O'REILLY"

Learning

Vue

Core Concepts and Practical Patterns for Reusable,
Composable, and Scalable User Interfaces

Maya Shavin

O'REILLY"

Learning Vue

Learn the core concepts of Vue.js, the modern JavaScript
framework for building frontend applications and interfaces
from scratch. With concise, practical, and clear examples, this
book takes web developers step-by-step through the tools and
libraries in the Vue.js ecosystem and shows them how to create
complete applications for real-world web projects.

You'll learn how to handle data communication between
components with Pinia architecture, develop a manageable
routing system for a frontend project to control the application
flow, and produce basic animation effects to create a better
user experience.

This book also shows you how to:

¢ (Create reusable and lightweight component systems
using Vue.js

e Bring reactivity to your existing static application

¢ Set up a project using Vite.js, a build tool for
frontend project code management

¢ Build an interactive state management system for
a frontend application with Pinia

e Connect external data from the server to your
Vue application

e Control the application flow with static and dynamic
routing using Vue Router

¢ Fully test your application using Vitest and Playwright

Maya Shavin, Senior Software Engineer at Microsoft,
specializes in web and frontend development with Vue,
TypeScript, and React. She's passionate about good UX/UI
practices, web accessibility, and web development.

“Maya proves to be a
wonderful teacher,
guiding the reader with
engaging examples and
expert knowledge."

—Edward Wong
@arkangelofkaos

“Embark on ajourney to
build modern, scalable
Vue applications with
state-of-art libraries
and tools. Learning
Vueis a 360-degree
guide, offering in-depth
knowledge and
hands-on examples
with component-based
architecture, reactive
data management,
useful animations,
and comprehensive
testing strategies.”

—Lipi Deepaakshi Patnaik
Senior Software Developer, Zeta-Directi

JAVASCRIPT

US $65.99 CAN $82.99
ISBN:978-1-492-09882-9

9‘7 1 98829

49210

56599

8

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Learning Vue

Core Concepts and Practical Patterns
for Reusable, Composable, and
Scalable User Interfaces

Maya Shavin

Bejng - Boston « Farham - Sebastopol - Tokyo [@YRIIMNY

Learning Vue
by Maya Shavin

Copyright © 2024 Maya Shavin. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn Indexer: Potomac Indexing, LLC
Development Editor: Michele Cronin Interior Designer: David Futato
Production Editor: Ashley Stussy Cover Designer: Karen Montgomery
Copyeditor: Piper Editorial Consulting, LLC lllustrator: Kate Dullea

Proofreader: Liz Wheeler
December 2023: First Edition

Revision History for the First Edition
2023-12-01: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492098829 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Vue, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

978-1-492-09882-9
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492098829

Table of Contents

What Is Vue.js?
The Benefits of Vue in Modern Web Development
Installing Node.js
NPM
Yarn
Vue Developer Tools
Vite.js as a Builder Management Tool
Create a New Vue Application
File Repository Structure
Summary

. HowVue Works: The Basics.oovvvriniieiiiniiiiniinenennns

Virtual DOM Under the Hood

The Layout Update Problem

What Is Virtual DOM?

How Virtual DOM Works in Vue
The Vue App Instance and Options API
Exploring the Options API
The Template Syntax
Creating Local State with Data Properties
How Reactivity in Vue Works
Two-Way Binding with v-model
Using v-model.lazy Modifier

Binding Reactive Data and Passing Props Data with v-bind

— O O O\ Ul & W N — =

— =
\S]

13
13
14
15
16
18
19
21
22
24
26
30
31

Binding to Class and Style Attributes 33

Iterating over Data Collection Using v-for 35
Iterating Through Object Properties 38
Make the Element Binding Unique with Key Attribute 39

Adding Event Listener to Elements with v-on 40
Handling Events with v-on Event Modifiers 42
Detecting Keyboard Events with Key Code Modifiers 45

Conditional Rendering Elements with v-if, v-else, and v-else-if 46

Conditional Displaying Elements with v-show 49

Dynamically Displaying HTML Code with v-html 50

Displaying Text Content with v-text 51

Optimizing Renders with v-once and v-memo 51

Registering a Component Globally 54

Summary 55

3. Composing COMPONENTS. ... vvuneeneeierenneeneeanerennsennessnesennsens 57

Vue Single File Component Structure 57

Using defineComponent() for TypeScript Support 60

Component Lifecycle Hooks 61
setup 63
beforeCreate 66
created 66
beforeMount 66
mounted 67
beforeUpdate 67
updated 67
beforeUnmount 67
unmounted 67

Methods 72

Computed Properties 75

Watchers 77
Observing for Changes in Nested Properties 79
Using the this.$watch() Method 82

The Power of Slots 83

Using Named Slots with Template Tag and v-slot Attribute 87

Understanding Refs 91

Sharing Component Configuration with Mixins 93

Scoped Styling Components 97
Applying CSS to a Child Component in Scoped Styles 101
Applying Scoped Styles to Slot Content 101

iv | Tableof Contents

Accessing a Component’s Data Value in Style Tag with

v-bind() Pseudo-Class 102
Styling Components with CSS Modules 103
Summary 105

. Interactions Between Components.............coiiiiiiiiiiiiiiiiiiiiennnnn. 107
Nested Components and Data Flow in Vue 107
Using Props to Pass Data to Child Components 108
Declaring Prop Types with Validation and Default Values 111
Declaring Props with Custom Type Checking 113
Declaring Props Using defineProps() and withDefaults() 116
Communication Between Components with Custom Events 117
Defining Custom Events Using defineEmits() 121
Communicate Between Components with provide/inject Pattern 123
Using provide to Pass Data 123
Using inject to Receive Data 124
Teleport API 125
Implementing a Modal with Teleport and the <dialog> Element 127
Rendering Problem Using Teleport 134
Summary 136
L Composition AP . ..ot e 137
Setting Up Components with Composition API 137
Handling Data with ref() and reactive() 138
Using ref() 138
Using reactive() 143
Using the Lifecycle Hooks 146
Understanding Watchers in Composition API 148
Using computed() 151
Creating Your Reusable Composables 154
Summary 158
. Incorporating External Data............ccoeviiiiiiiiiiiiiiiiiiiiiieeenanenn. 159
What Is Axios? 159
Installing Axios 160
Load Data with Lifecycle Hooks and Axios 160
Async Data Requests in Run-Time: the Challenge 165
Creating Your Reusable Fetch Component 167
Connect Your Application with an External Database 170
Summary 172

Table of Contents | v

7. Advanced Rendering, Dynamic Components, and Plugin Composition

The Render Function and JSX

Using the Render Function

Using the h Function to Create a VNode

Writing JavaScript XML in the Render Function
Functional Component
Defining Props and Emits for Functional Component
Adding Custom Functionality Globally with Vue Plugins
Dynamic Rendering with the <component> Tag
Keeping Component Instance Alive with <keep-alive>
Summary

ROUEING. .. ovveie i e
What is Routing?
Using Vue Router
Installing Vue Router
Defining Routes
Creating a Router Instance
Plugging the Router Instance Into the Vue Application
Rendering the Current Page with the RouterView Component
Build a Navigation Bar with the RouterLink Component
Passing Data Between Routes
Decoupling Route Parameters Using Props
Understanding Navigation Guards
Global Navigation Guards
Route-Level Navigation Guards
Component-Level Router Guards
Creating Nesting Routes
Creating Dynamic Routes
Going Back and Forward with the Router Instance
Handling Unknown Routes
Summary

Understanding State Management in Vue
Understanding Pinia

Creating a Pizzas Store for Pizza House

Creating a Cart Store for Pizza House

Using the Cart Store in a Component

Adding Items to the Cart from the Pizzas Gallery

. State Managementwith Pinia.............ccoiiiiiiiiiiiiiiiiii i

173
174
175
176
178
179
179
182
183
185

187
187
188
189
191
193
195
195
197
199
203
204
204
205
207
208
211
214
215
216

217
217
219
220
224
226
227

vi

| Table of Contents

10.

1.

12.

Displaying Cart Items with Actions
Removing Items from the Cart Store

Unit Testing Pinia Stores

Subscribing Side Effects on Store Changes
Summary

Transitioning and AnimationinVue...........ccooiiiiiiiiiiiiiiiiiiiiieennnns
Understanding CSS Transitions and CSS Animations
Transition Component in Vue.js
Using Custom Transition Class Attributes
Adding Transition Effect on the Initial Render with appear
Building Transition for a Group of Elements
Creating Route Transitions
Using Transition Events to Control Animation
Summary

L3 4T L -3
Introduction to Unit Testing and E2E Testing

Vitest as a Unit Testing Tool

Configuring Vitest Using Parameters and Config File

Writing Your First Test

Testing Non-Lifecycle Composables

Testing Composables with Lifecycle Hook

Testing Components Using Vue Test Utils

Testing Interaction and Events of a Component

Using Vitest with a GUI

Using Vitest with a Coverage Runner

End-to-End Testing with Playwright]S

Debugging E2E Tests Using Playwright Test Extension for VSCode
Summary

Continuous Integration/Continuous Deployment of Vue.Js Applications...........
CI/CD in Software Development
Continuous Integration
Continuous Delivery
Continuous Deployment
CI/CD Pipeline with GitHub Actions
Continuous Deployment with Netlify
Deploying with Netlify CLI
Summary

229
233
235
236
238

239
239
240
244
245
246
248
248
250

251
251
253
254
256
261
264
268
272
273
275
280
287
288

289
289
290
290
290
290
295
298
298

Table of Contents

vii

13.

Server-Side RenderingwithVue.cooiiiiiiiiiiiiiiiiiiiiiiiiiiinnns
Client-Side Rendering in Vue

Server-Side Rendering (SSR)

Server-Side Rendering with Nuxt.Js

Static Side Generator (SSG)

Last Words

299
300
306
314
315

viii

| Table of Contents

Preface

The JavaScript framework plays a significant role in modern web frontend develop-
ment. When developing web projects, companies choose a framework for various
reasons, including the quality of the final product, the cost of development, coding
standard, and ease of development. Hence, learning to work with a JavaScript frame-
work, such as Vue, is essential for any modern web developer (or frontend developer
or full stack developer).

This book is for programmers who want to learn and develop Web applications using
Vue library, in JavaScript and TypeScript, from end to end. It focuses solely on how
Vue and its ecosystem can help you build scalable and interactive web applications in
the most straightforward and comfortable direction. While covering the basics, we
will also get into Vue Router and Pinia for state management, testing, animation,
deployment, and server-side rendering, making sure you are ready to move on and
start developing complex Vue projects right away.

It's OK if you are not familiar with Vue or the concept of Virtual DOM. This book
doesn’t assume any prior knowledge of Vue or any similar framework. I will introduce
and guide you through all Vue’s basics from scratch. I will also walk you through the
Virtual DOM concept and reactivity system in Vue in Chapter 2, as the foundation
for the rest of the book.

This book doesn’t require you to know TypeScript, though you will be better prepared
if you are familiar with TypeScript basics. You will also be better prepared for the
contents of the book if you have prior basic knowledge of HTML, CSS, and Java-
Script. A solid foundation of these three is always crucial before diving to any web (or
frontend) Javascript framework.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/mayashavin/learning-vue-app.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting

x | Preface

https://github.com/mayashavin/learning-vue-app
mailto:bookquestions@oreilly.com

example code does not require permission. Incorporating a significant amount of
example code from this book into your product's documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Learning Vue by Maya
Shavin (O’Reilly). Copyright 2024 Maya Shavin, 978-1-492-09882-9”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Online Learning

For more than 40 years, O’Reilly Media has provided technol-
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O'Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O'Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)

support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/learning-vue-Ie.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Preface | xi

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/learning-vue-1e
https://oreilly.com
https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments

As I embarked on the journey of writing this book, my family was navigating a
tumultuous period, full of highs and lows. Despite enjoying every moment, writing
this book required a lot of time, effort, and dedication, and I wouldn’t be able to com-
mit to it without the support from my family, particularly my husband, Natan. His
encouragement, belief in my programming skills, humor about frontend develop-
ment, parenting our children during my work travels, lending an ear to my daily
grievances, and helping me balance work with personal life have been invaluable.
Without Natan, I would not be where I am today.

Just as quality code demands thorough review, this book’s excellence owes much to
critical technical insights and encouragement from Jakub Andrzejewski, Chris Fritz,
Lipi Patnaik, Edward Wong, and Vishwesh Ravi Shrimali. Your valuable feedback has
been pivotal in sharpening my focus and elevating the quality of this work.

My heartfelt appreciation goes to my O’Reilly team: Zan McQuade and Amanda
Quinn, for guiding me through the acquisition process of Learning Vue, and to my
exceptional editor, Michele Cronin. Michele, your insightful feedback, professional-
ism, and empathy, particularly during the challenging final stages of the book, were
extraordinary. The production editing skills of Ashley Stussy and the copyediting
expertise of Beth Richards were crucial in elevating my manuscript to production
quality. This book wouldn’t have materialized as envisioned without your collective
efforts.

I extend a special thank you to the Vue core team for developing such a great frame-
work and ecosystem, and to the Vue community members and friends for their sup-
port and inspiration. The knowledge and insights I gained from you are
immeasurable and continue to enrich me daily.

Finally, my profound gratitude to you, the readers. Choosing this book from the ple-
thora of resources available, including countless videos and tutorials, demonstrates a
trust in my work that I deeply appreciate. I hope Learning Vue serves as a valuable
tool in your journey, whether you aspire to be a web, frontend, or full-stack
developer.

Thank you, from the bottom of my heart. And remember, in the world of web devel-
opment, always “react with a Vue”

xii | Preface

https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

CHAPTER1
Welcome to the Vue.js World!

Initially released in 2014, Vue.js has experienced rapid adoption, especially in 2018.
Vue is a popular framework within the developer community, thanks to its ease of use
and flexibility. If you are looking for a great tool to build and ship excellent perform-
ant web applications to end users, Vue.js is the answer.

This chapter highlights the core concepts of Vue.js and walks you through the tools
you need for your Vue.js development environment. It also explores helpful tools that
make your Vue.js development process more manageable. By the end of the chapter,
you will have a working environment with a simple Vue.js application ready to start
your journey in learning Vue.js.

What Is Vue.js?

Vue.js, or Vue, means view in French; it is a JavaScript engine for building progres-
sive, composable, and reactive user interfaces (UI) in frontend applications.

We will use the term Vue to indicate Vue.js from this point on.

Vue is written on top of JavaScript and offers an organized mechanism to structure
and build a web application. It also acts as the trans-compiler (transpiler) that com-
piles and translates Vue code (as a Single File Component, which we will discuss fur-
ther in “Vue Single File Component Structure” on page 57) into equivalent HTML,
CSS, and JavaScript code in build time before deploying. In a standalone mode (with

a generated script file), the Vue engine performs the code translation at run-time
instead.

Vue follows the MVVM (Model-View-ViewModel) pattern. Unlike MVC (Model-
View-Controller),! the ViewModel is the binder that binds data between the View and
Model. Allowing direct communication for the view and model progressively enables
the component’s reactivity.

In short, Vue was created to focus only on the View layer but is incrementally adapta-
ble to integrate with other external libraries for more complex usage.

Since Vue focuses solely on the View layer, it empowers the development of single-
page applications (SPAs). SPAs can move quickly and fluidly while communicating
data continuously with the backend.

The official website for Vue includes API documentation, installation, and primary
use cases for reference.

The Benefits of Vue in Modern Web Development

A significant advantage of Vue is its well-written, easy-to-understand documentation.
In addition, the ecosystem and supporting community built around Vue, such as Vue
Router, Vuex, and Pinia, helps developers set up and run their projects with mini-
mum effort.

Vue APIs are straightforward and familiar to anyone who has worked with Angular]S
or jQuery before. Its powerful template syntax minimizes the learning effort required
and makes it easier to work with data or listen to Document Object Model (DOM)
events in your application.

Another significant benefit Vue offers is its size. The size of a framework is a substan-
tial aspect of the application’s performance, especially the initial loading time on
delivery. At the time of writing, Vue stands as the fastest and most lightweight frame-
work (~10kB in size). This advantage results in less time-consuming downloading
and better run-time performance from a browser perspective.

With the release of Vue 3, the built-in support for TypeScript now offers developers
the benefit of typing in types and making their codebase more readable, organized,
and maintainable in the long term.

1 The MVC pattern helps implement an application by separating its structure into the UI (View), the data
(Model), and the controlling logic (Controller). While the View and the Controller can be two-way binding,
only the Controller manipulates the Model.

2 | Chapter 1: Welcome to the Vue.js World!

https://oreil.ly/GHu2u
https://oreil.ly/GHu2u
https://oreil.ly/FWJ2p
https://oreil.ly/FWJ2p
https://oreil.ly/03RbI

Installing Node.js

Working with Vue requires setting up the development ecosystem and prior coding
knowledge to keep up with the learning process. Node.js and NPM (or Yarn) are nec-
essary development tools to install before you start working on any application.

Node.js (or Node) is an open source JavaScript server environment built on Chrome’s
V8 JavaScript run-time engine. Node allows developers to code and run JavaScript
applications locally or in a hosted server, outside a browser.

Chromium-based browsers like Chrome and Edge also use the V8
engine to interpret JavaScript code into efficient low-level com-
puter code and execute it.

Node is cross-platform supported and easy to install. If you are not sure you installed
Node, open your terminal (or command prompt in Windows) and run the following
command:

node -v

The output should be a Node version or “Command not found” if Node is not
installed.

If you haven't installed Node, or your Node version is lower than 12.2.0, please visit
the Node project website and download the installer for the latest version based on
your operation system (Figure 1-1).

Once the download finishes, click on the installer and follow the instructions to set
it up.

When installing Node, besides the node command, you also have the npm command
added to the command-line tool. If you type the node -v command, you should see
the installed version number displayed.

Installing Node.js | 3

https://oreil.ly/E6xr-

Figure 1-1. Latest version for download in Node’s official website

NPM

The Node Package Manager (NPM) is the default package manager for Node. It will
be installed together with Node.js by default. It lets developers download and install
other remote Node packages with ease. Vue and other frontend frameworks are
examples of helpful Node packages.

NPM is a powerful tool for developing complex JavaScript applications, with the abil-
ity to create and run task scripts (to start a local development server, for instance) and
automatically download project package dependencies.

Similar to the Node version check, you can perform an NPM version check through
the npm command:

npm -v
To update your NPM version, use the following command:

npm install npm@latest -g

4 | Chapter 1: Welcome to the Vue.js World!

With parameter @latest, your current NPM tool automatically updates its version to
the latest version. You can run npm -v again to ensure it is updated correctly. You can
also replace the latest word to target any specific NPM version (in the format
xx.X.x). Additionally, you need to indicate the installation at the global scope with
the -g flag for the npm command to be available everywhere on your local machine.
For example, if you run the command npm install npm@6.13.4 -g, the tool will tar-
get the NPM package version 6.13.4 for installing and updating.

NPM Version for This Book

I recommend installing NPM version 7.x to be able to follow all the
NPM code examples in this book.

A Node project depends on a collection of Node packages? (or dependencies) to be up
and running. In the package.json file within the project directory, you can find these
installed packages. This package.json file also describes the project, including the
name, author(s), and other scripting commands applied to the project exclusively.

When you run the command npm install (or npm 1) within the project folder, NPM
will refer to this file and install all the listed packages into a folder called node_mod-
ules, ready for the project to use. Also, it will add a package-lock.json file to keep track
of the package installed version and compatibility between common dependencies.

To start a project from scratch with dependencies, use the following command within
the project directory:

npm init

This command walks you through some questions related to the project and initial-
izes an empty project with a package. json file containing your answers.

You can search for any public open source packages at the NPM official website.

Yarn

If NPM is the standard package manager tool, then Yarn is an alternative and popular
package manager developed by Facebook.? Yarn is faster, more secure, and more reli-
able due to its parallel downloading and caching mechanism. It is compatible with all
NPM packages; thus it can be used as a drop-in replacement for NPM.

2 These are commonly known as NPM packages.

3 Facebook has been known as Meta since 2021.

Installing Node.js | 5

https://oreil.ly/LD4W8

You can install the latest version of Yarn based on your operating system by visiting
the Yarn official website.

If you are working on a macOS computer and have Homebrew installed, you can
install Yarn directly using the command:

brew install yarn

This command installs Yarn and Node.js (if not available) globally.

You can also install Yarn globally using the NPM package management tool with the
following command:

npm i -g yarn

You should now have Yarn installed on your machine and ready to use.

To check if Yarn is installed and to verify its version, use the following command:
yarn -v

To add a new package, use the following command:
yarn add <node package name>

To install the dependencies for a project, instead of npm install, you only need to
run the yarn command within the project directory. Once this finishes, similar to
NPM, Yarn will also add a yarn.lock file in your project directory.

We will use Yarn as our package manager tool for the code presen-
ted in this book.

At this point, you have set up your essential coding environment for Vue develop-
ment. In the next section, we'll look at the Vue Developer Tools and what they offer
us in working with Vue.

Vue Developer Tools

Vue Developer Tools (or Vue Devtools) are the official tools to help you work with
your Vue projects locally. These tools include extensions for Chrome and Firefox, and
an Electron desktop application for other browsers. You should install one of these
tools during the development process.

6 | Chapter1: Welcome to the Vue.js World!

https://oreil.ly/TX-qT

Chrome users can head to the extension link in the Chrome Web Store and install the
extension, as shown in Figure 1-2.

Figure 1-2. Vue Devtools extension page for Chrome

For Firefox, you can use the extension link from the Firefox Add-on page, shown in
Figure 1-3.

Vue Developer Tools | 7

https://oreil.ly/XvXLO
https://oreil.ly/oWT_C

Figure 1-3. Vue Devtools extension page for Firefox

Once your extension is installed and enabled, you can detect if any site currently uses
Vue in production. When a site is built with Vue, the Vue icon on the browser toolbar
highlights as shown in Figure 1-4.

Figure 1-4. Icon confirms the Vue official site is built with Vue

The Vue Devtools enable you to inspect the Vue component tree, component props
and data, events, and routing information within the browser’s developer console.
Vue Devtools divide the information into various tabs, providing helpful insights for
debugging and inspecting behaviors of any Vue component within the project.

8 | Chapter 1: Welcome to the Vue.js World!

Vite.js as a Builder Management Tool

Introduced in 2020, Vite.js (or Vite) is a JavaScript development server that uses the
native ES module* import during development instead of bundling your code into
chunks of JavaScript files like Webpack, Rollup, etc.

We will use the term Vite to indicate Vite.js from this point on.

This approach allows Vite to perform a hot reload® during development at an insane
speed, making the development experience seamless. It also offers many out-of-the-
box features such as TypeScript support and on-demand compilation, which is
quickly gaining popularity and adaption among the developer community.

The Vue community has replaced the Vue CLI tool® (which uses Webpack under the
hood) with Vite to be the default builder tool for creating and managing Vue projects.

Create a New Vue Application

With Vite, there are various ways to create a new Vue application project. The most
straightforward way is to use the following command syntax in your command
prompt or terminal:

npm init vue@latest

This command will first install create-vue, an official scaffolding tool, and then
present you with a list of essentials questions to configure your Vue application.

As shown in Figure 1-5, the configurations used for the Vue application in this book
include:

The Vue project name, all in lower-case format
Vite uses this value to create a new project directory nested in your current
directory.

TypeScript
A typed programming language built on top of JavaScript.

4 ES modules stands for ECMAScript modules, a popular standard for working with modules since the ES6
release, first for Node.js and recently in browsers.

5 Hot reload automatically applies the new code changes to a running application without restarting the appli-
cation or refreshing the page.

6 Vue command-line interface.

Create a New Vue Application | 9

JSX7
In Chapter 2, we will discuss how Vue supports writing code in JSX standard
(writing HTML syntax directly in JavaScript code block).

Vue Router
In Chapter 8, we will implement routing in our application using Vue Router.
Pinia
In Chapter 9, we will discuss using Pinia to manage and share data across the
application.

Vitest
This is the official unit testing tool for any Vite project, which we will explore
further in Chapter 11.

ESLint
This tool checks your code according to a set of ESLint rules, helping to maintain
your coding standard, make it more readable, and avoid hidden coding errors.

Prettier
This tool formats your code styles automatically to keep your code clean, beauti-
ful, and following a coding standard.

Figure 1-5. Configurations for a new Vue application project

Upon receiving the desired configurations, create-vue scaffolds for the project
accordingly. Once done, it will present a set of in-order commands for you to execute
and get your project up and running locally (see Figure 1-6).

7 JavaScript XML, commonly used in React

10 | Chapter 1: Welcome to the Vue.js World!

Figure 1-6. In-order commands to execute for the newly created project

Next, we will explore the file structure of our newly created project.

File Repository Structure

A new Vue project contains the following initial structure within the src directory:

assets
Folder where you can put project images, graphics, and CSS files.

components
Folder where you create and write Vue components following the Single File
Component (SFC) concept.

router
Folder where all the routing configurations reside.

stores
Folder where you create and manage project global data by store using Pinia.

views
Folder where all the Vue components that bind to defined routes reside.

App.vue
The main Vue application component, acts as the root to host all other Vue com-
ponents within the application.

main.ts
Contains the TypeScript code responsible for mounting the root component
(App.vue) into an HTML element on the DOM page. This file is also where you
set up plugins and third-party libraries in the application, such as Vue Router,
Pinia, etc.

Figure 1-7 shows the structure of our Vue project.

File Repository Structure | 11

Figure 1-7. File structure of our created learning-vue-app project

In the project’s root directory is an index.htnl file, which is the entry point for load-
ing your application in the browser. It imports the main.ts file using the <script>
tag and provides the target element for the Vue engine to load the Vue application by
executing the code in main. ts. This file will likely stay unchanged during the devel-
opment process.

You can find all the example code in the dedicated Github repository. We organize
these code files by chapter.

Summary

In this chapter, we learned about the benefits of Vue and how to install the essential
tools for our Vue development environment. We also discussed the Vue Developer
Tools and other tools for effectively building a Vue project, such as Vite. Now that we
have created our first Vue project, we are ready to learn Vue, starting with the basics:
the Vue instance, the built-in directives, and how Vue handles reactivity.

12 | Chapter 1: Welcome to the Vue.js World!

https://github.com/mayashavin/learning-vue

CHAPTER 2
How Vue Works: The Basics

In the previous chapter, you learned the essential tools for building a Vue application
and also created your first Vue application, preparing you for the next step: learning
how Vue works by writing Vue code.

This chapter introduces you to the concepts of Virtual Document Object Model (Vir-
tual DOM) and the fundamentals of writing a Vue component with Vue Options API.
It also explores further Vue directives and the Vue reactivity mechanism. By the end
of the chapter, you will understand how Vue works and be able to write and register a
Vue component for use in your application.

Virtual DOM Under the Hood

Vue doesn’t work directly with the Document Object Model (DOM). Instead, it
implements its Virtual DOM to optimize the application’s performance on run-time.

To build a solid understanding of how Virtual DOM works, we start with the concept
of the DOM.

The DOM represents the HTML (or XML) document content on the web, in the
form of an in-memory tree-like data structure (as shown in Figure 2-1). It acts as a
programming interface that connects the web page and the actual programming code
(such as JavaScript). Tags, such as <div> or <section>, in the HTML document are
represented as programmatic nodes and objects.

13

\ 2 v v v

<link> [<section>] [<div>] [<script>] [<!--comment-->]

Figure 2-1. Example of a DOM tree

After the browser parses the HTML document, the DOM will be available for interac-
tion immediately. Upon any layout changes, the browser then paints and repaints the
DOM constantly in the background. We call the process parsing, and painting the
DOM screen rasterization or the pixel-to-screen pipeline. Figure 2-2 demonstrates
how rasterization works:

Figure 2-2. Browser rasterization process

The Layout Update Problem

Each paint is costly to the browser’s performance. Since the DOM may consist of

many nodes, querying and updating single or multiple nodes can be extremely
expensive.

Here is a simple example of a list of 11 elements in the DOM:

<ul class="list" id="todo-1list">
<li class="list-item">To do item 1</1i>
<li class="list-item">To do item 2</1i>
<!--so on..-->

14 | Chapter2: How Vue Works: The Basics

Adding/removing a 11 element or modifying its content requires querying the DOM
for that item using document.getElementById (or document.getElementsByClass
Name). Then you need to perform the desired updates using the appropriate DOM
APIs.

For instance, if you want to add a new item to the previous example, you need to do
the following steps:

1. Query the containing list element by its id attribute’s value—"todo-1ist"
2. Add the new 11 element using document.createElement()

3. Set the textContent and the relevant attributes to match other element’s stan-
dard using setAttribute().

4. Append that element to the list element found in step 1 as its child using append
Child():

const list = document.getElementById('todo-list');

const newItem = document.createElement('li');

newItem.setAttribute('class', 'list-item');

newItem.textContent = 'To do item 3';

list.appendChild(newItem);
Similarly, suppose you want to change the text content of the 2nd 11 item to "buy
groceries". In that case, you perform step 1 to get the containing list element, then
query the target element using getElementsByClassName(), and finally change its
textContent to the new content:

const secondItem = list.getElementsByClassName('list-item')[1];

secondItem.textContent = 'Buy groceries'
Querying and updating the DOM on a small scale usually do not enormously impact
performance. However, these actions can slow the page if performed more repeti-
tively (within a few seconds) and on a more complex web page. The performance
impact is significant when there are consecutive minor updates. Many frameworks,
such as Angular 1.x, fail to acknowledge and address this performance issue as the
codebase grows. The Virtual DOM is designed to solve the layout update problem.

What Is Virtual DOM?

Virtual DOM is the in-memory virtual copy version of the actual DOM in the browser,
but it is lighter weight and has extra functionalities. It mimics the real DOM struc-
ture, with a different data structure (usually Object) (see Figure 2-3).

Virtual DOM Underthe Hood | 15

Figure 2-3. The browser DOM vs. the Virtual DOM

Behind the scenes, the Virtual DOM still uses the DOM API to construct and render
updated elements in the browser. Thus, it still causes the browser’s repainting process,
but more efficiently.

In short, Virtual DOM is an abstract pattern aiming to free the DOM from all the
actions that can lead to performance inefficiencies, such as manipulating attributes,
handling events, and manually updating DOM elements.

How Virtual DOM Works in Vue

The Virtual DOM sits between the real DOM and the Vue application code. The fol-
lowing is an example of what a node in the Virtual DOM looks like:

16 | Chapter2: How Vue Works: The Basics

const node = {
tag: 'div',
attributes: [{ id: 'list-container', class: 'list-container' }],
children: [/* an array of nodes */]
}
Let’s call this node VNode. VNode is a virtual node that resides within the Virtual

DOM and represents the actual DOM element in the real DOM.

Through Ul interactions, the user tells Vue what state they wish the element to be in;
Vue then triggers the Virtual DOM to update that element’s represented object (node)
to the desired shape while keeping track of those changes. Finally, it communicates
with the actual DOM and performs accurate updates on the changed nodes
accordingly.

Since the Virtual DOM is a tree of custom JavaScript objects, updating a component
equals updating a custom JavaScript object. This process doesn’t take long. Because
we don’t call any DOM AP], this update action doesn’t cause a DOM repainting.

Once the Virtual DOM finishes updating itself, it syncs in batch with the actual
DOM, leading the changes to be reflected on the browser.

Figure 2-4 illustrates how updates from the Virtual DOM to the actual DOM work
when adding a new list item and changing the list item’s text.

Figure 2-4. Updating from Virtual DOM to actual DOM adding a new element and
updating the text of an existing element in the list

Virtual DOM Underthe Hood | 17

Since the Virtual DOM is a tree of objects, we can easily track the specific updates
that need to be synced with the actual DOM when modifying the Virtual DOM.
Instead of querying and updating directly on the actual DOM, we can now schedule
and call the updated APIs with a single render function in one update cycle to main-
tain performance efficiency.

Now that we understand how Virtual DOM works, we will explore the Vue instance
and the Vue Options API.

The Vue App Instance and Options API

Every Vue application starts with a single Vue component instance as the application
root. Any other Vue component created in the same application needs to be nested
inside this root component.

You can find the initialization code example in main.ts of our Vue
project. Vite automatically generates the code as part of its scaffold-
ing process.

You will also find the example code of this chapter within this file.

In Vue 2, Vue exposes a Vue class (or JavaScript function) for you to create a Vue
component instance based on a set of configuration options, using the following
syntax:

const App = {

//component's options

}

const app = new Vue(App)
Vue receives a component, or the components configuration to be more precise. A
component’s configuration is an Object containing all the component’s initial config-
uration options. We call the structure of this argument Options API, which is another
of Vue’s core APIs.

Beginning with Vue 3, you can no longer call new Vue() directly. Instead, you create
the application instance using the createApp() method from the vue package. This
change in functionality enhances the isolation of each Vue instance created both on
dependencies and shared components (if any) and the code readability:

import { createApp } from 'vue

const App = {
//component's options

}

const app = createApp(App)

18 | Chapter2: How Vue Works: The Basics

createApp() also accepts an Object of the component’s configurations. Based on
these configurations, Vue creates a Vue component instance as its application root
app. Then you need to mount the root component app to the desired HTML element
using the app.mount() method, as follows:

app.mount('#app')

#app is the unique id selector for the application’s root element. The Vue engine quer-
ies for the element using this id, mounts the app instance to it, then renders the appli-
cation in the browser.

The next step is to provide the configurations for Vue to build a component instance
according to Options APL

From this point on, we write code according to Vue 3 API stand-
ards.

Exploring the Options API

Options API is Vues core API for initializing a Vue component. It contains the com-
ponent’s configurations structured in an Object format.

We divide its essential properties into four main categories:

State handling
Including data(), which returns the local data state for the component, compu
ted, methods, and watch for enabling observation on specific local data, and
props for the incoming data.

Rendering
template for the HTML view template and render() as the rendering logic for
the component.

Lifecycle hooks
Such as beforeCreate(), created(), mounted(), etc., for handling different
stages of a component’s lifecycle.

Others
Such as provide(), inject() for handling different customization and commu-
nication between components. And components, a collection of nested compo-
nent templates to use within the component.

Exploring the Options APl | 19

The following is an example structure of our root App component based on Options
APIL:

import { createApp } from 'vue'

const App = {
template: "This is the app's entrance",

}

const app = createApp(App)

app.mount('#app')
In the previous code, an HTML template displays regular text. We can also define a
local data state using data() function, which we will discuss further in “Creating
Local State with Data Properties” on page 22.

You can also rewrite the previous code to use the render () function:
import { createApp } from 'vue'

const App = {
render() {
return "This is the app's entrance"
}

}

const app = createApp(App)
app.mount('#app')

Both codes will generate the same result (Figure 2-5).

Figure 2-5. Sample output of writing a root component using Options API

If you open the Elements tab in the browser’s Developer Tools, you will see the actual
DOM now contains a div with id="app" and a text content This is the app’s
entrance (Figure 2-6).

Figure 2-6. The DOM tree in the browser has a div containing the app’s text content

You can also create a new component, Description, which renders a static text and
passes it to components of the App. Then you can use it as a nested component in the
template, like in Example 2-1.

20 | Chapter2: How Vue Works: The Basics

Example 2-1. Declare an internal component template to use in the App

import { createApp } from 'vue'

const Description = {
template: "This is the app's entrance"

b

const App = {
components: { Description },
template: '<Description />'

}

const app = createApp(App)
app.mount('#app')

The output stays the same as in Figure 2-6.

Note here you must declare either template or render() function (see “The Render
Function and JSX” on page 173) for the component. However, you don't need these
properties in case you are writing the component in Single File Component (SFC)
standard. We will discuss this component standard in Chapter 3.

Next, let’s look at the template property syntax.

The Template Syntax

In Options API, template accepts a single string that contains valid HTML-based
code and represents the component’s UI layout. The Vue engine parses this value and
compiles it into optimized JavaScript code, then accordingly renders the relevant
DOM elements.

The following code demonstrates our root component App, whose layout is a single
div displaying text—This is the app’s entrance:

import { createApp } from 'vue

const App = {
template: "<div>This is the app's entrance</div>",

}

const app = createApp(App)

app.mount('#app')
For multi-level HTML template code, we can use backtick characters (JavaScript tem-
plate literals), denoted by * symbol, and maintain the readability. We can rewrite App’s
template in the previous example to include other h1 and h2 elements, as in the
following:

The Template Syntax | 21

import { createApp } from 'vue'

const App = {
template: °
<h1>This is the app's entrance</h1l>
<h2>We are exploring template syntax</h2>

>

}

const app = createApp(App)
app.mount('#app')

The Vue engine will render to the DOM with two headings (Figure 2-7).

Figure 2-7. Output of a multi-level template for a component

The template property syntax is essential for creating the binding between a specific
DOM element and the component’s local data using directives and a dedicated syn-
tax. We will explore how to define the data we want to display in the UI next.

Creating Local State with Data Properties

Most components keep their local state (or local data) or receive data from an exter-
nal source. In Vue, we store the component’s local state using the Options API data()
function property.

data() is an anonymous function that returns an object representing the local data
state of a component. We call that returned object the data object. When initializing
the component instance, the Vue engine will add each property of this data object to
its reactivity system for tracking its changes and triggering the re-rendering of the Ul
template accordingly.

In short, the data object is the reactive state of a component.

To inject the data property in the template, we use the mustache syntax, denoted by
double curly braces {{}}. Within the HTML template, we wrap the data property
with the curly braces where we need to inject its value, as seen in Example 2-2.

Example 2-2. Inject title to display in the HTML template

import { createApp } from 'vue'

type Data = {
title: string;

22 | Chapter2: How Vue Works: The Basics

}

const App = {
template: °
<div>{{ title }}</div>

data(): Data {
return {
title: 'My first Vue component'
}

}

}

const app = createApp(App)
app.mount('#app')

In the previous code, we declare the local data property title and inject its value in
the template of App by using the {{ title }} expression. The output in the DOM
equals the following code:

<div>My first Vue component</div>

You can also combine an inline static text with double curly braces within the same
element tag:
const App = {

template: °
<div>Title: {{ title }}</div>

JrELL %

}
Vue automatically preserves the static text and replaces only the expression with the
correct value. The result equals the following:

<div>Title: My first Vue component</div>

All data object properties are available for access directly and internally through the
component instance this. And this is accessible in any component’s local methods,
computed properties, and lifecycle hooks. For example, we can print out title to the
console after creating a component with the hook created():

import { createApp, type ComponentOptions } from 'vue'

const App = {

JFx. L %/

created() {
console.log((this as ComponentOptions<Data>).title)
}

}

const app = createApp(App)
app.mount('#app')

Creating Local State with Data Properties | 23

We cast this as a ComponentOptions<Data> type. We will enable
full TypeScript support for the Vue component in Vue 3 using
defineComponent, which we will discuss further in “Using define-
Component() for TypeScript Support” on page 60.

You can debug the reactivity of a data property by using the Vue Devtools. On the
main page of our application, open the browser’s Developer Tools, head to the Vue
tab, and select the Root component displayed in the Inspector panel. Once this is
selected, a right-side panel will appear, showing the component data object’s proper-
ties. When you hover on the title property, a pen icon will appear, allowing you to
edit the property value (Figure 2-8).

Figure 2-8. How to debug and edit a data property using Vue Devtools
Click on that edit icon button, modify the title value, and hit Enter; the application
Ul instantly reflects the new value.

You have learned how to use data() and double curly braces {{}} to inject the local
data to the UT template. This is a type of one-way data binding.

Before we explore the two-way binding and other directives in Vue, let’s look at reac-
tivity in Vue.

How Reactivity in Vue Works

To understand how reactivity works, let’s take a quick look at how the Virtual DOM
processes all the received information, creates, and keeps track of created VNodes
before yielding to the actual DOM (Figure 2-9).

24 | Chapter2: How Vue Works: The Basics

Figure 2-9. The flow of Virtual DOM’s rendering process

We can describe the previous process diagram as follows:

1. Once you define the local data, in Vue.js 2.0, the internal Vue engine uses JavaS-
cript’s built-in Object.defineProperty() to establish the getters and setters for
each related piece of data and enables relevant data reactivity. In Vue.js 3.0, how-
ever, the Vue engine uses the ES5 Proxy-based mechanism' for performance
enhancement, doubling run-time performance and reducing the memory needed
by half. We will explain more about this reactivity mechanism in Chapter 3.

2. After setting up the reactivity mechanism, the Vue engine uses watcher objects to
keep track of any data update triggered by the setters. Watchers help the Vue
engine detect changes and update the Virtual DOM and the actual DOM through
a Queue system.

3. Vue uses the Queue system to avoid inefficient multiple updates of the DOM
within a short time. A watcher adds itself to the Queue upon a related compo-
nent’s data change. The Vue engine sorts it by a specific order for consumption.
Until the Vue engine finishes consuming and flushing that watcher from the
Queue, only one watcher of the same component exists within the Queue,
regardless of the number of data changes. This consumption process is done by
nextTick() API, which is a Vue function.

4. Finally, after the Vue engine consumes and flushes all the watchers, it triggers the
run() function of each watcher to update the component’s real DOM and Virtual
DOM automatically, and the application renders.

Let’s perform another example. This time we use data() and the help of created() to
demonstrate reactivity in the application. created() is the lifecycle hook that the Vue
engine triggers after creating the component instance and before mounting it to the
DOM element. At this point, we won't discuss this hook further but use this hook to
perform a timer update on a data property counter with setInterval:

1 Visit the JavaScript Proxy documentation.

How Reactivity in Vue Works | 25

https://oreil.ly/SRqbn

import { createApp, type ComponentOptions } from 'vue'

type Data = {
counter: number;

}

const App = {
template: °

<div>Counter: {{ counter }}</div>

data(): Data {

return {

counter: 0

}
1
created() {

const interval = setInterval(() => {

(this as ComponentOptions<Data>).counter++

}, 1000);

setTimeout(() => {
clearInterval(interval)
}, 5000)

}
}

const app = createApp(App)

app.mount('#app')
This code increments the counter every one second.>? We also use setTimeout() to
clear the interval after 5 seconds. On the browser, you can see the displayed value
changing from 0 to 5 every second. The final output will equal the string:

Counter: 5

After understanding the concept of reactivity and rendering in Vue, we are ready to
explore how to perform two-way data binding.

Two-Way Binding with v-model

Two-way binding refers to how we sync data between a component’s logic and its
view template. When a component’s data field changes programmatically, the new
value reflects on its UI view. And vice versa, when a user makes changes to the data
field on the UI view, the component automatically gets and saves the updated value,
keeping both the internal logic and the UI synchronized. A good example of two-way
binding is the form input field.

2 1 second = 1000 milliseconds

26 | Chapter2: How Vue Works: The Basics

Two-way data binding is a complex yet beneficial use case for application develop-
ment. One common scenario for two-way binding is form input synchronization.
Proper implementation saves developing time and reduces complexity to maintain
data consistency between the actual DOM and component data. But implementing
two-way binding is a challenge.

Fortunately, Vue makes two-way binding much simpler with the v-model directive.
Binding the v-model directive to a component’s data model will automatically trigger
updating the template when the data model changes, and vice versa.

The syntax is straightforward; the value passing to v-model is the name alias declared
in the data return object.

Assume we have a NameInput component that receives text input from the user, with
the following template code:

const NameInput = {
template: °
<label for="name">
<input placeholder="Enter your name" id="name">
</label>"
}

We want to sync the the input value received with a local data model, naming name.
To do so, we add v-model="name" to the input element and declare the data model in
data() accordingly:

const NameInput = {
template: °
<label for="name">
Write your name:
<input
v-model="name"
placeholder="Enter your name"
id="name"
>
</label>",
data() {
return {
name: '',
}
}
}

The value of name will change whenever the user changes the input field on run-time.

