that so it can be found by interested humans
and the machines they use to surface information. For example, if you’re writing about
something many developers are following (say, Rust), don’t forget to include that tech-
nology in your title.

A quick search will yield many SEO-optimized listings for many SEO optimization
tools—all promising to guide you to the precise winning combination and placement
of keywords you need to win the SEO game. If you have a solid article, you shouldn’t
need them. Just make sure your title highlights the most critical term(s) and the others
are featured prominently (maybe in your headings).

NOTE  We’ll cover keywords a bit more in chapter 7. Skip ahead if you’re really
not sure what to highlight in your title.

Example 5.1
There are many specific title compliments and critiques throughout the example blog
posts we’ll be discussing for each pattern. Here’s a quick preview of a few title-related
comments:

¡	How a Single Line of Code Made a 24-core Server Slower Than a Laptop—It
seemed a bit clickbatity at first, but the article delivered on its promise.

¡	How Prime Video Updates its App for More Than 8,000 Device Types—It mentions
“over 8,000 device types,” introducing an impressive level of awe.

¡	Rust After the Honeymoon—Intriguing in its technical ambiguity as well as emo-
tional connotation (honeymoon).

¡	How We Built Scalable Spatial Data and Spatial Indexing in CockroachDB—
It wouldn’t jump out at the average reader, but it is well-suited for the target
audience.

	 107Components

 

	

 

Let’s also return to the fake Zig blog post. In the initial draft, the title was “Zig helped us
migrate our data efficiently.” Zig was a key focus, so it’s good to have that featured quite
prominently. Making it the first word gives it extra emphasis.

But who is “us”? Do many people care about Zig helping the unknown “us” migrate data?
(Well, since it’s Zig, maybe.) Fans of this “us” might not notice the article unless they
also see and recognize the domain. And didn’t the author (PretendPiotr) want users of
FakeDB and Postgres to read this blog post? They’re unlikely to notice or find this blog
post unless FakeDB and Postgres are included somewhere in the headline.

With that in mind, here are some alternate title ideas:
¡ Zig Helped Us Migrate to FakeDB Efficiently
¡ Zig Helped Us Finally Migrate Off Postgres
¡ How to Migrate Data from Postgres to FakeDB…with Zig!

TIP You could ask AI to generate some additional title options for you. It most
likely won’t spit out the perfect title, but it might get you thinking about differ-
ent approaches and spark some new ideas in your own human brain.

5.4.2 Introductions

Once readers are lured in by your title, they’ll likely scan your introduction to assess
whether the article delivers on the title’s promise. Is it worth reading now (or at least
saving for later)? At this point, they’re wondering

¡ What exactly they’ll get from reading this article

¡ What angle you’re taking on this topic

¡ How it compares to everything else they’ve read on the topic

¡ If you seem qualified to address this topic

¡ If it’s really worth their time

Don’t be shy—tell them! Provide the information they want and let them decide if they
wish to continue. Technical readers never want to feel tricked. If you’re upfront and
transparent about your angle and intentions, readers who aren’t interested can just
leave now and move on with their lives. They’ll appreciate that you saved them some
time, and you’ll appreciate that they didn’t end up flaming you for wasting their time
on something that didn’t meet their expectations. Win-win!

NOTE Introductions are also discussed in section 5.2.3, particularly the part
about frontloading your article. And section 5.2.2 covered the importance of
providing context, which is critical in an introduction.

Also, plan to think hard about every sentence (ideally, every single word) in your
introduction. We’ve said quite a few times that you don’t want or need to overengineer
every sentence in the article. Ensuring that the introduction is clear and concise,

108  

C

	 109Components

production and want to share the reality versus the hype? Whatever sets your take on
this topic apart, don’t let the reader leave the introduction without knowing it.

Be highly aware of what your target reader does and doesn’t know

Think about the range of people who might stumble onto your blog post:

¡	They might not know anything about you, your company, or your project.

¡	They might not know much about your topic.

¡	They might already know way more about your topic than you expect, maybe
even more than you know.

You can’t please everyone. And if you try, you end up pleasing no one. So who do you
write for? It 100% depends on who your target audience is. Who did you have in mind
when you wrote it? That’s the person you should cater to. This is important throughout
the article, but it’s especially important at the beginning. If the target reader finds that
the first few paragraphs are too overwhelming or too basic for them, they’re likely to
leave before they read the rest.

Provide whatever context is required to give the target reader a soft landing. Even
a short (several words) description of your project when you first introduce it could
really help orient a reader. And avoid explaining things that your target reader should
already know. Hyperlinks are your friend here. They let you abstract away details that
would turn off the advanced reader, while still offering learning options for those who
would appreciate a little more background. Don’t go into hyperlink overload, though.
That looks immediately unappealing and gets distracting fast. Use your best judgment
on what’s most helpful for your target reader.

Example 5.2
How did the fake Zig blog post stack up on the criteria we set forth here? Not well, as shown
in the table. As we briefly mentioned in section 5.2.2, PretendPiotr went straight into the
meat of the article, without really considering what the reader knows or cares about.

Criteria Verdict

Provide the context required
to help the reader understand
where they’ve landed

No, it jumps right into the middle of the story.

Help the reader understand your
goal, stated in terms of what’s in
it for them

There were two stated goals: 1) convince database users to
try out the migration tool, and 2) show that it’s possible to
create something useful with Zig. Neither is reflected in this
introduction. Still, the reader can probably guess that they’ll
learn a faster way to move data from Postgres to FakeDB.

Give the reader a taste of what
they’ll experience along the way

Not at all. The title mentions Zig and the bulk of the article is
about Zig, but the introduction doesn’t mention Zig once.

Share why your perspective on
this topic is interesting

Nope. It doesn’t even provide any context on who “we” is.

110 Chapter 5  Optimizing your draft

(continued)

If this were a real article, we’d recommend adding a paragraph or two before the current
start; that new intro could then cover the key points.

 

5.4.3	

TIP Section 5.2 shared excerpts from a couple rather effective introductions
by Gwen Shapira and Liz Fong-Jones.

Endings

Many readers will drop off before the end—they lose interest, or life happens. But
those who stuck it out should be rewarded for their perseverance. Here are some part-
ing gifts you can leave them with.

summary/takeaways

Even if the reader has been following along, it’s nice to offer them a concise summary,
tying it all together for them. In the ideal world, every reader would read every word
carefully, then write down their own summary/takeaways in some notes file. That way,
they could force themselves to synthesize everything they learned and restate it in their
own words for better absorption and retention.
 But in reality, that doesn’t always (or ever?) happen. So help out the reader and do
it for them. Don’t repeat every key point; instead, synthesize the main ideas and touch
on why it all matters. Bonus: it makes it very easy for the reader to share your key points
with their colleagues or social network, potentially giving you additional readers later
on. Also, look back at your introduction and see if it makes sense to revisit any of those
threads in the conclusion. It could be a nice way to close the loop for the reader.

implications/extrapolation

Try and place your experiences and findings in the context of the broader industry,
beyond your project and company. In other words, directly address the “so what” ques-
tion. Thinking about how your specific work ties into the broader tech world is always
interesting; it could be inspiring, humbling, rewarding, or all that at the same time.
 Moreover, it’s a conversation starter. It could spark a discussion in the comment sec-
tion, and maybe some small percentage of those comments lead to a thoughtful discus-
sion. Maybe someone will write a follow-up article focused on one of those threads and
link back to your article as their inspiration.

what’s next (for you)
Many blog post patterns covered in the next part of this book wrap by discussing what’s
next for the project. This is especially common in posts that follow the “How We Built
It” and “We Rewrote It in X” patterns. Projects rarely have a clear-cut ending; there’s
almost always more work to be done. Giving your reader insight into this is a nice trans-
parency touch. And if something significant is planned, mentioning it here can help
build anticipation for the next blog post that you’ll write when that aspect of the prod-
uct is ready to share.

	 111Components

Next steps (for them)

Do you have an ask or invitation for the highly interested reader who reached the end
of your article? Would you like them to provide you feedback on something, maybe
contribute to a project? Or can you give them a way to apply what they learned or learn
even more? Ending by giving them something, as well as asking for something, is a
mutually beneficial way to wrap it up.

Example 5.3
The example blog posts in our pattern chapters showcase many different approaches to
endings. One of the most fun ones is the Discord post “Why Discord Is Switching From Go
to Rust,” which will be featured in chapter 9. In closing, the author

¡	Links to another blog post about Discord’s use of Rust
¡	Shares how Discord’s dev process has changed as a result of this project
¡	Invites Rust devotees to consider joining the Discord engineering team
¡	Reveals that while Discord relies on Rust, the Rust community relies on

Discord as their primary communication channel
¡	Provides a direct link to the Rust Programming Language Discord Server

Although the fake Zig blog post really missed the mark on the introduction, it wrapped
with a satisfying conclusion. It tied together all the various threads: the Postgres to
FakeDB data migration, the new data migrator, and the adventures in Zig. It also offered
easy access to the new tool and invited users to share their feedback.

	

5.4.4 Headings

Your headings are signposts that help the reader scan and navigate your article. They
should call out the different parts of the article in terms that make sense to the reader.
We covered this, with some examples of hits and misses, in section 5.2.3 (on flow). To
summarize the key takeaways from that discussion

¡ Make sure the headings focus on terms that the reader understands.

¡ Strongly consider crafting headings that answer the questions that are likely in
 the reader’s head at that point in the article.

Here are a few additional tips for helpful headings.

L

Aim for the shortest possible set of words that will help orient your reader. Headlines
should break up the paragraphs. If you have super long headings, in big bold fonts, it’s
likely to overwhelm the reader more than help them.

P

Readers scan from left to right. Don’t force the reader to read through a lot of filler
words to reach the important ones. For example, assume you’re writing up a bench-
mark and you have a few sections on how configuration A compares to configuration

112  

 

5.4.5	

C

B: one covering throughput, the other covering latency. Don’t use headings like “Con-
figuration A vs. Configuration B: Throughput,” “Configuration A vs. Configuration B:
Latency.” Instead, go with “Throughput Results,” “Latency Results.”

A

Sometimes you really need multiple layers of headings to convey the structure of an
article. But often, the complexity ends up disorienting the reader, especially if it’s hard
to visually distinguish one level of the hierarchy from another. You don’t need to avoid
it; just be very deliberate about it. And consider numbering sections if it would help
readers understand where they are in the hierarchy.

TIP Want the AI perspective? Try prompting a few different chatbots with
something like “Can you recommend ways to improve the existing headings in
this article?” Note that some provided much more helpful feedback than oth-
ers at the time of writing. If you really want recommendations and feel like the
feedback you’re getting is inadequate, it might be worth trying another chatbot.

Visuals

C

	 113Components

 

	

It’s an easy way to help readers get the most out of it. It also makes the meaning clear to
readers with visual impairments, or whenever the image is not loading.

C

If your image conveys meaning through colors, consider if color-blind readers can
still grasp the meaning (you can find free color-blind simulators online). Colorblind-
ness is much more common in men than women (8% versus 0.4%). Given the tech
field demographics, your article is likely to reach a lot of male readers, and thus a fair
amount of color-blind readers.

T

This is another case of ask for permission, not forgiveness. It’s the right thing to do,
and even an innocuous mistake could be tremendously costly. We once had a teammate
unknowingly use a copyrighted image in a blog post. The copyright holder discovered
that and contacted the company. Our company immediately took it down, but we also
had to pay damages in the amount of tens of thousands of dollars. Lesson learned.

TIP Want ideas on what visuals to add? Prompt AI with something like “Can
you think of any visuals to add to this article?”

5.4.6 Code

Last and certainly not least, code examples. Code examples should be used strategi-
cally to show how something works, why something has improved, why an optimization
is necessary, and so on. We’ll talk about how code excerpts are displayed in chapter 7.
For now, let’s focus on the code itself.

If you’re including code examples, ensure that they are

¡ Shareable —If your project isn’t open source, make sure you have clearance to
share any real code examples. We’ve said this a few times by now, but it’s import-
ant. If there’s any doubt as to whether you can share closed source code, ask for
permission, not forgiveness.

¡ Well-vetted —Few things are more embarrassing than sharing a blog post and hav-
ing the comment section take you to task for a careless coding mistake. Even if
the code is already in production, give it a careful look and get another pair of
eyes on it as well.

¡ Realistic —If you’re making up code for the sake of an example, ensure that the
examples are realistic and secure even if they’re not real (people will copy/
paste). They should be syntactically correct and compile—you can check that
with one of those online language playgrounds, if your language has one. Better
yet, share the link to the playground snippet so that readers can easily play with
the code.

¡ Concise —If you’re showing code that you don’t expect anyone to run, consider if
you can omit any parts that just aren’t relevant to what you’re discussing. If you
take that path, use ellipses (…) to indicate where code was omitted.

114  

5.5	

5.5.1	

C

Consumability
Finally, consider the overall experience of what it’s like to be a reader sitting down and
reading your article. What else can you do to draw them closer into your world? To
connect with them at a human-to-human level and evoke emotion? To motivate them
to continue even if they’re getting tired? And to help them dive back in if they get torn
away and really do want to pick up where they left off? That’s what we cover in this sec-
tion, the last of things to consider when optimizing your working draft.

Keeping it human

Show your reader that you’re human; not by demonstrating that you can select all the
traffic lights in an image grid, but by being authentic and relatable in your writing.
 Blog posts are not research papers. Shunning that austere formality is not only
acceptable in this context—it’s expected. As shown in many of the example blog posts
we’ve referenced in this book, some of the most educational blog posts are friendly and
also a bit fun. Would you rather learn from friends sharing their personal trials and trib-
ulations over lunch—or from a suit-and-tie professor delivering a scripted lecture to a
room of 500 people? Keep that in mind as you write and review your blog post. Here are
some tips for keeping it human.

B

Emotion equals engagement. If you can connect with a reader in a way that makes
them feel curious, inspired, excited, nostalgic, or empathetic, chances are they will be
more likely to complete, share, and remember your article.
 But how do you do that? Forced attempts to evoke emotion will be detected as such
(and likely ridiculed). Instead, just be real. Ensure that you’re not eliminating or down-
playing authentic elements that could help your reader connect with you. More specif-
ically, don’t be afraid to

¡ Share a little about your background when relevant to the discussion

¡ Reveal what was going through your head throughout your triumphs and
tribulations

¡ Admit your worries, frustrations, mistakes, and imperfections

¡ Be open about what you don’t (yet) know

¡ Poke fun at yourself

These are the things that will keep your reader engaged and also clearly distinguish
you from a machine.

W

Your writing should sound like some version of you. How do you sound while chat-
ting with familiar work colleagues over lunch? That’s a good tone to aim for. Also,
feel free to incorporate elements of your text-chatting persona or even your interior
monologue.

Your written words should mimic this voice with respect to things such as

	 115Consumability

 

¡ Word choice —Use words that you’d normally use. Don’t raid the thesaurus and
select words that you’ve never actually uttered.

¡ Sentence length and complexity —If you’re a very direct person who naturally speaks
in short sentences, great. Those are typically easy to read. If you tend to speak in
longer and more complex sentences, you still want to capture that style—but be
extra vigilant to ensure that it’s clear and consumable for the reader.

¡ Tone —If you’re enthusiastic, sarcastic, snarky, irreverent, serious, reserved, play-
ful, witty, whatever in reality, your writing should reflect this. If one of your close
friends were to read your article, would they recognize your personality or think
“who is this person?”

¡ Formality —Authors of engineering blog posts commonly use contractions and
colloquialisms. They take liberty with grammatical rules because that’s how they
sound in casual situations. However, if that’s not how you speak, don’t force your-
self to be informal. Do what’s authentic, whatever that means for you.

TIP Without training, AI can’t detect if your article sounds like you. But you
could get some feedback on tone by prompting a chatbot with questions like
“How would you describe the author’s voice in this article?” and “Does it sound
like it came from a human?”

If a sentence doesn’t sound like you, try explaining what you really meant out loud,
imagining your target reader sitting in front of you. And keep a voice recorder running
in case you utter the perfect phrasing.

A

Envision your blog post as a conversation between you (or your team) and the reader.
The author is either “I” or “we,” and the reader is “you.” Referring to them as “people,”
“users,” or some other impersonal entity creates an invisible barrier between you and
the reader. And given that you are already trying to communicate deeply technical
information to some unknown person somewhere around the world, you don’t need
any more barriers.
 You could even engage with the reader during the article, asking them to analyze
a problem or consider what they would have done at a given point. This faux dialog
is especially common in the “Bug Hunt” pattern (see chapter 8), where it’s used to
prompt readers to consider the evidence before them and draw their own conclusions.
It can be a fun way to pull the reader into the scene.

S

You’re naturally going to describe the same thing using different language if you’re
messaging one of your teammates, presenting to experts in your field, or attempting to
explain your work to your family. For example, you vary your

¡ Formality and tone

¡ Level of explanation

¡ Use of technical terms

116  

5.5.2	

C

¡ Cultural references and inside jokes

¡ Comparisons and analogies

This adaptability should also carry over to your writing.
 In chapter 4, we prompted you to think about your audience: who you are writing
for, what they already know, and why they care about what you’re writing. Remember all
this as you review your language!
 For example, when you’re writing primarily to users in your community, you’re likely
to be friendly, fully transparent, and highly technical. But if you’re targeting potential
investors, you might use language that’s more crafted, value oriented, and aspirational.

Making it scannable by humans

If your blog post makes the readers’ eyes hurt, only the most committed readers are
likely to trudge through it. In contrast, if it’s a clean balance of text, headings, and
white space, with a nice spattering of thoughtful visuals, your reader can immediately
recognize that you’ve thought about their experience. This might earn you a few min-
utes of their time, a chance to convince them that the article is indeed worth a read.
 Think of the difference that unreadable code makes. If the function definition spans
six whole screens, it’s a red flag. Simple things like inconsistent indentation or very long
lines of code never fail to make reviewers frown. Modern graphical IDEs (integrated
development environments) often show a preview of the whole file for easy scrolling;
this makes it readily apparent whether the code is in nice, human-readable shape, or
quite the opposite. When it’s the former, the associated code is invariably easier to rea-
son about, spot errors in, and modify.
 Scannability is equally important in your reader’s interactions with your blog post,
but for somewhat different reasons:

¡ When they first encounter your blog post, they likely scan it to determine if they
want to read it.

¡ As they read it, they scan guideposts like headings to understand where they are
and to check if they’re understanding it correctly.

¡ If they get distracted, they use those same guideposts to try to pick up where they
left off.

¡ If they later decide to revisit some fact or finding in your article, they want to rap-
C

C

	 117If you do nothing else

	

paragraphs and hit Return/Enter at the most logical point in the middle. That’s actually
one of the fastest and easiest ways to help your reader better process your article. The
rule of thumb here: each paragraph should feature one main idea, no more. In chapter
4, we also suggested that you consider having at least a couple of headings per page.

But don’t stop there. Also consider

¡ Converting paragraphs to lists—If you have a paragraph that’s essentially gluing
together a set of related items, consider making it a list. Use numbered lists if
ordering matters (e.g., steps that must be processed sequentially or a prioritized
list). Otherwise, use bulleted lists. Apply a parallel structure to the items in your
list to facilitate human parsing and processing. That really just means “start them
off in the same way.” For example, look at the first word in each bullet within this
list (e.g., converting, using, adding). Decide how you want your lists to be struc-
tured, then stick with it.

¡ Converting paragraphs to tables—This is a great option if you’re comparing things
(different options, before and after). It’s much simpler for the reader’s brain to
note the similarities and differences when the items being compared are sitting
beside one another in a highly structured table.

¡ Using boxes for extra information—In section 5.2, we urged you to eliminate infor-
mation that detracts from your focus. But maybe a few tidbits didn’t quite fit into
the article’s natural flow, and you couldn’t bear the thought of eliminating them?
Fine. Set them aside in a box (could be a single-cell table) so that the readers can
tell that it’s somewhat orthogonal to the core text.

¡ Adding decorative images, maybe even memes—Sometimes the brain can only take so
much text. If you still have a lot of text, consider breaking it up with one or two
additional images: maybe something you created with generative AI or a relevant
meme. Don’t go overboard with gratuitous graphics, of course. But a carefully
crafted image that evokes a little smile offers a nice brain break in a deeply tech-
nical article.

B

Finally, consider bolding key points within the remaining paragraphs. This is a great
tool for focusing the reader’s attention, as long as you use it deliberately and judi-
ciously. It’s better to have a few key phrases or complete (short) sentences highlighted
than to have isolated bolded words scattered throughout. For example, consider the
difference in figure 5.3.

5.6 If you do nothing else
We’ve covered quite a lot in this chapter. But our recommendation for the absolute
least you should do if you’re experienced, or just crazy short on time, is a fairly simple
six-step process:

118 Chapter 5  Optimizing your draft

	

	

	

	

	

	

 Figure 5.3 In the first
paragraph, the clean bolding
focuses the reader’s eyes.
In the second paragraph,
it’s overkill and becomes an
annoying distraction.

1 Read the article in your head with a focus on how the reader will perceive the
 content. Imagine that the most critical person in your target audience is sitting in
 front of you staring at you:

– What are they most skeptical about?

– Where do they want more context, detail, or supporting facts?

– Where might they get lost, distracted, or disoriented?

2 Spend a few minutes thinking about the title.

3 Spend a few minutes ensuring that your introduction clearly conveys what your
 target reader will get out of your article and why they would care about your take
 on this topic.

4 Make sure you have enough headings and not too many long paragraphs.

5 Read it out loud with a focus on how it sounds. Think about sentence clarity:

– What sentences are so long that you need to take another breath?

– What sentences stand out as being clunky or unclear?

– What sentences just don’t sound like you?

– Are any words missing?

6 See if your grammar-checking tool notices anything you immediately recognize
 as a real problem.

Summary

¡ Your ultimate goal is to make the target reader feel like the article was written
with them in mind.

¡ Be obsessive about considering what your target reader already knows, doesn’t
know, and wants to know.

¡ Your top priority should be providing the target reader the facts required to earn
their trust.

	 119Summary

¡	When you rework sentences, think about making it more convenient and pleas-
ant for your reader to understand your thoughts.

¡	Target the clunkiest sentences in your most prominent paragraphs for revision.

¡	Highlighting weak “to be” verbs and prepositions can help you find and fix sub-
optimal sentences.

¡	Aim for writing that’s clear and concise, but still personable and conversational.

¡	Your writing should sound like how you speak or chat with colleagues.

¡	Spend a few minutes crafting an intriguing title.

¡	Ensure that your introduction is upfront about your goal (in terms of what’s in it
for your reader) and what’s so special about your take on the topic.

¡	Break up big blocks of text to make the article more scannable.

¡	Reading your draft out loud is a great way to spot problems.

6Getting feedback

		

	

This chapter covers

¡ Comparing the code review and article review
processes

¡ Determining who should review your work and
when to start the process

¡ Preparing your reviewers
¡ Responding to comments

Let’s be honest: when you ask your peers to review something, your code or your
writing, the only response you really want is “Wow, this is absolutely perfect—ship
it!” Critical feedback inevitably stings, at least at first. But if you’re not sold on its
value, think back to just a few of the many times a peer code review comment saved
you from a much worse fate than that initial humbling. It’s no different with writ-
ing. Just do it. Your bruised ego will recover, your blog post will be better, and you’ll
likely learn a few things in the process.
 This chapter provides tips on how to make the article review process more valu-
able for you, as well as more straightforward for your reviewers. We’ll explore how

120

	 121Comparing writing review with code review

 

	

	

article review compares to code review and then get into the logistics of applying the
“four eyes” principle to your blog posts. Who should be reviewing your blog post, when,
and how? How can you set the stage for more valuable feedback? And how do you han-
dle tricky situations such as when you disagree with a reviewer’s suggestions?

NOTE If you’re writing for a company blog and your organization has an estab-
lished article review process, follow that by all means! Hopefully, this chapter
provides some additional tips for making that process faster and more valuable.

6.1 Focus and challenges
A review process can turn into a massive source of frustration if you and your reviewer
aren’t fully aligned. A simple “Hey can you look at this” might be fine if your reviewer is
a close teammate who has been involved from the start of this blog post’s lifecycle. But
otherwise, you might end up with headaches as the reviewer is

¡ Trying to remold your entire article to reflect their vision

¡ Obsessing over details that are no longer up for debate

¡ Just nitpicking grammar when you really want a technical review

¡ Procrastinating because they feel overwhelmed by the task

And that leads to the greatest challenge: getting valuable feedback promptly. Put your-
self in the reviewer’s shoes. They probably weren’t planning to review a blog post you
wrote. Now that you’ve asked them to be “the reviewer,” they might feel responsible for
finding and fixing everything they consider wrong. If the article is a success, you get all
(or at least most) of the credit. But if a major problem slipped through to publication,
they’re likely to feel remiss for not noticing and flagging it. It’s not a glorious task.
 As we’ll explain shortly, overcommunication can address these challenges. By spend-
ing maybe 5 extra minutes defining the scope of what you expect, you lighten the load
on your reviewer and absolve them of full responsibility for everything wrong with the
article. Moreover, by declaring certain things (such as the topic angle itself or the spe-
cific tests that were run) “off limits,” you further reduce the scope of things the reviewer
has to worry about. You also reduce your chances of getting feedback that’s not valuable
to you at this stage of the writing process.

6.2 Comparing writing review with code review
Having your blog post reviewed is in some ways similar to receiving code review:

¡ Feedback from another person familiar with the topic is very useful.

¡ Typos are pointed out mercilessly.

¡ Lots of the review comments are purely stylistic:

– “Looks good, but please split this function into three.”

– “Looks good, but please split this paragraph into three.”

122  

6.3	

C

¡ Different opinions on how something should be designed lead to long
discussions.

 ¡ Negative feedback can be taken a little too personally at times.

Blog post reviewing is also distinctly different in a few respects:

¡ Feedback from someone not even remotely familiar with the topic can be
extremely useful for a blog post, but not that often for code.

¡ When there are long discussions on how something should be written, they often
settle on the author’s original approach, especially when the author’s subjective
opinion is a vital part of the blog post. For code, what’s often discussed is “the ulti-
mate truth,” ideally proven with formulas. That means the discussions tend to be
longer and might even involve arbiters when no consensus is in sight.

Many code review practices carry over to article review, so code review best practices
are the perfect place to start when thinking about how to introduce the article to your
reviewer and how to interact with them. In both cases, clearly describing your intent
when you submit a pull request or article review request helps the reviewer get into
your head. That, in turn, helps you get more valuable feedback. For example, in both
cases, it’s helpful to cover

¡ The underlying rationale

¡ The alternatives

¡ Why the alternative you selected is best

When it comes to interacting with the reviewer, the recommended protocol is exactly
the same with article and code reviews. You don’t need to timidly cave in to every
request and suggestion. If you disagree with something a reviewer seems to be insist-
ing on, feel free to start a discussion and share more details about why you took your
approach and/or why you disagree with what’s suggested. Maybe the reviewer is actu-
ally right. Or maybe you are. Either way, someone learns something in the process.
 But some code review practices don’t carry over to articles:

¡ With code review, you can usually placate a reviewer by promising to implement
a nonessential suggestion later. With writing, the article most likely won’t be con-
tinuously evolving like a code base does, so that’s usually not a viable option here.

¡ With code review, it’s nicest to work with small, self-contained changes. That’s not
feasible with an article, which should generally be reviewed as a whole, from start
to finish.

¡ With code review, it’s risky to make even a tiny change after the review is
complete—even fixing a typo or moving a block around. But with articles, a small
tweak isn’t going to break the build. Postreview optimizing here is totally fine.

Selecting your reviewer(s)
The first decision to make is who should be reviewing your article. Ideally, you want two
different reviewers:

	 123Deciding when to start

 

	

¡ Technical reviewer —Someone close to the topic, perhaps a teammate or a
peer who works on similar projects and technologies. They can point out
inadequate detail, factual errors, omissions, irrelevant technical digressions, and
similar.

¡ Clarity reviewer —Someone who is not deep in the weeds of your project and
can play the role of the curious target reader. They can point out places where
addi-tional context is needed, the flow seems to take giant leaps or go in
circles, or sentences just don’t make sense. Even better, maybe they are willing
to perform some editing for you.

TIP If someone is editing the text of the article, make sure the changes are
tracked (or you view them via version history). That way, you can review the
changes carefully, check that they didn’t change your meaning, and just gener-
ally ensure that you’re comfortable with any proposed changes. Otherwise, it’s
like trying to review code updates without access to diffs.

As you choose, consider who can give you the most brutal feedback (we promise, you’ll
appreciate it after the sting wears off). This is likely someone you know fairly well.
If you’ve already endured late-night debugging sessions, team offsites, and all other
sorts of actual or forced fun with someone, chances are they won’t be afraid to tell you
what they really think. But don’t limit yourself. There might be others in your com-
pany, community, or network who are fully willing to share honest feedback. If you’re
a senior or staff engineer and really want to torment a junior new hire, you might even
consider asking them under the condition that they shouldn’t hold anything back.
 Once you select a reviewer, let them know immediately. Consider this a “save the
date” type of thing: you don’t need to give them all the details yet. But letting them
know in advance is a nice touch. That way, you don’t surprise them with an urgent
review request at a time when they might be overwhelmed with other projects.
 Not sure what to say? For a teammate, it could be as simple as this:

I’m working on a blog post about {topic} and would really appreciate your feedback
on it when it’s a little further along, maybe in {some general timeframe}. No action
required now—I just wanted to get it on your radar.

Or for someone you’re not as familiar with (perhaps someone on a different team),
you could say:

I’m working on a blog post about {topic}. I heard {namedrop if appropriate} that
you’ve done a lot of work on {blah}, so I would really appreciate your perspective on
the article. Do you think you could spare 30 minutes or so to provide feedback when it’s
a little further along, maybe in {some general timeframe}?

6.4 Deciding when to start
There’s no standard best time for getting a draft in front of a reviewer. Start too early,
and reviewers might feel like you’re wasting their time. Start too late, and it might not

124  

6.4.1	

6.4.2	

C

be feasible to fix any fundamental problems raised by reviewers. And what’s perfect for
one blog post might be disastrous for another.

Here are some things to consider as you determine when to start the review process.

How important and/or controversial is the topic?

Are you writing something that’s likely to generate a lot of debate, either internally or
externally? “How We Built It” articles, benchmarks, and controversial “Thoughts on
Trends” articles definitely fall into this category. Others might as well; in some com-
panies, even innocuous-seeming ideas end up being contentious. In these cases, you
might want to begin the review process even before the first draft. Make sure you have
a decent outline, and share it with key stakeholders as well as your technical reviewer
before you start fleshing out the actual article.
 The reviewers can’t nitpick over low-level details because none exist yet. They’re
forced to focus on the high-level content and flow, which is great to have early feedback
on. As with software defects, the earlier you expose a critical issue in an article, the faster
and easier it is to fix. You don’t want to get to the point where you’ve tidied up all your
clunkiest sentences and then find out that your boss hates the fundamental idea of the
article.
 When the actual draft of this blog post is ready, consider sending it off for technical
review as soon as you feel the core (focus, flow, facts—see chapter 5) is solid. There’s no
point in spending too much time worrying about specific sentences when your review-
ers might ask you to scrap entire sections and add different ones.
 Also, plan extra time for clarity review here. Maybe even have a few different people
read it with clarity in mind. Although readers might easily excuse small imperfections
in the quick blog you wrote sharing your weekend project, high-profile blog posts will
be held to a higher standard. You don’t want the blog announcing your company’s
greatest engineering achievement ever to contain even a single sentence that the target
audience can’t easily parse.

Do you have a true “blocker” question?

Sometimes you can’t move forward with the draft until you get the answer to a critical
question. For example,

¡ Are we happy with the results of these tests, or do we need to try something
different?

¡ Do you think I should also include a section on the details of {blah} or continue
without it?

¡ Are the details introduced in the best order for the average reader, or should I
restructure the article?

¡ Are we really going to deliver on what this section promises in the next few
months, or should I rethink that whole part to avoid empty promises?

¡ Do you think the target reader can follow this tutorial without getting stuck
somewhere?

	 125Preparing your reviewers

In these cases, it’s time for at least a preliminary review. When you request a review
(described in section 6.5), include some verbiage like this: “I’m not yet done with the
article: I still plan to {do X, Y, and Z}. But I’d like you to take a quick look at what I have
so far and lmk if {big question}.”

6.4.3	 Do you feel like you’ve done what you intended to do?

As soon as you feel like you’ve completed everything you intended to do for this
dear draft, send it off on the review process! Don’t wait for the point where you feel
every sentence is positively poetic. Instead, aim for the point of having done your due
diligence:

¡	You feel everything that was in your head is reflected in the draft.

¡	You’ve thought about core concerns (focus, flow, facts).

¡	You’re confident your sentences are reasonably clear.

¡	You gave your title and introduction some tender loving care.

¡	You revisited the goal you defined for this blog and feel that you’ve achieved it.

¡	You revisited the reason why your take on this topic is compelling, and you feel
it’s reflected in the article.

If you’ve checked all those boxes, the draft is definitely ready for more eyeballs.

6.4.4	 Will there be time for another review cycle after your tech reviewer finishes?

Ideally, you’d send the draft for technical review, revise it accordingly, and then have your

	

	

clarity reviewer take a look. But that’s not always practical. Sometimes you need to speedrun
the whole process, or sometimes the technical review takes longer than expected.
 If you anticipate publishing quite soon after you receive the tech review feedback,
go ahead and see if someone can read it for clarity now (in parallel). Then, if you need
to change anything after the tech review, be sure to track your changes. Maybe a final
round of clarity review is possible. If not, be sure to give those revised bits some extra
scrutiny yourself.

6.5 Preparing your reviewers
Once you’ve identified some reviewers, and you’re ready to throw your draft over the
wall for review, what do you do? “Email it to them with a note like ‘Please review this
blog post draft’” is the most common response but also the wrong one.
 As we mentioned earlier in this chapter, just about 5 minutes spent on preparation
can make the review process significantly less daunting for your reviewer and much
more valuable for you. Here are a few tips followed by an example of how you can put
them into practice.

6.5.1 Providing background

By now, you’re probably sick of looking at your blog post draft. But remember that it’s
quite new to your reviewer. Tell your reviewer the essentials about what you’re writing,
why, and where you are in the writing process. That includes

126  

6.5.2	

C

¡ What’s the goal and who’s the target audience

¡ Where it is in the process

 ¡ What’s nonnegotiable

Let’s look at each in turn.

W

Think back to your planning work from chapter 4. Share that one-sentence statement
of the article’s goal with your reviewer, and if the audience isn’t already clearly high-
lighted in that goal statement, add it here. Telling the reviewer what you’re trying to
accomplish should guide them to provide feedback accordingly. For example, they
might offer totally different comments if they know you’re trying to help an end-user
understand why your product works the way it does than if the article is intended to
share your design decisions with fellow infrastructure engineers.

W

Are you sending them a rough draft for technical review, which will be followed by revi-
sion and then a clarity review and edit? If your technical reviewer knows that, they’re
less likely to worry about missing words, rephrasing things for you, and so on. Are you
sending out a super early draft for feedback on the fundamentals? Or have five people
already read it, including your direct boss and the CTO, and said they love the overall
direction but want actual engineers to double-check the technical details? Be transpar-
ent and let your reviewer know.

W

Did your boss declare that no more benchmarks should be run? Did a partner spon-
soring the project require tests to be run in a certain way? Did you already ask for per-
mission to include code examples, only to be denied? Mention it here and save your
reviewer the grief of writing a detailed comment on something that doesn’t matter
because it’s just not up for debate.

Specifying what you want

C

	 127Preparing your reviewers

 

NOTE When you write your request, avoid asking in a way that stifles feedback.
For example, we’ve seen review requests come in with comments like “How
do you like it?” or “I think this is ready to go—let me know what you think.”
That puts the reviewer in an awkward position and makes them feel bad for
giving you constructive criticism. If you write a message as we recommended
previously, such comments would likely seem out of place. Still, we wanted to
mention it because it’s a common way to start the review process off on the
wrong foot.

S

Additionally, feel free to feed your reviewers some specific questions that you want
answered. If your questions refer to the article in general (e.g., “Do you think I need
more technical detail throughout?”), mention that in your review message. Whenever
you have questions related to a specific part of the article, add them as comments in
the doc. In-doc comments are perfect for questions and comments like`

¡ I know we’re planning a dedicated blog on this. Should I hold off on mentioning
it here?

¡ I debated also mentioning the {blah} here. WDYT?

¡ I’m worried that this point might be unclear. WDYT?

¡ Can you double-check that this code sample is free of features we deprecated in
the last release?

¡ I added this “details” section when I thought I wasn’t going to have enough to
write about, but the article actually landed pretty long. I’m absolutely fine with
nuking the whole section. Do you think I should keep it or cut it?

¡ I feel like having six straight throughput graphs is probably overkill here, but
they each show something interesting, so I’m not sure which to cut. Which one or
two do you think are most intriguing?

¡ Do you know of any good resources I can link out to on this?

¡ You implemented this feature—did I capture its description right?

¡ Can you rerun this example on your Mac? I want to make sure it runs fine on
more operating systems.

T

A task without a deadline is usually the first one to get pushed back (and rightfully so).
Even if there’s no hard and fast deadline for when you need the feedback, go ahead
and specify when you’d like to receive the feedback. For example, “I’m looking to get
this published by {some date}—do you think you could get me feedback by {another
date}?”
 What if you hit the very common scenario where you don’t receive a response by that
date? Time for the “friendly reminder.” For example: “I’d still really appreciate your
feedback on the {topic} blog post. Any questions I can answer at this point?”

128 Chapter 6  Getting feedback

Example 6.1
Here’s a message that PretendPiotr might send to his technical reviewer when he shares
the fake Zig blog for review:

Hi, can you take a look at my blog draft about writing fancymigratorname
in Zig?

The goals were 1) convince FakeDB users to try out the Postgres migration tool,
and 2) show that it’s possible to create something useful with Zig.

You’re perfect audience material since it’s likely the first time you’ve seen Zig
code, and at the same time you’re a Postgres pro. Please let me know if any-
thing looks unclear. No rush per se, but Big Boss will obliterate me if it’s not
shipped by the end of next week (:

And here are a few comments that the reviewer might make:
¡	In “The good parts,” you mention “Postgres” official C headers,” but that’s ambig-

uous. All Postgres codebase is in C. Maybe just add a link to the extension API or
mention that you mean the header for writing extensions in C.

¡	Nitpick: s/it’s patience/its patience/ in “The not-so-good parts.”
¡	Since you so gracefully mentioned I never read Zig code, I feel obliged to inform

you that I still haven’t seen any after looking at the draft. A snippet or two wouldn’t
hurt.

6.6	

 

Responding to reviewer comments
Your reviewers finally responded! It’s exciting that the process is moving forward, but
how do you deal with their feedback?
 Try to resist diving right in, ready to defend your article to the death. Find some time
when you can thoughtfully review the comments. If you can stand it, read all the com-
ments before you respond to a single comment. It’s not uncommon to fall into despair
reading a seemingly endless onslaught of comments, then reach some final comment
like “This is great—I really enjoyed it and think it’s a valuable resource!” Do everyone
a favor and at least skim through all the comments before you respond to any of the
comments.
 Now take a deep breath and start responding. You don’t need to make every change
the reviewer suggested, but you should at least consider and acknowledge them all.
Review them with curiosity, not combativeness. Perhaps the reviewer is saving you from
public embarrassment or at least helping you sharpen your argument in ways that pre-
vent a few snarky comments.

TIP What if a reviewer’s comment overlooks the “constructive” part of the
“constructive criticism” term? If you truly want to learn what he was hoping for,
try responding with something like a nonconfrontational “Okay, what changes
do you think would be helpful here?”

	 129Special steps for special cases

	

	

	

As noted in the discussion of code review best practices (section 6.2), feel free to
respectfully disagree with an article reviewer, just as you might with a code reviewer.
The same general principles apply:

¡ For each suggestion, either a) implement a change and note that in the response,
b) promise to do it later, c) explain why you don’t think a change is required, or
d) at least acknowledge it with something like “comment noted.”

¡ Don’t just give in if you believe your approach is correct. Initiate a discussion, and
at least one of you will learn something.

¡ Be open to the fact that your approach might not be correct. Someone with fresh
eyes and a totally different set of experiences might notice different problems
and opportunities. That’s the whole point of the review, after all.

Also, if you don’t understand something, say so. The reviewer would much rather clar-
ify what they meant than have you ignore the feedback they spent time thinking about
and communicating.
 What if your reviewer went above and beyond, providing you more feedback than
you asked for (e.g., a technical reviewer pointing out ways to improve sentence clarity)?
Thank them and be extremely grateful! Take all of their feedback seriously;
consider every comment an opportunity to improve or harden the article.

6.7 Special steps for special cases
But as with programming, edge cases occur. Finally, let’s look at additional steps you
might consider in special situations.

6.7.1 Nonnative English speakers

We’ve stressed that your technical readers will likely forgive some grammatical imper-
fections. And if someone reviewed your draft for clarity, your article should be in pretty
decent shape by now. But if you want to be extra sure that it sounds right, feel free to
tap a native English speaker who’s willing to perform a light edit for you.
 Ideally, you can find someone in your company or social network who has at least
some basic understanding of a) the general topic and b) what you sound like.
Most likely, they’ll do this for free as long as you’ve been moderately nice to them (or
at least have earned a reputation as a decent human being). You could also
consider hiring an editor on a site like Fiverr, but the quality could vary, especially for
technical topics.
Another option: ask your colleagues and network for recommendations.

6.7.2 Don’t know who to ask

If you’re writing about an independent project or just want to keep your blog post writ-
ing separate from your work life, finding reviewers might require a little extra creativ-
ity. Feel free to throw the request out on social media or pop a note in an appropriately
themed discussion forum. For example: “Hey, I’m writing an article on {your specific
topic} and would really appreciate feedback from some {the general topic} experts. Any
volunteers? :-)”

130 Chapter 6  Getting feedback

There’s no guarantee, of course. But you might get some independent feedback and
make a few connections along the way.

6.7.3	 Other organizations involved

Does your blog post feature a specific tool or project managed by another organiza-
tion? If so, consider running it by that other organization before you publish. Even if
you’re not required to get their approval, they might provide helpful feedback (e.g.,
something you overlooked with respect to the tool/project that they’re the experts
on). Plus, this puts your blog post on their radar. If they’re interested, they can prepare
to share it on their social media handles, perhaps republish it on their blog, include it
in their newsletter, and so forth.

6.8	 If you do nothing else
Here is the absolute least that you should do for the review process:

¡	Check any applicable company review protocols.

¡	Prepare a brief message summarizing your goal for the article, where it is in the
process, and what you want from the reviewer.

¡	Flag any specific sections or sentences you have specific questions or doubts
about.

¡	Find at least one trusted person to give it a look.

Summary

¡	Constructive criticism might sting at first, but it’s a valuable tool for optimizing
and “hardening” your article.

¡	You can and should apply some code review best practices to the article review
process (e.g., clearly describing your intent and using comments you disagree
with as a springboard for discussion and learning).

¡	In the ideal world, you’ll have one reviewer (close to your subject) who can point
out technical flaws and another (further from your subject) who can be the
reader advocate and point out what requires additional context or clarification.

¡	The best time to start the review varies; sometimes you even want to have the out-
line reviewed; other times you can wait until you feel “it’s ready.”

¡	A few minutes spent upfront providing reviewers with background and specify-
ing what you want will pay off in better feedback and less frustration all around.

¡	Be open-minded and curious when responding to reviewer comments, and never
shy away from initiating a discussion.

7 Ship it

This chapter covers

¡ Final considerations before you publish
¡ What to look for when reviewing the blog post

as a web page
¡ Guidelines for populating the metadata

The finish line is in sight! You’re so close to shipping it. But even if you’re tired of
thinking about this article, there are a few additional details to consider as your
work is transformed into an actual blog post on the internet.
 The little things do matter. For example, you don’t want to end up with your care-
fully crafted code examples being rendered in colors that make a reader’s brain
hurt—or skipping the few minutes it would take to add a thumbnail image that helps
your article stand out on social media feeds.
 This chapter walks through the final details to consider as the blog post is staged
and published. If you’re writing for a company blog, a lot of this might be handled by
someone else. Even so, it’s good to know what to look for. It’s hard to imagine a blog
editor who would not appreciate additional interest and input from a contributor.

131

132 Chapter 7  Ship it

And if you want to consider publishing on your own someday (why not), you might as
well start thinking about these low-level details sooner rather than later.

7.1	 Focus and challenges
At this point, you can shift focus from the article itself, which should be nicely vetted by
now, to the various logistical details surrounding its publication. This is often a nice mental
break, different from most of the writing process, as well as your daily work. But there can
be a lot of unknowns, especially when it comes to things such as optimizing for findability.

The best practice for rising to the top of search engine results is continuously evolv-
ing, to the point that there’s a whole industry of search engine optimization (SEO) that
revolves around trying to game the system. Don’t focus on that. A little fun with Google
Trends plus a few minutes of reflecting on how humans really think should do the trick.
We’ll share some high-level considerations that will help across search engine platforms
and algorithm updates, even as the precise nuances of Google’s rankings continuously
shift inside their black box.

The main challenge at this phase is making fast decisions and just getting things
done. You could easily waste hours having too much fun with AI-generated thumbnail
images or browsing articles in the various tags you’re considering for your article. As
we’ve mentioned quite a few times by now, there’s limited value in overengineering
such things. Find the fastest path to a solution that meets the need, then move on. More
blogging opportunities await!

Does publishing here limit your options?
Do you have dreams of seeing your article featured in a tech publication (e.g., The New
Stack, InfoQ, or ACM Queue)? Taking this path has a number of advantages (such as
extended reach and promotion, which could be especially important to lesser-known
authors). It also has a few drawbacks, particularly some lack of control. We’ll explore
the pros and cons, plus tips for getting your articles into the editorial review process, in
chapter 15.

However, it’s important to consider this now because many such publications only pub-
lish original content. If you publish the article elsewhere now, you will need to revise
it substantially before a tech publication will consider it. If you really want to see this
specific version of this article published somewhere where original content is required,
strongly consider delaying your own publication so you don’t limit your options.

Note that this consideration applies specifically to tech publications that rely on editors
and strict editorial review processes to curate original content for their target audience.
It does not matter for aggregators (such as dev.to) that let you publish existing content
without passing through a traditional editorial process.

7.2	 Read through the core content one final time
If you’ve been following along, your blog post should be well planned, written to
withstand technical readers’ healthy skepticism, and vetted by humans as well as

	 133Preview in place

	

 

pointed AI prompting and spelling/grammar checkers. If you still have doubts, look
back to your original goal for the blog with the clear mind that comes after a little
time has passed. After all the review and revision, is there any rational reason to feel
that you didn’t achieve this goal? Any reason why your target reader would not get
the main learning you want them to walk away with? If you believe there’s a problem,
first get another opinion and then determine whether it’s a fatal flaw (unlikely at this
point). Really, after all this, your blog post is probably quite ready to go out and meet
the world.
 Want a final sanity check that you’ve caught mistakes like typos, missing words, gram-
matical errors, and so on?

¡ Review the findings from a spelling/grammar checking tool again, or maybe
even use a different one (e.g., the native Google Docs spell checking with Gram-
marly disabled).

¡ Try a few different AI chatbots with a few different prompts. For example,

– Point out all grammar errors, spelling errors, and punctuation errors in this
article.

– Point out any verb tense errors or inconsistencies in the article.

– Point out any inconsistent terminology usage in this article.

¡ Read it out loud one more time, slowly and dramatically.

Finally, do a quick internet search for the topic of your article and the key related
terms. You might want to tweak your article if you learn that

¡ One of the technologies or companies you referenced just changed its name

¡ A major security vulnerability was discovered in a library you’re promoting

¡ The exact thing you ranted about for 3000 words is now happily resolved

For example, if you discovered that Zimbabwe just released a new gold-backed cur-
rency named Zig (it did!), you might want to rethink a headline such as “Zig: A New
Gold Standard for Low Latency Programming.”

Now rest assured that you’ve done way more than your due diligence!

7.3 Preview in place
Sometimes the item that looked perfect in the home improvement store needs a little
adjustment once it’s actually in your home. The same can happen with blog posts.
Once you get the content into the template, you might find that a heading needs a
trim, an image is displayed at a size that makes its labels illegible, and so on.
 This section covers the surface-level things to consider and review once your blog
post is in place. We’ll get into metadata concerns in the following section.

NOTE If feasible, try to check how everything looks on mobile devices and the
top few browsers you anticipate your readers might use. If that’s not feasible,
be sure to check it there as soon as it’s published.

134 Chapter 7  Ship it

7.3.1	 Title and headings

Does the title that seemed perfect in your
doc look awkward in whatever template
you’re using? Is it sprawling across two
lines of massive text, maybe even three?
Is one word dangling, all on its own (as in
figure 7.1)? If so, think about trimming it.

To be fair, your title’s most important job is to catch the eye of your target reader out
in the wild, on feeds, lists, and so on. Once people click in, they have probably already
read the title. But, first impressions do matter. The first thing readers see on the page
shouldn’t look careless or downright ugly.

Also, skim your headings. Headings that extend over multiple lines won’t be as scan-
nable as shorter ones. If all words are absolutely essential, so be it. But if you can find a
way to make headings crisper without changing their meaning, then trim away.

TIP  Don’t change heading levels to make heading text appear smaller. Stick
to the recommended hierarchy (one H1 per document>>H2s>>H3s>>H4s)
to avoid problems with accessibility (e.g., via screen readers) as well as search
engines.

7.3.2	 Code

Is your code legible and copy/pasteable (or even better, immediately executable)? You
can find a number of visualization tools that create pretty images based on a code snip-
pet, but don’t use them for adding code to the body of your blog post. Let readers
touch and grab your code, and let machines read it too. Save the code visualization
tools for decorative images (for example, thumbnails for social sharing), and link to
the GitHub repo whenever feasible so that readers can see the code in context.

Sometimes, even code that’s in standard blog code embeds looks atrocious. For
example, consider the Rust function code in figure 7.2 (using Medium’s dark mode).

Figure 7.2  A highly illegible code excerpt in Medium’s standard “dark mode” code embed

Figure 7.1  The dangling word on the second
line just isn’t a good look.

	 135Preview in place

Even in full color, it’s virtually unreadable. Figure 7.3 (best viewed in color) shows how
using a different framework makes a huge difference for code legibility.

Figure 7.3  The
same code displayed
in a different blog
framework

	

Here are some specific tips:

¡ Prefer options that provide syntax highlighting, and be sure to specify the lan-
guage. GitHub gists do the job and can easily be embedded into third-party sites
(e.g., Medium). Code syntax highlighting libraries (Shiki, Prism, highlight.js,
etc.) are another option if you’re publishing on your own blog site.

¡ Even better, embed an interactive playground (e.g., Stackblitz or Sandpack)
where users can play around with the code within the blog page.

¡ Inspect how the code is rendering in the new environment, especially indenta-
tion problems and any characters that might have been skipped at the start or
end of the copy/paste.

¡ Aim for short lines—wrapping at 80–120 characters or so. Maybe that requires
configuration, or maybe it requires another code display option altogether (refer
back to the first bullet point).

7.3.3 Core images

Are the screenshots, diagrams, graphs, and other images in the body of the post shown
at an appropriate size in the template? Large images will likely be automatically resized
to accommodate the template’s width (figure 7.4). But is that really the ideal size for
the reader?
 You could let users click to open a full-sized version of any image that’s smaller than it
really should be. But it’s even better to crop or redesign the image so that the initial view
shows all the appropriate details.
 If the blog is heavy on images, consider resizing images to the precise width needed,
as well as compressing images. The sweet spot to aim for is the smallest file size that pro-
vides the highest image quality. Keeping images under 100KB is a good target.

136 Chapter 7  Ship it

 

 

7.3.4	

Figure 7.4 This screenshot at this size won’t be terribly helpful to the reader.

TIP You can find free image compressors (e.g., tinyPNG) quite readily across
the internet. Command-line tools such as ImageMagick’s “convert” also offer
size-reduction features.

Header image

Does the template require an image at the top of your blog post? Many personal engi-
neering blog sites opt to skip this and go with a minimalist design. However, many
company blogs and blogging platforms require an image, and some individual blog
site maintainers prefer to use such images, too.
 If you want or need to use a header image, try to preview (or at least approximate)
how it’s going to be displayed:

¡ At the top of the blog post itself

¡ In other positions (e.g., as a thumbnail image in lists or grids of posts)

An image that looks great at 1200 pixel width might not be ideal for a more condensed
tile in a grid of available blog posts. Pay extra close attention to this if your image

	 137Preview in place

includes text or other elements that shouldn’t be arbitrarily cut off. In some cases, you
might be able to specify a different image for the header and the grid tile. Other times,
you might be forced to have the same image serve dual purposes, so use one that works
in both contexts.

7.3.5	 Videos

We haven’t talked specifically about videos until now, but many blog authors use videos
to add quick demos, visually explain concepts, or share a conference talk that’s rele-
vant to the topic at hand. If you’re embedding any videos into your article, check the
following when you preview the post:

¡	Is the sizing appropriate? As long as you can adjust the source code of your blog, you
don’t need to accept the default size.
Fiddle with it until you’re satisfied.

¡	Does the video display even if you’re not
logged into the video platform? Check this
in incognito mode or equivalent. If you
find and fix the settings problem now,
your readers won’t ever see the ugly
“Video unavailable” message shown in
figure 7.5.

¡	Is the video available in the major regions
where you expect your blog post to be shared
and read? You can find various tools
online to check this, or you could
recruit some human beta testers across
your network.

7.3.6	 Tables and lists

As mentioned previously, tables and lists are great tools for breaking up great walls of
text. But they don’t always turn out as planned in HTML—not at first, at least. If you
have complex tables or multilevel lists, check how they’re rendering. And don’t be sur-
prised if some adjustment is required to achieve the effect you originally envisioned.

Elective elements to consider if you’re running your own blog
How to set up your own blog site is beyond the scope of this book (though we do have a
few quick notes in appendix A). If you are running your own blog site, consider whether
you want to add the following elements to each blog post page:

¡	“Table of contents” links that jump directly to each heading and subheading
¡	Links to share/discuss the article on relevant forums, aggregators, and social

media sites
¡	The latest related articles that share the same tags

Figure 7.5  Check if the video plays for
people who are not logged into your video
platform account.

138 Chapter 7  Ship it

7.4	

 

7.4.1	

(continued)

¡ Links to other popular articles on the site
¡ An RSS, Atom feed, or other ways for people to track what you’re publishing
¡ A link to your bio, GitHub repo, and social handles

Manage metadata
Next, go below the surface and focus on the metadata. It’s easy to forget what’s not
readily apparent (“out of sight, out of mind”). But metadata can make a big differ-
ence in terms of findability, accessibility, and shareability. Let’s touch on each of those
before we move into the recommendations.

¡ Findability —Humans rely on machines to find information, and machines
rely on metadata (as well as your article’s text) to understand and classify your
arti-cle. Highlighting key terms in your metadata helps machines connect
interested readers with your article.

¡ Accessibility —Not everyone experiences your article in the same way. Some
of your target readers might be relying on assistive technologies such as
screen readers or Braille displays to understand your article. Little things such
as ensur-ing that hyperlinked text is meaningful and images are carefully
described can make a huge difference. Those same things also help search
engines.

¡ Shareability —If someone decides to share your article on their social media plat
-form of choice, how will it appear in their followers’ feeds? You might take
the time to manually upload an image when you’re sharing your own article. But
will your readers? Help them out by specifying a default.

Throughout this section, we’re focusing on high-level, broadly applicable principles
because

¡ Not everyone uses the same search engines, social media platforms, and so forth.

¡ The array of available options is shifting.

¡ Many low-level implementation details (e.g., thumbnail image expectations or
what to click to do anything anywhere) are also constantly evolving.

TIP A great place for details on how all this metadata affects Google’s search
rankings is the Google Search Documentation, available at https://developers
.google.com/search/docs. And for details on how they affect accessibility,
see All WCAG 2.2 Understanding Docs, available at https://www.w3.org/WAI/
WCAG22/Understanding/.

Your keywords

First off, determine the handful of keywords you want to prioritize while populating
your metadata. Put yourself in your readers’ shoes. What might motivate them to seek

https://developers.google.com/search/docs
https://developers.google.com/search/docs
https://www.w3.org/WAI/WCAG22/Understanding
https://www.w3.org/WAI/WCAG22/Understanding

	 139Manage metadata

 

an article on the topic you wrote about? And what terms might they search for as they
attempt to learn more about it? Likely, there will be at least one big broad search term
(e.g., “Java” or “Rust”) and one to three qualifying terms (e.g., “performance,” “con-
currency,” “pitfalls”). That mixture should help you balance reach and relevance.
 Consider the top three to five terms “your keywords.” You want your article to appear
when people search on these terms, so be sure to highlight these terms in the metadata
when it’s logical and natural. Include them in your meta description and URL unless
you have a good reason not to. Also, consider these keywords top candidates for your
tags or topics. (All these terms are explained more in the following sections.) Beyond
metadata, consider mentioning these keywords in your headers and subheaders, too.

TIP Want the AI perspective? Prompt it with something like “What are some
good SEO keywords for this blog post?” It might suggest a few decent options
as well as spark more ideas in your brain.

U

Not sure what terms people are actually searching for? Google Trends (https://trends
.google.com/) is your friend. Use it to determine

¡ If one term is searched more often than a similar term

¡ If interest in one term is rising, while interest in another is flat or dying out

¡ What related terms people are searching for (These might be points to address
in a follow up blog or hints as to what questions could surface in the comments
section.)

Let’s look at a quick example. Assume we’re writing about a Kafka-like tool, and the
team is torn between featuring “streaming data” or “event streaming.” We plug both
into Google Trends, expand the region to Worldwide, expand the range to Past 5 years,
restrict the category to Computers & Electronics, and voilà. There seems to be signifi-
cantly higher interest in “streaming data” (see figure 7.6).
 Further down the page, the list of related queries for “event streaming” shows things
like “apple event california streaming” and “apple event live streaming.” This indicates
that the “event streaming” results include queries about livestreaming events such as
Apple conferences and announcements. And even with that inflation/dilution, there’s
still less interest in “event streaming” than in “streaming data.”
 All that being said, if the blog post focused on sharing experiences with different
event processing patterns (publish–subscribe, event sourcing, Command Query
Responsibility Segregation [CQRS]), it might be better to focus on “event streaming”
despite the relatively lower search interest.
 Here are some tips for using Google Trends:

¡ Know that you’re looking at the popularity of search terms over time. The data is
normalized and scaled on a range from 0 to 100, with 100 representing the peak
popularity of a term within the specified period and location.

https://trends.google.com/
https://trends.google.com/

140 Chapter 7  Ship it

 Figure 7.6 Google Trends result for comparing interest in two similar search terms: event streaming and
streaming data. There seems to be significantly higher interest in streaming data.

¡ When selecting terms, avoid the one labeled “search term” unless there are no
other options available. Anything that’s not a search term is a “topic.” Topics are
language agnostic and account for misspellings. You will likely get more accurate
results with topics than with search terms. For example, choose “Rust: Program-
ming Language” over “Rust: Search Term” (which could include results for the
movie, the metal, the game, etc.).

¡ Compare topics to topics and search terms to search terms.

¡ Expand the timeframe to at least a couple of years to get a better understand-
ing of how interest is trending and to discover seasonal spikes (e.g., around
conferences).

¡ Look in the “Related Topics” and “Related Queries” area. If it mentions relevant
terms, consider if those are better options. If it mentions crazily irrelevant terms
(e.g., “reebok zig”) consider excluding them with a negative search term like “zig
−reebok.”