Two-Way Binding with v-model | 27

To have this component render in the browser, we add NameInput as one of the com-
ponents for the application:

import { createApp } from 'vue'

const NameInput = {
/**' .. */
}

const app = createApp({
components: { NameInput },
template: ‘<NameInput />,
b

app.mount('#app')

You can track this data change by opening the Vue tab in the browser’s Developer
Tools. Within the Inspector tab, find and select the NameInput element under the

Root element, and you will see the component’s data displayed on the right panel of
the Vue tab (Figure 2-10).

Figure 2-10. Debug the input component using the Vue tab in Developer Tools

When you change the input field, the name property under data displayed on the
right side of the Vue tab also will get the updated value (Figure 2-11).

28 | Chapter2: How Vue Works: The Basics

Figure 2-11. Input value changes sync with the relevant component’s data model

You can use the same approach for building a checklist with multiple options. In this
scenario, you need to declare the data model as an Array and add the v-model bind-
ing on each checkbox input field. Example 2-3 demonstrates how it looks for a
CourseChecklist.

Example 2-3. Create a course checklist using v-model and checkbox input

import { createApp } from 'vue'

const CourseChecklist = {
template: °
<div>The course checklist: {{list.join(', ')}}</div>
<div>
<label for="chapteri">
<input
v-model="11st"
type="checkbox"
value="chapter01"
id="chapter1"
>
Chapter 1
</label>
<label for="chapter2">
<input
v-model="11ist"
type="checkbox"
value="chapter02"
id="chapter2"
>
Chapter 2
</label>

Two-Way Binding with v-model | 29

<label for="chapter3">
<input
v-model="11st"
type="checkbox"
value="chapter03"
id="chapter3"

>

Chapter 3

</label>

</div>

data() {
return {
list: [],
}

}

}

const app = createApp({
components: { CourseChecklist },
template: “<CourseChecklist />,

b

app.mount('#app')

Vue automatically adds or removes an input value to the 1ist array according to the
user’s interaction (Figure 2-12).

Figure 2-12. Screenshot of the list value after the user makes a selection

Using v-model.lazy Modifier

Updating a data value on every user keystroke can be too much, especially when dis-
playing that input value in other places. Remember Vue re-renders the template Ul
according to the data changes. By enabling two-way syncing on every input key
received, you expose your application to potential unnecessary re-rendering. To
reduce this overhead, you can use the v-model.lazy modifier instead of the regular
v-model to bind with the data model:

const NameInput = {

template: °

<label for="name">

Write your name:

<input
v-model.lazy="name"
placeholder="Enter your name"
id="name"

>

30 | Chapter2: How Vue Works: The Basics

</label>",
data() {
return {

name: ,
}
}
}

This modifier ensures the v-model will only track changes triggered by the onChange
event of that input element.

Using v-model.number and v-model. trim Modifiers

If the data model you are binding to v-model should be a number
type, you can use the modifier v-model.number to convert the
input value to a number.

Similarly, if you want to ensure the string data model free from
trailing whitespaces, you can use v-model. trim instead.

Thats all for two-way binding. Next well examine the more common directive
v-bind for one-way binding.

Binding Reactive Data and Passing Props Data with v-bind

Previously we learned to use v-model for two-way binding and double curly braces
{{}} for one-way data injection. But to perform one-way binding of data to another
element as an attribute’s values or other Vue components as props, we use v-bind.

v-bind, denoted by :, is the most used Vue directive in any application. We can bind
an element’s attribute (or component’s props) or more to JavaScript expressions, fol-
lowing this syntax:

v-bind:<attribute>="<expression>"
Or, for short, with : syntax:
:<attribute>="<expression>"

For example, we have imageSrc data, an image URL. To display the image using
 tag, we perform the following binding to its src attribute:

Example 2-4. Binding a source to an image

import { createVue } from 'vue'

const App = {
template: °

B

Binding Reactive Data and Passing Props Data withv-bind | 31

data() {
return {
imageSrc: "https://res.cloudinary.com/mayashavin/image/upload/TheCute%20Cat"
}

}

}

const app = createApp(App)

app.mount('#app')

Vue takes the value of imageSrc and binds it to the src attribute, resulting in the fol-
lowing code on the DOM:

Vue updates the src whenever imageSrc’s value changes.

Also, you can add v-bind on an element as a standalone attribute. v-bind accepts an
object containing all the attributes to bind as properties and the expressions as their
values. Example 2-5 rewrites Example 2-4 to demonstrate this use case:

Example 2-5. Binding source and alt text to an image using an object
import { createVue } from 'vue'

const App = {
template: °

data() {
return {
image: {
src: "https://res.cloudinary.com/mayashavin/image/upload/TheCute%20Cat",
alt: "A random cute cate image"
}
}
}
}

const app = createApp(App)

app.mount('#app')

In Example 2-5, we bind an object image with two properties, src for the image URL
and alt for its alt text to the element . The Vue engine will automatically parse
image into relevant attributes by its properties’ names, and then generate the follow-
ing HTML code in the DOM:
<img
src="https://res.cloudinary.com/mayashavin/image/upload/TheCute%20Cat"

alt="A random cute cate image"
>

32 | Chapter2: How Vue Works: The Basics

Binding to Class and Style Attributes

When binding to class or style attributes, you can pass expressions in array or
object type. The Vue engine knows how to parse and unite them into the proper styl-
ing or class name string.

For example, let’s add some classes to our img in Example 2-5:

import { createVue } from 'vue'

const App = {
template: °

data() {
return {
image: {
src: "https://res.cloudinary.com/mayashavin/image/upload/TheCute%20Cat",
alt: "A random cute cate image",
class: ["cat", "image"]
}
}
}
}

const app = createApp(App)

app.mount('#app')

This code generates an element with the class as a single string "cat image", as
in the following:

<img
src="https://res.cloudinary.com/mayashavin/image/upload/TheCute%20Cat"
alt="A random cute cate image"

class="cat image"

>

You can also perform dynamic class names by binding the class attribute to an
object whose properties’ values are according to the Boolean isVisible data value:

import { createVue } from 'vue'
const isVisible = true;

const App = {
template:

data() {
return {
image: {
src: "https://res.cloudinary.com/mayashavin/image/upload/TheCute%20Cat",
alt: "A random cute cate image",
class: {
cat: isVisible,

Binding to Class and Style Attributes | 33

image: !isVisible

const app = createApp(App)
app.mount('#app')

Here we define the img element to have cat class when isVisible is true, and image
otherwise. The generated DOM element for when isVisible is true now becomes:
<img
src="https://res.cloudinary.com/mayashavin/image/upload/TheCute%20Cat"

alt="A random cute cate image"
class="cat" >

Output is similar when isVisible is false, with image instead of cat for the class
name.

You can use the same approach with the style attribute or pass an object containing
CSS rules in CamelCase format. For example, let'’s add some margins to our image in
Example 2-5:

import { createVue } from 'vue'

const App = {
template: °

data() {

return {

image: {
src: "https://res.cloudinary.com/mayashavin/image/upload/TheCute%20Cat",
alt: "A random cute cate image",
style: {
marginBlock: '10px',
marginInline: '15px'

const app = createApp(App)
app.mount('#app')

This code generates inline stylings for the img element with margin-block: 10px and
margin-inline: 15px applied.

You can also combine several style objects into a single style array. Vue knows how
to unite them into a single style rule string, as follows:

34 | Chapter2: How Vue Works: The Basics

import { createVue } from 'vue'

const App = {
template: °

data() {
return {
image: {
src: "https://res.cloudinary.com/mayashavin/image/upload/TheCute%20Cat",
alt: "A random cute cate image",
style: [{
marginBlock: "10px",
marginInline: "15px"
b A
padding: "10px"
1]
}
}
}
}

const app = createApp(App)

app.mount('#app"')
The output DOM element will be:

<img
src="https://res.cloudinary.com/mayashavin/image/upload/TheCute%20Cat"
alt="A random cute cate image"

style="margin-block: 10px; margin-inline: 15px; padding: 10px" >

Using v-bind for Style

In general, inline style is not a good practice. Hence I don’t recom-
mend using v-bind for organizing component stylings. We will dis-
cuss the proper way of working with styling in Vue in Chapter 3.

Next, let’s iterate over a data collection in a Vue component.

Iterating over Data Collection Using v-for

Dynamic list rendering is essential to reduce repetitive code, increase code reusability,
and maintain the format consistency between a group of similar element types. Some
examples are a list of articles, active users, and TikTok accounts you follow. The data

is dynamic in these examples, while the type of content and the UI layout remain
similar.

Vue provides a v-for directive to accomplish the goal of iterating through an iterative
data collection, such as an array or object. We use this directive directly on an ele-
ment, following this syntax:

Iterating over Data Collection Using v-for | 35

v-for = "elem in list"

elem is just an alias for each element in the data source 1ist.

For example, if we want to iterate through an array of numbers [1, 2, 3, 4, 5] and
print out the element value, we use the following code:

import { createApp } from 'vue

const List = {
template: °

<li v-for="number in numbers" :key="number">{{number}}</1i>

data() {
return {
numbers: [1, 2, 3, 4, 5]
b
}
1

const app = createApp({
components: { List },
template: “<List />°

b
app.mount('#app')
This code equals writing the following native HTML code:

1</11>
2</1i>
3</1i>
4</1i>
5</11>

One significant advantage of using v-for is to keep the template consistent and map

the data content dynamically to the relevant element, regardless of how the data
source may change over time.

Each block generated by the v-for iteration has access to other components’ data and
the specific list item. Take Example 2-6, for instance.

Example 2-6. Writing a task list component using v- for

import { createApp } from 'vue'

const List = {
template: °

<li v-for="task in tasks" :key="task.id">
{{title}}: {{task.description}}

36 | Chapter2: How Vue Works: The Basics

</1i>

data() {
return {
tasks: [{
id: 'tasko1',
description: 'Buy groceries',
bo{
id: 'taskez',
description: 'Do laundry',
b A
id: 'taske3',
description: 'Watch Moonknight',
.
title: 'Task'
}
}
}

const app = createApp({
components: { List },
template: ‘<List />°
b

app.mount('#app')

Figure 2-13 displays the output:

Figure 2-13. Output of tasks list with the default title for each row

Keeping the Uniqueness with the Key Attribute

Here we must define a unique key attribute for each iterated ele-
ment. Vue uses this attribute to keep track of each element ren-
dered for a later update. See “Make the Element Binding Unique
with Key Attribute” on page 39 for discussion on its importance.

Also, v-for supports an optional second argument, index, the current element’s
appearance index in the iterating collection. We can rewrite Example 2-6 as follows:

import { createApp } from 'vue'

const List = {
template: °

<li v-for="(task, index) in tasks" :key="task.id">
{{title}} {{index}}: {{task.description}}

Iterating over Data Collection Using v-for | 37

</1i>

s

/]
}

/8
This code block generates the following output (Figure 2-14):

o Task O: Buy groceries
e Task 1: Do laundry
o Task 2: Watch Moonknight

Figure 2-14. Output of the task list with each task’s index

So far, we have covered iteration with array collection. Lets look at how we iterate
through the properties of an object.

Iterating Through Object Properties

In JavaScript, an Object is a type of key-value map table, with each object’s property
being the unique key of the table. To iterate through the properties of an object, we
use similar syntax with array iteration:

v-for = "(value, name) in collection"
Here va'lue stands for the value of a property and name for that property’s key.

The following shows how we iterate through properties of an object collection and
print out each property’s name and value according to the format <name>: <value>:

import { createApp } from 'vue'

const Collection = {
data() {
return {
collection: { (1]
title: 'Watch Moonknight',
description: 'Log in to Disney+ and watch all the chapters',
priority: 'S5’
}
}
1
template: °

<li v-for="(value, name) in collection" :key="name"> (2,
{{name}}: {{value}}
</1i>

>

}

38 | Chapter2: How Vue Works: The Basics

const app = createApp({
components: { Collection },
template: ‘<Collection />°
b
app.mount('#app')
© Define a collection object with three properties: title, description, and
priority

© Iterate through the properties of collection
Figure 2-15 shows the output.

Figure 2-15. Output of collection object with default title

We still have access to the index appearance of the present pair as the third argument,
as in the following syntax:

v-for = “(value, name, index) in collection”

As noted earlier, we always have to define a key attribute value for each iterating ele-
ment. This attribute is significant in making the element update binding unique. We
will explore the key attribute next.

Make the Element Binding Unique with Key Attribute

The Vue engine tracks and updates the elements rendered with v-for by a simple in-
place patch strategy. However, in various scenarios, we need to take complete control
over list reordering or prevent unwanted behavior when the list element relies on its
child component’s state.

Vue provides an additional attribute: a key, as a unique identity for each node element,
binds to a specific iterated list item. The Vue engine uses it as a hint to track, reuse,
and reorder the rendered nodes and their nested elements instead of in-place
patching.

Iterating over Data Collection Using v-for | 39

The syntax usage of a key attribute is straightforward. We use v-bind:key (:key for
short) and bind a unique value to that list element:

<div v-for="(value, name, index) in collection" :key="index">

Keeping the Key's Uniqueness

The key should be the item’s distinct identifier (id) or its appearance
index in the list.

As a good practice, you must always provide the key attribute when using v-for.

Nevertheless, Vue will throw a warning on the browser console if no key is presented.
Also, if you enable ESLint in your application, it throws an error and instantly warns
you about the missing key attribute, as shown in Figure 2-16.

Figure 2-16. ESLint warning when no key is presented

Valid Values for the Key Attribute

A key should be a string or numeric value. An object or array is not
a valid key to use.

The key attribute is helpful, even beyond the scope of v-for. Without a key attribute,
applying the built-in list transition and animation effect is impossible. We'll discuss
more about the benefits of key in Chapter 8.

Adding Event Listener to Elements with v-on

To bind a DOM event to a listener, Vue exposes the built-in directive v-on (for short
@) for element tags. The v-on directive accepts the following value types:

« Some inline JavaScript statements in the form of a string

o Name of the component method declared in the component options under
methods property

40 | Chapter 2: How Vue Works: The Basics

We use v-on with the following format:
v-on:<event>= “<inline JavaScript code / name of method>”
Or with the shorter version using @:

@<event>="<inline JavaScript code / name of method>”

From this point on, we will use @ to denote v-on.

Then add this directive directly on any element as an attribute:

<button @click= "printMsg='Button is clicked!'">

Click me

</button>
For code readability, especially in a complex codebase, I recommend keeping the
JavaScript expression inside a component’s method and exposing the use through its
name on the directive, as in Example 2-7.

Example 2-7. Change printMsg’s value on button click using v-on directive

import { createApp, type ComponentOptions } from 'vue

type Data = {
printMsg: string;

}

const App = {

template: °

<button @click="printMessage">Click me</button>
<div>{{ printMsg }}</div>

methods: {
printMessage() {
(this as ComponentOptions<Data>).printMsg = "Button is clicked!"
}
1,
data(): Data {
return {
printMsg: "Nothing to print yet!",
}
}
}

const app = createApp(App)

app.mount("#app");

Adding Event Listener to Elements withv-on | 41

If the user hasn't clicked the button, the display message below the button will be
“Nothing to print yet” (Figure 2-17).

Figure 2-17. “Nothing to print yet” message appears as default

Otherwise, the message will change to “Button is clicked!” (Figure 2-18).

Figure 2-18. “Button is clicked!” message appears after user clicks the button

Handling Events with v-on Event Modifiers

Before the browser dispatches an event on a target element, it constructs that event’s
propagation path list using the current DOM tree structure. The last node in this path
is the target itself, and the other preceding nodes are its ancestors, respectively, in
order. Once dispatched, the event travels through one or all three main event phases
(Figure 2-19):

Capturing (or capture phase)
The event travels (or propagates) from the top ancestor down to the target
element.

Target
The event is at the target element.

Bubbling
The event travels (or bubbles) from the target element up to its ancestor.

We usually interfere with this event propagation flow programmatically within the
listener logic. With v-on’s modifiers, we can interfere directly on the directive level.

Use v-on modifiers following this format:

v-on:<event>.<modifier>

42 | Chapter 2: How Vue Works: The Basics

Figure 2-19. Flow of propagation for a click event

One advantage of modifiers is that they keep the listener as generic and reusable as
possible. We do not need to worry internally about event-specific details, such as
preventDefault or stopPropagation.

Take Example 2-8, for instance.

Example 2-8. Manually stop the propagation using stopPropagation()

const App = {
template: °
<button @click="printMessage">Click me</button>

methods: {
printMessage(e: Event) {
if (e) {
e.stopPropagation()

}

console.log("Button is clicked!")
}

1

}

Adding Event Listener to Elements withv-on | 43

Here we have to stop the propagation ourselves with e.stopPropagation, adding
another validation layer to make sure e exists. Example 2-9 shows how we can rewrite
Example 2-8 using the @click.stop modifier.

Example 2-9. Stop propagation using @click. stop modifier

const App = {
template: °
<button @click.stop="printMessage">Click me</button>

methods: {
printMessage() {
console.log("Button is clicked!")
}

1

}

Table 2-1 shows the complete list of event modifiers available, briefly explaining the
equivalent event functionalities or behavior.

Table 2-1. Event modifiers for v-on directive

Modifier Description

.stop Instead of calling event . stopPropagation()

.prevent Instead of calling event.preventDefault()

.self Trigger the event listener only if the event’s target is the element where we attach the listener.
.once Trigger the event listener at most once

.capture |Instead of passing { capture: true } asthe third parameter for addEventListener(), or cap
ture="true" in the element. This modifier triggers the listener in the capturing phase order, instead of
reqular bubbling phase order.

.passive Mainly to opt-in for better scroll performance and prevent triggering event . preventDefault(). We use
itinstead of passing { passive: true } asthe third parameter for addEventListener() oradding
passive="true" to the element.

Chaining Modifiers

Event modifiers support chaining. This means you can write
expressions such as @click.stop.prevent=" printMessage"> on
the element tag. This expression equals calling both event.stop
Propagation() and event.preventDefault() inside the event
handler, in the order in which they appear.

44 | Chapter 2: How Vue Works: The Basics

Detecting Keyboard Events with Key Code Modifiers

While event modifiers are for interfering with the event propagation flow, key modi-
fiers help detect special keys of keyboard events such as keyup, keydown, and key
press.

Usually, to detect a specific key, we need to perform two steps:

1. Identify the key code, key, or the code represented by that key. For instance, the
keyCode for Enter is 13, its key is “Enter”, and its code is “Enter”

2. When firing the event handler, within the handler, we need to check manually
that event.keyCode (or event.code or event.key) matches the target key code.

This approach is not efficient for maintaining reusable and clean code in a large code-
base. v-on comes with built-in key modifiers as a better alternative. If we want to
detect if the user types the Enter key, we add the modifier .enter to the related key
down event, following the same syntax when using event modifiers.

Let’s assume we have an input element, and we log a message to the console whenever
a user presses Enter, as seen in Example 2-10.

Example 2-10. Manual check if keyCode is 13 stands for Enter key

const App = {
template: ‘<input @keydown="onEnter" >°,
methods: {
onEnter(e: KeyboardEvent) {
if (e.keyCode === '13") {
console.log('User pressed Enter!')
}
VA4
}
}
}

We now can rewrite it using @keydown.enter.

Example 2-11. Checking for Enter key pressed by @keydown.enter modifier

const App = {
template: “<input @keydown.enter="onEnter" >°,
methods: {
onEnter(e: KeyboardEvent) {
console.log('User pressed Enter!')
VAT
}
}
}

Adding Event Listener to Elements withv-on | 45

The app behaves the same in both cases.
A few other commonly used key modifiers are . tab, .delete, .esc, and . space.

Another popular use case is to capture a special keys combination, such as Ctrl &
Enter (CMD & Enter for MacOS) or Shift + S. In these scenarios, we chain the system
key modifiers (.shift, .ctrl, .alt and .meta for CMD key in MacOS) with key code
modifiers, as in the following example:

<!-- Ctrl + Enter -->
<input @keyup.ctrl.13="onCtrlEnter”>

Or chaining the shift modifier and key code modifier for S key (keyCode is 83):
<!-- Shift + S -->
<input @keyup.shift.83="onSave”>
Chaining System Modifiers and Key Code Modifiers

You must use key code modifiers instead of standard key modifiers,
meaning .13 in place of .enter for this type of chaining.

Also, to capture the exact key combinations for triggering an event, we use the .exact
modifier:

<button @click.shift.exact="onShiftEnter” />

Combining .shift and .exact makes sure the click event fires when the user presses
only the Shift key while clicking the button.

Conditional Rendering Elements with v-if, v-else,
and v-else-if

We also can generate or remove an element from the DOM, a scenario called condi-
tional rendering.

Assume we have a Boolean data property isVisible, which decides if Vue should
render a text element into the DOM and make it visible to the user. Binding directive
v-if to isVisible by placing v-if="isVisible" on the text element enables reac-
tively rendering the element only when isVisible is true (Example 2-12).

Example 2-12. Example usage for v-if

import { createVue } from 'vue'

const App = {
template: °
<div>

46 | Chapter 2: How Vue Works: The Basics

<div v-if="isVisible">I'm the text in toggle</div>
<div>Visibility: {{isVisible}}</div>
</div>

data() {
return {
isVisible: false

}
}
}

const app = createApp(App)

app.mount('#app')

When setting isVisible to false, the generated DOM elements will look like this:

<div>

<l--v-if-->

<div>Visibility: false</div>
</div>

Otherwise, the text element will be visible in the DOM:

<div>

<div>I'm the text in toggle</div>

<div>Visibility: true</div>

</div>
If we want to render a different component for the opposite condition (isVisible is
false), v-else is the right choice. Unlike v-1if, you use v-else without binding to
any data property. It takes the correct condition value based on the immediate pre-
ceding v-1if usage in the same context level.

Using v-else

v-else works only when v-1if exists, and it must always present
last in a chaining conditional rendering.

For example, as Example 2-13 shows, we can create a component with the following
code block with both v-if and v-else.

Example 2-13. Conditional display of different texts using v-if and v-else

import { createVue } from 'vue'

const App = {

template: °
<div>
<div v-if="1sVisible">I'm the visible text</div>
<div v-else>I'm the replacement text</div>
</div>

Conditional Rendering Elements with v-if, v-else, and v-else-if | 47

data() {
return {
isVisible: false
}

}

}

const app = createApp(App)

app.mount('#app')

In short, you can translate the previous conditions into similar logical expressions as:

<!--if isVisible is true, then render -->
<div>I'm the visible text</div>

<!-- else render -->

<div>I'm the replacement text</div>

As in any if..else logic expression, we can always extend the condition check with
an else if condition block. This condition block equals a v-else-1if directive and
also requires a JavaScript condition statement. Example 2-14 shows how to display a
text, I’m the subtitle text, when isVisible is false and showSubtitle is true.

Example 2-14. Condition chaining with v-1if, v-else-if, and v-else

import { createVue } from 'vue'

const App = {

template: °
<div v-if="isVisible">I'm the visible text</div>
<div v-else-if="showSubtitle">I'm the subtitle text</div>
<div v-else>I'm the replacement text</div>

data() {
return {
isVisible: false,
showSubtitle: false,
}
}
}

const app = createApp(App)

app.mount('#app')

Order of v-else-if

If we use v-else-if, we must present it on elements appearing
after the element with assigned v- if attribute.

48 | Chapter 2: How Vue Works: The Basics

While using v-if means to render an element conditionally, there are situations
where it wont be efficient to mount/unmount an element from the DOM so
frequently.

In such cases, it’s better to use v-show.

Conditional Displaying Elements with v-show

Unlike v-1if, v-show only toggles the visibility of the target element. Vue still renders
the target element regardless of the status of the condition check. Once rendered, Vue
controls the visibility using the CSS display rule to hide/show the element
conditionally.

Let’s take Example 2-12 and change the directive from v-if to v-show, as in
Example 2-15.

Example 2-15. Hide/show the element using v-show

import { createVue } from 'vue'

const App = {
template: °
<div>
<div v-show="isVisible">I'm the text in toggle</div>
<div>Visibility: {{isVisible}}</div>
</div>

data() {
return {
isVisible: false
}

}

}

const app = createApp(App)

app.mount('#app')

The UI output is the same as when we use v-if. However, in the browser DOM (you
can debug in the Elements tab of the Developer Tools), the text element exists in the
DOM but is not visible to the user:

<div>

<div style="display: none;">I'm the text in toggle</div>

<div>Visibility: false</div>

</div>
The target element has an inline style with display:none applied. When toggling
isVisible to true, Vue will remove this inline style.

Conditional Displaying Elements with v-show | 49

v-show is more efficient if the toggling frequency is high at run-
time, while v-1f is an ultimate choice if the condition is not likely
to change.

Dynamically Displaying HTML Code with v-html

We use v-html to inject plain HTML code into the DOM dynamically, in the form of
a string, as in Example 2-16.

Example 2-16. Using v-html to render inner HTML content

import { createVue } from 'vue'

const App = {
template: °
<div v-html="innerContent" />

data() {
return {
innerContent: °
<div>Hello</div>

}
}
}

const app = createApp(App)
app.mount('#app')

The Vue engine will parse the directive value as static HTML code and place it into the
innerHTML property of the div element. The result should look like:
<div>

<div>Hello</div>
</div>

Security Concern with v-html

You should use v-html to render only trusted content or perform
server-side rendering.

Also, a valid HTML string can contain a script tag and the
browser will trigger the code within this script tag, leading to a
potential security threat. Thus, using this directive on client-side
rendering is not recommended.

50 | Chapter2: How Vue Works: The Basics

Displaying Text Content with v-text

v-text is an alternative way of injecting data as the element’s content besides the dou-
ble curly braces {{}}. However, unlike {{}}, Vue won’t update the text rendered if
there are any changes.

This directive is beneficial when you need to predefine a placeholder text, then over-
ride the text only once after a component finishes loading:

import { createVue } from 'vue'

const App = {
template: °
<div v-text="text">Placeholder text</div>

data() {
return {
text: "Hello World®

}
}
}

const app = createApp(App)

app.mount('#app')

Here Vue will render the application displaying placeholder text and will eventually
replace it with “Hello World” received from text.

Optimizing Renders with v-once and v-memo

v-once helps render static content and preserves performance from the re-rendering
static element. Vue renders elements with this directive presented only once and will
not update it regardless of any re-rendering.

To use v-once, place the directive as is on the element tag:
import { createVue } from 'vue'

const App = {
template: °
<div>
<input v-model="name" placeholder="Enter your name" >
</div>
<div v-once>{{name}}</div>

data() {
return {
name: 'Maya'
}
}
}

Optimizing Renders with v-once andv-memo | 51

const app = createApp(App)
app.mount('#app')

In the previous example, Vue renders name once for the div tag, and regardless of
what value name receives from the user through input field and by v-model, the con-
tent of this div won’t be updated (Figure 2-20).

Maya Shavin|
Maya

Figure 2-20. Text remains the same though the input value has changed

While v-once is excellent for defining a block of elements as static content, we use
v-memo to memorize a block of parts (or components) within a template
conditionally.

v-memo accepts an array of JavaScript expressions as its value. We place it on the top
element where we want to control its and its children’s re-rendering. Vue then vali-
dates these JavaScript conditional expressions and only triggers the re-rendering on
the target block of elements when fulfilling those condition(s).

Take rendering a gallery of image cards, for instance. Assume we have an array of
images. Each image is an object with a title, url, and id. Users can select an image
card by clicking on the card, and the selected card will have a blue border.

First, let’s define the images data array and selected image card id in the component
data object:

const App = {
data() {
return {
selected: null,
images: [{
id: 1,
title: 'Cute cat',
url:
'"https://res.cloudinary.com/mayashavin/image/upload/w_100,h_100,c_thumb/TheCute%20Cat',
b A
id: 2,
title: 'Cute cat no 2',
url:
'"https://res.cloudinary.com/mayashavin/image/upload/w_100,h_100,c_thumb/cute_cat',
ho{
id: 3,
title: 'Cute cat no 3',
url:
'"https://res.cloudinary.com/mayashavin/image/upload/w_100,h_100,c_thumb/cat_me',
ho
id: 4,
title: 'Just a cat',

52 | Chapter2: How Vue Works: The Basics

url:
'https://res.cloudinary.com/mayashavin/image/upload/w_100,h_100,c_thumb/cat_1',
1
}
}
1

Then we define the layout for the list rendering to the template, adding a conditional
memorization v-memo for the list item to re-render only if the image item is no longer
selected, or vice versa:

const App = {
template: °

<11
v-for="image in images"
:key="1image.1d"

:style=" selected === image.id ? { border: '1px solid blue' } : {}"
@click="selected = image.id"
v-memo="[selected === image.id]" (1)

>

<div>{{image.title}}</h2>
</1li>

data() {
/*x/
}

}

© We set the re-rendering to only if the condition check selected === image.1id
results differently from the previous check.

The output will look like Figure 2-21.

Figure 2-21. Images gallery output

Every time you select an image by clicking on the image card, Vue will only re-render
two items: the previously selected item and the currently selected one. For optimizing
large list rendering, this directive can be very powerful.

Optimizing Renders with v-once and v-memo | 53

v-memo Availability

v-memo is available only in Vue 3.2 and above.

We have learned how to write a component using the template syntax and some
common Vue directives, except v-slot. We will resume discussing the power of
v-slot in Chapter 3.

Next, we will learn how to register a component globally, making it available for use
in other components of the same application without explicitly importing them.

Registering a Component Globally

Using the components property of Options API to register a component only enables
its availability explicitly within the current component. Any of the present compo-
nent’s nested elements won't have access to use the registered one.

Vue exposes the instance method Vue.component(), which receives two input param-
eters as arguments:

o A string stands for the component’s registered name (alias).

« A component instance, either an SFC imported as a module or an object contain-
ing the component’s configurations, following Options API.

To register a component globally, we trigger component() on the created app instance,
as seen in Example 2-17.

Example 2-17. Register MyComponent as global component and use it in the App template

/* main.ts */
import { createApp } from 'vue'

//1. Create the app instance
const app = createApp({

template: '<MyComponent />'
bs

//2. Define the component
const MyComponent = {
template: 'This is my global component'

}

//3. Register a component globally
app.component('MyComponent', MyComponent)

app.mount('#app')

54 | Chapter2: How Vue Works: The Basics

If you have a MyComponent as an SFC file (see Chapter 3), you can rewrite
Example 2-17 to the following:

/* main.ts */

import { createApp } from 'vue'

import App from './App.vue'
import MyComponent from './components/MyComponent.vue'

//1. Create the app instance
const app = createApp(App);

//2. Register a component globally

app.component('MyComponent', MyComponent);
And MyComponent will always be available for reuse in any component nested within
the app instance.

Importing the same component again in every component file can be repetitive and
inconvenient. In reality, sometimes you need to reuse a component multiple times
across an application. In this scenario, registering components as global components
is an excellent practice.

Summary

This chapter explored Virtual DOM and how Vue uses it to achieve its performance
goal. We learned how to control the component rendering with JSX and functional
components, handle built-in Vue directives, and use them to process the component’s
local data for displaying on the UI template reactively. We also learned about the
reactivity fundamentals and how to create and register the Vue component using
Options API with the template syntax. These are the basics for going further into the
Vue component mechanism in the next chapter.

Summary | 55

CHAPTER 3
Composing Components

In the previous chapter, you learned the fundamentals of Vue and how to write a Vue
component with common directives using Options API. You are now ready to deep

dive into the next level: composing more complex Vue components with reactivity
and hooks.

This chapter introduces the Vue Single File Component (SFC) standard, component
lifecycle hooks, and other advanced reactive features such as computed properties,
watchers, methods, and refs. You will also learn to use slots to dynamically render dif-
ferent parts of the component while maintaining the components structure with
styles. By the end of this chapter, you will be able to write complex Vue components
in your application.

Vue Single File Component Structure

Vue introduces a new file format standard, Vue SFC, denoted by the .vue extension.
With SFC, you can write the HTML template code, the JavaScript logic, and the CSS
stylings for a component in the same file, each in its dedicated code section. A Vue
SEC contains three essential code sections:

Template
This HTML code block renders the UI view of the component. It should only
appear once per component at the highest level element.

Script
This JavaScript code block contains the component’s main logic and only appears
a maximum of once per component file.

57

Style
This CSS code block contains the stylings for the component. It is optional and
can appear as many times as required per component file.

Example 3-1 is an example of an SFC file structure for a Vue component named
MyFirstComponent.

Example 3-1. SFC structure of MyFirstComponent component

<template>
<h2 class="heading">I am a a Vue component</h2>
</template>
<script lang="ts">
export default {
name: 'MyFistComponent',
b
</script>
<style>
.heading {
font-size: 16px;
}
</style>

We can also refactor a non-SFC component code into SFC, as shown in Figure 3-1.

Figure 3-1. Refactoring the component from non-SFC format to SFC format

58 | Chapter3: Composing Components

As Figure 3-1 shows, we perform the following refactoring:

o Move the HTML code presented as the string value of the template field into the
<template> section of the Single File Component.

« Move the rest of MyFirstComponent logic into the <script> section of the Single
File Component, as part of the export default {} object.

Tip for Using TypeScript

You should add the attribute lang="ts" for TypeScript to the
<script> syntax, as <script lang="ts"> , so the Vue engine
knows to handle the code format accordingly.

Since the .vue file format is a unique extension standard, you need to use a special
build tool (compiler/transpiler) such as Webpack, Rollup, etc., to pre-compile the rel-
evant files into proper JavaScript and CSS for serving on the browser side. When cre-
ating a new project with Vite, Vite already sets up these tools as part of the scaffolding
process. You then can import the component as an ES module and declare it as inter-
nal components to use in other component files.

Following is an example of importing MyFirstComponent located in the components
directory to use in the App.vue component:

<script lang="ts">
import MyFirstComponent from './components/MyFirstComponent.vue';

export default {
components: {
MyFirstComponent,
}

}

</script>
As Example 3-2 shows, you can use the imported component by referring to its name,
either by CamelCase or snake case, in the template section:

Example 3-2. How to use the imported component

<template>
<my-first-component />
<MyFirstComponent />
</template>

Vue Single File Component Structure | 59

This code generates the MyFirstComponent component’s content twice, as shown in
Figure 3-2.

Figure 3-2. MyFirstComponent output

A component’s template in Example 3-2 contains two root ele-
ments. This fragmentation capability is available only in Vue 3.x
onward.

We learned how to create and use a Vue component using the SFC format. As you
have noticed, we define lang="ts" in the script tag to inform the Vue engine about
our usage of TypeScript. And thus, the Vue engine will apply stricter type validation
on any code or expressions presented in the script and template sections of the
component.

However, to fully enjoy TypeScript’s benefits in Vue, we need to use the defineCompo
nent() method when defining a component, which we will learn in the next section.

Using defineComponent() for TypeScript Support

The defineComponent() method is a wrapper function that accepts an object of con-
figurations and returns the same thing with type inference for defining a component.

The defineComponent() method is available only in Vue 3.x
onward and relevant only when TypeScript is required.

Example 3-3 illustrates using defineComponent() to define a component.

Example 3-3. Defining a component with defineComponent()

<template>
<h2 class="heading">{{ message }}</h2>
</template>
<script lang="ts">
import { defineComponent } from 'vue';

export default defineComponent({
name: 'MyMessageComponent',
data() {

60 | Chapter3: Composing Components

return {
message: 'Welcome to Vue 3!'
}
}
b

</script>

If you use VSCode as your IDE, and have Volar extension installed, you will see the
type of message as string when hovering on message in the template section, as
shown in Figure 3-3.

Figure 3-3. Generated type for message property of MyMessageComponent displayed on
hover

You should use defineComponent() for TypeScript support only in complex compo-
nents such as accessing a component’s properties through this instance. Otherwise,
you can use the standard method for defining an SFC component.

In this book, you will see a combination of the traditional compo-
nent definition approach and defineComponent() when suitable.
You are free to decide which method works best for you.

Next, we will explore the lifecycle of a component and its hooks.

Component Lifecycle Hooks

The lifecycle of a Vue component starts when Vue instantiates the component and
ends when destroying the component instance (or unmounting).

Vue divides the component’s lifecycle into the phases (Figure 3-4).

Component Lifecydle Hooks | 61

https://oreil.ly/lmnvd

Figure 3-4. Flow graph of a Vue component lifecycle

Initialize phase
The Vue renderer loads the component’s option configurations and prepares for
the component instance creation.

Creating phase
The Vue renderer creates the component instance. If the template requires
compiling, there will be an additional step to compile it before moving forward
to the next phase.

First render phase
The Vue renderer creates and inserts the DOM nodes for the component in its
DOM tree.

62 | Chapter3: Composing Components

Mounting phase
The component’s nested elements are already mounted and attached to the com-
ponents DOM tree, as seen in Figure 3-5. The Vue renderer then attaches the
component to its parent container. From this phase onward, you have access to
the component’s $el property, representing its DOM node.

Updating phase
Only relevant if the component’s reactive data changes. Here the Vue renderer re-
renders the DOM nodes for the component with the new data and performs a
patch update. Similar to the mounting phase, the update process finishes with the
child elements first and then the component itself.

Unmounting phase
The Vue renderer detaches the component from the DOM and destroys the
instance and all its reactive data effects. This phase is the last phase of the lifecy-
cle, happening when the component is no longer in use in the application. Simi-
lar to the updating and mounting stages, a component can only unmount itself
after all its children are unmounted.

Figure 3-5. Mounting order for a component and its children

Vue allows you to attach some events to specific transitions between these lifecycle
phases for better component flow control. We call these events lifecycle hooks. The
lifecycle hooks available in Vue are described in the following sections.

setup

setup is the first event hook before the component’s lifecycle starts. This hook runs
once before Vue instantiates the component. At this phase, no component instance
exists; hence there is no access to this:

Component Lifecycle Hooks | 63

export default {

setup() {
console.log('setup hook')
console.log(this) // undefined

}
}

An alternative to the setup hook is adding the setup attribute to
the script tag section of the component (<script setup>).

The setup hook is mainly for use with the Composition API (we will learn more in
Chapter 5). Its syntax is:
setup(props, context) {

/...
}

setup() takes two arguments:

props
An object that contains all the props passed to the component, declared using the
props field of the component’s options object. Each of props’s properties is reac-
tive data. You don’t need to return props as part of the setup() return object.

context
A non-reactive object that contains the components context, such as attrs,
slots, emit, and expose.

If you use <script setup>, you need to use defineProps() to
define and access these props. See “Declaring Props Using define-
Props() and withDefaults()” on page 116.

setup() returns an object that contains all the references to the component’s internal
reactive state and methods and any static data. Suppose you use <script setup>; you
don’t need to return anything. In that case, Vue will automatically translate all the
variables and functions declared within this syntax into the appropriate setup()
return object during compilation. You then can access them in the template or other
parts of the component’s options object using the this keyword.

Example 3-4 shows using setup() hook to define a component that prints out a static
message.

64 | Chapter3: Composing Components

Example 3-4. Defining a component with the setup() hook

import { defineComponent } from 'vue';

export default defineComponent({
setup() {
const message = 'Welcome to Vue 3!'
return {
message
}
}
b

Note here that message is not reactive data. To make it reactive, you must wrap it with
the ref() function from the Composition API. We will learn more about this in
“Handling Data with ref() and reactive()” on page 138. Also, we no longer need to
define message as part of the data() object, reducing the amount of undesired reac-
tive data in a component.

Alternatively, as Example 3-5 shows, you can write the previous component using the
<script setup> syntax.

Example 3-5. Defining a component with <script setup> syntax

<script setup lang='ts'>
const message = 'lWlelcome to Vue 3!'
</script>

One great thing about using <script setup> instead of setup() is that it has built-in
TypeScript support. As a result, there is no need for defineComponent(), and writing
components takes less code.

When using setup() hook, you can also combine with the h() render function to
return a renderer for the component based on the props and context arguments, as
Example 3-6 shows.

Example 3-6. Defining a component with the setup() hook and h() render function
import { defineComponent, h } from 'vue';

export default defineComponent({
setup(props, context) {
const message = 'Welcome to Vue 3!'
return () => h('div', message)
}
b

It is helpful to use setup() with h() when you want to create a component that ren-
ders a different static DOM structure based on the props passed to it or a stateless

Component Lifecycle Hooks | 65

functional component (Figure 3-6 shows the output of Example 3-6 in the Vue tab of
Chrome Devtools).

Figure 3-6. How the stateless component using the h() render function looks in Vue
Devtools

From this point on, we will use <script setup> syntax to
demonstrate use cases components setup() hook due to its sim-
plicity, whenever applicable.

beforeCreate

beforeCreate runs before the Vue renderer creates the component instance. Here the
Vue engine has initialized the component but hasn’t yet triggered the data() function
or calculated any computed properties. Thus, there is no reactive data available.

created

This hook runs after the Vue engine creates the component instance. At this stage, the
component instance exists with reactive data, watchers, computed properties, and
defined methods. However, the Vue engine hasn’t yet mounted it to the DOM.

The created hook runs before the first render of the component. It helps perform any
task that requires this to be available, such as loading data from an external resource
into the component.

beforeMount

This hook runs after created. Here the Vue render has created the component
instance and compiled its template for rendering before the first render of the
component.

66 | Chapter3: Composing Components

mounted

This hook runs after the first render of the component. At this phase, the compo-
nents rendered DOM node is available for you to access through the ++ property.
You can use this hook to perform additional side-effect calculations with the compo-
nent’s DOM node.

beforeUpdate

The Vue renderer updates the component’s DOM tree when the local data state
changes. This hook runs after the update process starts, and you can still use it to
modify the component’s state internally.

updated

This hook runs after the Vue renderer updates the component’s DOM tree.

updated, beforeUpdate, beforeMount and mounted hooks are not
available in server-side rendering (SSR).

Use this hook with caution since it runs after any DOM update occurs to the
component.

Update local state inside updated hook

You must not mutate the component’s local data state in this hook.

beforeUnmount

This hook runs before the Vue renderer starts unmounting the component. At this
point, the component’s DOM node $el is still available.

unmounted

This hook runs after the unmounting process completes successfully and the compo-
nent instance is no longer available. This hook can clean up additional observers or
effects, such as DOM event listeners.

Component Lifecycle Hooks | 67

In Vue 2.x, you should use beforeDestroy and destroyed in place
of beforeUnmount and mounted, respectively.

beforeUnmounted and unmounted hooks are not available in server-
side rendering (SSR).

In summary, we can redraw our component’s lifecycle diagram with the lifecycle
hooks, as in Figure 3-7.

Figure 3-7. Flowchart of a Vue component lifecycle with hooks

68 | Chapter3: Composing Components

We can experiment with the execution order for each lifecycle hook with the compo-
nent in Example 3-7.

Example 3-7. Console log of lifecycle hooks

<template>
<h2 class="heading">I am {{message}}</h2>
<input v-model="message" type="text" placeholder="Enter your name" />
</template>
<script lang="ts">
import { defineComponent } from

vue

export default defineComponent({
name: 'MyFistComponent',
data() {
return {
message:
}
1,
setup() {
console.log('setup hook triggered!")
return {}
1,
beforeCreate() {
console.log('beforeCreate hook triggered!")
1
created() {
console.log('created hook triggered!')
1
beforeMount() {
console.log('beforeMount hook triggered!')
}’
mounted() {
console.log('mounted hook triggered!')
1,
beforeUpdate() {
console.log('beforeUpdate hook triggered!")
1
updated() {
console.log('updated hook triggered!')
1
beforeUnmount() {
console.log('beforeUnmount hook triggered!")
}’
bs

</script>

Component Lifecycle Hooks | 69

When we run this code in the browser’s Inspector console, we will see the output
shown in Figure 3-8.

Figure 3-8. Console log output hook order for MyFirstComponent in the first render

When we change the value of the message property, the component re-renders, and
the console outputs as shown in Figure 3-9.

70 | Chapter3: Composing Components

Figure 3-9. Only beforeUpdate and updated hooks are triggered on the second render

We can also review this lifecycle order in the Timeline tab—Performance section of
Vue Devtools, as in Figure 3-10 for the first render.

Figure 3-10. Timeline for MyFirstComponent in the first render

Component Lifecyde Hooks | 71

And when the component re-renders, the Vue Devtools tab displays the timeline
event records as in Figure 3-11.

Figure 3-11. Timeline for MyFirstComponent in the second render

Each of the previous lifecycle hooks can be beneficial. In Table 3-1, you will find the
most common use cases per hook.

Table 3-1. Using the right hook for the right purpose
Lifecycle hook Use case
beforeCreate When you need to load external logic without modifying the component’s data.

created When you need to load external data into the component. This hook is preferable to the mounted one
for reading or writing data from external resources.

mounted When you need to perform any DOM manipulation or access the component’s DOM node this.Sel.

To this point, we have learned the component’s lifecycle order and its available hooks.
Next, we will look at how to create and organize common component logic into
methods with the method property.

Methods

Methods are logic that does not depend on the component’s data, even though we can
access the component’s local state using a this instance within a method. Compo-
nents’ methods are functions defined within the methods property. As Example 3-8
shows, we can define a method to reverse the message property.

72 | Chapter3: Composing Components

Example 3-8. Defining a method to reverse the message property

<script lang="ts">
import { defineComponent } from

' '

vue

export default defineComponent({
name: 'ReversedMessage',
data() {
return {
message: '',
b
1
methods: {
reverseMessage():string {
return this.message.split('').reverse().join("'")
1
1.
b;

</script>
Example 3-9 shows how we can use the reverseMessage method in the component’s
template.
Example 3-9. Output the reversed message on the template
<template>
<h2 class="heading">I am {{reverseMessage()}}</h2>
<input v-model="message" type="text" placeholder="Enter your message" [>

</template>

When a user inputs a message’s value in the browser, we see the output in Figure 3-12.

Figure 3-12. Reversed message based on the value of message

You can also modify the reverseMessage method to accept a string argument, mak-
ing it more reusable and less dependent on this.message, as in Example 3-10.

Methods | 73

Example 3-10. Defining a method to reverse a string

<script lang="ts">
import { defineComponent } from

' '

vue

export default defineComponent({
name: 'MyFistComponent',
data() {
return {
message: '',
b
1,
methods: {
reverseMessage(message: string):string {
return message.split('').reverse().join('")
1,
},
b;

</script>

And in the template section, we refactor Example 3-9 and pass message as input
parameter for the reverseMessage method:

<template>

<h2 class="heading">I am {{reverseMessage(message)}}</h2>

<input v-model="message" type="text" placeholder="Enter your message" />
</template>

The output stays the same as in Figure 3-12.

Also, we can trigger a component’s method within its other properties or lifecycle
hooks using the this instance. For example, we can split reverseMessage into two
smaller methods, reverse() and arrToString(), as in the following code:

/**' L.* /
methods: {
reverse(message: string):string[] {
return message.split('').reverse()
1
arrToString(arr: string[]):string {
return arr.join('")
}’
reverseMessage(message: string):string {
return this.arrToString(this.reverse(message))
1
}.
Methods are beneficial in keeping your component’s logic organized. Vue triggers a
method only when it is relevant (such as being called in the template as in
Example 3-9), allowing us to compute a new data value from local data dynamically.
However, for methods, Vue does not cache the result of every trigger, and it will

always rerun the method whenever a re-render occurs. Thus, in scenarios where you

74 | Chapter3: Composing Components

need to calculate new data, it is better to use computed properties, which we will
explore next.

Computed Properties

Computed properties are Vue’s unique features that allow you to calculate new reac-
tive data properties from any reactive data of a component. Each computed property
is a function that returns a value and resides within the computed property field.

Example 3-11 shows how we define a newly computed property, reversedMessage,
which returns the component’s local data message in reversed order.

Example 3-11. A computed property that returns the component’s local message in
reversed order

' '

import { defineComponent } from 'vue
export default defineComponent({
name: 'ReversedMessage',
data() {
return {
message: 'Hello Vue!'
}
1
computed: {
reversedMessage() {
return this.message.split('').reverse().join("'")
}
}
b

You can access reversedMessage computed with the same approach as any compo-
nent’s local data. Example 3-12 shows how we can output the calculated reversed
Message based on the input value of message.

Example 3-12. Computed property example

<template>

<h2 class="heading">I am {{ reversedMessage }}</h2>

<input v-model="message" type="text" placeholder="Enter your message" />
</template>

Example 3-12 has the same output as in Figure 3-12.

You can also track the computed property in the Components tab of the Vue Devtools
(Figure 3-13).

Computed Properties | 75

Figure 3-13. Computed properties reversedMessage in the Components tab

Similarly, you can access a computed property’s value in the component’s logic
through the this instance as its local data property. You can also calculate a new
computed property based on the computed property’s value. As Example 3-13 shows,
we can add the length of the reversedMessage property value into a new property,
reversedMessagelength.

Example 3-13. Adding reversedMessagelength computed property

' '

import { defineComponent } from 'vue

export default defineComponent({
/**_ .. */
computed: {
reversedMessage() {
return this.message.split('').reverse().join('")
1
reversedMessagelength() {
return this.reversedMessage.length
}
}
b

The Vue engine automatically caches the value of computed properties and re-
computes the value only when related reactive data changes. As in Example 3-12, Vue
will update the value of reversedMessage computed property only when message
changes. If you want to display or reuse the reversedMessage value in another loca-
tion within the component, Vue will not need to recalculate its value.

Using computed properties helps organize complex data modification into reusable
data blocks. Thus, it reduces the amount of code required and keeps code clean while
improving your components performance. Using computed properties also allows
you to quickly set up an automatic watcher for any reactive data property, by having
them appear in the implementation logic of the computed property function.

76 | Chapter3: Composing Components

However, in some scenarios, this automatic watcher mechanism can create overhead
to keep the components performance stable. In such cases, we can consider using
watchers through the watch property field of the component.

Watchers

Watchers allow you to programmatically watch for changes in any reactive data prop-
erty of a component and handle them. Each watcher is a function that receives two
arguments: the new value (newValue) and the current value (oldvalue) of the
observed data. It then performs any logic based on these two input parameters. We
define a watcher for reactive data by adding it to the watch property field of the com-
ponent’s options, following this syntax:

watch: {
'reactiveDataPropertyName'(newValue, oldValue) {
// do something
}
}

You need to replace the reactiveDataPropertyName with the name of the target
component’s data that we want to observe.

Example 3-14 shows how we define a new watcher to observe for changes in the com-
ponent’s local data message.

Example 3-14. A watcher that observes for changes in the component’s local message

export default {
name: 'MyFirstComponent',
data() {
return {
message: 'Hello Vue!'
}
1
watch: {
message(newValue: string, oldValue: string) {
console.log(new value: ${newValue}, old value: ${oldvalue}')
}
}
}

In this example, we have defined a message watcher that observes changes in the
message property. The Vue engine triggers the watcher whenever the value of
message changes. Figure 3-14 shows the console log output for this watcher.

Watchers | 77

Figure 3-14. Console log output when the message changes

We can implement the reservedMessage in Example 3-11 using a watcher on
message and data() field instead of computed properties, as seen in Example 3-15.

Example 3-15. A watcher that observes for changes in the component’s local message and
updates the value of reversedMessage

import { defineComponent } from 'vue'

export default defineComponent({
name: 'MyFirstComponent',
data() {
return {
message: 'Hello Vue!',
reversedMessage: 'Hello Vue!'.split('').reverse().join('")
}
1
watch: {
message(newValue: string, oldValue: string) {
this.reversedMessage = newValue.split('').reverse().join('")
}
}
b

The output remains the same as in Figure 3-12. However, this approach is not recom-
mended in this specific case, as it is less efficient than using computed properties.

78 | Chapter3: Composing Components

Side effects are any additional logic triggered by the watcher or
within the computed property. Side effects can impact the compo-
nent’s performance; you should handle them with caution.

You can assign the handler function directly to the watcher name. The Vue engine
will automatically call the handler with a set of default configurations for watchers.
However, you can also pass an object to the watcher’s name to customize the watch-
er’s behavior, using the fields in Table 3-2.

Table 3-2. The watcher object’s fields

Watcher's Description Accepted Default Required?

field type value

handler The callback function to trigger when the target data’s value function N/A Yes
changes.

deep Indicates whether Vue should observe for changes in the nested boolean false No

properties of the target data (if any).

immediate Indicates whether to trigger the handler immediately after boolean false No
mounting the component.

flush Indicates the timing order of the handler's execution. By default, pre, post pre No
Vue triggers the handler before updating the Vue component.

Observing for Changes in Nested Properties

The deep option field allows you to observe changes in all nested properties. Take a
user object data in a UserWatcherComponent component with two nested properties:
name and age, for instance. We define a user watcher that observes for changes in the
user object’s nested properties using the deep option field, as in Example 3-16.

Example 3-16. A watcher that observes for changes in the user object’s nested properties
import { defineComponent } from 'vue'

type User = {
name: string
age: number

}

export default defineComponent({
name: 'UserWatcherComponent',
data(): { user: User } {
return {
user: {
name: 'John',
age:

Watchers | 79

}
}
1
watch: {
user: {
handler(newvalue: User, oldvalue: User) {
console.log({ newValue, oldvalue })
1,
deep: true
}
}
b

As Example 3-17 shows, in the template section of the UserWatcherComponent com-
ponent, we receive the input for the user object’s fields, name and age.

Example 3-17. Template section for the UserWatcherComponent

<template>
<div>
<div>
<label for="name">Name:
<input v-model="user.name" placeholder="Enter your name" id="name" />
</1label>
</div>
<div>
<label for="age">Age:
<input v-model="user.age" placeholder="Enter your age" id="age" />
</label>
</div>
</div>
</template>

In this case, the Vue engine triggers the user watcher whenever the value of
user.name or user.age changes. Figure 3-15 shows the console log output for this
watcher when we change the value of user.name.

Figure 3-15. Console log output when the user object’s nested properties change

80 | Chapter3: Composing Components

Figure 3-15 shows the new and old value of user is identical. This happens because
the user object is still the same instance and only its name field’s value changed.

Also, once we turn on the deep flag, the Vue engine will traverse all the properties of
the user object and their nested properties, then observe for changes in them. Thus,
it may cause performance issues when the user object structure contains a more
complex internal data structure. In this case, it’s better to specify which nested prop-
erties you wish to monitor, as shown in Example 3-18.

Example 3-18. A watcher that observes for changes in the user’s name

Y/
export default defineComponent({
Y/
watch: {
'user.name': {
handler(newvalue: string, oldvalue: string) {
console.log({ newvalue, oldvalue })
1
1
}
b;

Here we observe changes only in user.name property. Figure 3-16 shows the console
log output for this watcher.

Figure 3-16. Console log outputs only when the user object’s name changes

You can use the dot-delimited path approach to enable watching a specific child
property, regardless of how deeply nested it is. For example, if the user has this:

type User = {
name: string;
age: number;
address: {
street: string;
city: string;
country: string;
zip: string;
I
}

Watchers | 81

Suppose you need to watch for changes in user.address.city; you can do so by
using “user.address.city” as the watcher name, and so on. By taking this approach, you
can avoid undesired performance issues on deep watching and narrow the scope of
the watcher to only the properties you need.

Using the this.Swatch() Method

In most cases, the watch option is enough to handle your watcher needs. However,
there are scenarios where you don’t want to enable certain watchers when not neces-
sary. For instance, you may want to enable the user.address.city watcher only
when the user object’s address property is not null. In this case, you can use the
this.$watch() method to create the watcher upon creating the component
conditionally.

The this.$watch() method accepts the following parameters:

» Name of the target data to watch as a string

o The callback function as a watcher’s handler to trigger when the target data’s
value changes

this.Swatch() returns a function you can call to stop the watcher. The code in
Example 3-19 shows how to use the this.Swatch() method to create a watcher that
observes for changes in user.address.city.

Example 3-19. A watcher that observes for changes in city field in the user’s address

import { defineComponent } from "vue";
import type { WatchStopHandle } from "vue";

Y/
export default defineComponent({
name: "UserWatcherComponent",
data(): { user: User; stopWatchingAddressCity?: WatchStopHandle } {
return {
user: {
name: "John",
age: 30,
address: {
street: "123 Main St",
city: "New York",
country: "USA",
zip: "10001",
1
1
stopWatchingAddressCity: undefined, "
b
1
created() {
if (this.user.address) { (2]

82 | Chapter3: Composing Components

this.stopWatchingAddressCity = this.$watch(
"user.address.city",
(newValue: string, oldValue: string) => {
console.log({ newVvalue, oldvalue });
}
);
}
1
beforeUnmount() {

if (this.stopWatchingAddressCity) { (3]
this.stopWatchingAddressCity();
}
1
b

O Define a stopWatchingAddressCity property for storing the watcher’s return
function.

©® Create a watcher for user.address.city only when the user object’s address
object property is available.

© Before unmounting the component, trigger the stopWatchingAddressCity func-
tion to stop the watcher if relevant.

Using this approach, we can limit the number of unnecessary watchers created, such
as the watcher for user.address.city when user.address doesn’t exist.

Next, we will look at another interesting feature of Vue, the slot component.

The Power of Slots

Building a component is about more than just its data and logic. We often want to
maintain the current component’s sense and existing design but still allow users to
modify parts of the UI template. This flexibility is crucial when building a customiza-
ble component library in any framework. Fortunately, Vue offers the <slot> compo-
nent to allow us to dynamically replace the default Ul design for an element when
needed.

For instance, let’s build a layout component ListLayout to render a list of items, with
each item having the following type:

interface Item {
id: number
name: string
description: string
thumbnail?: string

}

For each item in the list, by default, the layout component should render its name and
description, as shown in Example 3-20.

The Power of Slots | 83

Example 3-20. The first template implementation of the ListLayout component

<template>
<ul class="list-layout">
<1i class="list-layout__item" v-for="item in items" :key="item.id">
<div class="list-layout__item__name">{{ item.name }}</div>
<div class="list-layout__item__description">{{ item.description }}</div>
</1i>

</template>

We also define a sample list of items to render for ListLayout in its script section
(Example 3-21).

Example 3-21. The script section of the ListLayout component

import { defineComponent } from 'vue'

S/

export default defineComponent({
name: 'ListlLayout',
data(): { items: Item[] } {
return {
items: [
{
id: 1,
name: "Item 1",
description: "This is item 1",
thumbnail:
"https://res.cloudinary.com/mayashavin/image/upload/v1643005666/Demo/supreme_pizza",
1,
{
id: 2,
name: "Item 2",
description: "This is item 2",
thumbnail:
"https://res.cloudinary.com/mayashavin/image/upload/v1643005666/Demo/hawaiian_pizza",
1
{
id: 3,
name: "Item 3",
description: "This is item 3",
thumbnail:
"https://res.cloudinary.com/mayashavin/image/upload/v1643005666/Demo/pina_colada_pizza",
1
1
}
}
b

84 | Chapter3: Composing Components

Figure 3-17 shows the default rendered UI of a single item using the previous tem-
plate (Example 3-20) and data (Example 3-21).

Figure 3-17. A sample Ul layout of the item in the ListLayout component

Based on this default Ul, we can then offer users an option to customize each item’s
UL To do so, we wrap the code block within a 11 element with a slot element, as
shown in Example 3-22.

Example 3-22. ListLayout component with slot

<template>
<ul class="list-layout">
<1i class="list-layout__item" v-for="item in items" :key="item.id">
<slot :item="1item">
<div class="list-layout__1item__name">{{ item.name }}</div>
<div class="list-layout__item__description">{{ item.description }}</div>
</slot>
</1i>

</template>

Notice how we bind the item variable received for each v-for iteration to the same
item prop attribute of the slot component using : syntax. By doing so, we ensure the
slot provides access to the same item data to its descendants.

The slot component doesn’t share the same data context with its
host component (such as ListLayout). If you want to access any
data property of the host component, you need to pass it as a prop
to slot using v-bind syntax. We will learn more about giving
props to nested elements in “Nested Components and Data Flow in
Vue” on page 107.

The Power of Slots | 85

However, we need more than having item available for the custom template content
to make it work. In the parent component of ListLayout, we add v-slot directive to
<ListLayout> tag to get access to the item passed to its slot component, following
the syntax below:

<ListLayout v-slot="{ item }">

<!-- Custom template content -->

</ListLayout>
Here we use the object destructuring syntax { item } to create a scoped slot refer-
ence to the data property we want to access. Then we can use item directly on our
custom template content, as in Example 3-23.

Example 3-23. Compose ProductItenlList from ListLayout

<!-- ProductItemList.vue -->
<template>
<div id="app">
<ListLayout v-slot="{ item }">
<img
v-if="1item.thumbnail"
class="11ist-layout__item__thumbnail"
:src="1tem. thumbnail"
:alt="1item.name"
width="200"
/>
<div class="list-layout__item__name">{{ item.name }}</div>
</ListLayout>
</div>
</template>

In Example 3-23, we change the UI to display a thumbnail image and the item’s name
only. You can see the result in Figure 3-21.

This example is the most straightforward use case for the slot component when we
want to enable customization in a single slot in the element. But what about more
complex scenarios like a product card component containing a thumbnail, the main
description area, and an area of actions, each of which requires customization? For
such a case, we still can take advantage of the power of slot, with naming capability.

86 | Chapter3: Composing Components

Figure 3-18. The UI layout of the ProductItemList component

Using Named Slots with Template Tag and
v-slot Attribute

In Example 3-22, we only enable customization for the UI of the item’s name and
description as a single slot. To split the customization into several slot sections for a
thumbnail, the main description area, and a footer of actions, we use slot with the
attribute name, as in Example 3-24.

Using Named Slots with Template Tag and v-slot Attribute | 87

Example 3-24. ListLayout component with named slots

<template>
<ul class="list-layout">
<1i class="list-layout__item" v-for="item in items" :key="item.id">
<slot name="thumbnail" :item="item" />
<slot name="main" :item="item">
<div class="list-layout__item__name">{{ item.name }}</div>
<div class="list-layout__1item__description">{{ item.description }}</div>
</slot>
<slot name="actions" :item="item" />
</1i>

We assigned each slot with the names thumbnail, main, and actions, respectively.
And for the matin slot, we add a fallback content template to display the item’s name
and description.

When we want to pass the custom content to a specific slot, we wrap the content with
a template tag. Then we pass the name declaring the desired slot (slot-name for
example) to the v-slot directive of the template, following the syntax:

<template v-slot:slot-name>

<!-- Custom content -->
</template>

We can also use the shorthand syntax # instead of v-slot:

<template #slot-name>
<!-- Custom content -->
</template>

From here on, we will use the syntax # to denote v-slot when
using with the template tag.

Like using v-slot on the component tag, we can also give access to the slot’s data:

<template #slot-name="mySlotProps">
<!--<div> Slot data: {{ mySlotProps }}</div>-->
</template>

88 | Chapter3: Composing Components

Using multiple slots

For multiple slots, you must use the v-slot directive for each rele-
vant template tag, and not on the component tag. Otherwise, Vue
will throw an error.

Let’s go back to our ProductItemList component (Example 3-23) and refactor the
component to render the following custom content sections for the product item:

o A thumbnail image

« An action button for adding the product to the cart

Example 3-25 shows how to implement that using template and v-slot.

Example 3-25. Compose ProductItemlist with named slot

<!-- ProductItemList.vue -->
<template>
<div id="app">
<ListLayout>
<template #thumbnail="{ item }">
<img
v-if="1tem. thumbnail"
class="1ist-layout__item__thumbnail"
:src="1item.thumbnail"
:alt="1item.name"
width="200"
/>
</template>
<template #actions>
<div class="1list-layout__1item__footer">
<button class="list-layout__item__footer__button">Add to cart</button>
</div>
</template>
</ListLayout>
</div>
</template>

The code results in the output shown in Figure 3-19.

Using Named Slots with Template Tag and v-slot Attribute | 89

Figure 3-19. Output of ProductItenl ist with customized slot content

And that’s it. You are ready to use slots to customize your UI components. With slots,
you can now create some basic standard reusable layouts for your application, such as
a page layout with a header and footer, a side panel layout, or a modal component
that can be a dialog or notification. You will then find how handy slots are in keeping
your code organized and reusable.

Using slot also means the browser won't apply all relevant scoped
styles defined in the component. To enable this functionality, see
“Applying Scoped Styles to Slot Content” on page 101.

90 | Chapter3: Composing Components

Next, we will learn how to access the mounted component instance or a DOM ele-
ment using refs.

Understanding Refs

While Vue typically handles most of the DOM interactions for you, for some scenar-
ios you may need to directly access a DOM element within a component for further
manipulation. For instance, you may want to open a modal dialog when the user
clicks a button or focus on a specific input field when mounting the component. In
such cases, you can use the ref attribute to access the target DOM element instance.

The ref is a Vue built-in attribute that allows you to receive a direct reference to a
DOM element or a mounted child instance. In the template section, you assign the
value of the ref attribute to a string representing the reference name on the target
element. Example 3-26 shows how to create a messageRef, which refers to the DOM
element input.

Example 3-26. An input component with a ref attribute assigned to messageRef

<template>
<div>
<input type="text" ref="messageRef" placeholder="Enter a message" />
</div>
</template>

You can then access the messageRef in the script section to manipulate the input
element through a this.$refs.messageRef instance. The reference instance
messageRef will have all the properties and methods of the input element. For
instance, you can use this.$refs.messageRef.focus() to focus on the input ele-
ment programmatically.

Accessing the ref attribute

The ref attribute is accessible only after mounting the component.

The reference instance contains all the properties and methods of a specific DOM
element or the child component instance, depending on the target element type. In a
scenario where you use the ref attribute on a looped element using v-for, the refer-
ence instance will be the array containing the looped elements without order.

Take a list of tasks, for instance. As Example 3-27 shows, you can use the ref attribute
to access the list of tasks.

UnderstandingRefs | 91

Example 3-27. A list of tasks with a ref attribute assigned to taskListRef

<template>
<div>

<li v-for="(task, index) in tasks" :key="task.id" ref="tasksRef">
{{title}} {{index}}: {{task.description}}
</1i>

</div>
</template>
<script lang="ts">
import { defineComponent } from "vue";

export default defineComponent({
name: "TaskListComponent",
data() {
return {
tasks: [{
id: 'taske1',
description: 'Buy groceries',

LA

id: 'taske2',

description: 'Do laundry',
LA

id: 'tasko3',
description: 'Watch Moonknight',
.,
title: 'Task',
}s
}
b;

</script>

Once Vue mounts the TaskListComponent, you can see the tasksRef contains three
11 DOM elements and nested in refs property of the component instance, as seen in
the Vue Devtools screenshot in Figure 3-20.

You can now use this.$refs.tasksRef to access the list of the task elements and
perform further modification when needed.

ref can also accept a function as its value, by adding a prefix, :, to
it (:ref). The function accepts the reference instance as its input
parameter.

We have learned about the ref attribute and how it can be helpful in many real-world
challenges, such as building a reusable modal system (see “Implementing a Modal
with Teleport and the <dialog> Element” on page 127). The following section will
explore how to create and share standard configurations across components with
mixins.

92 | Chapter3: Composing Components

Figure 3-20. Vue Devtools showing the tasksRef reference instance

Sharing Component Configuration with Mixins

In reality, it is not uncommon for some components to share similar data and behav-
iors, such as a cafe and a dining restaurant component. Both elements share the logic
of making reservations and accepting payments, but each has unique features. In such
scenarios, you can use the mixins property to share the standard functionalities
across these two components.

For instance, you can create a restaurantMixin object that contains the standard
functionalities of the two components, DiningComponent and CafeComponent, as in
Example 3-28.

Example 3-28. A restaurantMixin mixin object

/** mixins/restaurantMixin.ts */
import { defineComponent } from 'vue'

export const restaurantMixin = defineComponent({
data() {
return {
menu: [],
reservations: [],
payments: [],
title: 'Restaurant',
}s
1
methods: {
makeReservation() {
console.log("Reservation made");

I8

Sharing Component Configuration with Mixins | 93

acceptPayment() {
console.log("Payment accepted");

1,
1
created() {

console.log(Welcome to ${this.title});
}

bs

You can then use the restaurantMixin object in the mixins property of Dining
Component, as seen in Example 3-29.

Example 3-29. Using the restaurantMixin mixins property of the DiningComponent

<template>
<!-- components/DiningComponent.vue -->
<h1>{{title}}</h1>
<button @click="getDressCode">getDressCode</button>
<button @click="makeReservation">Make a reservation</button>
<button @click="acceptPayment">Accept a payment</button>
</template>
<script lang='ts'>
import { defineComponent } from 'vue'
import { restaurantMixin } from '@/mixins/restaurantMixin’

export default defineComponent({
name: 'DiningComponent’,
mixins: [restaurantMixin],
data() {
return {
title: 'Dining’',
menu: [
{ 1d: 'menu0dl', name: 'Steak' },
{ 1d: 'menu02', name: 'Salad' },
{ 1d: 'menu03', name: 'Pizza' },
1,
b
1,
methods: {
getDressCode() {
console.log("Dress code: Casual");
1,
1.
created() {
console.log('DiningComponent component created!');
}
b;

</script>

Example 3-30 shows the similar CafeComponent.

94 | Chapter3: Composing Components

Example 3-30. Using the restaurantMixin mixins property of the CafeComponent

<template>
<!-- components/CafeComponent.vue -->
<h1>{{title}}</h1>
<p>Open time: 8am - 4pm</p>

<li v-for="menultem in menu" :key="menuItem.id">
{{menuItem.name}}
</1i>

<button @click="acceptPayment">Pay</button>
</template>
<script lang="ts'>
import { defineComponent } from 'vue'
import { restaurantMixin } from '@/mixins/restaurantMixin’
export default defineComponent({
name: 'CafeComponent',
mixins: [restaurantMixin],
data() {
return {
title: 'Cafe',
menu: [{
id: 'menu0l’,
name: 'Coffee',
price: 5,
LA
id: 'menu@2’',
name: 'Tea',
price: 3,
LA
id: 'menu@3’,
name: 'Cake',
price: 7,
.
b
1.
created() {
console. log('CafeComponent component created!');
}
b;

</script>

Upon creating the components, the Vue engine will merge the mixin logic into the
component, with the component’s data declaration taking precedence. In Examples
3-29 and 3-30, the DiningComponent and CafeComponent will have the same proper-
ties, menu, reservations, payments, and title, but with different values. Also, the
methods and hooks declared in restaurantMixin will be available to both compo-
nents. It is similar to the inheritance pattern, though the component doesn’t override
the mixin hooks’ behavior. Instead, the Vue engine calls the mixin’s hooks first, then
the component’s hooks.

Sharing Component Configuration with Mixins | 95

When Vue mounts the DiningComponent, you will see the output in Figure 3-21 in
the browser console.

Figure 3-21. Output order of console log of the DiningComponent

Similarly, when Vue mounts the CafeComponent, you will see the output in
Figure 3-22 in the browser console.

Figure 3-22. Output order of console log of the CafeComponent

Note that title value has changed between the two components, while Vue triggers
the created hook of the restaurantMixin first, followed by the one declared on the
element itself.

The order of merging and triggering the hooks for multiple mixins
is according to the order of the mixins array. Vue always calls the
component’s hooks last. Consider this order when putting multiple
mixins together.

If you open the Vue Devtools, you will see the restaurantMixin is not visible, and
the DiningComponent and CafeComponent are with their own data properties, as
shown in Figures 3-23 and 3-24.

Figure 3-23. Vue Devtools showing the DiningComponent

96 | Chapter3: Composing Components

Figure 3-24. Vue Devtools showing the CafeComponent

Mixins are great for sharing common logic between components and keeping your
code organized. However, too many mixins can confuse other developers in under-
standing and debugging, and in most cases, are considered bad practice. We recom-
mend validating your use case before choosing mixins over alternatives, such as the
Composition API (Chapter 5).

At this point, we have explored how to compose components’ logic using advanced
features in template and script sections. Next, let’s learn how to make your compo-
nent beautiful with Vue’s built-in styling features in the style section.

Scoped Styling Components

Like a regular HTML page structure, we can define CSS stylings for an SFC compo-
nent using the <style> tag:

<style>

h1 {

color: red;

}

</style>
The <style> section usually comes last in the order of a Vue SFC component and can
appear multiple times. Upon mounting the component to the DOM, the Vue engine
will apply the CSS styles defined within the <style> tag to all the elements or
matched DOM selectors within the application. In other words, all CSS rules that
appeared in the <style> of a component apply globally once mounted. Take the
HeadingComponent shown in Example 3-31, which renders a heading title with some

stylings.

Scoped Styling Components | 97

Example 3-31. Using the <style> tag in HeadingComponent

<template>
<h1 class="heading">{{title}}</h1>
<p class="description">{{description}}</p>
</template>
<script lang='ts'>
export default {
name: 'HeadingComponent',
data() {
return {
title: 'Welcome to Vue Restaurant',
description: 'A Vue.js project to learn Vue.js',
b
1
b
</script>
<style>
.heading {
color: #178c0e;
font-size: 2em;

}

.description {
color: #b76210;
font-size: lem;

}
</style>

In Example 3-31, we created two CSS class selectors: heading and description for h1
and p elements of the component, respectively. When Vue mounts the component,
the browser will paint these elements with the appropriate styles, as seen in
Figure 3-25.

Welcome to Vue Restaurant

A Vue.js project to learn Vue.js

Figure 3-25. The HeadingComponent with styles applied

Example 3-32 shows adding a span element with the same heading class selector out-
side HeadingComponent in the parent component App. vue.

Example 3-32. Adding the same class selector to the parent component App. vue

<!-- App.vue -->
<template>
<section class="wrapper">
<HeadingComponent />
This is a span element in App.vue component
</section>
</template>

98 | Chapter3: Composing Components

The browser then still applies the same styles to the span element, as shown in
Figure 3-26.

Welcome to Vue Restaurant

A Vue.js project to learn Vue.js

This is a span element in App.vue component

Figure 3-26. The span element in App. vue has the same CSS styles as the h1 element in
the HeadingComponent

But if we don’t use the HeadingComponent, or it does not yet exist in the application
on run-time, the span element will not have the CSS rules of the heading class
selector.

To avoid such a scenario and to have better control of style rules and selectors, Vue
offers a unique feature, the scoped attribute. With the <style scoped> tag, Vue
ensures the CSS rules will apply to relevant elements within the component and not
leak them to the rest of the application. Vue achieved this mechanism by performing
these steps:

1. Add a randomly generated data attribute on the target element tag with the prefix
syntax data-v.

2. Transform the CSS selectors defined in the <style scoped> tag to include the
generated data attribute.

Let’s see how this works in practice. In Example 3-33, we add the scoped attribute to
the <style> tag of the HeadingComponent.

Example 3-33. Adding the scoped attribute to the <style> tag of HeadingComponent

<!-- HeadingComponent.vue -->
<l--,..-->
<style scoped>
.heading {
color: #178c0e;
font-size: 2em;

}

.description {
color: #b76210;
font-size: lem;

}

</style>

Scoped Styling Components | 99

The span element defined in App.vue (Example 3-32) will not have the same CSS
styles as the h1 element in HeadingComponent, as shown in Figure 3-27.

Welcome to Vue Restaurant

A Vue.js project to learn Vue.js

This is a span element in App.vue component

Figure 3-27. The span element in App. vue now has default black color

When you open the Elements tab in the browser’s Developer Tools, you can see the h1
and p elements now have the data-v-xxxx attribute, as shown in Figure 3-28.

Figure 3-28. The h1 and p elements in HeadingComponent have the data-v-xxxx
attribute

And if you select the h1 element and look at its styles on the right panel, you can see
that the CSS selector .heading has become .heading[data-v-xxxx], as shown in
Figure 3-29.

Figure 3-29. The CSS selector . heading is transformed to . heading[data-v-xxxx]

I strongly recommend you start working with the scoped attribute in your compo-
nents as a good coding habit to avoid undesirable CSS bugs when your project grows.

The browser follows the CSS specificity when deciding which order
to apply the styles. Because Vue’s scoped mechanism uses attribute
selectors [data-v-xxxx], using the .heading selector solely is not
enough to override the component’s styles from the parent.

100 | Chapter3: Composing Components

https://oreil.ly/x4iOg

Applying CSS to a Child Component in Scoped Styles

Beginning with Vue 3.x, you can override or extend the styles of a child component
from the parent with a scoped style by using the :deep() pseudo-class. For example,
as Example 3-34 shows, we can override the scoped styles of paragraph element p in
the HeadingComponent from its parent App.

Example 3-34. Overriding the scoped styles of paragraph element p in the Heading
Component from its parent App

<!-- App.vue -->
<template>
<section class="wrapper">
<HeadingComponent />
This is a span element in App.vue component
</section>
</template>
<style scoped>
.wrapper () {
color: #000;

}
</style>

The p element in the HeadingComponent will have the color black instead of its scoped
color, #b76210, as shown in Figure 3-30.

Welcome to Vue Restaurant

A Vue.js project to learn Vue.js

This is a span element in App.vue component

Figure 3-30. The p element in HeadingComponent has the color black

The browser will apply the newly defined CSS rules to any p ele-
ments nested in any child component of App and its children.

Applying Scoped Styles to Slot Content

By design, any styles defined in the <style scoped> tag is relevant only to the com-
ponent’s default template itself. Vue won't be able to transform any slotted content to
include the data-v-xxxx attribute. To style any slotted content, you can use
the :slot([CSS selector]) pseudo-class or create a dedicated style section for
them on the parent level and keep the code organized.

Scoped Styling Components | 101

Accessing a Component’s Data Value in Style Tag with
v-bind() Pseudo-Class

We often need to access the component’s data value and bind that value to a valid CSS
property, such as changing dark or light mode or theme color for an application
based on the user’s preference. For such use cases, we use the pseudo-class v-bind().

v-bind() accepts the component’s data property and JavaScript expressions as a
string for its only argument. For example, we can change the color of the h1 element
in the HeadingComponent based on the value of the titleColor data property, as
shown in Example 3-35.

Example 3-35. Changing the color of the h1 element based on the value of the title
Color

<!-- HeadingComponent.vue -->
<template>

<h1 class="heading">{{title}}</h1>

<p class="description">{{description}}</p>
</template>
<script lang='ts'>
export default {

Y/

data() {

return {
Y/
titleColor: "#178cOe",
b

1,
b
</script>
<style scoped>
.heading {

color: v-bind(titleColor);

font-size: 2em;
}
</style>

The v-bind() pseudo-class then transforms the value of the titleColor data prop-
erty into an inline hashed CSS variable, as shown in Figure 3-31.

Figure 3-31. The value of the titleColor data property is now a hashed CSS property
in inline style

102 | Chapter3: Composing Components

Let’s open the Elements tab in the browser’s Developer Tools and look at the element’s
styles. You can see the generated color property for the .heading selector remains
static and has the same value as the developed hashed CSS property of titleColor
(Figure 3-32).

Figure 3-32. The generated color property for the .heading selector has the same value as
the generated hashed CSS property of titleColor

v-bind() helps retrieve a component’s data value and then bind the desired CSS
property to that dynamic value. However, this is only one-way binding. If you want to
retrieve the defined CSS styles in the template for binding to the template’s elements,
you need to use CSS Modules, which we will cover in the next section.

Styling Components with (SS Modules

Another alternative for scoping your CSS styles per component is to use CSS Mod-
ules.! CSS Modules is an approach that allows you to write CSS styles regularly and
then consume them as a JavaScript object (module) in our template and script
sections.

To start using CSS Modules in a Vue SFC Component, you need to add the module
attribute to the style tag, as shown in our HeadingComponent in Example 3-36.

Example 3-36. Using CSS Modules in HeadingComponent

<!-- HeadingComponent.vue -->
<style module>
.heading {

color: #178c0Oe;

font-size: 2em;

}

1 CSS Modules started as an open source project for React.

Styling Components with (SS Modules | 103

https://oreil.ly/YQ6IJ

.description {
color: #b76210;
font-size: lem;

}
</style>

Now you will have access to these CSS selectors as fields of a $style property object
of the component. We can remove the static class names heading and description
assigned for h1 and p, respectively, in the template section. Instead, we will bind the
classes of these elements to the relevant fields of the $style object (Example 3-37).

Example 3-37. Binding classes dynamically with $style object

<!-- HeadingComponent.vue -->
<template>

<h1l :class="$style.heading">{{title}}</h1>

<p :class="$style.description">{{description}}</p>
</template>

The output on the browser stays the same as Figure 3-27. However, when looking at
the relevant elements on the Elements tab in the browser’s Developer Tools, you will
see Vue has hashed the generated class names to keep the styles scoped within the
component, as in Figure 3-33.

<hl class="_heading_e6bi@_2">Welcome to Vue Restaurant</hl>
<p class="_description_e6bi®_6">A Vue.js project to learn Vue.js
</p>

Figure 3-33. The generated class names heading and description are now hashed

Additionally, you can rename the CSS style object $style by assigning a name to the
module attribute, as shown in Example 3-38.

Example 3-38. Renaming the CSS style object $style to headerClasses

<!-- HeadingComponent.vue -->
<style module="headerClasses">
.heading {

color: #178c0Oe;

font-size: 2em;

}

.description {
color: #b76210;
font-size: lem;

}

</style>

104 | Chapter3: Composing Components

And in the template section, you can bind the classes of the h1 and p elements to the
headerClasses object instead (Example 3-39).

Example 3-39. Binding classes dynamically with headerClasses object

<!-- HeadingComponent.vue -->
<template>

<h1 :class="headerClasses.heading">{{title}}</h1>

<p :class="headerClasses.description">{{description}}</p>
</template>

If you are using <script setup> or setup() function in your com-
ponent (Chapter 5), you can use the useCssModule() hook to
access the instance of the style object. This function accepts the
name of the style object as its only argument.

The component now has a more isolated design than when using the scoped attribute
in the style tag. The code looks more organized, and it is more challenging to over-
ride this component’s styles from outside since Vue hashes the relevant CSS selectors
randomly. Nevertheless, depending on your project’s requirements, one approach
may be better than the other, or it might be crucial to combine both scoped and
modu'le attributes to achieve the desired result.

Summary

In this chapter, we learned how to create a Vue component in the SFC standard and
use defineComponent() to enable TypeScript support for the Vue application fully.
We also learned to use slots to create a reusable component with isolated styles and
shared mixin configurations in different contexts. We have explored further compos-
ing components using the component’s lifecycle hooks, computed, methods, and
watch properties in the Options API. Next, we will build on these foundations to cre-
ate custom events and develop the interactions between components with the
provide/inject patterns.

Summary | 105

CHAPTER 4
Interactions Between Components

In Chapter 3, we deep-dived into composing a component with lifecycle hooks, com-
puted properties, watchers, methods, and other features. We also learned about the
power of slots and how to receive external data from other components using props.

Based on that foundation, this chapter guides you on how to build the interactions
between components using custom events and provide/inject patterns. It also intro-
duces Teleport API, which allows you to move elements around the DOM tree while
keeping their order of appearance inside a Vue component.

Nested Components and Data Flow in Vue

Vue components can nest other Vue components inside them. This feature is handy
in allowing users to organize their code into smaller, manageable, and reusable pieces
in a complex UI project. We call nested elements child components and the compo-
nent containing them their parent component.

Data flow in a Vue application is unidirectional by default, which means that the par-
ent component can pass data to its child component but not the other way around.
The parent can pass data to the child component using props (discussed briefly in
“Exploring the Options API” on page 19), and the child component can emit events
back to the parent component using custom events emits. Figure 4-1 demonstrates
the data flow between components.

107

Figure 4-1. One-way data flow in Vue components

Passing Functions as Props

Unlike other frameworks, Vue does not allow you to pass a func-
tion as a prop to the child component. Instead, you can bind the
function as a custom event emitter (see “Communication Between
Components with Custom Events” on page 117).

Using Props to Pass Data to Child Components

In the form of an object or array, the props field of a Vue component contains all the
available data properties that the component can receive from its parent. Each prop-
erty of props is a prop of the target component. To start receiving data from the par-
ent, you need to declare the props field in the component’s options object, as shown
in Example 4-1.

Example 4-1. Defining props in a component

export default {
name: 'ChildComponent’,
props: {
name: String
}
}

In Example 4-1, the ChildComponent component accepts a name prop of type String.
The parent component then can pass data to the child component using this name
prop, as shown in Example 4-2.

Example 4-2. Passing static data as props to a child component

<template>

<ChildComponent name="Red Sweater" />
</template>
<script lang="ts">

108 | Chapter 4: Interactions Between Components

import ChildComponent from './ChildComponent.vue'
export default {
name: 'ParentComponent’,
components: {
ChildComponent
1.
}

</script>

The ChildComponent receives a static “Red Sweater” as a name value in the previous
example. If you want to pass and bind a dynamic data variable to name, such as the
first element in the children list, you can use the v-bind attribute, denoted by :, as
shown in Example 4-3.

Example 4-3. Passing dynamic variables as props to a child component

<template>
<ChildComponent :name="children[0]" />
</template>
<script lang="ts">
import ChildComponent from './ChildComponent.vue'
export default {
Y/
data() {
return {
children: ['Red Sweater', 'Blue T-Shirt', 'Green Hat']
}
}
}

</script>

The output for the previous code is the same as passing a static string, Red Sweater,
to the name prop.

If the name prop is not of type String, you still need to use the
v-bind attribute (or :) to pass static data to the child component,
such as :name="true" for Boolean, or :name="["hello",
"world"]" for Array type.

In Example 4-3, whenever the value of children[0] changes, Vue will also update the

name prop in the ChildComponent, and the child component will re-render its content
if needed.

If you have more than one prop in the child component, you can follow the same
approach and pass each data to the relevant prop. For instance, to pass name and
price of a product to the ProductComp component, you can perform this
(Example 4-4).

Nested Components and Data FlowinVue | 109

Example 4-4. Passing multiple props to a child component

/** components/ProductList.vue */
<template>
<ProductComp :name="product.name" :price="product.price" />
</template>
<script lang="ts">
import ProductComp from
export default {
name: 'ProductList',
components: {
ProductComp
1
data() {
return {
product: {
name: 'Red Sweater',
price: 19.99

./ProductComp.vue'

}
}
}
}

</script>

And we can define the ProductComp component as in Example 4-5.

Example 4-5. Defining multiple props in ProductComp

<template>
<div>
<p>Product: {{ name }}</p>
<p>Price: {{ price }}</p>
</div>
</template>
<script lang="ts">
export default {
name: 'ProductComp',
props: {
name: String,
price: Number
}
}

</script>

The output will be as follows:

Product: Red Sweater
Price: 19.99

Alternatively, you can use v-bind (not :) to pass the entire object user and have its
properties bound to the relevant child component’s props:
<template>

<ProductComp v-bind="product" />
</template>

110 | Chapter4: Interactions Between Components

Note that only the child component will receive the relevant declared props. Hence, if
you have another field, product.description, in the parent component, it will not be
available for access in the child component.

Another approach to declare your component’s props is to use an
array of strings, each representing the name of the prop it accepts,
such as props: ["name", "price"]. This approach is practical
when you want to prototype a component quickly. However, I
strongly recommend you use the object form of props and declare
all your props with types, as a good practice for code readability
and bug prevention.

We have learned how to declare props with types, but how do we validate the data
passed to the child’s props when needed? How can we set a fallback value for a prop
when no value is passed? Let’s find out next.

Declaring Prop Types with Validation and Default Values

Back in Example 4-1, we declared the name prop as a String type. Vue will warn if the
parent component passes a non-string value to the name prop during run-time. How-
ever, to be able to enjoy the benefit of Vue’s type validation, we should use the full
declaration syntax:
{

type: String | Number | Boolean | Array | Object | Date | Function | Symbol,

default?: any,

required?: boolean,

validator?: (value: any) => boolean

}
In which:

o type is the type of prop. It can be a constructor function (or custom class) or one
of the built-in types.

o default is the props default value if no value is passed. For types Object,
Function, and Array, the default value must be a function that returns the initial
value.

o required is a boolean value indicating whether the prop is mandatory. If
required is true, the parent component must pass a value to the prop. By
default, all props are optional.