You can use the following search operators:

¡ Quotation marks —Gets data for the precise term within the quotation marks:

– “streaming data platform” will include data for “open source streaming data plat-
form” but not for “streaming platform.”

¡ Plus sign —Gets data for search phrases with one or the other keyword:

– Postgres + PostgreSQL will include data for Postgres as well as for PostgreSQL.

	 141Manage metadata

¡	Minus sign—Excludes data containing the keyword indicated after the minus
sign:

– Rust −movie will exclude results related to the Rust movie starring Alec Baldwin.

You can learn more about Google Trends in the following resources by Google:

¡	FAQ about Google Trends data: https://mng.bz/OmaO

¡	Basics of Google Trends: https://mng.bz/YV9Q

¡	15 tips for Getting the Most out of Google Trends: https://mng.bz/GNP8

Example 7.1
One top keyword for the fake Zig blog would be “Zig,” of course, and maybe “examples”
as well. But it should also target “FakeDB” and “Postgres,” and maybe “migrator,” too.
After all, if anyone in the world is searching for a Postgres to FakeDB migrator, this is the
blog for them!

7.4.2	 Title tag

The title tag (<title>) sets the title that browsers display as the tab title and bookmark
text. For people navigating the web via screen readers, the title tag is what’s read aloud
as the person navigates among tabs.
 This tag also determines the title shown in social media link previews (unless it’s
overridden by platform-specific metadata, which we discuss more later). And it’s usu-
ally—though not always—used as the hyperlinked text in search results. Google admits
that it sometimes opts to use different text in its results, but what you specify in this tag is
your best shot at influencing what’s shown there.
 Additionally, the title tag is one of the factors determining how search engines
understand and rank your blog post. If your “target keywords” appear across your title
tag, URL, or meta description, as well as in your article, your post is more likely to show
up when people search for those terms.
 Usually, the title is just automatically copied over from your H1 (the title shown at the
top of the blog post). Assuming you already put a lot of thought into your article title,
that’s probably fine. However, you might want to adjust it if

¡ It’s long. Browsers truncate the title at around 50–60 characters. This shouldn’t
be a problem if your H1 is fairly short and features the most eye-catching
terms at the start rather than at the end. But if that shortened version isn’t
ideal, tighten the title a bit. You might be able to get a few more characters to
display by replac-ing “and” with “&” and replacing long em dashes (—) with
pipes (|) or colons (:).

¡ You want to highlight an additional detail. If you have a short title and some breath
-ing room before the 50–60 character cutoff, you could add your own name,
site name, or company name at the end. For example, the “How We Built It”
pattern blog titled “Ship Shape” (chapter 10) uses “Ship Shape—Canva
Engineering

https://mng.bz/OmaO
https://mng.bz/YV9Q
https://mng.bz/GNP8

142 Chapter 7  Ship it

Blog” as the title tag. If you’re a known brand, or want to become one, why not
use the extra real estate to highlight that brand? Note that Google is currently
showing the site’s brand name at the top of each search result (above the URL),
so the extra branding might not be so critical.

Although the title doesn’t need to match the H1, it must be similar. If not, the search
engine might suspect that you’re trying to trick it and end up penalizing you by bury-
ing your blog post deep down where your target audience will never find it. (Cue the
joke that the best place to hide a dead body is page 2 of Google search results.)

Example 7.2
Assume that the fake Zig blog ended up being titled “We Built a Postgres to FakeDB
Migrator with Zig.” That’s only 47 characters, so we could extend it in the title tag as fol-
lows: “We Built a Postgres to FakeDB Migrator with Zig | ACME blog.” Now it’s 59 charac-
ters. The word “blog” might get cut off, but that’s not critical.

The following title would be risky: “Why and How the ACME Engineering Team Decided to
Build a New Data Migrator (Postgres to FakeDB) with Zig.” It could quite likely get cut off
at or before the word “Build.” That means all the important terms (Postgres, FakeDB, Zig,
migrator) would be skipped.

7.4.3	 Meta description

The meta description (<meta name=”description”...) specifies the blurb used in link
previews and influences the blurb shown in search results. Google might select differ-
ent text (as it sometimes does with the title), so there’s no guarantee that what you add
is what readers will get.

The effect on search engine rankings is allegedly minimal. But the effect on users
deciding what to read is significant. Along with your title, this is your best chance to
hook the target reader—your opportunity to tell them what your article is about and
why it’s so interesting. Focus on writing a clear and compelling description, including
your keywords if appropriate. You have around 150 characters to work with here.

Note that Google typically bolds any user search terms that appear in its description
blurb (figure 7.7). If the reader is scrolling through results and notices that your blog
post clearly addresses their search terms, they might trust it enough to click through.

Figure 7.7  A screenshot of
an article’s meta description
as displayed in Google search
results. Note how the user’s
search terms are bolded in
the description.

	 143Manage metadata

Some platforms (like Medium) will automatically create a meta description using the
first 140–150 characters from your article. Don’t just accept the default! Craft some-
thing carefully, ideally highlighting the technologies you discuss and what interesting
angle you take.

Once you have a tight statement to attract the target reader, strongly consider adding
it at the very start of the blog post, maybe prominently in bold. That gives the reader a
super fast way to see if your blog post is a good match for their interests and to move on
immediately if it’s not.

Example 7.3
Here’s a sample meta description for the fake Zig blog: “ACME built a Postgres to FakeDB
data migration tool in Zig. Learn how Zig compared to C, C++ & Rust and access the open
source tool.”

Here’s what you don’t want to do: “In this article, ACME staff engineer PretendPiotr
shares his experiences creating a new data migration tool that enables faster migrations
from Postgres to FakeDB. And he built it in Zig.” What’s wrong with it?

¡	Postgres will likely get cut off, and FakeDB and Zig will definitely get cut off.
¡	It’s loaded with a lot of words the reader won’t care about.
¡	It’s all about PretendPiotr and the article, not about what’s in it for the reader.

	

 

7.4.4 URL

Most platforms automatically generate a URL (often labeled “permalink” in the UI)
based on the title you specify. If you want to modify it, change it right away. If you
change it after you publish, you’ll need redirects, and your analytics will become more
difficult to track—just think about it upfront and save yourself grief later.
 Per Google’s John Mueller (Google Search Advocate), having keywords in a URL
is a “very, very lightweight ranking factor” (Mueller mentioned this in Google SEO
office-hours: https://mng.bz/0MPW). Even if there’s not much benefit, adding your
keywords there doesn’t require much effort, so just do it.
 Use lowercase throughout and separate words with hyphens, not underscores. To
keep things tight, you might want to use a URL that’s shorter than the title. The URL
length won’t affect your search engine ranking at all (Mueller mentioned this in an epi-
sode of AskGooglebot: https://www.youtube.com/watch?v=WmEpP9aPq8o), so don’t
shorten it in hopes it will help you in that respect.

NOTE Some platforms (looking at you, Medium) add an autogenerated hash
to the URL for tracking purposes. Some people have created and shared scripts
for removing it, but it’s probably safest to just let it be.

What about dates? Should your URL include the publish date? It’s a personal pref-
erence, but the general consensus is that dates don’t add value and they clutter the
URL. Many readers want to know when the article was published, so definitely include

https://mng.bz/0MPW
https://www.youtube.com/watch?v=WmEpP9aPq8o

144 Chapter 7  Ship it

a publish date within the article itself. An extra benefit of a dateless URL is that if you
update the post, you can just update the body of the blog with an “Updated: whenever”
blurb. You won’t have to deal with a clearly outdated dated URL.

Example 7.4
Assume the fake Zig blog is titled “We Built a Postgres to FakeDB Migrator with
Zig.” A clean URL that includes our most important keywords would be “/postgres
-fakedb-migrator-zig.”

A bad option would be “/we_built_a_postgres_to_fakedb_migrator_with_zig”—particularly
due to the underscores instead of hyphens. Another bad option would be “/database
-zigzagging” since our “Zig” keyword might not be recognized as a separate word in that
context.

7.4.5	 Hyperlinks

In chapter 5, we touted how hyperlinks help you provide details to extra curious or less
experienced readers without diluting the focus of your article. Now’s the time to nail
the execution.
 First, think about what text to hyperlink. The answer is never “here” (as in “learn
more here”) or the URL itself. Instead, ensure that the hyperlinked text describes
the linked item and tells your reader what to expect. Why?

¡ It helps your readers determine if they want to click through.

¡ It provides search engines clues about how your content relates to other sites.
Note that linking to other sites likely won’t help your own ranking, but it could
pass on some good “search engine karma” to those you’re linking to.

¡ It’s absolutely critical for those experiencing your site through assistive technol-
ogy such as screen readers. People using these devices commonly access the links
out of context, tabbing to jump from link to link or pulling up a list of links when
they’re done with the article. Imagine how frustrating it would be to request a
list of links and hear something like “here, click here, here, read more, here,”
capped off by a few GitHub URLs tortuously spelled out one character at a time
(H-T-T-P-colon...).

Finally, take the time to manually confirm that all links actually lead to the expected
pages. It’s a pain. But sending readers off into dead ends won’t foster goodwill and
motivate them to share your blog post. Even if you checked the links last week in your
doc, check them again in the HTML page:

¡ You might have copied something over incorrectly. If you’re just one character
off, your readers get to experience the site’s clever 404 page.

¡ The links might have changed, particularly if you’re linking to documentation
pages (which seem to move around way more often than any other type of web
page in existence).

	 145Manage metadata

Example 7.5
In chapter 5, we proposed revising the fake Zig blog to include a link to the RustEncryption
library. The best way to handle that would be to make the bolded text the hyperlink:

“Ultimately, we implemented that encryption layer by linking to RustyEncryption.”

Something like “Ultimately, we implemented that encryption layer by linking to Rusty
Encryption, which you can access here” would probably still make sense to people
reading the link in context. But the out-of-context “access here” wouldn’t be meaning-
ful if an assistive technology was reading out all the page’s links to a visually impaired
reader.

7.4.6	 Images

Earlier in this chapter, we discussed how images look to human eyes. Now let’s shift
focus to how their metadata is used by machines—search engines trying to understand
your page as well as screen readers and other assistive devices trying to describe them
to humans.

Image metadata is important for

¡	Helping people with visual impairments understand the meaning and purpose
of your images

¡	Helping search engines better understand the page’s overall content

¡	Helping search engines determine if the image should be displayed for relevant
image searches

¡	Telling readers what they’re missing in case the image fails to load (e.g., due to
low bandwidth)

Focus on two elements here: the file name and the ALT text description (a short text
blurb that describes the image). For the file name, the recommendation is quite sim-
ple. Just use something more descriptive than IMG123.png—for example, original-ac-
me-architecture.png. For the ALT text descriptions, use text that

¡	Describes this specific image (what’s important about it and how does it relate to
your blog post?)

¡	Avoids filler words (e.g., “This screenshot is an image that shows…”)

¡	Doesn’t exceed 125 characters (the cutoff for many screen reading tools)

¡	Mentions any relevant keywords (e.g., key technologies in a system diagram)

Note that you don’t need to add an ALT description for purely decorative images.

Example 7.6
The fake Zig blog ended up with one image, the following Zig GitHub star history:

146 Chapter 7  Ship it

(continued)

An image for the
fake Zig blog.
It needs an ALT
text description
so readers who
can’t see it will
understand what
it’s communicating.

A good file name might be “zig-star-history.png.” And a good ALT text description might
be “The ziglang/zig GitHub star history from 2016 to 2024. Between 2022 & 2024, the
stars surged from 10K to 30K.”

7.4.7	 Taxonomies: Categories, tags, and topics

Many blogs use categories and/or tags to organize information. If the site you’re pub-
lishing on uses them, don’t forget to apply them to the article. When a reader com-
pletes an article and is hungry for more, they might skim through categories or tags
that catch their interest. If articles aren’t properly categorized and tagged, the curious
reader won’t have easy access to those related articles.
 Note that there are two distinctly different schools of thought when it comes to tag-
ging. One is to tag every key term that’s mentioned. The other is to apply a tag only if
someone hoping to learn more about that term would find value in this article’s discus-
sion of it. A fleeting mention of a term would not pass that test, but a respectable ref-
erence that’s at least a paragraph might. Follow whatever approach is used throughout
the blog site.
 In Medium and other platforms, there’s also the concept of a “topic.” Topics have
two purposes:

¡ Influence what content is recommended to a reader (readers can declare their
topics of interest and algorithms will suggest content within those topics)

¡ Allow readers of a given article to drill down into additional articles on that same
topic

	 147Manage metadata

When you publish an article on
Medium, you can specify up to five
topics. At the time of writing, you
can specify the topics in two differ-
ent places (Change Topics, More
Settings). The Change Topics area
displays a number next to each topic
but the More Settings area does not.
Regardless, that number (seen in fig-
ure 7.8) is not terribly valuable.

You might assume that the number
Medium shows next to a topic would
be the number of followers for that
topic. No. It’s actually the number
of articles currently tagged with that
topic. So what if a topic has 46K arti-
cles? There’s a big difference between
a topic with 5K followers and 46K articles and another with 3M followers and 46K arti-
cles. To see how many people are following a particular topic, use the Medium “search
by topic” functionality. For each topic, you’ll see the number of followers as well as the
number of articles. Ahh, much better.

With that knowledge, weigh your options, considering both relevance and reach. Do
you want to be a small fish in a big pond (appear in a broader topic with many followers
but also many articles) or the big fish in a small pond (appear in a more specialized
topic with a smaller, more focused set of followers and also fewer articles to compete
with)? With up to five options, you can likely target the most relevant specialized topics
as well as a broader topic or two.

Example 7.7
If the fake Zig post was being published on the company blog, it could fall under the
“Engineering” category and might be tagged with Zig, tools, data migration, Postgres,
and FakeDB.

If we were publishing it on Medium, here are some related topics.

Potential Medium topics for the fake Zig blog

Topic Followers Articles

Zig 107 122

Ziglang 50 29

Postgres 1.4K 7.3K

Postgresql 1.7K 7.3K

Figure 7.8  What’s this number (46K) telling you
about the Database topic? You might assume it
means 46K people follow this topic. Wrong. It’s the
number of articles tagged with this topic.

148 Chapter 7  Ship it

(continued)

Topic Followers Articles

FakeDB Too fake for followers Too fake for articles

Programming 6.9M 404K

Software Development 2.6M 287K

Software Engineering 2.2M 98K

C 977 6.1K

Cplusplus 609 2.7K

Rust 7.2K 9.3K

Rust Programming Language 2.3K 1.6K

Database 5K 46K

We would definitely want to select “Zig”; it’s a major focus, even though few people are
currently following it. The people following “Ziglang” are probably also following “Zig,” so
we could skip that.

We’d also select “Postgresql” and “FakeDB” since they’re important keywords (we’re tar-
geting Postgres users migrating to FakeDB). It seems “Postgresql” has slightly more fol-
lowers than “Postgres,” even though they’re two different words for the exact same thing.
We might as well select the one with more followers.

What else? Let’s try “Programming,” which could provide exposure to a broad audience
who might be curious about Zig even though they don’t follow it yet. 6.9M followers is
quite attractive.

That leaves us with one more. “Database” has a lot of stories, but very few followers. It’s
also likely quite broad. There’s a low chance that someone who declared themselves
interested in “Database” would care about this highly specialized migration tool—or
in the lessons learned working with Zig. Maybe “C,” since the blog post talks at length
about Zig’s C interoperability? Or “Rust,” since we mention it briefly and it has a healthy
amount of followers? Or do we target another big broad one like “Software Engineering?”
Decisions, decisions.

There is no right answer. Weigh the options, make an educated guess, and adjust it later
if needed.

7.4.8	

Potential Medium topics for the fake Zig blog (continued)

Featured (thumbnail) images

Some articles stand out in a bad way on social media feeds. Instead of an image that’s
either compelling, nondescript, or repulsive, they just have a sad gray box, as shown in
figure 7.9. Don’t be that article.

	 149Manage metadata

Figure 7.9  Don’t
want this drab image
representing your
dazzling blog? Then
specify an og:image
thumbnail in the
metadata.

When you share your own article on your social media platform of choice, you will likely
take the time to manually upload an appropriate thumbnail image. But will the people
who happen to share it take that extra step? You can just set it in the metadata, and rest
assured that your preferred image will display whenever someone shares the article.

To set a default image and avoid the fate of the sad gray box, ensure that your post
has og:image metadata set to the desired image. In many cases, if you specify some-
thing called the “Featured Image” in WordPress or Medium, it will automatically set the
appropriate og:image tag for you. If your blogging platform doesn’t automatically add
the og:image tag for you, please do it yourself. In fact, add the complete set of Open
Graph metadata while you’re at it.

But what’s Open Graph? It’s a protocol, created by Facebook, that controls what’s
shown when your article is shared on social media. Most platforms respect Open Graph.
And some platforms have their own paradigms that can override Open Graph settings
on their domain (e.g., so you can set an image that uses the dimensions they prefer).
For example, “X” still provides documentation on using “Twitter cards” as of this writ-
ing. You can learn more about the Open Graph protocol at https://ogp.me/. For Twit-
ter cards and any other platform-specific metadata, search on the appropriate sites.

If you wanted to add a mix of Open Graph and Twitter card data, you might add
something like the following <meta> tags in the <head> of your page.

 

Listing 7.1 Adding meta tags for social media

<meta property="og:site_name" content="http://www.mysite.com">
<meta property="og:locale" content="en-us">
<meta property="og:type" content="article">
<meta property="og:url" content="https://www.mysite.com/my/great-article">
<meta property="og:title" content="My great title">
<meta property="og:image"
content="http://www.mysite.com/img/great-article-thumbnail.png">
<meta property="twitter:site" content="@my_handle">
<meta property="twitter:title" content="My great title">
<meta property="twitter:card" content="This is the best article ever.">
<meta property="twitter:image"
content="http://www.mysite.com/img/great-article-x-thumbnail.png">

https://ogp.me/

150 Chapter 7  Ship it

Finally, note that the LinkedIn Post Inspector (https://www.linkedin.com/post
-inspector) is a great tool for checking how posts will display on LinkedIn (and likely
other platforms). Beyond the display preview, it explains how it selected the values for
each element and describes how to change the displayed elements by modifying the
associated metadata (f﻿igure 7.10).

Figure 7.10 The LinkedIn Post Inspector shows what your post will look like, why, and how to
change key elements.

Another option: once your blog post is published or you have a publicly shareable pre-
view, just do a quick test post on your platform of choice.
 Not sure what to use for a thumbnail image? Think about what would catch the eye
of someone in your target audience. Flame graphs, other cool data visualizations, and
images of code are always nice. They don’t have to be fully readable in tiny thumbnail
size, just readable enough to make them intriguing. You could use some custom article-
themed artwork created by a human, or attempt to generate an image with an AI tool
(we’ll talk more about this in appendix B). If you have a recognizable personal brand,
consider featuring your brand logo here.
 Or, if you’re just not into graphics and want to immediately draw attention to your
words, take a screenshot of the article itself (figure 7.11). If you do this, plan to play
around with screenshot sizes to find a nice balance between compactness and
readability.

https://www.linkedin.com/post-inspector
https://www.linkedin.com/post-inspector

	 151If you do nothing else

Figure 7.11  An example
of using a screenshot of the
article as the featured image
for social media sharing.

Example 7.8
For the fake Zig blog, a fun featured image might be the Zig lizard with one hand on a
Postgres elephant and the other hand on the FakeDB mascot (whatever that might be—
a Chupacabra perhaps). A more serious approach would show a screenshot of the article
itself.

	7.5 If you do nothing else
Honestly, all these little things make a big difference, and there’s not much you can
reasonably skip. Before you ship it, run through the checklist in the Summary section
to ensure you’re not overlooking some tiny detail that could have an outsized effect on
your post’s overall readability, findability, accessibility, and shareability.

152 Chapter 7  Ship it

Summary

¡	Before your blog post is published, think about all of the little things (both sur-
face level and metadata) that can make a big difference in how readers discover
and experience it.

¡	Even if you’re not the one publishing the post, you might want to offer recom-
mendations (e.g., propose a meta description, relevant tags, and so on).

¡	Preview the post (ideally on both mobile and desktop) with special attention to

– Whether the title and headings look awkward in the template

– Code rendering and copy/paste errors

– Image clarity and size

– Video sizing and availability (make sure you’re not logged into the video
platform)

– Complex tables and lists

¡	Think about what three to five keywords are most relevant to your article—
usually at least one big popular term plus a few specialized qualifiers (e.g., Async,
Rust, performance, profiling).

¡	Use those keywords when appropriate, while specifying metadata such as the title
tag, URL, meta description, and so on.

¡	Craft a compelling meta description that will hook the human reader, ideally
with at least a few relevant keywords.

¡	Ensure images have ALT text describing what they’re showing.

¡	Check that all hyperlinks work.

¡	Check that your hyperlinked text describes what’s behind the link (not “here”
and not a URL).

¡	Think about tags/topics with both reach and relevance in mind.

¡	Give your blog a decent thumbnail for social posting.

Part 3

Applying blog
post patterns

Part 2 took a broad, systematic look at how to write a captivating blog post.
But just like different programming languages have different conventions, so
do different types of blog posts. A captivating bug hunt article will vary dramati-
cally from an opinion piece roasting a highly hyped technology, or an article that
shares how a team implemented an industry-changing algorithm. Part 3 involves
in-depth analysis of these and other blog post “patterns” exploring real-world
examples, characteristics, and dos and don’ts for each:

¡	Chapter 8 analyzes “Bug Hunt” blog posts that share the thrill of finding
and fixing some elusive bug.

¡	Chapter 9 analyzes “Rewrote It in X” blog posts that are all about rewriting
an app in a new programming language, library, or framework.

¡	Chapter 10 analyzes “How We Built It” blog posts that share your most
impressive engineering achievements.

¡	Chapter 11 analyzes “Lessons Learned” blog posts that share lessons
learned from technical challenges.

¡	Chapter 12 analyzes “Thoughts on Trends” blog posts that are highly opin-
ionated takes on industry trends.

¡	Chapter 13 analyzes “Non-markety Product Perspectives” blog posts where
the product is embedded into a genuinely intriguing and educational
article.

¡	Chapter 14 analyzes “Benchmarks and Test Results” blog posts that share
various flavors of benchmarks and tests.

8 The “Bug Hunt”
pattern

This chapter covers

¡	Blog posts that share the thrill of finding and fixing 	
some elusive bug

¡	Their purpose and audience
¡	How various authors approached this type of post
¡	Key elements of successful “Bug Hunt” posts
¡	Dos and don’ts for your own “Bug Hunt” post

The “Bug Hunt” blog post pattern is the programming world’s equivalent of a detec-
tive story. It has a theme, a main plot, side plots, a protagonist (you), and an antag-
onist (usually also you, having introduced the bug two weeks ago in the first place).
It’s captivating, keeps readers in suspense, and ends with a satisfying plot twist or a
tactical cliffhanger. And the best part is that it’s even more fun to write than to read!

8.1	 Purpose
Writing a bug-hunting article serves a few purposes, depending on the success of the
hunt, where the fault ultimately fell, and a few other factors. Let’s tackle the poten-
tial purposes one by one.

155

156 Chapter 8  The “Bug Hunt” pattern

8.1.1	 Knowledge dump

The fact that a bug appeared and was fixed is undeniably important. But what’s way
more important is reducing the chance that it happens again and knowing what to do
if it does. While hunting for a bug, it’s likely you encountered

¡ A few dead ends

¡ A very convincing red herring

¡ A tool that looked helpful at first, but ended up being unrelated

¡ Another tool that proved immensely useful

¡ Some blog post from 2014 that led you to discover the root cause

All those steps are incredibly useful for the future debugger of another similar problem
(likely you again, two weeks older). Awareness of the past dead ends and distractions
is especially helpful here. Quick identification of a known red herring can save the
future debugger (you) a few hours of unproductive research. You can treat bug-
hunting blog posts as scrolls of ancient knowledge (two weeks or older), created by
your predecessors (you) to pass it on to future generations (also you).

	 157Audience

8.1.2	 Global bug awareness

It’s give-back-to-the-community time! Chances are, the bug that you fixed doesn’t
uniquely apply to your project. Instead, it was caused by a sneaky pitfall in your lan-
guage of choice, one of the libraries, or specific hardware. Your article can genuinely
inspire others to think “Huh, we do have exactly the same setup—makes me wonder…”
It might also motivate the team behind that technology to consider ways to stop others
from making the same mistake.

As a result, writing a story about how you fixed an interesting bug may cause a few
other bugs of the same category to be fixed worldwide. It’s a superpower! This purpose
is especially important if the bug is related to

¡	Bleeding edge software

¡	Novel hardware

¡	A young open source community

Those tend to develop dynamically and have very little test coverage compared to
industry standards simply because they are too young to be implemented in a critical
mass of projects. You can think of this purpose as an external version of the previously
described “knowledge dump”—it’s a knowledge dump that you write for everyone, not
just for yourself or your team.

8.1.3	 Bragging

Set aside the negative connotation of the “bragging” word. Tech world bragging at the

	

right dosage is good for you and your peers. Bragging about doing something interest-
ing, like hunting and resolving a bug, helps you as well as your readers:

¡ It’s educational. Your audience can presumably learn something by reading how
you achieved your goal.

¡ It broadens your professional network. People intrigued by similar technologies and
challenges will likely reach out to you, as outlined in chapter 1.

¡ It feels good. There’s no shame in acknowledging that attention is one of the bene-
fits of telling the world that you did something.

¡ It yields free criticism—hopefully constructive criticism, but valuable either way. The
(often illusory) sense of anonymity on the internet makes it easy to criticize oth-
ers, so you can count on lots of comments and nitpicks after your article goes
public. But after filtering out the vitriol, you can often learn something new, or
even revisit your whole approach to the problem.

8.2 Audience
Bug-hunting is a technical topic, and the audience for bug-hunting blog posts is inher-
ently just as technical. Categories of interested readers include

¡ People with a similar background (which means they are potentially susceptible
to introducing or suffering from similar bugs in their systems)

158  

8.3	

8.3.1	

C

¡ People whose job is finding and fixing production bugs

¡ People in the middle of a similar bug hunt

¡ People who might be able to prevent this class of bug from recurring (those
behind the technology where the bug occurred or working on defect prevention
tools)

¡ Detective fiction aficionados

¡ Your colleagues

¡ Professional internet critics specialized in unsolicited advice

It’s safe to assume that the audience is someone who

¡ Already has sufficient professional background to understand the technical
terms and idioms you use in the article

¡ If not, is willing to look them up and learn

¡ If not, is absolutely fine with just pretending that they understand it

Therefore, it’s fine to treat a bug-hunting blog post as one addressed to intermedi-
ate level (or above) readers and not newcomers. Advanced technical terms are fine
because you’re not trying to make the article accessible to the wider public. Just expand
any arcane acronyms as you see fit and provide hyperlinks as needed.

Examples of “Bug Hunt” blog posts
Because bugs can occur anywhere, so can bug-hunting blog posts. In the wild, you can
find bug-hunting posts published across a variety of blogs: Big Tech, unicorn, startup, and
personal blogs. In general, bug-hunting posts published by large high-profile companies
are unsurprisingly less common (and more guarded) than those by startups as well as
individual contributors writing about open source contributions and weekend projects.
 Here are some prime examples of blog posts that apply the “Bug Hunt” pattern,
along with Piotr’s commentary on each.

Hunting a NUMA Performance Bug

C

https://mng.bz/KDPE

	 159Examples of “Bug Hunt” blog posts

	

	

details and still learn a lot. All of the failed attempts to diagnose the issue are educa-
tional, and surely usable in future debugging.
 The casual expertise that the author shows while editing executable binaries directly
as if they were text files makes the blog post an extremely enjoyable read. The solu-
tion to the problem is also very satisfactory, especially to a programmer’s mind: just
one seemingly innocent line of code changed, and all the performance regressions are
eliminated.

8.3.2 Why Is My Rust Build So Slow?

Author: Amos Wenger
Source: fasterthanlime Blog (https://mng.bz/9oP0)

S

This extensive blog post investigates compilation time problems for a Rust project.
It shows multiple techniques for how to profile the compiler itself, decompose the
compilation process into manageable pieces, and measure how long each piece takes
and why. It’s full of images, code snippets, and descriptions of concrete tools you can
use. The article’s conclusion is not really any single breakthrough, but rather honest
advice to apply all the described extensive techniques if you’re unsatisfied with your
Rust build times.

C

Compared to an average technical blog post, this one is a hog in a purely positive sense!
It can easily take a skilled reader half an hour to read through it, and it’s probably a
good idea to digest it in three or four parts, taking breaks from the screen to avoid diz-
ziness and diplopia.
 This is a positive trait because it makes the article stand out. Many tech articles try
to squeeze as much information as possible into 4–6 minutes of reading. And that’s
fair, considering the average attention span of a human being raised on smartphones
rather than playing outside all day with occasional cartoon breaks. Yet, a long article
will appeal to the old school folks who were once capable of reading a book in a single
sitting.
 The article has a unique style featuring the author’s alter ego, Cool Bear (figure 8.1),
who regularly adds short humorous comments, keeping the reader engaged through-
out the (lengthy) reading process.
 This type of a bug-hunting blog post also serves as an encyclopedia of techniques for
debugging the Rust compiler. I have it bookmarked, just in case I ever need to refresh
my knowledge of how to measure linking times in my projects. The conclusion is also
quite unconventional: instead of building tension and finally presenting readers with a
surprise solution, it’s simply an honest summary with encouragement to reach out.

8.3.3 How a Single Line of Code Made a 24-core Server Slower Than a Laptop

Author: Piotr Kołaczkowski
Source: Piotr Kołaczkowski’s Blog (https://mng.bz/j0lV)

https://mng.bz/9oP0
https://mng.bz/j0lV

160 Chapter 8  The “Bug Hunt” pattern

8.3.4	

Figure 8.1  This article
highlights insights from
the author’s alter ego,
Cool Bear, sometimes in
dialog with the author’s
own interior monologue.

S

The blog post describes how local benchmarks detected a bottleneck on machines with
lots of CPU cores. The author shares a performance analysis, performs some profiling,
then offers a few explanations of how modern CPUs work under the hood and how
the processor caches manage memory. The suggested fix is a natural consequence of
the conclusions reached earlier in the article: minimizing the amount of state shared
between processor units eliminates the bottleneck.

C

This is another stellar example of a bug-hunting blog post. Its title is a little clickbaity,
but still elegant enough to avoid being rejected by the average ad-blocking software.
The technical details are much more universally understood than the ones in Cho-
jnowski’s NUMA blog post (described earlier in this section).
 The article is sneakily educational, digressing on things like “How many nanosec-
onds does L3 cache access take on average on Intel Xeon.” That’s great practice; it
leaves those details imprinted in readers’ minds without them realizing it. Who knows,
maybe one day that tucked-away tip might help fix a performance bug in another proj-
ect. Overall, the article leaves readers satisfied with the result and also a tiny bit smarter
in the field of CPU architecture and performance.

Lessons from Debugging a Tricky Direct Memory Leak

Author: Sanchay Javeria
Source: Pinterest Engineering Blog (https://mng.bz/WVyd)

summary

Pinterest’s development team shares their experience hunting a stream processing
code memory leak that led to cascading failures in their distributed system. It goes over
debugging techniques for the Java environment and then finally pinpoints a bug in
application code that caused the memory leak.

commentary

This is a classic bug-hunting article, so much so that it could be used as a blog post
template for hunting down almost any problem in Java code. It contains the customary

https://mng.bz/WVyd

	 161Characteristics

	

	

investigation steps, along with screenshots from observability tools. Also following cus-
tom, the culmination paragraph is called “The Fix.” It explains that the culprit was yet
another memory leak problem caused indirectly by garbage collection mechanisms in
Java. Hint: it always is!
 In this context, the conclusion isn’t really an earth-shattering breakthrough, but it
definitely meets the readers’ expectations. I bet the majority of the readers think “ah, I
knew it from the start” right after learning the root cause.

8.3.5 ZFS Is Mysteriously Eating My CPU

Author: Brendan Gregg
Source: Brendan Gregg’s Blog (https://mng.bz/86PW)

S

The blog post describes a hunt for the cause of mysterious higher-than-expected
CPU usage. It shows how to narrow the candidates down to a single function call with
analysis tools and concludes with a surprising performance bug in ZFS—a file system
implementation.

C

The title itself is captivating, but then something in the URL jumps out at you: it’s by
Brendan Gregg, the flame graph inventor! This is a prime example of why personal
brand matters so much. When I see “Brendan Gregg,” I immediately assume that the
article is interesting—and I wasn’t mistaken in the slightest.
 Given Gregg’s expertise, the problem analysis naturally involved flame graphs. The
root cause is quite a surprise, and Gregg described it in a very informal and funny man-
ner. The blog post is also very concise (a 3-minute read, even if you reserve some time
upfront to look at the flame graph screenshots). It clearly shows that you don’t need to
write thousands of words to squeeze in lots of knowledge, tips, and interesting technical
details.

8.4 Characteristics
Bug-hunting blog posts can vary as wildly as the actual bug hunts, but they tend to
share the following characteristics:

¡ They recount the story chronologically, from the moment the evil bug mani-
fested itself, to when it was pronounced dead.

¡ They focus primarily on the thrill (and pain) of the hunt.

¡ They freely share the evidence collected along the hunt so readers can put on
their detective hats and play along.

¡ They’re largely geared to experienced developers who know the technologies
being discussed (or are ready to learn as they go).

 ¡ They offer technical nuggets that could be interesting now, lifesaving later.

Let’s examine each in turn.

https://mng.bz/86PW

162  

8.4.1	

8.4.2	

8.4.3	

C

Crafted chronologically

Bug-hunting blog posts often follow a specific structure since they are the technolog-
ical equivalent of detective stories. (If you want an intro or refresher on the structure
of a detective story, generative AI does a decent job here). The introduction paragraph
does not reveal too many details and certainly does not provide a spoiler on the solution.
Often, the authors just elaborate on the (properly mysterious) title with a few more words.

Once the problem is defined, the hunt begins, usually with a few failed (but educa-
tional) attempts. The tension builds until the author reaches their aha moment, which
is followed by the fix description (and that section is customarily titled “The Fix”). After
the solution is revealed, the blog post concludes by describing preventive measures to
stop this bug from recurring, and often a concise apology to any affected users.

Heavy on the hunt

The meatiest part of the article is the path toward identifying the problem. Spending
around 80% of the post explaining the investigation process is a good rule of thumb.
For example, here’s how much time each of the example blog posts spent on the inves-
tigation (based on word count):

¡ Chojnowski —85% hunt

¡ Wenger —83% hunt

¡ Kołaczkowski —83% hunt

¡ Javeria —82% hunt

¡ Gregg —93% hunt

Evidence everywhere

Bug hunt blog posts are usually full of forensic evidence. Readers want to see flame
graphs, numbers, charts, scripts, and code samples. This lets them step into your detec-
tive shoes and try to figure out the riddle before the big reveal.
 For example, here’s some of the evidence shown in the example blog posts:

¡ Chojnowski —Database monitoring graphs (writes per shard), network and disk
performance graphs, CPU stats, flame graphs and instruction-level breakdowns,
the CPU’s performance measuring monitoring unit (PMU) events, and a variety
of attempted code fixes

¡ Wenger —Cargo build timings, a timeline of compilation units, CPU usage and
concurrency graphs, debug information, flame graphs, tracing through Chro-
mium and Perfetto, attempted code fixes, dependency graphs

¡ Kołaczkowski —A look at the benchmarking tool’s design, throughput results (on
his 4-core laptop vs. a 24-core server), flame graphs

¡ Javeria —Out-of-memory error details, backpressure tests, and multiple forays
into memory monitoring

¡ Gregg —Flame graphs (of course!), ZFS mount details, arcstats, and all the source
code, via a GitHub link

	 163Characteristics

Flame Graph Search

<t.. s..

<latte::..
<core::f..
scylla::..
<core::f..
scylla::..
<core::f..
scylla::..
<core::f..
scylla::..
<core::f..
scylla::..
<core::f..
scylla::..
<core::f..
scylla::..

<co..
<co..
<la..
<co..
scy..
<co..
scy..
<co..
scy..
<co..
scy..
<co..
scy..
<co..
scy..
<co..
scy..

lat..

<co..
scy..
<co..
scy..
<co..
scy..

lat..
<fu..
fut..
<fu..
fut..
<fu..
<co..
lat..
<co..
<co..
<la..
<co..
scy..
<co..
scy..
<co..
scy..

<core::future::from_..

f..

_..
d..
f..

e..
d..

<..
p..
s..

pa..

to..
pa..
pa..
pa..
pa..

to..

sche..
sch..
__s..

do_epo..
__x64_..

entry_S..
do_sysc..

mio::po..
mio::sy..
epoll_w..

tokio::i..

<tokio::t..
tokio::ti..

<tokio::r..
<tokio::p..

<tokio::runtim..
tokio::runtime..

tokio::ru..

tokio::runtime..
tokio::runtime..

<core..
<lat..

<core..

m..
_in..

_int..

latte..
latte..
<latt..
alloc..
alloc..
<allo..
alloc..
alloc..
__rdl..
std::..
std::..
__pos..
mid..

<core::future::fr..
latte::req_strea..

<futures_util::stream::..
futures_util::stream..
<futures_util::strea..

<futures_util::stream::..
futures_util::stream::s..

<core::future::from_gene..
latte::req_stream::{{clo..

i..
t..

__..
__..

ent..
do..

__l..

<&m..
mio..
mio..
<&m..
<&s..
std..
std..
std..

tok..
tok..
tok..

<to..
tok..
tok..

<&m..
<to..

<tok..

i..
t..

_..
_..

en..
do..

__..

to..
to..
to..
<&..
mi..
mi..
<&..
<&..
st..
st..
st..

<to..
tok..
tok..

<&m..
<to..

<to..

<core::fut..
scylla::fr..

scylla::trans..
<..
t..
<..
t..
t..
t..
t..

__r..
tcp..
tc..

rele..

n..
i..

t..
t..

ip_p..
tcp_..

ip_l..
__netif_receive..

ip_rcv
nf_ho..

nft..
nft..

__napi_poll
process_backlog

net_rx_action

__local_bh_enable..
do_softirq
__softirqentry_te..

ip_finish_output2 ip_..
__i..
nf_..

__ip_queue_xmit
__tcp_transmit_skb

__tcp_push_pending_frames
tcp_write_xmit

sock_sendmsg
tcp_sendmsg

tcp_sendmsg_locked

__x64_sys_sendto
__sys_sendto

entry_SYSCALL_64_after_hwframe
do_syscall_64

__libc_send

<&mio::net::tcp::stream::TcpStream as std::io::Wr..
mio::io_source::IoSource<T>::do_io
mio::sys::unix::IoSourceState::do_io
<&mio::net::tcp::stream::TcpStream as std::io::Wr..
<&std::net::tcp::TcpStream as std::io::Write>::wr..
std::sys_common::net::TcpStream::write

<tokio::net::tcp::stream::TcpStream as tokio::io::..
tokio::net::tcp::stream::TcpStream::poll_write_priv
tokio::io::poll_evented::PollEvented<E>::poll_write
tokio::io::driver::registration::Registration::pol..
tokio::io::driver::registration::Registration::pol..
tokio::io::poll_evented::PollEvented<E>::poll_wri..

<&mut T as tokio::io::async_write::AsyncWrite>::po..
<tokio::io::split::WriteHalf<T> as tokio::io::asyn..

<tokio::io::util::write_all::WriteAll<W> as core::f..

<futures_util::future::future::catch_unwind::CatchUnwind<Fut> as core::f..
std::panic::catch_unwind
std::panicking::try
std::panicking::try::do_call
<core::panic::unwind_safe::AssertUnwindSafe<F> as core::ops::function::F..
<futures_util::future::future::catch_unwind::CatchUnwind<Fut> as core::f..
<core::panic::unwind_safe::AssertUnwindSafe<F> as core::future::future::..
<core::future::from_generator::GenFuture<T> as core::future::future::Fut..
scylla::transport::connection::Connection::router::{{closure}}
<futures_util::future::poll_fn::PollFn<F> as core::future::future::Futur..
scylla::transport::connection::Connection::router::{{closure}}::{{closur..
<futures_util::future::maybe_done::MaybeDone<Fut> as core::future::futur..
<core::future::from_generator::GenFuture<T> as core::future::future::Fut..

scylla::transport::connection::Connection::writer::{{clo..

tokio::runtime::task::harness::poll_future
std::panic::catch_unwind
std::panicking::try
std::panicking::try::do_call
<core::panic::unwind_safe::AssertUnwindSafe<F> as core::ops::function::FnOnce<()>>::call_once
tokio::runtime::task::harness::poll_future::{{closure}}
tokio::runtime::task::core::CoreStage<T>::poll
tokio::loom::std::unsafe_cell::UnsafeCell<T>::with_mut
tokio::runtime::task::core::CoreStage<T>::poll::{{closure}}

<futures_util::future::future::remote_handle::Remote<Fut> as core::futur..

tokio::runtime::task::harness::Harness<T,S>::poll_inner
tokio::runtime::task::harness::Harness<T,S>::poll

tokio::runtime::task::LocalNotified<S>::run
tokio::runtime::task::raw::RawTask::poll

tokio::coop::budget
tokio::coop::with_budget
std::thread::local::LocalKey<T>::with
std::thread::local::LocalKey<T>::try_with
tokio::coop::with_budget::{{closure}}
tokio::runtime::thread_pool::worker::Context::run_task::{{closure}}

tokio::runtime::thread_pool::worker::Context::run_task

std::panic::catch_unwind
std::panicking::try
std::panicking::try::do_call
<core::panic::unwind_safe::AssertUnwindSafe<F> as core::ops::function::FnOnce<()>>::call_once
std::thread::Builder::spawn_unchecked::{{closure}}::{{closure}}
std::sys_common::backtrace::__rust_begin_short_backtrace
tokio::runtime::blocking::pool::Spawner::spawn_thread::{{closure}}
tokio::runtime::blocking::pool::Inner::run
tokio::runtime::task::UnownedTask<S>::run
tokio::runtime::task::raw::RawTask::poll
tokio::runtime::task::harness::Harness<T,S>::poll
tokio::runtime::task::harness::Harness<T,S>::poll_inner
tokio::runtime::task::harness::poll_future
std::panic::catch_unwind
std::panicking::try
std::panicking::try::do_call
<core::panic::unwind_safe::AssertUnwindSafe<F> as core::ops::function::FnOnce<()>>::call_once
tokio::runtime::task::harness::poll_future::{{closure}}
tokio::runtime::task::core::CoreStage<T>::poll
tokio::loom::std::unsafe_cell::UnsafeCell<T>::with_mut
tokio::runtime::task::core::CoreStage<T>::poll::{{closure}}
<tokio::runtime::blocking::task::BlockingTask<T> as core::future::future::Future>::poll
tokio::runtime::thread_pool::worker::Launch::launch::{{closure}}
tokio::runtime::thread_pool::worker::run
tokio::macros::scoped_tls::ScopedKey<T>::set
tokio::runtime::thread_pool::worker::run::{{closure}}
tokio::runtime::thread_pool::worker::Context::run

<alloc::boxed::Box<F,A> as core::ops::function::FnOnce<Args>>::call_once
<alloc::boxed::Box<F,A> as core::ops::function::FnOnce<Args>>::call_once
core::ops::function::FnOnce::call_once{{vtable-shim}}
std::thread::Builder::spawn_unchecked::{{closure}}

__GI___clone
start_thread
std::sys::unix::thread::Thread::new::thread_start

<..
s..

<co..
scy..

<core::..
scylla..

core::op..
std::thr..
std::pan..
std::pan..
std::pan..
<core::p..
std::thr..
std::sys..
tokio::r..
tokio::r..
tokio::r..
tokio::r..
tokio::r..
tokio::r..
tokio::r..
std::pan..
std::pan..
std::pan..
<core::p..
tokio::r..
tokio::r..
tokio::l..
tokio::r..
<tokio::..
tokio::r..
tokio::r..
tokio::m..
tokio::r..
tokio::r..
tokio::r..
tokio::c..
tokio::c..
std::thr..
std::thr..
tokio::c..
tokio::r..
tokio::r..
tokio::r..
tokio::r..
tokio::r..
tokio::r..
std::pan..
std::pan..
std::pan..
<core::p..
tokio::r..
tokio::r..
tokio::l..
tokio::r..
<core::f..
latte::r..
<futures..
futures_..
<futures..
futures_..
<futures..
<core::f..
latte::r..
<core::p..
<core::f..
<latte::..
<core::f..
scylla::..

<..

<..
s..

<c..
sc..

st..
to..
to..
to..
to..
to..
to..
to..
st..
st..
st..
<c..
to..
to..
to..
to..
<t..
to..
to..
to..
to..
to..
to..
to..
to..
st..
st..
to..
to..
to..
to..
to..
to..
to..
st..
st..
st..
<c..
to..
to..
to..
to..
<c..
la..
<f..
fu..
<f..
fu..
<f..
<c..
la..
<c..
<c..
<l..
<c..
sc..

<..
s..

t..
t..
t..
s..
s..
s..
<..
t..
t..
t..
t..
<..
t..
t..
t..
t..
t..
t..
t..
t..
s..
s..
t..
t..
t..
t..
t..
t..
t..
s..
s..
s..
<..
t..
t..
t..
t..
<..
l..
<..
f..
<..
f..
<..
<..
l..
<..
<..
<..
<..
s..
<..
s..

tokio

  Figure 8.2 Example of an eye-catching flame graph. You can interact with this flame
graph at https://scyllabook.sarna.dev/perf/fg-before.svg.

https://scyllabook.sarna.dev/perf/fg-before.svg

164  

8.4.4	

8.4.5	

8.5	

C

Flame graphs are particularly common across bug-hunting blog posts. They offer a
great way to visualize your debugging and performance profiling process. And they’re
interactive—users can zoom in to the interesting parts, filter out only the events that
match a particular regular expression, and much more. Flame graphs can be created
from the output of popular tools, such as Linux’s perf profiler or Rust’s cargo flame
graph command.

Expert friendly

Bug-hunting articles tend to be expert friendly. The author usually assumes that the
audience is proficient in (or at least familiar with) the technological stack used in the
article. Code samples and scripts shared in the article are typically targeted to readers
who are familiar with the programming languages used. These types of posts aren’t
conducive to basic explanations of core language concepts; if the reader doesn’t “get
it,” they might need to soldier through it or just move on.
 This is distinctly different than in other blog post patterns, such as “We Rewrote It in
X” (discussed in chapter 9). Blog posts in that pattern are more appropriate for those
just getting started with the given technology and often include an “Introduction to the
New Language” section.

Educational

Blog posts following this pattern can be quite educational for developers beyond the
affected team. The meaty part, bug identification, is abundant in details about how
to inspect similar problems. Even more importantly, these sections are abundant in
reproducible details: ones that are likely to be useful for solving all kinds of similar
problems that readers might face in the future. The blog post serves its purpose if it
leaves the reader equipped with a few more tricks they can apply, just in case they ever
encounter a similar bug at some point in their life.
 For example, here’s a high-level view of what readers could learn from each of our
example blog posts:

¡ Chojnowski—The kinds of problems you might encounter with complex
memory architecture (NUMA), especially with ARM processors.

¡ Wenger—Ways to improve your Rust build times.

¡ Kołaczkowski—How modern CPUs work under the hood and how the
processor caches manage memory.

¡ Javeria—Java is evil.

¡ Gregg—How to apply analysis tools like an absolute expert.

Dos and don’ts
C

	 165Dos and don’ts

8.5.1	 Check if anyone (your boss, your boss’ lawyers) will be upset by your
transparency

	

	

This is especially important if you hunted a bug that had a notable effect on users or
if the disclosure of this bug could negatively affect your company’s reputation and/or
the all-important stock price. Open source or source-available projects usually don’t
impose any legal considerations (except maybe trying to avoid getting your code
infected with one of the GPL licenses and its copyleft terms). Not all code is open
source, though.
 Before you publish code snippets of your heavily guarded corporate secrets, make
sure that your boss and any interested parties are fine with it. Even if you skip the code,
your superiors still may be averse to making certain information public, especially if
the bug was related to security, or ended with an unfortunate data leak. Use this rule of
thumb: ask first, write and publish later.

8.5.2 Do a technical deep dive

Technical details are a must in any, well, technical blog post. If your article lacks details such as
code samples, specs on the exact technology used, step-by-step instructions,and so forth,

many readers will leave unsatisfied. Even worse, they might doubt your integrity. Perhaps the
inconvenient bits were deliberately omitted to make the product look better? If you worry that

you might be adding too many technical details, err on the side of more. Readers can always
skip over them if they don’t find them interesting.

Bug-hunting blog posts are especially expected to be loaded with tips, tricks, code,
benchmark results, as well as links to open source repositories and documentation. Oth-erwise,

you rob readers of the fun opportunity to draw their own conclusions from the copious
evidence. As noted earlier, it’s fine to be expert-friendly here. You can assume

that the audience is either already familiar with the technology described or willing to
catch up (with the help of your blog post).

8.5.3 Be brutally honest about all your failures

Your failures and misery provide readers with the cathartic effect that brought them to
your blog post in the first place! They also give rise to the most educational aspect of
bug-hunting articles. After all, it’s great to learn from mistakes, but it’s even better to
learn from somebody else’s mistakes first.
 Bug-hunting blog posts are usually written after the root cause has been identified
and the bug fixed. The more pain and suffering are described in the first paragraphs,
the better the final breakthrough looks. Readers who struggle with similar problems
are going to actively search the internet for descriptions of similar problems, so all the
sorrowful keywords such as “broken,” “fault,” or “FUBAR” serve dual purposes—they’re
an emotional outlet for the author’s frustration, plus they make the blog post easier to
find online.
 Don’t try to convey a perfect, pristine bug hunt. Dead ends and failed attempts bring
in tons of educational value. Programmers (which is of course a synonym for “great

166  

8.5.4	

8.5.5	

8.5.6	

8.5.7	

C

minds”) think alike. That means some readers could get stuck in the same dead ends,
unless they read your cautionary tale first.

Include numbers, benchmarks, metrics, and flame graphs

Benchmark results, metrics, and all kinds of numbers are the equivalent of clues and
proofs from the detective fiction world. Bug-hunting blog posts look less legit if they
use vague phrasing such as “our system is now much faster.” Readers will immediately
think “Yeah, but how much faster?” followed by “Dear author, if you were really
proud of the results, then you would have posted them.” Screenshots from your
metrics (or even better, interactive figures like flame graphs) catch readers’ eyes,
making the arti-cle both more credible and more enjoyable to read.

Don’t give away too much, too soon—keep the tension building

For most blog posts, we recommend sharing the TL;DR early on so readers can quickly
decide if they want to continue. Not here! With bug hunt blog posts, avoid spoilers at
all costs! The tension should be patiently built until the aha moment occurs and the fix
is revealed. This is key for allowing readers (those not in a hurry, at least) to vicariously
experience the thrill of the hunt, with all its twists and turns. They probably already
suspect that the article concludes with a happy ending, because otherwise it wouldn’t
be published. But aren’t most detective stories like that anyway?

Don’t make overeager readers hunt too hard for the fix

That being said, some readers will get impatient. Maybe they drew their own conclu-
sion after just a few paragraphs and want the immediate gratification of confirming
that they got it right, right away, unlike silly old you. Maybe this is the twelfth Java
bug-hunting blog post they’ve come across this month and they want to see if this is yet
another one where the garbage collector is ultimately to blame. Be kind and mark “the
fix” with a nice prominent heading so they can skip ahead to the smoking gun.
 As a bonus, having a clearly labeled fix is also helpful to those who are returning to
your blog post because they’re now suffering a similar problem. Back when they were
reading this for fun, they enjoyed following along with the thrill of your hunt. But now
that the tables have turned, they want to go straight to your fix and see if it will save them
in their own moment of despair.

Add breaking points wherever necessary

C

	 167Dos and don’ts

	

	

	

subliminally suggesting to the reader that it’s fine to take a short coffee break here with-
out losing context.

8.5.8 Don’t suck the life out of it

Readers aren’t here to read an official failure report. The captivating bits are the per-
sonal story, the struggle, and the final joy of figuring out what was wrong. The best
bug-hunting blog posts use an informal conversational tone, and anecdotes are very
much welcome.
 Narrate it from your personal point of view. Don’t hesitate to share what was going
through your mind as the mystery unfolded. Also, rants are borderline mandatory and
expected—in reasonable doses, of course. Deep down, most humans enjoy reading
about other people’s frustrations and feeling the indirect relief that it didn’t happen to
them (yet).
 The “building tension” and “providing full access to clues” approaches described
earlier are two fundamental ways to keep readers engaged (yes, they are
shamelessly stolen from real detective stories). In addition, you might want to

¡ Write in an extremely casual tone, sacrificing “proper” grammar as needed to
keep it conversational.

¡ Create a faux dialog with the reader: ask them questions so they’re encouraged
to step back and form their own hypotheses (which you will proceed to confirm
or disprove).

¡ Write as if you’re in the thick of the hunt (e.g., “Let’s see if …” versus “Then we
checked if…’’).

¡ Share exactly what popped into your head (no matter how silly it seems in retro-
spect) as you encountered each new piece of information.

¡ Explicitly call out critical moments such as “plot twist,” “dead end,” and “the aha
moment” to ensure readers are in the right mindset at every point.

8.5.9 Don’t forget to thank those who helped along the hunt

The most important reason for publicly acknowledging your collaborators is pure kind-
ness. Bug hunts are among the most infuriating parts of computer programming, and
misery loves company. Your collaborators probably made the pain a bit less excruciat-
ing; if you appreciate that at all, do thank them here. For the not-so-empathetic folks,
there are also pragmatic (read: selfish) reasons for thanking your collaborators. Your
acknowledgment could make them more likely to assist in the next bug hunt. Also, if
you name someone in a blog post, you can pretty much guarantee that they will read
it, and maybe they will even share it. Perhaps someone they know will be the person to
start it trending on Hacker News.

8.5.10 Extrapolate

Feel free to extrapolate from specific errors (e.g., “Our Rust code had a bug.”) into
more general problems (e.g., “Rust standard library makes it easy to deadlock in this

168 Chapter 8  The “Bug Hunt” pattern

particular use case.”) Bug-hunting blog posts are also opportunities to shine some light
on pain points you have with a particular technology. You’ve managed to attract a cap-
tive audience, interested in what you have to say. Why not take advantage of that? If
you noted something particularly problematic with the language or library you used,
bite the bullet and suggest that something should be fixed upstream. Programming
language and library maintainers appreciate constructive criticism that helps improve
their projects.

Summary
¡	Writing a bug-hunting article serves to share knowledge, raise awareness about

bugs you encountered, and showcase your achievements.

¡	A bug-hunting blog post targets a technical audience, from experts to enthusi-
asts, usually assuming (at least) intermediate knowledge of the terminology.

¡	Bug-hunting blog posts are typically heavy on investigative details, showcasing
technical evidence in the form of numbers, benchmarks, results, and graphs.

¡	Top tips:

– Check for transparency problems.

– Do a technical deep dive.

– Be brutally honest.

– Include numbers and benchmarks.

– Avoid spoilers.

– Clearly mark the fix.

– Make it personal.

– Thank your collaborators.

9 The “Rewrote It in X”
pattern

This chapter covers

¡	Blog posts that are all about rewriting an app in a 	
new (and trendy!) programming language, library,
or framework

¡	Their purpose and audience
¡	How various authors approached this type of post
¡	Key elements of successful ”We Rewrote It in X” 	

posts
¡	Dos and don’ts for your own ”We Rewrote It in X” post

To clarify, X stands for a wildcard to be replaced with a programming language or
framework of your choice, not rebranded Twitter. With that important legal disam-
biguation out of the way, let’s proceed with the pattern description.
 “We Rewrote It in X” has long been prevalent in the technical blog space. Lately,
it became exceedingly trendy during a wave of Rust rewrites (to the point that a new
acronym, RIIR [rewrite it in Rust], was coined). By the time this book is published,
we might be in the middle of or long past a rush of “We Rewrote It in Zig” blog posts,
or even a language that wasn’t designed at the time of writing.

169

170 Chapter 9  The “Rewrote It in X” pattern

Aside from language evangelism, articles about porting a project to another lan-
guage, library, or framework are often juicy with problem statements (why the rewrite
was needed in the first place), technical details, and new unexpected problems that
arose only after the rewrite was already past the point of no return.

9.1	

9.1.1	

Purpose
There are a few reasons to write a blog post in this pattern (beyond simply having some
“Rewrote It in X” masterpiece associated with your name):

¡ Encourage your peers to consider adopting the new language or framework

¡ Discuss the improvements you were able to make to your own projects

¡ Strengthen the community supporting the selected open source language

¡ Vent your own rewrite frustrations in a way that helps others avoid them

Evangelism

One key purpose of this pattern is to advocate for the selected language or frame-
work. New programming languages are spawned daily (or so it seems), but only a select

	 171Purpose

	

few ever achieve the level of sustained interest and adoption that makes them a valid
choice for real-world projects. Thus, it’s in the best interest of language inventors,
maintainers, and excited early adopters to promote real-world use cases and show that
the language actually improves the existing developer experience.
 The language might be focusing on a particular niche that benefits from a special-
ized approach. For example,

¡ Internet of Things (IoT)

¡ Artificial intelligence (e.g., see the Mojo language)

¡ Querying a graph database

It also might be a brave attempt to overtake a general-purpose language such as C++ or
Python (good luck).
 Whatever the target use case, a programming language is only considered alive if
real-world projects actually use it—preferably open source ones, so that a broader com-
munity can see and verify the code. And what better way to kickstart more projects in
language X than to publish an article that describes a cool use case and shares how this
new approach resolved the technical problems plaguing previous implementations.
This is honest authentic evangelism, not marketing propaganda.

9.1.2 Project promotion

The previous section focused on the “X” part of the pattern name; this one focuses on
the “it” component. Obviously, something got rewritten to another language, and a
substantial part of the article will cover how “it” is now better. Common improvements
cited when discussing a rewrite include

¡ Performance boost

¡ Availability on more platforms (e.g., operating systems, CPU architectures)

¡ Easier maintenance, with the optimistic anticipation of fewer bugs in the future

¡ Better test coverage

¡ Better user experience (e.g., it’s now much easier to install and start using the
project)

¡ Better developer experience (e.g., it’s now much easier to contribute to the proj-
ect; tooling is improved)

The improvements are usually attributed to the new programming language’s char-
acteristics. It might be faster by nature because it compiles to native assembly instead
of running on a virtual machine. For example, think of migrating from Java to C++.
Other times, it might have facilitated a more efficient implementation. For example,
think of migrating to Rust and its safe concurrency primitives (as opposed to the pre-
vious tricky C implementation, unchanged from 1989 for fear of breaking some intri-
cate, long-forgotten assumptions).
 At first glance, it looks like the article is just praising the language. However, in real-
ity, it’s the speed of the product that improved, and it’s the product that’s now less prone
to

172  

9.1.3	

 

9.1.4	

9.2	

C

bugs. That’s an indirect invitation to start using the product in question because it just
became better.

Community development

Language implementations are often open source. And when the language is open
source, writing a blog post on how it made your life easier is a nice “thank you” note
to the community behind it. Based on your freely given testimonials, you also encour-
age other people involved in language evangelism (described in section 9.1.1) to write
their own blog posts on the subject. Perhaps they will even refer to your blog post as
one of their sources.
 This is especially important and visible with rising technology, and the everlasting
example of Zig applies here as well. Its community is still relatively small at the time of
writing this book and revolves around a few large projects that adopted it early, such as
Bun (the JavaScript runtime) and TigerBeetle (the database). At this early stage of com-
munity development, it’s clearly beneficial to write interesting articles about writing or
rewriting applications in the new language. Bun and TigerBeetle did it, and now they
are considered the default examples of large, production-ready Zig projects. Win-win!

TIP See if the team or foundation behind the project you support is open
to guest blogging opportunities. This helps you reach interested readers and
helps the other team/foundation get attention.

Ranting

Rewriting a project to another language is hardly ever a smooth process. Moreover,
there’s no guarantee that the story has a happy ending! Some blog posts following this
pattern are actually quite grudgy and end up being a “lessons learned” type of story.
 One therapeutic effect of writing a rant about a failed (or bumpy) rewrite is venting
the accumulated anger. But that alone should not justify publishing your experiences.
As with virtually every technical article, you should offer some educational value. In the
case of a rant, that could be a warning to others (and your future self): “Be careful next
time you rush to rewrite something instead of trying to improve the status quo first.”
The article might also add value by sharing how to avoid the mistakes and pitfalls you
stumbled into, ideally making someone else’s rewrite process considerably smoother.

Audience
This pattern usually includes the programming language’s name in the title, and that
naturally attracts this language’s enthusiasts. The following groups are likely interested:

¡ Evangelists of programming language X, including authors, maintainers, and
other enthusiasts

¡ Evangelists of the programming language you rewrote it from; they likely con-
sider these posts a form of an exit interview (sharing candid feedback, areas to
improve, etc.).

	 173Examples of “We Rewrote It in X” blog posts

	

	

¡ People interested in learning about the latest and greatest programming
languages.

¡ People interested in writing their own programming language.

¡ Users of the now-rewritten software who want to learn about what improved.

¡ Competitors of the now-rewritten software who are here to check if they should
consider a rewrite as well.

¡ Professional internet critics specialized in unsolicited advice.

Given this varied audience, articles describing a rewrite process should consider dedi-
cating an entire section, or at least a paragraph, to introducing the new language. We
cover this more in section 9.4.1.

9.3 Examples of “We Rewrote It in X” blog posts
In the wild, you can find “We Rewrote It in X” blog posts (or slight variations thereof)
pretty much anywhere. The most common place to spot one of these posts is on the
corporate engineering blog for a Big Tech company or unicorn who has outgrown their
original tech stack on a particular project. The burden of evolving a legacy tech stack
for an application that the world depends on makes for a great story (and also shows
potential engineering recruits that they remain on the forefront of innovation, right?).
But you can also find similar posts written by startups, as well as individual contributors
working on weekend projects. Many of these take the angle of “We Wrote It in X” since
the authors had the luxury of reading so many of their peers’ recent “We Rewrote It in
X” blog posts before selecting the initial technology for a new project.
 Here are some example blog posts that will give you a good feel for this pattern,
along with Piotr’s commentary on each.

9.3.1 Why I Rewrote My Rust Keyboard Firmware in Zig: Consistency, Mastery, and Fun

Author: Kevin Lynagh
Source: Kevin Lynagh’s Blog (https://kevinlynagh.com/rust-zig/)

S

The author describes his experience rewriting his own keyboard firmware from Rust
to Zig. The introduction briefly mentions that Rust was originally selected as the lan-
guage for the keyboard firmware and then shifts to how the author was eventually con-
vinced to try Zig. The main part of the blog post shows concrete code snippets that
are problematic and/or ugly in Rust. The bad examples are later followed by their
Zig counterparts, which are clearly cleaner and more readable. At the end, the author
expresses excitement about the future of Zig. However, he also notes that Zig’s ecosys-
tem is not yet as mature as Rust’s, so early adopters should brace themselves for a few
compiler bugs and sparse documentation.

C

This article is a pleasure to read for so many reasons. The author needed to rewrite
firmware for keyboards he produces himself, which is a fascinating technical topic on

https://kevinlynagh.com/rust-zig/

174  

9.3.2	

9.3.3	

C

its own. The article contains backlinks to his other writings on creating his own hard-
ware, which makes the whole blog a rabbit hole (in a purely positive sense).
 The code snippets are informational and easy to read, even if you’re not fluent in
Zig. The Rust code snippets are substantially harder to parse, but that’s deliberate and
done masterfully. After all, the whole point of the article was to show that the rewrite
resulted in much clearer code.
 The author concludes that in his case, there’s simply no upside to choosing Rust over
Zig, which makes the rewrite a complete success. The author’s satisfaction and optimism
come across throughout the post, making it an enjoyable read. And the fact that he wraps
up by crediting a few people who are well-known in the Rust and Zig worlds adds credi-
bility to the whole article—and is simply a nice gesture. This is a great example to follow!

How Turborepo is Porting from Go to Rust

Authors: Nicholas Yang, Anthony Shew
Source: Vercel Blog (https://mng.bz/znNg)

S

This blog post describes how the Turborepo project was ported from Go to Rust. It
starts by disambiguating porting versus a full rewrite, briefly discussing the advan-
tages and disadvantages of both approaches. It follows with a few examples of prob-
lems caused by the porting process and how the team decided to overcome them. The
authors conclude that porting was the right decision, one that benefited the team.
Finally, the blog post ends with a short promotion of the Turborepo product.

C

Reading this blog post was quite an ambivalent experience for me. The first few
paragraphs were sparse on technical details, which is something I generally look for.
Instead, I began to suspect I was reading a marketing whitepaper, sneakily presented as
a technical post.
 Thankfully, more technical details appeared over time, and the described road
bumps were quite educational. I didn’t find that any of the solutions were particularly
creative or surprising though. From a purely technical point of view, the solutions
looked more like workarounds. That’s perfectly fine, of course. Practical solutions
should be applied during an incremental port to another language. They are just not
particularly captivating for readers like me (i.e., those who delude themselves into
thinking they’re so smart that only the hardest programming problems could possibly
be of interest).
 On the bright side, I did appreciate the educational value of the post—for example,
learning that compiling a program written in Go and statically linked with the musl C
library can cause nonobvious runtime issues.

Why Discord Is Switching From Go to Rust

Author: Jesse Howarth
Source: Discord Blog (https://mng.bz/0M8W)

https://mng.bz/znNg
https://mng.bz/0M8W

	 175Examples of “We Rewrote It in X” blog posts

	

S

The article starts off by describing Discord’s latency problems with one of their services
implemented in Go. Next, it explains how rewriting the whole service to Rust helped
alleviate all spikes, as well as improve the general performance. The rewrite was done
iteratively, with the first version already fixing the latency spike problem, and the next
iterations further improving the service’s performance. The article concludes with a
fun fact about the symbiosis between Discord and Rust: the language powers lots of
Discord’s services, and the Discord platform is also the Rust maintainers’ main means
of communication.

C

This blog post is a solid example of the “We Rewrote It in X” pattern. It starts with
a clear problem statement, showing why the previously chosen language no longer
met the requirements of the scale Discord was then operating at. The technical bits
are interesting, and in some cases intriguing. For example, it was interesting that they
decided to replace a HashMap with a BTreeMap, while customarily it’s done the other
way around. In my humble opinion, one missing bit is code snippets showing some of
the details. But they might have had their hands tied due to legal issues associated with
sharing closed source code. It was a nice touch to share the metrics from before and
after the rewrite, showing a clear improvement.

9.3.4 From Zero to 10 Million Lines of Kotlin

Author: Omer Strulovich
Source: Engineering at Meta Blog (https://mng.bz/KDJE)

S

This article is a detailed report on how Meta coordinated a huge rewrite of their appli-
cation code from Java to Kotlin. It starts with an extensive rationale of why the rewrite
was needed in the first place and then presents the two approaches they considered:
iterative migration or full rewrite. After justifying the full rewrite option, the author
explains multiple intricacies with the existing tools dedicated specifically to migrating
from Java to Kotlin. The blog post also discusses the approach of using the official
migration tools combined with a few custom practical scripts and a testing phase. That
combo allowed Meta engineers to translate millions of lines of production code from
Java to Kotlin. The article concludes with an optimistic vision of the future of Kotlin at
Meta.

C

Even though this report is relatively long, it’s dense with technical details, practical
advice, and measurable results. All of those traits are welcome in an engineering blog
post. The code samples are short and helpful. This article is also full of links to open
source projects, documentation of external tools, and related blog posts. That’s a good
sign. However, in this particular case, the sheer number of hyperlinks could be a bit
overwhelming if you opt to act on them. You will end up with an overload of open tabs
if you start drilling down to line up articles for later reading.

https://mng.bz/KDJE

176  

9.3.5	

9.4	

C

 This blog takes an interesting angle: it states from the start that although rewriting
Java to Kotlin is largely automatic, their massive migration incurred enough caveats and
subtle problems to justify developing a custom pipeline of scripts and tests. The num-
bers are also impressive and optimistic—if Meta managed to rewrite millions of lines of
production Java code to Kotlin, your pet project is safe to port as well.

Why We at $FAMOUS_COMPANY Switched to $HYPED_TECHNOLOGY

Author: Saagar Jha
Source: Saagar Jha’s Blog (https://mng.bz/9ox0)

S

This particular blog post is satirical, and hilarious at that, but also fits the pattern
extremely well. It actually fits the pattern too well, because its sole purpose is to mock
all the overly promotional blog posts boasting about switching to the newest hyped
technology. Anyone attempting to write about their rewrite process should read this
one before they start writing:

¡ It’s structured well, moving from the rationale, through the rewrite details, to the
final conclusion.

¡ It contains a balanced amount of graphs and fun facts.

¡ It turns you into a self-conscious writer. If you reread your blog post and it looks
deceptively similar to this one, consider rewording (unless you don’t mind seeing
the link to this parody post endlessly spammed in your post’s comment section).

Don’t feel discouraged by this article though. What allowed it to be funny in the first
place was the surge of “We Rewrote It” blog posts trending on the front page of Hacker
News for months. That’s a clear indication that readers still enjoy them!

Characteristics
The main class of “We Rewrote It in X” blog posts tend to follow a pretty standard tem-
plate—so much so that it inspired Saagar Jha to author the parody blog referenced in
the previous section (and us to add a chapter section [9.4.3] calling out the common
pieces and flow). But there are a few corner cases to note:

¡ Some teams choose to zoom in on the decision to abandon the original language,
with titles like “Why We Sunsetted/Retired X.”

¡ There’s a growing trend of posts sharing the inside scoop on why they decided to
take the contrarian path and not rewrite their app in the trendiest new
language.

¡ One subtle variation is “We Wrote It in X,” where teams who made their lan-
guage selection quite recently share which of the current trendy languages they
selected, why, and how it worked out (basically, the same pattern minus the
migration part).

Blog posts in the standard “We Rewrote It in X” pattern tend to have the following
characteristics.

https://mng.bz/9ox0

	 177Characteristics

	

	

9.4.1 Suitable for language newbies

Articles about rewrites are often motivated by specific features or guiding principles
of the new language. It’s common practice (and a good idea) to dedicate a section, or
at least a single paragraph, to introducing the language in case any readers are not yet
familiar with it.

This section might include details such as

¡ A short overview of the language’s mission, core concepts, and intended use cases

¡ The advantages over the previously used language

¡ The most interesting (or important) known disadvantages

¡ Examples in the form of code snippets (interactive ones that users can run and
edit are particularly engaging and educational)

For the segment of readers who are new to the language, this dedicated intro section
will help them onboard themselves. It also benefits the language experts in your audi-
ence. By clearly marking this introductory material as such, you’re alerting these read-
ers that it’s safe to just skim over this part.

9.4.2 Practical

There’s a whole category of readers who are desperately looking for context before
they start their own major rewrite. For their sake, posts in this pattern tend to include a
reasonable helping of helpful details, such as

¡ Tools used for automating the rewrite

¡ Tools used for verifying the rewrite was correct

¡ Custom scripts for fixing incorrectly rewritten code (e.g., with these tools)

¡ Code samples in the old language, idiomatically rewritten to the new one

For example, here are some of the practical elements featured in our example “We
Rewrote It in X” blogs:

¡ Lynagh —Code examples in both old and new languages, links to related
posts, (e.g., https://mng.bz/j0MV), and direct links to Zig (new language)
documentation

¡ Yang and Shew —A link to a known issue related to migration (https://github
.com/golang/go/issues/13492) and graphs visualizing the migration procedure

¡ Howarth —A link to Go (old language) documentation explaining a failed
attempt to fix the issues prior to the rewrite (https://pkg.go.dev/runtime/
debug#SetGCPercent)

¡ Strulovich —A reference to a presentation about issues with Kotlin (new lan-
guage) (https://mng.bz/aV0Y), a reference to their own fix of a related open
source tool (https://github.com/pygments/pygments/pull/1699), and a ref-
erence to their own open source helper tools (https://github.com/facebook/
ktfmt; https://github.com/fbsamples/kotlin_ast_tools)

https://mng.bz/j0MV
https://github.com/golang/go/issues/13492
https://github.com/golang/go/issues/13492
https://pkg.go.dev/runtime/debug#SetGCPercent
https://pkg.go.dev/runtime/debug#SetGCPercent
https://mng.bz/aV0Y
https://github.com/pygments/pygments/pull/1699
https://github.com/facebook/ktfmt
https://github.com/facebook/ktfmt
https://github.com/fbsamples/kotlin_ast_tools
https://github.com/fbsamples/kotlin_ast_tools

178  

 

9.4.3	

C

NOTE This one is the single most practical “We Rewrote It” blog post I’ve ever
seen. Congrats!

Assuming that the rewrite is considered a success and the authors want to encourage
their peers to follow suit, it makes sense that they provide readers a useful toolkit to
start with.

Tremendously templated structure

Although there’s unfortunately no easy-to-follow recipe for pulling off a successful
rewrite, there is one for writing a blog post about it. Given the continued popularity of
these posts on sites like Hacker News, the standard formula works, so why reinvent the
wheel?
 The standard “We Rewrote It in X” blog post contains the following elements, usually
in the precise order listed:

¡ Templated title —The title always includes the new language name and usually uses
some form of “rewrote,” “moved,” “switched,” or “migrated.” The minimalist “We
Rewrote It in X” is used quite a bit. Some opt to define the “we” and call out
the original language (especially if it is remarkably old and/or impressively com-
plex). This gives you something like “Why ACME moved from COBOL to Zig.”

¡ What are we doing here —A little background on the project. For example, how
long it’s been around, how it’s evolved, who it serves, what’s most important (e.g.,
ability to iterate fast, achieving crazy low latencies, or something else entirely).

¡ Why it’s time to move on —This is often a proactive response to positive problems
such as catastrophic success (e.g., “Our original Typescript server served us well
for a few years, but now our service is so popular that we needed to rewrite it in
Rust”). Sometimes it’s because the original language turned out to be a poor fit
for the project and the team couldn’t bear it any longer. And it’s occasionally
because someone on the team wanted an excuse to play with a shiny new lan-
guage, but that’s not usually written.

¡ Also ran —Covers what other options were considered and why they didn’t make
the cut. It’s usually fairly brief, keeping the article’s focus on the dearly departed
old language and the fascinating new one.

¡ Meet the new language —This is the section where we learn why they chose the new
language and all the greatness that it has to offer. As noted above, this is often tar-
geted to people new to that particular language and can be conveniently skipped
by those who are already sold on it.

¡ Migration nuts and bolts —Here’s where you get most of the practical elements
referenced in the previous section: all the challenges faced and the tools and
strategies used to move past them.

¡ The verdict —Did the gain outweigh the pain? This is the place where authors
reflect on the overall process and maybe showcase some specific effects, quantita-
tive (benchmarks) or qualitative (happier and more agile teams).

	 179Dos and don’ts

	

	

¡ Join us —A not-so-subtle reminder that the team is on the forefront of innova
-tion and that they would love for interested readers to join them (insert link
to careers page).

The “We Rewrote It in X” pattern is by far the most predictable of all the patterns cov-
ered in this book. And it’s also why Saagar Jha’s parody is such a brilliant and hilarious
read.

9.5 Dos and don’ts
Writing your own “We Rewrote It in X” blog post is a great opportunity to validate
whether the rewrite is justified, show a few tricks you’re particularly proud of, and add
a tribute or two to the new language’s authors and maintainers.
 These blog posts are typically written and published after the rewrite is deemed
done, ideally with some reportable results demonstrating that it was indeed worth it.
You could feasibly start writing at any point during or after the rewrite process. If you
start writing about it early, you could even turn it into a whole series of blog posts. For
example, you could write “Why We’re Rewriting It in X” once you’ve made the deci-
sion, “How We’re Rewriting It in X” as you’re in the middle of the rewrite, and “Our X
Rewrite: Results and the Verdict” after it’s completed. Of course, if your team’s rewrite
turns out to be an utter disaster, you might regret having told the world about it. On
the bright side, the resulting “Our Failed X Rewrite: Lessons Learned” blog post could
make for a gripping read!
 Here are some tips to keep in mind while writing your own “We Rewrote It in X” blog
post.

9.5.1 Start by explaining your rewrite motivation

Pointless rewrites from one language to another are a plague. The internet is already
full of half-baked rewrites of popular open source projects, long abandoned and for-
gotten. Rewriting a project “just because” usually doesn’t warrant a blog post about the
experience—unless the rewrite yielded some surprising and absolutely stunning bene-
fits that the author never anticipated.
 Be aware that there’s a good chance your average reader is a programmer who’s
sick of telling junior colleagues that even though the new language is really shiny and
groundbreaking, they shouldn’t just go ahead and rewrite everything in it. By explain-
ing your motivation thoroughly, including specific technical reasons, you calm that
average reader down and perhaps earn his readership for a few minutes. You might win
him over on the value of migration, or you might provide him additional ammunition
for his anti-rewrite campaign.
 If you’re considering writing a “We Rewrote It in X” blog post, try to write (at least)
one convincing paragraph justifying the rewrite. If you have trouble with this task, you
might want to reconsider writing on this topic. If you’re able to write something inter-
esting, fantastic! That’s an indication that the rewrite has merit, and should make for an
interesting read. Bonus: now you’ve already got your blog post started.

180  

9.5.2	

 

9.5.3	

C

A few sample questions to ask yourself:

¡ Why did you (or someone else) select the original language?

¡ Why did you decide to ditch it?

¡ What alternatives did you consider?

Your answers to the above questions can help you populate the explanation paragraph
(or an even lengthier justification section).

Provide background on your project

Sounds obvious, right? But it’s often overlooked in practice. Authors of “We Rewrote It
in X” blog posts sometimes get so caught up in the marvels of the new language that they
end up delivering a paean of the language’s features instead of a down-to-earth analysis
of how it helped their project. Remember that if someone clicks your “We Rewrote It in
X” post, it’s because they want to learn why and how your specific team (the “we” part of
the title) made this shift. If they wanted to read a generic profusion of praise for a lan-
guage, they could simply get that through AI (e.g., “Tell me why X is so great.”).

NOTE If you really want to focus on sharing your praise for a language, that’s
fine. Just don’t mislead readers who expect a “We Rewrote It in X” post. Write it
up as a “Thoughts on Trends” pattern type of post instead (covered in chapter
12). And make sure it’s not as generic as something from generative AI.

Across patterns, sharing project context is a key element for making blog posts appeal-
ing and distinctive. Readers with similar experiences to yours are naturally curious
about how you approached common challenges—and, of course, evaluating who did
it better. At the same time, readers working in different worlds want to keep tabs on
what’s happening across the wide wide world of engineering, beyond their day-to-day
duties. Providing context about what you’re working on and why helps stir up emo-
tion—be it empathy, envy, arrogance, or something else—and that will help get your
blog post read.
 Project context is particularly important for the “We Rewrote It in X” pattern because
the decision of what language to select depends so heavily upon the project’s techni-
cal requirements. For example, while Rust is a reasonable choice for implementing a
highly efficient database, it’s likely to be counterproductive for frontend development.
A very good way of introducing that project perspective is to dedicate the first section
of the blog to describing your case and explaining what motivated your specific rewrite.

Don’t gloss over the rough parts

C

	 181Summary

	

 Statistically, it’s highly unlikely that every aspect of a real-world production rewrite
was completely smooth. Really, you encountered zero challenges—with the
language itself, or its tooling, dependency management, state of its documentation,
and similar?Balancing pros and cons is important to make the blog look credible (as
well as to help your readers learn, of course).

 Be fully transparent about the things that went wrong (unless your dear superiors
object, of course—again, it’s better to ask permission than forgiveness in these mat-
ters). In particular, list all the caveats and footguns you experienced when rewriting
software from language A to B, as well as how you dealt with them. Some of your read-
ers, even those who have already weathered other types of rewrites, might not be aware
that a naive rewrite from A to B can cause subtle problems such as inefficient memory
management or undefined behavior in their applications. If your blog post makes them
realize that they need to step back and check all the millions of lines of code they’ve
already rewritten to look for a new class of errors, you helped reduce the total number
of software bugs in this world. Thanks!
 Moreover, constructive criticism of a new and/or rising language is generally wel-
come in technical blog posts. If you draw attention to practical problems with the lan-
guage, you get them on the community radar, increasing the chance that the language’s
maintainers might recognize and fix them.

9.5.4 Share the resources you used

A rundown of any and all resources you found helpful during the rewrite (or con-
versely, the ones you found embarrassingly unhelpful) could be priceless to others who
are considering a similar rewrite. “We Rewrote It in X” articles are expected to be both
entertaining (reading about somebody else’s failures) and educational (learning from
somebody else’s mistakes). A list of the resources that you tried to tap, annotated with
your candid commentary on each, could help you accomplish both. Or take the high
road and just focus on highlighting the resources that were most valuable—whatever
you’re comfortable with.
 A simple bulleted list with a sentence or two commentary on why you found each
item helpful (or not) would help readers navigate the vast sea of resources. It could also
save them hours of scanning through search-engine-optimized results to unearth the
handful of hidden gems that truly add value.
 In addition to helping your readers, a positive endorsement here is a nice way to
share your appreciation for the people behind the resources you relied on. Whether
they developed a really cool tool or wrote a detailed article that saved you from some
nasty mistake, they deserve a bit of public praise and positive feedback.

Summary

¡ The “We Rewrote It in X” pattern became (in)famous lately during a surge of
Rust rewrites.

¡ Blog posts in this pattern promote both the rewritten project and its new lan-
guage, library, or framework.

182 Chapter 9  The “Rewrote It in X” pattern

¡	Readers interested in adopting the new language are a primary audience, and
the new language’s authors and maintainers are likely to read for constructive
criticism.

¡	“We Rewrote It in X” blog posts are typically suitable for those new to the new
language and full of practical tips, code snippets, and tools; they’re also rather
formulaic in structure.

¡	Top tips:

– Provide a good rationale for the rewrite: what’s wrong with the old language,
why the new language solves the problems, and which alternatives were con-
sidered and discarded.

– Explain your project’s goals and technical requirements upfront.

– Don’t gloss over the road bumps or headaches, or else the post will be dis-
missed as too promotional.

– Pay it forward by sharing what resources helped you and why.

10 The “How We Built It”
pattern

This chapter covers

¡	Blog posts that share your most impressive
engineering achievements

¡	Their purpose and audience
¡	How various authors approached this type of post
¡	Key elements of successful “How We Built It” posts
¡	Dos and don’ts for your own “How We Built It” post

Engineers are natural builders, a curious and constantly tinkering bunch. When
we’re not scratching that itch by building something ourselves, it’s always fun to see
what others are building—for pragmatic learning, inspiration, and really just pure
discovery.

First and foremost, engineers writing about how they built things creates a valu-
able knowledge base for the community, brick by brick (pun intended). Such blog
posts might be triggered by a range of experiments and achievements:

¡	Using a rising technology as one of the early adopters. For example,

183

184 Chapter 10  The “How We Built It” pattern

– A new database specialized for a niche (e.g., adopting the TigerBeetle data-
base for your brand-new banking system)

– A new framework for creating web pages (e.g., Rust’s Leptos)

– A new programming language (e.g., writing your software in Zig)

¡	Successfully using the same technology (e.g., Postgres) for decades

¡	Using a novel system architecture (e.g., one trying to serve billions of users)

¡	Improving an existing architecture to cut cloud costs by millions of dollars per
year

¡	Implementing an algorithm previously known only from academic papers

¡	Inventing a new algorithm (or improving an existing one) and implementing it

These blog posts are sometimes published in a multipart series because the building pro-
cess, just like the situation on actual construction sites, can take years. They are some-
times cryptic on details (to avoid helping the competition too much) but at the same time
informative enough to give readers a general idea of how a successful system can be built.

10.1	 Purpose
The “How We Built It” pattern is often (at its essence) an abbreviation for “How We
Built It Better Than Anybody Ever Imagined Possible.” That brings us to the first pur-
pose on the list.

	 185Purpose

	

	

	

10.1.1 Pioneering

Writing a detailed article on a technical innovation is a great tool for establishing lead-
ership. If you describe a particular idea first, you earn a long-lasting legacy as the pio-
neer. That gives your project (or the whole company) extra visibility. Now, whenever
somebody mentions that new algorithm, they’re going to associate it with you.
 Note that the innovation doesn’t have to be a mathematical breakthrough worthy
of the Millennium Prize. On the contrary, it can be a small improvement to a decades-
old algorithm that works great for your particular use case. It can also be an unusual
setup for an existing technology (e.g., running your entire storage infrastructure on a
fleet of used corporate laptops with discounted USB sticks). Any unusual decision, be it
architectural or algorithmic, can be the one that earns you recognition as an inventor
or early adopter.

10.1.2 Flexing muscles

Publicly sharing how a product was built is a not-so-subtle way of highlighting how
much better it is than any of its alternatives. That usually sends the following messages:

¡ Proof that the authors believe their solution is incomparably better than any
existing solutions. It can be a literal mathematical proof or just an architectural
design backed by tests, model checkers, and benchmarks.

¡ A healthy amount of confidence that even though the authors are hereby shar-
ing the recipe for success, they’re still pioneers and experts in the matter (which
makes their product a default choice).

Describing a novel way of solving a problem is also simply a nice gesture. Readers tend
to appreciate the authors’ transparency, as opposed to keeping interesting ideas as
corporate secrets. To sum up, writing an article on an interesting way of building some-
thing makes you look smart and confident—what’s not to like?

10.1.3 Free peer review

One thing is certain after publishing a “How We Built It” blog post: it will ignite a spir-
ited comment section discussion on why another approach is actually much better.
After filtering out the snarky comments (and ones that just blindly recommend using
Postgres without even reading the article first), what’s left is hopefully a fair dose of
constructive criticism.

A few examples of valuable comments are

¡ Pointing out a known security problem with one of the libraries used for the proj-
ect, as well as which dependencies should be upgraded to avoid problems

¡ Suggesting that the team switch from one of the services they’re relying on to a
compatible one that’s more modern and cost-efficient

¡ Recommending a tool for improving the project’s test coverage

¡ Pointing out a bug in the academic paper that the implementation was based on
(yes, it really happens; see Avinash’s case: https://mng.bz/gAEn

https://mng.bz/gAEn

186 Chapter 10  The “How We Built It” pattern

	

	

	

¡ Suggesting how to improve the project’s performance just by tweaking the data-
base configuration

Not many people are fans of unsolicited advice, but publishing a “How We Built It”
article is often seen as a broadcasted review request.

10.2 Audience
“How We Built It” blog posts may appeal to a mixed lot:

¡ Developers of similar projects, who might be interested in implementation
details, design decisions, and architecture. They may come looking for inspira-
tion to creatively “borrow” the intriguing bits back into their projects.

¡ General tech enthusiasts, who enjoy learning about the latest tools, frameworks,
and techniques used in real-world projects. They may not be professionals in this
particular field, but they’re eager to expand their knowledge far and wide.

¡ Startup founders and investors, who are interested in learning from other teams’
approaches as they feel out potential new opportunities. They can use these blog
posts to assess whether there’s room for yet another approach (theirs!) in this
niche and to inform their own teams about what the competition is up to (refer
back to the first bullet point).

¡ STEM students, Ph.D. candidates, and post-docs, who are all still in the habit of
reading scientific papers and exploring new algorithms.

¡ Users of the product, driven by curiosity to deeply understand why the thing they
use works the way it does.

10.3 Examples of “How We Built It” blog posts
Most popular blog posts about building new things come from large companies. Yes,
the mere mention of a recognizable logo does help reach a broader audience. But it’s
more than that. Projects from large companies naturally involve an impressive scale
that piques the curiosity of every engineer. It’s inherently more interesting to learn
how Amazon coordinates updates for over 8,000 device types than to read a post about
somebody successfully coordinating updates for his two Raspberry Pis.
 Of course, that’s not a hard rule. There are lots of intriguing “How I Built It at Home”
blog posts out there, as well as impressive “How We Built It Even Though We’re Just a
Humble Bootstrapped Startup” posts, so don’t let that discourage you. We just wanted
to explain in advance why this examples section is dominated by stories showcasing
impressive scale!
 Here are some prime examples of blog posts that apply the “How We Built It” pat-
tern, along with Piotr’s commentary on each.

10.3.1 How Prime Video Updates its App for More Than 8,000 Device Types

Author: Alexandru Ene
Source: Amazon Science Blog (https://mng.bz/eVWZ)

https://mng.bz/eVWZ

	 187Examples of “How We Built It” blog posts

	

	

	

	

S

The article explains how Amazon updates its entertainment system for all the devices it
supports. There are over 8,000 distinct types of devices, ranging from gaming consoles
to USB streaming sticks. Each device has its own hardware and architecture, which cre-
ates quite a technical challenge.
 The introduction praises WebAssembly and mentions that this technology enabled
a substantial performance boost. The body of the article kicks off by explaining the
system’s specific architecture, split into a performance-oriented part and a lightweight
easy-to-update-often part. Then there’s an explanation of the new architecture, which
is partially based on WebAssembly. The author sheds light on how the switch to the new
code was performed without breaking backward compatibility. Finally, the article wraps
by detailing the impressive performance and space utilization improvement—and also
adding a short “thank you” note to the Rust and WebAssembly communities.

C

The first brilliant move by the author is already in the title—mentioning “over 8,000
device types” introduces an impressive level of awe. The article is full of interesting
insights, including architecture graphs and references to used tools (e.g., egui and a
Rust GUI library). I also really appreciate the anecdote explaining how they needed to
implement some of the bugs from their previous architecture because existing users
relied on those edge cases—reminds me of https://xkcd.com/1172/. It’s written in
a conversational tone, and yet it’s full of technical and educational details. Overall, a
very enjoyable read.

10.3.2 Twitter’s Recommendation Algorithm

Author: The Twitter Team
Source: X Engineering Blog (https://mng.bz/pxA0)

S

This blog post explains the technical and architectural details of Twitter’s algorithm for
selecting which Tweets to show users. The recommendation algorithm is split into stages:

1 Candidate sourcing

2 Ranking

3 Heuristics and filters

Each stage is explained with a dedicated section including links to Twitter’s own aca-
demic papers presenting research on recommendation algorithms. Also, for full trans-
parency, Twitter open sourced its algorithm’s implementation; the article mentions
this and shares the link to the open source code repository. And the customary “We’re
hiring—apply for a job” invitation is tacked on after the conclusion.

C

Casually mentioning that you’re a tech giant in charge of one of the largest social net-
works worldwide is a great hook for a catchy title. This particular title is also short and
intriguing, which sets a high bar for the contents.

https://xkcd.com/1172/
https://mng.bz/pxA0

188 Chapter 10  The “How We Built It” pattern

	

 The contents don’t disappoint. On the contrary, they exceed expectations for a few
reasons:

¡ The hyperlinks lead either to academic papers or open source repositories. I was
sufficiently impressed after seeing that the first hyperlink was a scientific paper
(Real Graph), and then the second one led to a paper as well (GraphJet), then
the third (SimClusters)…

¡ The article is heavy on technical details, but those are often hidden under the
aforementioned links to academic papers. The main flow is quite simple to
understand, even for people not experienced in social networks, graphs, or
machine learning.

¡ Images and text are perfectly balanced to give readers’ eyes a well-deserved break
after every few paragraphs.

¡ The article contains lots of meaningful numbers, which also emphasizes the scale
at which Twitter operates. For example, “The pipeline above runs approximately
5 billion times per day and completes in under 1.5 seconds on average.”

The cherry on top is open-sourcing the entire algorithm, which breaks a pattern that
tech giants often follow when “publishing” their ideas. The pattern is to do only one
of the following:

¡ Release a huge amount of open source code

 ¡ Thoroughly explain the architecture and design decisions

As a result, the “great idea” is unusable because

¡ Nobody can really understand the code without enough context and documen-
tation, or

¡ (When the code isn’t released) People are left trying to implement it based on
a bunch of scientific papers, which often conveniently leave the hardest imple-
mentation details as an “exercise for the reader.”

In this article, Twitter both explained and released the code. That’s admirable.

10.3.3 How We Built Notification Rate Limiter for Eight Billion Notifications Per Day for
400 Million Monthly Active Users

Authors: Akshit Verma and Ayush Gupta
Source: ShareChat Blog (https://mng.bz/Om5O)

summary

The article describes how to implement a system for handling user notifications in a
mobile app at a large scale (for hundreds of millions of users). After describing why a
rate limiter is required, the authors delineate the challenges to overcome when build-
ing such a system. Two choices for overcoming these challenges are presented: one
for the rate limiter algorithm and one for the underlying database. Then, they explain
the reasoning behind why they selected their approach (a combination of both
fixed

https://mng.bz/Om5O

	 189Examples of “How We Built It” blog posts

	

window rate limiting and event-based paradigms). The next section, “Design & Imple-
mentation,” covers the chosen database schema and implementation details. The
article concludes with a rationale for why the solution is considered fast and scalable.
There’s also a glossary at the end, explaining a few niche terms.

C

The title of this one is four lines long, so it’s quite a hog compared to the succinct
title in the Twitter example. On the other hand, it shows interesting numbers (two of
them), which is a nice touch.
 The article itself features lots of specific technical details such as concrete database
schemas. That encourages users to try and implement similar systems themselves. It’s
nice to see in a blog post.
 Initially, I was also grateful that the authors provided a glossary at the end. But ulti-
mately, the unexplained acronyms and niche words are my number one problem with
the article. The first few terms I needed to look up were DAU (presumably Daily Active
Users), OKR (presumably Objectives and Key Results), and FCM (presumably Firebase
Cloud Messaging). I was especially amused by the fact that I found FCM in the glossary,
but it was mentioned only to explain yet another niche term. Another minor problem is
the images; they’re a bit too detailed for the template’s display size, which makes them
difficult to read. Fortunately, you can just click them to open a full-sized image, which is a
viable workaround. Overall, it’s still a solid example of a “How We Built It” blog post, espe-
cially because users can immediately try out the database schemas in their own setups.

10.3.4 How We Built Scalable Spatial Data and Spatial Indexing in CockroachDB

Author: Sumeer Bhola
Source: CockroachLabs Blog (https://www.cockroachlabs.com/blog/how-we-built
-spatial-indexing/)

S

The blog post describes CockroachDB’s implementation of spatial indexing, a feature
customarily used for geographical searches (e.g., “Am I in Pruszków right now?”, or
“Is this restaurant nearby?”). It explains two of the most popular techniques for spa-
tial indexing, namely dividing the objects (e.g., geographical locations) into smaller
areas, or dividing the space itself. The article further explains that the latter approach
(dividing the space) better fits CockroachDB’s architecture, and that’s why it was cho-
sen. The article dives into the index’s implementation details and how the database
had to change to accommodate it (for example, a new distributed query processor was
developed). The article concludes with a detailed list of roadmap items related to the
feature.

C

First things first: the title. It’s not very exciting, but it is self-explanatory. It wouldn’t
jump out at the average reader, but it is well-suited for the target audience:

¡ Anyone looking for a database with spatial indexing support

https://www.cockroachlabs.com/blog/how-we-built-spatial-indexing/
https://www.cockroachlabs.com/blog/how-we-built-spatial-indexing/

190 Chapter 10  The “How We Built It” pattern

	

¡ Anyone interested in implementing their own spatial indexing

¡ CockroachDB users who are eager to learn about new database features

 The article is a helpful spatial indexing primer. It introduces the idea, explains
the most popular approaches, and shares implementation details with respect to
CockroachDB. It educates readers without gratuitous promotion of CockroachDB. You
can walk away with a good grasp of spatial indexing implementation, even if you don’t
really care about using CockroachDB.
 The visualizations are key for explaining the algorithms. Spatial indexing algorithms
work with two-dimensional data, and that’s much harder to imagine and visualize in
your brain than the one-dimensional arrays that programmers’ brains are accustomed
to (my brain, at least). The visualization based on a real-life map of Paris and its suburbs
is an especially nice touch, showing how this technology can be put into practice.
 The roadmap items are a little confusing for a spatial indexing newbie (again, me),
but I felt fully excused to ignore them and take pride in the fact I’m now loosely aware
of what practical geographical algorithms look like.

10.3.5 Ship Shape

Authors: Kerry Halupka, Rowan Katekar
Source: Canva Engineering Blog (https://mng.bz/GNJ8)

summary

The article describes how Canva implemented a real-time shape recognition feature
that works entirely in the browser. The authors explain the previous implementa-
tion (computer vision heuristics), followed by its limitations and rationale for a new
approach: applying a machine learning model. The idea is explained in detail, includ-
ing the algorithms they used and their parameters. The article concludes by stating
that the feature is a great success, followed by acknowledgments.

commentary

Brilliant. I’m tempted to stop the commentary right there, but let me dive into more
detailed praise. The title is brilliant because it’s two syllables long and very intrigu-
ing. I’d say it was specifically optimized for landing on the front page of Hacker News,
knowing full well that only a very composed individual could resist the urge to click the
title and figure out what it means.
 The next brilliant thing is the images, which isn’t a surprise given that Canva’s flag-
ship product is an online graphic design tool. The images are engaging and really help
readers grasp the presented ideas, even without reading the paragraphs explaining
them.
 The technical details go very deep for somebody not experienced with machine
learning (e.g., me) and the article includes hyperlinks to algorithm descriptions for
those who want to go even deeper. I don’t think those details are required to understand
the main flow, though. I felt that I understood the model based on the images and text
in the main article (but maybe that was just a comfy illusion and I was deluding myself).

https://mng.bz/GNJ8

	 191Characteristics

	

	

	

Either way, reading the article left me feeling a little smarter regarding machine learn-
ing. The numbers are quite impressive, too: the model fits into 250 kilobytes, with the
accompanying implementation of 300 lines of code and running under 10 milliseconds
on a laptop.

10.4 Characteristics
“How We Built It” articles featuring the most impressive feats (e.g., unique indus-
try-shaping approaches, novel approaches to commonly experienced challenges, or
solutions accommodating extreme needs and scale) tend to feature the following
characteristics:

¡ They offer practical tidbits although the achievement is likely still not easily
reproducible.

¡ Nevertheless, they create an interesting and valuable industry knowledge base.

¡ They’re more formal than the average blog post, adopting the majestic plural
(also known as “royal we”).

¡ Expecting (at least) their fifteen minutes of fame, they anticipate and answer the
 most likely questions and objections.

Let’s cover each in turn.

10.4.1 Not always reproducible

“How We Built It” articles are often full of practical tidbits like code snippets, the
tools used, and diagrams. However, that doesn’t mean the reader will be able to
achieve the same result even after a thorough study of the article. In fact, those most
willing to share are often those most confident it won’t help the competition in any
substantial way.

The extended subcategories of this pattern include:

¡ How We Built It Because We Are a Huge Company with Lots of Resources

¡ How We Built It Because We Needed to Scale for Millions of Users

¡ How We Built It on Top of Our Closed Source Tech Stack

¡ How We Built It After Years of Confidential Research

The contents of all those articles can still be immensely educational though, which
leads to the next section.

10.4.2 Serve as a knowledge base

A long journey precedes the point where it’s feasible to publish a “How We Built It”
blog post. Along the way, the author(s) discovered useful resources, tried different
approaches, and evaluated related projects and tools. That’s all deeply practical knowl-
edge, often applicable to projects that are barely, if at all, related to the titular “built”
project. A nonexhaustive list of interesting things one can find in a “How We Built It”
blog post includes

192 Chapter 10  The “How We Built It” pattern

	

	

¡ References to academic papers

¡ Practical tips about a programming language (e.g., “how to efficiently manage
short-lived memory in Zig”)

¡ Practical tips about a specific tool (e.g., “how not to lose your mind trying to man-
age Kubernetes via its command-line interface”)

¡ Approaches to planning and executing a long-term project

The important bit is that the knowledge is often general, in the “good to know” cat-
egory. That makes the “How We Built It” articles worth reading even for people not
directly involved with the described technology.

10.4.3 Pluralis maiestatis

“How We Built It” blog posts tend to have a slightly more formal tone than other pat-
terns like the Bug Hunt. As the name of the pattern suggests, the use of majestic plural
is prevalent. Instead of informal jokes and digressions, these posts are commonly char-
acterized by a pristine storyline and an extensive list of acknowledgments at the end.
 Of course, those rules are not set in stone, but they come naturally because the
author (or, more often, authors) usually represent the whole company, or at least a
team of relentless programmers and researchers who made the venture possible. The
blog post examples discussed in this chapter are actually the following:

¡ How we, the Amazon Web Services team, built…

¡ How we, the Twitter folks, built…

¡ How we, at ShareChat, built…

¡ How we, the CockroachDB team, built…

¡ How we, Canva engineers, built…

Since speaking on behalf of a whole company is a weighty responsibility, it makes sense
that the authors adopt a somewhat formal tone to rise to the occasion.

10.4.4 inb4

“How We Built It” articles often include baked-in responses to the questions that the
curious and critical masses are likely to ask, suggesting that the authors anticipate their
blog post will be popular enough to spark heated online discussions. They are usually
correct. Even if they’re not, the preemptive responses create a FAQ section that makes
the article more interactive.
 When the authors assume that their articles will be relentlessly reviewed by lots of
professional and unprofessional online critics, they provide the following upfront:

¡ Extensive explanations of why a decision was made, especially if it wasn’t an obvi-
ous (e.g., “industry standard”) choice.

¡ A list of previous attempts, along with short notes on why they failed.

¡ Bold challenges to things once considered “common knowledge” or “good prac-
tice.” Noting that times and technology have changed, the author shares reasons

	 193Dos and don’ts

	

	

	

and options for moving beyond the accepted ways (which are now diplomatically
deemed “legacy.”)

¡ A short note backlinking to the online discussion as it unfolds. This isn’t pub-
lished right away, but it’s often popped into the article the second it gains trac-
tion and ends up on a front page somewhere.

All of these make the articles look fresh and more personal. Lots of readers question
the nonobvious choices made by blog post authors. When the nonobvious choice is fol-
lowed by a rationale starting with “You might wonder why we decided…,” the readers
are likely to appreciate it and give the authors extra credit for their clairvoyance.

10.5 Dos and don’ts
If you’re the one designated to drive the “How We Built It” post for your team’s latest
achievements, congratulations! Consider it an honor. But be sure to set your expecta-
tions appropriately. This isn’t something you can (or should) knock off in a day, given
the planning, graphics, approvals, and whatnot that will be required. By all means, get
started right away. But also be patient. This is likely to be a work you feature on your
CV/resume. Take the time needed to fully think through everything from the initial
scope to the comment section response.

10.5.1 Agree on the scope early

Blog posts describing how things were built are often written on behalf of the com-
pany, assuming that whatever’s written in the article is also officially endorsed. To avoid
misunderstandings, it’s good practice to discuss the scope of the article first:

¡ What’s alright to reveal

¡ What’s legally not alright to reveal

¡ What’s tactically not alright to reveal

Educating others is truly a worthwhile goal. But in reality, you can’t risk publishing
blog post content that’s not acceptable to whoever the titular “we” actually refers to.

10.5.2 Make graphics a first-class citizen

When writing an article on how things were built, it’s important to avoid the author’s
skew: decisions, design, and all kinds of details are much less obvious for people who
didn’t write the code. In that case, it’s a good idea to outsource part of the explana-
tion process to the readers’ occipital lobes. In other words, make sure your blog post
abounds in colorful images and graphs.
 Diagrams make it easy to visualize the architecture of a complex system or a nonin-
tuitive algorithm, which the article is most likely about. (If it isn’t, it doesn’t bode well;
it seems the most popular “How We Built It” blog posts are about something grand,
groundbreaking, unintuitive, or otherwise impressive). At the same time, those same
readers would prefer to have the details laid out as simply as possible. Images, graphs,
diagrams, and even screenshots are a good compromise for being educational versus
too complicated to understand.

194 Chapter 10  The “How We Built It” pattern

	

	

10.5.3 Don’t rush it

“How We Built It” articles tend to describe a long-term project that took an uncanny
amount of effort to complete. Unless there’s pressure to publish as soon as possible,
don’t. Blog posts of this kind deserve at least a fraction of the meticulousness the proj-
ect received. With the hardest part (coding, deploying, designing, formally proving
correctness, you name it) completed, it might be tempting to brag about the results
immediately. However, a sloppy blog post including mistakes such as

¡ Incorrect links to references

¡ Logical fallacies

¡ Code samples with old bugs, even if already fixed in the linked repository

¡ Typos (yes, really!)

may diminish the grand moment of showing the world the achievement. People will
notice, and they will also bring it up online, which brings us to the next subsection.

10.5.4 Prepare for (un)constructive criticism

As mentioned in section 10.4, anticipating future questions and undermining attempts
is especially important in this pattern. On top of that, it’s advised to brace for a heated
online flamewar. The following things can help:

¡ Show the blog post’s beta version to a limited trusted audience (e.g., all col-
leagues) and ask for a brutal and nitpicky review.

¡ Prepare a list of questions that might come up but are at the same time petty
enough to omit from the article. Then, prepare answers to those questions
upfront.

¡ Carefully plan the blog publication time and ensure that everyone is ready for a
discussion the minute it lands on a front page.

¡ Periodically monitor the likely front pages (Hacker News, lobste.rs, subreddits,
etc.) so you don’t miss the opportunity to officially insult other people online as
the blog post’s author. And jokes aside, the discussion is likely to last only for a
couple of minutes and then move on to the next hot thing. It’s a shame to miss it;
sometimes, it’s actually informative!

Summary

¡ Writing a “How We Built It” blog post is a great opportunity to share your greatest
engineering feats with the world.

¡ Readers always love insight into how some well-known company achieved some-
thing impressive at scale, but a blog post about a smaller startup victory or week-
end project can also trend as long as it’s intriguing.

¡ Such blog posts tend to have a more formal air than most (especially if written
on behalf of a team), anticipate lively online discussions, and share with extreme

	 195Summary

care (avoiding anything that might compromise a precarious competitive
advantage).

¡	Top tips:

– Get early consensus on what (if anything) is acceptable to share.

– Use visuals to help the reader efficiently grasp the algorithms, system architec-
ture, or other achievements—at a high level, at least.

– Know that the planning, review, and approval process might take longer than
for other types of blog posts due to the importance of the topic and the num-
ber of stakeholders involved.

– Prepare for a heated online flamewar: preemptively answer questions in the
blog if applicable and/or rally the troops to respond after it’s published.

11 The “Lessons
Learned” pattern

This chapter covers

¡	Blog posts that share lessons learned from
technical challenges

¡	Their purpose and audience
¡	How various authors approached this type of post
¡	Key elements of successful “Lessons Learned” posts
¡	Dos and don’ts for your own “Lessons Learned” post

Attention, aspiring technical influencers: this is the chapter for you! The “Lessons
Learned” pattern is all about sharing your personal experiences and process of
drawing conclusions from your trials and errors. It is the perfect starter engineer-
ing blog post because the only real requirement is having encountered a technical
problem of any sort.
 Technical audiences love to learn. And one of the few things they love even more
than learning itself is learning from other people’s mistakes instead of their own.
“Lessons Learned” posts often contain condensed knowledge about how somebody
else dealt with a problem. This is something many readers hold dear because it’s a
lightweight version of having a mentor who can walk you through a problem.

196

	 197Purpose

Start with a humble “Lessons Learned” post, and you’ll be serially applying the
“Thoughts on Trends” pattern (chapter 12) like a professional industry luminary in
no time! (Conditions apply: “no time” is a euphemism for “sometimes a considerable
amount of time, if ever.”)

	

	

11.1 Purpose
People have been recording their personal experiences for ages. “Lessons Learned”
blog posts serve a similar purpose as the good old diary, letter, or folktale. For the
author, the process of recording, pondering, and structuring past experiences can be
enlightening and cathartic. And their audience can simply sit back, grab some pop-
corn, and learn from others’ struggles.

11.1.1 Self-reflection

One of the best ways to learn from your actions (especially mistakes) is to write down
your experiences early, while all the details are still fresh in your memory. There are
several benefits to doing that:

198 Chapter 11  The “Lessons Learned” pattern

	

	

	

¡ Because your actions are recorded, you can review them in retrospect a bit more
objectively after some time has passed. At that point, you’re likely to notice pat-
terns and details you initially overlooked—so you can continue learning from
that initial mistake.

¡ Memory gets skewed over time, so writing down all details and reflections early
tends to make them more realistic than how they’re remembered after a few
days or weeks. It’s even better to cross-check both the on-paper version and the
in-brain one!

¡ Writing down your experiences includes more than producing a stream of text; it
also might involve creating diagrams, side notes, arrows pointing from one para-
graph to another and forming a complex graph of thought patterns, underlining
important bits, and so on. All of this helps organize the experience and prepare
it for scrutiny.

Once you complete those notes, it’s probably easy to convert them into a nice educa-
tional blog post, images included! Some of the best articles on lessons learned include
hand-drawn diagrams; that’s not a coincidence but rather a natural consequence of
how they came into existence.

11.1.2 Storytelling

Writing about the lessons life has taught you is a unique grandfatherly experience. Shar-
ing your experiences in a way that helps others avoid your mistakes simply feels good—
and for a good reason. As with articles in the “Bug Hunt” pattern, you’re helping your
readers save time and maintain their mental well-being if they ever find themselves in
similar distress. Also, the fact that you’re now sharing this story gives you a great excuse
to subtly color it—leaving all the technical details intact of course, but perhaps sharing
perspectives, commentary, and anecdotes that make it more enjoyable and engaging.

11.1.3 Kickstart

As noted in the introduction, “Lessons Learned” is the perfect pattern to follow as you
begin your journey as a writer. Virtually anyone with some interesting lessons in their
portfolio (so any programmer) meets the prerequisites for a “Lessons Learned” blog
post. This pattern has a much lower barrier to entry than “How We Built It,” which
requires something to be built first, and “Thoughts on Trends,” which requires a cer-
tain level of recognized expertise. In most cases, there’s simply no excuse not to write
at least one article following the “Lessons Learned” pattern in your lifetime, so you
may just as well check that box early!

11.2 Audience
There are two main classes of audience for “Lessons Learned” posts:

¡ The technical equivalent of a circle of children sitting around you and listening
to your wise, personal story from the old times, full of wonder and delight—that
is, anybody interested in knowing your experience on the subject.

	 199Examples of “Lessons Learned” blog posts

	

	

	

	

	

	

¡ Professionals from related fields (e.g., programmers working on similar projects
and DevOps folks using the same database) who likely need exactly this kind
of lesson—so they can file it away for some time in the future or to cross-check
against their own experience with a similar problem.

This pattern is quite general and likely to be read by a whole spectrum of readers.
It’s usually light, engaging, and occasionally humorous, which makes it a perfect read
between compilations.

11.3 Examples of “Lessons Learned” blog posts
Databases play an important role in the programming world, being a scapegoat for all
too many production failures worldwide. Catastrophic events are commonly related to
databases in one way or another: being unable to connect to one, overloading the data-
base, getting malformed data from it, and so forth. Thus, it shouldn’t be a surprise that
so many compelling “Lessons Learned” pattern examples are database-centric!
 Here are some prime examples of blog posts that apply the “Lessons Learned” pat-
tern, along with Piotr’s commentary on each.

11.3.1 25% or 6 to 4: The 11/6/23 Authentication Outage

Author: Mark Smith
Source: Discord Blog (https://discord.com/blog/authentication-outage)

S

This blog post is a post-mortem analysis of an authentication system outage at Discord.
It begins with a disclaimer that it was an outage, not a bug. While service availability
was affected, no security breach occurred. Next, the article presents an overview of
Discord’s authentication layer architecture.

The main part of the article is a detailed log of how the degradation was

1 Discovered

2 Investigated

3 Diagnosed

4 Fixed

The log entries are annotated with the exact minute they occurred. They are also inter-
twined with screenshots from observability tools to visualize the investigation progress.
The post concludes with lessons learned and potential plans for implementing pre-
vention mechanisms to ensure similar situations are properly handled next time they
happen.

C

On the title front, it’s interesting to note that this blog post’s canonical link is shorter
than its actual title, without using any link shorteners. To be extra picky, “Authentica-
tion Outage” is a nice title with a simple, yet powerful message. Once most people see
those words associated with the discord.com URL, they’re in. Also, I didn’t originally

https://discord.com/blog/authentication-outage

200 Chapter 11  The “Lessons Learned” pattern

	

get all the out-of-context digits in the title. I later learned that it’s actually a reference
to a song by the rock band Chicago.
 Nitpicks aside, this is a rock-solid technical article. The introduction lets readers
peek into the architectural decisions of a massive production-grade messaging system,
providing educational value from the start. The absolute best part is the detailed log
with timestamps. It really keeps the tension building, like watching one of those thriller
movies where every few minutes you see that “HOUR 5. STILL NO SIGN OF THE
ABDUCTEE” interlude. It’s enjoyable to track the team’s progress in real time, expe-
riencing how fast decisions need to be made to restore the service’s availability. The
stakes are quite high, with Discord and its ever-growing user base. The lessons learned
and future plans look well-thought-out and structured.
 This article is in many ways similar to the “Bug Hunt” pattern. There’s an introduc-
tion, a mystery, an investigation, and (in a way) a fix. It’s not a complete fit, though. The
outage wasn’t caused by a software bug. Rather, it stemmed from a series of infrastruc-
ture decisions that in hindsight might be called “negligence” but in practice were bor-
derline impossible to predict. Also, the fix was not a single breakthrough, but rather a
series of actions taken to alleviate the problem—and partially just waiting for the system
to recover. And while every second counted with a Discord availability problem, bugs in
“Bug Hunt” blog posts are usually not investigated under such intense time pressure.
Thus, this article fits better into the slightly broader “Lessons Learned” category.

11.3.2 Herding Elephants: Lessons Learned from Sharding Postgres at Notion

Author: Garrett Fidalgo
Source: Notion Blog (https://www.notion.so/blog/sharding-postgres-at-notion)

S

This article describes Notion’s process of migrating from a single monolith database to
a sharded setup. It starts by announcing the success early, establishing that the whole
process went smoothly and that Notion’s users are happy with the result. Stepping back
a bit, the article then explains what sharding is and how Notion decided to apply it.
The author covers

¡ Which data to split into smaller sets

¡ How to categorize the data (in database nomenclature, “what’s the partition key”)

¡ How many logical shards and physical databases should be created

He also describes their strategy to avoid prolonged downtime by using techniques such
as double writes, backfilling, and integrity checks. The article wraps up with a para-
graph that lists lessons learned during the process.

C

Another title longer than the blog post’s URL! This title is rather compelling though.
It’s a nice example of balancing catchiness and details by using two elements:

¡ A main title that’s short and intriguing

¡ A subtitle that explains what the article is actually about

https://www.notion.so/blog/sharding-postgres-at-notion

	 201Examples of “Lessons Learned” blog posts

	

	

The body of the article covers many of the things technical readers enjoy in a blog post:
lots of technical details, easy-to-grasp pictures, and interludes explaining the decisions
in more detail.
 Another interesting point to note: despite its “Lessons Learned” title, it’s actually a
solid example of the “How We Built It” pattern. Still, we wanted to put its summary and
commentary here for two reasons. First, it’s futile to try and classify every single blog
post into one of the handful of patterns we chose to cover in this book. Many fantastic
blog posts do not fit into any of them, and some share elements of multiple patterns.
Second, the concluding paragraph is actually a nice, compressed example of a mini
“Lessons Learned” blog post. In fact, it could also serve as a very good first working draft
for a full-fledged “Lessons Learned” article.

11.3.3 Something You Probably Want to Know About if You’re Using SQLite in Golang

Author: Piotr Jastrzębski
Source: Turso Blog (https://mng.bz/XVMM)

S

The article describes a pitfall related to using the SQLite database in a program writ-
ten in Go. The introduction explains why this problem is often hard to recognize—
because it doesn’t manifest itself by any error, but rather in excessive storage overhead.
The next section introduces SQLite’s storage layer details, including the write-ahead
logging mode. Then the problem is teased out through code samples, intertwined with
checking how much storage the database occupies while running the code. The prob-
lem: when the database runs in write-ahead logging (WAL) mode, something prevents
a checkpoint operation from clearing excessive disk space. The article concludes with
a clear explanation of the problem (ultimately, failure to close rows in WAL mode), a
rule of thumb to remember when working with SQLite and Go, and a bonus side note
mentioning that this problem also affects another SQLite operation: vacuum.

C

The title is a bit lengthy, but it’s also a perfect teaser. It’s hard to resist the temptation
of seeing what the problem is here, even if you don’t use SQLite or Go at all. The code
samples followed by checking how much storage is used while the code executes is a
nice touch—it makes the blog post feel interactive and easy for readers to reproduce
on their own. This article is actually part of a larger anthology on pitfalls related to Go
and SQLite, and it’s preceded by another post explaining how to avoid deadlocking
your code when using both.
 What I especially appreciate here is the recursive nature of why this blog post fits well
into the “Lessons Learned” pattern. As the author explains in the very first sentence, this
particular lesson was learned because of a discussion sparked by another blog post that
also happened to fit into the same pattern. It makes the first blog post twice as educational!

11.3.4 Lessons Learned Scaling PostgreSQL Database to 1.2bn Records/Month

Author: Gajus Kuizinas
Source: Gajus Kuizinas’ Blog (https://mng.bz/yoXE)

https://mng.bz/XVMM
https://mng.bz/yoXE

202 Chapter 11  The “Lessons Learned” pattern

	

S

This article describes the author’s experience using the Postgres database for multiple
purposes at large scale. The introduction explains the rationale behind using Postgres
instead of a more complicated technology stack, as well as the expected use cases for
the database. The next section goes over the multiple cloud providers used to host the
database, sharing the experience with each and reaching the conclusion that a self-
hosted database cluster is the way to go. That’s followed by a section devoted to materi-
alized views and the author’s multiple attempts to apply them. Next comes a section on
using the database as a message queue, then an aggregation of useful tips and tweaks
to make working with Postgres easier. Finally, the author advertises a new open source
Postgres client (Slonik) that’s also designed to improve the experience with Postgres.
The article concludes with extensive acknowledgments.

C

This article is very, very, very, very long. Fortunately, it’s also nicely split into small, distin-
guishable paragraphs. Moreover, it follows a structure of introducing the problem, pre-
senting a few solutions to it, and concluding the section with takeaways. That makes it
easy for readers to consume the blog post in multiple reading sessions. The takeaways are
educational and practical. Most users are likely to learn at least one more thing about Post-
gres’ internals and good practices. Overall, it’s a great compendium of condensed prac-
tical Postgres knowledge, and the list of good practices at the end looks especially useful.
 There’s one nitpick though. Code samples are always appreciated, but these SQL
queries require at least two full-finger scrolls, which is a little traumatizing. The fact
that the samples lack syntax coloring aggravates the feeling (that’s usually the blog plat-
form’s fault though), but my main concern is the complexity of the queries. On the one
hand, it’s great to be transparent and share real-life queries. However, in this particular
case, the details are likely too overwhelming for an average reader.