« validator is a function that validates the value passed to the prop, mainly for
development debugging.

Nested Components and Data FlowinVue | 111

We can declare the name prop to be more specific, including a default value, as shown
in Example 4-6.

Example 4-6. Defining prop as a string with a default value

export default {
name: 'ChildComponent’,
props: {
name: {
type: String,
default: 'Child component'
}
}
}

If the parent component does not pass a value, the child component will fall back to
the default value “Child component” for the name prop.

We can also set name as a mandatory prop for the child component and add a valida-
tor for its received data, as shown in Example 4-7.

Example 4-7. Defining name as required with a prop validator

export default {
name: 'ChildComponent',
props: {
name: {
type: String,
required: true,
validator: value => value !== "Child component"
}
}
}

In this scenario, if the parent component does not pass a value to the name prop, or
the given value matches Child component, Vue will throw a warning in development
mode (Figure 4-2).

Figure 4-2. Console warning in development for failed prop validation

112 | Chapter4: Interactions Between Components

For the default field, the Function type is a function that returns
the initial value of the prop. You can’t use it to pass data back to the
parent component or to trigger data changes on the parent level.

In addition to the built-in types and validation provided by Vue, you can combine a
JavaScript Class or a function constructor and TypeScript to create your custom prop
type. I'll cover them in the next section.

Declaring Props with Custom Type Checking

Using primitive types like Array, String, or Object suits the essential use case. How-
ever, as your application grows, primitive types can be too generic to keep your com-
ponent’s type safe. Take a PizzaComponent with the following template code:

<template>
<header>Title: {{ pizza.title }}</header>
<div class="pizza--details-wrapper">

<p>Description: {{ pizza.description }}</p>
<div class="pizza--inventory"s>
<div class="pizza--inventory-stock">Quantity: {{pizza.quantity}}</div>
<div class="pizza--inventory-price">Price: {{pizza.price}}</div>
</div>
</div>
</template>
This component accepts a mandatory pizza prop, which is an Object containing
some details about the pizza:
export default {
name: 'PizzaComponent',
props: {
pizza: {
type: Object,
required: true

}
}
}

Straightforward enough. However, by declaring pizza as an Object type, we assume
the parent will always pass the suitable object with the appropriate fields (title,
image, description, quantity, and price) required for a pizza to render.

This assumption can lead to a problem. Since pizza accepts data of type Object, any
component that uses PizzaComponent can pass any object data to the prop pizza
without the actual fields needed for a pizza, as in Example 4-8.

Nested Components and Data FlowinVue | 113

Example 4-8. Using Pizza component with wrong data

<template>
<div>
<h2>Bad usage of Pizza component</h2>
<pizza-component :pizza="{ name: 'Pinia', description: 'Hawaiian pizza' }" />
</div>
</template>

The preceding code results in a broken UI render of PizzaComponent, where only a
description is available, and the rest of the fields are empty (with a broken image),
as shown in Figure 4-3.

Figure 4-3. Broken UI with no image link and missing fields for a pizza

TypeScript won't be able to detect the data type mismatch here either, as it performs
the type checking according to the declared type of pizza: the generic Object.
Another potential problem is that passing pizza in the wrong nest properties format
can cause the app to crash. Therefore, to avoid such accidents, we use custom type
declarations.

We can define the Pizza class and declare the prop pizza of type Pizza as shown in
Example 4-9.

Example 4-9. Declaring a Pizza custom type

class Pizza {
title: string;
description: string;
image: string;
quantity: number;
price: number;

constructor(
title: string,
description: string,
image: string,
quantity: number,
price: number
) {
this.title = title
this.description = description

114 | Chapter 4: Interactions Between Components

this.image = image
this.quantity = quantity
this.price = price
}
}

export default {
name: 'PizzaComponent’,
props: {
pizza: {
type: Pizza, "
required: true
}
}
}

© Declare the type of pizza props as Pizza directly

Alternatively, you can use TypeScript’s interface or type to define your custom type
instead of Class. However, in such scenarios, you must use type PropType from the
vue package, with the following syntax, to map the declared type to the target prop:

type: Object as PropType<Your-Custom-Type>

Let’s rewrite the Pizza class as an interface instead (Example 4-10).

Example 4-10. Declaring a Pizza custom type using the TypeScript interface API

import type { PropType } from 'vue
interface Pizza {

title: string;

description: string;

image: string;

quantity: number;

price: number;

}

export default {
name: 'PizzaComponent’,
props: {
pizza: {
type: Object as PropType<Pizza>, "
required: true
}
}
}

© Declare the type of pizza props as Pizza interface with PropType help.

When you use PizzaComponent with the wrong data format, TypeScript will detect
and highlight the error appropriately.

Nested Components and Data FlowinVue | 115

Vue performs type validation during run-time, while TypeScript
performs type checking during compile-time. Hence, it is a good
practice to use both Vue’s type checking and TypeScript’s type
checking to ensure your code is bug-free.

Declaring Props Using defineProps() and withDefaults()

As we learned in “setup” on page 63, starting with Vue 3.x, Vue offers <script
setup> syntax for declaring a functional component without the classic Options AP
Within this <script setup> block, you can use defineProps() to declare props, as
shown in Example 4-11.

Example 4-11. Props declaration with defineProps() and <script setup>

<script setup>
import { defineProps } from 'vue'

const props = defineProps({
name: {
type: String,
default: "Hello from the child component."
}
b

</script>

Thanks to TypeScript, we can also declare the accepted type for defineProps() per
component with type validation on compile-time, as shown in Example 4-12.

Example 4-12. Props declaration with defineProps() and TypeScript type

<script setup >
import { defineProps } from

vue
type ChildProps = {
name?: string

}

const props = defineProps<ChildProps>()
</script>

In this case, to declare the default value of the message prop, we need to wrap the
defineProps() call with withDefaults(), as in Example 4-13.

Example 4-13. Props declaration with defineProps() and withDefaults()

import { defineProps, withDefaults } from 'vue

type ChildProps = {

116 | Chapter 4: Interactions Between Components

name?: string

}

const props = withDefaults(defineProps<ChildProps>(), {
name: 'Hello from the child component.'

b

Using defineProps() with TypeScript Type Checking

We can’t combine run-time and compile-time type checking when
using defineProps(). I recommend using defineProps() in the
approach in Example 4-11, for better readability and a combination
of both Vue and TypeScript type checking.

We have learned how to declare props for passing raw data in a Vue component, with
type checking and validation. Next, we will explore how to pass functions as custom
event emitters to a child component.

Communication Between Components with
Custom Events

Vue treats data passed to a child component via props as read-only and raw data.
One-way data flow ensures that the parent component is the only one that can update
the data prop. We often want to update a specific data prop and sync it with the par-
ent component. To do so, we use the emits field in the component’s options to declare
custom events.

Take a to-do list, or ToDoList component, for instance. This ToDoList will use
ToDoItem as its child component to render a list of tasks with the code in
Example 4-14.

Example 4-14. ToDoL ist component

<template>
<ul style="list-style: none;">
<li v-for="task in tasks" :key="task.id">
<ToDoItem :task="task" />
</1i>

</template>
<script lang="ts">
import { defineComponent } from 'vue'
import ToDoItem from './ToDoItem.vue'
import type { Task } from './ToDoItem'

export default defineComponent({
name: 'ToDolist',
components: {

Communication Between Components with Custom Events | 117

ToDoItem
1.
data() {
return {
tasks: [
{ 1d: 1, title: 'Learn Vue', completed: false },
{ 1d: 2, title: 'Learn TypeScript', completed: false },
{ 1d: 3, title: 'Learn Vite', completed: false },
1 as Task[]
}
}
b

</script>

And ToDoItem is a component that receives a task prop and renders an input as a
checkbox for the user to mark the task as completed or not. This input element
receives task.completed as its initial value for the checked attribute. Let’s look at
Example 4-15.

Example 4-15. ToDoItem component

<template>
<div>
<input
type="checkbox"
:checked="task.completed"
/>
{{ task.title }}
</div>
</template>
<script lang="ts">
import { defineComponent, type PropType } from 'vue'

export interface Task {
id: number;
title: string;
completed: boolean;

}

export default defineComponent({
name: 'ToDoItem',
props: {
task: {
type: Object as PropType<Task>,
required: true,
}
1.
b

</script>

118 | Chapter 4: Interactions Between Components

When a user toggles this input checkbox, we want to emit an event called task-
completed-toggle to inform about the task.completed value of the specific task to
the parent component. We can do so by first declaring the event in the emits field of
the component’s options (Example 4-16).

Example 4-16. ToDoItem component with emits

/** ToDoItem.vue */
export default defineComponent({

Y/
emits: ['task-completed-toggle']

b

Then, we create a new method onTaskCompleted to emit the task-completed-
toggle event with the new value of task.completed from the checkbox and the
task.1d as the event’s payload (Example 4-17).

Example 4-17. ToDoItem component with a method to emit task-completed-toggle
event

/** ToDoItem.vue */
export default defineComponent({
Y/
methods: {
onTaskCompleted(event: Event) {
this.Semit("task-completed-toggle", {
...this.task,
completed: (event.target as HTMLInputElement)?.checked,
bs
1
}
b

We use defineComponent to wrap around the component’s options
and create a TypeScript-friendly component. Using define
Component is not required for simple components, but you need to
use it to access other data properties of this inside components’
methods, hooks, or computed properties. Otherwise, TypeScript
will throw an error.

Then we bind the onTaskCompleted method to the input elements change event, as
shown in Example 4-18.

Communication Between Components with Custom Events | 119

Example 4-18. ToDoItem component’s updated template

<div>
<input
type="checkbox"
:checked="task.completed"
@change="onTaskCompleted"
/>
{{ task.title }}
</div>

Now in the parent component <ToDoList> of ToDoItem, we can bind the task-
completed-toggle event to a method using @ notation, with the template in
Example 4-19.

Example 4-19. ToDoL ist component’s updated template

<template>
<ul style="list-style: none;">
<1li v-for="task in tasks" :key="task.id">
<ToDoItem
:task="task"
@task-completed-toggle="onTaskCompleted"
/>
</1i>

</template>

The onTaskCompleted method in the parent component <ToDoList> will receive the
payload of the task-completed-toggle event, and update the task.completed value
of the specific task in the tasks array, as in Example 4-20.

Example 4-20. ToDoL ist component’s script with a method to handle task-completed-
toggle event

Y/
export default {
Y/
methods: {
onTaskCompleted(payload: { id: number; completed: boolean }) {
const index = this.tasks.findIndex(t => t.id === payload.id)

if (index < 0) return

this.tasks[index].completed = payload.completed
}
}
}

120 | Chapter4: Interactions Between Components

These code blocks will render the page shown in Figure 4-4.

OLearn Vue
OLearn TypeScript
OLearn Vite

Figure 4-4. ToDoL 1st component with three items

Vue will update the related data in ToDoList and accordingly render the relevant
ToDoItem component instance. You can toggle the checkbox to mark a to-do item as
completed. Figure 4-5 shows we can detect the component’s event using the Vue
Devtools.

Figure 4-5. Mark a to-do item as completed and debug the event emitted using
Vue Devtools

Defining Custom Events Using defineEmits()

Similar to “Declaring Props Using defineProps() and withDefaults()” on page 116,
within a <script setup> code block, you can use defineEmits() to define custom
events. The defineEmits() function accepts the same input parameter type as emits
accepts:

const emits = defineEmits(['component-event'])

It then returns a function instance that we can use to invoke a specific event from the
component:

emits('component-event', [...arguments])

Defining Custom Events Using defineEmits() | 121

Thus we can write the script section of ToDoItem as in Example 4-21.

Example 4-21. ToDoItem component with the custom event using defineEmits()

<script lang="ts" setup>
Y/
const props = defineProps({
task: {
type: Object as PropType<Task>,
required: true,
}
b;

const emits = defineEmits(['task-completed-toggle'])

const onTaskCompleted = (event: Event) => {
emits("task-completed-toggle", {
id: props.task.1id,
completed: (event.target as HTMLInputElement)?.checked,
bs
}

</script>

Note here we don’t need to use defineComponent since there is no this instance
available within the <script setup> code block.

For better type checking, you can use type-only declaration for the task-completed-
toggle event instead of a single string. Lets improve the emits declaration in
Example 4-21 to use type EmitEvents as shown in Example 4-22.

Example 4-22. Custom event using defineEmits() and type-only declaration

// Declare the emit type
type EmitEvents = {

(e: 'task-completed-toggle', task: Task): void;
}

const emits = defineEmits<EmitEvents>()

This approach helps ensure you bind the correct method to the declared event. As
seen for the task-complete-toggle event, any event declaration should follow the
same pattern:

(e: 'component-event', [...arguments]): void

In the previous syntax, e is the event’s name, and arguments are all the inputs passed
to the event emitter. In the case of the task-completed-toggle event, its emitter’s
argument is task of type Task.

122 | Chapter4: Interactions Between Components

emits is a powerful feature that allows you to enable two-way communication
between a parent and a child component without breaking the data flow mechanism
of Vue. However, props and emits are only beneficial when you want direct data
communication.

You must use a different approach to pass data from a component to its grandchild or
descendant. In the next section, we will see how to use the provide and inject APIs
to pass data from a parent component to its child or grandchild component.

Communicate Between Components with
provide/inject Pattern

To establish data communication between an ancestor component and its descend-
ants, the provide/inject API is a reasonable option. The provide field passes data
from the ancestor, while inject ensures that Vue injects the provided data into any
target descendant.

Using provide to Pass Data

The component’s option field provide accepts two formats: a data object or a
function.

provide can be an object containing data to inject, with each property representing a
(key, value) data type. In the following example, ProductList provides a data value,
selectedIds, with the value [1] to all its descendants (Example 4-23).

Example 4-23. Passing selectedIds using provide in ProductList component

export default {
name: 'ProductList',

Y/
provide: {
selectedIds: [1]
1,
}

Another format type for provide is a function that returns an object containing the
data available to inject for descendants. A benefit of this format type is we can access
the this instance and map dynamic data or a component method to the relevant
fields of the return object. From Example 4-23, we can rewrite the provide field as a
function as shown in Example 4-24.

Communicate Between Components with provide/inject Pattem | 123

Example 4-24. Passing selectedIds using provide in ProductList component as a
function

export default {
Y72
provide() {
return {
selectedIds: [1]
}
1.
/).
}

</script>

Unlike props, you can pass a function and have the target descend-
ant trigger it using the provide field. Doing so enables sending data
back up to the parent component. However, Vue considers this
approach an anti-pattern, and you should use it cautiously.

At this point, our ProductList passes some data values to its descendant using
provide. Next, we must inject the provided values to operate within a descendant.

Using inject to Receive Data

Like props, the inject field can accept an array of strings, each representing the pro-
vided data key (inject: [selectedId]) or an object.

When using inject as an object field, each of its properties is an object, with the key
presenting the local data key used within the component and the following
properties:
{
from?: string;
default: any
}
Here, from is optional if the property key is the same as the provided key from the
ancestor. Take Example 4-23 with the selectedIds as the data provided by Product
List to its descendants, for instance. We can compute a ProductComp that receives
the provided data, selectedlds, from ProductList and rename it to current
SelectedIds to use locally, as shown in Example 4-25.

Example 4-25. Injecting provided data in ProductComp

<script lang='ts'>
export default {
/)
inject: {
currentSelectedIds: {

124 | Chapter 4: Interactions Between Components

from: 'selectedIds',
default: []
1
1,
}

</script>

In this code, Vue will take the value of injected selectedIds and assign it to a local
data field, currentSelectedIds, or use its default value [] if there is no injected
value.

Within the Components section of the Vue tab in the browser’s Developer Tools,
when selecting the ProductComp from the component tree (the left-side panel), you
can debug the indication of the renaming for the injected data (the right-side panel),
as shown in Figure 4-6.

Figure 4-6. Debug the provided and injected data using Vue Devtools

The equivalent hooks in Composition API for provide/inject are
provide() and inject(), respectively.

Now we understand how to use provide and inject to pass data between compo-
nents efficiently without props drilling. Let’s explore how we can render a specific
content section of an element to another location in the DOM with the <Teleport>
component.

Teleport API

Due to styling constraints, we often need to implement a component that contains
elements that Vue should render in a different location in the actual DOM for full
visual effect. In such cases, we usually need to “teleport” those elements to the desired
place by developing a complex solution, resulting in lousy performance impact, time

Teleport APl | 125

consumption, etc. To solve this “teleport” challenge, Vue offers the <Teleport>
component.

The <Teleport> component accepts a prop to, which indicates the target container,
whether an element’s query selector or the desired HTML element. Suppose we have
a House component that will have a section of Sky and clouds that needs the Vue
engine to teleport it to a designated #sky DOM element, as in Example 4-26.

Example 4-26. House component with Teleport

<template>
<div>
This is a house
</div>
<Teleport to="#sky">
<div>Sky and clouds</div>
</Teleport>
</template>

In our App.vue, we add a section element with the target id sky above the House
component, as in Example 4-27.

Example 4-27. Template of App. vue with House component

<template>
<section id="sky" />
<section class="wrapper">
<House />
</section>
</template>

Figure 4-7 shows the code outputs.

Figure 4-7. Actual display order when using the Teleport component

When you inspect the DOM tree using the Elements tab of the browser’s Developer
Tools, “Sky and clouds” appears as nested within <section id="sky"> instead
(Figure 4-8).

126 | Chapter 4: Interactions Between Components

Figure 4-8. Actual DOM tree when using the Teleport component

You can also temporarily disable moving the content inside a <Teleport> component
instance with its Boolean prop disabled. This component is handy when you want to
keep the DOM tree structure, and Vue should move only the desired content to the
target location when needed. An everyday use case for Teleport is a modal, which we
will implement next.

Wrapping Both Sections Under a Parent

The destination component for teleporting must exist in the DOM
before mounting <Teleport>. In Example 4-27, if you wrap both
instances of section under a main element, the <Teleport> com-
ponent will not work as expected. See “Rendering Problem Using
Teleport” on page 134 for more details.

Implementing a Modal with Teleport and the <dialog> Element

A modal is a dialog window that appears on top of a screen and blocks the user’s
interaction with the main page. The user must interact with the modal to dismiss it
and then returns to the main page.

A modal is very handy in displaying essential notifications that require the user’s full
attention and should appear only once.

Let’s design a basic modal. Similar to a dialog, a modal should contain the following
elements (Figure 4-9):

o A backdrop that covers the entire screen where the modal appears on top and
blocks the user’s interactions with the current page.

« A modal window that contains the modal’s content, including a header with a
title and a close button, a main content section, and a footer section with a
default close button. These three sections should be customizable using slots.

Teleport APl | 127

Figure 4-9. Design of a basic modal

Based on the preceding design, we implement a Modal component template using the
<dialog> HTML element in Example 4-28.

Example 4-28. Modal component

<template>
<dialog :open="open">
<header>
<slot name="m-header"> @
<h2>{{ title }}</h2>
<button>X</button>
</slot>
</header>
<main>
<slot name="m-main" /> (2]
</main>
<footer>
<slot name="n-footer"> ©
<button>Close</button>
</slot>
</footer>
</dialog>
</template>

In the preceding code, we use three slot sections to allow the user to customize:
©® The modal’s header (m-header)

® The main content (m-main)

128 | Chapter 4: Interactions Between Components

©® The modal’s footer (m-footer)

We also bind the <dialog> element’s open attribute to a local data prop open for con-
trolling the modal’s visibility (visible/hidden). In addition, we render the title prop
as the modal’s default title. Now, let’s implement the Modal components options,
which receive two props: open and title as in Example 4-29.

Example 4-29. Adding props to Modal component

<script lang="ts">
import { defineComponent } from 'vue'

export default defineComponent({
name: 'Modal',
props: {
open: {
type: Boolean,
default: false,
1
title: {
type: String,
default: 'Dialog’,
1
1.
b

</script>

When a user clicks on the modal’s close button or the “X” button on the header, it
should close itself. Since we control the visibility of the modal using the open prop,
we need to emit a closeDialog event with the new value of open from the Modal
component to the parent. Let’s declare emits and a close method that emits the tar-
get event as in Example 4-30.

Example 4-30. Declaring the event closeDialog for Modal to emit

<script lang="ts">
/** Modal.vue */
import { defineComponent } from 'vue'

export default defineComponent({
name: 'Modal',
Y/
emits: ["closeDialog"], (1]
methods: {
close() { (2]
this.Semit("closeDialog", false);
1,
1.
b

</script>

Teleport APl | 129

©® emits with one event, closeDialog

® close method that emits the closeDialog event with the new value of open as
false

Then we bind it to the relevant action elements in the <dialog> element using @ nota-
tion, as shown in Example 4-31.

Example 4-31. Binding event listener on click events

<template>
<dialog :open="open" >
<header>
<slot name="m-header" >
<h2>{{ title }}</h2>
<button @click="close" >X</button> "
</slot>
</header>
<main>
<slot name="m-main" />
</main>
<footer>
<slot name="m-footer" >
<button @click="close" >Close</button> €)
</slot>
</footer>
</dialog>
</template>

@ Q@click event handler for the “X” button on the header

® @click event handler for the default close button on the footer

Next, we need to wrap the dialog element with a <Teleport> component to move it
outside the parent components DOM tree. We also pass the to prop to the
<Teleport> component to specify the target location: an HTML element with an id,
modal. Finally, we bind the disabled prop to the component’s open value to ensure
Vue moves only the modal component content to the desired location when visible
(Example 4-32).

Example 4-32. Using <Teleport> component

<template>
<teleport
to="#modal" @
:disabled=""!open" €)
>
<dialog ref="dialog" :open="open" >
<header>

130 | Chapter4: Interactions Between Components

<slot name="m-header">
<h2>{{ title }}</h2>
<button @click="close" >X</button>
</slot>
</header>
<main>
<slot name="m-main" />
</main>
<footer>
<slot name="m-footer">
<button @click="close" >Close</button>
</slot>
</footer>
</dialog>
</teleport>
</template>

O <Teleport>component
©® to prop with the target location with id selector modal

© disabled prop with the condition when component’s open value is falsy

Now let’s try out our Modal component in a WithModalComponent by adding the fol-
lowing code in Example 4-33 to the WithModalComponent.

Example 4-33. Using modal component in WithModalComponent

<template>
<h2>With Modal component</h2>
<button @click="openModal = true">Open modal</button>
<Modal :open="openModal" title="Hello World" @closeDialog="toggleModal"/>
</template>
<script lang="ts">
import { defineComponent } from "vue";
import Modal from "./Modal.vue";

export default defineComponent({
name: "WithModalComponent",
components: {
Modal,
1.
data() {
return {
openModal: false,
};
1
methods: {
toggleModal(newValue: boolean) {
this.openModal = newValue;
1
1
b

</script>

Teleport APl | 131

Finally, add a <div> element with id modal to the body element in the index.html file:

<body>

<div id="app"></div>

<div id="modal"></div> (1)

<script type="module" src="/src/main.ts"></script>
</body>

@ div element with id modal

By doing so, Vue renders the Modal component’s content to this div with id modal
whenever the open prop is set to true (Figure 4-10).

Figure 4-10. Modal component rendered to the div with id modal when visible

Figure 4-11 shows how it looks on screen:

Figure 4-11. Output of the WithModalComponent when modal is visible

And when the open prop is false, the div with id modal is empty (Figure 4-12), and
the modal is invisible on screen (Figure 4-13).

Figure 4-12. Modal component not rendered to the div with id modal when hidden

Figure 4-13. Modal component not visible when hidden

At this point, you have a working modal component. However, the visual appearance
of the modal isn't exactly as good as we wanted; there should be a dark overlay over

132 | Chapter4: Interactions Between Components

the main page content when the modal is visible. Let’s fix this issue using CSS stylings
for : :backdrop selector in the <style> section of the modal element:
<style scoped>
dialog

background-color: rgba(0, 0, 0, 0.5);
}

</style>
However, this won’t change the appearance of the modal’s backdrop. This behavior is
because the browser applies the ::backdrop CSS selector rules to the dialog only
when we open the dialog using dialog.showModal() method, and not by changing
the open attribute. To fix this issue, we need to perform the following modifications
in our Modal component:

+ Add a direct reference to the <dialog> element by assigning a “dialog” value to
the ref attribute:

<dialog :open="open" ref="dialog">
<l--ii.-->

</dialog>

o Trigger $refs.dialog.showModal() or $refs.dialog.close() on the dialog
element whenever the open prop changes respectively with watch:

watch: {
open(newValue) {
const element = this.Srefs.dialog as HTMLDialogElement;
if (newvalue) {
element.showModal();
} else {
element.close();
}
1,
1

« Remove the original binding for the open attribute of the <dialog> element:

<dialog ref="dialog">
<l--..-->

</dialog>
« Remove the use of the disabled attribute in the <teleport> component:

<teleport to="#modal">

<l--...-->

</teleport>

When opening the modal using the built-in showModal() method, the browser will
add a ::backdrop pseudo-element to the actual <dialog> element in the DOM, and
dynamically moving the element content to the target location will disable this func-
tionality, leaving the modal without the desired backdrop.

Teleport APl | 133

We also reposition the modal to the center of the page and on top of other elements
by adding the following CSS rules to the dialog selector:

dialog {
position: fixed;
z-index: 999;
inset-block-start: 30%;
inset-inline-start: 50%;
width: 300px;
margin-inline-start: -150px;

}

The output will be as shown in Figure 4-14 when the modal is visible.

Figure 4-14. Modal component with backdrop and stylings

We have learned how to implement a reusable Modal component using Teleport and
explored different use cases with each of the built-in <dialog> element features. We
also learned how to use the : :backdrop CSS selector to style the modal’s backdrop.

As you have noticed, we set the target location div for the modal to be a direct child
of body, outside of the Vue app entry element <div id="app">. What happens if we
want to move the modal’s target div to within the entry component App.vue of the
Vue application? Let’s find out in the next section.

Rendering Problem Using Teleport

To understand the problem with using Teleport to render the modal inside a child
component of the App.vue component, let’s first move the <div id="modal"></div>
from index.html to App.vue, after the WithModalComponent instance:

<template>
<section class="wrapper">
<WithModalComponent />
</section>
<div id="modal"></div>
</template>

134 | Chapter4: Interactions Between Components

After running your application, you can see that the browser doesn't render the
modal despite how often you click on the Open modal button. And the console shows
the following error:

Figure 4-15. Console error message when rendering modal inside App. vue

Due to the Vue rendering order mechanism, the parent waits for the children to ren-
der before rendering itself. The children render in the order of appearance in the
parent’s template section. In this scenario, the WithModalComponent renders first.
Thus Vue renders the <dialog> element and starts moving the component’s content
to the target location before rendering the ParentComponent. However, since the
ParentComponent is still waiting for WithModalComponent to finish its rendering, the
<div id="modal"> element doesn’t yet exist on the DOM. As a result, Vue can’t locate
the target location and perform the right move, and it can’t render the <dialog> ele-
ment inside the <div id="modal"> element, hence the error.

A workaround to bypass this limitation is to put the target element
<div id="modal"> to appear before WithModalComponent:
<template>
<div id="modal"></div>
<section class="wrapper"s>
<WithModalComponent />
</section>
</template>
This solution ensures the target div is available before Vue renders the Modal element
and moves the content. Another approach is to use the disabled attribute to post-
pone the content moving process for Modal during rendering until the user clicks on
the Open modal button. Both options have pros and cons, and you should choose the
one that best suits your needs.

The most common solution is to insert the target element as a direct child of the body
element and isolate it from the Vue rendering context.

A significant benefit of using <Teleport> is achieving the maximum visual display
effect (such as fullscreen mode, modal, sidebar, etc.) while maintaining the code hier-
archy structure, component isolation, and readability.

Teleport APl | 135

Summary

This chapter explored the concept of different approaches in components’ communi-
cation using the built-in Vue features such as props, emits, and provide/inject. We
learned how to use these features to pass data and events between components while
keeping Vue’s data flow mechanism intact. We also learned how to use Teleport API
to render an element outside the parent component’s DOM tree while keeping its
appearance order in the parent component’s <template>. <Teleport> is beneficial for
building components that require displaying with alignment to the main page ele-
ment, such as popups, dialogs, modals, etc.

In the next chapter, we will explore more on Composition API and how to use it to
compose Vue components together.

136 | Chapter4: Interactions Between Components

CHAPTER 5
Composition API

In the previous chapter, you learned how to compose Vue components using the clas-
sic Options API. Despite it being the most common API for composing Vue compo-
nents since Vue 2, using Options API can lead to unnecessary code complexity,
unreadability for large component code, and logic reusability between them. For such
use cases, this chapter introduces an alternative approach for composing Vue compo-
nents, the Composition API.

In this chapter, we will explore the different composition hooks to create a functional
stateful element in Vue. We also will learn how to combine Options API and Compo-
sition API for better reactive control and to compose our own reusable composable
for our application.

Setting Up Components with Composition API

Composing components using the Options API is a common practice in Vue. How-
ever, in many cases, we want to reuse part of the component logic without worrying
about the overlapping data and methods like in mixins', or a component that is more
readable and organized. Composition API can be helpful in such scenarios.

Introduced in Vue 3.0, Composition API provides an alternative way to compose
stateful and reactive components with the help of the setup() hook (“setup” on page
63) or <script setup> tag. The setup() hook is part of the components options
object and runs once before initializing and creating the component instance (before
beforeCreate() hook).

1 When you use the mixin, you are writing a new component’s configurations.

137

You can only use Composition API functions or composables (“Creating Your Reusa-
ble Composables” on page 154) within this hook or its equivalent syntax <script
setup> tag. This combination creates a stateful functional component and provides
an excellent place to define the component’s reactive state and methods and initialize
other lifecycle hooks (see “Using the Lifecycle Hooks” on page 146) with more
straightforward code readability.

Let’s explore the power of Composition API, starting with ref() and reactive()
functions to handle your component’s reactive data.

Handling Data with ref() and reactive()

In Chapter 2, you learned about the data() function property in the Options API for
initializing the component’s data (“Creating Local State with Data Properties” on page
22). All the data properties in the returned object from data() are reactive, meaning
the Vue engine will automatically watch for changes on each declared data property.
However, this default functionality may cause overhead in your component when you
have many data properties, most of which are static. In such cases, the Vue engine still
enables watchers for these static values, which is unnecessary. To limit the number of
excessive data watchers and to have more control over which data properties to
observe, Vue introduced the ref() and reactive() functions in the Composition
APL

Using ref()

ref() is a function that accepts a single argument and returns a reactive object with
that argument as its initial value. We call this returned object the ref object:

import { ref } from 'vue'

export default {
setup() {
const message = ref("Hello World")
return { message }
}
}

Or in <script setup>:

<script setup>
import { ref } from 'vue'

const message = ref("Hello World")

</script>
We then can access the return object’s current value through its single value property
within the script section. For example, the code in Example 5-1 creates a reactive
object with the initial value of 0.

138 | Chapter5: Composition API

Example 5-1. Using ref() to create a reactive message with an initial value of
“Hello World”

import { ref } from 'vue'
const message = ref("Hello World")

console.log(message.value) //Hello World

If you use Options API with setup() hook, you can access message
in other part of component’s without .value, ie., message is
sufficient.

However, in the template tag section, you can retrieve its value directly without the
value property. For example, the code in Example 5-2 will print the same message as
Example 5-1, but to the browser.

Example 5-2. Accessing message value in the template section

<template>

<div>{{ message }}</div>
</template>
<script lang="ts" setup>
import { ref } from 'vue'

const message = ref("Hello World")
</script>

The ref() function infers types for the return object from the ini-
tial value passed. If you explicitly want to define the type of the
return object, you can use the TypeScript syntax ref<type>(), such
as ref<string>().

Since the ref object is reactive and mutable, we can change its value by assigning a
new value to its value property. The Vue engine then will trigger the relevant watch-
ers and update the component.

In Example 5-3, we will re-create the MyMessageComponent (from Example 3-3 with
Options API), which accepts input from the user and changes the message displayed.

Example 5-3. Using ref() to create a reactive MyMessageComponent

<template>
<div>
<h2 class="heading">{{ message }}</h2>

Handling Data with ref() and reactive() | 139

<input type="text" v-model="message" />
</div>
</template>
<script lang="ts" setup>
import { ref } from 'vue'

const message = ref("Welcome to Vue 3!")
</script>

When we change the input field’s value, the browser will show the updated message
value accordingly, as shown in Figure 5-1.

Figure 5-1. The value displayed changes when we change the input field’s value

In the Vue tab of the browser’s Developer Tools, we can see ref object message listed
under the setup section, with the indication Ref (Figure 5-2).

Figure 5-2. The message ref object is listed under the setup section

If we add another static data title to the component (Example 5-4), the Vue tab will
show the title data property without the indication (Figure 5-3).

Example 5-4. Adding static title to MyMessageComponent

<template>
<div>
<h1>{{ title }}</h1>
<h2 class="heading">{{ message }}</h2>
<input type="text" v-model="message" />
</div>
</template>
<script lang="ts" setup>
import { ref } from 'vue'

const title = "My Message Component"
const message = ref("Welcome to Vue 3!")
</script>

140 | Chapter5: Composition API

Figure 5-3. The title data property is listed without the indication

The previous code (Example 5-4) is equivalent to Example 5-5 with setup() hook.

Example 5-5. Using setup() hook to create a reactive MyMessageComponent

<template>
<div>
<h2 class="heading">{{ message }}</h2>
<input type="text" v-model="message" />
</div>
</template>
<script lang="ts">
import { ref } from

vue
export default {
setup() {
const message = ref("Welcome to Vue 3!")
return {
message
}
}
}

</script>

You can use the ref() function to create a reactive object for any primitive type (such
as string, number, boolean, null, undefined, etc.) and any object type. However, for
the object type such as array and object, the ref() returns an intensely reactive
object, meaning both the ref object and its nested properties are mutable, as seen in
Example 5-6.

Example 5-6. Using ref() to create a deeply reactive object

import { ref } from 'vue
const user = ref({
name: "Maya",
age: 20
b
user.value.name = "Rachel"

user.value = {
name: "Samuel",

Handling Data with ref() and reactive() | 141

age: 20
}

console.log(user.value) // { name: "Samuel", age: 20 }

In Example 5-6, we can replace the property name of user and the entire user object
with a new value. We consider this case a bad practice in Vue, which can lead to per-
formance issues for large data structures, and unexpected behaviors. To avoid falling
into such a situation, I would recommend that you use the shallowRef() and
reactive() functions instead, depending on your use case:

« If you want to create a reactive object-type data and replace it later on with new
value, use shallowRef(). A good example is integrating the component with
asynchronous data fetching with the help of lifecycle composition hooks, as seen
in Example 5-7.

« If you want to create a reactive object-type data and update its properties only, use
reactive(), which we will cover in the next section.

Example 5-7. Using shallowRef() to manage external data fetching

<script lang="ts" setup>
import { shallowRef } from "vue";

type User = {
name: string;
bio: string;
avatar_url: string;
twitter_username: string;
blog: string;

b

const user = shallowRef<User>({ (1)
name: ""
bio:
avatar_url:
twitter_username:
blog: "",

b;

wn
wn
>

const error = shallowRef<Error | undefined>(); (2

const fetchData = async () => {

try {
const response = await fetch("https://api.github.com/users/mayashavin");

if (response.ok) {
user.value = (await response.json()) as User; 6)

}
} catch (e) {

error.value = e as Error; (4]

142 | Chapter5: Composition AP|

}
};

fetchData();
</script>

© Create a reactive user variable of type User with the initial data using shallow
Ref.

® Create a reactive error variable that can be undefined or of type Error using
shallowRef.

© Replace the value of user with the response’s data, assuming it is of type User.

O Update the value of error when an error occurred.

Using reactive()

The reactive() function is similar to the ref() function, except:

o It accepts object-type data as its argument.

» You can directly access the reactive return object without value and its
properties.

Only the return object’s nested properties are mutable, and trying to modify the
return object’s value directly or using the value property will result in an error:

import { reactive } from 'vue

const user = reactive({
name: "Maya",
age: 20

b

/*
TypeScript error - property 'value' does not exist
on type '{ name: string; age: number; }'
*/
user.value = {
name: "Samuel",
age: 20
}

/*
TypeScript error - cannot reassign a read-only variable
*/
user = {
name: "Samuel",
age: 20

Handling Data with ref() and reactive() | 143

But you can modify user object’s properties, such as name and age:

import { reactive } from 'vue

const user = reactive({
name: "Maya",
age: 20

b

user.name = "Rachel"

user.age = 30

Behind the scenes, ref() triggers reactive().

One important note is that the reactive() function returns a reactive proxy version
of the original passed object. Hence, if we make any change to the reactive return
object, it would be reflected on the original object, and vice versa, as seen in
Example 5-8.

Example 5-8. Modify both the original object and the reactive object

import { reactive } from 'vue'
const defaultUser = {

name: "Maya",

age: 20
}

const user = reactive(defaultUser)

user.name = "Rachel"
user.age = 30

console.log(defaultUser) // { name: "Rachel"”, age: 30 }
defaultUser.name = "Samuel"

console.log(user) // { name: "Samuel”, age: 30 }

In this example, the properties of both defaultValue and user change when user
changes and vice versa. Hence it will be best if you are extra cautious when using the
reactive() function. You should use the spread syntax (..) to create a new object
before passing to the reactive() instead (Example 5-9).

144 | Chapter5: Composition API

Example 5-9. Using reactive() with spread syntax

import { reactive } from 'vue'

const defaultUser = {
name: "Maya",
age: 20

}

const user = reactive({ ...defaultUser })

user.name = "Rachel"
user.age = 30

console.log(defaultUser) // { name: "Maya", age: 20 }
defaultUser.name = "Samuel"

console.log(user) // { name: "Rachel”, age: 30 }

The reactive() function enables profound reactivity conversion
for the initial object. Thus, it can lead to undesired performance
issues for the large data structure. In a scenario where you only
want to observe the root object’s properties and not their descend-
ant, you should use the shallowReactive() function instead.

You also can combine ref() and reactive(), though I don’t recommend it due to its
complexity and the reactivity unwrapping mechanism. If there is a need to create a
reactive object from another reactive object, you should use computed() instead (see

“Using computed()” on page 151).

Table 5-1 summarizes the use cases for ref(), reactive(), shallowRef(), and

shallowReactive().

Table 5-1. Use cases for ref(), reactive(), shallowRef() and shallowReactive() functions

Hook When to use

ref() Primitive data types for general cases or object-type when there is a need for reassigning both
the object and its properties.

shallowRef() Object type only as a placeholder for later reassigning and no property observation.

reactive() For property observation of object-type data, including nested properties.

shallowReactive() For property observation of object-type data, excluding nested properties.

Next, we will look at the lifecycle composition hooks and what they offer.

Handling Data with ref() and reactive()

145

Using the Lifecycle Hooks

In “Component Lifecycle Hooks” on page 61, we learned the component’s lifecycle
hooks and how they look in the classic Vue’s Options API as properties of the compo-
nent’s options object. With Composition API, the lifecycle hooks are separate func-
tions that we need to import from the vue package before using them to execute logic
at specific points in a component lifecycle.

The Composition APT’s lifecycle hooks are similar to the ones in the Options API,
except the syntax now contains the prefix on (for example, mounted becomes
onMounted in Composition API). Table 5-2 shows the mapping from Options API to
Composition API for some lifecycle hooks.

Table 5-2. Lifecycle hooks from Options API to Composition API

Options API Composition API Description

beforeMount() onBeforeMount() (all before the first render of the component.

mounted() onMounted() (all after Vue renders and mounts the component to the DOM.
beforeUpdate() onBeforeUpdate() (all after the component’s update process starts.
updated() onUpdated() (all after Vue renders the updated component to the DOM.
beforeUnmount() onBeforeUnmount() Call before unmounting the component.

unmounted() onUnmounted() (all after Vue removes and destroys the component instance.

You probably noticed here that not all Options API’s lifecycle hooks have an equiva-
lent in Composition API, such as beforeCreate() and created(). Instead, we use
setup() or <script setup> with other Composition API hooks to achieve the same
result and even define the component’s logic in a more organized way.

We use the above hooks to register callbacks that Vue will execute when appropriate
by passing the callback function as its only argument. For example, to register a call-
back to beforeMount() hook, we can do this:

<script setup lang="ts">
import { onBeforeMount } from

vue

onBeforeMount(() => {
console.log('beforeMount triggered"')

b

</script>
Since Vue triggers setup() before creating the component instance, there is no access
to the this instance, both in setup() and in the hooks registered within it. The fol-
lowing code will print out undefined (Figure 5-4) when in use:

146 | Chapter5: Composition API

import { onMounted } from 'vue'
onMounted(() => {
console.log('component instance: ', this)

b

Figure 5-4. Accessing this in the Composition lifecycle hook yields undefined

However, you can access the components DOM instance (like this.$el as in
Options API) by using the ref() hook and ref directive, like how we define
inputRef in this example:

import { ref } from 'vue'
const inputRef = ref(null)
Then bind it to the ref directive in the template:

<template>
<input
ref="inputRef"
v-model="message" type="text" placeholder="Enter your name"
/>
</template>

Finally, we can access the DOM instance in the onMounted() or onUpdated() hook:

import { onUpdated, onMounted } from 'vue'

onMounted(() => {
console.log('DOM instance:

, inputRef.value)

b

onUpdated(() => {
console.log('DOM instance after updated: ', inputRef.value)
b
After mounting the component, inputRef will refer to the input element’s correct
DOM instance. Every time the user changes the input field, Vue will trigger the
onUpdated() hook and update the DOM instance accordingly. Figure 5-5 shows the
console log after mounting and the user typing in the input field.

Using the Lifecycle Hooks | 147

Figure 5-5. Console log after mounting and the user making a change to the input field

Composition APTs lifecycle hooks can be helpful in many cases compared to the
Options APT’s lifecycle hooks, especially when you want to keep your functional com-
ponent’s logic concise and organized. You can also combine the lifecycle hooks with
other Composition API hooks to achieve more complex logic and create your reusa-
ble custom hooks (see “Creating Your Reusable Composables” on page 154). In the
next section, we will look at other significant Composition API hooks, starting with
watch().

Understanding Watchers in Composition API

Like the Options API’s watch(), the Composition API’s watch() hook is used to
observe for changes and invoke the callback in reactive data. watch() accepts three
arguments, as shown in this syntax:
watch(
sources: WatchSource,
cb: (newvalue: T, oldvalue: T, cleanup: (func) => void)) => any,

options?: WatchOptions
): WatchStopHandle

« sources is the reactive data for Vue to observe. It can be a single piece of reactive
data, a getter function that returns reactive data, or an array of those.

o cb is the callback function that Vue will execute when any of the sources
changes. This function accepts two main arguments: newValue and oldValue,
and an optional side effect cleanup function to trigger before the next invoke.

« options are the options for the watch() hook, which is optional and contains the
fields described in Table 5-3.

148 | Chapter5: Composition API

Table 5-3. The watch() options’ fields

Property Description Accepted Default value Required?
type

deep Indicates whether Vue should observe changes in the nested boolean false No
properties of the target data (if any).

immediate Indicates whether to trigger the handler immediately after boolean false No
mounting the component.

flush Indicates the timing order of the handler's execution. By pre,post, pre No
default, Vue triggers the handler before updating the Vue sync
component.

onTrack For debugging when it tracks the reactive data, only in Function undefined No
development mode.

onTrigger Fordebugging when triggering the callback, only in Function undefined No
development mode.

And it returns a WatchStopHandle function that we can use to stop the watcher

anytime.

Let’s look at the UserWatcherComponent component with the same template presen-
ted in Chapter 3’s Example 3-17, where we allow modifying user.name and user.age
based on a default user object. We will rewrite its <script> using Composition API,

as in Example 5-10.