11.3.5 Lessons from Stripe

Author: Mark McGranaghan
Source: Mark McGranaghan’s Blog (https://markmcgranaghan.com/lessons-from
-stripe)

S

This article is a short overview of the author’s experience while working at Stripe. It
covers three main areas: optimism, ambition, and recruiting. Learnings from each
of the areas above are covered in dedicated paragraphs. The article concludes with a
short recommendation of Stripe as a workplace.

commentary

This is a perfect example of how a nontechnical blog post can cover lessons learned for
a purely technical audience. By now you’re probably dead tired from an endless stream
of database-related blog post reviews, so here’s the long-awaited break. This article is
really short but also densely packed with practical information. Who can benefit from
reading this article? People who

https://markmcgranaghan.com/lessons-from-stripe
https://markmcgranaghan.com/lessons-from-stripe

	 203Characteristics

	

	

¡ Might apply to Stripe

¡ Have a job offer from Stripe in hand

¡ Wonder if their own toxic work environment is actually that bad

¡ Want to improve their employees’ lives

The article covers lots of nontechnical areas important for people working technical
jobs. The lessons learned are well-structured (three simple paragraphs with intriguing
headlines: Optimism, Ambition, Recruiting) and full of interesting details. Great post!

11.4 Characteristics
“Lessons Learned” blog posts are highly focused on turning the authors’ personal
experiences into educational lessons for readers. Given that, it’s not surprising that
introspection, reflection, and storytelling are common characteristics.

11.4.1 Diary-like

Some articles in the “Lessons Learned” pattern almost feel like they should be pref-
aced by “Dear Diary.” The author is freely sharing inner frustrations, and the reader
is looking over their shoulder, ready to learn vicariously through the author’s experi-
ences. Accordingly, these articles don’t tend to adopt the pluralis maiestatis airs used in
“How We Built It” pattern articles. They’re a bit more informal, raw, and introspective.
For example:

¡ Kuizinas’ article begins with “This isn’t my first rodeo with large datasets” and
shortly thereafter links out to a comedy video.

¡ From start to finish, the McGranaghan article is quite open about what working
at Stripe was really like and how the company’s priorities affected him personally.

¡ Jastrzebski starts off with a casual account of how his publication of a separate
article sparked conversations that led to the discovery of a nasty bug that’s “close
to [his] heart.”

¡ Fidalgo begins by hinting that there’s much more to one of Notion’s officially
announced “five minutes of scheduled maintenance” than meets the eye, then
launches into “Let me tell you the story of how we sharded and what we learned
along the way.”

¡ Smith’s is probably the most guarded of the bunch; the first few paragraphs seem
highly reviewed by legal/corporate communications departments. But as soon
as the article shifts to the technical details, the language loosens up and the real
story begins.

Much like diary entries and “Bug Hunt” articles, “Lessons Learned” articles are com-
monly organized chronologically. Many feature real-life timestamps (see the Discord
piece) or key milestones (the Notion blog’s callouts of “Decision 1,” “Decision 2,” and
so on) that allow readers to step into the author’s shoes and follow the drama as it
unfolds.

204 Chapter 11  The “Lessons Learned” pattern

	

	

	

11.4.2 Imprintable

Lessons become memorable through their story. Readers are more likely to remember
a particular pitfall or interesting technical detail if it’s nicely wrapped in

¡ A playful anecdote

¡ A mysterious detective story

¡ A suspenseful debug session on a live system

Having such stories imprinted in your mind can actually avert problems. It’s quite pos-
sible that someone, in a data center somewhere, has already uttered the words “No,
we’re not continuing the upgrade—remember that blog post about what happened
to Discord.” Even if the blog post does not prevent a problem, it can still help solve
one. Once it dawns on you or a teammate that the problem you’re currently suffering
through was discussed in a post they once read, that post gets shared, you apply the rel-
evant tidbits, and you’re hopefully much closer to alleviating your own headache. The
lesson becomes more memorable through the story, but the story also becomes more
memorable through the lesson.

11.4.3 Reflections and ruminations

Generally, “Lessons Learned” posts are not written in the heat of the moment but rather
after a fair amount of time has elapsed, allowing for analysis and reflection. For example,

¡ The Notion article seems to have been written a full six months after the down-
time (which was itself months after the project, and lessons learned, actually
began).

¡ The Discord blog was published a week after the incident. That might not seem
long compared to the Notion example, but remember that Notion was ruminat-
ing over a months-long project ,while Discord was digesting a 50-minute outage.

¡ Both the Kuizinas and McGranaghan articles seem to be drawing lessons learned
based on multiple years of experience.

In many cases, this extra time for reflection provides the objectivity and clarity needed
to deduce more, and broader, lessons learned than you might find in a “Bug Hunt” arti-
cle. For example, the database lessons learned by Discord and Notion can be broadly
applied across many different database technologies and deployment scenarios. That’s
a stark contrast to most bug hunt lessons learned, which tend to be discrete solutions
bound to a specific technology and setup.
 However, this is a trend, not a rule. For example, Jastrzębski’s lesson learned didn’t
require lengthy reflection. It seems like a “Eureka moment,” and it’s quite specific,
related to unexpected behavior that’s endemic to Go plus SQLite. Like life lessons,
some tech lessons hit you fast, while others require more distance and deliberation.

11.5 Dos & don’ts
Articles on lessons learned come in many styles, from a short note about a single lesson
to a compendium of lessons learned by the author throughout the years. The broad

	 205Dos & don’ts

	

	

	

	

range of what’s possible here might make it easier or harder for you, depending on
whether you love or hate structure. Virtually anything with a bit of personal perspective
and another bit of educational value is likely to work.

11.5.1 Be humble

“Lessons Learned” is not a good pattern for boasting. For that, go with “How We Built
It” or maybe a heroic “Bug Hunt.” “Lessons Learned” posts are more about an honest
examination of conscience, rethinking one’s actions in retrospect, and analyzing what
went right and what went terribly wrong. Of course, be sure to highlight all the good
decisions. However, remember that most of the educational benefit comes from dis-
secting the bad ones, especially bad decisions that seemed right at the time.
 Exposing all your failures and wrong turns is expected here. Readers are here to
learn, not to judge (except those notorious ones, lurking across the internet for new
articles to disparage in the comment sections).

11.5.2 Don’t forget

Timing is a delicate dance when writing posts in this pattern. On the one hand, you
want to start recording the details while everything is still fresh in your mind. But on
the other hand, sometimes you need a little time and distance before you can recog-
nize the full implications of what you just experienced.
 If you just survived a learning experience, start recording copious notes immedi-
ately, even if you’re still not sure what it all means yet. Then, let it simmer until ready,
which is not the same as indefinitely. Don’t expect that an epiphany will strike you when
you least expect it. Set a reasonable deadline and force yourself to distill some meaning
from your past tribulations before you’re too deep into new ones.

11.5.3 Don’t turn on full diary mode

Even though these posts share personal experiences, it’s important to maintain the bal-
ance and avoid going “full personal diary mode.” Ultimately blog posts are written for the
readers. Although sharing your personal experience is welcome, the following are less so:

¡ Using acronyms without unrolling them at least once—your readers might not
be used to them, and if they open another browser tab to check yet another cryp-
tic acronym, they might never return to your post.

¡ Mental shortcuts, omitting details that you already know, but your readers most
likely don’t!

¡ Mentioning that you learned something, but without actually explaining how the
readers can apply the lessons learned. Ultimately, the readers want to know your
personal perspective, but also learn something themselves.

11.5.4 Encourage interaction

There’s a good chance that some readers of your “Lessons Learned” article have
already experienced a similar problem before they click through to read how you

206 Chapter 11  The “Lessons Learned” pattern

approached it. Now that they’re here reading your article, why not take advantage of
the opportunity to engage with like-minded individuals? Leaving your contact informa-
tion (or just the usual litany of social media links) as part of the conclusion, along with
a note like “Don’t hesitate to reach out if you found this blog post useful” can build
connections across the community.

NOTE  For tips on initiating and engaging in a community discussion, see
chapter 15.

Summary

¡	The “Lessons Learned” pattern is a timeless classic for capturing and sharing
what you learned from frustration, fumbling, and failure.

¡	Although the primary goal is educating the reader, writing such posts can also be
edifying and cathartic for the writer.

¡	Anyone who has ever faced a technical problem is qualified to write a blog post in
this pattern, and the different shapes and forms it could take vary as widely as the
technical problems programmers learn from.

¡	Top tips:

– Be open about all your failures and missteps; this is not the place to brag.

– Start recording details right away, and start writing the blog post once you’ve
had time to reflect on your experience and distill it into clear lessons learned.

– Although these posts have a “Dear Diary” feel, remember that they are indeed
going to be read by someone, which means that an appropriate level of expla-
nation and context is required.

– Encouraging your readers to contact you is a nice way to connect with peers
who have similar interests and experiences.

12The “Thoughts on
Trends” pattern

This chapter covers

¡	Blog posts that are highly opinionated takes on 	
industry trends

¡	Their purpose and audience
¡	How various authors approached this type of post
¡	Key elements of successful “Thoughts on Trends” 	

posts
¡	Dos and don’ts for your own “Thoughts on Trends” 	

post

“Thoughts on Trends” articles are highly opinionated, far more than any other pat-
tern, because the author’s opinion is the core feature of the article. This pattern
works best if you’ve already established a position as an expert, either in a niche or
technology in general.

Note that the term “an expert” is not limited to industry luminaries and popular
social media figures. For example, given an article about new trends in web develop-
ment, an expert author could be

207

208 Chapter 12  The “Thoughts on Trends” pattern

¡	A web developer with a few years of experience

¡	A contributor to a popular web development framework

¡	The author of a few blog posts about web development

¡	The host of a podcast about web development

¡	A conference speaker who has delivered a few talks about web development

Across patterns, articles that go viral are likely to be authored by a known technologist,
although exceptions certainly do occur. But in the “Thoughts on Trends” pattern, that
bias is particularly pronounced.

Don’t let that discourage you, though! In this chapter, we look closely at how estab-
lished experts approach this challenge so you can pull off this pattern like a master
whenever you’re ready.

12.1	 Purpose
Blog posts in this pattern can serve a variety of purposes, from reflecting on the past,
to shaping the future and sharing thoughts on whatever everyone is obsessing about
today. This pattern is commonly (but not exclusively) applied by experienced writers
who maintain a personal engineering blog.

	 209Audience

	

	

	

	

12.1.1 Continuous delivery

Something is always trending. Here are some examples:

¡ A new language

¡ A new programming paradigm

¡ A new type of hardware (e.g., the AWS Inferentia chip dedicated to AI workloads)

¡ A new leather jacket in the NVIDIA CEO’s wardrobe

¡ A series of layoffs

¡ A new zero-day vulnerability in a library that everybody relies on

That’s great news for engineering blog writers—a never-ending supply of trends con-
tinuously gives authors the opportunity to publish an opinion on something new and
shiny. It’s also great news for blog maintainers. Posts on trending topics tend to attract
many new readers to a blog, and at least some percentage of these new readers are
likely to explore previously published posts, as well as the one currently in the spotlight.

12.1.2 Retrospection

Publishing opinions on current trends also creates an opportunity for the author to
revisit the article in 2, 3, or maybe even 10 years to comment on the accuracy of that
original take. This is especially intriguing if the author also played clairvoyant and
expressed their opinions on how the future would unfold. If the prediction actually
turned out to be correct, a follow-up article is downright crucial! But even if it wasn’t,
a healthy dose of self-criticism gives the article an authentic vibe. Publishing blog posts
on trends is a clear twofer—write one, get the second one (almost) for free after an
appropriate amount of time has elapsed.

12.1.3 Shaping the future

Some “Thoughts on Trends” blog posts are powerful enough to influence the future
they are commenting on. For instance, an honest, non-markety endorsement of a new
language published on a popular engineering newsletter can be the driving factor in
that language’s adoption. Conversely, if a new language gets mercilessly roasted, it
might encourage the maintainers to work twice as hard to fix the obvious mistakes and
deliver something of better quality. Or, it could discourage the authors and push them
toward orphaning the project. Either way, the article makes a difference.

12.2 Audience
“Thoughts on Trends” articles are often posted by experienced authors running popu-
lar engineering blogs and/or newsletters. The first obvious group of interested readers
are subscribers to the aforementioned. The most succinct description of this pattern’s
target audience is just everyone, though. Trends are by definition popular, and those
posts are addressed to anyone interested in them.

210 Chapter 12  The “Thoughts on Trends” pattern

	

 

	

12.3 Examples of “Thoughts on Trends” blog posts
The examples selected here are a natural consequence of the fact that opinion-
ated takes tend to come from well-known industry experts. Every featured author is
a serial writer, with multiple successful blog posts in their portfolio. The chances of
your “Thoughts on Trends” article becoming popular rise exponentially based on how
well-recognized you are.
 Here are some prime examples of blog posts that apply the “Thoughts on Trends”
pattern, along with Piotr’s commentary on each.

NOTE If you haven’t been following and reading all the mentioned authors,
it’s time to catch up! All of them have a track record of fantastic technical blog
posts.

12.3.1 I Want Off Mr. Golang’s Wild Ride

Author: Amos Wenger
Source: fasterthanlime Blog (https://mng.bz/QVoe)

S

This article is a self-proclaimed rant on a variety of problems with the Go language.
The introduction candidly admits that this article will be a rant and announces the
upcoming list of problems. The main sections cover

¡ Why Go language constructs are not simple, even though that alleged simplicity
is explicitly mentioned in the language design and core concepts

¡ How the dependency-solving system tends to pull lots of redundant data, bloat-
ing even tiny projects beyond proportion

¡ How Go failed to solve a seemingly simple issue with its standard library functions
for time management

Wenger often contrasts the Go code with Rust to show how “the Go way” is worse than
its alternatives. The final section concludes that even a single issue has multiple severe
root causes in the Go ecosystem, which doesn’t bode well for Go’s future. It also refers
to another web page describing Go idiosyncrasies and calls out that a tricky “footgun”
in the API is casually mentioned as a footnote in the documentation instead of being
properly checked at compile time.

 After that conclusion, there’s a bonus update from April 2022 (two years after the
original publication). Here, the author emphasizes that they still haven’t changed their
mind and also raises a few more interesting points.

commentary

Rants done right, like this one, are extremely enjoyable to read. It’s written in a light
tone, even though you can practically feel the years of frustration that the author
expertly enchanted into the words. I hereby classify this article as a roast. I really
appreciate the clickable table of contents, especially since this article is quite long.

https://mng.bz/QVoe

	 211Examples of “Thoughts on Trends” blog posts

	

The length is expected though, judging by the author’s other popular articles. One
microscopic nitpick is that the table of contents is rather coarse grained, with two giga-
sections (Simple is a lie; Lots of little things) covering most of the article.
 The blog post features an abundance of interesting code examples and graphics,
as well as lots of pseudo-interactive conversations with the cool bear, the author’s alter
ego. As usual, it makes the article way more engaging and easy to read even though it
doesn’t fit into the average attention span of 5–10 minutes reading time.

The April 2022 update is a splendid cherry on top:

¡ It makes the whole article more current.

¡ It emphasizes the verdict reached in the original contents.

¡ It adds a few links to related articles and docs.

I had high expectations since the bar was set quite high by the author’s previous arti-
cles, and I wasn’t disappointed one bit. Yet another great read from this author.

12.3.2 How to Think About WebAssembly (Amid the Hype)

Author: Matt Butcher
Source: Fermyon Blog (https://www.fermyon.com/blog/how-to-think-about-wasm)

S

This blog post is an essay on what WebAssembly (a.k.a. Wasm) is, used to be, and was
originally designed to be, plus how it’s evolving. The introduction lists a few perspec-
tives on what WebAssembly actually is, followed by its technical definition (a standard-
ized bytecode format). The next section describes WebAssembly’s origins as a more
efficient alternative to JavaScript. It’s followed by the proposition that WebAssembly
can be useful beyond web browsers due to the following features:

¡ Security

¡ Robustness

¡ Compactness

¡ Interoperability

¡ Fast loading times

The main new application of WebAssembly is revealed to be virtualization and stan-
dardized plugins. Next, the author places WebAssembly on a timeline of programming
languages and explains what’s needed to make WebAssembly truly universal: a new
specification of a system interface, WASI (WebAssembly System Interface).

C

Anyone even remotely familiar with the author’s other posts (highly recommended!)
would expect this blog post to be a truly philosophical essay. It is! At the same time,
its casual style makes it really pleasant to read (unlike most philosophical posts). As
a huge fan of succinct titles, I would have preferred the one from the article’s URL
(“How to think about Wasm”), but that’s the only nitpick that comes to mind.

https://www.fermyon.com/blog/how-to-think-about-wasm

212 Chapter 12  The “Thoughts on Trends” pattern

	

 The introduction is overloaded with contrasting definitions of WebAssembly (includ-
ing hyperlinks to each). But that’s not a flaw—it’s a brilliant trick to emphasize that
lots of people are confused about what WebAssembly actually is. After the intentionally
induced confusion, Butcher presents a purely technical and concise definition: “Web-
Assembly is a bytecode format that any WebAssembly-capable runtime can execute.”
 The initial confusion contrasted with later disambiguation makes the reading pro-
cess dynamic and enjoyable. The author has a quite unique style; I wholeheartedly rec-
ommend reading his other pieces to compare and learn.

12.3.3 Rust After the Honeymoon

Author: Bryan Cantrill
Source: Bryan Cantrill’s Blog (https://mng.bz/vJvq)

S

The blog post revisits the themes from the author’s previous post on Rust, published
two years earlier. The introduction refers to the original article and explains that the
author’s feelings toward Rust remain positive. Cantrill highlights Rust language fea-
tures such as

¡ Good support for embedded systems programming, allowing easily opting out
from the standard library

¡ Built-in developer-friendly formatting options

¡ Support for debugging formats (available in the ecosystem as independent
libraries)

¡ Data-bearing enums, a compact way of expressing data types

¡ Unsafe Rust, which offers a way to bypass strict compiler checks for specific use
cases

¡ Error handling

The conclusion admits that Rust isn’t perfect, but emphasizes that Rust is an amazing
language despite its minor imperfections.

C

This article is packed with interesting technical insights. It’s also very well structured,
with paragraph headings forming a list of features the author likes in Rust for easy
scannability. The title is perfectly balanced between clickbaity and technical:

¡ It’s intentionally ambiguous. It’s teasingly unclear whether the author still likes
Rust. The “after the honeymoon” term is a great way to catch the eyes of curious
readers.

¡ Rust! It’s Bryan Cantrill’s thoughts on Rust. Anyone even the slightest bit inter-
ested in Rust won’t pass up Bryan Cantrill’s perspective on it.

Cantrill includes an ample amount of code examples to demonstrate what he loves
about Rust, and encourages readers to catch up with its predecessor post, “Falling in
love with Rust” (another compelling title). The author, his achievements, and the blog

https://mng.bz/vJvq

	 213Examples of “Thoughts on Trends” blog posts

	

post’s domain are all recognizable in the niche of performance-oriented program-
ming, which gives this article even more authority and traction.
 Another distinctive element is that the article was a rather early perspective on Rust,
and from an intriguing angle on top of that. Specifically, it explores Rust through the
lens of embedded systems, where efficiency matters more than usual due to limited
available resources. Overall, a great example of a “Thoughts on Trends” article!

12.3.4 Software Architecture is Overrated, Clear and Simple Design is Underrated

Author: Gergely Orosz
Source: The Pragmatic Engineer Blog (https://mng.bz/n0V8)

S

The article reflects on standard software architectural patterns and compares them
with an opposite approach: simple design. The introduction covers the author’s expe-
rience building large distributed systems, along with an observation that none of those
successful projects were based on any kind of standard pattern. There were also no
people titled “architects” on the teams who delivered the projects.
 The next section explains the alternative approach, applied by large companies as
well as startups. That approach is based on defining a business problem, brainstorm-
ing a solution, and iterating through feedback loops. The author then notes that this
system does not specifically match any of the patterns popular in the technical litera-
ture; yet, it’s extremely efficient. Next, the author emphasizes the importance of simple
design and simple code. Architectural patterns are considered “good to know,” but not
an ultimate goal of any developer. The final section is a collection of advice for design-
ing systems; it covers approaches such as

¡ Discussing it with colleagues over a whiteboard

¡ Using a shared online document for brainstorming

¡ Creating multiple designs and contrasting them

¡ Reviewing other people’s ideas

C

This is a 2019 article by Gergely Orosz, the engineer and engineering manager who
went on to launch The Pragmatic Engineer newsletter (a long-term #1 newsletter on Sub-
stack) and write the bestselling book, The Software Engineer’s Guidebook. Given that, his
name and brand attract attention regardless of topic, but this is one topic that partic-
ularly resonates with me as a startup engineer. I also like that this blog post is a gentle,
professional roast, but a roast nonetheless.
 Overusing architectural patterns is a true concern. Lots of readers (me included!)
sympathize with anyone who dares say they aren’t actually essential for a good commer-
cial project. A considerable percentage of programmers have had the dubious plea-
sure of working on an overmanaged project, sticking to an architectural design that
doesn’t make much sense but was already approved by someone more senior in the
corporation. On the other hand, some programmers have only worked at startups and

https://mng.bz/n0V8

214 Chapter 12  The “Thoughts on Trends” pattern

	

are intimately familiar with the simple design culture. This blog appeals to their egos as
well, validating their experiences and beliefs. Readers are likely to be both happier and
smarter after reading this.

12.3.5 How io_uring and eBPF Will Revolutionize Programming in Linux

Author: Glauber Costa
Source: The New Stack (https://mng.bz/o0xj)
This article was originally published on The New Stack, then later reposted (with their
permission) on the ScyllaDB blog.

S

The article dissects two relatively new technologies related to the Linux kernel:
io_uring and eBPF. It begins with a detailed history of input/output system call API
design in Linux—from blocking system calls to first attempts at an asynchronous API.
It’s followed by an equally detailed technical description of a new interface: io_uring.
The new interface is explained both from a design perspective and by concrete code
samples.
 Next comes a series of benchmarks, showing io_uring’s superiority compared to the
legacy APIs. The first series of benchmarks is performed with a specialized tool. After
that, the author shares real-life examples of improvements measured by running a Scyl-
laDB database.
 The following section is devoted to eBPF, a mechanism originating from a network
packet filtering system, but now getting more universal. The conclusion reassures the
audience that both technologies are likely to revolutionize the paradigms of program-
ming in Linux.

C

I have a soft spot for blog posts related to io_uring, for a few reasons:

¡ It’s brilliant technology, which sounds like an obvious good idea once you com-
pare it with its predecessors, but it wasn’t obvious at all before Jens Axboe figured
it out.

¡ It has the right level of low-level programming, which my brain can still follow,
but is also sufficiently expert-friendly to make me feel proud that I can under-
stand what happens under the hood.

¡ It truly is revolutionary, allowing more programmers to write efficient systems
easily.

¡ Its name is a homophone of “I owe urine,” which never stops being hilarious.

Personal preferences aside, this article is a goldmine of technical details and can be
used as a primer for io_uring out-of-the-box. The eBPF section is substantially lighter
but still very informative.
 The article was released when io_uring was still a relatively young project and rap-
idly gaining traction. Perfect timing for a “Thoughts on Trends” blog post, especially
by one of the luminaries in the field of Linux kernel and I/O, and especially with
such

https://mng.bz/o0xj

	 215Characteristics

abundant technical details about “the new thing.” People were already talking about
io_uring before this article was written, but only in very general terms. This article was
one of the first that actually provided practical information on how to use it, as well as
first-hand experience from applying it to a project heavily reliant on I/O performance
(ScyllaDB).

12.4	 Characteristics
Like the opinion columns you might find in a newspaper, “Thoughts on Trends” arti-
cles are written to announce and justify some bold assertion that a fair proportion of
readers are likely to disagree with. Sparking a discussion is a primary goal. However,
like other compelling engineering blog posts, these posts are highly technical. Even
if each argument is not directly supported with a code sample, they are nevertheless
rooted in deep experience with the technology that’s the target of the author’s advo-
cacy, roasting, or spicy speculation.

NOTE  For tips on initiating and engaging in a community discussion, see
Chapter 15.

12.4.1	 Opinionated and persuasive

Articles following this pattern are generally either an opinion or an assorted collec-
tion of opinions. The authors might not have any vested interest in you adopting their
views, but they are doggedly committed to making a solid case that could sway many
minds. Table 12.1 shows our best guess at the core opinion the authors are trying to
communicate in the example blog posts.

Table 12.1  The opinion in each example blog post

Title Opinion (our best guess)

I Want Off Mr. Golang’s Wild Ride Go’s alleged simplicity is actually its curse.

Rust After the Honeymoon The more I worked with Rust in production, the deeper my
appreciation grew.

How to Think About WebAssembly
(Amid the Hype)

WebAssembly’s most interesting opportunities are beyond the
web, but we need WASI to tap its potential.

Software Architecture is Overrated,
Clear and Simple Design is Underrated

We should move past the industry’s unreasonable obsession
with architectural patterns.

How io_uring and eBPF Will Revolution-
ize Programming in Linux

If you work with Linux, you better learn about these oddly
named technologies.

In this pattern, opinions aren’t simply stated. They’re elaborated, supported, even
defended against imaginary counterarguments to create a bulletproof argument. For
example,

¡ Matt Butcher applies his broad and deep industry perspective to become the
respected voice of reason on the “what is Wasm” debate. But despite the profound

216 Chapter 12  The “Thoughts on Trends” pattern

	

	

knowledge density infused into each highly readable sentence, it’s never about shar-
ing how much he knows. It’s all spun toward anticipating and answering what’s run-
ning through the readers’ minds as the carefully constructed argument unfolds.

¡ Amos Wenger pulls you inside their mind for a condensed version of all the tri-
als and tribulations that led them to regret using Go. And Wenger brings the
receipts! Beyond extensive Rust vs. Go code comparisons and some painful pack-
age dependency details, they also highlight specific issues filed and share screen-
shots of debates with the Go core team. It’s hard to imagine how anyone might
come up with a “Yeah, but” response after digesting all of this.

12.4.2 Provocative

Opinions stated in “Thoughts on Trends” articles often touch on controversial subjects
(e.g., Async Rust Sucks) or take controversial stances on topics that might not ordi-
narily raise any eyebrows (e.g., Database Isolation Is Broken and You Should Care).
Writing a strong opinion about the former means inheriting an already-polarized audi-
ence. And writing a pointed takedown of something that many hold dear might create
a newly polarized audience. Even if the vast majority of readers might not care that
much, there’s likely a loud minority at both extremes ready for a fight, either against
you or against those who declare war versus your position.
 Roasts are provocative by definition, but paeans (expressions of high praise) set peo-
ple off, too. Nothing triggers heated online discussions more than posting a positive
comment about something that another person passionately hates!
 Note that provocative elements of paeans might surface as jabs at what they’re replac-
ing. For example, in Bryan Cantrill’s article about why he personally loves working with
Rust, there is no shortage of zingers targeted at replaced (and adjacent) technologies.
For example,

¡ “But the nothing that C provides reflects history more than minimalism; it is not
an elegant nothing, but rather an ill-considered nothing that leaves those who
build embedded systems building effectively everything themselves—and in a
language that does little to help them write correct software.”

¡ “Lest I sound like I am heaping too much praise on DWARF, let me be clear
that DWARF is historically acutely painful to deal with. The specification (to the
degree that one can call it that) is an elaborate mess, and the format itself seems
to go out of its way to inflict pain on those who would consume it.”

¡ “After nearly three decades working in C, I thought I appreciated its level of
unsafety, but the truth is I had just become numb to it; to implement in Rust is to
eat the fruit from the tree of knowledge of unsafe programs—and to go back to
unsafe code is to realize that you were naked all along!”

12.4.3 Idiosyncratic

Opinions aside, one feature that makes “Thoughts on Trends” articles stand out is the
unique style of the author leaking through the lines. For instance, I’m relatively sure I

	 217Dos & don’ts

	

	

	

can recognize Matt Butcher’s philosophical hand in written text without looking at the
byline. Same for Bryan Cantrill’s racing mind.
 This is a natural consequence of this pattern being a popular tool for experienced
writers. By now, they’ve already developed a distinctive writing voice. And since stating
opinions is also quite personal, the style is especially visible in this pattern. In some cases
recognizing the style is as obvious as seeing a “Cool bear’s hot tip” interlude and con-
necting the dots. In the others, it’s the specific sense of humor, or lack thereof.

12.5 Dos & don’ts
By the time you’re writing your own “Thoughts on Trends” blog, you’ve probably mas-
tered the blog-writing basics. But a “Thoughts on Trends” post is a different beast than,
say, a “Lessons Learned” article—and not everyone is comfortable sharing their opin-
ions so overtly. Before you step onto your soapbox, read a variety of opinionated takes
and think about what approach suits your personality as well as your angle on the topic.
As long as you see an authentic path forward, start thinking about the following tips for
pulling it off.

12.5.1 Be famous

Being recognized as an expert on a topic is by far the strongest first step to creating
a “Thoughts on Trends” article that gets attention. Although that recommendation
might sound ridiculous at first, each engineering blog post you write brings you closer
to recognizability. With a track record of a few blog posts related to your niche, you’re
already in a decent position to try and post your ruminations on current trends.
 Keep in mind, though: “Thoughts on Trends” articles require a distinctly different
approach than the other patterns you might have become accustomed to writing. They’re
the only ones that bring persuasion into play. And that leads to the next tip.

12.5.2 Consider the elements of persuasion

Ready to persuade an audience? Consider the following three core means of persua-
sion (rooted in Aristotle): ethos, pathos, and logos.

E

Ethos emphasizes your credibility: why people should care what you have to say about
this topic. Of course, the more famous you are, the easier this is. If you’re not (yet)
known by everyone in your target audience, think about how you can convey your
authority. You clearly don’t want to come off as pompous or narcissistic. But look for
subtle ways to sneak in details that prove you have solid experience related to the topic
at hand. For example, if you wanted to highlight your vast expertise with C, you might
drop in a phrase like “Back when I was wrestling with C,” and hyperlink it to a related
blog or project.

P

Pathos appeals to people’s emotions, such as their frustrations, fears, excitement,
or curiosity. For this one, try to put yourself in your reader’s shoes. Why are they

218 Chapter 12  The “Thoughts on Trends” pattern

reading this article? Maybe they’re worried that the proposed rewrite in X will be
a massive distraction with no clear benefit. Maybe they’ve heard the hype about
ShinyNewThing and are eager to build a case for adopting it. Or perhaps they’re
insanely frustrated with something and are looking for solace in their peers’ misery.
Then, think about what you can share to resonate with those emotions. Storytelling,
sharing what was running through your own head at critical junctures, a little humor
and self-deprecation as appropriate—all this can help you connect with the reader at
an emotional level.

Logos

Logos involves making logical and rational arguments, and it’s likely the element that
comes most naturally to the stereotypical engineer. Persuading readers in this way
involves ensuring that your arguments make logical sense and are supported by an
appropriate level of “facts,” which might include your first-hand experiences, code
examples, test results, details on industry trends and shifts, and so forth. To cover this
angle, think about all the statements a snarky reader might argue with, and ensure that
each and every one is supported by irrefutable facts. Also, try to explain the high-level
flow of your argument to yourself, your teammate, or your trusted rubber duckie and
see if it makes sense at that level.

NOTE  Chapter 5 went into much more detail on ways to achieve all these
strategies.

12.5.3	 Be bold

“Thoughts on Trends” blog posts are the perfect outlet for strong, controversial opin-
ions. In fact, if you can’t imagine reasonable people arguing with your main point, you
might want to rethink it. Readers especially appreciate comments coming from far
ends of the judgment spectrum, be it overly positive or overly negative. The example
blog posts could be classified as shown in table 12.2.

Table 12.2  Classifying the example blog posts

Title Type

I Want Off Mr. Golang’s Wild Ride Roast

Rust After the Honeymoon Paean

How to Think About WebAssembly (Amid the Hype) Paean with a grain of roast

Software Architecture is Overrated, Clear and Simple Design is Underrated Gentlemen’s roast

How io_uring and eBPF Will Revolutionize Programming in Linux Paean

Determine what approach you want to take, and run with it—from a provocative start
to a tight, powerful finish. Both the introduction and the conclusion should express
arguable opinions using concise, powerful sentences (covered in detail in chapter 5).

	 219Summary

12.5.4	 Roast

If you decide to share a negative opinion on a topic, make it a show. Roasting is an
especially entertaining form of criticism. Pulling it off requires the right amount of
mocking and exaggeration, while still keeping it humorous rather than aggressive.

12.5.5	 Don’t just roast

Pointing out the downsides is easy, but a good “Roast on Trends” article needs to be
extra careful to back up all the accusations with hard evidence. Mockery is acceptable
but it can’t be based on baseless claims. Ultimately, treat the roast format as a conve-
nient container for packaging up your technical insights—a means to an end, not a
goal in and of itself. The core of the article still needs to contain all the relevant techni-
cal details, as any respectable engineering blog post should. Without solid arguments,
the roast will itself end up roasted in the comment section.

12.5.6	 Don’t just praise

For completeness, the same rule applies to the positive opinions of paeans. Praise
should be backed by credible results. Otherwise, your article could be dismissed as a
paid promotion or just an attempt to get on the hype train.

Summary

¡	“Thoughts on Trends” posts provide established experts an outlet for sharing
predictions, praise, or problems related to a topic they’re highly familiar with.

¡	These posts might reflect on the past, shape the future, or comment on whatever
is catching everyone’s attention today.

¡	Readers include both fans of the author and those passionate about the topic
being discussed.

¡	These posts are bold, provocative, and individualistic, while still rooted in deep
technical experience.

¡	Top tips:

– Establish expertise on this topic first.

– Consider what elements of persuasion you want to use, and how.

– Announce a strong, potentially provocative, stance and stick to it.

– Roasts are especially fun to write and read, but praise and prognostication are
also valid approaches.

– Keep it balanced, especially if you roast or praise, or else you will be roasted for
bias, unfounded attacks, and/or overly enthusiastic promotion.

13The “Non-markety
Product Perspectives”

pattern

This chapter covers

¡	Blog posts where the product is embedded into a 	
genuinely intriguing and educational article

¡	Their purpose and audience
¡	How various authors approached this type of post
¡	Key elements of successful “Non-markety Product 	

Perspectives” posts
¡	Dos and don’ts for your own “Non-Markety Product 	

Perspectives” post

The pattern’s name, “Non-markety Product Perspectives,” is itself a marketing trick
to deceive you into thinking this pattern is not about marketing. It actually is about
marketing, at least in a way. The “non-markety” part is there to distract you from the
“product” keyword, which is a clear indicator that somebody is ultimately trying to
sell something.

Fortunately, this kind of marketing works by educating readers about fascinating
technical tidbits, groundbreaking designs, and other impressive achievements that

220

	 221Purpose

just so happen to be available in the product that’s casually mentioned a few dozen
times in the post. The selling part tends to be noninvasive, sometimes even borderline
subliminal. In the best of the bunch, no purchase is necessary for readers to walk away
with useful learnings—but now they’re so intrigued that they want to try the product
anyway. That’s what makes this pattern so valuable for companies and readers alike.

“Non-markety Product Perspectives” engineering blog posts are especially valuable
for companies marketing products to developers. An engineer-authored piece that pro-
vides an inside look at a product might be the only way to bypass developers’ primitive
gag reflex to all things marketing. But these posts can be especially tricky to pull off. As
an author, how do you share something valuable related to your product without facing
the wrath of your fellow snarky developers, all too eager to accuse you of “marketing
fluff”? That’s what we’ll explore in this chapter.

	13.1 Purpose
In the introduction, we mentioned that the “Non-markety Product Perspectives”
pattern is mostly driven by marketing. That includes marketing the company as an
employer and technology leader, as well as marketing actual usable products.

222 Chapter 13  The “Non-markety Product Perspectives” pattern

	

	

	

	

13.1.1 Product placement

The ultimate goal of this pattern is to encourage readers to try out the product (or
at least recognize that your product exists in case they’re ever in the market). It’s
achieved not by flashy advertisements, but rather by focusing on a remarkable engi-
neering achievement related to the product. For example,

¡ Something used to be annoying for developers, but we know how to fix it (with
our product)

¡ Here’s how a specific protocol works in detail (with example usage in our
product)

¡ There’s an important thing to remember when implementing a distributed sys-
tem (and we did remember it when working on our product)

Embedding the product into a genuinely intriguing and educational post is a highly
effective way of getting the attention of programmers.

13.1.2 Teaser

Quite a few articles following this pattern describe a product feature that isn’t yet deliv-
ered. Sometimes the product isn’t generally available at all, being hidden under a “pri-
vate beta” label or only observed in an obscure heavily edited demo video from a few
months ago. Promising things that aren’t even close to being implemented is a corner-
stone of technical marketing, so it’s absolutely acceptable! Releasing a “Non-markety
Product Perspectives” blog post is a good way of announcing an innovative idea that
will (eventually) get productized and become part of the company’s offering.

13.1.3 Hiring

Engineering blogs are generally honeypots for talent. The readers already demon-
strated initiative by reading a blog post about the company’s products, processes, or
culture. Placing a modest note about open positions at the end rewards those with the
curiosity and initiative to reach the final paragraph.
 “Non-markety Product Perspectives” articles are especially great for hiring purposes.
Looking for candidates who stay up-to-date with technology? The fact that they discov-
ered and devoured your entire blog is a good test. It’s fair to assume that anyone who
applies after reading one of these blog posts is already aware of what the company does
and has (presumably) bought into the vision. That’s a promising start.

13.2 Audience
People who already follow a specific company, or an entire industry branch (e.g.,
embedded systems, AI, cloud infrastructure) constitute one social group particularly
interested in product perspectives. This group can be further divided into

¡ Aficionados of a specific product (e.g., their favorite web development
framework)

¡ Aficionados of an entire concept (e.g., web development frameworks in general)

	 223Examples of “Non-markety Product Perspectives” blog posts

	

	

¡ People considering job opportunities with the company that posted the article

Another curious category is the competition: developers working for companies in a
similar niche, as well as startup founders, developer advocates, and their marketing
folks. They’re likely wondering about

¡ What their competition is up to these days

¡ If the competitor’s good ideas can be creatively reused

“Non-markety Product Perspectives” usually offer a peek into the described product’s
technical details, but that doesn’t mean they cater only to existing or prospective users.
Done well, they’re solid engineering blog posts in and of themselves, leaving readers
with learnings and technical tidbits that are valuable beyond the user community.
Done really well, they might convert an aficionado of the topic into a potential product
aficionado or job applicant.

13.3 Examples of “Non-markety Product Perspectives” blog posts
In the wild, “Non-markety Product Perspectives” blog posts live primarily on company
blogs, likely just a click away from the product being mentioned. Existing users who
might be poking around the site for docs, a new product version, and similar are likely
to stumble upon these posts. They’re also commonly the fodder for social media feeds
and newsletters—a way for the company to remind the world that they exist without
seeming egregiously salesy.
 Here are some prime examples of blog posts that apply the “Non-markety Product
Perspectives” pattern, along with Piotr’s commentary on each.

13.3.1 We Put a Distributed Database in a Browser—And Made a Game of It!

Authors: Phil Eaton, Joran Dirk Greef
Source: TigerBeetle Blog (https://mng.bz/mRr0)

S

The article shows how TigerBeetle’s specific distributed system architecture can be com-
piled to WebAssembly, running in a browser as a game anyone can play. It begins by
introducing TigerBeetle’s deterministic simulator. This design allows the database to be
tested in a simulated environment, abstracting away input/output, networking, and also
clocks. The web browser game is built on top of the very same code that the distributed
database system uses, compiled to WebAssembly with the Zig language toolchain.
 The next paragraphs describe three difficulty levels in the game, which also corre-
spond to real-life problems that can impact distributed systems:

¡ Level 1—Uninterrupted replication

¡ Level 2—Network and storage failures (but no corruption)

¡ Level 3—Network and storage failures including on-disk corruption

Then, the authors share a short history of how the game idea came to life, along with
tributes to the contributors. The final paragraph, pointedly named “Law of Demos,”
redirects readers to a video just in case the game doesn’t work in their environment.

https://mng.bz/mRr0

224 Chapter 13  The “Non-markety Product Perspectives” pattern

	

	

	

	

	

	

	

	

C

TigerBeetle squeezed an entire distributed system in a browser as a game, forever rais-
ing the bar for what an impressive technical blog post looks like. Just take a look at it,
and you’ll see why further commentary is really unnecessary.
 But if you happen to be reading this book in some lovely off-the-grid location, or
just don’t want to visit the internet right now, here are a few reasons why this is so
captivating:

1 The web browser game runs the same code as the distributed system. It’s
 mind-blowing to realize that although it’s intended for large fast servers, it can
 also run inside a web browser after being compiled to WebAssembly.

2 It shows a complicated distributed replication algorithm in a visual way, making it
 way more comprehensible than an academic paper on that exact algorithm.

3 It’s interactive, allowing readers to try and prove the algorithm wrong by inject-
 ing faults into the distributed system: isolating nodes from the network, forcing
 them to restart, and so on.

4 It does the above by letting you

a Smash animated anthropomorphic beetles with a hammer (node failure)

b Electrocute them (disk corruption)

c Freeze them (network partition)

Do I really need to continue, or can we just roll back to “just take a look at it, and you’ll
see why further commentary is really unnecessary” and call it a day?

13.3.2 32 Bit Real Estate

Author: Kurt Mackey
Source: Fly.io Blog (https://fly.io/blog/32-bit-real-estate/)

summary

This article is a primer on how the market of IPv4 addresses works. The introduction
presents a problem that’s often ignored: IP addresses can be quite costly for infra-
structure companies like Fly.io. Early on, the article explains that the global pool of IP
addresses is owned and managed by five public benefit entities: ARIN, RIPE, APNIC,
AFRINIC, and LACNIC. They can be leased by individuals and companies, but not
bought.
 After acknowledging IPv6 as a standard that solves many of the IPv4 shortcomings,
the author explains that IPv6’s still stunted adoption means it’s not yet a viable alter-
native. He continues to provide a peek into the IPv4 address exchange market, which
is deceptively similar in principle to how cryptocurrency exchanges work. Then, the
article explains that you can take out the equivalent of a mortgage on a block of IPv4
addresses, as well as lease them for fixed terms. IPv4 addresses can also be considered
an investment, with appreciating value, at least as long as IPv6 is not widely adopted.

 The conclusion sums up that IP addresses are surprisingly expensive and still very
important for an infrastructure company. The final sentence wraps it all up with a

https://fly.io/blog/32-bit-real-estate/

	 225Examples of “Non-markety Product Perspectives” blog posts

	

playful comparison between the decades-old IPv4 market and scammy cryptocurren-
cy-related markets.

C

Great title: short, technical, intriguing. The contents are insightful as well. The num-
ber of IPv4 users is huge compared to the number of people who understand how it
works underneath (a handful of public entities administering the whole address space
and a rather ancient BGP [Border Gateway Protocol]).
 Although the topic isn’t all that complex from a technical perspective, it’s a really
engaging and nice read. For many readers, it will induce the “ah, so that’s how it works”
revelation, which makes the blog post memorable. The company’s product is men-
tioned quite a lot, but in a rather noninvasive way, related to the technical content. Still,
you walk away with a general idea of what fly.io is all about and will have that filed in the
back of your mind in case you ever need such a product.

13.3.3 System Dependencies Are Hard (So We Made Them Easier)

Author: Misty De Méo
Source: Axo Blog (https://blog.axo.dev/2023/10/dependencies)

S

The article is an overview of cargo-dist—a tool developed by Axo, the company behind
this engineering blog. It starts with the problem statement that managing dependen-
cies in the Rust ecosystem is harder than expected. The next section explains that
cargo-dist can automatically install dependencies for multiple programming environ-
ments. The article then shifts to cargo-dist’s ability to figure out link-time dependen-
cies of a package (so that they can be installed automatically along with the rest of the
project).
 The intricacies of actually installing a package on Apple hardware are covered
next—along with a look at how cargo-dist makes the process easier. Next, the author
explores the complexities of linking on different platforms, complete with more tech-
nical details. The article wraps by simply encouraging readers to try cargo-dist and let-
ting them know about a new release.

C

The title is intriguing, and the problem stated in the introduction makes total sense.
It’s nice to see code snippets and concrete technical examples of how cargo-dist solves
a particular problem (here, detecting which packages must be installed along with the
original project).
 My only complaint is that while the title and introduction appear to be describing
a universal tool (which cargo-dist actually is and strives to be), the blog post is very
Apple-centric. For a person who doesn’t own any hardware produced by the aforemen-
tioned company (we exist), it quickly gets less captivating, and whole paragraphs can be
skipped. There’s of course nothing wrong with focusing on a specific environment, but
I’d appreciate realizing that earlier than halfway through the article.

https://blog.axo.dev/2023/10/dependencies

226 Chapter 13  The “Non-markety Product Perspectives” pattern

	

	

 Nonetheless, I appreciate that the Apple-specific parts are very detailed, and it’s nice
to be able to follow the author’s thought process of overcoming the build-stage prob-
lems step by step. The conclusion paragraph is amazing, straight to the point: here’s
our product, give it a try.

13.3.4 Why fsync(): Losing Unsynced Data on a Single Node Leads to Global Data Loss

Authors: Denis Rystsov, Alexander Gallego
Source: Redpanda Blog (https://mng.bz/5OPq)

S

This article warns readers that unsynchronized data is a serious problem in distributed
systems. The introduction briefly presents a list of measures that Redpanda (a faster
Apache Kafka) takes to make the product more robust with respect to consistency.
Next, it explains the titular fsync and how it contributes to data consistency on disk.
That’s followed by a brief look at replication’s purpose in distributed systems.

 Once all that’s covered, it’s time for the problem statement: replication does not
guarantee data safety if data isn’t synchronized with fsync. The problem description
spans beyond a single paragraph. There’s a proof of impossibility as well as a concrete
counter-example to support the thesis. The article concludes that the thesis is consid-
ered proven, and encourages users to try Redpanda and join its community.

C

The title is both eye-catching and very explicit, which is a great maneuver. The “Why
'fsync()'” part is intriguing enough for any reader even remotely concerned with
data consistency, and the rest is a succinct summary of the whole article.
 The level of detail is quite satisfactory for a deeply technical audience. Often, arti-
cles about data consistency are either purely theoretical academic papers or hands-on
examples. This particular article has both. It provides

¡ A theoretical proof of why replication is not sufficient to guarantee consistency

¡ A reproducible example of data loss

It’s especially nice to see a step-by-step guide on how to reach the same results, in case a
reader doesn’t take the authors’ word for it. This article uses detailed technical insights
to implicitly advertise the product (Redpanda): it shows the steps that were taken to
provide better consistency guarantees for its users. This is precisely what the “Non-mar-
kety Product Perspectives” pattern can be used for.

13.3.5 So You Think You Want to Write a Deterministic Hypervisor?

Author: Alex Pshenichkin
Source: Antithesis Blog (https://mng.bz/6YP5)

summary

The article is a follow-up to the Antithesis launch post, which announced their main
product: a deterministic hypervisor for testing and debugging complex systems. The

https://mng.bz/5OPq
https://mng.bz/6YP5

	 227Characteristics

	

first part of the article explains what determinism is and why it’s not trivial to emulate it
on modern hardware due to complexities such as

¡ Speculative execution with branch predictions

¡ Instruction pipelines

¡ Interrupts

¡ Processor parallelism

Next comes a sneak peek of the design, revealing that the hypervisor is based on exist-
ing software—bhyve, FreeBSD’s stock hypervisor. That’s followed by a deep dive into a
few things that had to be adjusted, including time management and deterministic I/O
(including disk and network access). Finally, the author announces that more details
are coming and encourages readers to apply for a job there if they enjoy solving similar
problems.

C

This article is especially noteworthy when you connect the dots and realize it comes
from the founding team of FoundationDB, a database with a very specific and holistic
approach to testing distributed systems. At first glance, this blog post is a decent can-
didate for the “How We Built It” pattern, due to its level of technical details and (par-
tial) product design description. But ultimately, the technical details are used to pique
interest in an impressive product that brings distributed system testing to a new level.
 Just like its predecessor post (the launch post titled “Is Something Bugging You?”),
this post is masterfully written in a way that

¡ Shows that the authors are experts in their field

¡ Conceals enough technical details to make readers

– Crave more posts

– Want to get in touch and use Antithesis against their software

– Want to apply for a job so they can join the aforementioned team of experts

There’s a very delicate balance between showcasing solid engineering and making a
post look markety. I think the Antithesis team nails it just right. I also like how they
make a pattern out of using a provocative question as a blog post title. That makes it
feel immediately interactive.

13.4 Characteristics
“Non-markety Product Perspectives” share some characteristics with their more magis-
terial cousins, “How We Built It” blog posts:

¡ The product plays a leading or support role.

¡ They’re providing a peek into implementation details, as well as their processes.

¡ The engineering tidbits shared expand the overall industry knowledge base.

However, “Non-markety Product Perspectives” tend to focus on a much narrower
niche, usually either how they tackled a highly specialized challenge related to building

228 Chapter 13  The “Non-markety Product Perspectives” pattern

	

	

	

the product or a deep dive into a particular use case for the product. A company will
typically publish “Non-markety Product Perspectives” posts quite regularly but reserve
“How We Built It” posts for special occasions.

13.4.1 Technical

This is the most markety pattern of all the ones covered in this book, but it’s nonethe-
less still an engineering blog pattern. The best litmus test of an effective “Non-markety
Product Perspectives” article is whether someone with zero interest in your product
learns something they might jot down in a TIL (Today I Learned) file or share with
their colleagues. Otherwise, it’s likely just a marketing piece in disguise, something
that the online mobs are particularly great at detecting and publicly shaming.
 It’s impossible not to bring up TigerBeetle as a good example, again. Readers have
an opportunity to learn and understand a distributed system replication technique by
playing an online game. Good luck getting more technical and educational than that!

13.4.2 Behind the scenes

One nice part of bringing the author’s own product into a blog post is that the author
can offer unique behind-the-scenes perspectives that make the post more engaging
and distinctive. For example, authors might include unique tidbits such as

¡ An amusing anecdote explaining why the blog post’s main topic is related to the
product in the first place

¡ A few product implementation details that may not be obvious to the audience—
Easter eggs, specialized tricks specific to a programming language, hacky scripts,
and so forth

¡ A short rant on why something didn’t work when trying to integrate it with the
product

Readers leave privy to information that was never before published. And they likely feel
a stronger connection to the product after being granted this behind-the-scenes access.
 A perfect example of such a technical sneak peek is in Antithesis’ article on their
deterministic hypervisor. It provides exclusive details such as a screenshot showing
parts of a comment block from their otherwise closed source code.

13.4.3 Subliminal

This characteristic is closely related to the product placement purpose referenced at
the beginning of this chapter. Ideally, the urge to try out the product is induced on
a subliminal level, without explicitly advertising the product in each paragraph. The
audience should be subtly nudged toward trying out the product simply because it’s
related to an intriguing engineering subject in one way or another.

 For example, consider Fly.io and their article on the IPv4 address space. Their intro-
duction has this subliminal effect where you skim through it and don’t really remember
the contents after reading the rest of the article. And yet, it sticks in your mind: Fly.io
manages IP addresses at an impressive scale, and they have a product you can try.

	 229Dos & don’ts

	

	

	

13.5 Dos & don’ts
Beware: Almost any engineer is at risk of being “voluntold” to write one of these posts
at almost any time. When that request arrives, don’t panic. If you focus on full transpar-
ency, the deep technical details that stem from your unique engineering point of view,
and providing a balanced perspective, you’ll be fine. Here are some specifics.

13.5.1 Introduce yourself

You don’t really need to introduce yourself as an author, but it is good practice to clearly
tell the readers a little bit about the company behind the article: what overall category you

’re in and what’s distinctive about your product. That way, you’re upfront about the fact that
the article was written by someone with a vested interest (maybe literally) in this product’s
success. Nobody should feel tricked. Readers who wanted a purely technical piece with no

product affiliation can turn around now. It also gives readers additional context upfront.
Now that they have an inkling of what the com-pany does, technical bits from the article are

easier to imagine in a real-world scenario.
For an example of how this might be done, look at a few different fly.io blog posts.

They seem to have a rule to put a short description of what the company does on top of
each engineering blog post. The exact wording varies, but it’s always a short summary of
what the company is up to at the time of writing.

13.5.2 Don’t sell

Avoid making the product the central point of the article. Otherwise, the article will
likely be immediately qualified as marketing fluff and ignored by everyone except peo-
ple who are already excited about the product.

Instead, the product should just be part of the theme. For example,

 ¡ The product relies on the technology described in the post

¡ The product is a proposed solution to a known technical problem

¡ The product suffered from a notable technical pitfall

It’s absolutely fine to directly encourage readers to use/register/download/try the
product somewhere in the intro or outro. However, the article still needs to be first and
foremost an engineering blog post, not product propaganda.
 You might wonder if the TigerBeetle post mentioned earlier makes the product the
central point of the article. Well, yes and no. While it’s clear that everything in the arti-
cle is very specific to TigerBeetle and its implementation, the central point is explain-
ing a complicated distributed consistency algorithm via gamification. It’s fair to assume
most readers aren’t in desperate need of a fast and correct financial transaction data-
base. Still, they can certainly grasp a new concept from the distributed systems category
while venting frustration on animated beetles with hammers and thunderbolts.

e perceived as “selling,” run through this checklist:

230 Chapter 13  The “Non-markety Product Perspectives” pattern

	

¡ Targeted topic —Does this really require an engineering perspective, your personal
engineering perspective, in fact? If not, rethink the focus, or try to pawn it off on
someone else.

¡ Total transparency —In addition to the “what our company does” disclaimer noted
in “Introduce yourself,” make sure the reader can immediately determine what
they’ll get out of your post and what role your product plays in that. Don’t make
them hunt for it and certainly don’t spring the product on them without warning
mid-post or even later.

¡ No gratuitous material —After you reveal what the reader will get from this post,
stick to it. Ruthlessly cut anything that’s not essential for accomplishing that. Are
you tempted (or being pressured) to add details about some other cool capabil-
ity, pop in some impressive but unrelated test results, etc.? Don’t. Save it as an
idea for another time (and maybe another author).

¡ Distinctive details —A good 80% or so of your article should focus on details that
could only come from your unique engineering perspective. Provide quick back-
ground if absolutely necessary, but keep the focus on “behind-the-scenes” access
to details that aren’t available elsewhere.

¡ No arguable statement left unsupported —Hunt down any statements that a reason-
able person in your target audience might question or argue with. Ensure that
they are all supported by facts: technical details from your own experience,
experiments, or trusted industry knowledge. This is covered extensively in sec-
tion 5.2.1.

¡ Watch your language —Excessive adjectives or adverbs, buzzwords, superlatives,
and extremes will raise red flags. An extreme example (credit to ChatGPT): “Our
revolutionary software offers state-of-the-art features that leverage dynamic algo-
rithms for a seamless, world-class user experience. This represents a paradigm
shift in the industry with its transformative capabilities and next-gen technology,
ensuring optimal performance and scalability for all users.” If in doubt, look
back to the image at the start of this chapter. If the words might come out of that
gentleman’s mouth, cut or rethink them!

13.5.3 Be balanced but don’t bash

While a “Non-markety Product Perspectives” blog post is not an overt marketing tech-
nique, it’s still expected to showcase something in an impressive and intriguing way.
It’s important to provide a realistic and honest look at the product. If appropriate, do
share what it’s not built for, when it shouldn’t be used, and similar. But avoid placing too
much emphasis on the product’s shortcomings, sharing users’ negative experiences
with it, and so on.
 Negative feedback will look out of place, making the readers wonder why on Earth
the company agreed to release a lampoon against their own creation. More importantly,
the article will most certainly get a red light at its review stage. There are other forms of

	 231Summary

articles in which honest criticism of the product’s weak points is appreciated (see, for
example, the “Bug Hunt” pattern). But “Non-markety Product Perspectives” post isn’t
the place for it.

Summary

¡	Embedding the product into a genuinely intriguing and educational post is one
of the best ways to introduce a product to programmers.

¡	Blog posts in this pattern not only draw attention to working products but also
sell the company as a technology leader and attractive employer.

¡	Readers include your most dedicated users, potential users, people with no
intention of ever using the product, and competitors who want people to use
their product instead.

¡	These posts should be just as technical as other engineering articles, provide
exclusive behind-the-scenes details related to the product, and subliminally edu-
cate the reader that the product exists and is backed by a cool engineering team.

¡	Top tips:

– Disclose your company’s purpose upfront for transparency and to help the
reader better understand the article.

– Ensure the product is part of a larger theme that’s intriguing even if a reader
has zero interest in that specific product.

– Actively avoid and root out “marketing fluff”—use the “Don’t sell” checklist in
the chapter for specifics.

– Be honest and realistic about the product, but don’t go overboard and leave
the reader with a negative impression.

14 The “Benchmarks and
Test Results” pattern

This chapter covers

¡	Blog posts that share various flavors of
benchmarks and tests

¡	Their purpose and audience
¡	How various authors approached this type of post
¡	Key elements of successful “Benchmarks and Test 	

Results” posts
¡	Dos and don’ts for your own “Benchmarks and Test 	

Results” post

Skepticism about benchmarks is so trendy right now that “All benchmarks are
wrong” could become an entire pattern chapter in this book. This herd skepticism
against benchmarks is actually a positive trend. Why not pay closer attention to
whether benchmarks and test results shared in engineering blogs truly make sense?
On the flip side, writers beware. If you’re writing one of these blog posts, it’s more
important than ever to do your homework and ensure that the published bench-
marks are truthful, reproducible, and not too synthetic.

232

	 233﻿

“Benchmarks and Test Results” articles tend to fall into at least three distinct
categories:

¡	Tests that compare the company’s product against its competition

¡	Tests that compare something (such as cloud infrastructure or hardware) using
the company’s product

¡	Measuring something independent of the company’s products (e.g., an open
source project or a new graphics processing unit)

The tests comparing the author’s company’s product versus its competition are most
likely to face a low level of trust and stir up online debate. They are still ubiquitous,
though; showing measured numbers is one of the few effective ways to promote a proj-
ect to engineers.

The second variety (using the author’s company’s product to test/compare some-
thing else) brings valuable third-party conclusions about something shiny, like a new
generation of processors or new energy-efficient cloud machines. At the same time, it’s
a noble way of featuring the company’s product—showing it as a real-life “user” of the
tested technology.

Tests that don’t involve the author’s company’s product at all are often admired
and sought after since they are less likely to be biased (assuming that the author is not
affiliated with any of the compared technologies). They’re also significantly rarer. Tests
consume considerable time and resources, which makes them a quite demanding inde-
pendent weekend project. And the author’s company is unlikely to sponsor the project
if it doesn’t benefit that company in some way.

234 Chapter 14  The “Benchmarks and Test Results” pattern

	

	

	

	

14.1 Purpose
Each flavor of the “Benchmarks and Test Results” pattern serves a slightly different
purpose:

¡ Benchmarketing —Tests that compare the company’s product against its
competition

¡ Subtle benchmarketing —Using the author’s company’s product to test/compare
something else

¡ Community service —Measuring something independent of the company’s prod-
ucts (e.g., an open source project or a new graphics processing unit)

14.1.1 Benchmarketing

When companies compare their own products with alternatives and share the results
publicly, it’s typically to highlight where their product performs better. Of course, most
technical readers bring a healthy dose of skepticism to such reports. They immediately
assume that the benchmarks and test results are highly biased in the vendor’s favor.
Still, developers gravitate to numbers, so they’ll likely read the article anyway.