Example 5-10. UserWatcherComponent component using setup() and ref()

<script setup lang='ts'>
import { reactive } from 'vue'

[/

const user = reactive<User>({
name: "John",
age: s

bs

</script>

Then, we add a watcher for the user object, as in Example 5-11.

Example 5-11. Using the watch() hook for watching user data

import { reactive, watch } from 'vue'

watch(user, (newValue, oldvValue) => {
console.log('user changed from: ', oldvalue, ' to: ', newValue)

b

Understanding Watchers in Composition API

149

By default, Vue will trigger the callback function only when the user changes. In the
previous example, because we use reactive() to create user, Vue will automatically
enable deep to watch for its properties. In case you want Vue to only observe a spe-
cific property of user, such as user.name, we can create a getter function that returns
that property and pass it as the sources argument to watch(), as in Example 5-12.

Example 5-12. Using the watch() hook for watching a specific property of user

import { reactive, watch } from 'vue'

watch(
() => user.name,
(newValue, oldvalue) => {
console.log('user.name changed from: ', oldvalue, ' to: ', newValue)

}
)

When you make a change to the user.name, the console log will display the message
shown in Figure 5-6.

user.name changed from: John to: Johnn

user.name changed from: Johnn to: Johnnn

user.name changed from: Johnnn to: Johnnny
>

Figure 5-6. Console log after changing user . name

In case you need to trigger the watcher right after mounting the component, you can
pass { immediate: true } asthe third argument to watch(), as in Example 5-13.

Example 5-13. Using the watch() hook with immediate option

' '

import { reactive, watch } from 'vue
watch(
() => user.name,
(newValue, oldValue) => {
console.log(
'user.name changed from: ',
oldValue,
' to: ',
newValue
)
1

{ immediate: true }

150 | Chapter5: Composition API

The console log will display the change of user.name from undefined to John right
after mounting the component.

You can also pass a sources array of reactive data to watch(), and Vue will trigger the
callback function with two collections of new and old values, each of which corre-
sponds to the reactive data in the same order as the sources array, as shown in
Example 5-14.

Example 5-14. Using the watch() hook with an array of reactive data

import { reactive, watch } from 'vue'

watch(
[() => user.name, () => user.age],
([newName, newAge], [oldName, oldAge]) => {
console. log(

'user changed from: ',
{ name: oldName, age: oldAge },
' to: ',
{ name: newName, age: newAge }

)

The above watcher will be triggered when either user.name or user.age changes and
the console log will display the difference accordingly.

If you want to observe and trigger side action to multiple data
changes, watchEffect() can be a better option. It will track the
reactive dependencies used in the watcher’s function, run the func-
tion immediately right after the component renders, and rerun it
whenever any dependencies change their value. However, you
should be cautious using this API as it can lead to performance
issues if the list of dependencies is extensive and the updating fre-
quency between them is high.

Using the watch() hook is a great way to create a dynamic observation on specific
reactive data or its properties. But if we want to create new reactive data based on the
existing ones, we should use computed(), which we will look at next.

Using computed()

Similar to computed properties, we use computed() to create a reactive and cached
data value derived from other reactive data. Unlike ref() and reactive(),

Using computed() | 151

computed() returns a read-only reference object, meaning we can’t manually reassign
value to it.

Let’s take the reserved message example written in Options API in Example 3-11 and
rewrite it using the computed() hook as in Example 5-15.

Example 5-15. PalindromeCheck component using computed()

<script lang="ts" setup>
import { ref, computed } from 'vue

const message = ref('Hello World")
const reversedMessage = computed<string>(
() => message.value.split('').reverse().join('")

)

</script>

Within the script section, we use the value property of the returned object
(reversedMessage.value) to access its value, like ref() and reactive().

The code in Example 5-16 shows how we create another computed data point to
check if the message is a palindrome based on the reversedMessage.

Example 5-16. Using computed() to create new reactive 1sPalindrome data

<script lang="ts" setup>
import { ref, computed } from 'vue

Y/
const isPalindrome = computed<boolean>(
() => message.value === reversedMessage.value
)
</script>

Notice here we declare the types for reservedMessage and isPalindrome explicitly as
string and boolean to avoid type inference errors. You can now use these computed
data in your template (Example 5-17).

Example 5-17. Using data created from computed() in the template

<template>
<div>
<input v-model="message" placeholder="Enter your message"/>
<p>Reversed message: {{ reversedMessage }}</p>
<p>Is palindrome: {{ isPalindrome }}</p>
</div>
</template>

152 | Chapter5: Composition AP|

This code results in the output shown in Figure 5-7 when the user changes the mes-
sage input.

Figure 5-7. Palindrome check component for the message using computed()

When you open the Vue tab in the browser’s Developer Tools, you can see these com-
puted data values available under the setup section of the PalindromeCheck compo-
nent (Figure 5-8).

Figure 5-8. Computed and reactive data shown in the developer tool for the
PalindromeCheck component

By default, computed() returns a read-only reactive data reference.
Still, you can intentionally declare it as a writable object by passing
an object of { get, set } as the first argument to computed().
This mechanism stays consistent with computed properties in the
Options API. However, I don't recommend using this feature. You
should combine it with ref() or reactive() instead.

We have learned how to use computed() and watch() to achieve the same result as
the classic computed and watch option properties. You can use either of them,
depending on your preference. You also can use these hooks to create your own
hooks, called composables, and reuse them in other components, which we will
explore next.

Using computed() | 153

Creating Your Reusable Composables

One of the most exciting features of Vue 3 is the ability to create reusable and stateful
hooks, called composables,? from the available Composition API functions. We can
divide and compose common logic into readable composables, then use them to
manage specific data state changes in different components. This approach helps sep-
arate the state management logic and the component logic, reducing our components’
complexity.

To start composing, you can create a new TypeScript (. ts) file and export a function
that returns a reactive data object as your composable, as shown in Example 5-18.

Example 5-18. Creating an example composable, useMyComposable

// src/composables/useMyComposable. ts
import { reactive } from 'vue'

export const useMyComposable = () => {
const myComposableData = reactive({
title: 'This is my composable data',

b

return myComposableData

}

In the previous code, we create a new TypeScript file named useMyComposable. ts
under the src/composables folder and export a function called useMyComposable.
The function returns a reactive data object named myComposableData created using
the reactive() function.

You can place the composable file anywhere in your project, but I
recommend putting it under the src/composables folder to keep it
organized. Also, it’s a good practice to name the composable file
with the use prefix, followed by the concise, descriptive name of
the composable.

You can then import and use useMyComposable in your component as shown in
Example 5-19.
Example 5-19. Using the useMyComposable composable in the a Vue component

<script lang="ts" setup>
import { useMyComposable } from '@/composables/useMyComposable'

2 In general, a composable is a custom hook.

154 | Chapter5: Composition AP|

const myComposableData = useMyComposable()
</script>

Now you can access the myComposableData in your component’s template, and other
parts of the component logic, as its local reactive data.

Let’s create a useFetch composable to query data from an external API using the
fetch API, as shown in Example 5-20.

Example 5-20. Create useFetch composable

import { ref, type Ref, type UnwrapRef } from "vue";

type FetchResponse<T> = {
data: Ref<UnwrapRef<T> | null>;
error: Ref<UnwrapRef<Error> | nulls;
loading: Ref<boolean>;

}

export function useFetch<T>(url: string): FetchResponse<T> {
const data = ref<T | null>(null);
const loading = ref<boolean>(false);
const error = ref<Error | null>(null);

const fetchData = async () => { (1)
try {
loading.value = true;
const response = await fetch(url);

if (!response.ok) {
throw new Error(Failed to fetch data for ${url}");
}

data.value = await response.json();
} catch (err) {
error.value = (err as Error).message;
} finally {
loading.value = false;
}
IH

fetchData(); 9

return { (3]
data,
loading,
error,

b

I

Creating Your Reusable Composables | 155

Declare the internal logic for fetching data.

Trigger fetching data during the creation of the component and update the data
automatically.

© Return the declared reactive variables.

You then can reuse useFetch to compose another asynchronous composable, such as
useGiltHubRepos, to query and manage user’s repositories data from the GitHub API
(Example 5-21).

Example 5-21. Create a useGitHubRepos composable

// src/composables/useGitHubRepos.ts
import { useFetch } from '@/composables/useFetch'
import { ref } from 'vue'

type Repo = { /**... */ }

export const useGitHubRepos = (username: string) => {
return useFetch<Repo[]>(
“https://api.github.com/users/${username}/repos"
)5
}

Once done, we can use useGitHubRepos in a GitHubRepos.vue component
(Example 5-22).

Example 5-22. Using useGitHubRepos in a GitHubRepos component

<script lang="ts" setup>
import { useGitHubRepos } from "@/composables/useGitHubRepos";
const { data: repos } = useGitHubRepos("mayashavin");
</script>
<template>
<h2>Repos</h2>

<li v-for="repo in repos" :key="repo.id"> ‘9
<article>
<header>{{ repo.name }}</header>
<p>{{ repo.description }}</p>
</article>
</1i>

</template>

©® Get the data and rename it repos.

©® [terate repos and display each repo’s information.

156 | Chapter5: Composition API

And on the browser, we will see a list of repos displayed after the fetching completes
(Figure 5-9).

Figure 5-9. Retrieve and display a list of repos using useGitHubRepos composable

Mapping Data Between Composables

If you need to re-map any reactive data received from another
composable, use computed() or watch() to preserve the reactivity.
Example 5-23 demonstrates a non-working example of useFetch
inside useGitHubRepos.

Example 5-23. Using useFetch in the wrong way within useGitHubRepos

export const useGitHubRepos = (username: string) => {
const response = useFetch<Repo[]>(

“https://api.github.com/users/${username}/repos"”

)5

return {
repos: response.data,
loading: response.loading,
error: response.error,
1
b

Creating Your Reusable Composables | 157

With composables, you can create your application’s state management logic in a
modular and composable way. You can even build your library of composables to
reuse in other Vue projects, such as theming control, data fetching, payment manage-
ment for a store, etc. An excellent resource for composables is VueUse, where you can
find many helpful, ready-to-use, and tested Vue composition utilities for your needs.

Since all the reactive states get initialized only when using the hook, we can avoid
data overlapping issues like in mixins. Also, testing components have become more
straightforward, whereby you can test each composable used in the element sepa-
rately and keep the component’s logic small and maintainable.

After learning about Composition API and composables, how about creating your
own composables system and using them in your components?

Summary

This chapter explored how to rewrite our components from the Options API to use
Composition API functions such as setup function, reactivity, and lifecycle hooks. We
also learned to create our custom composable based on the existing ones, enhancing
code reusability. Based on this foundation, we now understand the pros and cons of
each API, hence their use cases for better development.

You are ready to move to the next chapter, where you will learn how to incorporate
external data from an API or database resource into your Vue application.

158 | Chapter5: Composition API

https://oreil.ly/pKJmK

CHAPTER 6
Incorporating External Data

The previous chapters prepared you for the essentials of working with components,
including passing data between components and handling data changes and events
within components. You are now ready to use Vue components to incorporate and
represent your application’s data on the screen to your users.

In most cases, an application will not have data available within the application itself.
Instead, we usually request the data from an external server or database, then popu-
late the proper UI with the received data for our application. This chapter covers this
aspect of developing a robust Vue application: how to communicate and handle
external data from an external resource using Axios as the HTTP request tool.

What Is Axios?

For making HTTP requests to external resources, various options are available for
Vue developers, including the built-in fetch method, the classic XMLHttpRequest,
and third-party libraries such as Axios. While the built-in fetch is a good option for
making HTTP requests for fetching data only, Axios, in the long term, provides extra
functionalities that come in handy when working with more complex external
resources’ API handling.

Axios is a JavaScript open source lightweight library for making HTTP requests. Like
fetch, it is a promise-based HTTP client and isomorphic, supporting both node
(server-side) and browser side.

Some significant advantages of using Axios are the ability to intercept and cancel
HTTP requests and its built-in cross-site request forgery protection for the client
side. Another advantage of Axios is that it automatically transforms the response data
to JSON format, giving you a better developer experience in working with the data
than using the built-in fetch.

159

The official website for Axios includes API documentation, installation, and primary
use cases for reference (Figure 6-1).

Figure 6-1. Axios official website

Installing Axios

To add Axios to your Vue project within your project’s root directory, use the follow-
ing command in your terminal:

yarn add axios

Once Axios is installed, you can import the Axios library into your component where
needed with the following code:

import axios from 'axios';

You then can use axios to start querying for your application’s data. Let’s explore how
to combine Axios with lifecycle hooks to load and display data.

Load Data with Lifecycle Hooks and Axios

As you learned in Chapter 3, you can use the beforeCreate, created, and before
Mounted lifecycle hooks to perform side calls such as data fetching. However, in a sce-
nario where you need to load external data and use it within the component and use
Options API, beforeCreate is not an option. Vue ignores any data assignment using
beforeCreate since it hasn't initialized any reactive data yet. Using created and
beforeMounted is a better choice in this case. However, beforeMounted is not

160 | Chapter 6: Incorporating External Data

https://oreil.ly/WxSN3

available in server-side rendering, and if we want to use the Composition API (cov-
ered in Chapter 5), there is no equivalent lifecycle function in Composition API to
the created hook.

A better option for loading external data is to use setup() or <script setup> with
the respective reactive composition functions.

Let’s make an asynchronous GET request to get the public information about my Git-
Hub profile through the URL https://api.github.com/users/mayashavin by using the
axios.get() method, as seen in the following code:

/**UserProfile.vue */

import axios from 'axios';
import { ref } from 'vue';

const user = ref(null);

axios.get('https://api.github.com/users/mayashavin')
.then(response => {
user.value = response.data;

H;
axios.get() returns a promise, which can use the promise chaining method then()
to handle the response data when it resolves. Axios automatically parses the response
data from the HTTP response body into the appropriate JSON format. In this exam-
ple, we assign the received data to the user data property of the component. We can
also rewrite this code to use await/async syntax:

/**UserProfile.vue */

Y72

async function getUser() {
const response = await axios.get(
"https://api.github.com/users/mayashavin'

);

user.value = response.data;
}
getUser();

We also should wrap the code in a try/catch block to handle any errors that may
occur during the request. Hence, our code becomes:

/**UserProfile.vue */
import axios from 'axios';
import { ref } from 'vue';

const user = ref(null);
const error = ref(null);

async function getUser() {

try {
const response = await axios.get('https://api.github.com/users/mayashavin');

Load Data with Lifecycle Hooks and Axios | 161

https://api.github.com/users/mayashavin

user.value = response.data;
} catch (error) {
error.value = error; G’

}
}

getUser();

Add an error data property to store any error received from the request.

Wrap the code in a try/catch block to handle any errors that occur during the
request.

© Assign the error to the error data property, for displaying an error message to
the user in the browser.

GitHub responds to our request with a JSON object containing the primary fields
shown in Example 6-1.

Example 6-1. UserProfile type

type User = {
name: string;
bilo: string;
avatar_url: string;
twitter_username: string;
blog: string;
Y/

b

With this response data, we now have the necessary information to display the user’s
profile on the screen. Lets add the following code to our component’s template
section:

<div class="user-profile" v-if="user">

<div>
<h1>{{ user.name }}</h1>
<p>{{ user.bio }}</p>
<p>Twitter: {{ user.twitter_username }}</p>
<p>Blog: {{ user.blog }}</p>
</div>
</div>

Note here we add v-if="user" to ensure the Vue renders the user profile only when
user is available.

162 | Chapter 6: Incorporating External Data

Finally, as in Example 6-2, we need to add some modifications to our component’s
script section to make the code fully TypeScript compatible, including mapping the
response data to be the User data type before assigning it to the user property, as well
astheerror.

Example 6-2. UserProfile component

<template>
<div class="user-profile" v-if="user">
<l-- ... -->
</div>
</template>

<script lang="ts" setup>
import axios from 'axios';
import { ref } from 'vue';

type User = { /**... %/}

const user = ref<User | null>(null) (1)
const error = ref<Error | null>(null)

async function getUser () {
try {
const response = await axios.get<User>(
"https://api.github.com/users/mayashavin"

)

user.value = await response.data (2]
} catch (err) {
error.value = err as Error ©
}
}

getUser();
</script>

© Add the User type declaration to the user.
® Assign the response data to the user property.

© Cast the error to be Error type before assigning it to the error property.

When the request is successfully resolved, you will see my GitHub profile informa-
tion displayed on the screen, as shown in Figure 6-2.

Load Data with Lifecycle Hooks and Axios | 163

Figure 6-2. Sample output for a successful GitHub profile information request

Similarly, you can also add a section with v-else-if="error" condition to display an
error message to the user when the request fails:

<template>

<div class="user-profile" v-if="user">
<l--,..-->

</div>

<div class="error" v-else-if="error">
{{ error.message }}

</div>

</template>
At this point, you may wonder what happens behind the scenes when we perform an
asynchronous request while the component is in the middle of creation. The compo-
nent’s lifecycle operates synchronously, meaning Vue still proceeds in creating the
component despite the status of the asynchronous request. That brings us to the chal-
lenge of handling different data requests in various components during run-time,
which we will explore next.

164 | Chapter 6: Incorporating External Data

Async Data Requests in Run-Time: the Challenge

Similar to how the JavaScript engine works, Vue also works synchronously. If there is
any asynchronous request along the way, Vue will not wait for the request to complete
before proceeding to the next step. Instead, Vue finishes the component’s creation
process, then returns to handle the asynchronous request when it resolves/rejects
according to the execution order.

Let’s take a step back, add some console logs to the onBeforeMounted, onMounted, and
onUpdated hooks in our component and see the order of execution:

//<script setup>
import { onBeforeMount, onMounted, onUpdated } from "vue";

B

Y720

async function getUser() {
try {
const response = await axios.get<User>(
"https://api.github.com/users/mayashavin'

user.value = response.data;

console.log('User', user.value.name) "
} catch (err) {
error.value = err;
}
}

onBeforeMount(async () => {
console.log('created") €)
getUser();

b

onMounted(() => {

console.log("mounted"); (3]
b

onUpdated(() => {
console.log("updated"); ‘,
b

Log the details of user when finished fetching to the console.
Log the lifecycle state: before mounting

Log the lifecycle state: mounted

© o © ©

Log the lifecycle state: component is updated

Async Data Requests in Run-Time: the Challenge | 165

Looking at the browser’s console log, we see the order displayed as in Figure 6-3.

Figure 6-3. Order of execution with an asynchronous request

Once the asynchronous request is resolved/rejected and there are component data
changes, the Vue renderer will trigger the update process for the component. The
component is not yet with the response data when Vue mounts it to the DOM. Thus,
we still need to handle the component’s loading state before receiving the server’s
data.

To do so, we can add another loading property to the component’s data and disable
the loading state after the request is resolved/rejected, as in Example 6-3.

Example 6-3. UserProfile component with loading state and error state

/).
const loading = ref<boolean>(false); ‘)

async function getUser() {
loading.value = true;

try {
const response = await axios.get<User>(
"https://api.github.com/users/mayashavin"

)

user.value = await response.data
} catch (err) {
error.value = err as Error
} finally {
loading.value = false; (3]
}
}

getUser();
@ Create a reactive loading variable.
©® Set loading to true before fetching the data.

© Set loading to false after the request is resolved/rejected.

166 | Chapter 6: Incorporating External Data

And then add a v-if="1oading" condition to the component’s template section for a
loading message, as in Example 6-4.

Example 6-4. UserProfile component template with loading state and error state

<template>
<div v-if="loading">Loading...</div>
<div class="user-profile" v-else-if="user">
<l--...-->
</div>
<div class="error" v-else-if="error">
{{ error.message }}
</div>
</template>

This code renders a loading message while the asynchronous request is in progress
and displays the user’s profile information when the request resolves or otherwise
sends an error message.

You can also create your reusable wrapper component to handle different states for
components with the asynchronous data request, such as a skeleton placeholder com-
ponent when a list of components is loading (Figure 6-4) or a fetch component (cov-
ered next).

Figure 6-4. Skeleton component for loading state

Creating Your Reusable Fetch Component

Handling states in a Vue component for its asynchronous data request is a common
challenge. The UI for these states usually follows the same pattern: a spinner or load-
ing message for the loading state, an error message, or a more stylish error compo-
nent when a data request rejects. Thus, we can create one common component for
handling such cases, which we call FetchComponent.

Creating Your Reusable Fetch Component | 167

FetchComponent has a template section divided into three main areas using slot and
v-if:

#loading slot for displaying a loading message
The condition for this slot to render is if the component is in the isLoading state.

#error slot for displaying an error message
We also pass the error object as the slot props for customization if needed while
ensuring Vue renders this slot only if error is available.

#tdefault slot for displaying the component’s content, when there is data received
We also pass the data to the slot as props.

We also use a named slot to allow customizing the error and loading the component
instead of the default messages:

<template>
<slot name="loading" v-if="islLoading">
<div class="loadin-message">Loading...</div>
</slot>
<slot :data="data" v-if="data"></slot>
<slot name="error" :error="error" v-if="error">
<div class="error">
<p>Error: {{ error.message }}</p>
</div>
</slot>
</template>

In our script setup section, we need to declare our data type FetchComponentData
for the component to contain the isLoading, error, and data properties of type
generics Object:

const data = ref<Object | undefined>();

const error = ref<Error | undefined>();
const loading = ref<boolean>(false);

The component receives two props: a url for the request URL and a method for the
request method with the default value of GET:

/..

const props = defineProps({
url: {
type: String,
required: true,

1.
method: {
type: String,
default: "GET",
1.
b;
Y/

168 | Chapter 6: Incorporating External Data

Finally, we make the asynchronous request and update the component’s state when
Vue creates the component:

async function fetchData () {
try {
loading.value = true;
const response = await axios(props.url, {
method: props.method,
headers: {
'Content-Type': 'application/json',
1,
H;
data.value = response.data;
} catch (error) {
error.value = error as Error;
} finally {
loading.value = false;
}
I

fetchData();

If you know the types of data in advance, you should use them
instead of any or Object to ensure full TypeScript type check cov-
erage. Don't use any unless there is no other way.

Now we can rewrite Example 6-2 to use the new FetchComponent component as in
Example 6-5.

Example 6-5. UserProfile component using the FetchComponent

<template>
<FetchComponent url="https://api.github.com/users/mayashavin"> (1)
<template #default="defaultProps">
<div class="user-profile"> (3]
<img
:src="(defaultProps.data as User).avatar_url"
alt=""${defaultProps.data.name} Avatar'"

width="200"
/>
<div>
<h1>{{ (defaultProps.data as User).name }}</h1>
<p>{{ (defaultProps.data as User).bio }}</p>
<p>Twitter: {{(defaultProps.data as User).twitter_username }}</p>
<p>Blog: {{ (defaultProps.data as User).blog }}</p>
</div>
</div>
</template>
</FetchComponent>

</template>
<script lang="ts" setup> "

Creating Your Reusable Fetch Component | 169

import FetchComponent from
import type { User } from
</script>

. /FetchComponent.vue";
../types/User.type";

n

© Use the FetchComponent component and pass the url prop as the target URL for
the request (https://api.github.com/users/mayashavin).

® Wrap the main content of the component inside the template for the main slot,
#default. We also bind the props this slot receives to the defaultProps object.
Since defaultProps.data is of Object type, we cast it to User to pass TypeScript
validation.

© Use the defaultProps.data to access the data received from the request and dis-
play it on the UL

O Remove all the related original logic code for fetching.

Here we pass data to this slot from our FetchComponent implementation, which in
our case stands for our original user property. Thus, we replace the occurrences of
user from the previous implementation with defaultProps.data. The output
remains the same.

Implementing FetchComponent with Composition API

You can rewrite the FetchComponent with useFetch() (see
Example 5-20) in setup() function (or <script setup> tag)
instead.

Now you understand how to create a simple FetchComponent to fetch and handle
data request states on the UI for your Vue components. You may want to extend it to
handle more complex data requests, such as POST requests. By isolating the data
request and controlling logic in a single place, you can reduce the complexity and
reuse it in other components more quickly.

Connect Your Application with an External Database

At this point, you can handle external data requests and errors on the UI of your Vue
components. However, fetching data every time Vue creates a component may not be
the best practice, especially if the component’s data is not likely to change frequently.

A perfect illustration is switching between pages in a web application, where we need
to fetch the page’s data only once when loading the view for the first time. In this case,
we can cache the data using the browser’s local storage as an external local database or
using a state management service such as Vuex and Pinia (more in Chapter 9).

170 | Chapter 6: Incorporating External Data

https://api.github.com/users/mayashavin

To use local storage, we can use the built-in browser localStorage API. For example,
to save the user’s GitHub profile data to local storage, we can write:

localStorage.setItem('user', JSON.stringify(user));

Note the browser’s localStorage saves the item as a string, so we need to convert the
object to a string before saving it. When we need it, we can use this code:

const user = JSON.parse(localStorage.getItem('user'));

You can add the previous code to your UserProfile component (Example 6-2) as
follows:

<script lang="ts">
import axios from 'axios';

/..

async function getUser() {

try {
const user = JSON.parse(localStorage.getItem('user'));
if (user) return user.value = user;

const response = await axios.get<User>(
'https://api.github.com/users/mayashavin'

);

user.value = response.data;

localStorage.setItem('user', JSON.stringify(user.value));
} catch (error) {

error.value = error as Error;

}
}

getUser();

</script>
It will trigger the asynchronous call only when loading the page for the first time.
When the page is loaded again, if we have saved the data successfully, it will load
directly from local storage.

Using localStorage in Real-World Application

I don’t recommend this approach for a real-world application. It
has several limitations, such as your browser will reset any local
storage data for private/incognito sessions, or users can disable the
use of local stage on their end. The better approach is to use state
management tools like Vuex or Pinia (see Chapter 9).

Connect Your Application with an External Database | 171

Summary

This chapter introduced techniques for handling asynchronous data in a Vue compo-
nent, with the help of the Axios library and Composition API. We learned how to
create a reusable component to fetch and handle data request states on the UI for
your Vue applications while keeping the code clean and readable. We also explored
connecting your application to an external database service such as local storage.

The next chapter will introduce more advanced rendering concepts of Vue, including
using functional components, registering custom plugins globally in your Vue appli-
cation, and using dynamic rendering to compose layouts conditionally and
dynamically.

172 | Chapter 6: Incorporating External Data

CHAPTER 7

Advanced Rendering, Dynamic
Components, and Plugin Composition

In the previous chapters, you learned how Vue works, how to compose components
with Options API and Composition API, and how to incorporate data from an exter-
nal resource into your Vue application using Axios.

This chapter will introduce a more advanced aspect of rendering in Vue. We will
explore how to compute functional components using the rendering function and
JSX and how to dynamically and conditionally render elements using Vue’s compo-
nent tag. We will also learn how to register a custom plugin for use within the
application.

The Render Function and JSX

With the Vue compiler API, Vue processes and compiles all the HTML templates
used for a Vue component into the Virtual DOM upon rendering. When data of a
Vue component are updated, Vue triggers the internal render function to send the lat-
est value to the Virtual DOM.

Using template is the most common approach to creating a component. However,
we need to bypass the HTML template parser process in specific scenarios, such as
optimizing performance, working on a server-side rendering application, or working
on a dynamic component library. By returning the rendered virtual node from the
Virtual DOM directly and skipping the template compiling process, render() is the
solution for such cases.

173

Using the Render Function

In Vue 2, the render () function property receives a createElement callback parame-
ter. It returns a valid VNode' by triggering createElement with the appropriate argu-
ments. We usually denote createElement as an h function.?

Example 7-1 illustrates creating a component in Vue 2 syntax.

Example 7-1. Use the render function in Vue 2

const App = {
render(h) {
return h(
'div',
{ id: 'test-id' },
'This is a render function test with Vue'
)
}
}

This code equals writing the following template code:

const App = {
template: “<div id='test-i1d'>This i1s a render function test with Vue</div>"

}

In Vue 3, the syntax of render changes significantly. It no longer accepts an h func-
tion as a parameter. Instead, the vue package exposes a global function, h, for creating
VNodes. Hence, we can rewrite the code in Example 7-1 to that shown in
Example 7-2.

Example 7-2. Use the render function in Vue 3

import { createApp, h } from 'vue

const App = {
render() {
return h(
'div',
{ id: 'test-id' },
'This is a render function test with Vue'
)
}
}

The output stays the same.

1 Virtual node

2 Stands for hypescript, meaning using JavaScript code to create HTML

174 | Chapter7: Advanced Rendering, Dynamic Components, and Plugin Composition

Supporting Multi-Root Nodes with the Render Function

Since Vue 3 supports multiple root nodes for a component tem-
plate, render() can return an array of VNodes, each of which will
be injected into the DOM at the same level as the others.

Using the h Function to Create a VNode

Vue designs the h function to be very flexible with three input parameters in different
types, as shown in Table 7-1.

Table 7-1. Different parameters for the h function

Parameter Required? Acceptable data Description

type
Component Yes String, object, or It accepts a string as a text or HTML tag element, a component function,
function or an options object.
props No Object This object contains all components’ props, attributes, and events
received from its parent, similar to how we write in the template.
Nested No String, array, or This parameter includes a list of VNodes, or a string for a text-only
children object component, or an object with different slots (see Chapter 3) as

children for the component.

The syntax of the h function is as follows:
h(component, { /*props*/ }, children)

For example, we want to create a component that uses a div tag as a root element and
has a 1d, an inline border style, and one input child element. We can call h as in this
code:

const inputElem = h(
"input’',

placeholder: 'Enter some text',
type: 'text',
id: 'text-input'

b

const comp = h(
"div',
{
id: 'my-test-comp',
style: { border: 'ipx solid blue' }
1
inputElem

)

The Render Functionand JSX | 175

In the actual DOM, the output of the component will be:

<div id="my-test-comp" style="border: 1px solid blue;">

Text input

<input placeholder="Enter some text" type="text" id="text-input">
</div>

You can play with the following complete working code and experiment with differ-
ent configurations for the h function:

import { createApp, h } from 'vue'

const inputElem = h(
"input’',
{
placeholder: 'Enter some text',
type: 'text',
id: 'text-input'

b

const comp = h(
"div',
{
id: 'my-test-comp',
style: { border: '1px solid blue' }

1,
inputElem

)

const App = {
render() {
return comp
}
}

const app = createApp(App)

app.mount("#app")

Writing JavaScript XML in the Render Function

JavaScript XML (JSX) is a JavaScript extension introduced by the React framework to
allow developers to write HTML code within JavaScript. HTML and JavaScript code
in a JSX format looks like this:

const JSXComp = <div>This is a JSX component</div>

The previous code outputs a component that renders a div tag with the text “This is a
JSX component.” All that’s left to do is to return this component in the render func-
tion directly:

import { createApp, h } from 'vue'

const JSXComp = <div>This is a JSX component</div>

const App = {

176 | Chapter7: Advanced Rendering, Dynamic Components, and Plugin Composition

render() {
return JSXComp
}
}

const app = createApp(App)

app.mount("#app")

Vue 3.0 supports writing with JSX out of the box. The syntax for JSX is different from
the Vue template. To bind a dynamic data, we use single curly braces {}, as in
Example 7-3.

Example 7-3. Writing a simple Vue component using JSX

' '

import { createApp, h } from 'vue

const name = 'JSX'
const JSXComp = <div>This is a {name} component</div>

const App = {
render() {
return JSXComp
}

}

const app = createApp(App)

app.mount("#app")

We bind dynamic data with the same approach. There is no need to wrap the expres-
sion with ''. The following example shows how we attach a value to the id attribute
of the div:

/**“. */

const id = 'jsx-comp'

const JSXComp = <div id={id}>This is a {name} component</div>
JEE L %/

However, unlike JSX in React, we don’t transform attributes such as class to class
Name with Vue. Instead, we keep these attributes’ original syntax. The same goes for
elements’ event listeners (onclick instead of onClick in React, etc.).

You can also register a JSX component as part of components like other Vue compo-
nents written in Options API. It can be handy in combining with the render function
in writing dynamic components and offers better readability in many cases.

Next, we will discuss how we can write a functional component.

The Render Functionand JSX | 177

Functional Component

A functional component is a stateless component and bypasses the typical component
lifecycle. Unlike a standard component, which works with Options AP]I, a functional
component is a function, denoting the render function for that component.

Since it is a stateless component, there is no access to the this instance. Instead, Vue
exposes the components external props and context as function arguments. The
functional component must return a virtual node instance created using the global
function h() from the vue package. Hence, the syntax will be:

import { h } from 'vue

export function MyFunctionComp(props, context) {
return h(/* render function argument */)
}
context exposes the component’s context properties, including emits for the compo-
nent’s event emitters, attrs for passed attributes to the component from the parent,
and slots containing the component’s nested elements.

For example, the functional component myHeading displays any text passed to it
within a heading element. We give the heading’s level as level props. If we want to
display the text “Hello World” as heading level 2 (<h2>), we use myHeading as follows:

<my-heading level="2">Hello World</my-heading>
And the output should be:
<h2>Hello World</h2>

To do this, we use the render function h from the vue package and perform the code
shown in Example 7-4.

Example 7-4. Using the h function to create a custom heading component

import { h } from 'vue';

export function MyHeading(props, context) {
const heading = "h${props.level}"

return h(heading, context.$attrs, context.S$slots);

}

Vue will skip the template render process for the functional component and add the
virtual node declaration directly to its renderer pipeline. This mechanism results in
no nested slots or attributes available for functional components.

178 | Chapter7: Advanced Rendering, Dynamic Components, and Plugin Composition

Defining Props and Emits for Functional Component

You can explicitly define the functional component’s acceptable props and emits by
following the syntax:

MyFunctionComp.props
MyFunctionComp.emits

['prop-one', 'prop-two'l]
['event-one', 'event-two']

Without defining, context.props will have the same value as context.attrs, con-
taining all the attributes passed to the component.

A functional component is powerful when you want to control how to render your
component programmatically, especially for component library authors who need to
provide low-level flexibility for their components for users’ requirements.

Vue 3 offers an additional way to write components using <script
setup>. This is relevant only if you write components in SFC for-
mat, discussed in “setup” on page 63.

Next, we will explore how to add external functionality to a Vue application using
plugins.

Adding Custom Functionality Globally with Vue Plugins

We use plugins to add third-party libraries or extra custom functionality for global
usage in our Vue application. A Vue plugin is an object that exposes a single method,
install(), containing the logic code, and it is responsible for installing the plugin
itself. Here is an example plugin:

/* plugins/samplePlugin.ts */
import type { App } from 'vue'

export default {
install(app: App<Element>, options: Object) {
// Installation logic
}
}
In this code, we define our sample plugin code within the samplePlugin file, located
in the plugins directory. install() receives two argument: an app instance, and

some options as the plugin’s configurations.

For example, let's compose a truncate plugin that will add a new global function
property, $truncate. $truncate will return a truncated string if its length is over
options.limit characters, as shown in Example 7-5.

Adding Custom Functionality Globally with Vue Plugins | 179

Example 7-5. Compose a truncate plugin

/* plugins/truncate.ts */
import type { App } from 'vue';

export default {
install(app: App<Element>, options: { limit: number }) {
const truncate = (str: string) => {
if (str.length > options.limit) {

return “${str.slice(®, options.limit)}...";
1
return str;
}
app.config.globalProperties.$truncate = truncate;
}

}

To use this plugin in our application, we call the app.use() method on the created
app instance in the main.ts:
/* main.ts */

import { createApp } from 'vue'
import truncate from './plugins/truncate’

const App = {}

//1. Create the app instance
const app = createApp(App);

//2. Register the plugin
app.use(truncate, { limit: 10 })

app.mount('#app')

The Vue engine will install the truncate plugin and initialize it with a limit of 10
characters. The plugin will be available in every Vue component within the app
instance. You can call this plugin using this.$truncate in the script section or just
$truncate in the template section:

import { createApp, defineComponent } from 'vue'
import truncate from './plugins/truncate'

const App = defineComponent({
template:
<h1>{{ $truncate('My truncated long text') }}</h1>
<h2>{{ truncatedText }}</h2>

data() {
return {
truncatedText: this.$truncate('My 2nd truncated text')
}
}
b

const app = createApp(App);

180 | Chapter7: Advanced Rendering, Dynamic Components, and Plugin Composition

app.use(truncate, { limit: 10 })
app.mount('#app')

The output should look like Figure 7-1.

Figure 7-1. Component output texts are truncated

However, $truncate is available only if you use it in the <template> section or as
this.$truncate with Options API in the script section. Accessing $truncate inside
<script setup> or setup() is not possible. To do so, we need the provide/inject pat-
tern (see “Communicate Between Components with provide/inject Pattern” on page
123), starting with adding the following code to the plugins install function, located
in the plugins/truncate. ts file:

/* plugins/truncate.ts */

export default {

install(app: App<Element>, options: { limit: number }) {

Y/
app.provide("plugins", { truncate });

}

Vue will pass truncate as part of the plugins object to all the application’s compo-
nents. With that, we can use inject to receive our desired plugin truncate and move
on to computing the truncatedText:

<script setup lang="ts">
import { inject } from 'vue';

const { truncate } = inject('plugins');

const truncatedText = truncate('My 2nd truncated text');

</script>
Plugins are very helpful in organizing global methods and making them available for
reuse in other applications. It is also beneficial in writing your logic during an instal-
lation of an external library, such as axios for fetching external data, i18n for localiza-
tion, etc.

Registering Pinia and Vue Router in Our Application

During the scaffolding of our application, Vite adds Pinia and Vue
Router as application plugins using the same approach reflected in
the original generated code in matin. ts.

Adding Custom Functionality Globally with Vue Plugins | 181

The next section will look at rendering the dynamic component in run-time using the
Vue <component> tag.

Dynamic Rendering with the <component> Tag

The <component> tag acts as the placeholder for rendering a Vue component, accord-
ing to the component reference name passed to its is props, following this syntax:

<component is="targetComponentName" />

Suppose your target component is accessible from the Vue instance (registered as a
component of the app or the parent component when <component> is nested); the
Vue engine will know how to look up the target component based on the name string
and replace the tag with the target component. The target component will also inherit
all the extra props passed to <component>.

Say we have a HelloWorld component that renders the text “Hello World™:

<template>
<div>Hello World</div>
</template>

We register this component to the App, then render it dynamically using the
<component> tag, as follows:

<template>
<component is="HelloWorld" />
</template>
<script lang="ts">
import HelloWorld from "@/components/HelloWorld";
import { defineComponent } from "vue";

export defineComponent({
components: { HelloWorld },
b;

</script>

You can also bind the component as a reference to the is props using the v-bind
directive (denoted by : short syntax). We can shorten the two previous code blocks
into a single App component by rewriting the code as follows:

<template>
<component :is="myComp" />
</template>
<script lang="ts">
import HelloWorld from "@/components/HelloWorld";
import { defineComponent } from "vue";

export defineComponent({
data() {
return {
myComp: {
template: '<div>Hello World</div>"'

182 | Chapter7: Advanced Rendering, Dynamic Components, and Plugin Composition

}
}
}
bs
</script>
Note here the component reference myComp follows Options API syntax. You can also
pass an imported SFC component instead. The output of both cases should be the

same.

The <component> tag is powerful. For example, if you have a gallery component, you
can choose to render each gallery item as a Card component or a Row component,
using <component> to switch parts conditionally.

However, switching components means Vue unmounts the current element com-
pletely and erases all the component’s current data states. Switching back to that com-
ponent equals creating a new instance with a new data state. To prevent that behavior
and maintain the states of a passive element for a future switch, we use the <keep-
alive> component.

Keeping Component Instance Alive with <keep-alive>

<keep-alive> is a built-in Vue component for wrapping around a dynamic element
and preserving the component’s states in inactive mode.

Assume we have two components, StepOne and StepTwo. In the StepOne component,
there is a string input field that has two-way binding to a local data property name
using v-model:

<!--StepOne.vue-->
<template>
<div>
<label for="name">Step one's input</label>
<input v-model="name" id="name" />
</div>
</template>
<script setup lang="ts">
import { ref } from '

vue';

const name = ref<string>("");
</script>

While the StepTwo component renders a static string:

<!--StepTwo.vue-->

<template>

<h2>{{ name }}</h2>
</template>
<script setup lang="ts">
const name = "Step 2";
</script>

Keeping Component Instance Alive with <keep-alive> | 183

In the main App template, we will use component tag to render a local data property:
activeComp as a component reference. The initial value of activeComp is StepOne,
and we have a button to move between StepOne to StepTwo, and vice versa:

<template>
<div>
<keep-alive>
<component :is="activeComp" />
</keep-alive>
<div>
<button @click="activeComp = 'StepOne
Go to Step Two
</button>
<button @click="activeComp = 'StepTwo'
</div>
</div>
</template>
<script lang="ts">
import { defineComponent } from "vue";
import StepOne from "./components/StepOne.vue";
import StepTwo from "./components/StepTwo.vue";

v-if="activeComp === 'StepTwo'">

v-else>Back to Step One</button>

n

export default defineComponent({
components: { StepTwo, StepOne },
data() {
return {
activeComp: "StepOne",
IH
}.
H;
</script>
Whenever you switch between StepOne and StepTwo, Vue preserves any value of the
name property received from the input field. When switching back to StepOne, you

can continue with the previous value rather than starting from the initial value.

You can also define the maximum instances for keep-alive to the cache using its max
props:

<keep-alive max="2">

<component :is="activeComp" />

</keep-alive>
This code defines the maximum number of instances keep-alive should hold as two
by setting max="2". Once the number of cached instances exceeds the limit, Vue
removes the least recently used (LRU) instance from the cached list, allowing for
caching new instances.

184 | Chapter7: Advanced Rendering, Dynamic Components, and Plugin Composition

Summary

This chapter explored how to control the component rendering with JSX and func-
tional components, register Vue custom plugins globally, and dynamically and condi-
tionally render a component using the <component> tag.

The next chapter will introduce Vue Router, the official routing management library
for Vue, and discuss how to handle the navigation between different routes in our
application using Vue Router.

Summary | 185

CHAPTER 8
Routing

In previous chapters, we have learned the fundamentals of Vue components and dif-
ferent approaches to composing a Vue component. We proceeded to create reusable
component logic as standalone composable using Composition API. We also learned
about more advanced concepts of rendering and custom plugin creation.

This chapter will explore a different aspect of building a Vue application, routing, by
introducing you to the concept of a routing system with Vue Router, the official rout-
ing management library for the Vue application, and its core API. We then learn how
to configure the apps routes, pass and handle data between the applications paths
using router guards, and build dynamic and nested routes for our application.

What is Routing?

When users navigate around the web, they enter a Uniform Resource Locator (URL)
in the browser’s address bar. A URL is the address of a resource within the web. It
contains many parts, which we can divide into the following significant sections
(Figure 8-1):

Location
Includes the protocol, the application’s domain name (or IP address of the web
server), and the port used to access the requested resource.

Path
The path to the requested resource. In web development, we use it to determine
the page component to render on the browser side based on a predefined path
pattern.

187

Query parameters
A set of key-value pairs for passing additional information to the server, separa-
ted by an & symbol. We mainly use query parameters to pass data between pages.

Anchor
Any text after the # symbol. We use anchors to navigate to a specific element on
the same page, often with matched 1id value with the matched id or a time-lapse
for a media element.

Path Anchor
~AA ~A—
https://mayashavin.com/blog/ #summary
Location Query parameters

Figure 8-1. URL structure

Upon receiving the URL from the user, the browser then communicates with the
server based on the received URL, which returns the requested resource, if any. The
resource can be a static file, such as an image or a video, or a dynamic page, such as a
web page or a web application.

With single-page applications (SPAs), we perform the routing mechanism on the
browser side instead, thus allowing smooth page navigation without refreshing the
browser. As a URL is a page’s address, we use a routing system to connect its path
pattern to a specific component representing it in our application.

Frontend frameworks like Vue provide the layout for building components for an
SPA but not the routing services. To create a complete user navigation experience, we
must design and develop the applications routing ourselves, including solving the
SPA’s issues such as history keeping and bookmarking.

Or we can use Vue Router as our primary engine for routing.

Using Vue Router

As the official routing service for Vue applications, Vue Router offers a control mech-
anism for handling page navigation in a Vue application. We use Vue Router to set up
our application’s routing systems, including configuring the mapping between com-
ponents and pages, delivering a good user experience on the client side for the SPAs
flow.

188 | Chapter 8: Routing

The official Vue Router documentation is available at the Vue
Router website, containing information on installation, APIs, and
primary use cases for reference.

Since Vue Router is a standalone package from the Vue framework, we need to per-
form additional steps to have it installed and ready to use in our application, which
we will discuss next.

Installing Vue Router

The most straightforward way to install Vue Router for a new Vue project using Vite
is to choose Yes when being asked to install Vue Router during the setup (see “Create
a New Vue Application” on page 9). Vite then will take care of installing the Vue
Router package and scaffold your project with related files and folders (Figure 8-2), as
in the following structure:

o The router folder with one file, index. ts, containing the routes configurations
for the app.

o The views folder has two sample Vue components, AboutView and HomeView.
Each component is the view for the related URL paths, which we will discuss
shortly.

Figure 8-2. Project structure after scaffolding with Vite with Vue Router enabled

Vite will also inject some code into the main.ts file to initialize Vue Router. Hence,
the created app will enable the primary router enabled and make it ready to use.

However, to fully understand how Vue Router works, we will skip the scaffolding
option and add Vue Router to our existing project manually by using the following
command:

yarn add -D vue-router@4

Using Vue Router | 189

https://oreil.ly/AwUZo
https://oreil.ly/AwUZo

In this book, we use Vue Router 4.1.6, the latest version at the time
of writing. You can replace the version number after @ with the lat-
est version from the Vue Router NPM page.

For Vue 3 projects, you should use version 4 and above.

To demonstrate the Vue Router’s capabilities, we will build an SPA representing a
pizza ordering system. The application header will have the following page links:
Home, About, Pizzas, Contact, and Login (see Figure 8-3).

Home About Pizzas Contact Login

[Main View of Pizza House]

Figure 8-3. Pizza House application with navigation header

Each application link leads to a page represented by a Vue component. For each
application page, we create a placeholder component and keep it under the views
folder. Our Pizza House codebase now contains the following view components:

HomeView
Our application’s home page contains a welcome message and a list of pizzas.

AboutView
The about page, which will contain a short description of the application.

PizzasView
Displaying a list of pizzas for ordering.

ContactView
Displaying a contact form.

LoginView
Displaying the login form for the user.

We need to map these components to the appropriate page links, demonstrated in
Table 8-1.

190 | Chapter8: Routing

https://oreil.ly/h6Q0V

Table 8-1. Table of the available routes with their corresponding components and page URLs
in Pizza House

Page link Component Route path pattern

https://localhost:4000 HomeView /
https://localhost:4000/about ~ AboutView /about
https://localhost:4000/pizzas ~ PizzasView /pizzas
https://localhost:4000/contact Contact /contact
https://localhost:4000/login LoginView /login

Table 8-1 also shows the corresponding route patterns for each page link. We will use
these patterns to define the routes in our application.

The port 4000 for localhost is the local port number for the devel-
opment server by Vite. It can change depending on your Vite con-
figuration and the available ports when you run your project
locally.

Defining Routes

A route is a path pattern in response to a page URL. We define a route in Vue Router
based on a configuration object using the interface RouteRecordRaw. This configura-
tion object contains the following properties described in Table 8-2.

Table 8-2. Properties for a route configuration object

Property Type Description Required?
path string The pattern to check against the browser’s location (browser ~ Yes
URL)
component Component The component to render when the browser’s location No
matches the route’s path pattern
name string The name of the route. We can use it to avoid hard-coded No
URLs in the code.
components { [name: string]: A collection of components to render based on the matched ~ No
Component } route’s name
redirect stringorLocationor The redirect path No
Function
props boolean or Object or The props to pass to the component No
Function
alias stringor The alias path No
Array<string>
children Array<RouteConfig> The child routes No

Using Vue Router | 191

Property Type Description Required?
beforeEnter Function The navigation guard callback No

meta any The route’s metadata. We can use this for passing additional ~ No
information not visible on the URL.

sensitive Boolean Whether the route should be case sensitive. By default, all No
routes are case insensitive; for example, /pizzas and /
Pizzas are the same route.

strict Boolean Whether we should allow trailing slash (like /about/or/ N
about)

o

We often don’t use all the available fields to define a route. For instance, take the
default application path (/). It’s sufficient to define the following home route object
with the path property set to / and the component property set to HomeView:

/**router/index.ts */
//import the required component modules

const homeRoute = {
path: '/',
name: 'home',
component: HomeView

}

Vue Router in the previous code maps the default entry URL (such as https://local-
host:4000) to the / case unless strict mode is enabled. If there is no indicator after
the slash /, Vue Router will render the HomeView component as the default view. This
behavior applies in both cases: when a user visits https://localhost: 4000, or https://
localhost:4000/.

Now we can proceed to configure our apps routes as an array of RouteRecordRaw
configuration objects in the index. ts file under the router folder, as in the following
code:

/**router/index.ts */
import { type RouteRecordRaw } from "vue-router";
//import the required component modules

const routes:RouteRecordRaw[] = [
{
path: '/',
name: 'home',
component: HomeView
1
{
path: '/about',
name: 'about',
component: AboutView
I8
{
path: '/pizzas',
name: 'pizzas',

192 | Chapter 8: Routing

component: PizzasView
IS
{
path: '/contact',
name: 'contact',
component: ContactView
1
{
path: '/login',
name: 'login',
component: LoginView
}
1

Using Named Routes

This chapter uses the named route with the name property. I recom-
mend using this approach in your application, making the code
more readable and maintainable.

That's straightforward enough. We have defined the necessary routes for our Pizza
House. But we need more than this for our route system to work. We must create a
router instance from the given routes and plug it into our Vue application on initiali-
zation. We will do this next.

Creating a Router Instance

We can create the router instance using the createRouter method from the vue-
router package. This method takes a configuration object of type RouterOptions as
an argument, with the following main properties:

history
The history mode object can be hash-based or web-based (HTML history mode).
The web-based method utilizes the HTML5 history API to make the URL read-
able, allowing us to navigate without reloading the page.

routes
The array of routes to use in the router instance.

linkActiveClass
The class name for the active link. By default, it is router-1link-active.

linkExactActiveClass
The class name for the active link. By default, it is router-link-exact-active.

Using Vue Router | 193

Other less common properties for the RouterOptions interface are
available at the RouterOptions documentation.

We use the createlWebHistory method from the vue-route package to create a web-
based history object. This method takes a string that represents the base URL as its
optional argument:

/**router/index.ts */

import {
createRouter,
createWebHistory,
type RouteRecordRaw

} from 'vue-router';

const routes: RouteRecordRaw[] = [/**... */]

export const router = createRouter({
history: createWebHistory("https://your-domain-name"),
routes
H
However, passing the base URL as a static string is not a good practice. We want to
keep the base URL configurable and isolated for different environments like develop-
ment and production. For this purpose, Vite exposes the environment object
import.meta.env, which contains a BASE_URL property. You can set the value for
BASE_URL in a dedicated environment file, often denoted by the .env prefix, or
through the command line when running the Vite server. Vite then extracts the rele-
vant value for BASE_URL and injects it into the import.meta.env object, and we can
use it in our code, as follows:

/**router/index.ts */

import {
createRouter,
createWebHistory,
type RouteRecordRaw

} from 'vue-router';

const routes: RouteRecordRaw[] = [/**... */]

export const router = createRouter({
history: createWebHistory(import.meta.env.BASE_URL),
routes

b

194 | Chapter 8: Routing

https://oreil.ly/pcSqw

Using BASE_URL from the Environment File

You don’t have to set the BASE_URL value in the .env file for devel-
opment. Vite will map it to the local server URL automatically.
Most modern hosting platforms, such as Netlify, will set the

BASE_URL value for you during deployment, often to your applica-
tion’s domain name.

We have created the router instance from the given routes and the desired history
mode. Our next step is to plug this instance into our Vue application.

Plugging the Router Instance Into the Vue Application

In the main. ts file where we initialize the application instance app, we will import the
created router instance and pass it as the argument to the app.use() method:
/**main.ts */
import { createApp } from 'vue'

import App from './App.vue'
import { router } from './router'

const app = createApp(App)
app.use(router)

app.mount('#app')

Our application now has a routing system for the navigation between pages. How-
ever, if you run the application now, you will see that the AboutView component is
still not rendered when navigating to the /about path. We must modify our App.vue
component to display the suitable component that binds to the route’s path in its con-
figurations. Let’s do that next.

Rendering the Current Page with the RouterView Component

To dynamically generate the desired view for a particular URL path, Vue Router pro-
vides RouterView (or router-view) as the placeholder component. During running,
Vue Router will replace it with the element that matches the current URL pattern
based on the configuration provided. We can use this component in our App.vue
component to render the current page:

/**App.vue */
<script setup lang="ts">
import { RouterView } from 'vue-router'
</script>
<template>
<RouterView />
</template>

Using Vue Router | 195

When running the application, the default home page is now the HomeView
(Figure 8-4). When navigating to /about using the browser’s location bar, you will see
that the AboutView component is rendered (Figure 8-5).

Figure 8-4. Application displays the HomeView component for the "/" path

Figure 8-5. Application displays the AboutView component for the "/about" path

Since RouterView is a Vue component, we can pass props, attributes, and event listen-
ers to it. RouterView will then pass them to the rendered view to handle. For instance,
we can add a class using the RouterView:

/**App.vue */

<template>

<RouterView class="view" />

</template>
The rendered component—AboutView, for example—will then receive the class as
the primary container element (see Figure 8-6), and we can use it for CSS styling
accordingly.

v<div id="app" data-v-app>(grid
<hl data-v-7a7a37bl class="view'">About this Pizza store</hl>
</div>

Figure 8-6. AboutView receives the class attribute from the RouterView component

196 | Chapter8: Routing

At this point, we have seen how to set up the routes for our application and render
the current page using the RouterView component. However, navigating by manually
setting the URL path on the browser’s address bar does not seem to be very conve-
nient for users. To enhance the user experience for our app, we can compose a header
with navigation links using the a element and the full path. Or we can use the built-in
RouterLink component to build the links to our routes, which we will discuss next.

Build a Navigation Bar with the RouterLink Component

Vue Router provides the RouterLink (or router-1link) component to generate an
interactive and navigable element from a set of given props, such as to, for a specific
route’s path. The route path can be a string that has the same value as path in the
route configuration, as in the following example for the link to navigate to the about
page:

<router-link to="/about">About</router-link>

Alternatively, we can pass an object representing the route’s location object, including
the name and the paranms for the route parameters:

<router-link :to="{ name: 'about' }">About</router-link>

By default, this component renders an anchor element (a) with an href and classes
for the active link, such as router-1link-active and router-1link-exact-active. We
can change the default element to any other element using the Boolean custom prop
and v-slot, usually another interactive element such as button, as in the following
example:

<router-link custom to="/about" v-slot="{ navigate }" >

<button @click="navigate">About</button>

</router-link>
This code will render a button element instead of the default a element, binding with
the navigate function to navigate the given route when clicking.

Using custom Prop

If you use the custom prop, you must bind the navigate function
as a click handler or the href link to the custom element. Other-
wise, the navigation will not work.

Also, no class names such as router-link-active or router-
link-exact-active will be added to the custom element when in
action.

Using Vue Router | 197

Let’s build our navigation bar, NavBar, using RouterLink as shown in Example 8-1.

Example 8-1. NavBar component

/**NavBar.vue */

<template>
<nav>
<router-link :to="{ name: 'home' }'">Home</router-link>
<router-link :to="{ name: 'about' }">About</router-link>
<router-link :to="{ name: 'pizzas' }">Pizzas</router-link>
<router-link :to="{ name: 'contact' }">Contact</router-link>
<router-link :to="{ name: 'login' }">Login</router-link>
</nav>
</template>

We also add some CSS styles to the navigation bar and the active link:

/**NavBar.vue */

<style scoped>

nav {
display: flex;
gap: 30px;
justify-content: center;

}

.router-link-active, .router-link-exact-active {
text-decoration: underline;

1
</style>

Using activeClass and exactActiveClass Props

You can use the activeClass and exactActiveClass props of
RouterLink to customize the class names for the active link instead
of using the default ones.

Once we add NavBar to the App component, we will see the navigation bar at the top
of the page (Figure 8-7).

Home About Pizzas Contact Login

This is the home view of the Pizza stores
Figure 8-7. Navigation bar of the application

198 | Chapter 8: Routing

Now our users can navigate between pages using the navigation bar. However, we still
need to handle the data flow between the pages. In the upcoming sections, we will see
how to pass data between routes with route parameters.

Passing Data Between Routes

To pass data between routes, we can use the query field in the router object passed to
to:

<router-link :to="{ name: 'pizzas', query: { id: 1 } }">Pizza 1</router-link>

The query field is an object that contains the query parameters we want to pass to the
route. Vue Router will translate it into a complete href path with query parameters,
starting with ? syntax:

Pizza 1

We can then access the query parameters in the route component, PizzasView, using
the useRoute() function:

<template>
<div>
<h1>Pizzas</h1>
<p v-if="pizzald">Pizza ID: {{ pizzald }}</p>
</div>
</template>
<script lang="ts" setup>
import { useRoute } from "vue-router";

const route = useRoute();

const pizzald = route.query?.id;

</script>
This code will render the following page, where the browser’s URL is http://localhost:
4000/pizzas?id=1 (Figure 8-8).

C m (D localhost:4000/pizzas?id=1

Home About Pizza 1 Contact Login

Pizzas

Pizza ID: 1

Figure 8-8. Pizzas page with the query parameter

Passing Data Between Routes | 199

You can also pass the query parameters in the browser’s address bar, and the router
instance will decouple it from the route.query object accordingly. This mechanism
is handy in many scenarios. Take our PizzasView page, for instance. This page dis-
plays a list of pizzas taken from a usePizzas hook, using the PizzaCard component
as shown in Example 8-2.

Example 8-2. PizzasView component

<template>
<div class="pizzas-view--container">
<h1>Pizzas</h1>

<1l v-for="pizza in searchResults" :key="pizza.id">
<PizzaCard :pizza="pizza" />
</1i>

</div>
</template>
<script lang="ts" setup>
import PizzaCard from "@/components/PizzaCard.vue";
import { usePizzas } from "@/composables/usePizzas";

const { pilzzas } = usePizzas();
</script>

Now we want to add a search feature, where the user can search for a pizza by its title
using a query params search and get the filtered list of pizzas. We can add a use
Search hook, which receives the value of route.query.search as its initial value and
returns the filtered list of pizzas as well as the reactive search value, as shown in
Example 8-3.

Example 8-3. Implementing useSearch hook
import { computed, ref, type Ref } from "vue";

type UseSearchProps = {
items: Ref<any[]>;
filter?: string;
defaultSearch?: string;

b

export const useSearch = ({
items,
filter = "title",
defaultSearch = "",
}: UseSearchProps) => {
const search = ref(defaultSearch);
const searchResults = computed(() => {
const searchTerm = search.value.toLowerCase();

if (searchTerm === "") {

200 | Chapter8:Routing

return items.value;

}

return items.value.filter((item) => {
const itemValue = item[filter]?.toLowerCase()
return itemValue.includes(searchTerm);
b;
bs

return { search, searchResults };

I

Then we use the useSearch hook in the PizzasView component and change the itera-
tion to be over searchResults instead of pizzas:

<template>
<!--...other code -->
<li v-for="pizza in searchResults" :key="pizza.id">
<PizzaCard :pizza="pizza" />

<!--...other code -->
</template>
<script lang="ts" setup>
/**...other imports */
import { useRoute } from "vue-router";
import { useSearch } from "@/composables/useSearch";
import type { Pizza } from "@/types/Pizza";

/**...other code */
const route = useRoute();

type PizzaSearch = {
search: Ref<string>;
searchResults: Ref<Pizza[]>;

b

const { search, searchResults }: PizzaSearch = useSearch({
items: pizzas,
defaultSearch: route.query?.search as string,

s

</script>

Now when you go to /pizzas?search=hawatit, the list will show only the pizza with
the title Hawaii (Figure 8-9).

Passing Data Between Routes | 201

Figure 8-9. Pizzas page with the search term from query parameter

How about allowing the user to search while on the page and then syncing the upda-
ted search term with the query parameter? For that, we need to perform the following
changes:

 Add an input field to the template and bind it to the search variable:

<template>
<!--...other code -->
<input v-model="search" placeholder="Search for a pizza" />
<!--...other code -->

</template>

Get the router instance using the useRouter () method:

/**...other imports */
import { useRoute, useRouter } from "vue-router";

/**...other code */
const router = useRouter();

Use the watch function to watch for changes in the search value and update the
query parameter using router.replace:

/**...other imports */
import { watch } from

vue';

202

| Chapter 8: Routing

/**...other code */
watch(search, (value, prevValue) => {

if (value === prevValue) return;
router.replace({ query: { search: value } });
b;

When you type in the search field, the router instance will update the URL with the
new query value.

If you use Vue 2.x and below or Options API (without setup()),
you can access the router and route instances using this.$router
and this.$route, respectively.

At this point, we have learned how to retrieve the query params with the route
instance. Using the route instance in every component that needs to access the query
params can be tedious. Instead, we can decouple the query params using props,
which we will learn next.

Decoupling Route Parameters Using Props

In the route configuration object, we can define the static props to pass to the view
component as an object with static values or a function that returns the props. For
example, in the following code, we change our pizzas route configuration to pass the
searchTerm prop, whose value is from route.query.search, to the PizzaView
component:

import {
type RoutelocationNormalizedLoaded,
type RouteRecordRaw,

} from "vue-router";

const routes: RouteRecordRaw = [
/** other routes */
{
path: "/pizzas",
name: "pizzas",
component: PizzasView,
props: (route: RoutelLocationNormalizedLoaded) => ({
searchTerm: route.query?.search || "",
b,
1,
1;

In the PizzasView component, we can remove the use of useRoute and access the
searchTerm prop using the props object:

const props = defineProps({
searchTerm: {

Decoupling Route Parameters Using Props | 203

type: String,
required: false,
default: "",
1,
b

const { search, searchResults }: PizzaSearch = useSearch({
items: pizzas,
defaultSearch: props.searchTerm,

s

The behavior of the application stays the same as before.

You can also use props: true to pass the route.params object to the view compo-
nent as props, without caring about any specific props. When the route changes, we
can combine this approach with navigation guards to perform side effects for the
route’s parameters. More about navigation guards in the next section.

Understanding Navigation Guards

Navigation guards are functions to help us control the navigation flow better. We can
also use them to perform side effects when the route changes or before the navigation
happens. There are three types of navigation guards and hooks: global, component-
level, and route-level.

Global Navigation Guards

For every router instance, Vue Router exposes a set of global-level navigation guards,
including:

router.beforeEach
Called before every navigation

router.beforeResolve
Called after Vue Router has resolved all async components in the route and all in-
component guards (if any), but before confirming the navigation

router.afterEach
Called after confirming the navigation and before the next update of the DOM
and the navigation

The global guards help perform validation before navigating to a specific route. For
example, we can use the router.beforeEach to check if the user is authenticated
before navigating to the /pizzas route. If not, we can redirect the user to the /login
page:

const user = {

isAuthenticated: false,

b

204 | Chapter8:Routing

router.beforeEach((to, from, next) => {

if (to.name === "pizzas" && !user.isAuthenticated) {
next({ name: "login" });
} else {
next();
}
b;

In this code, to is the destination route object to navigate to, from is the current route
object, and next is a function to call to resolve the hook/guard. We need to trigger
next() at the end, either without any argument to continue to the original destina-
tion or with a new route object as its argument to redirect the user to a different
route. Otherwise, Vue Router will block the navigation flow.

Alternatively, we can use the router.beforeResolve to perform
the same validation. The critical difference between
router.beforeEach and router.beforeResolve is that Vue Router
triggers the latter after resolving all in-component guards. How-
ever, invoking the callback after settling everything will be less val-
uable when you want to avoid loading the suitable async
component before confirming the navigation.

How about the router.afterEach? We can use this hook to perform actions like sav-
ing some page’s data as cache, tracking page analytics, or authenticating our user
when navigating away from the login page:

router.afterEach((to, from) => {

if (to.name === "login") {
user.isAuthenticated = true;
}
bs

While the global guards help perform side effects and control the redirecting of the
whole application, in some cases we only want to achieve side effects for a specific
route. In this case, using route-level guards is a good option.

Route-Level Navigation Guards

For every route, we can define a callback for the beforeEnter guard, which Vue
Router triggers when entering a path from a different one. Take our /pizzas route,
for instance. Instead of mapping the props field with a function, we can achieve map-
ping the search query as a prop to the view by manually setting the
to.params.searchTerm field to to.query.search before entering the route:

const routes: RouteRecordRaw = [

/** other routes */

{
path: "/pizzas",
name: "pizzas",

Understanding Navigation Guards | 205

component: PizzasView,

props: true,

beforeEnter: async (to, from, next) => {
to.params.searchTerm = (to.query.search || "") as string;

next()
1,
1,
1;

Note that we have set props: true in the pizzas route. The UT will still display the
same list of pizzas as before (Figure 8-10).

Figure 8-10. Pizzas list

We can manually modify the to.query.searchTerm within this guard. However, the
changes won't reflect on the URL path in the browser’s address bar. If we want to
update the URL path, we can use the next function to redirect the user to a new route
object with the desired query parameters.

Passing an Array of Callbacks to beforeEnter

beforeEnter also accepts an array of callbacks, which Vue Router
triggers in sequence. Hence we can perform multiple side effects
for a specific route before entering it.

206 | Chapter8:Routing

Like other global guards, the beforeEnter guard is handy when you want to perform
authentication to specific routes, additional modification to the route parameters
before passing them to the view component, etc. Next, we will learn how to leverage
the component-level guards to perform side effects for a specific view.

Component-Level Router Guards

From Vue 3.x on, Vue Router also provides composable guards at the component
level to help control the flow of route leaving and updating, as onBeforeRouteLeave
and onBeforeRouteUpdate. While Vue Router triggers onBeforeRouteLeave when
the user navigates away from the current path view, it invokes onBeforeRouteUpdate
when the user navigates to the same path view but with different parameters.

We can use onBeforeRouteLeave to display a message to confirm the user’s naviga-
tion away from the Contact page with the following code:

import { onBeforeRoutelLeave } from "vue-router";

onBeforeRouteLeave((to, from, next) => {
const answer = window.confirm("Are you sure you want to leave?");

next(!!answer);
H;
Now when you are on the Contact page and try to navigate to another page, you will
see a confirmation popup asking you to confirm your navigation, as in Figure 8-11.
Clicking on the Cancel button will prevent navigation, and clicking the OK button
will continue the navigation.

Figure 8-11. Confirmation popup

Understanding Navigation Guards | 207

If you use Options API for your components, beforeRouteLeave
and beforeRouteUpdate guards would be available on the options
object to achieve the same functionality.

There is also a beforeRouteEnter hook, which the router triggers
before Vue initialize the view component. This guard is similar to
the setup() hook; hence, Vue Router’s API has no equivalent com-
posable.

We have explored the available navigation guards in different levels of a routing sys-
tem and their order of execution, shown in Figure 8-12.

Figure 8-12. Order of triggering navigation guards and their equivalent composable

Understanding the navigation flow and the order of execution of the guards is crucial
to building a robust routing system. Next, we will learn how to create nested routes
for our application.

Creating Nesting Routes

At this point, we have built a basic one-level routing system for our application. In
reality, most routing systems are more complex. Sometimes, we want to create sub-
pages for a specific page, such as a Frequently Asked Questions (FAQs) page, and a
Form page for the Contact page:

/contact/faq
/contact/form

208 | Chapter8:Routing

The default UI for the /contact page will be the ContactView page, and the user can
navigate to the Form page by clicking on a link presented on this page. In this case,
we need to create nested routes for the /contact page using the children field of the
route configuration object.

First create the ContactFaqView and ContactFormView components, so the router can
render them when matched, and then modify our /contact route:

const routes = [
/**...other routes */
{
path: "/contact",
name: '"contact",
component: ContactView,
children: [
{
path: "faq",
name: "contact-faq",
component: ContactFagView,
1,
{
path: "form",
name: "contact-form",
component: ContactFormView,
}’
1,
1
1;

We must also stub the placeholder component RouterView inside the ContactView to
render the nested routes. As an example, let’s add the following code to the Contact
View:

<template>
<div class="contact-view--container"s
<h1>This is the contact page</hi1>
<nav>
<router-link to="/contact/faq">FAQs</router-link>
<router-link to="/contact/form">Contact Us</router-link>
</nav>
<router-view />
</div>
</template>

Now this Contact component will render ContactFaqView when the user navigates to
http://localhost:4000/contact/faq (Figure 8-13) and ContactFormView when the user
navigates to http://localhost:4000/contact/form, respectively.

Creating Nesting Routes | 209

Figure 8-13. Example output when navigating to http://localhost:4000/contact/faq

This approach proves beneficial when we want to create a specific UI layout for a
page containing nested views with nested routes.

We have seen how to create a nested route within a parent layout. However, in some
cases we want to make a nested way without a parent layout, so we must declare the
default path for the parent’s route as its nested route object. For example, instead of
claiming the parent /contact route’s name and component, we can move it to the
nested path with an empty path pattern:

const routes = [
/**...other routes */
{
path: "/contact",
children: [
/**... other children */,
{
path: "",
name: "contact",
component: ContactView,
}
1,
1
1;

This way, when the user navigates to http://localhost:4000/contact/fag, only the
ContactFaqView component will be rendered as a separate page, without the content
of the ContactView (Figure 8-14).

210 | Chapter8:Routing

Figure 8-14. Example output when navigating to http://localhost:4000/contact/faq

As you can see in the screenshot, the Contact link is still active in
the navigation bar. This behavior happens because the link element
of the Contact page still has the class router-link-active, but not
router-link-exact-active. We can fix this styling issue by defin-
ing CSS rules for only the exact active link instead.

Using nested routes is very common in real-world applications; in fact, our routes
array is already nested children for the router instance of the application. Declaring
nested routes is a great way to organize routing structure and create dynamic routes,
which we will explore next.

Creating Dynamic Routes

One of the most beneficial features of Vue Router is the ability to set up dynamic
routes with routing parameters (routing params), which are variables extracted from
a URL path. Routing params come in handy when we have a dynamic data-driven
route structure. Each route shares a typical pattern and differs only by a unique iden-
tifier, such as a user or product id.

Let’s revise our routes for the Pizza House and add a dynamic path for displaying one
pizza at a time. One option is to define a new route, /pizza, and pass the pizza’s id as
its query parameter as /pizza?id=my-pizza-id as we learned in “Passing Data
Between Routes” on page 199. The better option, however, is to modify the /pizzas
route and add a new nested route to it with the path pattern :1d, as follows:

const routes = [

/**...other routes */

{
path: "/pizzas",
/**...other configurations */

Creating Dynamic Routes | 211

children: [{
path: ':1d',
name: 'pizza',
component: PizzaView,

b{
path: '',
name: 'pizzas',
component: PizzasView,

1]

IS
1

By using :1d, Vue Router will match any path that has a similar format, like /pizzas/
1234-pizza-id, and save the extracted id (like 1234-pizza-1id) as the route.par
ams. id field.

Since we learned about the props field in the route configuration object, we can set its
value to true, enabling the automatic mapping of route parameters to the Pizza
View’s props:

const routes = [
/**...other routes */
{
path: "/pizzas",
/**...other configurations */
children: [{
path: ':id',
name: 'pizza',
component: PizzaView,
props: true,
1.
/**...other nested routes */
1,
I8
1

In the bound PizzaView component, we declare id as the component’s props with
defineProps() and retrieve the pizza’s details from the pizzas array using the use
Route hook and this id prop:

import { usePizzas } from "@/composables/usePizzas";
const props = defineProps({
id: {
type: String,
required: true,

},
s

const { pizzas } = usePizzas();
const pizza = pizzas.value.find((pizza) => pizza.id === props.id);

We can display the details of pizza in the PizzaView component as follows:

212 | (Chapter8:Routing

<template>
<section v-if="pizza" class="pizza--container"s

<div class="pizza--details">
<h1>{{ pizza.title }}</h1>
<div>
<p>{{ pizza.description }}</p>
<div class="pizza-stock--section">
Stock: {{ pizza.quantity || 0 }}
Price: ${{ pizza.price }}
</div>
</div>
</div>
</section>
<p v-else>No pizza found</p>
</template>

Now when you navigate to /pizzas/1, with 1 as the id of an existing pizza in the list,

the PizzaView component will display the pizza’s details, as shown in Figure 8-15.

Figure 8-15. Pizza details page

Fetching Data from the Server

Ideally, you should avoid fetching data again from the server, such
as pizzas in the PizzaView component. Instead, you should use
data store management such as Pinia (Chapter 9) to store fetched
pizzas and retrieve them from the store whenever needed.

Creating Dynamic Routes

213

Thus far, we have explored how to create nested and dynamic routes and decoupled
the route’s parameters into props. In the next section, we will learn how to implement
custom back and forward buttons for our application with Vue Router.

Going Back and Forward with the Router Instance

Implementing a custom back button is a common feature in web applications in
addition to using the native browser’s back button. We can use the router.back()
method to navigate to the previous page in the history stack, where router is the
app’s router instance received from useRouter():
<template>
<button @click="router.back()">Back</button>
</template>

<script setup lang="ts">
import { useRouter } from "vue-router";

const router = useRouter();
</script>

To move forward in the history stack, we can use the router. forward() method:

<template>
<button @click="router.forward()">Forward</button>
</template>
<script setup lang="ts">
import { useRouter } from "vue-router";

const router = useRouter();
</script>

Using router.go() To Navigate to a Specific Page in the History Stack

You can also use the router.go() method, which accepts an argu-
ment as the number of steps in the history stack to go back or for-
ward. For instance, router.go(-2) will navigate to the page two
steps back, while router.go(2) will jump two steps forward (if
they exist).

We have explored the basics of Vue Router and created a basic routing system for our
application with all the pages we need. But there is one thing we need to handle: if
you try to navigate a path that doesn’t exist, you will see a blank page. This scenario
happens because Vue Router can’t find a matched component to render when the user
tries to navigate to a path that doesn’t exist. This will be our next topic.

214 | Chapter8:Routing

Handling Unknown Routes

In most scenarios, we can’t control all the paths users will try to navigate while using
our application. For instance, a user may attempt to access https://localhost:4000/pine-
apples, for which we haven’t defined a route. We can display a 404 page to the user in
such cases by using the regular expressions (regex) pattern /:pathMatch(.) as path
in a new error route:

/**router/index.ts */

const routes = [
/**‘ .. */
{
path: '/:pathMatch(.*)*',
name: 'error',
component: ErrorView

}
1

Vue Router will match the unfound paths against the pattern /:pathMatch(.)
accordingly and then store the matched path value in the pathMatch parameter of the
route location object.

Using Regex to Match Unknown Paths

You can replace pathMatch with any other name you want. Its pur-
pose is to let Vue Router knows where to store the matched path
value.

In the ErrorView component, we can display a message to the user:

<!--ErrorView.vue -->

<template>
<h1>404 - Page not found</h1>
</template>

Now when we try to visit https://localhost:4000/pineapples or any unknown path, we
will see the 404 page rendered.

Furthermore, we can use the useRoute() method of the vue-router package to
access the current route location and display its path’s value:

<!--ErrorView.vue -->

<template>
<h1>404 - Page not found</h1>
<p>Path: {{ route.path }}</p>
</template>
<script lang="ts" setup>
import { useRoute } from 'vue-router'

Handling Unknown Routes | 215

const route = useRoute()
</script>

This code will display the path of the current route, which is, in this case, /pineap
ples (Figure 8-16).

Figure 8-16. The 404 page

Alternatively, we can use the redirect property in the route configuration to redirect
users to a specific route, such as the home page, when they visit an unknown path.
For example, we can rewrite our error route as:

/**router/index.ts */

const routes = [
/**. LLx /
{
path: '/:pathMatch(.*)*',
redirect: { name: 'home' }
}
1
When we visit an unknown path, the router instance will automatically redirect us to

the home page, and we no longer need an ErrorView component.

Summary

In this chapter, we have explored how we can build a routing system for our Vue
application using different APIs provided by Vue Router in our application.

Moving between routes requires the data flow to be consistent, like handling data
flow between components that aren’t in a direct parent-children relationship. To solve
this challenge, we need an efficient data management system for our application. The
next chapter introduces Pinia, the official data management library for Vue, and how
we can build an efficient, reusable data management system using Pinia APIs.

216 | Chapter8:Routing

CHAPTER9
State Management with Pinia

The previous chapter guided us through building our application’s routings using Vue
Router, including nested routes, route guards, and dynamic route navigation.

In this chapter, we will learn state management and how to manage the data flow
within our Vue application using Pinia, the officially recommended state manage-
ment library for Vue. We will also explore how to build our application’s reusable and
efficient data state management system.

Understanding State Management in Vue

Data makes an application come to life and connects components. And components
interact with users and with others using data states. State management is crucial for
building an application that works with actual data, regardless of size and complexity.
For example, we can display only a gallery of product cards with a list of pizzas and
their details. Once a user adds a product to the cart within this gallery component, we
need to update the cart’s data and display the updated cart’s data in the cart compo-
nent at the same time as updating the chosen product’s remaining stock.

Take our Pizza House application, for example. In the main view (App.vue), we have
a header component (HeaderView) and a gallery of pizza cards (PizzasView). The
header contains a cart icon that displays the number of items in the cart, while the
gallery includes a list of pizza cards, each with a button allowing the user to add the
selected item to the cart. Figure 9-1 illustrates the hierarchical structure of the com-
ponents from the main view.

217

App (root)

Figure 9-1. Hierarchy structure of the components from the main view of Pizza House

When a user adds a pizza to the cart, the cart icon will display the updated number of
items. To enable data communication between the header component and the gallery
component, we can have the App manage the cart data and pass its data to the header
as props while communicating with the gallery using an event updateCart, as seen in
Figure 9-2.

Figure 9-2. Data flow between the gallery and header with the App as the middleman

This approach works well for small applications. However, suppose we want to split
PizzasView into subcomponents, such as PizzasGallery, and have PizzasGallery
render the PizzaCard component for each pizza. For each new parent-child layer, we
will need to propagate the updateCart event to ensure the propagation of the data
flow between the gallery and the header, as in Figure 9-3.

It will become more complicated when we have more components and layers, leaving
a lot of unnecessary props and events. As a result, this approach could be less scalable
and maintainable when our application grows.

To reduce this overhead and manage the state flows within the application, we need a
global state management system, a centralized place to store and manage the data
states of the application. This system is responsible for managing the data states and
distributing the data to the necessary components.

One of the most popular approaches to provide developers with a smooth experience
is using a state management library, such as Pinia.

218 | Chapter9: State Management with Pinia

Figure 9-3. Data flow between the gallery with children and header, with the App as the
middleman

Understanding Pinia

Inspired by Vuex' and Vue Composition API, Pinia is Vue’s current official state man-
agement library. Nevertheless, you can always use other state management JavaScript
libraries that support Vue, such as Vuex, MobX and XState.

Pinia follows the store pattern of Vuex but with a more flexible and scalable
approach.

The official Pinia documentation is available at the Pinia website,
with information on installation, APIs, and primary use cases for
reference.

Instead of having a single system for all data sets used across the application, with
Pinia, we can split each data set into its state module (or store). We then can access
relevant data in a store from any component using a custom composable, following
the Composition API pattern.

1 Vuex was previously the official state management for Vue applications.

Understanding Pinia | 219

https://oreil.ly/JoOwm

When creating a Vue project from scratch using Vite, we can choose to install Pinia as
the state management during the scaffolding process (see “Create a New Vue Applica-
tion” on page 9). Vite will create our project with Pinia installed and configured with
an example counter store, exposed as useCounterStore, located in src/stores/
counter. ts.

However, to fully understand how Pinia works, we will skip the scaffolding option
and add Pinia manually using the following command:

yarn add pinia

In this book, we use Pinia 2.1.3, the latest version at the time of
writing. You can replace the version number after @ with the newest
version from the Pinia NPM page.

Once Pinia is installed, navigate to src/main.ts and import createPinia from the
pinia package, use it to create a new Pinia instance, and plug it into the application:

import { createApp } from 'vue'
import { createPinia } from 'pinia’ (1)

import App from './App.vue'
import router from './router'

const app = createApp(App)
const pinia = createPinia()

app.use(pinia) (3]
app.mount('#app')
@ Import createPinia from the pinia package

® Create a new Pinia instance

© Plug the Pinia instance into the application for use

With Pinia installed and plugged in, we will create the first store for our application: a
pilzzas store to manage the available pizzas for the application.

Creating a Pizzas Store for Pizza House

As Pinia follows the store pattern of Vuex, a store in Pinia contains the following fun-
damental properties:

220 | Chapter9: State Management with Pinia

https://oreil.ly/zCUCg

State

The reactive data (state) of the store, created by using ref() or reactive()
methods from Composition API.

Getters
The computed and read-only properties of the store, created by using the
computed() method.

Actions
The methods to update the store’s state or perform custom logic on the store’s
data (state).

Pinia provides a defineStore function to create a new store, which accepts two argu-
ments: the store’s name and properties, and the methods available for use in other
components. The store’s properties and methods can be an object with the key fields
state, getters, actions following Options API (Example 9-1), or a function that
uses Composable API and return an object with the fields to expose (Example 9-2).

Example 9-1. Defining a store using an object configuration
import { defineStore } from 'pinia’

export const useStore = defineStore('storeName', () => {
return {
state: () => ({
// state properties
myData: { /**... */}
b,
getters: {
// getters properties
computedData: () => { /**... */ }
1,
actions: {
// actions methods
myAction(){ /**... */ }

}
b

Example 9-2. Defining a store using a function

import { defineStore } from 'pinia’
import { reactive, computed } from

' '

vue

export const useStore = defineStore('storeName', () => {
//state properties
const myData = reactive({ /**... */ })

// getters properties
const computedData = computed(() => { /**... */})

Creating a Pizzas Store for Pizza House | 221

// actions methods
const myAction = () => { /**... */ }

return {
myData,
computedData,
myAction

}

b

This chapter will focus on using Pinia stores with Vue 3.x Compo-
sition API, usually known as setup stores.

Let’s go back to our pizzas store. We add a new file, src/stores/pizzas.ts, with the
code shown in Example 9-3.

Example 9-3. Pizzas store

/** src/stores/pizzas.ts */

import { defineStore } from 'pinia’

import type { Pizza } from '../types/Pizza';
import { ref } from 'vue'

export const usePizzasStore = defineStore('pizzas', () => { o
const pizzas = ref<Pizza[]>([1]); (2]

const fetchPizzas = async () => { (3]
const response = await fetch(
"http://exploringvue.com/.netlify/functions/pizzas'
const data = await response.json();
pizzas.value = data;

}

return {
pizzas,
fetchPizzas

}

b

Then in PizzasView (based on the previous chapter’s Example 8-2 component), we
will use the pizzas and fetchPizzas properties from the pizzas store to fetch and
display the list of pizzas from our API as in Example 9-4.

Example 9-4. PizzasView component using the pizzas store

<template>
<div class="pizzas-view--container"s>

222 | Chapter9: State Management with Pinia

<h1>Pizzas</h1>

<1l v-for="pizza in pizzasStore.pizzas
<PizzaCard :pizza="pizza" />
</1i>

</div>
</template>
<script lang="ts" setup>
VA4
import { watch, type Ref } from "vue";
import { usePizzasStore } from "@/stores/pizzas";

:key="pizza.id"> (1)

/.

const pizzasStore = usePizzasStore(); ‘9

pizzasStore.fetchPizzas(); G’
</script>

© Render the list of pizzas using pizzasStore.pizzas.

® Import the usePizzasStore function from the pizzas store and use it to get the
pizzasStore instance.

© Fetch the pizzas from the API when the component is mounted asynchronously.

With the previous code, our PizzasView component is now using the pizzas store to
fetch and display the list of pizzas from our API (Figure 9-4).

Figure 9-4. PizzasView component using the pizzas store

Creating a Pizzas Store for Pizza House | 223

Great. Nevertheless, notice that we no longer have the search functionality, which
uses the useSearch() composable from the previous chapter’s Example 8-3. If we
pass pizzasStore.pizzas directly to the useSearch() composable as items, it will
lose the reactivity, and searchResults won't get recalculated after pizzas
Store.fetchPizzas() resolves. To fix this issue, we use storeToRefs() from pinia
to extract pizzas from the pizzasStore and keep its reactivity when passing to use
Search() (Example 9-5).

Example 9-5. useSearch() composable working with pizzas store

/** src/views/PizzasView.vue */
import { useSearch } from '@/composables/useSearch';
import { storeToRefs } from 'pinia';

Y/

const pizzasStore = usePizzasStore();

const { pizzas } = storeToRefs(pizzasStore);

const { search, searchResults }: PizzaSearch = useSearch({
items: pizzas,
defaultSearch: props.searchTerm,

s
/...

Now our template uses the searchResults instead of pizzasStore.pizzas and we
can bring the search input field back (Example 9-6).

Example 9-6. PizzasView component with a search using the pizzas store

<template>
<div class="pizzas-view--container">
<h1>Pizzas</h1>
<input v-model="search" placeholder="Search for a pizza" />

<li v-for="pizza in searchResults" :key="pizza.id">
<PizzaCard :pizza="pizza" />
</1i>

</div>
</template>

Next, we will create a cart store to manage the current user’s cart data, including the
list of items added.

Creating a Cart Store for Pizza House

To create our cart store, we define our cart store with the following properties:

224 | (Chapter9: State Management with Pinia

o A list of items added to the cart; each item contains the i1d and quantity of the
pizza

« The total items of the cart

e An add method to add an item from the cart

To create our cart store, we add a new file, src/stores/cart.ts, with the code
shown in Example 9-7.

Example 9-7. Cart store
import { defineStore } from 'pinia’

type CartlItem = { ‘.
id: string;
quantity: number;

}

export const useCartStore = defineStore('cart', () => {
const items = reactive<CartItem[]>([]);
const total = computed(() => { (3]
return items.reduce((acc, item) => {
return acc + item.quantity
}) 0)
b

const add = (item: CartItem) => { (4)
const index = items.findIndex(i => i.id === item.id)
if (index > -1) {
items[index].quantity += item.quantity
} else {
items.push(item)
}
}

return {
items,
total,
add

Define the type of the cart item
Initialize the items state with an empty array

Create a total getter to calculate the total items in the cart

© 6 o ©

Create an add action to add an item to the cart. If the item is already in the cart,
the quantity will update instead of adding a new item.

Creating a Cart Store for Pizza House | 225

With the cart store created, we can now use it in our application.

Using the Cart Store in a Component

Let’s create a new component, src/components/Cart.vue, to display the cart’s total
items. Within the <script setup()> section, we import the useCartStore() method
and call it to get the cart instance. Then in the template, we display the total items in
the cart by using the cart.total getter, as seen in Example 9-8.

Example 9-8. Cart component

<template>
<div class="cart">
Cart: {{ cart.total }}
</div>
</template>
<script setup lang="ts">
import { useCartStore } from '@/stores/cart'

const cart = useCartStore();
</script>
<style scoped>
.cart__total {
cursor: pointer;
text-decoration: underline;
}
</style>

We then see the cart displayed with the initial value of @ (Figure 9-5) when we use the
<Cart /> component in our App.vue as in the following code:

<!-- App.vue -->
<template>
<header>
<div>Pizza House</div>
<Cart />
</header>
<RouterView />
</template>

Figure 9-5. Cart component displayed in the header of the application

226 | Chapter9: State Management with Pinia

Next, let’s enable adding items to the cart from our pizzas gallery for each pizza ren-
dered by PizzaCard.