14.1.2 Subtle benchmarketing

Interweaving the product into a benchmark focused on something else is a subtler
form of marketing that targets developers. Using the company’s product to test and
compare different things has two main benefits:

¡ Tests are typically more practical and realistic. It’s more interesting to see how a
real product behaves when using technology X versus technology Y than to see
how it performs using synthetic programs written only for testing purposes.

¡ It’s a more socially acceptable way of marketing through numbers. Between the
lines, the message can still be “Our product is fast regardless, but it’s way faster
when it runs on technology Z.”

Benchmarks and test results are sometimes a side effect of genuine curiosity and exper-
imentation. The company already decided to evaluate new hardware or a new software
library—then they decided to share the results with the community. The benchmarks
born from this process generally make for more authentic benchmarking blog posts,
compared with “us versus them” posts.

14.1.3 Community service

Benchmarks and tests powered by the pure will to share are highly appreciated. Inde-
pendent benchmarks might be created as weekend projects because the author is curi-
ous about which technology is more efficient. They can also be incidental, with the
author noticing a strange result while implementing something and then subsequently
deciding to measure it and write a blog post about it. Either way, those articles are per-
ceived as the most objective and trustworthy because the author is not invested in any
side of the comparison.

	 235Examples of “Benchmarks and Test Results” blog posts

	

	

	

14.2 Audience
Let’s dissect the target audience by the pattern flavor. Benchmarks and tests performed
by the company for the company are likely read only by 1) people who are
generally interested in the company’s technology, or 2) those evaluating it for a
future use case.
Beyond those groups, these posts are unlikely to sneak past the ad-blocking software
automatically burned into most readers’ brains.
 When the company uses its own products to test and benchmark another technology
,the audience expands. Of course, it still lures in people interested in the company
one way or the other. But it also appeals to readers who care about the tested
technology.
When a software company evaluates a brand-new chip dedicated to AI inference, for
example, the target audience spans well beyond just people intrigued by what software
the company produces. Anyone intrigued by the numbers for the tested technology
might also be curious enough to read.
 The last flavor, independent tests, brings in “everyone.” A technical audience appre-
ciates transparent research and gladly reads an independent benchmarking blog post,
even if it isn’t directly in their field of interest. Independent tests are often driven by
dedication and curiosity, which automatically makes them more engaging than all the
other benchmark flavors. The author found the topic compelling enough to spend
time on, and readers are more likely to assume it’s worth their attention as well.

14.3 Examples of “Benchmarks and Test Results” blog posts
In the wild, “Benchmarks and Test Results” blog posts are relatively rare compared to
other types of blog posts. The amount of work required to plan and conduct a test and
then write up the results in some insightful manner is a significant barrier to entry. But
despite (or maybe because of) their rarity, they get a lot of attention. As mentioned at
the beginning of this chapter, these posts face a herd skepticism that tends to spark
spicy discussion, and that makes them quite prominent in social media feeds and vir-
tual communities.
 Here are some prime examples of blog posts that apply the “Benchmarks and Test
Results” pattern, along with Piotr’s commentary on each.

14.3.1 AWS Graviton2: Arm Brings Better Price-Performance than Intel

Author: Michał Chojnowski
Source: ScyllaDB Blog (https://mng.bz/75P4)

S

This article shows the performance benefits of running a database on cloud instances
with Amazon’s Graviton2 ARM-based processors instead of instances running on
x86 processors. The first paragraph teases the results, announcing a 15%–25% price
performance improvement. The next paragraph shows the detailed specifications of
the compared machines: their processors, number of cores, memory, network, storage,
and on-demand price per hour (at the time of writing). Then we get disk input/output
results for both setups (measured in iops [I/O operations per second] as well as

https://mng.bz/75P4

236 Chapter 14  The “Benchmarks and Test Results” pattern

	

throughput [labeled as “bandwidth” in the article]). That’s followed by a description
of the test setup and a list of six benchmark phases. Test results are then presented
and visualized as charts and tables. The conclusion: Graviton servers already deliver
comparable performance and also cost less per hour.

C

This article is doubly upfront: first it clearly states that Graviton2 won the benchmark
comparison, and then it provides a summary including the numbers. For some blog
post patterns, it makes absolutely no sense to start with a summary (see the “Bug Hunt”
pattern in chapter 8). But it’s a great technique for “Benchmarks and Test Results”
posts. It properly sets the expectations and gives readers the freedom to trustfully skim
over the charts and tables if desired.
 This benchmark is meticulously specified, from the exact database setup and cloud
machines to describing every step involved. It makes the results reproducible—ergo
more trustworthy. I also appreciate the tips scattered throughout the article. For
instance, when discussing available AWS instances, the author explains that SSD-based
variants aren’t ideal for low-latency persistent database systems. I consider this article a
textbook example (duh, it’s literally an example in a book) of the comparison flavor of
the “Benchmarks and Test Results” pattern.

14.3.2 The Relative Performance of C and Rust

Author: Bryan Cantrill
Source: Bryan Cantrill’s Blog (https://mng.bz/q0Zz)

summary

The article describes the author’s performance comparison between C and Rust. The
comparison was carried out by rewriting an application from the former to the latter,
and putting both versions under scrutiny with benchmarks and profiling.
 The introduction mentions that the blog originates from online discussions fol-
lowing another of the author’s blog posts, “Rust After the Honeymoon” (described
in chapter 12 as a “Thoughts on Trends” pattern example). The article follows with a
specification of the testing environment, the hardware, tools used for measurements,
and input. Next, a selected subset of performance counters is analyzed for both pro-
grams, noting that the Rust one experiences substantially fewer cache misses. The most
likely culprit seems to be a different data structure (BTree in Rust, intrusive AVL tree
in C). The following paragraphs thoroughly analyze that, including further bench-
marks, charts, and swapping data structures in the Rust implementation to measure the
differences.
 The conclusion confirms t hat t he p erformance d ifference i s c aused b y a d ifferent
choice of data structures. It also emphasizes that this is still an advantage of Rust, which
allows developers to easily use powerful abstractions without a performance penalty. For
C, a substantial engineering effort would be required to rewrite the program to use BTrees.
 This article is a great example of an independent test since the author is not profes-
sionally engaged in either Rust or C language committees at the time of writing.

https://mng.bz/q0Zz

	 237Examples of “Benchmarks and Test Results” blog posts

 

	

C

Let’s start with some minor negatives to make the book more entertaining! I noticed two:

¡ I was a little confused about what was rewritten to Rust and tested. The name of
the program (statemap) was mentioned once or twice, but it lacked an introduc-
tion, like

– What does this program do in the first place?

– Where can I find its source code?

NOTE I ultimately found the Rust source code on GitHub: https://github.com/
TritonDataCenter/statemap

¡ Dead links! They may have been put to death during Joyent’s acquisition by Sam-
sung Electronics, judging by the fact they were hosted at the joyent.com domain.
Dead links happen naturally in blog posts, so it’s not a big deal, especially for a
post from distant 2018. I’m only bringing it up because it’s good practice to just
let the author know, via a comment or an email, which we did!

Nitpicking aside, this is a really nice read. The article is another example of the
author’s signature casual and entertaining writing style that’s also seen in “Rust After
the Honeymoon.” The article also shares a fair amount of interesting charts, with small
performance puzzles (like unexpected spikes), which are analyzed and resolved in the
article. The test environment is well specified, and the article also contains lots of use-
ful shell snippets for running the experiments locally—in case the readers feel like
reproducing the results.
 An additional perk is that the author of this article is also one of the original authors
of the profiling tool used (DTrace), which makes all the shell invocations more trust-
worthy. An update added at the end to provide more charts with another C compiler
is a nice touch—showing that the author truly cares about, and responds to, readers’
feedback.

14.3.3 Redpanda vs. Kafka: A Performance Comparison

Author: Tristan Stevens
Source: Redpanda Blog (https://mng.bz/w54g)

S

This article describes a series of tests and benchmarks indicating that Redpanda (an
Apache Kafka alternative) is substantially faster and less resource-hungry than Apache
Kafka. The first paragraph refers to earlier blog posts on Redpanda architecture and
philosophy. The benchmarking environment is then explained, listing the hardware
specification, as well as tested workload characteristics:

¡ Read/write request ratio

¡ Throughput

¡ Configuration specific to the Kafka protocol, such as the number of

https://github.com/TritonDataCenter/statemap
https://github.com/TritonDataCenter/statemap
https://mng.bz/w54g

238 Chapter 14  The “Benchmarks and Test Results” pattern

	

– Topics

– Partitions

– Producers

– Consumers

It’s disclaimed that tests are run on machines with modern NVMe drives, for which
Redpanda is optimized. Then there are descriptions and visualizations of the results
for a few configurations, unanimously showing Redpanda’s lower and stabler latency in
each case. The case in favor of Redpanda’s performance is then further supported by
throwing more resources at the Apache Kafka cluster for a “rigged” comparison. The
final paragraph summarizes the results and encourages readers to try out the product.

C

This article is a clear example of the “tests performed against the company’s prod-
uct and its competition” flavor of the pattern. It’s very enthusiastic about the product,
and nothing less is expected. The testing environment is clearly explained and repro-
ducible, which makes the benchmark results more trustworthy. It also applies the nice
technique (quite commonly used in the “ours versus somebody else’s” benchmarks
subpattern) of giving the competition an unfair advantage—and then winning anyway.
Here, Redpanda tries to even the score by running the Apache Kafka cluster with more
resources.
 Throughout the article, charts are clear and readable. I always appreciate the “lower
is better” type notes that save readers a few seconds of trying to figure out whether the
outcome is positive or negative.
 The results in “ours versus theirs” benchmarks are hardly ever surprising because
it’s doubtful the article would have been published if the alternative was faster. Still, it’s
enjoyable to read how many orders of magnitude a product performs better. Running
and publishing benchmarks against your competition’s product has an interesting effect,
though: it can trigger a blog war! This article was quite thoroughly criticized by another
one, coming from the Apache Kafka trenches. Here’s a reference for the curious:

Title: Kafka vs Redpanda Performance—Do the claims add up?
Author: Jack Vanlightly
Source: Jack Vanlightly’s Blog (https://mng.bz/JNPQ)
That article addresses Redpanda’s claims and shows where the author believes to have
found inconsistencies. Interestingly, that article also incited a reaction—the Redpanda
“Why fsync” blog post described in chapter 13.

14.3.4 The Effect of Switching to TCMalloc on RocksDB Memory Use

Author: Dmitry Vorobev
Source: Cloudflare Blog (https://mng.bz/PN65)

summary

This article compares application memory usage before and after switching to a new
allocator implementation: TCMalloc. The introduction briefly explains that
the

https://mng.bz/JNPQ
https://mng.bz/PN65

	 239Examples of “Benchmarks and Test Results” blog posts

	

elevated memory usage was noticed after migrating to a new storage solution, and the
root cause was quickly narrowed down to the allocator. The next section is a thorough
explanation of how the default C library allocator works, what memory arenas are, and
why they contribute to high memory fragmentation. Next, a different allocator design
is presented: TCMalloc, Google’s customized allocator implementation. One TCMal-
loc feature that’s especially important for the author’s workload is effective memory
reuse through caching. The author concludes that switching to TCMalloc reduced the
memory usage 2.5-fold. The conclusion also emphasizes that choosing the right alloca-
tor for a given workload is critical for efficient memory utilization.

C

A keen eye might have noticed that the summary doesn’t really cover the tests: their
environment, steps, or assumptions. That’s because they’re not really in the article
either! But this lack of details doesn’t make the article bad. On the contrary, it’s very
educational in its introduction to both the default allocator implementation and
TCMalloc. The results are there, visualized clearly with charts, and the conclusion is
rational.
 For the “Benchmarks and Test Results” pattern, it’s good practice to make the tests
reproducible by being transparent about all details. This article shifts the focus toward
explaining the architectural and technical reasons why the results were in favor of
TCMalloc, which makes up for fewer details about the testing setup. Presumably, the
benchmarks would be difficult to reproduce without access to the project’s source code.
That code isn’t open, so it’s entirely reasonable to skip this. The technical part serves as
a good introduction to memory allocation theory, teaching readers about the general
idea as well as two specific implementations.

14.3.5 How Much Does Rust’s Bounds Checking Actually Cost?

Author: Alana Marzoev
Source: Readyset Blog (https://blog.readyset.io/bounds-checks/)

S

This article describes how the author measured the overhead of Rust’s bounds checks:
a feature designed to make programs safer by default, at the cost of additional CPU
instructions. The introduction presents the motivation for enabling bounds checks by
default, listing a few known security breaches in open source programs caused by lack
of bounds checks. Next, the author presents a technique for counting bounds checks
during program execution with the help of Linux’s stock debugger (gdb). Then we see
what happens when running the analysis for a few versions of Readyset’s product:

¡ An unchanged program, which provides the baseline for the test results

¡ A program recompiled with fewer bounds checks, achieved by replacing selected
function calls with substitutes that don’t perform checks

¡ A program recompiled with a modified Rust compiler that doesn’t emit bounds
checks

https://blog.readyset.io/bounds-checks/

240  

 

C

All executions end up returning results within a margin of error. The conclusion drawn
in the article is that bounds checking overhead is negligible in Rust. The exact cause
of this observation remains unresolved, with a guess that perhaps branch prediction
mechanisms in modern CPUs alleviate the cost of additional checks.

C

On the one hand, this article is full of practical tips that I find interesting and directly
useful in everyday hacking. For example,

¡ Using gdb to count how many times a specific function is called, and comparing
the results before and after a program is modified

¡ Pointers to intriguing bits in Rust’s standard library implementation and the offi-
cial Rust compiler

What doesn’t pass scrutiny are the drawn conclusions. The title (“How Much Does
Rust’s Bounds Checking Actually Cost”) and section titles (e.g., “How Much Do the
Bounds Checks Cost?”) suggest that bounds checks are studied in the general case.
Results achieved in the article showed that all executions fall within the same error
margin. That doesn’t really prove that bounds checks are negligible but that bounds
checks are negligible for Readyset’s program. That’s an interesting conclusion on
its own, showing that in the case of Readyset, opportunities for optimization lie else-
where. Bounds checks do, in fact, have a cost—it just shows for different workloads.
For instance, a quick internet search points to Alex Kladov’s experiment, proving that
bounds checks effectively prevent the compiler from auto-vectorization. In certain
cases, it makes the CPU overhead as large as 100% (https://github.com/matklad/
bounds-check-cost).

NOTE Auto-vectorization optimizes code by automatically converting sequen-
tial operations into parallel SIMD (single instruction, multiple data) instruc-
tions, available in modern processor architectures. It’s not uncommon to see a
4x or 8x speedup of auto-vectorized compute-intensive loops.

C

https://github.com/matklad/bounds-check-cost
https://github.com/matklad/bounds-check-cost

	 241Characteristics

	

	

	

article educates readers that recompiling the stock Rust compiler is not that hard, and
its source code is actually quite comprehensible. Final score: a very educational blog
post, but its benchmark results are not generally relevant to the topic (they are relevant
to a specific use case).

14.4 Characteristics
The “Benchmarks and Test Results” pattern is a distant relative of “Bug Hunt” and
“Non-markety Product Perspectives” patterns. The core element of repeated experi-
ments and measurements can also be found in bug-hunting blog posts. However, the
main difference is that benchmarking articles tend to be very open about the end
result, often even hinting at it in their titles. Many instances of this pattern also share a
characteristic with “Non-markety Product Perspectives” articles: the product is usually
an important actor, although not always the main character.

14.4.1 Numeric and visual

Benchmarks and test results are best expressed with numbers and charts—specifically,
ones focused on metrics the target readers care about. Readers click these articles to
discover and compare new numbers, and they won’t leave happy unless all the charts
are perfectly clear and comprehensible. Some articles might seem visually overwhelm-
ing at first, but readers are used to skimming over a few charts to continue reading.
Benchmarking blog posts are also abundant in all kinds of tables, especially ones that
compare one set of numbers with another.

The best benchmark and test blog posts use visualizations that

¡ Tell a clear story —For example, the visualization might provide a series of data
points that show a performance problem emerging over time, or brag about
extremely low and consistent latency after a fix. Such takeaways are easier to
process visually than in text, plus tying them to data points makes them more
convincing and interesting. Some charts even add a callout in the graphic to
highlight the story (for example, the header image in the Redpanda blog post).

¡ Achieve a data density that justifies the amount of space the graphic occupies on the page —
For example, a simple data point that could be replaced by a single sentence does
not meet this requirement. But a flame graph certainly does.

¡ Minimize the “Lie Factor”—The Lie Factor, a term coined by Edward R. Tufte, mea-
sures how accurately a change in the size of the chart’s visual elements (like bar
heights or bubble sizes) matches the magnitude of change in the underlying
data. It’s calculated by dividing the size of the effect shown in the graphic by the
size of the effect in the actual data. The result should be close to 1; if not, the
graph is overstating or understating something.

14.4.2 Guilty until proven innocent

It’s as dystopian as it sounds: in the world of engineering blog posts, the author is
presumed guilty of rigging the benchmark results. The burden is on the author to

242 Chapter 14  The “Benchmarks and Test Results” pattern

	

meticulously prove that the benchmarks are legit. That defensive approach often man-
ifests itself in the article by

¡ Explicitly stating why the results of the comparison are fair (e.g., they were run
under identical conditions)

¡ Sharing all the relevant environment details: the chosen hardware, software con-
figuration, operating system, etc.

¡ Showing the exact steps to reproduce the same results, or sharing a repository
where the benchmark source code is kept

¡ Prominently mentioning anyone beyond the author’s company who participated
in the original testing process or validated the results

14.4.3 Quasi academic

“Benchmarks and Test Results” blog posts generally tend to adopt a more academic
style than most blog posts. Although they aren’t structured like a peer-reviewed
research paper, many include all the key elements you would typically find in one:

¡ Abstract —A short upfront summary of what was tested, how, and what was found

¡ Background —Why the author decided to perform this study

¡ Methods —How the author performed this study

¡ Results — What the author discovered by conducting the study

¡ Discussion —The author’s interpretation of the results

For example, the benchmark blog posts by Redpanda and ScyllaDB don’t use these
exact terms, but they do ultimately check all of the boxes. Those two examples also fol-
low the academic tradition of pointing out any notable limitations that could affect the
conclusions drawn from the experiment. The Redpanda post noted that they wished
they could have compared Redpanda and Kafka on equal resources. And the Scyl-
laDB example noted that they wished they could have tested against the latest (newly
released) x86-based instances. The fact that the Rust bounds checking article did not
actually highlight the study’s notable limitations was the main criticism we had of that
otherwise intriguing article.

 The writing style of these articles is also more formal than most blog post patterns—
more akin to the “How We Built It” pattern’s style than any others, but often even more
formal than that. The sentences tend to be austere with minimal trace of the author’s
personality or emotions (“We did this, we found that”). This makes complete sense con-
sidering that it’s the (fallible, biased, emotional, etc.) human behind the benchmark
who will be presumed guilty until proven innocent. The less humanity seeps into the
blog post, the more objective it all sounds.

 This impersonal tone is most common in the “product comparison” benchmarks,
which are also the ones that face the greatest skepticism and scrutiny. As you can see
from examples such as Alana Marzoev’s and Bryan Cantrill’s articles, more communi-
ty-service-oriented “Benchmarks and Test Results” articles might be infused with more
personality and character.

	 243Dos & don’ts

	

	

	

	

	

14.5 Dos & don’ts
Having a rock solid test is fundamental for writing a great “Benchmarks and Test
Results” blog post. If you lack that, stop right there and rethink your approach (per-
haps you have fodder for a “Lessons Learned” blog post instead). But a great test
doesn’t just automatically translate to a great test results blog. Here are some tips for
making both the test and the resulting blog post worth the considerable effort that the
project likely required.

14.5.1 Read Brendan Gregg’s “Systems Performance”

Do yourself a favor and read (or maybe even re-read) Brendan Gregg’s renowned
book, Systems Performance, or at least the “Benchmarking” chapter. It covers important
topics such as

¡ Tests being reproducible

¡ Caring about correctness—fast, but incorrect results are not useful

¡ Avoiding “apples versus oranges” comparisons

¡ Ensuring all caches, if they exist, are warmed (unless somebody wants to bench-
mark the cache warmup process specifically)

The book is a comprehensive study of doing benchmarks the right way!

14.5.2 Show how to reproduce the results

If benchmarks and tests can’t be reproduced, then they won’t be trusted. All bench-
marks and tests should be served with a detailed list of steps for reproducing them
unless the tested software or hardware is prohibitively expensive or, for whatever reason,
not generally available. Ideally, complement the article with an open source repository
that includes all the source code and scripts for running the benchmark. Readers are
way more likely to trust the results if they come with a recipe for how to validate them.

14.5.3 Don’t exaggerate

Results that are creatively rigged to exaggerate the difference never pass the scrutiny
of the online crowd, so it’s really in your own best interest to prepare accurate charts.
Actively consider and avoid the Lie Factor (referenced in 14.4.1), which means that
charts like the one in figure 14.1 are not welcome:
 Exaggerated results are likely to incite (and likely deserve) low blows in online dis-
cussions. And once a reader thinks that one finding looks scammy, they will probably
dismiss the entire blog post (and underlying project) as being deceitful. It’s just not
worth it; don’t exaggerate.

14.5.4 Don’t neglect

“Benchmarks and Test Results” posts are natural targets for questioning, challenging,
and cross-examining. Assume that errors, negligence, omissions, and other logical
flaws will be discovered and then noted online. Plan for this and make it a priority to
update your article whenever necessary.

244 Chapter 14  The “Benchmarks and Test Results” pattern

	

  Figure 14.1 A misleading representation of test results. Note that although our shiny stuff
seems to have double the throughput at first glance, there’s actually just a 2 MBps difference.

Updates can be appended to the article as a new paragraph, titled something like
“Update: Feb 29th 2024.” This is the perfect place to reference an online dispute (ide-ally with

a hyperlink to the related discussion). That could include agreeing with criti-cism and fixing
parts of the article. Or, it’s equally fine to publicly debunk accusations.

Updates might also involve rerunning all the benchmarks and tests in a new envi-ronment
(for instance, because promising new hardware just became available). Don’t limit yourself to

one update; multiple ones are perfectly fine. At some point, when the number of updates
reaches critical mass (say, when the number of update paragraphs is approaching the number of

regular ones), it’s time for a follow-up blog post. And once you publish that follow-up, be sure
to update the original blog post to link to it. People

might still stumble on the earlier one, so it’s a nice gesture to go all Amazon-esque and
politely inform them that “there is a newer edition of this item.”

14.5.5 Boil it down, spell it out

Behind every great benchmark is a complex test that was probably quite frustrating to
run. But don’t inflict an equal amount of pain and suffering on your readers by making
the resulting blog post difficult to read and decipher.
 Readers have clicked into your post curious to learn about what you did, why you
did it that way, and what you discovered. Don’t make them inspect 25 beautiful graphs,
scroll back and forth across multiple sections for comparison, or run their own mental
analysis of your results in order to figure out what’s best and why.

Specifically,

¡ Call out the key takeaways upfront. This isn’t a bug hunt blog post, where it’s actu
-ally fun for readers to place themselves in the scene and try to solve the
mystery as they follow along. Spoilers are not only acceptable here; they’re
desired and

	 245Summary

appreciated. If the reader doesn’t care about the results, they certainly won’t care
about all the low-level details of how you arrived at them.

¡ Show side-by-side when you want readers to compare. If your ultimate goal is to show
that A is faster than B, don’t put your results from A in one section, your results
from B in the next section, and leave the comparison as “an exercise for the
reader.” Stack them in charts and tables when feasible. Show raw numbers, but
also go beyond raw numbers. Do the math for them and calculate the percent
difference between the two values.

¡ Make “better” unmistakable at a glance. Sometimes higher is better (e.g., with
throughput). Other times, lower is the desired outcome (e.g., with latency). Put
yourself in place of the average impatient and often distracted reader. Use col-
ors, labels, and captions to make it obvious what outcome is considered better in
each scenario.

¡ Avoid information overload. It’s great that you ran 25 different scenarios; thorough
testing is certainly appreciated. But do you think the reader really wants to read
all about each and every one of them? Since you have so many options to choose
from, select a representative sample to focus on here. Explain why you selected
these ones and assure the reader that you’re not cherry-picking results to support
a bias. Supplement that with an overview of the “also ran” test results so the entire
scope of the testing project is accounted for. Finally, share a link to the complete
results in case anyone (perhaps someone working on the technology involved in
that test) is really hungry for that extra level of detail.

Summary

¡ There are at least three distinct types of “Benchmarks and Test Results” articles:
1) tests that compare the company’s product to its competition; 2) comparisons
of something (such as cloud infrastructure or hardware) that are performed
using the company’s product; and 3) measuring something that’s unrelated to
any of the company’s products (e.g., an open source project or a new graphics
processing unit).

¡ The purpose of these posts ranges from overt “benchmarketing” to pure educa-
tional value.

¡ Readers vary based on the test type: generally, the less prominently the com-
pany’s product is featured, the broader the potential audience.

¡ Engineers are irresistibly attracted to numbers, so these posts get a lot of
attention.

¡ Posts in this pattern face a harsh level of scrutiny, so both the testing and the
reporting must be meticulous and bulletproof.

¡ Top tips

– Study up on benchmarking best practices.

– Show readers how to reproduce the results.

246 Chapter 14  The “Benchmarks and Test Results” pattern

– Don’t exaggerate, especially if you have a horse in the race.

– Keep evolving the article as you battle critics, learn more, and run more tests.

– Make it simple for your reader to identify and interpret the most important
takeaways.

Part 4

Promotion, adaptation,
and expansion

An effective blog post can continue paying dividends long after its initial
publication. Part 4 shares options for squeezing more value from your work: from
ways to keep your posts in front of your target readers to tips for extending into
conference speaking and book writing opportunities:

¡	Chapter 15 presents options for squeezing more value from your blog post.

¡	Chapter 16 shares strategies for presenting conference talks based on your
blog post.

¡	Chapter 17 provides an honest look at what to consider if you’re intrigued
with becoming a book author.

15 Getting attention

This chapter covers

¡	Getting more eyes (and ears) on your ideas after 	
the blog post is published

¡	Sharing your blog post across social media and 	
virtual communities

¡	Using your blog post as a stepping stone to
additional opportunities (articles, guest posts, 	
podcasts, and so on)

¡	Tracking how people are reaching, reading, and 	
reacting to your blog post

Once your blog post is published, yay! Nice work, pat yourself on the back and
enjoy a celebratory beverage of choice. But don’t consider your work here done.
You wouldn’t just drop your most impressive project on GitHub in silence and then
never think about it or touch it again. Don’t abandon your newly published blog
post either. You’ve already invested a good amount of thought and time into it.
Spending just a little more to give it a good start in the world can help you and the
community get much more out of it.

249

250  

 

15.1	

C

Think of it this way: would you rather

¡ Do a few things to increase the reach of your blog post (say, threefold), or

¡ Plan, draft, optimize, review, proofread, and publish three times as many blog
posts?

Of course, it’s always tempting to move on to the next shiny object. But strongly con-
sider doing what you can with that existing blog post while it’s still fresh in your mind.
 This chapter covers a broad spectrum of ways to get your work in front of more peo-
ple in your target audience, whether you’re the stereotypical introverted programmer,
someone who thrives on human interaction, or somewhere in between. Here, we cover

¡ Sharing across social media platforms and virtual communities —You want to distrib-
ute your post across (and beyond) your network, spark discussion, and give it a
chance to trend or go viral.

¡ Getting it published in a selective tech publication —You want to draft off their reputa-
tion, which brings prestige, draws discerning readers, and could get your article
on Google News.

¡ Guest blogging on another community’s blog —You want to reach the community
behind some technology or project you referenced in your blog.

¡ Cross-posting copies of your article on blog post aggregators —You want to see what addi-
tional exposure you can gain from (usually) just 5 minutes of brainless copy/
pasting.

¡ Participating in conferences, podcasts, and livestreams —You want to talk about your arti-
cle topic in a way that can quickly elevate your brand and reputation as an expert.

At the end, we’ll also review different metrics you can review to understand how your work
was received and get you thinking about what you might do differently the next time.
 As you consider and prioritize options, think back to the goals that you defined when
planning the article (chapter 4). For example, if you’re looking to spark deep engage-
ment with experts in a highly specialized field, maybe Hacker News is not a top priority.
However, presenting a related talk at a niche conference could be a worthwhile next step.

WARNING Be sure to check company protocol related to social media, com-
munity engagement, and all the other promotion opportunities outlined here
before you dive in.

Choose your own adventure
C

	 251Sharing across social and virtual communities

	

will help you extend your blog post’s reach. And perhaps you have the patience to spin
off customized versions of your article for publication on other sites. Your extroverted
peers likely do not.
 On the other hand, extreme extroverts who actually want to interact with
humans in real time should find no shortage of opportunities for doing so. There are
countless podcasting and streaming options that cover the programming space. And
they’re all hunting for the rare species of programmer who checks all of the following
boxes:

¡ They’re experienced with popular or trending technologies.

¡ They’re good verbal communicators.

¡ They’re willing to carve out some time to participate.

If you’re a member of this select group, strongly consider looking for podcasts or lives-
treams where you can talk more about the topic you covered in your blog post.
 What about conferences? Extroverts will feel right at home here, but introverts
shouldn’t instantly rule it out. While the thought of presenting live in front of an audi-
ence of thousands could terrify an introvert, a smaller specialized session might work.
And virtual conferences can lower anxiety even more. Some even let you prerecord
your session so you can become a public speaker without actually speaking live or in
public.
 The bottom line is that there’s something for everyone. Given that, let’s look at what’s
involved in the various blog post promotion and extension options.

15.2 Sharing across social and virtual communities
This option isn’t really optional. If you want your peers to read your blog post, you
really need to share it personally. But you can certainly do so as a good community
member, with modesty and precision. The spray-and-pray approach (just indiscrimi-
nately posting the same thing in as many places as possible) likely won’t yield favorable
short-term results, and it definitely won’t help you foster community goodwill over the
long term.
 If your post was published on your company’s blog, they will likely take the lead on
some level of promotion. Considering all the company’s official accounts and market-
ing efforts, they might have access to more people than you do. But given how devel-
opers generally dislike engaging with company accounts, don’t rely on that promotion.
Authentic sharing from your own accounts is often the perfect non-markety marketing
strategy for getting your blog post in front of your technical peers.
 In this section, we’ll cover a phased approach for ramping up your community
engagement, dos and don’ts for sharing your blog post when it’s first published,
and non-spammy ways to keep it alive (e.g., by seeding it into relevant discussions).
Spoiler: We’re not offering yet another “N tips guaranteed to get your article trending
on Hacker News!” article. You’re welcome to search the internet for such, but we don’t
believe you can (or should) game the system with tricks. Write a solid technical article,
engage with relevant communities in a transparent and authentic manner, and your
luck surface area will increase immensely.

252 Chapter 15  Getting attention

NOTE  We’re trying to keep this discussion as platform-agnostic as possible,
focusing on strategies that are applicable across the constantly shifting world
of social media and virtual communities. However, we do discuss Hacker News
specifically since it’s such a unique beast.

Even if you’re not a super social person, push yourself to engage with the online com-
munity in some capacity starting now. It doesn’t have to be time-consuming, fake, or
otherwise painful. And you might actually find it valuable, even beyond your ulterior
motive of getting your blog posts noticed and read.

Piotr’s story: Why I stopped avoiding social media
I haven’t exactly been an avid fan of social media, and I’m still not. Let me just self-quote
part of my goodbye message before leaving ScyllaDB:

I’m also leaving my contact details, should anyone want to stay in touch:
email: <redacted>
phone: <redacted> (please don’t call if you just want to sell me solar panels, I
already have a set)
twitter: not going to happen (take reading this note as an opportunity to ditch
social media)

And yet here I am, broadcasting daily messages on various social media.

Fortunately, Elon Musk helped me keep my promise not to use Twitter by rebranding the
company to X. Otherwise, my integrity would have been compromised.

My breakthrough moment came when I joined an even earlier stage startup. Here, engi-
neers sharing interesting articles they read or wrote was the primary means for getting
the project noticed in the engineering world. Creating and actually using an X account
was unavoidable. But it also was tolerable.

Don’t get me wrong. I still hate social media and blame social media for the ever-short-
ening attention span worldwide. The difference is that I used to passionately hate it, and
now the emotion is strictly passive.

Social media is just a means to an end: sharing slightly opinionated knowledge with
peers and getting in contact with like-minded individuals. Social media is undoubtedly
useful, both for beginner writers to bootstrap their initial audience and for experienced
writers to easily share and discuss their articles with interested peers. For me, the turn-
ing point was realizing there’s more to gain from using social media for professional pur-
poses than from just hating it from the sidelines.

	

 

15.2.1 Connecting with the community

NOTE If you’re already happily engaging with the community, skip ahead to
section 15.2.3, which covers some commonly overlooked strategies for keeping
the blog post momentum going. The next two sections are both targeted to
social-media-averse engineers—like Piotr used to be!

	 253Sharing across social and virtual communities

If you plan to discuss your blog post on social media and virtual communities (and you
should!), start by becoming a good citizen. If humans or algorithms notice that you’re
there solely to promote links to one site (coincidentally, the one hosting your own
blog posts), it won’t go over well. You will be the equivalent of that relative who doesn’t
acknowledge you exist until they want something. Moreover, if you don’t “warm up”
your account, you might not even be allowed to share your blog post when the time
comes. In some communities, account posting privileges are restricted until you’ve
established yourself as a trustworthy community member (e.g., by commenting on oth-
ers’ discussions).
 If you’re reluctant to participate, consider the following approach to easing in—just
dipping your toes in the water to start and then going progressively deeper as you get
acclimated.

P

At first, just sit on the sidelines, look around, and try to get a feel for what’s going on.
Make it a habit to spend a little time exploring on a regular basis. Also use the strat-
egies covered in section 2.3 (about exposing yourself to blog topic triggers) to direct
what you’re looking at. Let’s quickly recap. For social media,

¡ Get ahead of the recommendation algorithms by curating lists or other feeds of
people you trust.

¡ Start by tracking a small set of trusted accounts, then expand cautiously.

¡ Occasionally glimpse at what the algorithms recommend to see if you’re missing
anything interesting.

For virtual communities,

¡ Find a few specialized, well-moderated communities relevant to the topics you
write about.

¡ Again, start small and expand cautiously.

¡ For Hacker News, become familiar with the site’s rich search functionality.

And above all, actually set reminders to start checking on a regular basis as well as
timers to stop checking after a few minutes. Timeboxing it this way prevents you
from wandering off in intriguing yet often unproductive directions.

P

Now ease in by simply liking, upvoting, or boosting posts that you found interesting.
It’s a polite way to tell the person behind the post that you found their contribution
valuable. You’re also helping to shape the community at large by weighing in on what
posts should be elevated by the algorithms and/or rankings. In some communities,
post visibility depends solely on the number of upvotes.
 Also consider following the accounts behind social media posts that you like. And
don’t be surprised if they end up following you back. Maybe they will return the favor
and like one of your blog posts someday.

254 Chapter 15  Getting attention

 

	

P

The next level of engagement is to actually share some words about other people’s
social posts. Remember that the simple one-click reactions already indicate something
like “interesting,” so if you’re going to add words, you should go a step beyond that.
For example, you could respond with

¡ Something you found particularly interesting about what they shared

¡ A question you had about what they shared

¡ Your own experiences with that topic

¡ A helpful resource that’s relevant to the discussion

The most valuable comments add new information and/or advance the discussion in
some productive way. It never hurts to kick off your comment with something nice,
especially if you’re ultimately requesting clarification or sharing a different experi-
ence. For example: “Great read, really interesting point about {blah}. Curious if {what-
ever}.” Even a simple “Thanks for sharing!” preface could work. Just make the extra
effort to set the tone as conversational, not confrontational.

P

Finally, take the plunge and start creating your own social posts. Not sure what to say?
Consider

¡ Some cool trick, tool, or repo you just stumbled on and why you think it’s so cool

¡ A question for the community (“Has anyone else ever encountered…”)

¡ An article, book, or video that intrigued you and why

¡ A lesson learned the hard way

¡ A seed idea for a future blog post

TIP You don’t need to 100% agree with every word in a resource that you want
to share. Feel free to say something like: “Great read! While I don’t agree with
everything in this article, it’s interesting to see…”

Before you start composing anything, check all the rules of engagement, particularly
for virtual communities. What’s forbidden, do you need to tag things in a certain way
(e.g., on subreddits), do you need to be extremely careful about the title of your sub-
mission (e.g., on Hacker News), and so on. Just like every family has its weird rituals,
every virtual community has its own protocol and guidelines. Learn them now and
practice them before you share your own blog posts!

15.2.2 Sharing (and discussing) your blog post

Let’s assume that you’ve already become a contributing member of some social media
platforms and virtual communities, and now you’ve got a shiny new blog post to share.
What now? We recommend the following staggered plan of attack.

	 255Sharing across social and virtual communities

 

TIP Once you start sharing your own blog posts, remember to continue con-
tributing to virtual communities in other ways as well! As the Lobsters commu-
nity (https://lobste.rs/about) put it: “It’s great to have authors participate in
the community, but not to exploit it as a write-only tool for product announce-
ments or driving traffic to their work. As a rule of thumb, self-promo should be
less than a quarter of one’s stories and comments.” This is a reasonable guide-
line to follow everywhere.

S

Your own social media handles are the natural place to start. Anyone following you
there expressed some interest in you and/or your work. Telling them about a blog post
you just wrote is totally in scope!
 Moreover, the fact that you’ll be broadcasting to (at least some) people you actually
know makes this a great place to begin. Some of your connections will like and reshare
it, their connections might see it and comment—rinse and repeat. Since many of the
people seeing your post have some traceable connection back to you, any discussion
here is likely to be more constructive and civil than in a fully anonymous comments
section full of concealed accounts.
 Try to publish your post when the people you expect to respond are actually awake.
A post that gets an initial boost will typically be recommended more than one that lies
untouched for half a day. And consider starting with a social media platform where
posts have a short life span—an X-like platform where new posts burn bright for a mat-
ter of minutes, then fade away. This makes for great proving grounds. Try something
here, get some rapid feedback (hopefully), and apply any lessons learned before you
share your blog post somewhere else.
 What should you say in the actual social post? Here are some ideas in case you’re not
otherwise inspired:

¡ New blog post on {topic}, covering…

¡ {Interesting_takeaway}. Full discussion in…

¡ {Something_about_the_challenge_discussed}. I decided to tackle that here…

¡ {Some_background_on_why_you_wrote}. Here’s what I came up with…

¡ Blogged: {title}

Also, feel free to acknowledge anyone who contributed to, reviewed, or inspired your
article, especially if they’re active on the social media platform you’re using.
 Be sure to apply hashtags and reference @ handles as appropriate. A rule of thumb:
use a handle if you want someone to get a notification (and ideally react or reshare); use
a hashtag if you want to get on the radar of people who are following a certain technol-
ogy or trend. Also note that some bots retweet posts that use a particular hashtag, and
hashtags are sometimes used to collect candidates for various newsletters.
 For example, a social post announcing the fake Zig blog post from chapter 4 should
include @FakeDB (in hopes that they reshare it to their community) as well as #Postgres
(to get on the radar of the many humans and bots that track Postgres developments).

https://lobste.rs/about

256  

 

C

What about Zig? We’d suggest mentioning @ziglang prominently in the post, then tack-
ing on a #ziglang hashtag at the end. It would be amazing if the official Zig language
account shared the article, but it would also be helpful to get on the radar of newsletters
that pick up stories mentioning #ziglang.

TIP Before you use a hashtag, search for it and check that 1) it’s used fairly
often and 2) it’s not also used for something totally different and possibly
sketchy. The latter could result in a lot of followers of dubious intent.

S

The second your social post goes live, inspect it to ensure everything is as expected.
Confirm that the thumbnail image you hopefully already set in the metadata (see chap-
ter 7) isn’t awkwardly cropped, the accounts you referenced are properly hyperlinked,
and so forth. Maybe alert some of your close peers so they can give it an instant boost.
Then, wait patiently (or not) to see if there’s a response.
 As you move on with your life, check in frequently to see if there are any notifica-
tions. If you followed our advice to share it on one platform at a time, it’s much easier
to monitor.
 If people do comment, respond as rapidly as your other commitments permit. Here
are a few tips:

¡ One to many —Don’t just respond to the individual who commented; respond
with everyone scanning the comments in mind. For every person who is actively
engaging, there are likely many more lurkers following the conversation silently.
Even if you can’t change the mind of a combative jerk, it’s still worthwhile to pro-
vide additional details and explanations for the sake of the silent majority.

¡ Thanks giving —Assume a positive intention and behave as if anyone who com-
ments is doing you a favor (they might be!). Explicitly or implicitly thank any-
one who engages. This could range from “Thanks for pointing that out—I’m
rerunning the tests now and will report back (as well as update the blog post)” to
“Appreciate the feedback— interesting observation.”

¡ Focus on facts —A discussion sharing facts like your experiences, test results, or
accepted industry knowledge will inevitably be more productive than one based
on opinion. Feature facts versus opinions in your own responses; hopefully oth-
ers will follow your lead.

¡ Know what you don’t know —If you don’t know something, “great question” is a
perfectly acceptable response and preferable to trying to guess. If you’re lucky,
someone else will jump in with the answer. If not, you have your homework cut
out for you. And if you discover something interesting, feel free to merge it into
the current blog post or start planning a new one to share what you learned.

¡ Be curious —As we recommended for the review process, be curious rather than
defensive when you start engaging with someone who questions an aspect of your
work. Try to understand where they’re coming from. Maybe they misunderstood

	 257Sharing across social and virtual communities

 

something (which is a sign that you should clarify something in your article).
Maybe you overlooked something (which is a sign that you should extend or
rewrite some part of your article, and thank them for pointing it out). Or perhaps
they’re just a jerk (which is simply a sign that some people are jerks).

Speaking of jerks: What if someone is argumentative to the point where the conversa-
tion is not productive? One approach is to totally ignore it. Another is to agree to dis-
agree, then ignore the individual. A simple “Okay” or “Comment noted” response can
not-so-subtly signal that you’re moving on. And if you have the power to delete (e.g.,
if the discussion is embedded within your own blog), feel free to wield that power as
needed. Your (serious) readers will thank you.
 But not everyone is a jerk! If you cross paths with some interesting people comment-
ing on your post, consider following them. You might also want to add them to one of
the lists or other mechanisms you created to discover interesting discussions without
relying on the algorithms.
 Finally, remember that your article is out in the wild now, so people might be talking
about it in places where you never shared it. If you want to obsessively monitor the
conversation, search for the name of your article (try searching for the article title with
quotes and without), then sorting by “new” or “latest” to see if anything turns up. This
won’t catch everything, but it might uncover some relevant conversations that you’ll
want to be a part of.

TIP What if your post goes unnoticed? Maybe your target audience was
focused on a major world event or simply distracted by the latest meme. Or
perhaps the wording of your post didn’t catch people’s attention. Feel free to
try another variation after a little time has passed. But first, check the blog post
views and other metrics (discussed at the end of this chapter). Maybe people
are reading and appreciating the blog post without engaging with the social
media post.

S

After you’ve witnessed the initial response to both your social post and your blog post,
revise both if needed; then start on the next wave: posting across focused virtual com-
munities. Target the specific subreddits, Discord servers, and other communities where
experts (or aficionados at least) discuss the specific technologies and topics covered in
your blog post. These should all be communities that you’ve been participating in for
a little while now.
 Why go in this order of social media platforms first, then these targeted communities
next, and finally Hacker News last? If all the planets align,

¡ The initial vetting on social media will help you uncover any major points of con-
tention in what’s likely the friendliest of these three options. You can then update
your blog post or have your responses prepared before you broaden your reach.

¡ The discussion in focused virtual communities could get experts talking about
your article. Again, it’s another chance for feedback, which might help you

258  

 

 

C

harden your article even further. And getting traction here is likely your best
chance at having someone other than you or your teammates post the article on
Hacker News.

To increase your chances of success, start by re-reading all the rules of engagement
(yes, again) and ensuring that you’re following the protocol exactly. Then spend a few
moments writing a message that’s geared specifically to using this blog post as a conver-
sation starter in this particular community.
 For example, let’s return to the fake Zig blog post. One possible message for a
FakeDB-focused subreddit could be:

My team and I were struggling with migrating data from Postgres into FakeDB clus-
ters. TurtleMigrator was just too slow and painful. We ended up creating a new
migrator tool and open sourced it. I wrote up more details in this blog post: {link}.
Would love to hear your thoughts and happy to answer any questions.

But sharing it on a Zig Discord server would call for a totally different approach, some-
thing like

My team and I just used Zig to implement a data migration tool for a critical project.
This was our first experience with Zig (we all come from C, C++, and Rust back-
grounds). I shared our experience in this blog post: {link}. We also open sourced the
project. All feedback appreciated—and we welcome project contributors, too!

When you’re ready, share your message, maybe one community at a time just in case
someone points out something you want to change. Then track activity, respond as
described in Step 2, and repeat as desired across relevant communities. Also, periodi-
cally search other relevant virtual communities to discover any additional discussions.

TIP In virtual communities where everyone’s identity is highly obfuscated, it’s
especially polite to add a comment announcing yourself as the author of the
post. A simple comment like “Hi, author of the article here—happy to answer
any questions” will do the trick.

S

So you’ve shared the blog post on all your social media accounts and all the focused
virtual communities that you want to engage with and still nobody has posted it
on Hacker News? Okay, see if a colleague with reasonable karma will submit it. As a
last resort, do it yourself. Then dust off your good luck charm and be prepared to
engage.

WARNING If you’re not yet aware of the vitriol that’s endemic to Hacker News,
do yourself a huge favor and take a look around before you engage. Pay partic-
ularly close attention to the notorious comment sections. The criticism can be
crazy and brutal. Many feel that it’s worth it because trending on Hacker News
can generate so much attention. But remember that Hacker News is read by a
broad swath of technologists as well as professional internet critics. A smaller
bump on a more focused virtual community could very likely lead to more
meaningful engagements than a spike on Hacker News. Still, “trending on

	 259Sharing across social and virtual communities

 

Hacker News” is treated as a badge of honor across the tech community. If
you’re tempted by the promise of that fleeting fame, submit your article fully
aware of what you’re getting yourself into (and perhaps dragging your entire
blog site/project/company into).

TIP To quickly surface the most recent submissions for your site, filter Hacker
News posts by domain. For example, if you wanted to search for articles from
the domain example.com, you would use https://news.ycombinator.com/
from?site=example.com.

On some other platforms, a coordinated effort could help a solid submission gain trac-
tion with the algorithms. On Hacker News, too much coordination is likely to hurt
more than it helps. If you really want to try, ensure that all associated activity is as
organic and natural as possible. That includes

¡ Working with a group of people who normally browse, upvote, and comment on
articles and have all accumulated respectable karma.

¡ Having those people engage like they normally do, naturally browsing and engag-
ing with a variety of main page and/or new links, before clicking and upvoting
your link.

¡ Not having the exact same set of people engage every time there’s an article from
your blog post’s domain.

Also, know that attempts to game the system could be dangerous, to the point where
the offending accounts and/or domains could be penalized or “shadowbanned”
(meaning they’re instantly [dead] and cannot receive votes/comments). See “A List
of Hacker News’s Undocumented Features and Behaviors” (https://mng.bz/1aPR) for
more details on shadowbanning, as well as all sorts of other Hacker News trivia and
technicalities.

Here is a handpicked collection of little-known details:

¡ Users can flag submissions as inappropriate.

¡ Efforts to evade voting manipulation detection mechanisms must be more elab-
orate than “point users to the front page (or new page) and ask them to find and
upvote your submission.” This trick does not actually work at all.

¡ Posting with a link and then adding text as the first comment is recommended.

 ¡ Moderators will give warnings to prominent users prior to shadowbanning.

Finally, there are two important tips from moderator “dang”:

¡ “HN readers want the inside view. Introduce yourself, tell how you came to work
on this and what’s different about it, and give interesting details about the prob-
lem, the project, the implementation. Don’t just say what you’ve made. Include
the how and why. Those two are actually the more interesting to this community.”

¡ “Don’t talk to HN like a company (‘Team Oneshop’) or other abstraction.
That creates a feeling of separation from the community. Instead participate as

https://mng.bz/1aPR

260 Chapter 15  Getting attention

	

	

yourself (or yourselves) in a community of fellow builders and entrepreneurs.
Then it will feel like you’re approaching the community as one of them.”

15.2.3 Keeping it alive

Don’t let your article fade away after the initial buzz dies down. Consider these options
for keeping the momentum going:

¡ Pin —Pin the related social post to the top of your social profile until you publish
your next (and even more impressive) blog post, at least.

¡ Hunt —Continue to hunt down any mentions of your blog post across social
media platforms and virtual communities. Then, engage with the discussions
and follow any valuable contributors you cross paths with.

¡ Seed —Embed the blog post into relevant discussions across the platforms and
communities you regularly monitor. For example, “{comment_on_their_article}.
I explored this topic from the {whatever} angle and found that…” Take advan-
tage of each platform’s search functionality and look for relevant discussions
every few weeks or so.

¡ Trace —Check for backlinks to your article. You can use https://ahrefs.com/
backlink-checker/ for a limited view that doesn’t require any registration. If
you’re willing to register, Neil Patel’s Ubersuggest provides an extensive list
(https://neilpatel.com/backlinks/). If you find some backlinks, share your
thoughts on those articles across your social network. For example: “Ah, nice to
see my article on {topic} featured in {place}. {link_to_your_article} {link_to_the_
referring_article}.” Note that we discuss backlinks and other analytics, like refer-
ral sources, at the end of this chapter.

¡ Include —Link to a lively Hacker News discussion at the top of your blog post
and/or embed your social post announcing it at the end of your blog post. That
way, anyone who comes late to the party can easily find and review the discussion.

15.3 Publishing in selective tech publications
Now, let’s shift focus to truly optional amplification options, starting with publishing
in selective tech publications. First, a little backstory to better understand what you’re
working with.

 Once upon a time, blogs did not exist. Instead, engineers looking to share technical
articles had to do so in printed tech magazines and journals which were—believe it or
not—mailed to people’s homes or workplaces! In addition to peer-reviewed journals
run by IEEE and ACM (e.g., IEEE Software, ACM Queue), there were for-profit publica-
tions with journal-y names, like Dr. Dobb’s Journal, C/C++ Users Journal, and Linux Journal.
Each issue had a limited number of pages, likely determined by balancing print and
mailing costs versus any advertising dollars available to offset those costs. If you wanted
your article to occupy one or more of those finite pages, you had to convince the gate-
keepers—the editors—that your article was worthy.

https://ahrefs.com/backlink-checker/
https://ahrefs.com/backlink-checker/
https://neilpatel.com/backlinks/

	 261Publishing in selective tech publications

Fast forward to today. Anyone can publish anything online at any time. And anything
published anywhere can trend in Hacker News or go viral on social media. But a modern
version of these classic journals still exist: editor-driven digital publications such as The
New Stack and InfoQ. And the IEEE and ACM publications have survived and gone digital.

What are we even talking about here?
This section focuses on publishing your article in a publication with an established edito-
rial team that actively curates content. Let’s break that down:

¡	Publication—It has a stated mission and selectively publishes content that helps
achieve that mission.

¡	Established editorial team— It’s led by a team of named professional editors who
are experienced across the publication’s technology focus, publishing, or both.

¡	Actively controls content—Those editors actively manage and control what’s pub-
lished. Authors propose article ideas, and the editors determine which ones are
actually published (and when). The publication’s staff reviews, proofreads, and
posts each article.

This is opposed to aggregators where authors create accounts and directly submit arti-
cles that are generally published—unless they contain red flags like excessive product
promotion or offensive content.

	

	

	

	

	

	

Across these publications, there’s a formal article selection and publication process:

1 Authors submit an article, outline, or abstract for consideration.

2 The submission is reviewed by an editorial team.

3 If accepted, the completed article is reviewed, sometimes peer-reviewed for tech-
 nical integrity.

4 The article is copyedited to meet the publication’s standards.

5 The article is published (finally!)

This process requires considerable resources, which means the publications can’t pub-
lish every compelling submission. As a result, the articles selected for publication gain
a certain air of prestige. The more selective the publication, the greater the prestige.

15.3.1 Why bother?

Consider submitting your article to such publications if you’re interested in that pres-
tige, or at least the fringe benefits it can provide. Those potential benefits include

¡ A chance to win the lottery —Your article could be featured in Google News, which
is one of the world’s top 10 news sources. Articles from tech publications are
com-monly shown in the “For You” section, where algorithms select recently
published articles on topics that Google creepily knows the reader is interested
in. If your article mentions a technology with a large following (e.g., Linux,
Python, Kafka),you could reach a massive amount of interested readers over the
course of several days, likely more than you could with a fleeting stint at the top
of Hacker News.

262 Chapter 15  Getting attention

	

	

¡ A professional content distribution machine —You tap into their community of read-
ers and professionally developed distribution channels. If it’s a for-profit organi-
zation, they make money by luring people in with compelling content. You can
bet that they have invested in sleek ways to catch readers’ attention and keep
them binge-reading across the site as long as possible.

¡ Good company —Your article could be listed alongside articles by other industry
experts and recommended to readers browsing similar articles. This might be
especially attractive if you’re looking to become known as an expert in one of the
publication’s signature topics.

¡ Referenceability —Articles published in “reliable sources” such as selective tech
pubs can be used as references in Wikipedia and other publications that scru-
tinize the authority of citations. Self-published articles, including articles pub-
lished on company blogs, are not acceptable references in many contexts.

¡ Free review and editing —Your article will be professionally vetted and copyedited.
Some publications might also run it through technical reviewers on staff or
coordinate a peer review process. This free external feedback could help you
strengthen the article before it’s published.

¡ Badge of honor —You can add something like “published in ImpressivePress-
Journal” to your bio/resume. This might help you stand out in highly competi-
tive hiring or conference selection processes. It’s also a differentiating brag point
for the dreaded performance reviews. Someone outside of your field might not
be able to judge whether your article is impressive. The fact that a professional
publication decided to publish it can be a convincing endorsement of its quality.

15.3.2 Why not?

There are two main reasons to skip this option: time and control. If the publication
requires original content (and most do), you will need to delay publishing your arti-
cle elsewhere. Some publications can get the article published within a couple weeks.
Other times, the wait is well over a month. Also, you might need to spend some time
adapting the article’s focus and style for that specific publication. Publication here
might require reducing or increasing the word count, adjusting images, or adding ref-
erences to support your statements. In addition, you should set aside time to respond
to editorial review comments.
 You also cede some level of control when you take this path. You typically give up
your right to update the article as you see fit, influence how it’s promoted, and con-
trol what other content is displayed next to it. Plus, the editors might ask you to add/
remove/rewrite entire sections, retitle the article, and so on. It’s their publication. They
set the rules, and you need to play along.

15.3.3 Considerations

If you’re considering submitting your article to one of these publications, here are
some things to investigate and/or think about as you decide if it’s worth the effort:

	 263Publishing in selective tech publications

 

	

¡ Is the publication respected in the communities you wish to permeate?

¡ Do people you respect ever share links from this publication?

¡ Is there a paywall or registration wall, maybe after a certain scroll depth or num-
ber of page views?

¡ What do they focus on? What’s their mission, and what articles seem to trend?

¡ Would your article fit nicely into one of their existing categories?

¡ How many readers do they have? What does their social following look like?

¡ Who are their readers (job titles, level of experience, company size, etc.)?

¡ Who are their authors?

¡ What’s their process for submission, review, and editing?

¡ How do they promote similar articles (number of social posts, newsletter refer-
ences, etc.)?

¡ Do they accept previously published content? If not, how much would you need
to modify an existing article for them to consider it original content?

¡ Can you republish a version of this article elsewhere? After how long?

NOTE Look for an “Advertiser Guide” or “Media Kit” somewhere on the pub-
lication's site. These often feature all sorts of (self-reported) reader details and
stats.

15.3.4 Tips

Here are some tips for getting your article accepted by selective tech publications:

¡ Focus on a tailored fit for one, not a baggy fit for many. See what kind of articles the
different publications you’re considering feature and determine which publica-
tion is most promising for your topic and approach. Then, contact them with
a proposal that’s angled to their specific focus and style. One size never fits all.
One publication might consider your edgy “Thoughts on Trends” article to be
an adorable diversion that’s totally unfit for their esteemed publication. Another
might be honored to feature it prominently on their front page. And the 3000-
word technical deep dive that would be considered overkill in one publication
could find a perfect home in another.

¡ Do your homework. First, take the time to carefully read their author guidelines and
understand exactly what they require for the initial review (An abstract? An out-
line? A full article with a specific word count minimum or maximum?) Look at
their “About Us” page, read their mission statement, and consider how you might
angle your article to better align with that. Then read a few articles in the category
that your article would fall under. What related topics have other authors covered
and how does your article build upon them? Can you weave them into your dis-
cussion? Publishers love links across their existing content. Also see if they have an
editorial calendar of topics published (e.g., September is all about security). You
will want to note if your article fits into their featured themes and timings.

264 Chapter 15  Getting attention

¡	Play by the rules. If they want original content, give them original content. If you
haven’t already published your article, hold off until you hear whether or not the
publication is interested in it. If you have already published it, be transparent
about that. Propose (or write and share) a somewhat different variation for this
publication, perhaps expanding the scope a bit or maybe narrowing it to take a
deeper look at the aspect that’s most intriguing to this publication’s readers.

The gray zone: DZone, HackerNoon, and others
There are a few interesting publishing options that fall somewhere between selective
tech publications and self-publishing sites (such as Medium and dev.to). HackerNoon,
ITNext, and DZone are prime examples.

Unlike pure self-publishing sites like Medium and dev.to, they provide a level of human
editorial oversight and frequently reject articles that don’t meet their focus and guide-
lines. But they don’t have the same level of editorial oversight that you would find at,
say, InfoQ or The New Stack. That makes them easier to get into, but it also means being
published here doesn’t carry the same level of prestige. Also, they are less likely to reach
Google News or be considered reliable sources that can be cited as proper references.

As far as considerations and tips, take a look at the ones for the previous section and
those in the next section. Elements of both apply. Mix and match as you see fit.

	

	

15.4 Syndicating simulacra
Many blog syndication sites let you republish a word-for-word replica of your existing
blog post for a chance at a new audience, and you can do this without penalizing your
original blog post in terms of search engine rankings. This option is a no-brainer as
long as it takes only about 5 minutes of work (copy/paste and settings configuration).
 For example, assuming that PretendPiotr’s fake Zig blog post was originally pub-
lished on his company blog site, he might also pop it onto Medium and dev.to. There, it
might make its way to some additional FakeDB, Postgres, and Zig enthusiasts.

15.4.1 Why bother?

The blog posts that tend to shine in syndication are the ones that are well-aligned
with popular topics or tags (terms vary across platforms; Medium uses “topic”). That’s
because topics/tags factor heavily into what articles are recommended to readers. As a
result, a mediocre article on some aspect of MongoDB, DynamoDB, or Postgres would
probably gain many more views than a show-stoppingly awesome article related to
TigerBeetle or RisingWave.
 An extra bonus: another URL for your blog post means you get additional chances
at Hacker News traction. However, be aware that URLs from some platforms known for
having dubious quality might be penalized by the Hacker News algorithm or deemed
dead upon arrival.

	 265Syndicating simulacra

	

	

	

 Moreover, if your original blog post didn’t perform as well as you hoped, you could
try changing the title for the repost. It’s not really A/B testing since you’re changing
two variables at once. But it’s a chance to see if the new angle resonates and also an
excuse to try another (also slightly different) social media post as well. If you want to
invest a few more minutes into this, you could even try a slightly different introduction
to the article.