Adding Items to the Cart from the Pizzas Gallery

In PizzaCard, we will add a button with the click event handler calling the
cart.add() action to add the pizza to the cart. The PizzaCard component will look
like Example 9-9.

Example 9-9. PizzaCard component

<template>
<article class="pizza--details-wrapper">

<p>{{ pizza.description }}</p>
<div class="pizza--inventory">
<div class="pizza--inventory-price">$ {{ pizza.price }}</div>
</div>
<button class="pizza--add" @click="addToCart">Add to cart</button> "
</article>
</template>
<script setup lang="ts">
import { useCartStore } from "@/stores/cart";
import type { Pizza } from "@/types/Pizza";
import type { PropType } from "vue";

const props = defineProps({
pizza: {
type: Object as PropType<Pizza>,
required: true,
1.
bs

const cart = useCartStore(); E’
const addToCart = () => {

cart.add({ id: props.pizza.id, quantity: 1 }); (3)
b

</script>
© Add abutton to add the pizza to the cart
® Get the cart instance from the useCartStore() method

© (Call the cart.add() action to add the pizza to the cart within the addToCart()
method

With the previous code, in the browser, we can add a pizza to the cart by clicking on
the “Add to cart” button and see the cart’s total items updated (Figure 9-6).

Adding Items to the Cart from the Pizzas Gallery | 227

Figure 9-6. Pizza card with adding option and updated cart total

We can also use the cart.items to detect whether the current pizza is already in the
cart, and display its status on the pizza card, as in Example 9-10.

Example 9-10. PizzaCard component with status

<template>
<article class="pizza--details-wrapper">
<l--,,.-->
<div class="pizza--inventory"s>
<l--...-->
In cart (1)
</div>
<button class="pizza--add" @click="addToCart">
Add to cart
</button>
</article>
</template>
<script setup lang="ts">
Y/
const isInCart = computed(():boolean => { G)
return !!cart.items.find((item) => item.id === props.pizza.id);
bs
</script>

228 | Chapter9: State Management with Pinia

The “In cart” status is displayed on the pizza card if the pizza is already in the cart
(Figure 9-7).

Figure 9-7. Pizza card with status

We have successfully created a cart store and used it in our Pizza House. The Cart
and the PizzaCard component now synchronize and communicate through the cart
store.

At this point, the Cart component currently displays only the total items in the cart,
which, most of the time, is not enough for users to understand what they have added.
In the next section, we will improve this experience by displaying the cart items when
users click on the cart.

Displaying Cart Items with Actions

In Cart.vue, we will add a section displaying the list of cart items and a showCart
Detatils variable to control the list’s visibility. We will toggle the visibility of the list
when users click on the cart text, as shown in Example 9-11.

Example 9-11. Cart component with cart items

<template>
<div class="cart">
<span
class="cart__total"
@click="showCartDetails.value = !showCartDetails.value;" "

Displaying Cart Items with Actions | 229

Cart: {{ cart.total }}

<ul class="cart__list" v-show="showCartDetails"> €)
<1li v-for="1item in cart.items" :key="item.id" class="cart__list-item"> (3]
Id: {{ item.id }} |
Quantity: {{ item.quantity }}
</1i>

</div>
</template>
<script setup lang="ts">
import { useCartStore } from '@/stores/cart'
import { ref } from 'vue'

const cart = useCartStore();
const showCartDetails = ref(false); (4]
</script>

O Toggle the visibility of the cart items list when users click on the cart text
® Display the cart items list when showCartDetails is true
© Loop through the cart items and display the item id and quantity

O Initialize a showCartDetatils variable using the ref() method

We also add some CSS styles to the Cart component to position the list to look like a
dropdown:

.cart {
position: relative; (1)

}

.cart__list {
position: absolute; €)
list-style: none;
border: 1px solid #e3e@e0;
padding: 10px;
inset-inline-end: 0; 6,
box-shadow: 2px 2px 3px #e3e0el; (4)
background-color: white;
min-width: 200px;

© Set the position of the .cart container to relative to make the absolute list
container float within the container.

© Set the position of the list container to absolute to make it float concerning the
relative positioned .cart container.

230 | Chapter9: State Management with Pinia

© Set the inset-inline-end property to 0 to make the list container float to the
right of the . cart container.

O Add box shadow and border to the list container to make it look like a
dropdown.

When we click on the cart text, the cart items list will be displayed (Figure 9-8).

Figure 9-8. Cart items list displayed when clicking on the cart text

But wait, there is a problem. The list displays only the items id and quantity, which
needs to be more descriptive for users to understand what item they have added as
well as the total cost. We also need to display the item’s name and price. To do so, we
can modify the cart.items to keep the item’ title and price, but this would make the
cart store’s structure complex and would require additional logic fixes.

Instead, we can create a computed detailedItems list with the help of the pizzas
store.

Within the cart.ts store, we will add a detailedItems computed property, which
will be the joined array from items and from the pizzasStore.pizzas of the pizzas
store, as in Example 9-12.

Example 9-12. Cart store with detailedItems computed property

import { defineStore } from 'pinia’';
import { usePizzasStore } from './pizzas';

export const useCartStore = defineStore('cart', () => {

/).

const detailedItems = computed(() => {
const pizzasStore = usePizzasStore();

return items.map(item => { (2]
const pizza = pizzasStore.pizzas.find(
pizza => pizza.id === item.id

)

Displaying Cart Items with Actions | 231

const pizzaPrice = pizza?.price ? +(pilzza?.price) : 0;

return { (3]
...item,
title: pizza?.title,
price: pizza?.price,
total: pizzaPrice * item.quantity

}

b
b

return {

Y/
detailedItens @

}
s

© Get the initial list of pizzas from the store using usePizzaStore
© Filter the relevant pizzas presented in the cart
© Format the cart items’ information to return

O Return the filtered and formatted array detailedItems

In Cart.vue, we will replace the cart.items with cart.detailedItens in the v-for
loop, as shown in Example 9-13.

Example 9-13. Using detatiledItens to display more information

<ul class="cart__list" v-show="showCartDetails">
<li
v-for="(item, index) in cart.detailedItems" "
:key="1tem.1d"
class="cart__list-item">
{{index + 1}}. {{ item.title }}
${{ item.price }} x
{{ item.quantity }}
= ${{ item.total }}
</1i>

© Iterate the cart.detailedItens array to display cart’s items

Now, when we click on the cart text, the cart items list will display the item’s name,
price, quantity, and total cost per item (Figure 9-9).

232 | Chapter9: State Management with Pinia

Figure 9-9. Cart items list displayed with more information

We have successfully displayed the cart items’ details. Next we can add the ability to
be able to remove items from the cart.

Removing Items from the Cart Store

For each item in the cart’s list, we will add a Remove button to be able to remove it
from the cart. We will also add a Remove all button to remove all items from the cart.
The template section of Cart.vue will look like Example 9-14.

Example 9-14. Cart component with Remove and Remove all buttons

<div class="cart__list" v-show="showCartDetails">
<div v-if="cart.total === 0">No items in cart</div>
<div v-else>

<1t
v-for="(item, index) in cart.detailedItems"
:key="1tem.1d" class="cart__list-item"

{{index + 1}}. {{ item.title }}
${{ item.price }} x
{{ item.quantity }}
= S${{ item.total }}
<button @click="cart.remove(item.id)">Remove</button> "
</1i>

<button @click="cart.clear">Remove all</button> E’
</div>
</div>

@ The Remove button binds to the cart.remove method, which takes the item’s id
as an argument

® The Remove all button binds to the cart.clear method

In cart.ts, we will add the remove and clear methods, as shown in Example 9-15.

Removing Items from the Cart Store | 233

Example 9-15. Cart store with remove and clear methods

/..

export const useCartStore = defineStore('cart', () => {

Y/

const remove = (id: string) => {
const index = items.findIndex(item => item.id === id)
if (index > -1) {

items.splice(index, 1)

}

}

const clear = () => {
items.length = 0

}

return {
Y/
remove,
clear

}

b

And that’s it! Vue removes the item from the cart when we click the Remove button.
And it will empty the cart when we click the Remove all button; see Figure 9-10.

Figure 9-10. Cart items with Remove and Remove all buttons

If you are building the cart store using Options API, you can use
cart.$reset() to reset the store’s state to its initial state. Other-
wise, you must manually reset the store’s state, as we did in the
clear method.

We can also use the Vue Devtool tab (“Vue Developer Tools” on page 6) in the brows-
er’s Developer Tools to inspect the cart store’s state and getters. The cart and pizzas
store will be listed under the Pinia tab (Figure 9-11).

234 | (Chapter9: State Management with Pinia

Figure 9-11. Cart and pizzas stores in Vue Devtools

We have explored how to build stores using Pinia and Composition API. We have
also explored different approaches, such as combining stores and using the store’s
state in external composables. What about testing Pinia stores? Let’s explore that in
the next section.

Unit Testing Pinia Stores

Unit testing a store is similar to regular unit testing a function. For Pinia, before run-
ning the actual tests, we need to create a Pinia instance using createPinia and acti-
vate it with the setActivePinia() method from the pinia package. Example 9-16
shows how we write the test of adding an item to a cart for our cart store.

Example 9-16. Cart store test suite for adding items

import { setActivePinia, createPinia } from 'pinia';
import { useCartStore } from '@/stores/cart';

describe('Cart store', () => {
let cartStore;

beforeEach(() => { (1]
setActivePinia(createPinia());
cartStore = useCartStore();

s

it('should add item to cart', () => {
cartStore.add({ id: '1', quantity: 1 });
expect(cartStore.items).toEqual([{ id: '1', quantity: 1 }1);
b;
bs

@ We create and activate a new Pinia instance before each test run.

This code follows the common testing syntax supported by Jest and Vitest testing
frameworks. We will explore more details on writing and running unit tests in “Vitest

Unit Testing Pinia Stores | 235

as a Unit Testing Tool” on page 253. For now, we will explore how to subscribe to
store changes and add side effects to store actions.

Subscribing Side Effects on Store Changes

One significant advantage of Pinia is the ability to extend the store’s functionalities
and implement side effects using plugins. With this ability, we can easily subscribe to
changes in all the stores or in a specific store to perform additional actions like syn-
chronizing data with the server when needed.

Take the following cartPlugin, for instance:

//main. ts
import { cartPlugin } from '@/plugins/cartPlugin’
Y/

const pinia = createPinia()
pinia.use(cartPlugin)

app.use(pinia)

/).
The cartPlugin is a function that receives an object containing a reference to the app
instance, the pinia instance, the store instance, and an options object. Vue will trig-
ger this function once for every store in our application. To make sure we are sub-
scribing only to the cart store, we can check the store’s id (see Example 9-17).

Example 9-17. Cart plugin

//src/plugins/cartPlugin.ts
export const cartPlugin = ({ store}) => {
if (store.$id === 'cart') {
Y/
}
}

Then we can subscribe to the cart store changes using the store.$subscribe
method, as in Example 9-18.

Example 9-18. Cart plugin subscribing to store changes

//src/plugins/cartPlugin.ts
export const cartPlugin = ({ store}) => {
if (store.$id === 'cart') {
store.S$subscribe((options) => {
console.log('cart changed', options)

b

236 | Chapter9: State Management with Pinia

When we add an item to the cart, the cartPlugin will log the message to the console
(Figure 9-12).

Figure 9-12. Log the store changes using plugin

The options object received by the $subscribe method contains the events object,
which contains the current event’s type (add), the previous value (oldvalue), the cur-
rent values passed to the event (newValue), the storeld, and the type of the event
(direct).

Similarly, we can add a side effect to the cart store’s add action using store.$on
Action (Example 9-19).
Example 9-19. Cart plugin subscribing to store’s adding action

//src/plugins/cartPlugin. ts

export const cartPlugin = ({ store}) => {

if (store.$id === 'cart') {
store.SonAction(({ name, args }) => {
if (name === 'add') {
console.log('item added to cart', args)
}
b
}

}

When we add an item to the cart, the cartPlugin will log the new item added to the
cart (Figure 9-13).

Figure 9-13. Cart plugin logging stores adding action

Subscribing Side Effects on Store Changes | 237

With $subscribe and $onAction, we can add side effects such as logging and com-
municating with external API services such as updating the user’s cart in the server,
etc. Additionally, if we have an $onAction and $subscribe in the same plugin, Vue
will trigger the $onAction first, followed by the relevant $subscribe.

Using Side Effects

It’s crucial to note that Vue triggers every side effect we add to the
store. For example, for Example 9-19, Vue will activate the side
effect function for every action executed in the store. Hence, we
must be very cautious when adding side effects to the store to avoid
performance issues.

Summary

In this chapter, we learned how to use Pinia to build stores and use them in our appli-
cation with the help of Composition API. We also learned how to destructure and
pass the store’s state to external composables with reactivity and how to subscribe to
store changes and add side effects to store actions. You are now ready to create a
complete data flow from building a centralized data store, using it in different compo-
nents, and connecting between components through the store.

The next chapter will explore a different aspect of Vues capabilities in enhancing the
user experience: adding animations and transitions to our application and compo-
nents.

238 | Chapter9: State Management with Pinia

CHAPTER 10
Transitioning and Animation in Vue

We have explored all the crucial aspects of building a working Vue application,
including handling routes and data flow with proper state management. This chapter
will explore a unique Vue feature for enhancing the user experience: animation and
transitions, using transition components, hooks, and CSS.

Understanding (SS Transitions and (SS Animations

CSS animations are the visual effects of a state change on a specific element or com-
ponent, with no limit on the number of states. A CSS animation can start automati-
cally and go into a loop without explicit triggering. In contrast, CSS transition is an
animation that responds to a change between two states only, from average to hover
for a button or from hidden to visible for a tooltip. To define a CSS animation, we
often use the @keyframes rule and then apply it to the target element using the
animation property. For example, we can define a simple animation effect for a
button:

@keyframes pulse {

0% {
box-shadow: 0 0 0 Opx rgba(0, 0, 0, 0.5);
}
100% {
box-shadow: 0 0 0 20px rgba(0, 0, 0, 0);
}
}
.button {

animation: pulse 2s infinite;
box-shadow: Opx Opx 1px 1px #0000001a;
}

239

We defined a simple animation effect, pulse, and applied it to any element with but
ton class, where the box shadow will expand and shrink in a loop, lasting two sec-
onds. This effect will run infinitely if the element exists in the DOM.

Figure 10-1. Indefinite pulse animation effect

Meanwhile, we can use the transition property to define a transition effect for a
specific element when the user hovers over it:
.button {

transition: background-color 0.5s ease-in-out;

}

.button {
background-color: #ff0000;

}
In this code, we created a simple transition effect for the button element: the back-
ground color will change from the default color to red on hovering, with a delay of
0.5 seconds, with a smoothing effect of ease-in-out. Alternatively, we can also use
JavaScript and other animation libraries to define transition and animation program-
matically using JavaScript.

Transition and animation offer users a significantly smoother experience when using
the application. However, working with transition and animation can sometimes be
challenging. As a framework focusing on the view layer, Vue provides a set of APIs to
help us create smooth, beautiful animations and transition effects for components
and routes, with CSS and/or JavaScript, in a more straightforward manner. One is the
transition component, which we will discuss in the following section.

Transition Component in Vue.js

The transition component is a wrapper component that allows us to create a transi-
tion for a single element with two available transition states: enter and leave. The
component provides a prop name as the name of the desired transition effect. Vue will
compute the relevant transition classes with the name as their prefix and the direction
state of the transition (to, active, or from) as their suffix, as seen here:

<name>-[enter | leave]-<transition-direction-state>

240 | Chapter 10: Transitioning and Animation in Vue

For example, we can use a slidein transition effect on an element:

<transition name="slidein">
<ul class="pizza-list">
/** code for rendering pizza's card... */

</transition>

Vue will generate a set of classes, which are described in Table 10-1.

Table 10-1. Generated transition classes for the slide-in transition effect

Classes Description

.slidein-enter-from Class selector for the starting state of the entering transition

.slidein-enter-active Class selector for defining the duration and delay of transition when the element is actively
entering transition

.slidein-enter-to (lass selector for the ending state of the entering transition
slidein-leave-from (lass selector for the starting state of the leaving transition
slidein-leave-to (lass selector for the ending state of the leaving transition

slidein-leave-active (lass selector for defining the duration and delay of transition when the element is active in
the middle of leaving transition

The enter state means the element starts the process of transitioning to visible mode
in the browser’s display, while the leave state indicates the opposite. We can combine
with v-show, which toggles the element’s CSS display property, or v-if attribute,
which inserts the piece to the DOM conditionally. We will add the v-show to the ul
component of our code example:
<transition name="slidein">
<ul class="pizza-list" v-show="showList">
/** code for rendering pizza's card... */

</transition>
Now we can use the previous classes to define the transition named slidein with the
CSS transition property and the target CSS property or properties to perform the
effect.

The following is an example implementation for the slide-in transition effect:

.slidein-enter-to {
transform: translateX(0);

}

.slidein-enter-from {
transform: translateX(-100%);

}

.slidein-leave-to {
transform: translateX(100%);

}

Transition ComponentinVuejs | 241

.slidein-leave-from {
transform: translateX(0);

}

.slidein-enter-active,
.slidein-leave-active {
transition: transform 0.5s;

}
In this code, before the entering transition, the browser will reposition the ul element
horizontally to the left of the viewport using translateX(-100%), then move it back
to the correct position with translateX(@) in slidein-enter-to. The same applies
to the leaving transition, except that the element will move to the viewport’s right
instead of the left. Both changes will be on the transform property, with a duration of
0.5 seconds, as stated in the slidein-enter-active and slidein-leave-active
classes.

To see the effect in action, we can add a small timeout to change the value of the
searchResults data property:

import { ref } from "vue";
const showList = ref(false);

setTimeout(() => {
showList.value = true;
}, 1000);
The Vue engine will add or remove each class as appropriate. We add another time-
out to change the value of showList back to false, and Vue will trigger the transition
effect again, except it is for the leave state (Figure 10-2).

We have implemented a simple effect using the transition component with a single
impact of slidein. How about combining different effects, such as slidein for the
entering state and rotate for the leaving state? For such cases we use custom transi-
tion class attributes, which we will discuss in the next section.

242 | Chapter 10: Transitioning and Animation in Vue

Figure 10-2. Transition effect for the pizza list when showList is true

Transition Componentin Vuejs | 243

Using Custom Transition Class Attributes

Besides auto-generating the classes according to the name attribute, Vue also lets us
specify the custom classes for each transition class using the following relevant props:
enter-class, enter-active-class, enter-to-class, leave-class, leave-active-
class, and leave-to-class. For example, we can define the custom classes for the
rotate transition effect on leaving the state:

<transition name="slidein" leave-active-class="rotate">
<ul class="pizza-list" v-show="showList">
/** code for rendering pizza's card... */

</transition>

In the style section, we use @keyframes controls to define the animation effect for
the rotate transition with keyframe offsets of 0%, 50%, 90% and 100%:

@keyframes rotate {
0% {
transform: rotate(0);

}
50% {
transform: rotate(45deg);

}
90% {
transform: rotate(90deg);

}
100% {
transform: rotate(180deg);
}
}
Then we can assign the animation effect rotate to animation property of the rotate
class, at a duration of 0.5 seconds:
.rotate {
animation: rotate 0.5s;
}
Let’s set the initial value of showList to true and a timeout of 1000 milliseconds to
change it to false. While the effect on entering for the ul element is still slidein, the
effect on leaving is now an animation of rotation starting from 45 degrees, then 90
degrees, and finally 180 degrees. See Figure 10-3 for an illustration.

import { ref } from "vue";
const showlList = ref(true);
setTimeout(() => {

showList.value = false;
}, 1000);

244 | (Chapter 10: Transitioning and Animation in Vue

Figure 10-3. Rotating effect on transition using keyframes

You can assign multiple classes to these props, separated by a single space, to apply
various effects to a specific transition state. This feature is helpful when you want to
integrate animation from external CSS libraries, such as Bootstrap, Tailwind CSS, or
Bulma, with their classes.

Our component now has the transition effect whenever toggling the value of show
List. However, we often want to animate the element when it appears on the screen
after the page is loaded and without additional interaction. To do so, we can use the

appear prop.

Adding Transition Effect on the Initial Render with appear

When we set the appear prop to true on the transition element, Vue will automati-
cally add the enter-active and enter-to classes to the component when mounting
to the DOM, triggering the transition effect. For instance, to have the slidein impact
applied on the initial render of the ul component, we only need to add appear prop
to the transition element:
<transition name="slidein" appear>
<ul class="pizza-list">
/** code for rendering pizza's card... */

</transition>

Transition Componentin Vuejs | 245

The browser now will apply the slidein effect on the UT’s initial appearance of the ul
element.

We have learned how to use the transition component to create a smooth transition
effect for a single element. However, this component is not useful when we want to
animate multiple parts simultaneously and in an orderly fashion. To do this, we have
transition-group, which we will discuss next.

Building Transition for a Group of Elements

The transition-group component is a particular version of the transition, aiming
to provide animation support to a group of elements. It accepts the same props as
transition and is handy when we want to animate each item in a list, such as a list of
pizzas or users. Nevertheless, unlike the transition element, transition-group sup-
ports rendering a wrapper element using the tag prop, and all the child elements will
receive the same transition classes but not the wrapper (if one exists).

Take our list of pizzas, for instance. We can use the transition-group to animate
each pizza card with the fadein effect when it appears on screen and wrap the cards
under a ul element:

<transition-group name="fadein" tag="ul" appear>
<1li v-for="pizza in searchResults" :key="pizza.id">
<PizzaCard :pizza="pizza" />
</1i>
</transition-group>

Using key Attribute

You must use the key attribute on each list element for Vue to track
the changes in the list and apply the transition effect accordingly.

Vue will add the relevant classes fadein-enter-active, fadein-enter-to, fadein-
leave-active, fadein-leave-to to each 11 element, which we define with the fol-
lowing CSS rules:

.fadein-enter-active,
.fadein-leave-active {
transition: all 2s;

}

.fadein-enter-from,
.fadein-leave-to {

opacity: 0;

transform: translateX(20px);

}

246 | Chapter 10: Transitioning and Animation in Vue

That’s it. Each pizza card in our list now appears with a fading effect and a slight
slide-in transition from the right when loading the component for the first time.
Whenever we filter the list using the search box, the new cards will appear with the
same effect, while the old cards will disappear with the opposite effect: fading out and
sliding out to the right (Figure 10-4).

Figure 10-4. Fading effect on searching in list

Adding More Effects on the Movement

You can also add more effects to the moving items using the
<effect>-move class (like fadein-move). This solution can be
smoother when things move around in the list.

So far so good. We have explored how to use transition and transition-group
components. The next step is to learn how to combine these components with the
router-view element to create a smooth transition when navigating between routes.

Building Transition for a Group of Elements | 247

Creating Route Transitions

Beginning with Vue Router 4.0, we no longer can wrap the router-view component
with the transition element. Instead, we combine the usage of the Component prop
exposed by the v-lot API from the router-view, and the dynamic component, as
shown in the following code:
<router-view v-slot="{ Component }">
<transition name="slidein">
<component :is="Component" />
</transition>
</router-view>
The Component prop refers to the target component that Vue renders in place of the
router-view placeholder. We can then use the component element to generate the
component dynamically and wrap it with the transition element to apply the
slidein effect. By doing so, whenever we navigate a different route, there will be an
animation effect: sliding in for the page entering and sliding out for the page leaving.

There is a minor issue here, however. When we navigate a different route, note that
the new page’s content may appear before the previous page’s content finishes the ani-
mation for leaving and disappears. In such cases, we can use mode prop with the value
out-in to ensure the new content will enter and start animating only after the previ-
ous content has disappeared entirely from the screen:
<router-view v-slot="{ Component }">
<transition name="slidein" mode="out-in">
<component :is="Component" />
</transition>
</router-view>
Now, whenever we navigate to a different route, such as moving from / to /about, the
About view will appear only after the Home view disappears.

To this point, we have explored how to create transition effects using name and cus-
tom transition classes. While these are sufficient to create smooth transition effects
with custom animation classes for our application in most scenarios, we may find
other cases where we want to use third-party JavaScript animation libraries for better
transition effects. We need a different approach for such cases, allowing us to plug in
custom animation control using JavaScript. We will learn how to do that in the next
section.

Using Transition Events to Control Animation

In contrast to the custom classes, Vue exposes some appropriate transition events for
both transition components to emit. These events are before-enter, enter, after-
enter, and enter-cancelled for the entering state of an element, and before-leave,

248 | Chapter 10: Transitioning and Animation in Vue

leave, after-leave, and leave-cancelled for its leaving form. We can bind these
events to the desired callbacks and control the transition effect using JavaScript.

For instance, we can use the before-enter, enter, afterEnter events to control the
animation of the slidetin effect on a page transitioning:

<router-view v-slot="{ Component }">
<transition
@before-enter="beforeEnter"
@enter="enter"
@after-enter="afterEnter"
:css="false"
>

<component :is="Component" />

</transition>

</router-view>

Using the css Prop

When using the callbacks approach, we can use the css prop to
disable the default and any possible overlapping CSS transition
classes.

In the script section, we can define the callbacks for each event:
import { gsap } from 'gsap'

const beforeEnter = (el: HTMLElement) => {
el.style.transform = "translatex(20px)";
el.style.opacity = "0";

i

const enter = (el: HTMLElement, done: gsap.Callback) => {
gsap.to(el, {
duration: 1,
x: 0,
opacity: 1,
onComplete: done,
b;
1

const afterEnter = (el: HTMLElement) => {
el.style.transform = "";
el.style.opacity = "";
b
In this code, we use the gsap (GreenSock Animation Platform) library to animate the
element when it enters the DOM. We define the following:

beforeEnter
Callback to set the initial state of the element, including setting the opacity to
hidden and repositioning the element 20px from the origin

Using Transition Events to Control Animation | 249

enter
Callback to animate the element using gsap. to function’

afterEnter
Callback to set the element’s visibility state and the position after the animation
finishes

Similarly, we can use the before-leave, leave, and after-leave events to animate
the element when it leaves the DOM (such as a sliding-out effect) with the animation
library of our choice.

Summary

In this chapter, we learned how to use the transition component and the available
hooks to create smooth transition effects from one route to another. We also learned
how to make group transitions and use the transition component to animate ele-
ments within a segment.

In the next chapter, we will discover another significant aspect of web development:
testing. We will learn how to test composables with Vitest and components with the
Vue Test Utils library and then develop a complete end-to-end testing plan with Play-
wright for our application.

1 This function receives a target element and optional object containing all properties for animation. See
https://oreil.ly/XNgFb.

250 | Chapter 10: Transitioning and Animation in Vue

https://oreil.ly/XNgFb

CHAPTER 11
Testing in Vue

To this point, we have learned about developing a complete Vue application from
scratch with different Vue APIs. Our application is now ready for deployment, but
before we do that, we need to make sure that our application is bug-free and ready for
production. This is where testing comes in.

Testing is crucial to any application development, as it helps to increase code confi-
dence and quality before releasing it to production. In this chapter, we will learn
about the different types of testing and how to use them in Vue applications. We will
also explore the various tools, such as Vitest and Vue Test Utils, for unit testing and
Playwright]S for end-to-end (E2E) testing.

Introduction to Unit Testing and E2E Testing

Software development has both manual and automated testing practices and tech-
niques to ensure your application works as expected. While manual testing requires a
tester to interact with the software manually and can be expensive, automated testing
is mainly about executing a predefined test script containing a set of tests in an auto-
mated manner. The collection of automated tests can validate simple to more com-
plex application scenarios, from a single function to a combination of different parts.

Automated testing is more reliable and scalable than manual testing, assuming we
write the tests correctly, and performs the following testing processes:

251

Unit testing

The most common and lowest level of testing in software development. We use
unit testing to validate a unit of code (or code block) that performs a specific
action, such as functions, hooks, and modules. We can combine unit testing with
test-driven development (TDD)' as a standard development practice.

Integrating testing

This testing type validates the integration of different unit blocks of code. Inte-
grating testing aims to assert the flow of logic functions, components, or mod-
ules. Component testing integrates testing with its internal logic as a unit test. We
also mock most upstream services and other functions outside the test scope to
ensure testing quality.

End-to-end (E2E) testing

The highest level of testing in software development. We use E2E testing to vali-
date the entire application flow from the client side to the backend, usually by
simulating actual user behaviors. There would not be any mocked services or
functions in E2E testing, as we want to test the entire application flow.

Test-driven development (TDD) means you design and write the
test cases first (red phase), work on the code to pass the tests (green
phase), and improve the code implementation (refactor phase). It
helps to verify the logic and design before actual development.

These three testing types form a pyramid of testing, as shown in Figure 11-1, where
the focus should be mainly on the unit tests, then integration testing, leaving the
smallest number to E2E testing as it is primarily for sanity and can be expensive to
trigger. Since we create an application from any components, services, and modules,
performing unit testing for each isolated function or feature can be sufficient for
keeping your codebase’s quality at the minimum cost and effort.

And as the primary ground for the testing system in our application, we start with
unit tests using Vitest.

1 If you are new to TDD, start with Learning Test-Driven Development by Saleem Siddiqui (O’Reilly).

252

| Chapter 11: Testing in Vue

https://oreil.ly/TqUwM

Figure 11-1. Pyramid of testing

Vitest as a Unit Testing Tool

Vitest is the test runner for unit testing built on Vite for Vite-powered projects. Its
API is similar to Jest and Chai while offering a more modular approach to testing.
Focusing on speed and developer experience, Vitest offers several significant features,
including multithreading workers, TypeScript and JSX support, and component test-
ing for frameworks such as Vue and React.

To use Vitest, we need to install it as a dev dependency in our project:
yarn add -D vitest

Then in the package. json file, we can add a new script command to run our tests in
the watch mode:
"script": {

"test": "vitest"

}

Alternatively, during the Vue project initialization, we can choose
to install Vitest as a unit testing tool (“Create a New Vue Applica-
tion” on page 9), and Vite will take care of the rest, including some
sample tests as the starter.

Once we run the command yarn test in the terminal (or command line), Vitest will
automatically detect the test files whose name contains the pattern .spec. or .test.
in the project directory. For example, a test file for the useFetch hook will be either
useFetch.spec.ts or useFetch.test.ts. Whenever you change any test file, Vitest
will rerun the test in your local environment.

Vitest as a Unit Testing Tool | 253

https://oreil.ly/1upy0

Using vitest with Extra Commands

You can specify the mode for the vitest command, such as vitest
watch for watch mode explicitly or vitest run for a one-time run
on all the tests. Vite will automatically switch to the single run
mode when using the vitest command alone in a continuous inte-
gration (CI) environment.

We can further customize the settings for Vitest using the command parameters or
the Vite config file vite.config. js in the next section.

Configuring Vitest Using Parameters and Config File

By default, Vitest will scan for tests starting from the project folder as its current
directory. We can specify a target folder for Vitest to check by passing the folder path
as an argument to the test command, such as the tests folder within the source src
directory:

"script": {

"test": "vitest --root src/tests"

}

In this chapter, we will put our tests under the tests folder, with
the test file name convention <test-file-name.test>.ts (such as
myComponent.test.ts).

We can also specify the test files to run by passing the file path as an argument to the
yarn test command:

yarn test src/tests/useFetch.test.ts
This command is handy when working on a file and wanting to enable the watch
mode for that test file exclusively.
We also need to set the environment parameter to jsdom (JSDOM?) as the DOM
environment runner for our Vue project:

"script": {

"test": "vitest --root src/tests --environment jsdom"

}

Without setting the environment, Vitest will use the default environment node, which
is unsuitable for testing UI components and interactions.

2 JSDOM is an open source library that acts as a headless browser that implements the web standards, provid-
ing a simulated environment for testing any web-related code.

254 | Chapter 11: Testing in Vue

Instead of using the command parameters, we can also modify the vite.config.js
file to configure our Vitest runner, using the field test with the relevant properties
root and environment:
export default defineConfig({
/**other settings */
test: {
environment: 'jsdom',
root: 'src/tests
}
b
You also need to add the reference to Vitest using the <reference> tag within this file

by adding the following line to the top of the vite.config. ts file:
//] <reference types="vitest" />

As a result, Vite will know that we are using Vitest as the test runner and will provide
the relevant type definitions for the test field in the config file for TypeScript type
checking.

We also can turn on the global mode for the Vitest APIs across the entire project, so
we don’t need to import any function explicitly from the vitest package into our test
files. We can do this by enabling the globals flag of the test object in the
vite.config.ts:

/// <reference types="vitest" />
/*...1lmports...*/

export default defineConfig({
/**other settings */
test: {
environment: 'jsdom',
root: 'src/tests
globals: true,
}
b

Once globals is enabled, for TypeScript to be able to detect the availability of Vitest
APIs as global, we still have one more step to perform: adding vitest/globals type
definitions to the types array in the tsconfig. json file:

//tsconfig. json

"compilerOptions": {
"types": ["vitest/globals"]

With these settings, we are now ready to start writing our tests.

Configuring Vitest Using Parameters and Config File | 255

Writing Your First Test

Following the TDD approach, let’s start with a simple test to check if a function to
filter an array based on a given string and an array element’s property key is working
as expected.

We will create a new file, filterArray.test.ts, in the src/tests folder and another
one, filterArray.ts in the src/utils folder. The filterArray.ts should export a
function filterArray, which takes three arguments (the original array to filter of
type ArrayObject, a string property key, and the string term to filter with) and
returns the filtered elements of type ArrayObject:

type ArrayObject = { [key: string]: string };

export function filterArray(
array: ArrayObject[],
key: string,
term: string

): ArrayObject[] {
// code to filter the array
return [];

}

{ [key: string]: string } is a type for an object with a string
key and a string value. Specify using type instead of the generic
Object (similar to using any) to avoid the potential bug of passing
the wrong object type to the function.

In the filterArray.test.ts file, we will import the filterArray function and
model its functionality. We will use the 1t() method and expect() from the @vitest
package to define a single test case, and to assert the expected result, respectively:

import { it, expect } from '@vitest'
import { filterArray } from '../utils/filterArray’

it('should return a filtered array', () => {
expect()
b

We can remove the import { it, expect } from @vitest line if
we have globals set to true in the vite.config.ts file or the
command line with the - -globals parameter.

256 | Chapter 11: Testing in Vue

The 1t() method takes a string representing the test case’s name (should return a
filtered array), a function containing the test logic to run, and an optional timeout
for waiting for the test to complete. By default, we have five seconds for the tests
timeout.

We can now implement the test logic for our first test case. We also assume that we
have a list of pizzas that we need to filter by title containing Hawaiian:

import { it, expect } from '@vitest'
import { filterArray } from '../utils/filterArray'

const pizzas = [
{
id: "1",
title: "Pina Colada Pizza",
price: "10.00",
description:
"A delicious combination of pineapple, coconut, and coconut milk.",
quantity: 1,

id: "4",
title: "Hawaiian Pizza",
price: "11.00",
description:
"A delicious combination of ham, pineapple, and pineapple.",
quantity: 5,

id: "5",
title: "Meat Lovers Pizza",
price: "13.00",
description:
"A delicious combination of pepperoni, sausage, and bacon.",
quantity: 3,
1
1

it('should return a filtered array', () => {
expect(filterArray(pizzas, 'title', 'Hawaiian'))

b
expect() returns a test instance that has various modifiers such as not, resolves,
rejects, and matcher functions like toEqual and toBe. While toEqual performs a
deep comparison for equality on the target object, toBe performs an additional check
to the target value’s instance reference in the memory. In most scenarios, using
toEqual is good enough for validating our logic, such as checking the returned value
to match our desired array. We will define our target result array as follows:

Writing Your First Test | 257

const result = [
{
id: "4",
title: "Hawaiian Pizza",
price: "11.00",
description:
"A delicious combination of ham, pineapple, and pineapple.",
quantity: 5,
1
1

Let’s modify our pizzas to ensure it contains elements of result before passing it to
the filterArray function:

const pizzas = [
{
id: "1",
title: "Pina Colada Pizza",
price: "10.00",
description:
"A delicilous combination of pineapple, coconut, and coconut milk.",
quantity: 1,
1
{
id: "5",
title: "Meat Lovers Pizza",
price: "13.00",
description:
"A delicilous combination of pepperoni, sausage, and bacon.",
quantity: 3,
1
...result

]
Then we use . toEqual() to assert the expected result:

it('should return a filtered array', () => {
expect(filterArray(pizzas, 'title', 'Hawaiian')).toEqual(result)
b
Let’s run our tests in the watch mode using the yarn test command. The test will
fail, and Vitest will display the failure’s details, including the expected result and the
actual result, as seen in Figure 11-2.

258 | Chapter 11: Testing in Vue

Figure 11-2. Test failure details

Part of the TDD approach is to define the tests and watch them fail before imple-
menting the actual code. The next step is working on the filterArray function to
make the test pass with the minimum code required.

Here is an example implementation of filterArray using filter() and tolLower
Case():

type ArrayObject = { [key: string]: string };

export function filterArray(

array: ArrayObject[],

key: string,

term: string

. ArrayObject[] {

const filterTerm = term.toLowerCase();

~

return array.filter(
(item) => item[key].toLowerCase().includes(filterTerm)

);

Writing Your First Test | 259

With this code, our test should pass (Figure 11-3).

v tests/filterArray.test.ts (1)

Test Files 1 passed (1)
Tests 1 passed (1)
Start at 12:26:54
Duration 5ms

IBESS) waiting for file changes...
press h to show help, press q to quit

Figure 11-3. Test passes

At this point, you can create more tests to cover the rest of the function’s scenarios.
For example, when the key doesn’t exist in the array’s element (item[key] is
undefined), or when the term is case-insensitive:

it("should return a empty array when key doesn't exist", () => {

expect(filterArray(pizzas, 'name', 'Hawaiian')).toEqual([])

b

it('should return matching array when term is upper-cased', () => {
expect(filterArray(pizzas, 'name', 'HAWAIIAN')).toEqual(result)
b
In the terminal, you will see the tests displayed with the relevant name (Figure 11-4)
in a flat order.

IRERI tests/filterArray.test.ts x1

» tests/filterArray.test.ts (3)
v should return a filtered array
v should return a empty array when key doesn't exist
% should return matching array when term is upper-cased

Figure 11-4. Displaying the tests in a flat order

As the number of tests in a file and the number of test files grow, the flat order can be
hard to read and understand. To make it readable per functionality, use describe()
to group the tests into logical blocks, each with the appropriate block name:

describe('filterArray', () => {
it('should return a filtered array', () => {
expect(filterArray(pizzas, 'title', 'Hawaiian')).toEqual(result)
1))
it(should return a empty array when key doesn't exist’, () => {
expect(filterArray(pizzas, 'name', 'Hawaiian')).toEqual([])

b

it('should return matching array when term is upper-cased', () => {

260 | Chapter 11: Testingin Vue

expect(filterArray(pizzas, 'name', 'HAWAIIAN')).toEqual(result)
b
b

Vitest will display the tests in a more organized hierarchy, as seen in Figure 11-5.

» tests/filterArray.test.ts (3)
» filterArray (3)
v should return a filtered array
v should return a empty array when key doesn't exist
x should return matching array when term is upper-cased

Figure 11-5. Displaying the tests per group

We can move pizzas and result inside the describe block. This
ensures the scope of these variables is relevant only within the fil
terArray test group. Otherwise, once this test suite runs, these two
variables will be available in the global test scope and can overlap
other variables with the same name, causing unwanted behavior.

At this point, we have learned how to write tests for a function with the TDD
approach using it(), expect(), and grouping them with expect(). While TDD is
handy if we understand all the desired scenarios for our function, it can be challeng-
ing for beginners to adapt and follow. Consider combining TDD and other
approaches rather than following a single process.

You can also use test() for it(), assert(), and for expect() as
their alternatives. While its name should start with “should do
something” representing a coherent sentence (such as “it should
return a filtered array”), test can be any meaningful name.

Since composables in Vue are JavaScript functions that use Vue’s Composition API,
using Vitest to test them is simple. Next, we will explore how to write tests for com-
posables, starting with the non-lifecycle ones.

Testing Non-Lifecycle Composables

We will start with a composition function, useFilter, that returns an object contain-
ing the following variables:

filterBy
The key to filtering by

filterTerm
The term to filter by

Testing Non-Lifecycle Composables | 261

filteredArray

The filtered array

order

The order of the filtered array, with the default value of asc

It accepts a reactive array, arr, a key, and a term as initial values for the filtered array,
the filter key, and the filter term.

The implementation for useFilter is as follows:

/** composables/useFilter.ts */
import { ref, computed, type Ref } from 'vue'

type ArrayObject = { [key: string]: string };

export function useFilter(
arr: Ref<ArrayObject[]>,
key: string,
term: string

) { O
const filterBy = ref(key) (2]
const filterTerm = ref(term)
const order = ref('asc')

const filteredArray = computed(() => (3)
arr.value.filter((item) =>
item[filterBy.value]?.toLowerCase().1includes(
filterTerm.value.toLowerCase())
).sort((a, b) => {

if (order.value === 'asc') {
return a[filterBy.value] > b[filterBy.value] ? 1 : -1
} else {
return a[filterBy.value] < b[filterBy.value] ? 1 : -1
}
1))
)s
return {
filterBy,
filterTerm,
filteredArray,
order,
}
}
© Declare arr as a reactive Ref type of ArrayObject and key and term as string
types
Create filterBy, filterTerm, and order as ref() with the initial values
Create filteredArray as computed(), reacting to changes of filterBy, filter
Term, order, and arr
262 | Chapter11: Testingin Vue

In the tests/ folder, we create a file useFilter.test.ts to test useFilter, with the

following setup:
import { useFilter } from '@/composables/useFilter'

const books = [
{
id: '1',
title: 'Gone with the wind',
author: 'Margaret Mitchell',
description:
'A novel set in the American South during the Civil War and Reconstruction',
1,
{
id: '2',
title: 'The Great Gatsby',
description:
'The story primarily concerns the mysterious millionaire Jay Gatsby',
author: 'F. Scott Fitzgerald',
1
{
id: '3',
title: 'Little women',
description: 'The March sisters live and grow in post-Civil War America',
author: 'Louisa May Alcott',
}J
1

describe('useFilter', () => {

H

Since books is a constant array and not a Vue-reactive object, in our test case we will
wrap it with ref() to enable its reactivity before passing it to the function for testing:

import { useFilter } from '@/composables/useFilter'
import { ref } from 'vue'

const books = ref([
Y/
s

const result = [books.value[0]]

We also declare the expected result based on the books array value. Now we can
write our first reactivity test case, where we assert the useFilter function to return

the updated filtered array when changing filterTerm:

it(
'should reactively return the filtered array when filterTerm is changed',
O ={
const { filteredArray, filterTerm } = useFilter(books, 'title', '');

filterTerm.value = books.value[0].title;
expect(filteredArray.value).toEqual(result);
b

Testing Non-Lifecycle Composables

263

When we run the test, it should pass with the output shown in Figure 11-6.

Figure 11-6. All the tests for useFilter pass

We can continue writing the test cases for filterBy and order in the same approach
and have useFilter fully test-covered. In this example of useFilter, we asserted a
composable that uses ref and computed under the hood. We can apply the same
asserting practice to composables with similar APIs like watch, reactive, provide,
etc. However, for composables that use onMounted, onUpdated, onUnmounted, etc., we
use a different approach to test them, discussed next.