15.4.2 Why not?

You probably want to skip this option if republishing requires any substantial effort. If
your blog post contains interactive elements or relies on special plugins or libraries, it
might not be worth the extra time required to get it re-created in a new environment.
 Another reason: you’re just not comfortable with the site. Maybe it opens a paywall
after n views, maybe it has a strong beginner vibe that makes you feel like you’re
an adult seated at the kids’ table. If it doesn’t seem right for you, skip it.

 Finally, if you tend to update blog posts after they’re published, having multiple ver-
sions could lead to versioning problems (or a maintenance mess).

15.4.3 Considerations

If you’re thinking of cross-posting your article on a self-publishing platform, the main
consideration is how much time it will require, as discussed above. If you can publish
it rapidly (maybe to keep yourself awake during that boring meeting), it’s probably
worth a try.
 The other consideration is past performance. If you’ve posted multiple articles here
in the past and the reads and engagement were never impressive, you might want to skip
it. Maybe there just aren’t a lot of people reading about your topic on this site right now.

15.4.4 Tips

Here are some tips for getting the best results when you republish your blog post on
syndication sites:

¡ Canonical is king. Absolutely positively do not forget to set the canonical URL
to your original article. This tells search engines to prioritize your original
article in their search results, so the other version (which might feature ads,
links to random other articles, etc.) does not outrank the one on your blog
site or your company blog site. The option for setting this could be buried in
the depths of“Advanced Settings” (that’s where it’s currently located on Medium
). If you don’t see it in the main options, keep looking. Note that it might be
named something slightly different, such as “Original Source.”

¡ Consider staggering publication. Some platforms will automatically share your pub
-lished article on social media. Sometimes you’ll luck out: a reader will
stumble upon it (maybe via the platform’s recommendations), read it, and
decide to share it. If you publish this version of your article at least a week or so
after your original version, it could spark a second wave of social media
promotion.

266 Chapter 15  Getting attention

	

	

	

¡ Take care with taxonomies. Think carefully about the topics/tags that you apply to
the article. An article with limited or poorly selected topics/tags is unlikely to
reach additional readers. This is covered in chapter 7. Summary: balance rele-
vance and reach. Definitely don’t skip the ones that are the best fit, but also try
your luck with some broader ones, too. Some platforms allow no more than five
tags; that’s a good cap for keeping it focused and avoiding the tag sprawl that
makes it look spammy.

¡ Provide real contact information. Unless you decided to publish under a pseudonym,
use your real name for the platform and give readers a way to contact you: a social
account with open DMs, a LinkedIn profile link, or similar. It’s frustrating for
conference organizers, tech book publishers, and other talent scouts to stumble
upon a great Medium article but not find any way to contact the author.

15.5 Guest blogging
Guest blogging is simply having your blog post published on someone else’s site. It’s
not all that common, to be honest. But in the few situations where it makes sense, it’s
truly a win-win for both parties. You get more exposure within a relevant community of
readers. And the blog editor gets a new article from a fresh perspective.

Guest blogging might be an option if

¡ There’s a blog behind a product, project, or technology you featured in your
blog post.

¡ There’s a blog behind a conference or event you’re participating in.

For example, a variation of the fake Zig blog post would be a natural candidate for a
guest post on the FakeDB blog site.

15.5.1 Why bother?

Guest blogging for a highly relevant blog site is generally a great way to reach your tar-
get audience. It’s not going to garner as many views as, say, trending on Hacker News.
But a high percentage of the people who see your blog post here are likely to be inter-
ested in your topic. With this tactic, it’s all about quality, not quantity.
 Guest blogging on a conference-hosted blog offers another benefit, too: it could
attract more people to your session. Just don’t leak the core of your talk in advance.
Consider sharing an article excerpt that you won’t be covering in detail during the talk.
Or, provide them a related article that’s aligned with your talk and/or the broader con-
ference theme.

15.5.2 Why not?

If you really want to capture the interest of this community, the article should be highly
focused on the product/project/theme they care most about. If your existing post is
a perfect fit as is, great. Send it over! But if you need to adjust the focus, consider
whether the opportunity seems valuable enough to justify the extra time required to
revise or extend the article.

	 267Participating in podcasts and livestreams

	

	

	

15.5.3 Considerations

As you debate whether a guest blog will pay off, think about the following:

¡ How do they typically alert their community about new blog posts?

¡ Is there any sign that their community really engages with the blog (e.g., social
media engagement)? Will the blog editor share any metrics?

¡ Does the other blog look clean and impressive?

¡ If your blog post is code-heavy, how nicely do they display code on their blog?

15.5.4 Tips

Here are some tips for getting your blog post cross-published on someone else’s site:

¡ Ensure it fits their audience. Focus on what this specific audience cares about most.
For example, the fake Zig blog post would be a perfect candidate for the FakeDB
blog. However, the Fake DB audience would care more about how the Postgres to
FakeDB migrator works and less about PretendPiotr’s thoughts on Zig. It could
also be a nice fit for some still-fictional Zig blog. In that case, it would make sense
to minimize the discussion of the team’s previous data migration woes and focus
almost exclusively on the Zig-related learnings.

¡ Consider companies associated with open source projects. If your blog post features an
open source project, also think about the various companies that have produc-
tized it in some way (e.g., offering it as a service). They likely run company blogs
and their users might be highly intrigued by your lessons learned working with
that technology or your thoughts on its promising future. For example, if you
wrote something intriguing about Apache Pinot, StarTree’s blog might be a per-
fect publishing platform.

¡ Ask for a link. You’re donating free content, saving this other blog editor from
having to write or source a story to fill their editorial calendar. The least they
could do is give you a link or two to promote your personal blog, project, com-
pany—whatever is important to you. And if the article is a close copy of your orig-
inal post, request that they set the canonical URL to the original post.

15.6 Participating in podcasts and livestreams
Podcasts and livestreams offer a way to reach people who enjoy watching and listening to
educational content. Some people strongly prefer reading and they cringe when a link
leads to a video or audio recording. Others would rather listen to a 1-hour podcast than
devote 8 minutes to concentrated article reading. Many people like to mix it up, depend-
ing on their mood and multitasking activities (e.g., commuting, walking, cooking).
 Having a successful blog post can help you break into the world of podcasts and live-
streams, or finally earn a spot on ones that were previously beyond your reach. You’re
unlikely to find a program that wants to spend 30 minutes talking specifically about
your blog post. But having a successful blog post is a perfect excuse for contacting the

268 Chapter 15  Getting attention

	

	

	

host. Sharing your blog post helps the host 1) determine if your take on the topic is a
good fit for the program, and 2) prepare thoughtful questions for the discussion.
 For example, assume that one of PretendPiotr’s favorite podcasts was planning to
have programmers discuss their first experiences with Zig. He could contact that host to
express interest and share a link to his Zig blog post to show that he’s qualified to speak
on the topic.

15.6.1 Why bother?

The immediate payoff depends on how many people tune in to the session (live or
on-demand). But just being able to mention that you’ve been on a podcast or a live-
stream (especially an expert panel) is a notable achievement, and it can be a stepping
stone to more/bigger/better speaking opportunities. Consider it brand promotion
versus blog post promotion.
 For people who are comfortable speaking on the spot, not much preparation is
required. If you find that the opportunity has a good reach and you can pull it off with-
out too much planning or perspiration, it could very likely be worth it.
 Another potential benefit: if you’re in a group discussion, you might get to meet and
interact with experts in the field. That’s often fun in and of itself. Moreover, it could
open the door to additional collaboration with these experts, as well as elevate your
profile by being featured alongside them.

15.6.2 Why not?

Opportunities can vary dramatically in quality. Don’t consider or commit to anything
without researching it first.
 One thing that’s pretty constant is that you’ll likely have limited control over the
direction of the conversation. If you decide to participate, you will be a guest on some-
one else’s program, so you need to be respectful and follow their lead.
 Moreover, if the thought of unscripted public speaking sends you into anaphylac-
tic shock (and you’re not feeling compelled to get over that), this might not be the
best option for you. But maybe you’re willing to leave your comfort zone and challenge
yourself?

15.6.3 Considerations

If you’re considering participating in a podcast or livestream, think about the following:

¡ How many people generally tune in live and/or on-demand?

¡ If it’s live, when does it occur (e.g., will your CET-calibrated brain need to be
responsive and clever at 2 am to accommodate a PST afternoon time slot)?

¡ If it’s prerecorded, are there opportunities for retakes or cuts?

¡ How is the audio/visual quality of other episodes?

¡ Can you influence the questions at all (e.g., can you review and comment on
the question list in advance, or offer canned “seed” questions that you want to
answer)?

	 269Sharing at conferences

	

	

¡ Is the livestream chat generally smart and civil? Do guests engage with it?

¡ If it’s a panel, how does the moderator typically manage the discussion, rein in
digressions, and keep it balanced? What types of guests does the host attract?

15.6.4 Tips

Here are some tips for breaking into the podcast/livestream realm:
¡ Be selective. Don’t approach every tech podcaster/streamer you can find with the

same generic message. Take the time to make a list of candidates, watch/listen to
multiple episodes of each (skim them at least), then craft a custom message for
the few that look most intriguing. It’s nice to mention what you like about that
particular program and how you fit into their themes.

¡ Predict questions. If you’re nervous about how you’ll respond when you’re put on
the spot, think about the questions that could arise and how you might approach
them. Maybe even look at the latest Hacker News and other discussions related
to your topic.

¡ Rehearse likely tidbits. It’s safe to assume that the host will ask you to introduce your-
self, share what you’re currently working on, and maybe say something about the
biggest challenges and opportunities related to your topic. You might as well pre-
pare your answers in advance and rehearse them with your rubber ducky.

¡ Invest in decent equipment. You don’t need to have the equivalent of a Hollywood
sound stage, but do invest in a reliable (wired!) mic as well as adjustable lighting
when video is involved. Muffled, staticky, or inconsistent sound will cause some
listeners to drop, shift the chat/comments discussion to complaining about the
sound, and could prevent the episode from being featured on demand. To be
safe, do a test recording then check how it looks and sounds from the audience
perspective (volume, static, where your eyes are focused, etc.)

15.7 Sharing at conferences
A blog post offers a smooth glide path into conference speaking opportunities:

¡ You already have a topic that you’ve thought about quite a lot.

¡ Your post provides a convenient head start for creating a deck and talk track.

¡ It’s considerably less risky for organizers to accept a topic when they can see how
it’s covered in a complete blog (versus just a short abstract).

It does require an investment of time: thoroughly vetting the conference, proposing a
compelling abstract, preparing the deck and speaker notes, rehearsing, actually deliv-
ering the talk, and maybe even traveling somewhere in the process. But the payoff can
also be significant in terms of elevating your profile, connecting with experts on your
topic, growing your following, and so on.
 This is an expansive topic with many considerations throughout different phases of
the process. That’s why we’re covering it in detail in chapter 16.

270 Chapter 15  Getting attention

15.8	 Measuring the effects
How does all this amplification affect your blog post as well as your brand? Let’s close out
this chapter with a high-level rundown of the types of metrics that could be helpful to
measure. Your access to metrics depends on where your article is published (table 15.1).

Table 15.1  How to access metrics depending on where your article is published

Publication site How to access metrics

Your own blog site Geek out over metrics to your heart’s content via Google Ana-
lytics, Google Search Console, or similar tools.

Your company’s blog Someone, somewhere (Marketing?) certainly has access to
these metrics and can share the stats you’re interested in.

Another blog or a tech publication Ask your main contact for a report. Note that they might not
be at liberty to share this information externally.

A self-publishing platform like Medium
or dev.to

You’re limited to the (frequently changing) glimpse of metrics
they choose to share.

WARNING  Technical readers are notoriously obsessed with evading tracking.
As a result, behavior tracking metrics such as new visitors versus existing visi-
tors could likely be skewed. Still, flying with limited vision is better than flying
totally blind.

15.8.1	 The blog post

The following metrics provide insight into blog post reading:

¡	Views and users—Views is the total number of blog post page accesses, including
repeated views by the same user. Users is the total number of unique people who
viewed that post.

¡	Scrolled users—A user is considered “scrolled” if they read through at least 90% of
the page. This should provide a good assessment of how many readers reached the
end of the article. On Medium, “reads” is the rough equivalent of scrolled users.

¡	Average engagement time—Engagement time is the average time your blog post was
in focus on the user’s browser and potentially being read. Bot traffic can make
this number much lower than expected.

¡	Bounce rate—Bounce rate indicates the percentage of sessions where users did
not engage (by having the page in focus for at least 10 seconds or interacting with
the page in some manner).

What could cause low engagement time and/or high bounce rate?
If these metrics seem off, especially relative to other blog posts on the same site, it could
be due to bot traffic or an influx of general traffic (e.g., from Hacker News). Slow page load
or technical problems could also be to blame. Or, it might be a signal that

	 271Measuring the effects

¡	The blog post is attracting the wrong readers. To investigate, look at organic search
details, traffic sources, and backlinks to see how people are getting there.

¡	The readers didn’t find what they were hoping to see. Maybe your introduction did
not meet the expectations set by the title, a social media post, or a virtual commu-
nity discussion.

¡	Actual responses—Public or private comments like “Thanks for writing this, it
really helped me” are often the most rewarding indicator of how your blog post
affected readers. They can’t be tracked automatically but do take the time to save
those comments in a file for future reference. Also, revisit them if you ever want
motivation while working on some future blog post.

¡	Conversions—If custom conversion tracking is set up, it can indicate how many of
the people who entered the site via your blog post later signed up for some free
trial, “book a demo” offer, or another offer that requires registration. Even if this
isn’t your top concern, this could be a nice data point to mention when it’s time
for the dreaded performance review. Alternatively, you might also (or rather)
want to track GitHub metrics, such as stars, watches, and forks.

¡	Views/users plotted over time—Looking at how blog post views/users ebb and flow
over time can help you see the effects of known influences (e.g., the day an
impressive influencer shared it). If you notice any unexpected spikes (e.g., in fig-
ure 15.1), this is your cue to start investigating the cause. Was there some heated
discussion on Reddit? Was it mentioned in a popular newsletter? The items in the
next section can help you track down the source.

Views by page path and screen class over time

 

Figure 15.1 The report shows an unexpected spike in interest long after a blog post was published.
This particular spike stemmed from a tech influencer stumbling upon the blog post from a search
engine, then sharing it on his social media account.

272 Chapter 15  Getting attention

Users by session source / medium over time

 

15.8.2	 How people are finding the blog post

The following metrics provide insight into how people are finding your blog post:

¡	Traffic sources—Looking at the core blog post stats by acquisition source helps
you determine just how big that Hacker News boost is (or isn’t). Go into source/
medium for the details you care about (e.g., see figure 15.2). You can learn all
about how organic (non-paid) social, search, and different referring sites are
driving traffic to your blog post.

¡	Organic search details—This includes details like what user queries are surfacing
your blog post, how you’re ranking on each query, and how many people actually
click this blog post from those search results. You might want to consider these
search terms as you plan additional blog posts. And if you discover that users are
reaching your blog post from an odd search term (perhaps “Zig Zimbabwe cur-
rency”), you might want to investigate further, then adjust the article’s title and
metadata accordingly.

¡	Ranking on anticipated search terms—Remember the keywords we talked about in
chapter 7? Unless you have access to an SEO tool, just search them in a browser
(in Incognito mode or equivalent) and see where your blog post ranks. If it ranks
nicely, this could provide a sustainable source of steady traffic. If not, you might
want to consider subtle title or metadata changes—but never undermine the
integrity of the article for the sake of search rankings.

¡	Backlinks—Are people linking to your blog post from other sites: related blogs,
newsletters, lists of resources, and so on? You can get a limited view from free

Figure 15.2 A look at blog post traffic from sources such as Hacker News and the This Week in Rust
newsletter, as well as direct traffic and organic search results

	 273Measuring the effects

	

	

backlink checkers (e.g., Ahrefs [https://ahrefs.com/backlink-checker/] or
Ubersuggest [https://neilpatel.com/backlinks/]—requires registration). If you
uncover an impressive backlink, consider sharing that article as referenced in
section 15.2.3.

15.8.3 Who’s reading and how

The following metrics provide insight into who is reading your blog post:

¡ New users —Knowing if a blog post is attracting new readers or mostly appealing
to your existing community could be a good way to gauge outreach attempts like
sharing it on social media and virtual communities. But beware. Although Goo-
gle defines new users as people who interacted with your site for the first time, it’s
actually people who do not have a previously saved cookie from that website. This
means the new users might be artificially skewed a bit high with tracking-evading
tech readers.

¡ Demographics —Knowing what country your readers are in can help you time your
social media postings. For example, if most of your readers are in India, don’t
publish your social media post at midnight India time.

¡ Technology —Knowing users’ browsers, operating systems, device types, and screen
resolutions can help you determine what to optimize your blog post for and what
to test it on. If most people are reading on mobile, for example, you’d want to be
extra vigilant about having short paragraphs, smartly cropped images, and so forth.

15.8.4 Social and community engagements

The following metrics provide insight into your promotion efforts and their effects on
your brand:

¡ Your follower count —This tells you how many people have opted in to your
updates. The more qualified people that follow you, the greater the chance that
people will see, share, and like your social posts—which gives them a boost in
the eye of the almighty algorithms. Your follower count should rise as you share
compelling content (including your blog posts!), as well as engage in discussions
and follow new people.

¡ Impressions —This is the number of times your social post was seen by users on that
platform. If someone with a huge following reshares your post, this will bump up
impressions fast. More impressions equals more readers. That could translate to
more clicks into your blog post. If nothing else, it could help build your brand
awareness (e.g., “that PretendPiotr guy knows about Zig and FakeDB”).

¡ Engagements —Engagements (likes, shares, replies, clicks, etc.) can expand your
impressions. Although you might be satisfied with fewer general engagements
and more clicks into your blog post, the algorithms reward broader engagement.
Strangely, many users will like or share a social post about a blog post they’ve
never read.

https://ahrefs.com/backlink-checker/
https://neilpatel.com/backlinks/

274  C

¡ Clicks —Clicks tell you how many people actually clicked the URL in the social
post and opened the associated blog post. Tracking clicks is especially valuable
if you shared the same blog post in multiple different social posts (maybe one
with an image of the article text, another with a flame graph, etc.). In that case,
click metrics might help you assess which angle worked better. Beware, though:
there are many other factors at play. Perhaps one social post triggered more
clicks because the stars were just better aligned with respect to timing, competing
events, who happened to reshare it, and so on.

¡ Upvotes —Upvotes help your community post climb up lists. Having a healthy
amount of upvotes also secures you a better position in perpetuity. Each time a
user searches for something related to your blog post and sorts results by popu-
larity, upvotes help you commandeer valuable real estate on the list.

¡ Comments —Community posts with a high number of comments do tend to
attract more views. If a good fight is going on, readers naturally want to watch
from the sidelines, or perhaps even jump into the ring themselves. But having
more comments is not necessarily favorable. A community post might have more
comments because the associated blog post is riddled with coding errors, biased
benchmarketing, unfounded assumptions, markety product perspectives, and so
on. Having more comments than upvotes can trigger flame war detectors.

¡ Profile views —If you’re active on LinkedIn, you might also want to see who’s look-
ing at you, especially while your blog post is actively being discussed in various
places. You could discover a nice spike in overall profile views, as well as interest
from specific peers or leaders with intriguing profiles. Note that you might be see-
ing just the tip of the iceberg though; many browse LinkedIn using private mode.

Summary

¡ After publishing your blog post, there are many ways to amplify its reach and
effects, including sharing on social media and in virtual communities, getting it
published in tech publications, syndicating it on other blog platforms, participat-
ing in podcasts/livestreams, and speaking at conferences.

¡ Tailor your amplification strategy based on your personality: introverts likely pre-
fer more async efforts, while extroverts can embrace more real-time interactions.

¡ Even if you’re not super social, start contributing to social media and virtual com-
munities then share your blog post there:

– Before you share your own blog posts, get a good feel for the vibe of the com-
munity and contribute to it in nonselfish ways.

– Take a phased approach to posting across different platforms, starting with
the most ephemeral social media platforms and leading up to Hacker News.

– Engage in the discussion, but feel free to walk away from unproductive attacks.

– Don’t abandon your post after the initial promotion; look for ways to work it
into new discussions and keep looking for other people mentioning it.

	 275Summary

¡	For increased reach with a level of prestige, look into getting your article pub-
lished in selective tech publications.

¡	For a potential extra boost with (usually) minimal effort, syndicate your post on
sites like Medium.

¡	Use your blog post to help secure podcast/livestream guest spots where you can
expand on the topic and promote your expertise.

¡	Similarly, pitch your blog post topic as a potential conference talk to elevate your
profile and connect with others in the field.

¡	Measure the success of your amplification efforts by tracking metrics such as
views, engagement, traffic sources, shares/comments, follower growth, and
backlinks.

16 From blog post to
conference talk

This chapter covers

¡	The value of converting your post to a conference talk
¡	How to identify and compare conference 		

opportunities
¡	Tips for the end-to-end process—preparing a 		

proposal, creating your deck, and following up after 	
the conference ends

As much value as reading (and writing) blog posts offers, it doesn’t corner the mar-
ket on learning. There’s nothing like a conference—people gathering to share,
learn, connect, refresh their t-shirt supply, and commiserate over unidentifiable
buffet food. Options range from KubeCon to FOSDEM, PyCon to QCon, and Monk-
toberfest to Wasm I/O, which makes it hard to claim that there’s not a good fit for
your focus and preferences. Moreover, virtual conferences provide global access to
similar experiences without travel (or the associated approvals and hassles).
 As we teased in the previous chapter, a successful blog post provides a great glide
path into conference speaking. It helps the conference organizers assess whether
you’re a good fit and gives you a distinct edge against other candidates who are simply

276

	 277The path to speaking

	

	

sharing a short abstract full of fuzziness. Plus, you have a head start on thinking about the
topic, creating the storyline, and even responding to common questions that could arise.
 This chapter helps you navigate the “blog post to conference talk” path—deciding
whether it’s worth it to you, finding and evaluating different opportunities, and finally
completing the various phases of the conference lifecycle.

16.1 The path to speaking
Using your blog post as a springboard to conference speaking offers a number of valu-
able benefits, as long as you can make the time, secure your company’s approval, and
get past the stage fright that’s quite common among developers.
 Before you immediately dismiss speaking opportunities as “not for you,” consider
Piotr’s personal experiences on the matter. For context, remember this quote from
chapter 1: “I (Piotr) was once the epitome of the stereotypical introverted programmer.
I dreaded speaking in front of what I considered a crowd (more than two people).”

16.1.1 Piotr’s path

I wish P99 CONF and other virtual conferences that let you pre-record a talk were a thing
in 2018. Instead, my first-ever conference talk was in person: ScyllaDB Summit 2018 in

Silicon Valley. At that time, I’d only been working at ScyllaDB for a few months,so I was
reasonably sure I wouldn’t be selected as one of the speakers. Boy, was I wrong.

What made matters worse was this unique Gmail feature that sometimes randomly
categorizes a perfectly legitimate email from your coworker as spam, even when it comes

from the same internal domain. About a month before the conference, I noticed that people
were acting like I was a speaker, but I had no clue why. Then at one point, I decided to check

the Spam folder. Here I saw a message from my boss, asking if I would mind speaking about the
most recent (and also the first) feature I added to ScyllaDB.

My lack of response was assumed consent, which made me doubly terrified:

¡ Thanks to Gmail’s filter fiasco, I ignored a message from my superior during my
first few months at a new job.

¡ I was going to speak publicly at a business conference in the United States (trav-
 eling from Poland).

What a great start!
 Nowadays for online conferences, I tend to write down a full transcript of what I’m
about to say, which I can then read out loud to rehearse, measuring the talk length and
just generally seeing if it sounds alright. The same transcript lands in my speaker notes,
so I can refer to the notes whenever I get stuck. Most in-person conferences now display
speaker notes in a discreet location (teleprompter style), but ScyllaDB Summit, back in
2018, did not.
 I ended up printing out my notes the old-school way. That resulted in a pile of seven
or eight sheets of paper, with my transcript in fine print. And yes, it was just as unusable
as it sounds. I realized that quite early, and that recognition elevated my stage fright an
extra fraction above what I already considered maximum.

278 Chapter 16  From blog post to conference talk

	

 Then, the talk started. I immediately learned four important things that help me
through conference talks to this day:

¡ The stage fright disappears exactly 2 seconds before I start talking. I just have
something else to occupy myself with: speaking. Since my brain is mostly single
threaded, there just aren’t any cycles left to worry about speaking in public.

¡ Breaks for taking a sip of water appear completely natural from the audience’s
perspective, so just use that trick whenever you’re stuck or just need an extra
breath.

¡ When you get a surprisingly difficult question, you can just say “I don’t know!” or
“Interesting, I need to think about this more—let’s take it offline.”

¡ Most of my stage fright comes from the incorrect assumption, perhaps from my
school days, that my audience knows more than I do about the subject and some-

 one is just waiting for the chance to correct me in an embarrassing way.

The average audience, in my experience, consists of three main groups:

¡ People who know less than you do about the subject and are there to learn.

¡ People who know more than you, but are also decent and polite; even if they ask
a difficult question, they are really just seeking clarification.

¡ People staring at their phones. And that's the largest group by far.

None of those groups will actively try to embarrass you. Ergo, that stage fright really is
irrational.

16.1.2 Why speak at conferences?

Next, let’s look at the benefits of getting past that stage fright. We’ll particularly focus
on the value for blog post authors.

recognition as an expert on the topic

Speaking at a conference guarantees you a spot at the equivalent of the Walk of Fame
in your technical niche. You can treat it as applying search engine optimization to your-
self. Once you start making the rounds on the speaking circuit, representatives from
other conferences, book publishers, even founders looking to build out the team will
be able to easily find you and validate your experience
 By association, you’ll get some of the prestige of the keynote speakers. People who
showed up for the megakeynote will also likely stick around and sample some of the
more focused track sessions. Moreover, you might occasionally find it appropriate to
namedrop “Oh yeah, when I spoke at that conference with so-and-so...” Speaking at
conferences is also a great way of promoting your next big project (for example, your
new book on writing for developers) in that biography slide.

network expansion

The value of speaking at a conference extends beyond your few minutes in the spot-
light. An in-person conference usually includes an exclusive speakers’ dinner, or a
speakers’ room designed first and foremost for networking (not to mention
better

	 279The path to speaking

 

	

snacks, internet access, and other “luxuries”). Online conferences have followed suit
and often involve a speakers’ lounge or VIP chatroom. Either way, you already have
something in common with your fellow speakers and you can just review the agenda to
learn (at least some of) their professional interests. That means it’s not so difficult to
connect, even if you’re generally averse to trivial small talk. It’s often beneficial to keep
in touch with other conference speakers after the conference completes. They might
invite you to a panel, you might remember them when your company is expanding,
maybe you partner on a side project at some point, who knows?
 Being a speaker could also give you a chance to meet that big name keynote speaker
referenced in the previous section. Plus, conferences are also a great opportunity to
meet with your audience. Technical conferences attract like-minded people and experts
in their fields, which makes the potential of valuable networking quite high. When
you’re a speaker, attendees are naturally drawn to you following the session. Sometimes
even a casual follow-up chat can lead to interesting collaboration later.

D

If you want to write blog posts that your target audience appreciates, this is your chance
to get direct feedback from actual human beings in that target audience. When you
present your blog post as a talk, you can see what parts people are most excited about,
where they have questions, and where they start checking their phones. This not only
helps you revise that specific blog post (if desired), but it also sharpens your sense of who
these people really are. And that is helpful with every future blog post that you write.
 In chapter 5, we urged you to read through your blog post with your target reader in
mind and anticipate

¡ What they are most skeptical about

¡ Where they want more context, detail, or supporting facts

¡ Where they might get lost, distracted, or disoriented

Speaking in front of real-life members of this audience can help you calibrate your
assumptions versus reality.

F

Having a professionally produced video of yourself speaking can be impressive when
you’re applying for jobs, submitting conference or book proposals, completing your
annual performance review, or just trying to give your friends and family some idea of
what you do at work. It’s a great portfolio piece. And it can be conveniently embedded
into your blog post if you want to offer people the option of watching as well as reading.

TIP To be safe, download a local copy of the video. You never know when the
organization will decide to stop hosting archived videos.

16.1.3 Why not?

Assuming that Piotr’s personal story puts the “stage fright” objection to rest, there are
really just two reasons not to try converting one of your blog posts to a conference talk.

280  

16.2	

C

The first is the challenge of getting the required approvals. The second is the time
required to prepare and deliver the talk.

A

This one is often the dealbreaker. If your company won’t allow you to speak publicly
about your topic and won’t fund your travel to in-person conferences, there’s no point
in worrying about how much time it will require. As with blog post publication, some
companies’ approval processes are much more onerous than others. Before you get
too deep into the process, ask your boss and your colleagues if there’s even a chance
this might be approved.

T

Even when you have the advantage of starting with a blog post, conferences do involve
a number of activities and checkpoints that you should plan for:

¡ Creating and submitting your proposal

¡ Any speaker briefings required upon acceptance

¡ Creating your deck and speaker notes

¡ Submitting your deck for review and updating it based on feedback

¡ For virtual conferences, possibly pre-recording or performing advance tech
checks

¡ Any pre- or postevent discussions or promotions you’re invited to participate in

Identifying and evaluating opportunities
Assuming that you’re interested, how do you proceed? Create a list of interesting
opportunities, then prioritize a few top candidates after you dig into some details.
 If you already have a list of conferences that you admire or that you hear your peers
talking about, add those to your list. Then build out the list further by

¡ Browsing YouTube —Start searching by the keywords related to your blog post +
“conference” and see what you stumble upon. You could also try searching for
the names of some topic experts you admire + “conference.”

¡ Using “call for speaker” sites —Sessionize is currently the most popular site for con
-necting speakers and conferences. You can create a speaker profile with
your experience and interests, then use the “discovery” functionality to see
what con-ferences might be a good match. PaperCall is another option.

C

	 281Identifying and evaluating opportunities

	

	

	

16.2.1 Fit

Consider how well this conference’s focus fits your topic and target audience:

¡ What is their stated focus?

¡ What are their most popular topics?

¡ Who’s their audience (job titles, level of experience, etc.)?

¡ Who are the speakers from past conferences?

¡ What level of technical depth do they go into?

¡ How long are the sessions?

¡ What session formats do they offer?

Many conferences narrow, shift, or expand their scope as they evolve year after year.
But if you’re not impressed by the conference’s past, be extremely cautious before
committing to become part of its future.
 When you feel like a conference’s community is “your people,” you’re more likely to
make meaningful connections and get valuable feedback on your ideas.

16.2.2 Reach and promotion

Consider how this conference will help you become better recognized as an expert on
this topic:

¡ How many people are in their community?

¡ How do they promote the conference?

¡ How do they promote individual sessions?

¡ Will they create a professional video to create buzz for your session?

¡ Are there opportunities to cross-post related blogs on their site?

¡ Are there opportunities to be included in speaker Q&A blogs?

¡ Are talks actively promoted after the conference ends?

¡ Are sessions recorded? If so, what do the final videos look like? Will they be avail-
able to those who did not attend the conference?

If the conference is tracked by a large community, the event promotion alone will ele-
vate your profile. A recording is always nice to have (as outlined in section 16.1.2), but
it’s especially important if you want exposure beyond the conference’s community.

16.2.3 Logistics

What does the end-to-end experience involve?
 For all opportunities,

¡ When are deck drafts due? Final versions?

¡ Are there any other deadlines or required preconference activities?

¡ Do they provide templates or do you need to create your own?

¡ Is any graphics help available if you need it?

282  

16.3	

 

C

For in-person conferences,

¡ How much time and money will be required to travel on those dates?

¡ Do they offer a free pass? Cover any travel expenses? Offer hotel discounts?

¡ Do you really want to attend the other conference talks and events?

¡ Will teleprompters be available for speaker notes?

For virtual conferences,

¡ Can you pre-record? If so, can you do multiple takes? Self-record?

¡ Will you end up presenting super early or super late in your local time zone?

¡ How do you engage with attendees and other speakers during the live event?

For example, if you’re particularly nervous about public speaking, you might prioritize
virtual conferences where you can pre-record. And a conference that’s willing to help
you with graphics, slide decks, and similar might be a better starting point than one
where you need to do it all yourself.
 Or, if your heart is set on attending an in-person conference, you probably want to
focus on considerations that help you make a business case for traveling. It should be
simpler to get approvals if the conference covers many of the expenses, plus there’s a
critical mass of sessions that could benefit your team.

Submitting your proposal
The title and abstract are the heart of your proposal. Your immediate goal is to create
something that interests the conference selection committee. But remember that the
title and abstract are used even beyond that initial judging:

¡ The conference committee will use them to promote your talk through social
media posts, event blog blurbs, and so on.

¡ Attendees will review the title and abstract when deciding which talks to attend.

¡ Your title and abstract will also be tacked on the resulting video in perpetuity,
influencing how it’s understood by search engines and recommended to people
searching for related terms.

NOTE We obsessed over the importance of titles in chapter 5. Refer back if you
want a refresher.

Your title should intrigue the reader and demonstrate relevance to the conference
theme. And your abstract should indicate

¡ Why your specific topic is important to this conference’s target audience

¡ How you will cover the topic (with details!)

¡ Why your take on the topic is so intriguing (e.g., it’s based on your experience
building Project A, or you ran some extensive/extreme testing)

¡ What attendees will ultimately learn if they pay attention

	 283Submitting your proposal

If you can make the reader nod, raise their eyebrows, or smile somewhere along the
way—that’s a distinct bonus.

Kent Beck’s abstract formula
Kent Beck proposed the following template for writing abstracts that get accepted:

1	 State the problem.
2	 Explain why the problem is a problem.
3	 Offer up “one startling sentence” (e.g., “We found that X is destined to fail without

Y.”).
4	 State the implication of the startling sentence.

Feel free to try that approach, or come up with your own.

 

	

 

TIP Not sure how to start squeezing your 1000+ word blog post into a 100-
ish word abstract? Try a generative AI prompt like: “Propose an abstract for a
{describe} conference that is based on the following blog post; it should be no
longer than {word_limit).” Then, use that as a rough guide for creating a much
more compelling version on your own.

16.3.1 Reusing/rethinking your blog post

If the title and topic angle in your blog post are perfectly suited to the conference’s
focus and personality, you don’t need to change them. It’s fine to have a conference
talk use the same title as a blog post (as long as it meets the character limit). Still, you
might want to take this opportunity to play with it a little. Did you have some alternative
title ideas you really liked but didn’t use? Do you want to expand, narrow, or reframe
the scope of the topic based on any feedback you received? A conference talk is the
perfect opportunity to freshen it up, so start by having the title and abstract reflect that
new direction.
 If you see an opportunity to make your title and angle a better fit for the conference,
do it! Think about it from the conference organizer’s point of view. If there are two
equally intriguing talks—one that’s directly related to the conference theme and one
that’s not—which one do you think will be selected? Relevance is a critical evaluation
criteria.

TIP You can often submit multiple proposals to a single conference. If you’re
debating between a few different approaches to your original topic (or if you
want to try speaking on something altogether different), submit the allowed
number of ideas and let the organizers decide which one they prefer.

As you begin to write, draw lots of inspiration from the blog post’s introduction. If you
followed the advice in chapter 5, the introduction should already

¡ Share what you’re trying to accomplish and why the target audience should care

284 Chapter 16  From blog post to conference talk

	

¡ Expose what angle you’re taking on this topic

¡ Indicate why your take on this topic is interesting

Work all that into the abstract! Also, apply the clarity tips from chapter 5 to thoroughly
optimize every sentence. There’s no room for lard here; every word should be carefully
selected and add value.

16.3.2 Submission tips

Here are some additional tips for an effective submission:

¡ Learn from the past. Look at past talk titles and abstracts. What’s the style? You
don’t want to submit something playful and snappy when all the past ones are
serious and quasi-academic or vice versa.

¡ Be brief yet specific. You know this topic inside and out by now. Use that to your
advantage and make your short abstract rich with specifics. The submissions will
be full of abstracts promising to show “some common pitfalls” and “a number
of techniques.” An abstract that indicates clear direction and deep thought will
stand out from the pack.

¡ Align with a suggested topic. Most “Call for Speakers” pages share what topics
they’re hoping to cover. If you can align your talk to one of those topics, make
that adjustment. It will likely improve your chances of being accepted.

¡ Note your blog post. Use the notes field or other submission platform options to
share something like “This talk is based on my blog post: {URL}.” Organizers can
then read the blog post to get a better idea of what you plan to cover. This addi-
tional detail is incredibly helpful for building confidence in first-time speakers.
And if your blog post links to a Hacker News or social media post with lots of
engagement, even better. This shows the organizers that the community is inter-
ested in this topic.

¡ Spend time on your bio. Unless the conference uses double-blind (masked) eval-
uation, speaker quality matters—especially for first-time speakers. If you’re not
well-known, that judgment is made solely based on your bio. Your bio shouldn’t
just lazily restate your job title. Share a little more about your background and
interests, emulating the style and seriousness of past speakers’ bios. For example,
“I started learning Rust for fun in 2017. I’ve now worked full-time with Rust for
five years at ACME A and ACME B, writing high-performance and high-availabil-
ity API servers and internet proxies.”

¡ Link to a portfolio. Do yourself a favor: create a simple portfolio web page with links
to your blog posts, any existing talks, GitHub and social handles, a bio, and option-
ally a high-quality photo of yourself (a professional-looking high-res phone photo
is fine). Then link to that in your bio. This allows you to succinctly share details,
even within the constraints of a character-limited form field. Plus, it makes a nice
impression of professionalism, which can help you with the speaker strength crite-
ria. Side note: remember to keep that portfolio page reasonably up-to-date!

	 285Converting your blog post to a talk

	

¡ Be transparent about the product’s role. If your talk mentions your product, provide
enough detail to assure everyone that it’s not a product pitch, especially if your
product is not open source. That might be totally clear in the blog post, but
ensure it comes across in the abstract as well. Nobody wants a thinly veiled adver-
tisement at a conference session. It makes attendees unhappy, and that makes
organizers unhappy. If organizers can’t tell beyond the shadow of a doubt that it
won’t be a product pitch, they will likely err on the side of skipping your talk.

¡ Sweat the small stuff. Look at all the details of what’s required: word count, head-
shot image size, and similar. If you miss the mark on one, the submission might
not go through. Even worse—the text you entered into the submission form
might be lost. Pro tip: prepare your submission responses in a file outside of the
web form, just in case something goes awry.

¡ Note your (authentic) excitement and flexibility. If you have attended and enjoyed the
conference as an attendee, feel free to quickly mention why you love it and why
you’d be honored to speak at it. Also, if you’re willing to adapt your proposal
based on their feedback and needs, make that known as well. Organizers appreci-
ate both flattery and flexibility.

¡ Review the review criteria. See if the conference you’re applying to publishes any
review criteria, and keep that in mind as you work on your proposal (your bio as
well as your title and abstract). For example, here’s how KubeCon submissions
are currently judged:

– Content —The relevance and coherence of the session’s content, the quality of
the proposal, and the likelihood of effective delivery by the speaker

– Originality —The degree to which the session presents new and innovative
ideas or approaches, as well as the originality of its delivery

– Relevance —The extent to which the session’s content provides new and excit-
ing insights or information that is relevant to the conference

– Speaker(s) —The suitability of the proposed speaker(s) based on their exper-
tise and alignment with the subject matter

Finally, set realistic expectations, and don’t get discouraged if it doesn’t work out.
Some conferences have a startling low acceptance rate; for example, KubeCon hovers
around 11%–12% year over year. If you’re not accepted, it never hurts to ask for feed-
back on why your submission didn’t make the cut or what you could do differently next
time. Conferences might not be at liberty to provide those details; but if you hit one
that does, it’s a valuable learning opportunity.

16.4 Converting your blog post to a talk
Accepted? Take a few moments to celebrate, then read the speaker guide and start
planning how you will convert your blog post into a talk. All the content is already
nicely written in your blog—maybe too much content, actually. Your job now is to
determine the best way to present it to this conference’s specific audience, at a pace
and depth they can process when listening in real time.

286 Chapter 16  From blog post to conference talk

 

	

	

 

 

TIP Looking for inspiration? TechYaks (https://techyaks.com/) is a rank-
ing-driven list of classic tech talks (think Hacker News). And Brendan O’Leary
wrote a nice analysis of what makes some specific tech talks so compelling in
his blog post “What makes a great tech talk?” (https://mng.bz/2gqw)

16.4.1 Start with the most important takeaway

To start, think about the most important thing you want the attendees to get out of this
talk. This is probably quite close to the goal you stated for your blog post (covered in
chapters 4 and 5), but it might be somewhat adjusted to accommodate the conference
focus or the limited time you have to present.
 With that in mind, write down your mission statement, something like “I’m going to
be sharing {this} to help you {that}.” This statement has two main purposes:

¡ As you plan the talk, use this to filter out any information that doesn’t play an
essential role in achieving that goal. Talks should be even more tightly focused
than blog posts. When reading, people can always skip over anything they con-
sider a distraction. At conferences, they’re forced to tolerate it (or they end up
checking their phones and never regaining that initial focus).

¡ During the talk, before you advance a single slide, share this statement to help
orient and filter the audience. If an attendee isn’t interested in what you have to
offer, they can skip over to another talk before it’s too late.

16.4.2 Map out the slide flow

Start mapping out the slide flow to estimate what you can actually cover in the allotted
time. The rule of thumb is 1 to 2 minutes per slide. That will vary a bit based on the
content of your slides, but don’t expect to cover 50 slides in a 20-minute presentation.

NOTE If your conference specifically requests something different, definitely
follow their guidance. For example, some conferences expect “Lightning Talk”
speakers to use exactly 20 slides and spend 15 seconds per slide.

You don’t need to fill out the body of the slides yet. Just add titles and see where you land. If
you end up with an egregious excess, revise accordingly. Some topics might need to be

merged or, more likely, the scope might need to be scaled down. Can’t immediately justify
why a specific point is required to support the main takeaway? Cut it.

Remember that you have the luxury of sending attendees to your blog post for addi-tional
details, so you don’t have to cover every nuance here. It’s much better to have attendees

walk away with a good grasp of one big idea that they will remember than
leave overwhelmed by an onslaught of information overload. If they’re curious, they
will seek out the additional details later.

TIP For help translating words to slides, use a generative AI prompt like:
“I want to convert this blog post to a 20-minute talk for a Zig conference. Could
you please draft 18–22 slides to cover the core material that a Zig-curious audi-
ence would be interested in?”

https://techyaks.com/
https://mng.bz/2gqw

	 287Converting your blog post to a talk

	

 

16.4.3 Develop individual slides

Once you’ve settled on the flow, optimize the slide titles. They should be short and
clear, helping the attendees determine what to focus on when you’re speaking to each
slide. Use a different title for each slide to avoid confusion and force yourself into
more precision. And as we covered in chapter 5, focus on headings that make sense
from the audience’s point of view. One approach is to match what’s probably running
through their heads (“Why did we take this approach?”, “Was it worth it?”, etc.)
 For the actual slide body, aim to have as little text as possible, and then cut some
more. You want the audience to be listening to you, not reading tons of text. You don’t
want the temptation of reciting the slide text. Stick with a tight set of pithy bullets and
leave your details for the speaker notes.
 Don’t even think about shrinking the conference template’s recommended font to
squeeze more words onto a slide. Attendees have a low tolerance for text they can’t read
and an even lower tolerance for code they can’t read. If your code excerpt doesn’t all fit
on one slide in the recommended font, consider splitting it up or redacting any nones-
sential parts, adding ellipses to indicate the cut. Nobody will be running code from your
slide anyway.
 Not every slide needs to look like a piece of art, but do aim to have at least a few slides
that are visually compelling. Slides that stand out tend to be captured by attendees, pro-
voking paparazzi moments at in-person conferences or screen captures at virtual ones.
You can add visual interest to your slides with system diagrams, flame graphs, other
charts and dashboards, test results—whatever makes sense for your topic. You likely
already created a few for your blog post. Even a stark controversial statement, set off on
its own, could achieve the desired effect.
 Serving up a few attractive and intriguing slides will help attendees share your talk on
social media, which in turn helps you get more recognition for your talk. Also, don’t over-
look the power of a QR code; people are irresistibly drawn to photograph them. Be sure
to add context to that slide so the motivation for scanning is readily apparent later on.

TIP Want ideas on what visuals you could add? Follow up the previous AI
 prompt with “What visuals would you recommend for this presentation?”

Some additional tips for completing your deck:

¡ Share background. Offering up the backstory around your topic is a natural way
to start the talk. Plus, it helps the audience connect with you at a more human
level than if you simply started with impersonal lecturing.

¡ Fun is fine. If there’s a natural opportunity to include a fun example or story,
do it. It’s another way to connect with the audience, and it helps make your
talk more memorable. For example, some speakers use fun visual themes
(monsters,sports, etc.) to tie their ideas together in a memorable flow.

¡ Use section slides as signposts. Section slides give you an opportunity to state the
key takeaway from the previous section, take a deep breath, and then transition
into

288 Chapter 16  From blog post to conference talk

	

 

the next section. If anyone’s mind started wandering during the previous part,
this can help get them back on track.

¡ Feature your blog post. Toward the end of your deck, prepare a full slide
featuring your blog post. Include a screenshot of your blog post plus a QR code
that links to it. For an extra incentive, mention that your blog post will include
the video and slide deck for this talk.

¡ Cover connecting. Prepare a slide that shares how to contact you with
questions or follow you to learn about your next talks and blog posts. Even
better, give them a specific reason to connect with you, like “I’d be happy
to share the resources I found most helpful for learning about {topic}, just
contact me on{platform_of_choice}.”

¡ Prepare backup slides. If you worry that your talk might run short, it’s helpful
to have some backup slides that you can pull up for a quick extension. You
could also include a few slides that would help you address questions that are
likely to arise during the Q&A.

If you plan to demo something as part of your talk—perhaps to show what your engi-
neering feat looks like from the user perspective—plan for everything to go wrong,
then be pleasantly surprised if it does not. Planning for the worst typically means hav-
ing a backup video saved locally. But, you could also prepare slides that let you speak
to the main points you would have covered. Or, you might opt to skip it altogether and
use the extra time to go deeper into other slides. Just have a backup plan and be ready
to execute it at a moment’s notice. You never know when you might find yourself in the
middle of a Windows 98 “Blue Screen of Death” demo moment.

16.4.4 Prepare speaker notes

Many speakers feel more comfortable presenting with speaker notes available—some-
times with key points beyond what’s in the slides, sometimes with a complete word-for-
word script. This is purely an individual decision; do what you’re most comfortable
with.
 If you decide to script it, plan to rehearse it so extensively that it sounds natural
(more on this later). Many speakers use bold text and other annotations to remind
themselves what words to emphasize, when to pause, and similar. While relying on a
script is fine, droning on and on in a monotone voice is not. Make a concerted effort to
make it sound natural and ensure that the script reading doesn’t dampen your innate
enthusiasm for the topic.
 The act of writing the script and rehearsing from it can be worthwhile even if you
never look at that script once during the actual presentation. If preparing a script helps
you perfect the timing and figure out how to approach each slide, it’s time well spent.

TIP If you’re scripting your talk word-for-word, a rule of thumb is that confer-
ence talks run at a pace of 100 to 160 words per minute.

	 289Rehearsing

	

 

	

16.5 Promoting the talk
The conference organizer will likely promote your talk, and you should, too. Sharing
that you’re speaking about {whatever} at Conference A isn’t just about helping con-
ference attendees shape their schedules. It’s also a somewhat subtle way to announce
“Hey, I was selected as one of the experts to help people learn more about {whatever}.”
This builds your reputation as an expert on that topic, even among people who have
zero intention of attending that conference.
 Promoting your own talk doesn’t have to be narcissistic and spammy. To make it pal-
atable, try emphasizing the conference itself, fellow speakers, other interesting talks,
and so on. For example, you might try social posts like

¡ “Looking forward to speaking at #CoolCONF, {why_it’s_so_cool}”

¡ “Can’t wait for this year’s #CoolCONF, where I’ll be presenting alongside experts
like …”

¡ “Excited to talk about {topic} at #CoolCONF—and hope to catch the sessions…”

If the conference organizer offers to feature you in interviews, videos, or their blog,
strongly consider participating. They want to use their professional resources to ele-
vate your profile industry wide and drive attendance to your session. Don’t pass up this
opportunity unless you have a great reason.
 Also, let your company’s marketing team know that you’ll be speaking. They prob-
ably have additional means of promoting the session and would be thrilled to help
spread the word that one of their engineers was selected as a conference speaker.

TIP Be sure to use all the official hashtags and/or handles so the conference
organizers can find and reshare your social posts and comments.

16.6 Rehearsing
At a minimum, prepare to run through your talk a few times (at least!) to nail the
timing. Speakers hitting their mark is absolutely critical. If someone ends up way too
short, attendees feel shortchanged and wonder if they should have attended a differ-
ent session. If someone runs over, it starts a chain reaction across the rest of the sched-
ule (which is why organizers usually cut people off at the end of the allotted time, even
if they’re not done). Aim to fill the majority of the slot and leave the suggested time for
Q&A. Don’t deliver a 20-minute presentation in a 40-minute slot. And never, ever go
over. The organizers will likely remember that if you ever apply to speak there again.

To be safe, create some checkpoints along the way. For example, you might note that

 ¡ You should be at slide 11 by the 12-minute mark.

¡ You need to start the final section by the 16-minute mark.

¡ By the 20-minute mark, you should start wrapping it up.

You could also note which slides you would linger on longer if there’s extra time and
what specific points you can safely gloss over when you need to pick up the pace.

290  

 

16.7	

C

 When rehearsing for an in-person conference, stand up, pretend you’re at the
podium, and walk around. And if it’s a virtual conference, play around with your setup
so you know exactly where your speaker notes and camera need to be positioned so you
end up looking at the camera. Order a wired microphone, an external camera, and
some adjustable lighting if needed. Finally, tidy up your background. Not all produc-
tion software offers the luxury of blurred or virtual backgrounds. You don’t want to be
frantically cleaning your background right when you should be psyching yourself up to
deliver the talk.

If you’re extra nervous, you could also

¡ Rehearse in front of humans

¡ Check out the room (or recording software) in advance

¡ Try to anticipate questions that people might ask (your snarkiest teammates can
likely assist here) and think about your responses

TIP Want some guesses at what questions could arise? Follow up the previous
generative AI prompts with something like: “What questions might attendees
(programmers who are curious about Zig) ask—please specify things that are
not covered in the original blog post.”

Also, if you have any questions or concerns, just ask the organizer. They want you to be
comfortable and prepared, and would probably love to help set your mind at ease.

Delivering
If you want to perfect your public speaking technique, there’s an abundance of
resources available: classes, videos, books, blogs, and so on. We’re not going to try to
capture all that in a small section in a book focused on writing blog posts. But we do
encourage you to pursue it to whatever degree you wish.
 You don’t need to be a professional-grade speaker to deliver an effective talk at a tech
conference though. Here are some quick tips:

¡ Remember that your ultimate goal is to share your experiences and ideas with
your peers, and you don’t need to be the world’s #1 presenter to achieve that
objective.

¡ Speak clearly and at a reasonable pace, remembering that not everyone is a
native English speaker.

¡ Double (even triple) check that notifications and system updates are off.

¡ Use slide transitions as an opportunity to pause, breathe, and reset as needed.

¡ If you want a random break, feel free to take a strategic sip of water.

¡ Look at the audience, perhaps focusing on someone you know or a few people
C

	 291Following up

	

¡ For the sake of attendees who could not hear the question, as well as video view-
ers who can only hear the mic feed, restate each question before answering (this
also buys you a little more time to think).

¡ If you don’t know the answer, say so—maybe another attendee happens to know,
or maybe you want to research it and respond to them later.

¡ If you don’t want to start debating some point that an attendee raises, respond
with something like “Interesting, I hadn’t thought of that,” and move on.

Finally, remember that even the most experienced presenters get nervous. As Gunnar
Morling recently shared on X:

Someone asked me whether I’d still be nervous before giving a conference talk: Yes, I
am. And I think it is actually a good thing. The day you’re not nervous even just a
little bit, you may have stopped caring about doing the best job you can, and the audi-
ence will notice that.

16.8 Following up
You didn’t forget about your blog post the moment it was published (if you read chap-
ter 15, at least). Likewise, don’t let your talk ingloriously fade away after the conference
wraps. Continue squeezing value out of this experience by

¡ Thanking everyone via social —Right after the conference wraps, share something
on social. A quick thank you to the organizers, presenters, and community will
work if you’re simply exhausted at this point.

¡ Writing a wrap-up blog or threaded post —As soon as you’re up for it, share more
about what you enjoyed about the conference: a few takeaways related to the
overall theme or your topic of interest, a rundown of your favorite talks, or any
other angle that strikes you.

¡ Following up on requests —If you promised anyone anything, links to other
resources, an answer that required additional research, whatever: pay your debts
before you forget.

¡ Reviewing any reviews —Some conferences collect feedback on each speaker; if
yours did, scan it for any tips on things you might do differently next time.

¡ Connecting with other speakers —Speaking at a conference provides the perfect
sneaky excuse to connect with experts you might not dare to approach otherwise.

¡ Searching social media for mentions—Try to hunt down any social media references.
If you notice that someone posted about your talk, engage with the post and be
sure to thank the person for attending and sharing.

¡ Tracking down on-demand videos —Figure out when videos will be released and if
they’re accessible to non-attendees (and thus ripe for sharing).

¡ Sharing your video —Once the videos are available, don’t hesitate to draft a social
post saying nice things about the conference and sharing your contribution to it
(the video). You might also want to link to the blog post that it’s based on as well.

292 Chapter 16  From blog post to conference talk

¡	Updating the blog post—Now that you (hopefully) have a nice video on the blog
topic, update the blog post with a link to that video (or a direct video embed).
Consider embedding the slide deck as well. Also consider updating the blog post
in response to any feedback or questions you received during the talk, in the
reviews, or as you waited in the beverage line after you survived your talk.

Conference talks from over a decade ago are still watched and discussed today, thanks
to YouTube and social media. If you strategically plant a few references to it, there’s a
much greater chance that your talk will continue educating people beyond the actual
event.

Summary

¡	Speaking at conferences can lead to a personal brand boost, networking oppor-
tunities, and direct audience feedback—plus an impressive video of yourself
presenting.

¡	When evaluating conference opportunities, consider factors such as topic fit,
conference reach/promotion, logistics, and audience demographics.

¡	Proposals should have an intriguing title, detailed abstract showcasing your
unique perspective/experience, and a strong speaker bio.

¡	When converting your blog post to a talk, customize it for that audience and for
listening versus reading, and be sure to add a few compelling visuals that people
might share.

¡	To prepare, draft speaker notes, anticipate potential audience questions, and
practice, practice, practice.

¡	Work with the conference to promote your talk; tap social media, use conference
hashtags, and see if your own company will also spread the word.

¡	Engage with the audience, speak clearly and at a reasonable pace, repeat any
audience questions before answering them, and try to remember to smile.

¡	Follow up by thanking organizers, writing recap posts, connecting with other
speakers, sharing videos, and updating your original blog post to reference the
talk.

17 So you want to
write a book

This chapter covers

¡	The benefits of moving from writing blog posts to 	
writing books

¡	When you should (and shouldn’t) consider writing 	
a book

¡	Alternative ways to share and shape big ideas
¡	Commonly overlooked considerations in the

“publisher versus self-publish” decision
¡	Navigating the book proposal process

After you’ve written several successful blog posts and maybe have a conference talk
or two under your belt, you might start wondering, “Should I write a book?” You
might start thinking about this because you have a burning book idea—and you
have a bad habit of burdening your future self with ambitious commitments. Or
maybe it wasn’t even your idea at all. Maybe an acquisitions editor (a.k.a. a publisher
talent scout) was impressed by some of your blog posts, reached out to you, and
planted the seed in your brain.

293

294 Chapter 17  So you want to write a book

	

	

 Either way, writing your own book can be a tempting idea. But it’s also a massive com-
mitment. The book will affect your life (and your family’s life) for months or years. But
all the effort could yield significant long-term rewards.
 This chapter helps you think through key decisions and tradeoffs you’ll likely face if
you want to write a book. As with any major project, there are all sorts of non-obvious
factors to consider. We share what we’ve learned working with several different publish-
ers, as well as self-publishing, to give you a better idea of what to expect and what to look
out for. We take you through the book proposal process, then conveniently leave “how
to write the book” as an exercise for the reader. (It deserves its own dedicated book,
honestly.)
 Book writing can be a wild ride; we hope this chapter makes your own path to book
writing—should you choose to pursue it—more straightforward, rewarding, and
enjoyable.

17.1 Why write a book?
To be clear, writing a book is rewarding—both professionally and personally, if not
(typically) financially. Otherwise, you wouldn’t see so many seemingly rational people
succumb to this strangely addictive hobby. Here are specific reasons why you might
decide to invest all the time and effort that writing a book requires:

¡ You have a vision for a book that begs to be written.

¡ You want to anchor yourself as an expert.

¡ You want an excuse to immerse yourself in a topic.

¡ You want to level up your writing.

¡ You have an innate urge to share and teach.

17.1.1 You have a vision for a book that begs to be written

Book projects tend to arise from the following perfect storm:

¡ A void —There’s a void in the industry knowledge base. Maybe that’s because
the technology or topic is new or just now gaining traction. Maybe the techniques
and tools are known only as tribal knowledge across certain communities. Or
maybe there are so many aspects and angles to the topic that the current
resources don’t do it justice.

¡ A hunger —There’s a critical mass of people who care about this void, to the
point that they’re willing to purchase and read a whole book on it.

¡ Expertise —You’re a valuable source of expertise on the topic of the void.

In many cases, a publisher will notice the void and the hunger, then approach blog
post authors to provide the expertise. Or it could happen altogether organically. Per-
haps one day, you randomly realize that what you consider to be common sense is not
actually common at all—and that sharing this knowledge broadly could really benefit
some significant segment of the community.

	 295Why write a book?

	

	

The origin of the book idea isn’t critical. What matters is whether

¡ You have an interesting vision for how to address the void

¡ You personally possess (or have ready access to) the expertise needed to execute
on that vision

¡ You’re already picturing a print version of that book sitting on your desk, book-
shelf, or coffee table

If you’ve reached that point, “the book idea” becomes your book, and you’re
probably already infected by the irresistible urge to write it.

17.1.2 You want to anchor yourself as an expert

Want to secure your spot as an expert on a topic? Be the one who “wrote the book on
it,” literally. That expression came about for a reason. Although book quality varies, it’s
fairly well accepted that someone who has written a book has a deep understanding of
its topic.

After all, writing a book is not an easy endeavor. It demonstrates that you have

¡ Thought deeply about this topic for quite some time

¡ Developed the domain expertise required to create a sizable book

¡ Spent tremendous time structuring and refining your thoughts on this matter for
the sake of educating others

¡ Communicated expertise that was validated by publishers and reviewers

Those are just some of the many reasons why being a published author provides a
near-instant infusion of prestige and credibility. Even people who don’t read a single
page of your book will likely be impressed by the fact that you wrote it. It’s the ultimate
portfolio piece: a carefully crafted and professionally produced work that captures
your best thinking on a given topic at a given time. And you can just drop it on some-
one’s desk.
 If you’re ever looking to stand out in a crowded field of applicants, having written
a book should serve as a clear differentiator! It’s also the perfect mark of distinction if
you’re running your own business or consulting as a side project.

17.1.3 You want an excuse to immerse yourself in a topic

If you’re so passionate about a topic that you want to think about it every day for a year
or so, commit to writing a book on it. That gives you the perfect excuse to prioritize
rigorous study of the subject. Normally, it’s way too easy to delay reading all those book-
marked articles and writing up all those things you meant to share. There’s nothing
like a legal contract specifying exact due dates to finally get you motivated!
 When you write a book, you will need (and want) to spend considerable time think-
ing about your topic. When you write a blog post, you can conveniently frame the article
to avoid things you don’t know as well. However, when you write something as compre-
hensive as a book, it’s likely going to expose some gaps or weak spots in your mastery of
the topic. In addition to the things you know you don’t know, you will also stumble
upon

296 Chapter 17  So you want to write a book

	

	

	

“unknown unknowns” as you write. The very act of capturing your thoughts in struc-
tured writing forces you to think much more carefully about

¡ How you know what you know

¡ How it’s all related

¡ What matters most

¡ How to explain it to others

¡ How to get others excited about it

Your understanding of the topic will be further tested by your technical editor (if you
work with a publisher), other reviewers, your readers, and anyone who happens to be
talking about the book in the infamous comment sections. If you get something wrong,
it won’t go unnoticed.
 By the time you emerge from the journey, book in hand, you will likely be one of the
world’s most knowledgeable people in your specific niche.

17.1.4 You want to level up your writing

Writing a book is a boot camp experience—even for professional writers, even for
those who have written books before. You will naturally refine your craft by

¡ Writing so much, so rapidly

¡ Forcing yourself to present your thoughts in the book/chapter structure that’s
set by your publisher

¡ Constantly rewriting when the words don’t effectively capture the ideas in your
brain

¡ Receiving and responding to feedback from development editors, technical edi-
tors, copy editors, and real-world readers/reviewers

¡ Accommodating difficult requests: adding sections that you never intended to
write, rewriting a chapter from scratch, pivoting part of the book in a totally dif-
ferent direction, and so forth

Just like preparing for and ultimately completing a marathon will take your athleticism
to new levels, writing a book will take your writing to new levels.

17.1.5 You have an innate urge to share and teach

If you’re an open source contributor, a team leader, or have ever been a teacher, you’re
probably driven by the urge to share your expertise for the benefit of others. Books,
like blog posts, help you scale your knowledge far and wide. But books let you share
a massive amount of knowledge in a single convenient package. And that can have a
massive influence on your readers, as well as your domain.

17.2 Why not?
Committing to a book project when the stars aren’t perfectly aligned is a surefire way to
make your life miserable for at least a year. Here are two key reasons why you shouldn
’t write a book:

	 297Alternatives to consider

	

	

	

¡ The topic isn’t well-suited to a book.

¡ It’s just not a great fit for you—at least not right now.

17.2.1 The topic isn’t well-suited to a book

The publication cycle of books is dramatically different than that of blog posts. With a
blog post, you can move from idea to published article in a matter of minutes. With a
substantial book, it would be rare to go from idea to printed book in less than a year.
Books are more difficult to update as well. Even with self-publishing, you can’t just
change a few words or lines of code in a book as easily as you can in a blog post.
 Given all the time and work required to get a book published, we recommend that
you focus on a topic with an expected “shelf life” of at least a couple of years, preferably
more. For example, you don’t want to end up

¡ Writing a detailed “how to” book about a product that’s poised for a major change

¡ Trying to pin down the nuances of a new programming language as it’s rapidly
evolving

¡ Obsessing over being first to write about a shiny new technology rather than cre-
ating something that will stand out for years to come

Also, do your research and check that potential readers can’t already get a “good enough”
resource on your topic for free (or close) on the internet. Unless you are truly confi-
dent that your approach will stand out and that readers will recognize the value of your
approach, you might want to refrain from entering this potentially devalued market.

17.2.2 It’s just not a great fit for you—at least not right now

Books consume a ton of time. If your work, family, and other personal priorities are
already consuming all your time, don’t take on a book project unless you are willing
to give something up. You can’t miraculously find more time. You will need a realistic
plan for where you will free up existing time on a consistent and long-term basis. Oth-
erwise, the book commitment will ultimately feel like the sword of Damocles hanging
over your head.
 Moreover, book projects suit some personalities better than others. Table 17.1 lists
some points to help you assess where you fall on the “will I love it or hate it” spectrum.
 Writing a book is a strange process. You need to be relentless about pushing through
challenges for months upon months. Then, as the deadline approaches, it’s time for
a hard mental shift: you need to draw a line and let it go. As Brian Sletten, author of
WebAssembly: The Definitive Guide, so aptly put it in a personal conversation: “Books aren’t
published when they are done. They are done when they’re published.”

17.3 Alternatives to consider
Maybe writing your own book is not the right project for you (at least not right now).
But if you still have a burning desire to tackle a big idea and share your knowledge with
the community, consider other options:

298 Chapter 17  So you want to write a book

¡	Collaborate with co-authors

¡	Drip it out through blog posts

¡	Become a technical reviewer

Table 17.1  Is your personality amenable to book writing?

Likely to love it Likely to hate it

You enjoy tackling massive ambiguous projects
with no precedent and minimal guidance.

You thrive on torturing yourself with long-term phys-
ical and mental challenges.

You create high-level visionary ideas as well as low-
level plans to carry them out.

You’re insanely self-disciplined.

You can crank out acceptable drafts relatively fast,
even under pressure.

You can tear your writing to shreds.

You thrive on clear project direction and structure.

You often get enthralled by a new hobby or other
obsession, then soon get bored and move on to
the next.

You’re quite comfortable being comfortable.

You have trouble accepting things as “good
enough” and calling them done.

You’re not (yet) great at reviewing your writing from
your reader’s perspective and anticipating where
they could be confused, skeptical, or lost.

17.3.1	 Collaborate with co-authors

When we start discussing this book, particularly this chapter of this book, with our
book author colleagues, it tends to go as shown in figure 17.1.

Figure 17.1  What happens when book
authors talk about writing books

Joking/not joking. Writing a book is ultimately a rewarding process. But we’d be remiss
to sugarcoat it—it can be difficult. Martin Kleppmann, author of the top O’Reilly best-
seller to date, shared: “Writing a book is really hard, at least if you want to do it well. For

	 299Alternatives to consider

	

me it was about the same level of difficulty as building and selling a startup (YMMV),
that is to say, involving multiple existential crises” (see https://mng.bz/RNna).
 Why are we talking about this in a chapter section that’s supposed to be about
co-authors? Because co-author collaboration can change the whole dynamic of a book
project. It’s not just that each person has fewer words to write (though that certainly
helps!). Other benefits include:

¡ With more expertise and strengths to draw from, you don’t need to personally
master every aspect of the topic, as well as all parts of the writing process.

¡ More perspectives translates to deeper as well as broader insight into the topic,
and this benefits both you and your reader.

¡ The weight of the book no longer rests solely on your shoulders; if you need a
little break, you can take one knowing that others are still moving the project
forward.

¡ On the other hand, knowing that your colleagues are working away on this
shared project is perfect motivation when you’re tempted to leave that next task
for another day.

¡ You have ready access to an incredibly informed (and passionate) sounding
board for all the questions and doubts that cross your mind.

Plus, misery loves company! When you need to rewrite that chapter from scratch,
scramble to deliver drafts within minutes of the deadline, review hundreds of pages
of copyediting revisions over a weekend, and so on, it really does help to have an
impromptu group venting session.
 Quite seriously though: having co-authors you enjoy working with can make a book
project truly fun. We’ve worked on a handful of book projects with different collabora-
tors involved in various capacities. In all cases, the overall experience and quality of the
final product ultimately boiled down to the chemistry between the co-authors.

17.3.2 Drip it out through blog posts

Call this approach “Just start writing it with zero book pressure.” Think about what
your book would look like, then plan to publish at least the first part of that book as
blog posts. Begin with an introductory post that shares why you’re writing the series
and what to expect. Then drip out what you envision as the first few chapters on your
own schedule. Each time you publish a new post, be sure to link back to that introduc-
tory post (and vice versa).
 If you work in this serial publishing manner, you can get a feel for what it’s like to
write this book. It will soon become apparent how much time each piece will require to
research and write. And you will get an immediate gut check on how much you enjoy
working on this topic. Do you actually look forward to tackling the next section on your
mental list? Or are you already getting bored with the whole idea?
 Working in this manner is also a great proving ground for your idea. Is there truly
an audience interested in learning about your take on this specific topic? Blogging a

https://mng.bz/RNna

300 Chapter 17  So you want to write a book

 

	

	

preview of the book content is the perfect way to find out! If your first few chapters-mas-
querading-as-articles are all Hacker News sensations, you can bet that the book proposal
process will go much more smoothly. Or maybe you want to self-publish the book so you
can retain a larger percentage of the potential bestseller’s profits (more on that later).
However, if the idea doesn’t immediately resonate, don’t give up right away. It could be
that you’re just not connecting with the right readers. Maybe a publisher could help
you reach the target audience.
 You might also discover that you’re perfectly satisfied covering this subject via blog
posts! In this case, just continue with what’s working until you feel some compelling
urge to change.

TIP Will Larson wrote a book blog-by-blog, then later had it published by
a publisher. He shares his experience in “Self-publishing Staff Engineer”
(https://lethain.com/self-publishing-staff-engineer/). Other examples are“Joel
On Software” by Joel Spolsky (from https://www.joelonsoftware.com/)
and “The Old New Thing” by Raymond Chen (https://devblogs.microsoft
.com/oldnewthing/).

17.3.3 Become a technical reviewer

Becoming a technical reviewer lets you influence a book in your area of expertise
and also gain an inside look at how the book-writing process really works. Technical
reviewing a book is not nearly as time-consuming as writing one. It’s a streamlined
process, with the editor pinging you each time a new chapter is ready to be reviewed.
It can take anywhere from days to months, depending on the author’s ergonomics and
laziness (also known in the book industry as “being preoccupied with more import-
ant business”). Technical review usually takes the form of light online discussion with
the author: pointing out glaring (to you) omissions, asking for clarification on some
points, and suggesting a rephrase here and there.
 How can you become a technical reviewer to learn more about writing a book? It’s
a Catch-22. If you’ve already written a book on the topic, your editor will likely contact
you when they need technical reviewers. But how do you break into the cycle? You could
always volunteer your services to any peers who enthusiastically announce “I’m writing
a book!” Alternatively, you could hunt down the acquisitions editors in your domain:
look at a book you admire, see who the author thanks in the preface, and ping that per-
son on LinkedIn or other platforms.

17.4 Publishing considerations
If you decide to write a book, what path do you want to take? Working with a publisher,
a company that has perfected the art of developing and selling technical books, can
provide a number of advantages: valuable feedback, extended reach, and taking care
of all matters required for high-quality production, to name a few. But self-publishing
also brings a different set of benefits: more freedom on your topic (well on everything,
really), no real deadlines, and the potential to update the book faster.

https://lethain.com/self-publishing-staff-engineer/
https://www.joelonsoftware.com/
https://devblogs.microsoft.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/

	 301Publishing considerations

There are already many great resources where authors share their personal
experiences working with publishers as well as self-publishing. In particular, Will
Larson’s perspectives on working with publishers as well as self-publishing stand out
as must-reads. See “What I Learned Writing a Book” (https://lethain.com/learned
-writing-book/), “Self-Publishing Staff Engineer” (https://mng.bz/ZVg9), and “More
(self-)publishing thoughts” [https://lethain.com/more-publshing-thoughts/]). More
over, Gregor Hohpe’s “The Economics of Writing Technical Books” (https://mng.bz/
AawQ) provides exceptional insight into the realities of the self-publishing process.
And Rob Fitzpatrick’s book, Write Useful Books, offers good advice for self-publishing
nonfiction books in general.

Table 17.2 provides a brief overview of the reasons most commonly cited for choos-
ing one option over another.

Table 17.2  Common reasons for choosing to work with a publisher or self-publish

Work with a publisher Self-publish

Prestige and validation

Pressure (and help) to get it done

Professional production/ and distribution

Editorial review and guidance

Professional promotion

Complete control over your content

Ability to update (nearly) on-demand

Full ownership and rights

Higher royalty rate

Flexible schedule

	

	

We’ve worked with both publishing models and with several different tech publish-
ers. In this section, we’ll share some commonly overlooked publishing considerations
based on what we learned.

17.4.1 Not all publishers are created equal

First, talking about the generic term “publishers” is like making blanket statements
about “hotels,” “food,” or “animals.” There is a dramatic range.
 Every publishing company has its own mission, processes, and business model. With
one, you might expect to interact with various staff members each week; collaborating
on marketing efforts, brainstorming something with editors, and so on. With others,
you might have just two or three interactions with the publisher’s staff throughout the
entire process (and you might need to send 31 emails to order additional books at your
author discount—real story).
 Some publishers add more friction than value, especially for an experienced author.
The fact that they handle the hassles of the book production and distribution process
might be their biggest benefit. But other publishers add distinct value—even to experi-
enced book authors. And that leads to the next section.

17.4.2 Publishers bring an impressive team of experts

If the publisher is committed to your book’s success and also funded and staffed at a
level to help advance it, here are some of the things you might encounter:

https://lethain.com/learned-writing-book/
https://lethain.com/learned-writing-book/
https://mng.bz/ZVg9
https://lethain.com/more-publshing-thoughts/
https://mng.bz/AawQ
https://mng.bz/AawQ

302 Chapter 17  So you want to write a book

¡	A network of top-notch industry experts who might be tapped for vetting your
abstract, technical reviewing your book, and perhaps writing the foreword. For
this book, our publisher involved some intimidatingly impressive people.

¡	An acquisitions editor who helps you shape the overall direction of the book based
on feedback from the previously mentioned experts. Setting that well-crafted
plan from the start saves significant rework (and frustration) later on.

¡	A developmental editor who is tasked with helping you execute on that vision: inter-
acting with you regularly, guiding you through the process, and calling you out
whenever they believe that your well-intended approach just isn’t hitting the
mark.

¡	A technical editor who goes far beyond pointing out factual errors. This person
also opens your eyes to considerations previously in your blind spot. They pro-
vide an early look at how your target readers will react and what’s needed to win
them over.

¡	A team coordinating rigorous review processes at key book draft milestones: shar-
ing the in-progress drafts with readers in your target audience, prompting them
with questions, asking them to rate each part of each chapter, and compiling all
the results for your review.

¡	A copyeditor who will root out whatever grammatical mistakes, missing words, and
inconsistencies slipped through the various reviews and revisions.

¡	A design staff that takes care of cover design, improving your (attempts at) illustra-
tions, page layout, typography, margins, and so forth for print as well as ebooks.

¡	A production crew that automagically (to you at least) takes the final draft and
transforms it into print and digital files that can show up on devices and door-
steps worldwide.

¡	A marketing team that tries to learn the nuances of your particular domain so they
can tune their well-oiled marketing machine to entice your target readers.

¡	A legal team that stands by ready to combat unauthorized reproductions, plagia-
rism, and other legal infringements.

Misconception: “The Editor”
Myth: There’s a common misconception that when you work with a publisher, you will be
assigned “an editor” with two main jobs: 1) nagging you to get chapters completed, and
2) finding and correcting low-level mistakes like misplaced commas.

Reality: With some publishers, you won’t even get that much attention! With others, you
will get multiple layers of editors whose feedback not only helps you improve the book,
but also transforms the way you write (and think about writing). Even if you’re an experi-
enced writer, don’t dismiss editorial assistance as not valuable until you get a better idea
of what to expect in your particular situation.

	 303Publishing considerations

	

	

17.4.3 Working with publishers is a multithreaded process

Again, this really depends on the publisher. But when all the various people and teams
mentioned previously are involved with your book, work is inevitably being done in
parallel. And given that every team and every individual is likely responsible for multi-
ple books, you want to be quick to respond when they have a question, review request,
or other need.
 This can lead to some days where your book “side project” becomes a lot to handle.
For example, there were a few days when we were juggling all of the following (on top
of our actual jobs):

¡ Extending a previously completed chapter to accommodate a publisher-level
request

¡ Templating a recently completed chapter in preparation for review

¡ Responding to comments and making revisions in response to the just-completed
reviews for two earlier chapters

¡ Suggesting edits for the book description page

¡ Completing a nine-page marketing questionnaire that required considerable
thought and research

¡ Attempting to write the next two chapters so we wouldn’t get behind on the dead-
lines we previously committed to (not knowing that we’d be attending to all these
other tasks at the same time)

If you take the self-publishing route, you can work in a manner that’s as focused and
linear as your brain prefers. But the tradeoff is that you lack access to the experts gen-
erating these various tasks. If you self-publish, it’s all on you!

17.4.4 If you work with a publisher, it’s not just “your” book

When you work with a publisher, many different people contribute to many different
aspects of the book (see the previous sections). We’ve touched on the benefits of this.
But this has other effects to consider, too. With so many different professionals work-
ing toward the success of this book, it takes on a life of its own. If you neglect it, you’re
not only hurting yourself; you’re letting everyone down.
 If you fail to meet deadlines for draft milestones or for various marketing projects,
you trigger a domino effect that affects many people investing their time and expertise
in this project. It’s polite to be aware of this when deadlines loom and one-off requests
pop into your inbox.
 You will also need to align with the publisher’s brand. To protect the style and repu-
tation they have established over the years, publishers expect authors to create books
using the processes they have designed and optimized. That means you need to cede
a certain level of control. At a high level, this means you will need to address all the
deeper technical, logical, and structural concerns raised by your editors. You won’t nec-
essarily need to agree with their every suggestion, but you will need to acknowledge,

304 Chapter 17  So you want to write a book

	

discuss, and find a path to a mutually agreeable resolution. This could mean compro-
mising on details such as

¡ Phrasing and terminology that doesn’t align with their style guide

¡ The level of explanation required for certain terms

¡ Image size, format, labeling, and captioning

¡ Chapter structure and elements such as introductions and summaries

¡ Text styles, bullet levels, and so on that don’t have a home in their template

¡ Footnote usage

Addressing editor concerns and pushing yourself to write chapters in the prescribed
manner will ultimately make you a stronger writer. But it can be frustrating at times,
like when you are writing your millionth (or so it seems) chapter or section introduc-
tion “because that’s what’s needed.”
 Moreover, to support the publisher’s brand, you will need to use one of their sanc-
tioned authoring tools. Do you write in LaTeX, AsciiDoc, Google Docs, or Microsoft
Word? Do you save files in a GitHub repo, Box, or Google Drive? How can you see what
your text looks like in their template? Given all the time that you’ll spend writing, the
supported authoring environments have an outsized effect on your overall book writing
experience. Compromising on how your code examples are labeled is one thing. Being
forced to work in an authoring environment that disrupts your flow or just generally
frustrates you is a much more serious concern.
 Finally, the fact that the book is a joint effort affects your bottom line. Publishers
understandably want to earn back the time and effort they invest in your book, and that’s
factored into your compensation. They offer authors a percentage of the book profits
and they also (typically) pay out a part of those projected earnings as an “advance.” In
some cases, those percentages vary depending on factors like print versus digital, book
versus platform subscription, educational discounts, foreign publishing rights, and so
on. Other times the same percentage applies to all revenue—period. Per what authors
have shared confidentially and publicly, it’s relatively rare for technical books to sell
enough copies to receive royalties beyond the advance.
 Regardless, the percentages you earn with a publisher will invariably be lower than
those you receive if you self-publish. That doesn’t mean that your total book profits will be
lower though. Think of it this way: Do you want a smaller slice of a potentially larger pie
(given the value added by their team) or a larger slice of a potentially smaller pie?

17.4.5 Highly specialized topics lend themselves to self-publishing

Given that publishers ultimately survive by producing enough profitable b ooks t o
make up for their nonprofitable books, it makes sense that they don’t want to add
more nonprofitable books to their portfolio. This means that you might have a difficult
time finding support for a highly specialized topic, especially if the size of the potential
reader base is small or unknown relative to other tech topics.

	 305Navigating the proposal process

	

	

	

 Even if you have a great idea for a breakthrough book in a particular niche, and you
are recognized as the world’s top expert on the topic, it might not be in the publisher’s
best interest to publish it. It would cost them just as much (if not more) to publish this
book as it would for them to publish a book that provides a new angle on a proven topic,
like Go or Rust. However, the niche book’s payback potential might fall short of what
the others could yield.
 Self-publishing shines in these situations, especially if you are already well-known
within your niche. Instead of wasting your energy trying to convince publishers that it’s
a good business move (it might not be), just start planning and writing! And it’s also
possible that publishers will notice the quality and success of your self-published book
and then reach out to you with a tempting publishing offer.

17.4.6 Self-publishing thrives when supported by a brand

If you add a self-published book to Amazon, will anyone read it? Not if the target audi-
ence doesn’t know it exists.
 If your book is backed by a known brand (a popular newsletter, project, company,
etc.) or if you yourself are a known brand, you can likely gain significant traction with
a self-published book. Simply tell the brand’s core followers “We wrote a book,” and
you’ll have a ready-built initial audience. Once they start reading and talking about
it, you can expect “word-of-mouth marketing” to keep the buzz going and promote it
beyond your immediate community. This could be just as effective, if not more effec-
tive, than a publisher’s standard marketing motions.
 If you’re not associated with such a brand, the path to self-publishing success will
likely be more difficult. You will need to rely on some strategic kindling to get the fire
started. If you’re well-connected, persuasive, or just lucky, your book might catch the
attention of an influencer in the book’s domain. That person might then set off a chain
reaction on social media and potentially the orange site.

17.4.7 Different options, different considerations

No matter what path you choose, there are a lot of little details that will likely catch you
by surprise. And what’s critically important to one person might be trivial to another.
Table 17.3 highlights a few things you might want to consider researching based on the
publishing option that you ultimately choose.
 If you’re comparing different publishers or different self-publishing options, search
the internet for something like “Publishing a book with {company_name}.” In most
cases, that will surface a few stories providing insight into the process. Also, feel free to
reach out to those authors directly. The fact that they captured and shared their experi-
ences indicates that they’re eager to help others make an informed decision.

17.5 Navigating the proposal process
If you want to take the “traditional publisher” path, you will need to complete a pro-
posal. This is unavoidable, even if their editor actively recruited you to write a book on

306 Chapter 17  So you want to write a book

Working with a publisher Self-publishing

What is the editor-to-author ratio?

Who would you interact with, how frequently, and in
what capacity?

How do they market books?

Can your book benefit from their market reach?

Does their library include books that pair well with
yours?

Do they focus more on print or digital? Books or
platforms?

Do they offer DRM-free books?

Will your book be used to train their large language
model and support their AI platform?

In what regions do they market and distribute
books?

Do you need to find your own technical reviewer?

How do they make decisions on audiobooks and
translations?

What tools would you need to use for writing and
reviewing?

How does your anticipated timeline align with their
process and production cycles?

Is there an option (or requirement) to release early
access versions?

Does the self-publishing platform offer any tem-
plates or other layout assistance?

What’s required to create and sell a print book?

What’s required to create and sell a digital book?

How would readers discover your book?

How much will it cost for designers, cover artists,
and proofreaders?

Can you offer DRM-free books?

Do they sell and ship books to the geographies you
want to target?

What analytics and tracking options do they offer?

How difficult is it to reach a human and get ques-
tions answered?

Can they split revenue across multiple co-authors?

Do reviews of popular self-published books from
this platform mention production quality problems
(look at the negative reviews)?

What’s the minimum price you can set for a book
with your page count, size, and options (e.g., color
or not)?

Is there a fee to use the publishing platform?

Table 17.3  Questions to consider with your publishing option

a topic that they dreamed up. Completing a proposal forces you to think through a lot
of the hard questions related to the proposed book. Most pointedly,

¡ Why should it be written?

¡ Who would want to purchase it?

¡ Why should you, in particular, write it?

¡ How deeply have you thought about this topic?

¡ How would you approach the topic?

¡ Is it worth publishing?

Those aren’t the exact questions, but that’s ultimately what they’re trying to figure out.
 Even if you’re not planning to work with a publisher, it’s valuable to look at a few pub-
lishers’ proposal templates and complete one. This exercise is helpful for

¡ Clarifying your vision for the book

¡ Attempting to estimate the market for such a book

	 307Navigating the proposal process

	

	

¡ Establishing a clear roadmap for the writing process

¡ Sharing your idea with potential co-authors

¡ Getting early feedback from your peers and experts in the domain

If you are trying to persuade a publisher to publish your book, here are our top two tips
for completing proposals.

17.5.1 Get down to business

As we’ve been harping on heavily throughout this chapter, publishing is a business.
Your proposal must demonstrate a distinctive, compelling book idea, or else the acqui-
sitions editor won’t think twice about it. But that alone isn’t sufficient.
 You also need to sell yourself as someone with the expertise and ability to get it done.
And you need to convince the publisher that there’s a reasonable market for this book
(refer back to section 17.4.5 for a little more color on this).
 To increase your chances of success, approach your book proposal as a business pro-
posal. For example,

¡ Research the size of your target audience and highlight why those people would
want to buy your book. Impressive stats could include GitHub stars, community
size, attendance stats for a related conference, Google Trends charts, and so on.

¡ Find related books with strong sales (look at Amazon rankings) and see if you
can legitimately show that your book is well-poised to draft off of their success.
Purchasing and reading (or at least scanning) the other books will help you build
a compelling case that yours is similar enough to repeat the others’ success, yet
different enough to warrant its existence. You could differentiate by topic focus,
author experience, target audience, technical depth, etc.

However, remember that you’re an engineer, not a salesperson. Now might be a good
time to touch base with your business-minded or marketing friends and cash in any
favors owed.

17.5.2 Details, detail, details

Some proposal templates require much more detail than others, especially when it
comes to the book outline. Strongly consider providing a granular level of detail even
if it’s not required: not just chapter titles, but also one-sentence chapter descriptions
and a guess at all the main sections within each chapter.
 This will force you to really think through what you need to cover. That, in turn,
helps you better assess how long it might take to write and which co-authors would
be helpful. When you start writing, you will thank your previous self for providing this
roadmap. It’s unlikely that you’ll follow the precise path you mapped out, but it will
absolutely eliminate much analysis paralysis and rework later.
 Moreover, the outline, along with the rest of the proposal, typically becomes part of
the book contract. Once that contract is signed and countersigned, this outline goes
on the record as the description of the book that you committed to write and that your

308  

17.6	

C

publisher committed to publish. If any disputes arise later, this outline will likely come
up. The more detailed the original outline, the lower the risk of misinterpretations and
misunderstandings.

Go forth and write
If you decide to move forward, with a publisher or on your own, that’s where your book
begins and also where ours ends. Let’s wrap with a few parting tips:

¡ Do something every day. Keep the momentum going by getting into the habit of
doing something—anything—to advance your book every single day. Write a
paragraph. Read something related. Think through how to approach that one
tricky section (and jot down some notes so you don’t forget). Create a diagram.
There’s a huge variety of tasks that need to be completed as you write a book.
Surely you can find just one little thing to tackle so you can tell yourself that you
made some progress on your book today!

¡ Think of it as a series of blog posts. Writing a book chapter sounds overwhelming,
right? But by now, you’re comfortable writing blog posts. Just think of each chap-
ter as a series of related blog posts. Write one after another, and before you know
it, a chapter has magically materialized. Conveniently, all the article writing strat-
egies covered throughout this book can help you in this context, too!

¡ Be stubborn about the vision, flexible on the execution. As you start extracting ideas
from your mind, you’ll find that you don’t always end up covering every topic
exactly as you had originally planned. That’s fine. After all the thinking and
research you’ve likely performed by this point, your newer ideas are probably
better than your original ones. But remain fixated on your original vision for the
book. That should be your north star, guiding you through all the revisions and
indecisions along the journey.

Summary

¡ Writing a book is a massive undertaking that requires significant time and
effort—but it can be rewarding, especially if you’re a glutton for self-inflicted
pain.

¡ Writing a book not only helps you share knowledge with your peers; it also forces
you to deepen, synthesize, and structure your domain expertise.

¡ Don’t write a book if you don’t have a vision for the topic, the topic isn’t really
suitable for a book, you lack the bandwidth, or it’s just not a good fit for your
work style and personality.

¡ Co-authoring can be a game changer, turning a lonely and burdensome experi-
ence into a collaborative and enjoyable one.

¡ If you’re not ready to commit to writing a book, you could get a feel for it by writ-
ing the first chapters as a series of blogs or by becoming a technical reviewer.

	 309Summary

¡	Publishers offer benefits like prestige, editorial guidance, professional produc-
tion, and marketing, but give you less control and lower royalty percentages.

¡	Self-publishing allows more control, higher royalty percentages, and greater
schedule flexibility, but you need to manage many tedious details and bring (or
create) your own audience.

¡	Complete a book proposal even if you’re not seeking a publisher.

¡	If you are seeking a publisher, treat the book proposal like a business proposal
and try to convince the publisher that your great book idea is really worth their
investment.

appendix A
Publishing and

writing resources

This appendix discusses options for publishing your blog posts, as well as tools to
help you create and optimize them. All tools that we mention offer a free tier (at the
time of writing, at least) unless otherwise noted.

A.1	 Where to post your posts?
If you’re not contributing to a company blog, where do you publish your blog posts?
Here’s a quick look at popular options: your own blog, Medium and friends, Sub-
stack, and publications with a lightweight editorial review/approval process (e.g.,
HackerNoon and DZone).

A.1.1	 Build your own blog site

If you plan to write a number of articles beyond your company blog, strongly con-
sider standing up your own site. In addition to hosting your blog, this site can
include your bio, links to projects, talks, and articles—whatever else you’d like to
showcase. This option gives you complete control over every element: from plugins,
to look and feel, to what’s shown alongside each of your articles. Build it however
you like, with whatever frameworks you want an excuse to play with. Static site gener-
ators are popular options for blogging.

Jekyll (https://jekyllrb.com/) on GitHub Pages (https://pages.github.com/) is a
popular combo for minimalist sites. Since GitHub Pages is powered by Jekyll, you can
deploy a Jekyll site using GitHub for free, with a custom domain name.

310

https://jekyllrb.com/
https://pages.github.com/

	 311Where to post your posts?

Other static site generator options include Hugo (https://gohugo.io/) and Gatsby
(https://www.gatsbyjs.com/). Content Management System (CMS) options include
Ghost (https://ghost.org/) and, of course, the stalwart WordPress (https://wordpress
.com/)— neither of which currently offer a free tier beyond the initial trial. WordPress
does offer a self-hosted open source version, though: just go to the .org site (https://
wordpress.org/) instead of the enterprise (.com) one. Hacker News and Reddit both
feature highly opinionated discussions on how the options compare and which is best
for different needs.

TIP  If you want a clean minimalist blog like the first example featured in
chapter 3, you can simply copy its code. The author, Alex Morales, shared it at
https://github.com/alexmolas/alexmolas.github.io

If you want a chance at additional exposure, you can also post copies of your articles on
aggregators such as Medium and friends (see chapter 15).

	

Getting started resources
Here are some “official” starting points for getting up and running on various platforms:

Jekyll—Step-by-Step Tutorial (https://jekyllrb.com/docs/step-by-step/01-setup/)

Hugo—Quick Start (https://gohugo.io/getting-started/quick-start/)

Gatsby—Getting Started (https://mng.bz/x6Q6)

WordPress—Set Up Your Blog in Five Steps (https://mng.bz/V2Xx)

Ghost—Getting Started (https://ghost.org/resources/building/)

Medium—Writing and Publishing Your First Story (https://mng.bz/r15j)

Dev.to—Get Started with DEV (https://dev.to/help/getting-started)

Hashnode—Creating a Personal Blog on Hashnode (https://mng.bz/dZj1)

Substack—Setting up Your Substack for the First Time (https://mng.bz/BgPl)

A.1.2 Medium and friends

If you really don’t want to manage your own blog site, you can publish primarily on a
blog aggregator platform (e.g., Medium, dev.to, or Hashnode). You won’t have total
control over every aspect of the reader’s experience. But it’s fast, it’s simple, and there’s
a chance that one of your articles might go viral via that platform’s recommendation
algorithms. For example, if Medium curators boost one of your posts, you could get
an instant spike in attention that rivals what you could achieve by trending on Hacker
News. Similarly, publishing on dev.to makes your articles easily accessible to a commu-
nity of over one million developers.
 Whichever platform you select, you will get a URL with your profile and central-
ized access to all the articles you’ve published there. Custom domains are supported on
Medium. And readers who really enjoy your work can follow you via in-platform alerts

https://gohugo.io/
https://www.gatsbyjs.com/
https://ghost.org/
https://wordpress.com/
https://wordpress.com/
https://wordpress.org/
https://wordpress.org/
https://github.com/alexmolas/alexmolas.github.io
https://jekyllrb.com/docs/step-by-step/01-setup/
https://gohugo.io/getting-started/quick-start/
https://mng.bz/x6Q6
https://mng.bz/V2Xx
https://ghost.org/resources/building/
https://mng.bz/r15j
https://dev.to/help/getting-started
https://mng.bz/dZj1
https://mng.bz/BgPl

312

A.1.3	

A

and email notifications (for Medium at least). With Medium, you have full access to the
email addresses that the platform collects; you can export the information, port them
to a new platform, and so forth.
 Medium currently offers monetization options through a Partner Program. Readers
do not pay you directly. Earnings are determined and managed by Medium, based on
how long Medium members spend reading your articles, as well as member engage-
ment points.

Substack

Substack is another popular alternative to maintaining your own blog site. It’s a
newsletter-focused platform that’s especially well-suited to authors who already have a
devoted following—or expect they can build one.
 In addition to providing a cleanly templated article hub, Substack distributes your
posts to people who opted in to an email newsletter subscription. As with Medium, you
own the email addresses that are collected. But Substack also provides native email
functionality that lets you message your subscribers en masse or send customized
messages based on specific criteria (e.g., one message to people who read and com-
ment frequently, a different one to less engaged subscribers, and another to your new
subscribers).
 Substack’s straightforward monetization stands out from the other blogging options.
If you decide it’s time to profit from your blog, you can set the price and let the plat-
form’s built-in functionality manage the logistics (Substack keeps 10%, you get 90%).
Once you start requesting payment, the pressure is on, though. Your paying subscribers
will expect brilliant new articles to be delivered at regular intervals.

The platform also offers a reasonable level of flexibility; for example, you can

¡ Customize the layout

¡ Use custom domains

¡ Publish a mix of free and paid content

¡ Offer free trials and discounts

¡ Integrate with Google Analytics

¡ Block AI training on your content

¡ Hand-pick what other publications are recommended to your subscribers

A

	 313Selective tech publications

from other Substacks). While Medium offers new authors potential for exposure, Sub-
stack provides recognized experts a more transparent path to monetization.

What if you prefer the control of having your own site but also want the email noti-
fications of Substack? Some platforms, like Ghost, offer native newsletter functionality.
There are also many plugins that can be integrated into WordPress or other frame-
works. Some, like Buttondown, support paid subscriptions as well. Alternatively, you can
take the super simple path of creating your own digest email as a LinkedIn newsletter.

Other means of monetization
As mentioned back in chapter 1, engineers tend to write blog posts for the sake of con-
necting with the community, advancing the state of the art, and developing their domain
expertise—not for profit. But if you’re interested in monetization (to cover your hosting
costs, at least), know that a few options are available.

In addition to placing a paywall in front of your content, you could also host ads on your
blog site, include affiliate links, or even allow your fans to support you directly via Patreon
or GitHub sponsorships.

To learn more about monetization options, we recommend the following resources:

¡	Gergely Orosz’ “Three Years of Advertising on My Blog: Numbers” (https://blog
.pragmaticengineer.com/ads/)

¡	Gergely Orosz’ follow-up article, “I Removed All Affiliate Links from My Blog: Num-
bers” (https://blog.pragmaticengineer.com/affiliates/)

¡	Dan Luu’s “Blog Monetization” (https://danluu.com/blog-ads/)
¡	Discussions in the r/blogging subreddit, as well as the infamous Hacker News

comment sections (search for terms like “monetize blog” and “ads blog”)

	

	

A.1.4 HackerNoon, DZone, freeCodeCamp, and similar

You can also directly submit blog posts to publications such as HackerNoon, DZone, free-
CodeCamp, ITNext, and similar Medium publications. (Better Programming was previously
a good option, but it is currently on hiatus.) Since these publications perform a level of
editorial review, expect a delay before publication. There’s also a chance that your post
will be rejected for failing to comply with various criteria.
 HackerNoon allows people to subscribe to your updates; DZone and freeCodeCamp do
not. Articles published in a Medium publication will appear in your personal Medium
profile and trigger notifications for your followers.

A.2 Selective tech publications
In chapter 15, we discussed why and how to get your article published by selective
tech publications: media platforms and journals with a high level of editorial curation,
selectivity, and control. Authors propose article ideas, and editors determine which
ones are actually published (and when). The publication’s staff reviews, proofreads,
and posts the article.

https://blog.pragmaticengineer.com/ads/
https://blog.pragmaticengineer.com/ads/
https://blog.pragmaticengineer.com/affiliates/
https://danluu.com/blog-ads/

314

A.3	

A.3.1	

A

Here’s a rundown of tech publications that accept contributed articles:

¡ InfoQ—For practitioners, by practitioners. Their goal is “to share inspiring
content from real-world use cases, best practices used by innovator and early
adopter companies, and news on emerging trends.” (https://www.infoq.com/
write-for-infoq/)

¡ The New Stack—Analyzes and explains technology with a focus on building soft-
ware at scale, covering topics across cloud native computing, frontend and back-
end software development. Read by technologists, analysts, investors, technical
consultants, and pundits. (https://thenewstack.io/contributions/)

¡ ;login: Online—An open-access publication driven by the USENIX community.
Their readership includes USENIX members, as well as the broader USENIX
conference communities across systems research, SRE, and security and privacy.
(https://mng.bz/lrdR)

¡ CODE Magazine—Born in 2000 with a focus on the Microsoft software develop-
ment ecosystem, this publication shares in-depth information on how to use var-
ious development tools. It targets developers and technical managers. (https://
codemag.com/Write)

¡ ACM Queue—This is ACM’s magazine for practicing software engineers. It “takes
a critical look at current and emerging technologies, highlighting problems that
are likely to arise and posing questions that software engineers should be think-
ing about.” (https://dl.acm.org/magazine/queue, https://mng.bz/DpPg)

¡ Communications of the ACM—This is ACM’s “platform to present and debate var-
ious technology implications, public policies, engineering challenges, and mar-
ket trends.” It’s read by professionals across the computing and information
technology fields. (https://dl.acm.org/magazine/cacm, https://mng.bz/DpPg)

¡ IEEE Software—This peer-reviewed publication “positions itself between pure
research and pure practice, transferring ideas, methods, and experiences among
researchers and engineers.” It covers all aspects of software engineering, pro-
cesses, and practices. (https://mng.bz/NBPx)

Book publishers
If and when you’re interested in writing a book (as covered throughout chapter 17),
consider the following options.

Traditional publishers

Here are some of the most popular publishers of tech books:
¡ Apress —Covers “a wide range of technologies, from big data solutions to Micro-

soft or Apple development to security to Linux administration to electronics and
Raspberry Pi.” (https://www.apress.com/gp/write-for-us)

¡ Manning —Books for “software developers, engineers, architects, system admin-
istrators, managers and all who are professionally involved with the computer
business.” (https://www.manning.com/write-for-us)

https://www.infoq.com/write-for-infoq/
https://www.infoq.com/write-for-infoq/
https://thenewstack.io/contributions/
https://mng.bz/lrdR
https://codemag.com/Write
https://codemag.com/Write
https://mng.bz/DpPg
https://dl.acm.org/magazine/cacm
https://mng.bz/DpPg
https://mng.bz/NBPx
https://www.apress.com/gp/write-for-us
https://www.manning.com/write-for-us

	 315Writing and editing tools

¡	No Starch Press—Technology books with a focus on “open source, security, hack-
ing, programming, alternative operating systems, LEGO®, science, and math.”
(https://nostarch.com/writeforus)

¡	O’Reilly—Publishes books, produces tech conferences, and provides an online
learning platform; topics include computer programming, technology, and sci-
ence. (https://www.oreilly.com/work-with-us.html)

¡	The Pragmatic Programmers—Focuses on “a simple goal: to improve the lives of
software developers.” (https://pragprog.com/publish-with-us/)

¡	Wiley—Covers a wide range of topics across various academic and professional dis-
ciplines, including computer science. (https://www.wiley.com/en-us/publish/
book)

A.3.2	 Self-publishing options

There are also a few options for creating your own book:

 

	

¡ Amazon Kindle Direct Publishing —For publishing print and digital books on Ama-
zon (https://kdp.amazon.com/)

¡ Gumroad —Lets creators sell all sorts of products (including both digital and
physical books) directly to their audience (https://gumroad.com/)

¡ IngramSpark —Publishes print and digital books, offering global book distribu-
tion across online stores, independent bookstores, and libraries (https://www
.ingramspark.com/)

¡ Leanpub —Helps authors write, publish, and sell in-progress and completed digi-
tal books and also exports files that can be used for print books (https://leanpub
.com/create/book)

TIP Gregor Hohpe’s article The Economics of Writing Technical Books (https://
mng.bz/EOPD) provides helpful insights and comparisons on self-publishing
options.

A.4 Writing and editing tools
It’s now easier than ever to make your writing clear and correct thanks to the available
tools. Experiment and find some that work for your needs and preferences—a tool
that’s annoying to one person could be instrumental for another. As with IDEs, prefer-
ences vary widely. Whichever you choose, treat it as an advisor, not a rewriter; think crit-
ically about all suggestions and don’t let it suppress your authentic voice (as discussed
in chapter 5).

Some options to consider:

¡ Grammarly —This has become the standard for catching grammatical mistakes,
spelling errors, and misused words. It won’t catch everything, but it’s fast, easy,
and free proofreading. The paid version catches more problems and offers revi-
sion functionality as well. (https://app.grammarly.com/)

https://nostarch.com/writeforus
https://www.oreilly.com/work-with-us.html
https://pragprog.com/publish-with-us/
https://www.wiley.com/en-us/publish/book
https://www.wiley.com/en-us/publish/book
https://kdp.amazon.com/
https://gumroad.com/
https://www.ingramspark.com/
https://www.ingramspark.com/
https://leanpub.com/create/book
https://leanpub.com/create/book
https://mng.bz/EOPD
https://mng.bz/EOPD
https://app.grammarly.com/

316 Appendix A  Publishing and writing resources

¡	Vale—This open source, customizable tool can be run from the command line or
integrated into IDEs like Vim. It can spot spelling errors, repeated words, “wea-
sel words,” passive voice, and wordy sentences. Its GitHub page (https://github
.com/errata-ai/vale) shows how it compares to other open source options such
as Proselint, Textlint, Alex, and RedPen. (https://vale.sh/)

¡	LanguageTool—A spelling, style, and grammar checker that helps correct or para-
phrase text. Its core functionality is open source. You can configure your own
language usage rules as well as set up your own LanguageTool server locally or in
the cloud. (https://languagetool.org/dev)

¡	Hemingway—Analyzes your text and highlights (literally—see figure A.1) sen-
tences that could be made more concise and easier to read. It notes overly com-
plex sentences, use of passive voice, overuse of adverbs, and other things that
the writer Hemingway allegedly hated. The paid version will attempt to rewrite it
for you. Note that many writers feel that Hemingway’s recommendations lead to
bland writing, so proceed with caution. (https://hemingwayapp.com/)

Figure A.1  A look at how the Hemingway app highlights words and sentences for review

 

A.5	

TIP If you want help finding that perfect word, two thesaurus options are
WordHippo (https://www.wordhippo.com/) and Power Thesaurus (https://
www.powerthesaurus.org/). Or, try generative AI.

Visualization tools
Not an artist? No problem. Tools can help, whether you want something sharp or scrib-
bly style images that seem hand-drawn:

https://github.com/errata-ai/vale
https://github.com/errata-ai/vale
https://vale.sh/
https://languagetool.org/dev
https://hemingwayapp.com/
https://www.wordhippo.com/
https://www.powerthesaurus.org/
https://www.powerthesaurus.org/

	 317Code display tools

¡	Draw.io—Perfect for systems diagrams (https://www.drawio.com/)

¡	Excalidraw—For a hand-drawn look and feel (https://excalidraw.com/)

¡	Figma—Helps you create professional-looking images (https://www.figma
.com/)

¡	Lucidchart—Also helps you create professional-looking images (https://www
.lucidchart.com/)

¡	Miro—Another tool that helps you create professional-looking images (https://
miro.com/)

A.6	 Code display tools
Some practical and interesting options for embedding code within your blog:

¡	Asciicinema—Records and shares terminal sessions (https://asciinema.org/)

¡	Codapi—Embeds executable code snippets directly into your blog post (https://
antonz.org/code-examples)

¡	Gist—Shares code, notes, and snippets via GitHub (https://gist.github.com/)

¡	Prism.js—A lightweight, extensible syntax highlighter (https://prismjs.com/)

¡	Sandpack—A component toolkit for creating live-running code editing experi-
ences (https://sandpack.codesandbox.io/)

¡	Snappify—Animates code snippets for display (https://snappify.com/)

¡	Stackblitz—Lets you write, run, and debug frontend code directly in your browser
(https://stackblitz.com/)

https://www.drawio.com/
https://excalidraw.com/
https://www.figma.com/
https://www.figma.com/
https://www.lucidchart.com/
https://www.lucidchart.com/
https://miro.com/
https://miro.com/
https://asciinema.org/
https://antonz.org/code-examples
https://antonz.org/code-examples
https://gist.github.com/
https://prismjs.com/
https://sandpack.codesandbox.io/
https://snappify.com/
https://stackblitz.com/

appendix B
AI uses and abuses

 

To close out this book, let’s explore some uses and abuses of generative AI in the
context of writing engineering blog posts. Some quick background first. Generative
AI tools currently create unique responses by generating new text based on pat-
terns learned from their training data. Some also use retrieval-augmented gener-
ation (RAG) to fetch external information and incorporate it into their responses.
To offer the most clear and relevant responses, they generate text that’s statistically
plausible in the given context.

NOTE We’re not going to write a primer on generative AI or large language
models here. If you want that foundational knowledge, we encourage you to
explore the vast and rapidly growing collection of available resources.

Applying such an immense knowledge base to your writing facilitates many tasks,
from rooting out confusing sentences to predicting what questions and objections
the “hive mind” might have when reading your article. But given generative AI tools’
current focus on generating plausible text based on existing data, they are unlikely
to create an engineering blog post that meets the criteria outlined in chapter 3. At
the time of writing, a human engineer with real development experiences, emo-
tions, and creativity is still way more likely to excel at

¡ Intriguing discerning (and snarky) technical readers with a fresh, eye-open-
ing topic

¡ Keeping them engaged with an authentic, captivating narrative

318

	 319Clarifying sentences

	

	

¡ Providing a distinctive educational core with deep knowledge not available
elsewhere

And that leads naturally to the technology’s uses and abuses. The best uses tap the
technology’s strengths to help you communicate your ideas more effectively. And the
greatest abuse is using it to add any content that isn’t directly traceable to the unique
elements of you: your experiences, your ideas, your voice.

Harnessed effectively, generative AI can give you superpowers. It can help you

¡ Accelerate —Rapidly prioritize related articles you might want to read,
transcribe recordings you want to tap, and eliminate the tedium of formatting a
long list of citations.

¡ Boost —Perform more accurate grammar checking, get unstuck on those awk
-ward sentences you can’t quite fix, discover the missing word that’s on the tip
of your tongue, and create decent images despite having the artistic prowess
of a three-year-old.

¡ Crowdsource —Get instant access to what the hive mind thinks (for example,
to better understand what “most people” believe about your topic and where
they might expect more detail in your article).

¡ Criticize —When you’re not (yet) ready to show your draft to fellow humans,
get fast feedback on how your ideas are coming across and where you might be
fall-ing short of your stated goals.

¡ Convert —Reformat your words according to known patterns when creating
meta descriptions, slide decks, and conference proposal abstracts with strict
character limits.

If you’re asking generative AI to optimize your own ideas and/or writing in some way,
critically reviewing the result, and then making it your own, perfect! 100% use, not
abuse. If you’re blindly copy/pasting any suggested revisions or (even worse) net new
generated text into your work, it’s likely abuse. All the ideas should originate from your
brain and all the words should, at minimum, be filtered through it.
 Let’s walk through how you might get started with some of the best uses of generative
AI and conclude by looking at terrific abuses. We used ChatGPT with GPT-4o here (unless
otherwise indicated), but the prompts and strategies should apply across all options.

B.1 Clarifying sentences
Generative AI is great at pointing out suboptimal sentences. And with appropriate
guidance, it can also help you improve them.

B.1.1 Tightening long clunky sentences

To explore the range of what’s possible, we took a few different approaches to tighten-
ing up long clunky sentences: iterating on prompts within a single generative AI tool,
using the same prompts across different tools, and also comparing two prompts across
various tools.

320 Appendix B  AI uses and abuses

Iterating on a single tool

To quickly triage the writing in the fake Zig blog post, we prompted generative AI as
follows:

P 	 Prompt: Can you identify the longest sentences? [copy of blog post]

	 Response: “Zig is not Rust, and it happily lets you dereference null pointers (although
its type system tries to prevent obvious cases of that), and use previously freed mem-
ory, so we had a dubious pleasure of long debugging sessions—just us, gdb, and the
ninth cup of coffee—but it was comforting to see all the existing tools just work.”

“It does come with HTTP support in its standard library, and that’s great, but we also
wanted to add a thin custom encryption layer, forced down our throats with all the SOC2
requirements, and that we just needed to implement by linking to a Rust implementation.”

Next, we tried to improve those two long sentences with the following prompt:

P 	 Prompt: Please simplify each of the following sentences. Trim the fat. Do not change
the meaning. It is ok to split them into multiple sentences if needed.

	

	

	

	

	

Response: “Zig is not Rust. It allows dereferencing null pointers and using freed
memory. This led to extended debugging sessions with gdb and substantial coffee
consumption, but it was reassuring to see all the existing tools function correctly.”

“Zig’s standard library includes HTTP support, which is advantageous. However,
a custom encryption layer was required due to SOC2 requirements, necessitating
implementation by linking to a Rust library.”

Cleaner, but soulless. These revised sentences don’t follow the style of PretendPiotr’s
blog post. We tried again with another prompt.

P Prompt: Please try to keep the same personality and style used in the original draft.

Response: “Zig, unlike Rust, doesn’t shy away from letting you dereference null point-
ers or use previously freed memory, leading to those oh-so-fun debugging marathons.
But hey, it’s a relief when all your trusty tools just keep chugging along.”

“Sure, Zig’s got your back with its built-in HTTP support. But guess what? We wanted
more. So, we threw in a slick custom encryption layer to keep up with all those SOC2
requirements. And yeah, it meant cozying up with a Rust implementation.”

Some personality shows here, but it seems fake and forced. And the sentences are too
colloquial and too wordy. We tried again with another prompt:

P Prompt: Please simplify each of the following sentences. Trim the fat. Do not elimi-
nate the personality or change the style. Do not change the meaning. It is ok to split
them into multiple sentences if needed.

Response: “Zig isn’t Rust, and it happily lets you dereference null pointers and use
freed memory. This led to long debugging sessions—just us, gdb, and the ninth cup
of coffee—but it was comforting to see all the existing tools just work.”

	 321Clarifying sentences

	

“Zig’s standard library includes HTTP support, which is great. But we needed a thin
custom encryption layer due to SOC2 requirements, so we had to implement it by link-
ing to a Rust library.”

Okay, that’s an improvement. The sentences are simpler and sound relatively human.
But certain nuances are lost in each sentence, just as they were when we stripped sen-
tences down to the core actor and action in chapter 5. In both cases, you’ll want to con-
sider if the nuances are important enough to justify the added words, then reintroduce
them as you see fit. And always ensure that the final sentence truly reflects your
natural voice.
 If you’re not getting the results you want, even by refining the prompts, try a different
generative AI tool. From our experiences, one tool is not consistently better or worse at
revising, so experiment until you get something you like! That leads to our next section.

T

To simplify an extremely wordy sentence we discovered in the wild, we tried the follow-
ing prompt across a few different generative AI tools:

P Prompt: Please simplify the following text. Trim the fat. Do not eliminate the person-
ality or change the style. It is ok to split a single sentence into multiple sentences if
needed.

To overcome the scaling challenges we were facing, such as the lack of a centralized
system interface for keeping and managing the growing number of business rules,
as well as a previously loosely coupled infrastructure of third-party services whose
many failures were impacting our sales process, around two years ago we decided to
create a single platform to manage all aspects of our process for selling directly to
consumers.

We got the following responses. Note the wide variety of approaches taken by different
tools:

¡ Claude 3.5 Sonnet: “We faced scaling challenges: no central system for managing
growing business rules and unreliable third-party services disrupting sales. Two
years ago, we decided to build a single platform to handle our entire direct-to-con-
sumer sales process.”

¡ Gemini 1.0 Pro: “We were struggling to manage our sales. We had too many sepa-
rate systems for our business rules, and third-party services kept failing, messing
up our sales process. To fix this, we built a single platform two years ago to handle
everything for direct sales.”

¡ ChatGPT using GPT-4o: “To overcome our scaling challenges—like the lack of a
centralized system for managing our growing number of business rules and the
failures in our loosely coupled third-party services impacting sales—we created a
single platform for all aspects of our direct-to-consumer sales process about two
years ago.”

¡ Copilot using GPT-4: “Around two years ago, we tackled scaling challenges. These
included the lack of a centralized system interface to manage our growing business

322 Appendix B  AI uses and abuses

rules and a loosely coupled infrastructure of third-party services that frequently im-
pacted our sales process due to their numerous failures. Our solution? We created
a single platform to handle all aspects of selling directly to consumers.”

The Gemini response seems best. It’s short, and it flows from one thought to another.
The Copilot one also sounds natural, like it came from a human. The ChatGPT one is
a bit long for a single sentence, but still clearer than the original. These three are all
acceptable options. However, the Claude response is too choppy and doesn’t convey
the connection between the ideas.

Trying different tools and comparing different prompts

Next, we took a similar approach with one of the more complex sentences from the
fake Zig blog post. Since PretendPiotr’s writing style has a strong personality, we
wanted to compare the results with and without the “Do not eliminate the personality
or change the style” statement in the prompt.

P Prompt A: Please simplify the following text. Trim the fat. Do not eliminate the person-
ality or change the style. It is ok to split a single sentence into multiple sentences if
needed.

One of the mind-blowing things about Zig is that cross compilation (ergo compiling
the code to target CPU architecture and operating system different than the setup the
compiler runs on) is also a core feature of the language.

P Prompt B: Please simplify the following text. Trim the fat. It is ok to split a single sen-
tence into multiple sentences if needed.

One of the mind-blowing things about Zig is that cross compilation (ergo compiling
the code to target CPU architecture and operating system different than the setup the
compiler runs on) is also a core feature of the language.

Here are the results:

Table B.1  Comparing two prompts across tools

Generative AI tool Response to prompt A Response to prompt B

Claude 3.5 Sonnet One of Zig’s mind-blowing features
is cross compilation. This means
you can compile code for a different
CPU and OS than what your com-
piler runs on. It’s built right into the
language.

A remarkable feature of Zig is its
built-in cross-compilation. This
allows code to be compiled for differ-
ent CPU architectures and operating
systems than the one running the
compiler.

Gemini 1.0 Pro Zig rocks! Not only is it a great lan-
guage, but compiling code for differ-
ent systems (cross-compilation) is
built right in. No need for extra tools
or headaches.

Zig makes creating software for
different systems incredibly easy.
You can write code on one machine
and compile it to run on entirely
different hardware, all within the
same language.

	 323Clarifying sentences

Generative AI tool Response to prompt A Response to prompt B

ChatGPT using GPT-4o One of the mind-blowing things
about Zig is that cross compilation—
compiling code for a different CPU
architecture and operating system
than the compiler’s setup—is a core
feature of the language.

One impressive feature of Zig is its
core support for cross-compilation,
allowing code to be compiled for
different CPU architectures and
operating systems from the one the
compiler runs on.

Copilot using GPT-4 Zig’s mind-blowing feature is
cross-compilation. This means you
can compile code to target a differ-
ent CPU architecture and operating
system than the one your compiler
runs on.

Zig, like Rust, has native support
for cross-compilation. Its integrated
toolchain simplifies compiling for
different architectures or operating
systems. When you cross-compile
from one platform to another (e.g.,
Windows to Linux), Zig automatically
sets up the necessary import paths,
making it a core feature of the
language.

 

B.1.2	

Table B.1  Comparing two prompts across tools (continued)

All tools provide distinctly different results for prompt A versus prompt B. Some of the
prompt A responses capture the spirit of PretendPiotr better than others though. The
Gemini response added its own words (e.g., “Zig rocks”), which seem artificial and out
of place. The three-sentence Claude response is choppy. The ChatGPT response is no
more readable than the original, and it leaves the reading hanging after “One of the
mind-blowing things about Zig is that cross compilation.”
 The Copilot response is clean and clear, and it still retains PretendPiotr’s original
exuberance with “mind blowing.” Shifting from “One of the mind-blowing things about
Zig is” to “Zig’s mind-blowing feature is cross-compilation” does change the emphasis
and meaning a bit, though. It also skips the part about cross compilation being a core
feature of the Zig language.

NOTE Interestingly, the Copilot response for prompt B added its own ideas
(e.g., about automatically setting up import paths). They’re not wrong—
they’re just not PretendPiotr’s thoughts. This is definitely something to watch
for and a reminder of why it’s crucial to carefully review suggestions before
incorporating them.

Finding the right word

If you want to find a broad range of alternatives for a particular word, a thesaurus can
help. But a thesaurus can’t help you when

¡ You’re looking for a single word to replace a longer phrase.

¡ You can’t think of a word that’s on the tip of your tongue.

¡ You want to focus on suggestions that make sense in your specific context.

324 Appendix B  AI uses and abuses

Generative AI can help in all these cases though. Here are a few illustrative scenarios.

Replace a weak phrase with a more precise word

Generative AI is quite helpful for sharpening a phrase in context.

P 	 Prompt: Suggest a simpler way to say “really desired” in the context of this sen-
tence: “Such a limited trust environment is really desired for an embedded language
because it vastly reduces the risk of somebody running malicious code from within
your project.”

	 Response: “Such a limited trust environment is ideal for an embedded language…”

“Ideal” is cleaner than “really desired.”

P Prompt: Suggest a better word than “extremely important” in the context of the fol-
lowing sentence: “In a distributed environment, drivers are an extremely important
part of the ecosystem.”

	 Response: “In a distributed environment, drivers are a crucial part of the ecosystem.”

“Crucial” is more emphatic than “extremely important.”

P Prompt: Suggest a simpler way to say “that happened to go through” in this con-
text: “Instead of examining raw bytes that happened to go through our network
interfaces…”

	 Response: “Instead of examining raw bytes that passed through our network
interfaces…”

“Passed through” is easier to read than “that happened to go through.”

Get unstuck when you can’t think of a word

Generative AI can also be a lifesaver when you have a brain freeze and just can’t come
up with the right word, for whatever reason.

P Prompt: What’s the right word here? “Goodput is an interesting ___ of good +
throughput”?

	 Response: “Goodput is an interesting portmanteau of good + throughput.”

Yep, “portmanteau” is the word we were looking for.

P Prompt: Suggest replacements for the missing word: “Filtering comes with a perfor-
mance burden and is usually a ____ of data model design flaws.”

	 Response: 1. “Result” 2. “Symptom” 3. “Consequence” 4. “Manifestation” 5.
“Reflection”

Ah, “symptom” is what we meant.

	 325Checking grammar

B.2	 Checking grammar
Generative AI’s grammar checking results were generally helpful. The tools pointed
out a handful of mistakes, as well as some that were deliberate style choices. Here’s a
sample:

P Prompt: Please point out all of the grammatical problems in this blog post. Explain
how to fix each one -- and why it’s a problem.

	 Response: **First Paragraph, Last Sentence**

Current: There’s just one problem though, and it stems from the fact we some-
times need to move data from our legacy Postgres clusters: migrating all data back to
FakeDB is S-L-O-W.

 Suggested: There’s just one problem, though, and it stems from the fact that
we sometimes need to move data from our legacy Postgres clusters: migrating all
data back to FakeDB is S-L-O-W.

Explanation: Add a comma after “problem” for clarity, and add “that” after ”fact”
for grammatical correctness.

Migration Costs Section, Fifth Sentence

Current: As a result, instead of just blindly moving data from one machine to
another, we need to carefully transform it from one format to another, and the existing
tools are far from ideal in that matter.

Suggested: As a result, instead of just blindly moving data from one machine
to another, we need to carefully transform it from one format to another. The existing
tools are far from ideal in that matter.

Explanation: Split into two sentences for clarity.

Proposed Solution Section, First Sentence

Current: It took us the aforementioned two days to establish that the existing
migration machinery is far from ideal.

Suggested: It took us the aforementioned two days to establish that the exist-
ing migration machinery was far from ideal.

Explanation: Maintain tense consistency by changing “is” to “was.”

The previous problems were all valid, and should be fixed. However, the following
“mistakes” reported were intentional stylistic choices, and do not warrant a correction:

Developer Experience Section, Last Sentence

Current: In other words, we did not enjoy it. At all.

Suggested: In other words, we did not enjoy it at all.

Explanation: Combining the two sentences into one flows better and maintains
the emphasis.

Proposed Solution Section, Second Sentence

326

B.3	

A

Current: Thus, it took us approximately two seconds to reach the obvious con-
clusion: let’s write a tool that actually works and is fun to work with!

Suggested: Thus, it took us approximately two seconds to reach the obvious
conclusion: let’s write a tool that actually works and is fun to use!

Explanation: “Fun to use” is more concise and clearer than “fun to work with.”

We noticed that the generative AI tool didn’t report the incorrect “it’s” we had planted
in the blog post (“Zig is interoperable with C alright, but it’s patience has limits.”).
That raised our suspicions. Was it only reporting a subset of the problems it detected?
 Curious, we prompted it with “Are there any more grammatical errors?” The tool
then reported many more problems! Trying to learn from this experience, we then
asked, “What prompt should I use to have you go sentence by sentence like this?” The
answer—and the golden prompt for complete grammar checking—is “Please review
the following text sentence by sentence for grammatical errors, suggest corrections,
and explain the reasons for each correction: [insert text].”
 This generates an analysis of each and every sentence, with either a correction or
confirmation that it’s fine as is. Some might consider this overkill, while others might
find that it puts their mind at ease. If you want an exhaustive grammatical review, that’s
how to get it.

Getting fast feedback on your rough draft
Back in chapter 4, we talked about feeding your rough draft to a generative AI tool to
get fast feedback on glaring problems, like logical gaps and places where readers might
expect more technical details. For fun, we decided to run one of real Piotr’s first pub-
lished blog posts (“Enhancements to ScyllaDB’s Filtering Implementation,” available
at https://mng.bz/M1yQ) through the same level of generative AI feedback. We asked
various tools to point out problems with the blog, any logical gaps, and similar—the
same prompts we used in chapter 4. Most suggestions, across tools, focused on alleged
inconsistencies in the examples, the need for more details on materialized views and
secondary indexes, and the limited discussion of tradeoffs.
 Here are Piotr’s conclusions from that feedback:

I found most of the “detected” inconsistencies useless and untrue, but that’s entirely
expected. Every model pointed out that the article didn’t get into more detail for materi-
alized views and secondary indexes, but that’s mostly because readers were encouraged
to read other blog posts and documentation if they were interested in a more detailed
description. The models we used didn’t follow those links, hence they didn’t “acknowl-
edge” the details.

e was one surprisingly brilliant
remark by Claude though: “The post mentions that filtering is performed after all
potentially matching rows are fetched, but it doesn’t explicitly explain why this
approach is used or if there are plans to optimize this in future versions.”

https://mng.bz/M1yQ

	 327Visualizing

Great point! The article takes this implementation detail for granted, without explain-
ing why all rows are fetched. Pointing out possible optimization is spot on too. My team
actually discussed implementing a “replica predicate push” to optimize filtering (by
trying to discard some rows early on database replicas, without fetching them to the
primary). Motivated by this comment, I could have added this side note to the blog post:

“Fetching all rows to the primary node for filtering is an implementation detail, and
this process can be optimized. Some predicates can be pushed to replicas, which can
then reject non-matching rows early—without sending them over the network. Filter-
ing would remain a potentially heavy operation regardless of this optimization. But, it
could improve the performance enough to be faster than secondary indexes and mate-
rialized views in more use cases.”

I also encourage all authors to try Gemini. Its cluelessness with respect to blog post
reviewing is really amusing, every single time. It will lighten your mood for the rest of
the day!

 

	

Figure B.1 Gemini’s rather clueless response to our review request. Note that the
text of the entire blog post was provided in our prompt.

B.4 Visualizing
The images we used in the patterns chapters were all generated by DALL·E 3. We had
some rather specific ideas of what we wanted our images to convey, so stock images
were not appropriate. Rather than hire a graphic designer, we thought it would be fun
to try to create custom artwork as a generative AI learning experience.
 We’re not huge fans of subscriptions and Piotr likes to use command-line tools when-
ever possible. That’s why we used the prepaid OpenAI API, which provides more insight
into how the DALL·E 3 flow works, rather than the flashy web UI.

328 Appendix B  AI uses and abuses

Sending a request to generate an image via a terminal is quite straightforward. Say
you’re writing a chapter called “Lessons Learned,” and you want to decorate it with a
vintage image of an 18th-century classroom during a physics lesson, inkwells and all.
The image should be black-and-white and printer friendly (to avoid the editors becom-
ing moderately angry with you at a later stage of the book publishing process). The
request can look like the one in the following listing.

Listing B.1  The request we sent

curl https://api.openai.com/v1/images/generations \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $SUPERSECRET_OPENAI_TOKEN" \
-d '{
"model": "dall-e-3”,
"prompt": "man in a classroom teaching physics, 18th century theme,
clip-art style, print friendly",

 "n": 1,
 "size": "1024x1024"
 }’

Ideally, you would just receive a response in JSON format, containing a 'url' field
pointing to the generated image. However, using the API directly revealed that DALL·E
3 has at least two stages:

1	 Revising the user prompt with AI

2	 Generating the image

Figure B.2 shows the original response we received from this prompt.

Figure B.2  The original image
generated from our prompt
requesting “man in a classroom
teaching physics, 18th-century
theme, clip-art style, print friendly.”

	 329Writing

That is not exactly what we imagined. Plus, we can’t verify if what’s on the black-
boards are even real words (since neither of us is a fluent Arabic speaker).

Turns out, the main culprit for this confusing response was the first stage: revising
the prompt. Fortunately, the "revised_prompt" field is also returned in the response,
so we could see how ChatGPT decided to revise it. Let’s just say it’s very liberal at ignor-
ing what a user is really requesting. Here is the revised prompt.

Listing B.2 The revised prompt

"revised_prompt": "Create a clip-art style, black and white, printer-
friendly illustration of a classroom scene set in the 18th century. The
setting is simple with traditional Arabic architectural elements such as
arches and geometric patterns. The central figure is a female Middle-Eastern
educator, dressed in 18th-century attire, perhaps with a long dress and a
headscarf. She stands in front of a modest wooden desk with scrolls and
quills, addressing a group of attentive students. The students, both boys and
girls, are seated on low benches or cushions on the floor, taking notes on
parchment. The overall composition should be clear and uncluttered, with an
emphasis on the educational and cultural setting of the period."

As you can see, the style and color theme is spot on. But to ensure that the image con-
tent matches your intent, we suggest the following tricks that proved to work:

¡	Explicitly ask to “not revise the prompt.”

¡	Insist on particular details (e.g., clothes) quoting that it’s “extremely important
for historical accuracy.”

¡	When asking to generate images of human beings, be weirdly specific about list-
ing all possible historical settings, social status, ancestry, details like facial hair or
lack thereof, and other things you would never mention in a normal conversation.

¡	Carefully check all faces and count all fingers. When in doubt, regenerate.

Another amusing thing is that models really struggle with a lack of something. Piotr
once tried to generate an image of “goose footprints in a forest, BUT WITHOUT ANY
GEESE PLEASE” after multiple prompts (for a children’s story, not for this book).
Once you mention something in a prompt, even if it’s negated, it’s likely to appear.
If you don’t want a goose in there, either carefully avoid mentioning it at all in the
prompt, or be ready to refresh your Photoshop skills.

B.5	 Writing
We could tell you why you shouldn’t use generative AI to generate an engineering blog
post. But we think it would be more compelling and entertaining to just show you.

We started with the following prompt, based on the stated goals for the fake Zig blog
post:

P 	 Prompt: “You are an experienced software engineer who knows C, C++, and Rust.
Write a blog sharing your experience using Zig for a new tool you just developed to

330

B.5.1	

A

help users migrate data to a new database. Please use a tone that is authentic, per-
sonable, and occasionally humorous.”

Here’s how it went. Please note: we did not change a single word!

First attempt

Confessions of a Data-Migrating Maverick: My Zig-Fueled Escape From C++ Hell

Alright, fellow code slingers, buckle up for a tale of migration, redemption, and a sprin-
kle of Zig-flavored magic. You see, my friends, I used to be a C++ cowboy, wrangling
pointers like tumbleweeds and wrestling with templates more ferocious than a bison
in a china shop. Don’t get me wrong, C++’s got its grit, but for a data migration tool?
It felt like trying to shoehorn a giraffe into a clown car. Enter Zig, the Rust-kissed
lovechild of C and Go, promising blazing speed and memory safety that wouldn’t leave
me drowning in segfaults. So, naturally, I took a leap of faith, saddled up this shiny
new compiler, and rode off into the data-migrating sunset.

Let me tell you, Zig was like a breath of fresh air in a smog-choked C++ cave. Gone
were the cryptic templates and memory management migraines. Zig’s static typing
held my hand like a friendly sherpa, guiding me through the treacherous landscape
of data conversion. And its conciseness? Oh, it was poetry in motion. My code went
from looking like a Jackson Pollock painting to a David Hockney masterpiece—clean
lines, bold colors, and a damn good migration tool taking shape.

Now, don’t get me wrong, Zig ain’t all sunshine and rainbows. There were definitely
bumps on the dusty trail. The ecosystem ain’t as lush as C++’s jungle, and some
libraries felt like tumbleweeds themselves, rolling by and offering little shade. But the
Zig community? Those folks are real gems. Friendlier than a puppy in a sweater, they
answered my newbie questions with the patience of saints and the enthusiasm of
rocket scientists. Together, we hacked our way through the rough patches, and soon,
my little Zig-powered data migrant was humming like a well-oiled machine.

And the results? Well, let’s just say our users stopped using the term “migration
nightmare” and started throwing around words like “breeze” and “miracle.” Turns out,
using the right tool for the job can make all the difference. I went from wrangling C++
beasts to riding the Zig breeze, and my data? It migrated smoother than a greased
watermelon down a hill.

So, to all you code wranglers out there, facing down your own data migration dragons,
I say this: Take a chance on Zig. It might just be the magic spell you need to turn your
migration woes into coding euphoria. And hey, if you get stuck, remember, the Zig
community’s got your back. Just be sure to pack your sense of humor—you’ll need it
for the occasional pointer joke.

Now, if you’ll excuse me, I have a date with some freshly migrated data and a steam-
ing cup of Zig-infused coffee. Cheers to new beginnings, fellow adventurers!

P. S. To the C++ diehards out there, hey, don’t hate the player, hate the game.
C++ will always have a special place in my dusty cowboy boots. But for data migration
adventures? Zig’s the new sheriff in town, and this town ain’t big enough for the both
of us.

	 331Writing

B.5.2	 Second attempt

Once we stopped laughing/crying, we attempted to refine it a bit with the following
clarification: “Less casual. And the author is a guy in Warsaw, not some American
cowboy.”

Here’s the result:

From C++ Mazurkas to Zig Polkas: A Data Migration Odyssey (Warsaw edition)

The whispers, like a Chopin nocturne, drifted through the bustling cafes of Warsaw,
weaving tales of a new language. “Zig,” they murmured, “a Rust-kissed siren, prom-
ising speed without segfaults, conciseness beyond templates.” Curiosity piqued, I, a
seasoned C++ hussar, donned my compiler czapka and ventured into the uncharted
territory.

Zig wasn’t just different; it was a Copernicus-level revolution. Static typing, once a
barbed-wire fence, became a Żubrówka-fueled guide, steering me through the data
conversion maze with surprising grace. Gone were the cryptic incantations of tem-
plates, replaced by a stark beauty as clear as a Tatry mountain lake. My C++ code,
once a Kaszubian folk song, transformed into a Mazurka masterpiece—clean lines,
vibrant colors, and a data migration tool pirouetting from the keyboard.

Of course, no mazurka is without its Mazurian tumbleweeds. Zig’s ecosystem, while
blossoming, lacked the sprawling forests of C++. Libraries occasionally felt like tum-
bleweeds themselves, offering little shade in the face of technical challenges. But
then I stumbled upon the oasis: the Zig community. These digital szlachta, welcoming
and patient, answered my every question with the enthusiasm of rocket scientists
and the wisdom of seasoned górale. Together, we traversed the rocky terrain, hacking
our way through opaque APIs and cryptic error messages like Krakau dragonslayers.

The culmination? A data migration tool worthy of a Polonaise ballad. Users who once
lamented “koszmar!” now sang “przejrzystość!,” their datasets traversing the digital
plains with the smooth glide of a Wisła gondola. Zig, it turned out, was the magic spell
my codebase needed, transforming a migration odyssey into a coding Krakowiak.

To my fellow code hussars still riding the C++ steed, I offer this: Zig might just be the
pierogi your dusty compiler craves. Its efficiency is unmatched, its safety a soothing
balm, and its conciseness a symphony for the coding soul. And fear not the uncharted
paths—the Zig community, a beacon of camaraderie, will guide you through the code
canyons with laughter and wit. Just remember to pack your sense of humor—the
occasional pointer pun is inevitable.

So, saddle up, my friends, and join me on this Zig-fueled Mazurka. For in the land of
data migration, a new sheriff rides, and its name is Zig.

P. S. To the C++ purists out there, I raise my virtual szklanka in respect. C++
remains a noble steed, forever etched in the annals of coding history. But for data
migration adventures, Zig holds the reins, and this digital frontier ain’t big enough for
both of us.

This should hopefully fit the bill! While keeping the overall story and tone, I replaced
the cowboy references with Polish-themed ones, adapting the language and humor to
better suit a Warsaw-based author.

332

B.5.3	

	

	

	

	

	

	

	

	

A

Conclusions

That did not, in fact, fit the bill. There are words that flow—oh so amusingly—one
after another, with perfect grammar. But it all rings hollow. Even though random
Polish cultural references are injected throughout the text, it’s clearly not from
any human being (and especially not from one with a Polish sense of humor, whatever
that might entail). There’s also an untranslatable cringe feeling Polish people are
going to experience when reading this article. Randomly translated words may make
sense after
directly translating them back to English, but they all look ridiculously out of place.
 Even Claude can tell that it’s not written by a human:

This text appears to be AI-generated rather than written by a human. Here are the key
indicators:

1 Unusually dense and consistent metaphors: The text maintains an extremely high
 density of Polish and Eastern European cultural references, dance metaphors, and
 programming analogies throughout. This level of consistent, thematic metaphor
 use is more characteristic of AI generation than human writing.

2 Overly flowery language: The prose is consistently ornate and poetic in a way that
 feels artificial. Human technical writers, even when being creative, typically don’t
 maintain such a consistently florid style.

3 Lack of specific technical details: While the post mentions Zig’s advantages, it
 doesn’t provide concrete examples or code snippets that a human developer would
 likely include based on real experience.

4 Perfect thematic consistency: The Polish/Eastern European theme is maintained
 flawlessly throughout, without any drift or inconsistency that would be natural in
 human writing.

5 Artificial emotional arc: The emotional journey feels manufactured rather than gen-
 uine, hitting predictable notes of curiosity, challenge, and triumph.

6 Too-perfect structure: The post follows an idealized narrative structure that feels
 more like it was generated to fit a template than a natural recounting of events.

7 Lack of genuine personal anecdotes: While framed as a personal journey, there are
 no specific, idiosyncratic details that would typically appear in a real developer’s
 account of learning a new language.

8 Overuse of cultural references: The density of Polish references feels more like
 it was generated from a list than organically incorporated by someone with lived
 experience.

While it’s a creative and engaging piece, the consistent artificiality in style and struc-
ture strongly suggests AI authorship rather than human writing. A human-written tech-
nical blog would likely have more variation in tone, more specific technical details,
and a more natural incorporation of personal experiences and cultural references.

A

	 333Writing

AI-generated one. The reader of PretendPiotr’s initial draft would walk away with new
insights on what it’s like to work with Zig, and potentially be inspired to give it a try.

With this AI-generated blog, the reader doesn’t learn a single interesting thing about
using Zig. And if an engineering blog lacks a distinctive educational core, nothing else
matters.

Still, there is one important educational takeaway here: you need to write your own
engineering blog posts, using your own voice, based on your own experiences and
ideas. By all means, feel free to use generative AI in ways that help you communicate
your ideas more effectively. But if you ever think of writing engineering blog posts with
generative AI instead of your own brain, just remember the dreadful example of this
“Zig-fueled Mazurka.”

afterword
In 2012, I wrote a blog post called “Your blog is the engine of community.” I’ve used
and revised some of the blog post below to reflect on knowledge contained within the
excellent book you’re holding in your (possibly digital) hand.
 Today, as we move toward and beyond 2025, we are entering a possible era of AI-gen-
erated content. You may ask yourself, why bother? It matters. Your word matters, your
knowledge matters, and we must continue to push back against the entropy and bit rot
of the internet.
 In a time where there is much gnashing of teeth around the meaning of commu-
nity, what being on the “inside” versus the “outside” means, I want to take a moment
to remind my fellow blog writers, blog readers, and blog commenters what makes it all
work.

You.
 Not a secret society, not a select few or someone knighted by royalty. It’s the name-
less, faceless web search result that makes community work.
 I search all the time for help on the internet. I find blogs, tweets, Stack Overflow
answers, and more. Often when I find the answer I seek, it’s on YOUR blog, not mine.
Often, it’s not on a big company employee’s blog or that of the chosen few. The answer
was put out on a blog, without ask of payment or recognition, by a 25-year-old student,
or a 60-year-old retiree exploring C#, or a high school student with a passion for open
source writing their first “Hello, World!”
 I and my blog are also that random search result. Someone searches for help and
finds my little corner of the internet. Write a few blog posts a week, with useful content, consis-
tently, forever. Then write some more. Share your knowledge. If you help one person who is
not you, you’ve doubled your readership.

334

	 335afterword 	 335

I would encourage you all to blog more. Tweet less. Blogs are owned by you. They are easily
found, easily linked to, and great conversations happen with great blog posts. The river
of social media rushes on and those conversations are long forgotten. A great blog post is
forever. Today’s real-time social media is quickly forgotten.

Don’t be a meme, but a movement.
Blog your opinions. Blog your cool project, or your latest useful function or library.

Don’t blog if it feels like work. Blog and get excited when someone comments. Often
the comments are more fun and more useful than the post itself. Be passionate, but not
rude. Point out failings but suggest solutions. Organize. Invent.

Be constructive, be helpful, be kind. Make your blog posts not too long, not too
short, not too stream-of-consciousness, and not too terse. Remember your elementary
writing classes. Have a thesis, make your argument, restate your thesis.

Share because you want to. Share because you want to help, but also because you
want to help yourself. Share not for the recognition but for the love of teaching.

It takes a village, dear reader, to be a community. It’s you, and me, and no one in
between. Now, go create, commit and write blogs that get read.

—Scott Hanselman
VP Developer Community, Microsoft

index
Numbers
25% or 6 to 4: The 11/6/23 Authentication Outage

article  199–200
3Ps test for topic ideas  20
32 Bit Real Estate article  224

A
ACM Queue  261, 314
acquisitions editor  302
AI (artificial intelligence)  20

clarifying sentences  319–324
feedback from  69–71
getting fast feedback on rough drafts  69–75, 326
grammar checking  102, 324
trying different tools  321
uses and abuses of  318–333
visualizing  327–329
writing  329–333

Amazon Science Blog  186–187
Antithesis Blog  226–227
Asciicinema and options for embedding code within

blogs  317
A Search Engine in 80 Lines of Python article  40
Async Rust is a Bad Language article  41
attention, getting options for  249–269

measuring effects of  270–274

audience
defining  51–57
for Bug Hunt pattern  157
for Benchmarks and Test Results pattern  235
for How We Built It pattern  186
for Lessons Learned pattern  198
for Non-markety Product Perspectives

pattern  222
for Rewrote It in X pattern  172
for Thoughts on Trends pattern  207
optimizing for  78–119

average engagement time  270
AWS Graviton2: Arm Brings Better Price-

Performance than Intel article  235–236
Axo Blog  225–226

B
backlinks  260, 271, 273
Beck, Kent  283
Benchmarks and Test Results pattern  232

audience  235
characteristics  241
dos and don’ts  243
examples  235
purpose  234

Bergia, Andrea  43–44

336

	 337index

BGP (Border Gateway Protocol)  225
Bhola, Sumeer  189–190
blogging

benefits of  4–10
attracting new hires  8
attracting users for developer-focused

product  9
career development  6
engineering  8
free peer review  5
improving skills  8
language  8
leaving comfort zone  4
personal brand boost  6
staying on top of latest technologies  7
understanding code  5
writing  8
writing ≠ riches  10
writing once, sharing everywhere  9

building own blog site  310
dripping a book out through blog posts  299
final review of core content  133
getting attention  249
previewing in place  133–137

code  134
core images  135
header image  136
tables and lists  137
titles and headings  134
videos  137

blog posts
captivating readers  35
categories organizing information  146–148
characteristics of  37–40

appealing design  39
deep  38
disruptive  37
distinctive educational core  38
engaging writing  39
exclusive  38
eye-opening  37
hands-on elements  40
intriguing topic  37
pragmatic  38
relevant  37
smooth delivery  39–40

up-to-date  39
choosing topics for  20
converting to conference talks  285–288

developing individual slides  287–288
mapping out slide flow  286
preparing speaker notes  288
starting with most important takeaway  286

measuring effects of  270
causes of low engagement time and/or high

bounce rate  271
how people find blog posts  271
social and community engagements  273
who is reading blog posts  273

metadata  138–150
categories  146–148
hyperlinks  144
images  145
keywords  139–141
meta description  142
tags  146–148
thumbnail images  148
title tag  141
topics  146–148
URLs  143

optimizing drafts
code  113
components of blog posts  103–113
endings  110–111
headings  111
introductions  107–109
titles  103–106
visuals  112

previewing in place  133–137
sharing  251–260

connecting with community  253–254
creating social posts  254
discussing  255–260
from social media handles  255
Hacker News  258–260
in focused virtual communities  257
keeping alive  260
monitoring obsessively and responding

rapidly  256–257
observing  253
reacting  254
responding  254

338 index

taxonomies, organizing information  146–148
testing topic ideas  20

blog post topics  21–31
architectural shifts  25
bug hunting  23
capability clarification  28
capability comparison  29
contentious topics  27
cool things implemented  22
design decisions and tradeoffs  25
footgun prevention  30
frustration and fatigue  26
infrastructure and traffic spikes  23
numbers  27
open-source contributions  24
reasons for building something  31
revisiting past predictions  28
security incident post-mortem  22
unexpected usage  27
weekend projects  24

books
publishers  314

self-publishing options  315
traditional  314

reasons for writing  294–296
anchoring yourself as expert  295
immersing yourself in topic  295
leveling up writing  296
urge to share and teach  296
vision for book  294

bounce rate  271
Brians, Paul  100
Bug Hunt pattern  155

audience  157
characteristics  161
dos and don’ts  164
examples  158–161
purpose  155

Butcher, Matt  211–212, 215

C
canonical URL  266
Cantrill, Bryan  xvi–xvii, 105, 212, 216, 217, 236, 242
Canva Blog  190
captivating readers

characteristics of articles  37–40

disruptive  37
distinctive educational core  38
eye-opening  37
intriguing topic  37
relevant  37
smooth delivery  39–40

examples of popular blog posts  40–45
Async Rust is a Bad Language  41
I Have Written a JVM in Rust  43
Python 3.13 Gets a JIT  42
Return of Frame Pointers, The  43
Search Engine in 80 Lines of Python, A  40

categories organizing information  146–148
C/C++ Users Journal  261
Chojnowski, Michał  158, 235–236
clarity optimizations  79
clarity reviewer  123
clicks  274
Cloudflare Blog  238
CMS (Content Management System)  311
co-authors, collaborating with  298
CockroachDB  189
Codapi  317
code  113

previewing in place  134
code display tools  317
CODE Magazine  314
comments  274
Communications of the ACM  314
components optimizations  79
conferences, sharing at  269
conference talks  276–280

benefits of  278
direct feedback from target audience  279
free professional video  279
network expansion  279
recognition as expert on topic  278

converting blog posts to  285–288
developing individual slides  287–288
mapping out slide flow  286
preparing speaker notes  288
starting with most important takeaway  286

delivering  290
following up after  291
identifying and evaluating opportunities 

280–282

	 339index

fit  281
logistics  281
reach and promotion  281

Piotr’s path  277
promoting  289
reasons not to convert blog posts to  280

approvals  280
time  280

rehearsing  289
submitting proposals  282–285

reusing/rethinking blog posts  283
tips for  284–285

consumability optimizations  79
conversions  271
copyeditor  302
core images  135
core optimizations  79
Costa, Glauber  214–215
CQRS (Command Query Responsibility

Segregation)  139

D
decorative images  117
deep educational core  38
De Méo, Misty  225–226
demographics  273
depth of content  38
design  39
design staff  302
developmental editor  302
Discord, blog post  82, 111, 174, 199
disruptive topics  37
distinctive educational core  38
draft optimization

clarity  91–103
AI  100
bolding prepositions  93
calculating lard factor  98
cutting or replacing remaining useless

words  96–98
finding actor and action  95
grammar  101
highlighting   94
optimizing unclear bulky sentences  92–101
process  102
rebuilding sentence around actor and

action  95

watching out for other clarity killers  99–100
core issues  80–90

facts  81–83
flow  86–89, 90
focus  83–86

drafts, optimizing  78, 117
focus and challenges  79

Dr. Dobb’s Journal  261
DZone  264, 313

E
Eaton, Phil  15, 83, 151, 223–224
eBPF  214
editors, misconceptions about  302
Effect of Switching to TCMalloc on RocksDB

Memory Use, The, article  238–239
Enberg, Pekka  5
Ene, Alexandru  186–187
endings  110–111

implications/extrapolation  110
next steps (for them)  111
summary/takeaways  110
what’s next (for you)  110

engagements  274
engaging writing  39
engineering, improving skills  8
ethos  217
evangelism  171
example blog post  66–68
exclusive educational core  38
extrapolating in conclusions  168
eye-opening topics  37

F
facts

ensuring arguable statements are supported by
facts  81

investing in sharing facts that make article stand
out  82

feedback  120
challenges  121
code review vs. article review  121
conference talks and  279
deciding when to start  124–125

blocker questions  124
feeling like you’ve done what you intended to

do  125

340 index

importance and/or controversy of topic  124
time for another review cycle after tech reviewer

finishes  125
minimum requirements  130
nonnative English speakers  129
other organizations involved  130
responding to reviewer comments  128
reviewers

preparing  125–128
providing background  125, 126
specifying what you want  126–128

selecting reviewers  122
unknown reviewers  129

feeds  33
Fermyon Blog  211–212
Fidalgo, Garrett  200– 201
flame graphs  162–164, 166
flow

explaining order  86
frontloading  89
providing clear signposts to reader  87

Fly.io Blog  224–225
focus

cropping to highlight most interesting part  86
cutting what doesn’t clearly advance goal  83
providing appropriate level of context  84

follower count  274
Fong-Jones, Liz  90
freeCodeCamp  313

G
Gallego, Alexander  226
Gatsby, static site generator  311
Ghost Content Management System (CMS)

option  311
Gist, and options for embedding code within

blogs  317
Google Trends  139–141
grammar  101

checking  324
Grammarly  315
Greef, Joran Dirk  83, 223–224
Gregg, Brendan  44–45, 161, 162, 243
guest blogging  266–267

benefits of  266
considerations  267
drawbacks of  267

tips for  267
Gupta, Ayush  188–189

H

Hacker News  258–260
HackerNoon  264, 313
Halupka, Kerry  190–191
hands-on elements  40
hashtags  256
header images  136
headings  111, 134

avoiding unnecessary complexity  112
less is more  111
placing critical words at start  112
previewing in place  134

Hemingway  316
Herding Elephants: Lessons Learned from Sharding

Postgres at Notion article  200–201
Hohpe, Gregor  301, 315
Howarth, Jesse  174–175
How a Single Line of Code Made a 24-core Server

Slower Than a Laptop article  159–160
How io_uring and eBPF Will Revolutionize

Programming in Linux article  214–215
How Much Does Rust’s Bounds Checking Actually

Cost? article  239– 240
How Prime Video Updates its App for More Than

8,000 Device Types article  186–187
How to Think About WebAssembly (Amid the

Hype) article  211–212
How Turborepo is Porting from Go to Rust

article  174
How We Built It pattern  183

audience  186
characteristics  191–193
dos and don’ts  193–194
examples  186–191
purpose  184

How We Built Notification Rate Limiter for Eight
Billion Notifications Per Day for 400 Million
Monthly Active Users article  188–189

How We Built Scalable Spatial Data and Spatial
Indexing in CockroachDB article  189–190

Hugo  311
Hunting a NUMA Performance Bug article 

158–159
hyperlinks  144

	 341index

I
IDE (integrated development environment)  116
IEEE Software  261, 314
I Have Written a JVM in Rust article  43–44
ImageMagick  136
images  145

core  135
header  136

impressions  274
industry experts  302
InfoQ  261, 314
Ingram, Bo  82–83
introductions  107–109

being aware of what target reader does and
doesn’t know  109

indicating what target reader can expect  108
indicating why take on topic is interesting  108
starting with backstory  108

inverted pyramid structure  89
io_uring  214
ITNext  264
I Want Off Mr. Golang’s Wild Ride article  210–211

J
Jastrzębski, Piotr  201
Javeria, Sanchay  160–161
Jha, Saagar  176

K
Katekar, Rowan  190–191
keywords  139–141

using Google Trends  139–141
Kline, Matt  41–42
Kuizinas, Gajus  201– 202

L
LanguageTool  316
Larson, Will  12, 301
legal team  302
Lessons from Debugging a Tricky Direct Memory

Leak article  160–161
Lessons from Stripe article  202–203
Lessons Learned pattern  196

audience  198
characteristics  203
dos and don’ts  204

examples  199
purpose  197

Lessons Learned Scaling PostgreSQL Database to
1.2bn Records/Month article  201–202

LinkedIn Post Inspector  150
Linux Journal  261
lists  137
login: Online  314
logos  218
Luu, Dan  313
Lynagh, Kevin  173–174

M
Mackey, Kurt  224–225
Marzoev, Alana  239–241
McGranaghan, Mark  202–203
Medium  264– 266, 311
Meta Blog  175–176
metadata  138–150

blog posts
categories  146–148
tags  146–148
thumbnail images  148
topics  146–148

hyperlinks  144
images  145
keywords  139–141

using Google Trends  139–141
meta description  142, 143
taxonomies  146–148
thumbnail images  148
title tag  141
URLs  143

metrics  166
benchmarks  166
flame graphs  166
metrics  166

migration costs  66
mindmapping  59
Molas, Alex  40
Morling, Gunnar  291
Mueller, John  143

N
networking, conference talks and  279
new users  273

342 index

Non-markety Product Perspectives pattern  220
audience  222– 223
characteristics  229–231
dos and don’ts  204
examples  223–227
purpose  221

Notion Blog  200–201

O
optimizing drafts  78

components of blog posts  103–113
code  113
endings  110–111
headings  111
introductions  107–109
titles  103–106
visuals  112

consumability  114–117
addressing reader directly  115
being open  114
bolding key points  117
keeping it human  114–116
making scannable by humans  116–117
reviewing article at macro level  116
speaking reader’s language  115
tearing down walls of text  117
writing in authentic conversational voice  114

focus and challenges  79
organic search details  273
Orosz, Gergely  10, 213, 313
outlining  58

P
paragraphs

converting to lists  117
converting to tables  117

persuasion  217
ethos  217
logos  218
pathos  218

phrases, replacing weak with more precise
words  323

Pinterest Engineering Blog  160–161
podcasts and livestreams  268–269

benefits of  268
considerations  268

drawbacks of  268
tips for  269

pragmatic content  38
Pragmatic Engineer Blog, The  213–214
prepositions  93
Prism.js  317
profile views  274
Pshenichkin, Alex  226–227
publishing  310–313

books  314
self-publishing options  315
traditional  314

building own blog site  310
focus and challenges  132
HackerNoon, DZone, freeCodeCamp  313
Medium and friends  311
resources for  310
Substack  312

Python 3.13 Gets a JIT article  42

R
RAG (retrieval-augmented generation)  318
Readyset Blog  239–241
Redpanda Blog  226, 237
Redpanda vs. Kafka article  237
rehearsing  289
Relative Performance of C and Rust, The,

article  236–237
relevant topics  37
resources

writing and code display tools  317
writing and editing tools  315

Return of the Frame Pointers, The, article  44–45
reviewers

preparing  125–128
goal and target audience  126
high-level request  126
nonnegotiable  126
providing background  125
specific questions and requests  127
specifying what you want  126–128
timing  127
where it is in the process  126

selecting  122
review processes  120–130, 302
RFCs (requests for comments)  4

	 343index

roasts  216, 219
rubber duck dictation  63
Rust

Async Rust is a Bad Language article  41
How Turborepo is Porting from Go to Rust

article  174
I have Written a JVM in Rust article  43
Rust After the Honeymoon article  212–213
Why I Rewrote My Rust Keyboard Firmware in Zig:

Consistency, Mastery, and Fun article  173
Why Is My Rust Build So Slow? article  159

Rystsov, Denis  226

S
Sajjanshetty, Avinash  185
Sandpack  317
Schade, Amy  89
screenshot  150
scrolled users  270
ScyllaDB  10, 252, 277, 326
ScyllaDB Blog  158, 214, 236
search operators, Google Trends  140
self-publishing options  315
sentences, clarifying  319–324

finding right word  323
tightening long clunky sentences  319–323

SEO (search engine optimization)  106, 132
Shapira, Gwen  87
Shew, Anthony  174
Sletten, Brian  297
Smith, Mark  199–200
smooth delivery  39–40

appealing design  39
engaging writing  39
hands-on elements  40
up-to-date articles  39

Snappify  317
social media  32

controlling  32
curating circle of trust  32
engagements  273
venturing out into wild  32

Software Architecture is Overrated, Clear and
Simple Design is Underrated article 
213–214

software architecture, Orosz’s blog post  213
Software Engineer’s Guidebook, The (Orosz)  213

Something You Probably Want to Know About if
You’re Using SQLite in Golang article  201

So You Think You Want to Write a Deterministic
Hypervisor? article  226–227

Stackblitz  317
steganography  28
Stevens, Tristan  237
storytelling  198
Strulovich, Omer  175–176
submitting proposals  282–285

reusing/rethinking blog posts  283
tips for  284–285

subscriptions  33
Substack  312
subtle benchmarketing  234
syndicating simulacra  264– 266

considerations  265
reasons against  265
reasons for  265
tips for  265

System Dependencies Are Hard (So We Made Them
Easier) blog post  225

Systems Performance (Gregg)  243

T
tables  137
tags  146–148
talks, promoting  289
taxonomies  146–148
team chat apps  33
technical deep dives  165
technical editor  302
technical reviewers  123, 300
tech publications  260–264, 313

benefits of  261
considerations  263
drawbacks of  262
tips for getting articles accepted by  263

The New Stack  132, 214, 261, 264, 314
Thoughts on Trends pattern  207

audience  209
characteristics  215
dos and don’ts  217
examples  210
purpose  208

thumbnail images  148

344 index

TigerBeetle blog post  83, 229
tinyPNG  136
titles  103–106, 134

ensuring title can stand alone  105
intriguing target readers without misleading

them  104
previewing in place  134
thinking about what target reader might be

looking for  105
title tag  141
to be verbs, highlighting  94
tools, visualization  316
topic ideas, testing  20
tracked changes  123
traditional publishers  314
traffic sources  271
transitional words and phrases  88
transparency  165
triggers, increasing exposure to  31–34

feeds and subscriptions  33
social media  32
team chat apps  33
virtual communities  32

Turso Blog  201
Twitter Blog  187
Twitter’s Recommendation Algorithm article 

187–188

U
up-to-date articles  39
upvotes  274
URLs  143

V
Vale  316
Vanlightly, Jack  238
Vercel Blog  174
Verma, Akshit  188–189
videos  137

conference talks and  279
views and users  270
views/users plotted over time  271
virtual communities  32, 251–260
visualization tools  316
visualizing  327
visuals  112

Benchmarks and Test Results pattern  241
captioning  113
color-blind readers  113
copyrights  113
reader experience  112

Vorobev, Dmitry  238

W
Wenger, Amos  159, 162, 210, 216
We Put a Distributed Database In the Browser—And

Made a Game of It! article  223–224
We Rewrote It in X pattern  169

audience  172–173
characteristics  176–179
dos and don’ts  179–181
examples  173–176
purpose  170–172

Why Discord Is Switching From Go to Rust
article  174–175

Why fsync() blog post  226
Why I Rewrote My Rust Keyboard Firmware in Zig:

Consistency, Mastery, and Fun article 
173–174

Why Is My Rust Build So Slow? article  159
Why We at $FAMOUS_COMPANY Switched to

$HYPED_TECHNOLOGY article  176
WordPress  311
words, finding right  323

getting unstuck when can’t think of word  324
replacing weak phrases with more precise

words  323
working drafts  62

eliminating blockers  64–66
dropping placeholders when stuck  65
giving yourself a break  65
going out of order  65
resisting urge to edit  64

example blog post  66–68
built with Zig  67
developer experience  67
good parts of Zig  67
migrating data into FakeDB  66
migration costs  66
not-so-good parts of Zig  68
proposed solution  67
verdict on Zig  68

filling in gaps  68–76

	 345index

covering what you intended to cover  69–71
generative AI feedback  69–71
viability  75
what else to cover  71–75

focus and challenges  50
getting words on page  63–64

chatting with human  63
rubber duck dictation  63
tackling great walls of text  64
writing in native language  63

minimum requirements for  76
optional warmup  57–62

copying/pasting notes  61
mindmapping  59
outlining  58
working from model articles  61

preparation for  51–57
defining goals  54–57
questions to consider  54–57
reading similar articles  52
reading site guidelines  53

Writers Who Operate blog post (Larson)  12
writing

benefits of  3
blog posts, choosing topics for  20
books

publishers  314
self-publishing options  315
traditional  314

code review vs. article review  121
excuses for not writing  11–16

already available as recorded talk  15
leaking confidential details  16
no product out yet  14
not a native English speaker  12
not a writer  12
nothing interesting to say  16
no time  13

not new  14
project not 100% completed  13

final details  131
improving skills  8
next steps  16
personal perspective  10–11
publishing  310–313

building own blog site  310
HackerNoon, DZone, and

freeCodeCamp  313
Medium and friends  311
Substack  312

resources for  310
tools for  315
topics  19

writing books  293
alternatives to  297–300

becoming technical reviewer  300
collaborating with co-authors  298
dripping it out through blog posts  299

fit for you  297
parting tips  308
proposal process  306–308

business proposal  307
details  307

publishing considerations  300–305
misconceptions about editors  302
options  305
publishers  301–304
self-publishing  304

topic not well-suited to book  297
writing style  39

Y
Yang, Nicholas  174

Z
ZFS Is Mysteriously Eating My CPU article  161
Zig, example blog on  66

Crunch time cheat sheet

Before you start, think about
 ● Why your perspective on the topic is so interesting (your differentiator)
 ● Who should read it—why they care about the topic and what they already
 know (your target reader)
 ● What you want the reader to do or think differently after reading (your goal)

Once you have a draft,
 ● Read it from the perspective of your target reader.
 ● Assess if the draft communicates your differentiator, seems tailored for your
 target reader, and provides the technical details needed to achieve your goal.
 ● Identify any specific statements your target reader might challenge and then
 bolster those statements with additional facts.
 ● Try to explain how the article flows, and adjust/reorder/cut until the flow
 makes sense.
 ● Ensure there’s at least one heading per page and that the headings help
 the reader understand the flow.
 ● Think about the title. Will it intrigue your target reader? Does it highlight the
 key technologies, trends, and/or challenges that the article covers?
 ● Think about the introduction. Does it help the reader decide if they want to
 proceed? Does it entice the target reader to continue?
 ● Think about the end. Does it tie the threads together nicely? Provide any
 appropriate next steps?
 ● Look for walls of uninterrupted text and break them up into shorter
 paragraphs, bullets, tables, visualizations, and similar.
 ● Add hyperlinks to provide additional context or explanation.
 ● Find someone to review the article for technical accuracy and clarity.
 ● Read it out loud, emphatically, to identify clunky sentences; then optimize
 them using your intuition, our recommended method, or suggestions from
 generative AI tools.
 ● Run it through at least one automated grammar check (ideally two).

Once it’s on staging or published,
 ● Check how it looks in the template—on a desktop browser and on mobile.
 ● Pay special attention to code, images, tables, and videos.
 ● Ensure images are described with helpful ALT tags.
 ● Ensure hyperlinks work and have meaningful hypertext.
 ● Select categories and tags, balancing relevance (the best fit) and reach
 (a chance for more exposure).
 ● Ensure that the meta description and thumbnail are fit for social sharing
 (do a test post or use the LinkedIn post inspector).

 Sarna ● Dunlop ● Foreword by Bryan Cantrill ● Afterword by Scott Hanselman

A
well-crafted technical article can spark a new idea,
demystify a technology, expand your perspective, or save
you from going down a disastrous path. Even if you don’t

consider yourself a “good writer,” you can make a diff erence
by sharing insights and advancing the community. Th is practi-
cal guide shows you how to create blogs, articles, and other
content your fellow developers will want to read and share.

Writing for Developers introduces seven popular patterns for
modern engineering blogs—such as “Th e Bug Hunt,” “We
Rewrote It in X,” and “How We Built It”—and helps you
match these patterns with your ideas. Th is book covers the
entire writing process, from brainstorming, planning, and
revising, to promoting your blog in ways that build reputation
and generate further opportunities.

What’s Inside
● Rapidly plan, draft, and review your content
● Build on popular blog post design patterns
● Support your writing with AI
● Increase the impact of all your communications

For developers and engineers of all ability levels—even if
you’re not a native English speaker and never took a writing
class in your life.

Piotr Sarna is a software engineer and an experienced book
and blog author. Cynthia Dunlop has been writing for and with
developers for 20+ years.

Th e technical editor on this book was Eric Lippert.

For print book owners, all digital formats are free:
https://www.manning.com/freebook

Writing for Developers

GENERAL

M A N N I N G

“Loaded with specifi c
examples of writing in
the wild that can serve
 as object lessons.”—From the Foreword by

Bryan Cantrill

“Demystifi es the technical
writing process and helps

 make you a better writer.”
—Alex Gallego, Redpanda

“Full of simple, practical
guidance for improving your

craft and increasing your
impact. I will be

recommending it far
 and wide.”

—Charity Majors, Honeycomb

“Off ers lots of actionable
tips, even for those who have
been writing for years. Plus,
 it’s a seriously fun read.”—Glauber Costa, Turso

ISBN-13: 978-1-63343-628-2

See first page

	Writing for Developers
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	liveBook discussion forum
	Other online resources

	about the authors
	about the cover illustration
	Part 1
	1 Why write
	1.1	Why write engineering blog posts
	1.1.1	Leaving your comfort zone
	1.1.2	Really understanding your code
	1.1.3	Free peer review
	1.1.4	Personal brand boost
	1.1.5	Career development
	1.1.6	Staying on top of the latest technologies
	1.1.7	Improving your skills
	1.1.8	Attracting new hires
	1.1.9	Attracting users for a developer-focused product
	1.1.10	Write once, share everywhere
	1.1.11	Writing ≠ riches

	1.2	Why write: A personal perspective
	1.3	Excuses for not writing
	1.3.1	Not a writer
	1.3.2	Not even a native English speaker
	1.3.3	No time
	1.3.4	The project isn’t 100% completed
	1.3.5	We don’t even have a product out yet
	1.3.6	It’s not new
	1.3.7	It’s already available as a recorded talk
	1.3.8	Don’t want to leak confidential details
	1.3.9	Nothing interesting to say

	1.4	The path forward

	2 What to write
	2.1	Prioritizing ideas: The 3 Ps
	2.2	Topics, topics, everywhere
	2.2.1	That cool thing you implemented
	2.2.2	A security incident post-mortem
	2.2.3	How your infrastructure survived a traffic spike (or didn’t)
	2.2.4	Bug hunting
	2.2.5	An open source contribution
	2.2.6	A fun weekend project
	2.2.7	An interesting design decision and tradeoff you made
	2.2.8	An architectural shift you’re making
	2.2.9	Frustration and fatigue
	2.2.10	Take a stand on some contentious topic
	2.2.11	Sweet numbers
	2.2.12	Propose using something in an unexpected way
	2.2.13	Revisit past predictions
	2.2.14	Capability clarification
	2.2.15	Capability comparison
	2.2.16	Footgun prevention
	2.2.17	Why you’re building something

	2.3	Increasing your trigger exposure
	2.3.1	Social media
	2.3.2	Virtual communities
	2.3.3	Feeds and subscriptions
	2.3.4	Team chat apps

	3 Captivating readers
	3.1	Standing out
	3.2	Critical characteristics
	3.2.1	Intriguing topic
	3.2.2	Distinctive educational core
	3.2.3	Smooth delivery

	3.3	Examples
	3.3.1	A Search Engine in 80 Lines of Python
	3.3.2	Async Rust is a Bad Language
	3.3.3	Python 3.13 Gets a JIT
	3.3.4	I Have Written a JVM in Rust
	3.3.5	The Return of the Frame Pointers

	Part 2
	4 Creating your working draft
	4.1	Focus and challenges
	4.2	Essential prep
	4.2.1	Getting a feel for how others approach the topic
	4.2.2	Getting a feel for what the site publishes
	4.2.3	Defining your goal

	4.3	Optional warmup
	4.3.1	Outlining
	4.3.2	Mindmapping
	4.3.3	Working from a model article
	4.3.4	Copying/pasting your notes

	4.4	Writing time
	4.4.1	Getting words on the page
	4.4.2	Eliminating blockers

	4.5	PretendPiotr’s first attempt at the example blog post
	4.5.1	Zig helped us migrate our data efficiently

	4.6	Filling in gaps
	4.6.1	Did you actually cover what you intended to cover?
	4.6.2	What else should you cover?
	4.6.3	What’s preventing it from being viable?

	4.7	If you do nothing else

	5 Optimizing your draft
	5.1	Focus and challenges
	5.2	Core (focus, flow, facts)
	5.2.1	Facts
	5.2.2	Focus
	5.2.3	Flow

	5.3	Clarity
	5.3.1	Targeting unclear bulky sentences
	5.3.2	Optimizing unclear bulky sentences
	5.3.3	Grappling with grammar
	5.3.4	Putting it all together in a process

	5.4	Components
	5.4.1	Titles
	5.4.2	Introductions
	5.4.3	Endings
	5.4.4	Headings
	5.4.5	Visuals
	5.4.6	Code

	5.5	Consumability
	5.5.1	Keeping it human
	5.5.2	Making it scannable by humans

	5.6	If you do nothing else

	6 Getting feedback
	6.1	Focus and challenges
	6.2	Comparing writing review with code review
	6.3	Selecting your reviewer(s)
	6.4	Deciding when to start
	6.4.1	How important and/or controversial is the topic?
	6.4.2	Do you have a true “blocker” question?
	6.4.3	Do you feel like you’ve done what you intended to do?
	6.4.4	Will there be time for another review cycle after your tech reviewer finishes?

	6.5	Preparing your reviewers
	6.5.1	Providing background
	6.5.2	Specifying what you want

	6.6	Responding to reviewer comments
	6.7	Special steps for special cases
	6.7.1	Nonnative English speakers
	6.7.2	Don’t know who to ask
	6.7.3	Other organizations involved

	6.8	If you do nothing else

	7 Ship it
	7.1	Focus and challenges
	7.2	Read through the core content one final time
	7.3	Preview in place
	7.3.1	Title and headings
	7.3.2	Code
	7.3.3	Core images
	7.3.4	Header image
	7.3.5	Videos
	7.3.6	Tables and lists

	7.4	Manage metadata
	7.4.1	Your keywords
	7.4.2	Title tag
	7.4.3	Meta description
	7.4.4	URL
	7.4.5	Hyperlinks
	7.4.6	Images
	7.4.7	Taxonomies: Categories, tags, and topics
	7.4.8	Featured (thumbnail) images

	7.5	If you do nothing else

	Part 3
	8 The “Bug Hunt” pattern
	8.1	Purpose
	8.1.1	Knowledge dump
	8.1.2	Global bug awareness
	8.1.3	Bragging

	8.2	Audience
	8.3	Examples of bug-hunting blog posts
	8.3.1	Hunting a NUMA Performance Bug
	8.3.2	Why Is My Rust Build So Slow?
	8.3.3	How a Single Line of Code Made a 24-core Server Slower Than a Laptop
	8.3.4	Lessons from Debugging a Tricky Direct Memory Leak
	8.3.5	ZFS Is Mysteriously Eating My CPU

	8.4	Characteristics
	8.4.1	Crafted chronologically
	8.4.2	Heavy on the hunt
	8.4.3	Evidence everywhere
	8.4.4	Expert friendly
	8.4.5	Educational

	8.5	Dos and don’ts
	8.5.1	Check if anyone (your boss, your boss’ lawyers) will be upset by your transparency
	8.5.2	Do a technical deep dive
	8.5.3	Be brutally honest about all your failures
	8.5.4	Include numbers, benchmarks, metrics, and flame graphs
	8.5.5	Don’t give away too much, too soon—keep the tension building
	8.5.6	Don’t make overeager readers hunt too hard for the fix
	8.5.7	Add breaking points wherever necessary
	8.5.8	Don’t suck the life out of it
	8.5.9	Don’t forget to thank those who helped along the hunt
	8.5.10	Extrapolate

	9 The “Rewrote It in X” pattern
	9.1	Purpose
	9.1.1	Evangelism
	9.1.2	Project promotion
	9.1.3	Community development
	9.1.4	Ranting

	9.2	Audience
	9.3	Examples of “We Rewrote It in X” blog posts
	9.3.1	Why I Rewrote My Rust Keyboard Firmware in Zig: Consistency, Mastery, and Fun
	9.3.2	How Turborepo is Porting from Go to Rust
	9.3.3	Why Discord Is Switching From Go to Rust
	9.3.4	From Zero to 10 Million Lines of Kotlin
	9.3.5	Why We at $FAMOUS_COMPANY Switched to $HYPED_TECHNOLOGY

	9.4	Characteristics
	9.4.1	Suitable for language newbies
	9.4.2	Practical
	9.4.3	Tremendously templated structure

	9.5	Dos and don’ts
	9.5.1	Start by explaining your rewrite motivation
	9.5.2	Provide background on your project
	9.5.3	Don’t gloss over the rough parts
	9.5.4	Share the resources you used

	10 The “How We Built It” pattern
	10.1	Purpose
	10.1.1	Pioneering
	10.1.2	Flexing muscles
	10.1.3	Free peer review

	10.2	Audience
	10.3	Examples of “How We Built It” blog posts
	10.3.1	How Prime Video Updates its App for More Than 8,000 Device Types
	10.3.2	Twitter’s Recommendation Algorithm
	10.3.3	How We Built Notification Rate Limiter for Eight Billion Notifications Per Day for 400 Million Monthly Active Users
	10.3.4	How We Built Scalable Spatial Data and Spatial Indexing in CockroachDB
	10.3.5	Ship Shape

	10.4	Characteristics
	10.4.1	Not always reproducible
	10.4.2	Serve as a knowledge base
	10.4.3	Pluralis maiestatis
	10.4.4	inb4

	10.5	Dos and don’ts
	10.5.1	Agree on the scope early
	10.5.2	Make graphics a first-class citizen
	10.5.3	Don’t rush it
	10.5.4	Prepare for (un)constructive criticism

	11 The “Lessons Learned” pattern
	11.1	Purpose
	11.1.1	Self-reflection
	11.1.2	Storytelling
	11.1.3	Kickstart

	11.2	Audience
	11.3	Examples of “Lessons Learned” blog posts
	11.3.1	25% or 6 to 4: The 11/6/23 Authentication Outage
	11.3.2	Herding Elephants: Lessons Learned from Sharding Postgres at Notion
	11.3.3	Something You Probably Want to Know About if You’re Using SQLite in Golang
	11.3.4	Lessons Learned Scaling PostgreSQL Database to 1.2bn Records/Month
	11.3.5	Lessons from Stripe

	11.4	Characteristics
	11.4.1	Diary-like
	11.4.2	Imprintable
	11.4.3	Reflections and ruminations

	11.5	Dos & don’ts
	11.5.1	Be humble
	11.5.2	Don’t forget
	11.5.3	Don’t turn on full diary mode
	11.5.4	11.5.4 Encourage interaction

	12 The “Thoughts on Trends” pattern
	12.1	Purpose
	12.1.1	Continuous delivery
	12.1.2	Retrospection
	12.1.3	Shaping the future

	12.2	Audience
	12.3	Examples of “Thoughts on Trends” blog posts
	12.3.1	I Want Off Mr. Golang’s Wild Ride
	12.3.2	How to Think About WebAssembly (Amid the Hype)
	12.3.3	Rust After the Honeymoon
	12.3.4	Software Architecture is Overrated, Clear and Simple Design is Underrated
	12.3.5	How io_uring and eBPF Will Revolutionize Programming in Linux

	12.4	Characteristics
	12.4.1	Opinionated and persuasive
	12.4.2	Provocative
	12.4.3	Idiosyncratic

	12.5	Dos & don’ts
	12.5.1	Be famous
	12.5.2	Consider the elements of persuasion
	12.5.3	Be bold
	12.5.4	Roast
	12.5.5	Don’t just roast
	12.5.6	Don’t just praise

	13 The “Non-markety Product Perspectives” pattern
	13.1	Purpose
	13.1.1	Product placement
	13.1.2	Teaser
	13.1.3	Hiring

	13.2	Audience
	13.3	Examples
	13.3.1	We Put a Distributed Database in a Browser
	13.3.2	32 Bit Real Estate
	13.3.3	System Dependencies Are Hard (So We Made Them Easier)
	13.3.4	Why fsync(): Losing Unsynced Data on a Single Node Leads to Global Data Loss
	13.3.5	So You Think You Want to Write a Deterministic Hypervisor?

	13.4	Characteristics
	13.4.1	Technical
	13.4.2	Behind the scenes
	13.4.3	Subliminal

	13.5	Dos & don’ts
	13.5.1	Introduce yourself
	13.5.2	Don’t sell
	13.5.3	Be balanced but don’t bash

	14 The “Benchmarks and Test Results” pattern
	14.1	Purpose
	14.1.1	Benchmarketing
	14.1.2	Subtle benchmarketing
	14.1.3	Community service

	14.2	Audience
	14.3	Examples of “Benchmarks and Test Results” blog posts
	14.3.1	AWS Graviton2: Arm Brings Better Price-Performance than Intel
	14.3.2	The relative performance of C and Rust
	14.3.3	Redpanda vs. Kafka: A Performance Comparison
	14.3.4	The Effect of Switching to TCMalloc on RocksDB Memory Use
	14.3.5	How Much Does Rust’s Bounds Checking Actually Cost?

	14.4	Characteristics
	14.4.1	Numeric and visual
	14.4.2	Guilty until proven innocent
	14.4.3	Quasi academic

	14.5	Do’s & don’ts
	14.5.1	Read Brendan Gregg’s “Systems Performance”
	14.5.2	Show how to reproduce the results
	14.5.3	Don’t exaggerate
	14.5.4	Don’t neglect
	14.5.5	Boil it down, spell it out

	Part 4
	15 Getting attention
	15.1	Choose your own adventure
	15.2	Sharing across social and virtual communities
	15.2.1	Connecting with the community
	15.2.2	Sharing (and discussing) your blog post
	15.2.3	Keeping it alive

	15.3	Publishing in selective tech publications
	15.3.1	Why bother?
	15.3.2	Why not?
	15.3.3	Considerations
	15.3.4	Tips

	15.4	Syndicating simulacra
	15.4.1	Why bother?
	15.4.2	Why not?
	15.4.3	Considerations
	15.4.4	Tips

	15.5	Guest blogging
	15.5.1	Why bother?
	15.5.2	Why not?
	15.5.3	Considerations
	15.5.4	Tips

	15.6	Participating in podcasts and livestreams
	15.6.1	Why bother?
	15.6.2	Why not?
	15.6.3	Considerations
	15.6.4	Tips

	15.7	Sharing at conferences
	15.8	Measuring the effects
	15.8.1	The blog post
	15.8.2	How people are finding the blog post
	15.8.3	Who’s reading and how
	15.8.4	Social and community engagements

	16 From blog post to conference talk
	16.1	The path to speaking
	16.1.1	Piotr’s path
	16.1.2	Why speak at conferences?
	16.1.3	Why not?

	16.2	Identifying and evaluating opportunities
	16.2.1	Fit
	16.2.2	Reach and promotion
	16.2.3	Logistics

	16.3	Submitting your proposal
	16.3.1	Reusing/rethinking your blog post
	16.3.2	Submission tips

	16.4	Converting your blog post to a talk
	16.4.1	Start with the most important takeaway
	16.4.2	Map out the slide flow
	16.4.3	Develop individual slides
	16.4.4	Prepare speaker notes

	16.5	Promoting the talk
	16.6	Rehearsing
	16.7	Delivering
	16.8	Following Up

	17 So you want to write a book
	17.1	Why write a book?
	17.1.1	You have a vision for a book that begs to be written
	17.1.2	You want to anchor yourself as an expert
	17.1.3	You want an excuse to immerse yourself in a topic
	17.1.4	You want to level up your writing
	17.1.5	You have an innate urge to share and teach

	17.2	Why not?
	17.2.1	The topic isn’t well-suited to a book
	17.2.2	It’s just not a great fit for you—at least not right now

	17.3	Alternatives to consider
	17.3.1	Collaborate with co-authors
	17.3.2	Drip it out through blog posts
	17.3.3	Become a technical reviewer

	17.4	Publishing considerations
	17.4.1	Not all publishers are created equal
	17.4.2	Publishers bring an impressive team of experts
	17.4.3	Working with publishers is a multithreaded process
	17.4.4	If you work with a publisher, it’s not just “your” book
	17.4.5	Highly specialized topics lend themselves to self-publishing
	17.4.6	Self-publishing thrives when supported by a brand
	17.4.7	Different options, different considerations

	17.5	Navigating the proposal process
	17.5.1	Get down to business
	17.5.2	Details, detail, details

	17.6	Go forth and write

	appendix A
	appendix B
	afterword
	index