Testing Composables with Lifecycle Hook

The following composable, useFetch, uses onMounted to fetch data from an APIL:

/** composables/useFetch.ts */

import { ref, onMounted } from 'vue'

export function useFetch(url: string) {
const data = ref(null)
const error = ref(null)
const loading = ref(true)

const fetchData = async () => {

try {
const response = await fetch(url);

if (!response.ok) {
throw new Error(Failed to fetch data for ${url}’);
}

data.value = await response.json();
} catch (err: any) {
error.value = err.message;
} finally {
loading.value = false;
}
b

onBeforeMount(fetchData);

return { data, error, loading }

}

264 | Chapter11: Testingin Vue

The function receives a url parameter; fetches data from the given url before mount-
ing the component; updates data, errors, and loading values accordingly; and returns
them. Since this composable relies on onBeforeMount of a component’s lifecycle to
fetch data, we must create a Vue component and simulate the mounting process to
test it.

We can do this by using createApp from the vue package and creating a
component/app that uses useFetch in its setup hook:

/** tests/useFetch.test.ts */
import { createApp, type App } from

' '

vue

function withSetup(composable: Function): [any, App<Element>] {
let result;

const app = createApp({
setup() {
result = composable();
return () => {};
1
b;

app.mount(document.createElement("div"));

return [result, appl;

}

The withSetup function takes a composable and returns an array of result of the
composable execution and the app instance created. We can then use withSetup in all
our test cases to mimic the creation process of a component that uses useFetch:

import { useFetch } from '@/composables/useFetch’

describe('useFetch', () => {
it('should fetch data from the given url', async () => {
const [result, app] = withSetup(() => useFetch('your-test-url'));

expect();
b;
b

However, there is one issue here. useFetch is using fetch API to fetch data; it is not a
good practice to use the actual API in the test for these reasons:

o The test will fail if the API is down or the URL is invalid.
o The test will fail if the API is slow.

Thus, we need to mock the fetch API to simulate the response by using the vi.spyOn
method:

import { vi } from 'vitest'

const fetchSpy = vi.spyOn(global, 'fetch');

Testing Composables with Lifecycle Hook | 265

We can place the fetchSpy declaration within the describe section to ensure the iso-
lation of this spy from other test suites. And in the beforeEach hook, we need to reset
every mocked implementation and value before running the test case with the mock
Clear() method:

describe('useFetch', () => {
const fetchSpy = vi.spyOn(global, 'fetch');

beforeEach(() => {
fetchSpy.mockClear();
H;

it('should fetch data from the given url', async () => {
Y/
D
s

Let’s write our test. We will first mock the fetch API to return a successful response
with the mockResolvedValueOnce method:
it('should fetch data from the given url', async () => {
fetchSpy.mockResolvedValueOnce({
ok: true,

json: () => Promise.resolve({ data: 'test' }),
} as any);

const [result, app] = withSetup(() => useFetch('your-test-url'));
b;

After that, we can assert the data value of the result to be equal to the mocked data:

it('should fetch data from the given url', async () => {
[/

const [result, app] = withSetup(() => useFetch('your-test-url'));

expect(result?.data.value).toEqual({ data: 'test' });
bs

We can also expect calling the fetch with the given url with the toHaveBeenCalled
With method:

i1t('should fetch data from the given url', async () => {
Y/

expect(fetchSpy).toHaveBeenCalledWith('your-test-url');
bs

And finally, we need to unmount the app to clean up the test environment:

it('should fetch data from the given url', async () => {
Y/

await app.unmount();

s

266 | Chapter11: Testingin Vue

At this point, we expect the test to pass successfully. Unfortunately, the test will still
fail. The reason is that while the fetch API is asynchronous, the component’s lifecycle
hook beforeMount isn’t. The hook execution can finish before the fetch API is
resolved, causing the data value to stay unchanged (Figure 11-7).

Figure 11-7. Failing test for useFetch

To fix this issue, we need help from another package, Vue Test Utils (@vue/test-
utils), the official testing utility library for Vue. This package offers a set of utility
methods to help test Vue components. We will import and use flushPromises from
this package to wait for the fetch API to resolve before asserting the data value:

import { flushPromises } from '@vue/test-utils'

it('should fetch data from the given url', async () => {
[/

await flushPromises();

expect(result.data.value).toEqual({ data: 'test' });
b;

The test should pass successfully (Figure 11-8).

Figure 11-8. Passing the test for useFetch

Testing Composables with Lifecycle Hook | 267

https://oreil.ly/dZILU

You can also assert the loading value by placing the assertion before the flush
Promises call:

it('should change loading value', async () => {

Y/
expect(result.loading.value).toBe(true);
await flushPromises();

expect(result.loading.value).toBe(false);
10N
Another benefit of mocking the fetch API is that we can simulate the failure
response by using the mockRejectedValueOnce method and test our composable’s
error-handling logic:

it('should change error value', async () => {
fetchSpy.mockRejectedValueOnce(new Error('test error'));

const [result, app] = withSetup(() => useFetch('your-test-url'));
expect(result.error.value).toBe(null);
await flushPromises();

expect(result.error.value).toEqual(new Error('test error'));
;s
That’s it. You can apply the same mocking approach to external test APIs in your
applications or mock any dependent functions that are already tested and reduce the
complexity of your test suites. We have successfully tested our useFetch method with
Vitest and Vue Test Utils.

Next, we will explore how to test a Vue component with Vitest and Vue Test Utils.

Testing Components Using Vue Test Utils

The Vue engine uses the configurations of the Vue components to create and manage
component instance updates on the browser DOM. Testing components means we
will test the components’ rendering results to the DOM. We set our
test.environment to jsdom in the vite.config.ts for simulating the browser envi-
ronment, which doesn't exist in the Node.js environment where the tests are running.
We also use the methods like mount, shallowMount, etc., from the @vue/test-utils
package to help mount the component and assert the rendering results from a virtual
Vue node to a DOM element.

Let’s look at our PizzaCard.vue component, shown in Example 11-1.

268 | Chapter 11: Testingin Vue

Example 11-1. PizzaCard component

<template>
<article class="pizza--details-wrapper"s>

<p>{{ pizza.description }}</p>
<div class="pizza--inventory"s>
<div class="pizza--inventory-stock">Stock: {{ pizza.quantity || © }}</div>
<div class="pizza--inventory-price">$ {{ pizza.price }}</div>
</div>
</article>
</template>
<script setup lang="ts">
import type { Pizza } from "@/types/Pizza";

import type { PropType } from "vue'";

const props = defineProps({
pizza: {
type: Object as PropType<Pizza>,
required: true,
1,
b;

</script>

We will create a test file tests/PizzaCard.test.ts to test the component. We will
import the shallowMount method from @vue/test-utils to mount the element
within the file. The shallowMount function receives two main arguments: the Vue
component to mount, and an object containing additional data for mounting the
component, such as props” values, stubs, etc. The following code demonstrates how
the test file looks, with the initial value for the pizza prop:

/** tests/PizzaCard.test.ts */
import { shallowMount } from '@vue/test-utils';
import PizzaCard from '@/components/PizzaCard.vue';

describe('PizzaCard', () => {
i1t('should render the pizza details', () => {

const pizza = {
id: 1,
title: 'Test Pizza',
description: 'Test Pizza Description',
image: 'test-pizza.jpg',
price: 10,
quantity: 10,

¥

const wrapper = shallowMount(PizzaCard, {
props: {
pizza,

1

bs
expect();

b;

bs

Testing Components Using Vue Test Utils | 269

Using shallowMount vs mount

The shallowMount method is a wrapper around the mount method
with its shallow flag active. It is best to use shallowMount to render
and test the component without caring about its children. If you
want to try the children components, use the mount method
instead.

The shallowMount method returns a Vue instance, wrapper, with some helper meth-
ods to allow us to mimic Ul interactions with the component. Once we have the
wrapper instance, we can write our assertions. For example, we can use the find
method to find the DOM element with the class selector pizza- -details-wrapper
and assert its existence:

/** tests/PizzaCard.test.ts */
/). ..

expect(wrapper.find('.pizza--details-wrapper')).toBeTruthy();

Similarly, we can assert the text content of the .pizza--inventory-stock
and .pizza- -inventory-price elements with the text() method:

/** tests/PizzaCard.test.ts */
/).

expect(
wrapper.find('.pizza--inventory-stock').text()
).toBe(Stock: ${pizza.quantity}');
expect(wrapper.find('.pizza--inventory-price').text()).toBe('$ ${pizza.price}’);
The shallowMount method also provides the html property to assert the rendered
HTML of the component. We can then use toMatchSnapshot to test the HTML snap-
shot of the element:

/** tests/PizzaCard.test.ts */

expect(wrapper.html()).toMatchSnapshot();

Upon running the test, the testing engine will create a snapshot file, Pizza
Card.test.ts.snap, and store the HTML snapshot of the component. On the next
test run, Vitest will validate the component’s HTML rendering against the existing
snapshot, ensuring the component’s stability in complex app development.

270 | Chapter 11: Testing in Vue

Using Snapshots

If you change the component’s template, the snapshot test will fail.
To solve this issue, you must update the snapshot by running the
test with the -u flag as yarn test -u.

Due to the limitations of snapshot testing, you should use it only
for the components that are not likely to change. A more recom-
mended approach is to test HTML rendering in E2E tests using
Playwright]S.

The instance received from the find() method is a wrapper around the DOM ele-
ment, with various methods to assert the element’s attributes and properties. We will
add another test case where we will assert the src and alt attributes of the img ele-
ment using the attributes() method:

/** tests/PizzaCard.test.ts */

describe('PizzaCard', () => {
it('should render the pizza image and alt text', () => {
Y/

const wrapper = shallowMount(PizzaCard, {
props: {
pizza,
1
b;

const img = wrapper.find('img"')

expect(img.attributes().alt).toEqual(pizza.title);
expect(img.attributes().src).toEqual(pizza.image);
b;
b;

Let’s make the test fail by changing the pizza.title to a text of Plneapple pizza. As
Figure 11-9 shows, the test will fail and show this message.

Figure 11-9. Assertion of image alt text failed

Testing Components Using Vue Test Utils | 271

As this screenshot shows, the received value is Test Pizza, highlighted in red, and
the expected value is green. We also know the reason for the failure: “expected Test
Pizza to deeply equal Pineapple pizza,” with a pointer to the line where the test
fails. This information lets us quickly fix the test or check our implementation to
ensure the expected behavior is correct.

Other practical methods for asserting the component’s interaction and data commu-
nication are the trigger() method of the DOM wrapper instance and emitted() of
the wrapper instance. We will modify the implementation of the PizzaCard compo-
nent to add an “Add to cart” button and test the button’s behavior.

Testing Interaction and Events of a Component

We will add the following code to the PizzaCard component for a new Add to cart
button:

/** src/components/PizzaCard.vue */

<template>
<section v-if="pizza" class="pizza--container"s
<l-- ... -->
<button @click="addCart">Add to cart</button>
</section>
</template>
<script lang="ts" setup>

Y/

const emits = defineEmits(['add-to-cart'])

const addCart = () => {
emits('add-to-cart', { id: props.pizza.id, quantity: 1 })

}

</script>
The button accepts a click event, which triggers the addCart method. The addCart
method will emit a add-to-cart event with the pizza.id and the new quantity as the
payload. We can then test the addCart method by asserting the emitted event and its
payload. First, we will look for the button using the find() method, and then trigger
the click event using the trigger() method:

/** tests/PizzaCard.test.ts */

describe('PizzaCard', () => {
it('should emit add-to-cart event when add to cart button is clicked', () => {

/)

const wrapper = shallowMount(PizzaCard, {
props: {
pizza,
1
b;

272 | Chapter 11: Testing in Vue

const button = wrapper.find('button');
button.trigger('click');
b
b

We will execute the wrapper.emitted() function to receive a map of emitted events,
with the key being the event name, and the value is an array of received payloads.
Each payload is an array of arguments passed to the emits() function apart from the
event name. For instance, when we emit the add-to-cart event with the payload
{ id: 1, quantity: 1 }, the emitted event will be { add-to-cart: [[{ id: 1,

quantity: 1 }]] }.
We can now assert the emitted event and its payload with the following code:

/** tests/PizzaCard.test.ts */

describe('PizzaCard', () => {
it('should emit add-to-cart event when add to cart button is clicked', () => {

/).

expect(wrapper.emitted()['add-to-cart']).toBeTruthy();
expect(wrapper.emitted()['add-to-cart'][0]).toEqual([
{ id: pizza.id, quantity: 1 }
Ds
b;
bs

Testing a Component That Uses a Pinia Store

You can use createTestingPinia() from the @pinia/testing
package to create a testing Pinia instance and plug it in the compo-
nent as a global plugin during mounting. This will allow you to test
the component without mocking the store or using the real store
instance.

The test passes successfully, as expected. At this point, we have covered the basic test-
ing of components and composables with Vitest and Vue Test Utils. The following
section will look at using Vitest with a GUI

Using Vitest with a GUI

In some scenarios, looking at the terminal (or command line) outputs can be com-
plex, and having a Graphic User Interface (GUI) can be beneficial. For such cases,
Vitest offers @vitest/ut as its extra dependency along the command parameter - -ut.
To start using the Vitest UL, you need to install @vitest/uti with the following com-
mand in the terminal:

yarn add -D @vitest/ui

Using VitestwithaGUI | 273

When running the command yarn test --uti, Vite will start a local server for its UI
app and launch it on the browser, as shown in Figure 11-10.

Figure 11-10. Vitest UI

On the left-side pane, we can see the list of test files with their status, indicated by
relevant colors and icons. On the main dashboard is a quick summary of the test
results, including the number of tests, the number of passed tests, and the number of
failed tests. We can select a single test using the left-side pane and review each test
case report, its module graph, and the implementation code for the tests. Figure 11-11
shows the test report for the PizzaCard component.

Figure 11-11. Vitest Ul test report for PizzaCard component

You can also run the tests using the GUI by clicking the Run (or Rerun all) tests icon,
as seen in Figure 11-12.

274 | (Chapter 11: Testing in Vue

Figure 11-12. Run tests using the GUI

Using the GUI can be beneficial in some cases, but it can also be a distraction when
you are working on a project and need to watch the tests during development. In this
case, using the terminal may be a better option, and to review the test results, you can
choose between the GUI, or the test coverage runner, which we will discuss next.

Using Vitest with a Coverage Runner

Writing tests is straightforward, but knowing if we write enough tests to cover all the
scenarios of our test target is not. To create a sufficient testing system for our applica-
tion, we use code coverage practice, which measures how much of our code we cover
with our tests.

There are various tools for measuring code coverage and generating understandable
reports. One of the most common tools is Istanbul, a JavaScript testing coverage tool.
With Vitest, we can integrate Istanbul into our testing system using the @vitest/
coverage-istanbul package. To install the package, run the following command in
the terminal:

yarn add -D @vitest/coverage-istanbul

After installing the package, we can configure the test.coverage section in the
vite.config. ts file with the provider as istanbul:

/** vite.config.ts */
export default defineConfig({
Y/
test: {
Y/
coverage: {
provider: 'istanbul'
}
}
b

Using Vitest with a Coverage Runner | 275

We also add a new script command in package. json to run the tests with coverage
reports:

{
Y/
"scripts": {
Y/
"test:coverage": "vite test --coverage"
}
}

When we run our tests using the command yarn test:coverage, we will see the cov-
erage reports displayed in the terminal, as shown in Figure 11-13.

Figure 11-13. Coverage report in terminal

The Istanbul report tool will show you the percentage of your code in each file your
tests cover during the testing execution process, dividing it into four categories: state-
ments, branches, functions, and lines. It will also inform you of the line numbers of
the uncovered code in the last column. For example, in Figure 11-13, for
composables/useFetch.ts, we saw 13,18 in the Uncovered Lines column, indicating
that our test for this file didn't cover the code in line 13 and line 18.

However, the terminal report is not always readable. For such a purpose, Istanbul will
also generate a coverage folder in the test.root directory defined in vite.con
fig.ts, or the root of the project. This folder contains the HTML reports for the cov-
erage, denoted by index.html. You can open this file in the browser to see a prettier
and more readable version of the coverage report, as shown in Figure 11-14.

276 | Chapter 11: Testing in Vue

Figure 11-14. Coverage report in HTML

If you set the root to point to the src/tests folder, you should
change it to src. Otherwise, Istanbul can’t locate and analyze the
source files’ coverage.

The HTML version displays test coverage by folders and files, with their names on
the first column, File. The second column, with the progress bar, shows the coverage
percentage for each file in colors (green means fully covered, yellow means partly
covered, and red means not meeting the acceptance coverage level). The other col-
umns show the coverage breakdown in statements, branches, functions, and lines.

We can click on each folder name to see the breakdown report per file within this
folder, such as in /composables in Figure 11-15.

Figure 11-15. Coverage report for composables

Using Vitest with a Coverage Runner | 277

You can click on each file name to see the highlights of untested code lines in red and
the number of times a line we covered (like 3x), as shown in Figure 11-16.

Figure 11-16. Coverage report for useFetch

The HTML report version is also interactive during watch mode, meaning that it will
update the coverage report automatically when you change the code or the tests. This
mechanism is handy during development, as you can see the coverage report changes
in real time.

We can also set the coverage threshold for each category using the test.coverage
section in vite.config.ts:

/** vite.config.ts */

export default defineConfig({
Y/
test: {
Y/
coverage: {
provider: 'istanbul',
statements: 80,

278 | (Chapter 11: Testing in Vue

branches: 80,
functions: 80,
lines: 80

}
}
b
In this code, we set the coverage threshold for each category to 80%. If the coverage
percentage for any type is lower than the threshold, the test will fail with an error
message, as seen in Figure 11-17.

Figure 11-17. Error when a test doesn’t meet the coverage threshold

Code coverage is essential for testing since it provides the benchmark to help you
protect your code from bugs and ensure the quality of your application. However, it is
just a tool to help you manage your tests, and you still need to write good tests to
ensure your code quality and standards.

Setting the Threshold Number

Try to keep your coverage threshold number between 80% and
85%. It can be overkill if you set it to more than 85%. If less than
80%, it can be too low since you may miss some edge cases that
cause bugs in your application.

We have explored unit testing using Vitest and other tools like Vue Test Utils for Vue-
specific testing and Istanbul for code coverage. We will move to the next testing level,
where we will learn how to write E2E tests for our application using Playwright]S.

Using Vitest with a Coverage Runner | 279

End-to-End Testing with PlaywrightJS

Playwright]S, or Playwright, is a fast, reliable cross-browser end-to-end testing frame-
work. It supports programming languages besides JavaScript, such as Python, Java,
and C#. It also supports multiple browser rendering engines like WebKit, Firefox, and
Chromium, allowing us to perform testing in cross-browser environments on the
same codebase.

To start using Playwright, run the following command:
yarn create Playwright

Yarn will run the creation script for Playwright, with the prompts asking for the test
location (e2e), if we want to install GitHub Actions as the pipeline tool for CI/CD,
and if it should install Playwright browsers. Figure 11-18 shows an example of a con-
figuration for initializing Playwright in our application.

[

HHHEERAEERERGEEEE) 427 /427Getting started with writing end-to-end tests with Playwright:
Initializing project in
v Where to put your end-to-end tests? : ele

v Add a GitHub Actions workflow? (y/N) - false

» Install Playwright browsers (can be done manually via 'yarn playwright install')? (Y/n) - true
Installing Playwright Test (yarn add —-dev @playwright/test)..

arn add v1.22.19

Figure 11-18. Initializing Playwright with prompts

After the initialization process, we will see a new e2e folder in the root of our project,
with a single example.spec. ts file. Also, Playwright will generate a configuration file,
playwright.config.ts, for our project, modifying the package. json with the rele-
vant packages and another test-examples folder containing a working test example
for a todo component using Playwright.

We can now add a new script command in our package. json to run our E2E tests
using Playwright:

"scripts": {
Y/
"test:e2e": "npx playwright test"

}
Similarly, we can add the following command to run the coverage reporter on our
tests:

"scripts": {

[/

"test:e2e-report": "npx playwright show-report"

}

280 | Chapter 11: Testingin Vue

https://oreil.ly/sIUKp

By default, Playwright comes with an HTML coverage reporter, and this reporter
runs when any test fails during the test run. We can try to run the tests using these
commands and see the example tests passed.

Let’s look at the playwright.config.ts and see what it contains:
import { defineConfig, devices } from '@playwright/test';

/** playwright.config.ts */

export default defineConfig({
testDir: './e2e',
fullyParallel: true,
forbidOnly: !!process.env.CI,
retries: process.env.CI ? 2 : 0,
workers: process.env.CI ? 1 : undefined,
reporter: 'html',

use: {

trace: 'on-first-retry',
1
projects: [

{

name: 'chromium',

use: { ...devices['Desktop Chrome'] },
1,
{

name: 'webkit',
use: { ...devices['Desktop Safari'] },
1,
]
b
The configuration file exports an instance created by the defineConfig() method,

based on a set of configuration options with the following main properties:

testDir
The directory where we store the tests. We usually define it during the initializa-
tion process (e2e in our case).

projects
The list of browser projects for running the tests. We can import devices from
the same @playwright/test package and select the relevant setup to define the
browser’s configuration for Playwright to use, such as devices[Desktop Chrome]
for the Chromium browser.

worker
The number of parallel workers to run the tests on. This feature is helpful when
we have many tests and need to run them in parallel to speed up the test process.

use
The configuration object for the test runner, including an optional baseURL as the
base URL and trace to enable the trace recording for failed tests on retry.

End-to-End Testing with Playwright)S | 281

Other properties can customize our Playwright test runner as needed. See the com-
plete list of configuration options at the Playwright documentation.

We will leave the file as is and write our first E2E test for our application. Let’s head to
the vite.config.ts and make sure we have the following configuration for the local
server:

Y/
export default defineConfig({

Y/
server: {
port: 3000
}
b

By setting the port to 3000, we ensure our local URL will always be http://localhost:
3000. Next, we will create a new E2E test file in the e2e folder with the name Pizzas
View.spec.ts, dedicated to testing the “/pizzas” page. The “/pizzas” page uses the
PizzasView view component to display a list of pizzas with the following template:

<template>
<div class="pizzas-view--container"s>
<h1>Pizzas</h1>
<input v-model="search" placeholder="Search for a pizza" />

<li v-for="pizza in searchResults" :key="pizza.id">
<PizzaCard :pizza="pizza" />

</div>
</template>
<script lang="ts" setup>
import { usePizzas } from "@/composables/usePizzas";
import PizzaCard from "@/components/PizzaCard.vue";
import { useSearch } from "@/composables/useSearch";

const { pizzas } = usePizzas();

const { search, searchResults }: PizzaSearch = useSearch({
items: pizzas,
defaultSearch: '',

b;

</script>
We want to write the tests for this page. Like Vitest, we start by wrapping the test file
with a test.describe() block, where we import test from @playwright/test pack-
age. We then ensure the test runner will always navigate to our target page before
testing the page content using the test.beforeEach() hook:

/** e2e/PizzasView.spec.ts */
import { expect, test } from '@playwright/test';

test.describe('Pizzas View', () => {
test.beforeEach(async ({ page }) => {
await page.goto('http://localhost:3000/pizzas');

282 | Chapter 11: Testingin Vue

https://oreil.ly/nXapE

s
19K

We also ensure the page is closed after finishing the tests using the test.afterEach()
hook:

/** e2e/PizzasView.spec.ts */

test.describe('Pizzas View', () => {

/).

test.afterEach(async ({ page }) => {
await page.close();
b;
b

We can start writing our first test for the page, such as checking the page title. We can

use the page.locator() method to locate the page element. In this case, it is the h1
element and asserts its content to be the text Pizzas:

/** e2e/PizzasView.spec.ts */

test.describe('Pizzas View', () => {

Y720

test('should display the page title', async ({ page }) => {
const title = await page.locator('h1');
expect(await title.textContent()).toBe('Pizzas');
b;
b

We can run the test using the yarn test:e2e command and see the test passed
(Figure 11-19).

Figure 11-19. Test report showing passing E2E tests with Playwright

Great! We can add more tests to the file, such as checking the search functionality. We
can locate the search input element using its tag name or the data-testid attribute
as a better approach. To use the data-testid attribute, we need to add it to the input
in the PizzasView component template:

End-to-End Testing with Playwright)S | 283

<input
v-model="search"
placeholder="Search for a pizza"
data-testid="search-input"
/>
Then, we can locate the element using the data-testid attribute in our new test and
fill it with the search term Hawaiian:

/** e2e/PizzasView.spec.ts */

test.describe('Pizzas View', () => {

[/

test('should search for a pizza', async ({ page }) => {
const searchInput = await page.locator('[data-testid="search-input"]");

await searchInput.fill('Hawaiian');
s
s
To assert the result of the search, we will head to the PizzaCard implementation and
add the data-testid attribute to the container element with the value of
pizza.title:

<!-- src/components/PizzaCard.vue -->
<template>
<article class="pizza--details-wrapper" :data-testid="pizza.title">
<l--,,.-->
</article>
</template>

Back to our PizzasView.spec.ts file, we can assert the visibility of pizza card with
the data- testid attribute containing the search term on the page:

/** e2e/PizzasView.spec.ts */

test.describe('Pizzas View', () => {
Y/
test('should search for a pizza', async ({ page }) => {
const searchInput = await page.locator('[data-testid="search-input"]");

await searchInput.fill('Hawaiian');
expect(await page.isVisible('[data-testid*="Hawaiian"]')).toBeTruthy();

s
s

We can rerun the test suite and see the tests passed (Figure 11-20).

284 | Chapter 11: Testing in Vue

Figure 11-20. Test report showing the search tests passed

We can also click on each test displayed in the report to view the test details, includ-
ing the test steps, their execution time, and any errors that occurred during the test
execution in a target browser environment (Figure 11-21).

Figure 11-21. Details report for a single test run on Chromium

End-to-End Testing with Playwright)S | 285

You must use await for page.isVisible() method, as it returns a
Promise. Otherwise, the test will fail since Playwright will execute
the assertion before the isVisible() process returns the result.

Let’s edit our search test to make it fail by changing the search term to Cheese instead
of Hawaitian:

/** e2e/PizzasView.spec.ts */

test.describe('Pizzas View', () => {
Y/
test('should search for a pizza', async ({ page }) => {
const searchInput = await page.locator('[data-testid="search-input"]");

await searchInput.fill('Cheese');
expect(await page.isVisible('[data-testid*="Hawaiian"]')).toBeTruthy();
s
b;

We can rerun the test suite and see if the test failed (Figure 11-22).

Figure 11-22. Test report showing the search test failed

286 | Chapter 11: Testingin Vue

The report shows which step the test failed. Let’s debug it.

Debugging E2E Tests Using Playwright Test Extension
for VSCode

We can install the Playwright Test for VSCode extension to debug a failed test. This
extension will add another section on the Testing tab of VSCode, and auto-detect the
relevant Playwright tests within the project, as shown in Figure 11-23.

Figure 11-23. Testing tab displays the Playwright tests in the project

We can run the tests or a single test using the actions available on this view. We can
also add breakpoints (denoted by the red dot) to debug a target test (Figure 11-24).

Figure 11-24. Adding breakpoints to debug a test

To start debugging, navigate to the search test in the Test Explorer pane and click on
the “Debug” icon (Figure 11-25). Hovering on the “Debug” icon will display the text
“Debug Text”

Debugging E2E Tests Using Playwright Test Extension for VSCode | 287

https://oreil.ly/9zlFB

Figure 11-25. Run a test in debug mode

Upon running, Playwright will open a browser window (such as Chromium) and exe-
cute the test steps. Once the test runner reaches the breakpoint, it will stop and wait
for us to continue the execution manually. Then we can hover over the variables to
see their values or head to the testing browser to inspect the elements (Figure 11-26).

Figure 11-26. Debugging the search test

What's left is to fix the test and continue the debugging process until the test passes.

We have learned how to create basic E2E tests with Playwright and how to debug
them with the help of external tools. Playwright provides many other features, such as
generating the test based on the actual interaction with the application or performing
accessibility testing with the @axe-core/playwright package. Check out other fea-
tures and see how Playwright can help create better E2E tests for your application.

Summary

This chapter introduced the concept of testing and how to use Vitest as a unit testing
tool for Vue applications. We learned how to write basic tests for components and
composables with Vitest and Vue Test Utils and how to use external packages such as
a coverage runner and Vitest Ul for a better UI experience. We also explored creating
E2E tests with Playwright]S, ensuring code confidence throughout our application.

288 | (Chapter 11: Testing in Vue

CHAPTER 12

Continuous Integration/Continuous
Deployment of Vue.Js Applications

The previous chapter showed us how to set up testing for our Vue application, from
unit tests with Vite to E2E tests with Playwright. With our application covered with
proper tests, we can move on to the next step: deployment.

This chapter will introduce you to the concept of CI/CD and how to set up a CI/CD
pipeline using GitHub Actions for your Vue application. We will also learn how to use
Netlify as our deployment and hosting platform for our application.

Cl/CD in Software Development

Continuous integration (CI) and continuous delivery (CD) are combined software
development practices aiming to speed up and stabilize the software development
and delivery process. CI/CD includes monitoring the software lifecycle effectively
through an automated integration, testing, and continuous software deployment to
production process.

CI/CD offers many benefits to software development, including:

« Faster software delivery with automated deployment
« Stronger collaboration between different teams
o Better software quality with automated testing
o Faster response to bugs and software issues in a more agile approach
In short, CI/CD contains three main concepts: continuous integration, continuous

delivery, and continuous deployment, and when combined, they form a robust soft-
ware development process known as the CI/CD pipeline (Figure 12-1).

289

Continuous Continuous

Continuous integration delivery deployment

Release to Deploy to
[Develop]—P[Test HMefge] | ‘ | repository \ | ,‘

Figure 12-1. CI/CD pipeline

Continuous Integration

Continuous integration enables developers to integrate code into a shared repository
frequently and simultaneously while working independently. With each code integra-
tion (or merge), we validate it using an automated build of the application and an
automated system of different levels of testing. If there are conflicts between new and
old code versions or any problems with the new code, we can detect and fix them
quickly. Standard tools for continuous integration include Jenkins, CircleClI, and Git-
Hub Actions, which we will discuss in “CI/CD Pipeline with GitHub Actions” on page
290.

Continuous Delivery

The next step after a successful continuous integration is continuous delivery. Con-
tinuous delivery automates the release of the validated application’s code to the shared
repository, making it ready for production deployment. Continuous delivery requires
continuous integration since it assumes the code is always verified. It also includes
another series of automated testing and release automation.

Continuous Deployment

Continuous deployment is the CI/CD pipeline’s final step, automatically deploying
the validated code to production. It relies significantly on a well-tested automation
system for the codebase. Continuous deployment is the most advanced step of the
CI/CD pipeline. It is only necessary for some projects, especially when manual appro-
val is necessary before production deployment.

The three stages of the CI/CD pipeline form a more secure and flexible application
development and deployment process. In the next section, we will learn how to set up
a CI/CD pipeline for our Vue application using GitHub Actions.

Cl/CD Pipeline with GitHub Actions

Provided by GitHub, GitHub Actions is a platform-agnostic, language-agnostic, and
cloud-agnostic CI/CD platform. It is straightforward to use and free for projects hos-
ted on the GitHub platform. Each CI/CD pipeline in GitHub Actions contains single

290 | Chapter 12: Continuous Integration/Continuous Deployment of Vue.Js Applications

or multiple workflows, denoted by a YAML file. Each workflow includes a series of
jobs and executes in parallel or sequentially. Each job has a series of steps containing
many sequential actions. And each action is a standalone command or a script that
gets executed in the designated runner environment (Example 12-1).

Example 12-1. Example GitHub workflow file

name: Example workflow
on: [push, pull_request]

jobs:
first-job:
steps:
- name: First step
run: echo "Hello world"
- name: Second step
run: echo "Second step"
second-job:

steps:
- name: First step
run: echo "Do something in second job."

The workflow file follows YAML syntax. You can learn how to use
YAML syntax at the workflow syntax for GitHub Actions
documentation.

To start using GitHub Actions, within our Vue project directory, we will create a new
directory named .github/workflows with a workflow file, ci.yml. This file will con-
tain the configuration for our CI/CD pipeline. For example, the following is a simple
workflow file that runs our unit tests:

name: CI for Unit tests
on:
push:
branches: [main] (1]
pull_request:
branches: [main] (2
jobs:
unit-tests:
timeout-minutes: 60
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3 G)
- uses: actions/setup-node@v3 (4)
with:
node-version: 18
name: Install dependencies (5]
run: npm i
name: Execute unit tests
run: npm run test:coverage (6
name: Uploading artifacts (7]

(I/CD Pipeline with GitHub Actions | 291

https://oreil.ly/uIIkh
https://oreil.ly/uIIkh

uses: actions/upload-artifact@v3
with:
name: test-results
path: test-results/
retention-days: 30

The workflow will be triggered when there is a push to the main branch or
When there is a pull request to merge to main

Checkout the testing branch to a runner environment using built-in GitHub
Actions, actions/checkout

O Set up the node environment with Node.js version 18.x using built-in GitHub
Actions, actions/setup-node

Install dependencies
Run unit tests with reporting coverage

© Upload the test report to GitHub Actions as artifacts

Each job is a standalone process and does not share the same envi-
ronment. Therefore, in its steps, we need to install dependencies
for each job separately.

On GitHub, we can navigate to the Actions tab to see the status of our workflow
(Figure 12-2).

Figure 12-2. GitHub Actions page with workflow running

292 | Chapter 12: Continuous Integration/Continuous Deployment of Vue.Js Applications

GitHub displays the workflows according to the commits, with their status and the
target branch (main). We can then view the status of each job within a workflow by
clicking on the job name, such as how we can see the status of the unit-fests job in
Figure 12-3.

Figure 12-3. Unit-tests of the job’s running status in steps

Once the workflow finishes running, we can see the test report uploaded to the Arti-
facts section (Figure 12-4).

Figure 12-4. Artifacts section with test report

CI/CD Pipeline with GitHub Actions | 293

We also can check the status result of a workflow, broken down by jobs, by clicking
on the workflow name (Figure 12-5).

Figure 12-5. Workflow status page

GitHub Actions will mark any failed job and provide summary annotations of the
failures. We can also rerun a failed job by clicking on the Re-run jobs button.

And with that, we have created our first CI/CD pipeline for our Vue application.
Alternatively, you can use available templates from the official GitHub Actions mar-
ketplace to create your workflows, with built-in support for different programming
languages, frameworks, services, and cloud providers (Figure 12-6).

294 | Chapter 12: Continuous Integration/Continuous Deployment of Vue.Js Applications

https://oreil.ly/ch9V2
https://oreil.ly/ch9V2

Figure 12-6. GitHub Actions marketplace

Based on our workflow example, you can create more workflows for your application
if required or extend the current workflow to include more steps, such as deploy-
ment. In the next section, we will learn how to set up continuous deployment for our
application using Netlify.

Continuous Deployment with Netlify

Netlify is a cloud platform that offers a wide range of services for hosting modern
web applications, including hosting, serverless functions APIs, and CI/CD integra-
tion. It is free for personal projects while offering a generous free tier for commercial
ones.'

To deploy our Vue project on Netlify, we need to create a Netlify account and log in.
Once logged in to the dashboard, we can head to the Sites tab and click on the Add
new site button to import our project from the GitHub provider for automatic
deployment, or deploy manually (Figure 12-7).

1 Other alternatives are Azure Static Web Apps and Vercel.

Continuous Deployment with Netlify | 295

https://oreil.ly/uLHpQ

Figure 12-7. Netlify dashboard

Next, we select the Git provider for our project (GitHub) and authorize Netlify to
access our GitHub account. Once confirmed, we can choose the repository for our
project and click on the Deploy site button to start the deployment process. After
completing the deployment, we can view our site deployment’s status and other
details, such as a PR preview on the Site overview tab of the dashboard (Figure 12-8).

Figure 12-8. Netlify site overview

Once deployed successfully, Netlify will provide a temporary URL to access the appli-
cation. In fact, you can configure your site’s custom domain by navigating to the
Domain Management section (Figure 12-9).

296 | Chapter 12: Continuous Integration/Continuous Deployment of Vue.Js Applications

Figure 12-9. Netlify domain settings

By default, once integrated, Netlify will automatically deploy your application when-
ever a new commit is merged to the main branch. Additionally, it will generate a pre-
view build for each pull request. Within this view, you can also configure additional
settings such as build command, deployment context for continuous deployment,
and environment variables for your application. Netlify also offers build hooks as a
unique URL for triggering build and deployment with a third-party service like Git-
hub Actions workflow via HT'TP requests (Figure 12-10).

Figure 12-10. Build a hook section in Site settings

Continuous Deployment with Netlify | 297

You can manually build your application using the yarn build
command locally, then drag and drop the dist folder to the Netlify
app to deploy your application to a temporary URL provided by
Netlify.

Deploying with Netlify CLI

Alternatively, we can install the Netlify CLI as a global tool in our local machine,
using the command npm install -g netlify-cli. With this CLI installed, we can
initialize our project for Netlify using the command netlify init. This command
will prompt us to log in to the relevant account (GitHub) and prepare our project for
deployment. Once initialized and ready, we can run the command netlify deploy
to deploy our project to a temporary URL for previewing or netlify deploy --prod
to deploy to production directly.

We have successfully deployed our first Vue application to Netlify. Other advanced
features Netlify offers include serverless functions, form handling, and split testing.
You can explore these features per the projects requirements using the Netlify official
documentation.

Summary

In this chapter, we have learned about the concept of CI/CD and how to set up a sim-
ple CI/CD process for our Vue application using GitHub Actions. We also learned
about Netlify and how to automatically deploy our application to Netlify hosting. In
the next chapter, we will explore the final aspects of the Vue ecosystem, server-side
rendering (SSR) and static site generation (SSG) using Nuxt.js.

298 | Chapter 12: Continuous Integration/Continuous Deployment of Vue.Js Applications

https://oreil.ly/LInwT
https://oreil.ly/LInwT
https://oreil.ly/6X9F6
https://oreil.ly/6X9F6

CHAPTER 13
Server-Side Rendering with Vue

In the previous chapter, we learned how to set up our Vue application’s complete
CI/CD pipeline. We also learned how to deploy our application using Netlify for pro-
duction. Our application is now ready for users to access via the web. With that, we
have almost finished our journey with learning Vue. This chapter will explore the
other aspect of using Vue, the server-side rendering and static site generation with
Nuxt.js.

Client-Side Rendering in Vue

By default, Vue applications are for client-side rendering, with a placeholder
index.html file, JavaScript file (usually compiled in chunks by Vite for performance
optimization), and other files like CSS, icons, images, etc., for a complete UI experi-
ence. In the initial load, the browser sends a request to the server for the index.html
file. In return, the server will deliver the original placeholder file (often with a single
element with a unique id selector app for the Vue engine to mount the app instance,
and a script tag pointing to the required JavaScript file containing the main code.
Once the browser receives the HTML file, it will start parsing and request additional
resources, such as the desired main. js file, then execute it to render the rest of the
content accordingly (Figure 13-1).

299

Figure 13-1. Flow of rendering a client-side Vue application

From this point on, the application finishes initialization, and the user can start inter-
acting with it. Vue will dynamically handle the view-changing requests by users with
the built-in routing system. However, if you right-click the page and select View page
source, you will see only the code of the original root index.html file but not the cur-
rent Ul view. This behavior can be problematic, especially when building a website or
an app that requires good Search Engine Optimization' (SEO).

In addition, the process of loading and executing JavaScript code before displaying
any content to the user can cause a long waiting time for the user due to factors such
as heavyweight JavaScript files to download, slow networks, the amount of time the
browser takes to paint the content (First Paint), etc. As a result, the whole process can
lead to a slow Time To Interactive? (TTI) and a slow First Contentful Paint® (FCP). All
of these factors affect the overall app performance and user experience and often are
challenging to fix.

In such scenarios, there may be better choices than client-side rendering applications,
such as server-side rendering, which we will explore next.

Server-Side Rendering (SSR)

As its name indicates, server-side rendering (SSR) is an approach to compile every-
thing on the server side into a fully working HTML page and then deliver to the cli-
ent side (browser) on demand, instead of performing on the browser.

To develop a local SSR Vue application, we will need a local server to communicate
with the browser and handle all the data requests. We can do this by installing
Express.js* as our project’s dependency with the following command:

1 SEO is the process of making your app better for search engines to index in the search results.

2 The time when the user can interact with the page.
3 The first time when content is visible to the user.

4 Express.js is a Node.js web application framework.

300 | Chapter 13: Server-Side Rendering with Vue

yarn add express

Once this is installed, we can create a server. js file in our project’s root directly with
the code in Example 13-1 to set up our local server.

Example 13-1. The server. js file for the local server

import express from 'express'
const server = express() (1)

server.get('/', (req, res) => { (2
res.send(’
<!DOCTYPE html>
<html>
<head>
<title>Vue SSR Example</title>
</head>
<body>
<main id="app">Vue SSR Demo</main>
</body>
</html>

b

server.listen(3000, () => { console.log('We are ready to go') }) (4)

© Create a server instance
© Define the handler for any request for the entry URL /”

© The handler will return a string acting as an HTML page that displays Vue SSR
Demo on the browser.

O We set up the local server to run and listen at port 3000.

Within the project’s root directory, we can start our local server using the node
server.js command. Once our server is ready, we must create our application on the
server with the method createSSRApp from the vue package. For example, let’s com-
pose a Vue application that displays a digital clock with the current date and time in a
dedicated file, app. js, with the code in Example 13-2.

Example 13-2. The app. js file for the Digital Clock application
import { createSSRApp, ref } from 'vue'

const App = { (1]
template: °
<h1>Digital Clock</h1>
<p class="date">{{ date }}</p>

Server-Side Rendering (SSR) | 301

<p class="time">{{ time }}</p>

setup() {
const date = ref('');
const time = ref('');

setInterval(() => {
const WEEKDAYS = ['SUN', 'MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT'];
const MONTHS = [
'Jan', 'Feb', 'Mar',
'"Apr', 'May', 'Jun',
'Jul', 'Aug', 'Sep',
'Oct', 'Nov', 'Dev'

1;

const currDate = new Date();

const minutes = currDate.getMinutes();

const seconds = currDate.getSeconds();

const day = WEEKDAYS[currDate.getDay()];

const month = MONTHS[currDate.getMonth()].toUpperCase();

const formatTime = (time) => {
return time < 10 ? "0${time}" : time;

}

date.value =
‘${day}, S${currDate.getDate()} ${month} ${currDate.getFullYear()}"
time.value =
“${currDate.getHours()}:${formatTime(minutes)}:${formatTime(seconds)}"
}, 1000)

return {
date,
time

}

export function createApp() {
return createSSRApp(App)

}
© We define the options for our main application’s component, App.

® We use createSSRApp() to build the application on the server side with App
options.

This file exposes a single method, createApp(), to use in both server and client,
returning a Vue instance ready for mounting.

302 | Chapter 13: Server-Side Rendering with Vue

In our server. js file, we will use this createApp() from app. js to create the server-
side app instance and render it into an HTML formatted string with the renderTo
String() method from the vue/server-renderer package. Once renderToString()
resolves with a content string, we will replace the content in the returned response
with it, as shown in Example 13-3.

Example 13-3. Update server. js to render the app instance into an HTML string

import { createApp } from './app.js'
import express from 'express'
import { renderToString } from 'vue/server-renderer';

const server = express()

server.get('/', (req, res) => {
const app = createApp();

renderToString(app).then((html) => {
res.send(’
<!DOCTYPE html>
<html>
<head>
<title>Vue SSR Demo - Digital Clock</title>
</head>
<body>
<div id="app">${html}</div> @
</body>
</html>
)
s
b;

server.listen(3000, () => { console.log('We are ready to go') })

(1] App instance creation with createApp()
© Place the generated HTML string from renderToString() within a div of #app
as its id.

When we head to http://locahost:3000/, we will see the browser displays only the title,
Digital Clock (Figure 13-2), with the fields date and time empty.

Server-Side Rendering (SSR) | 303

http://locahost:3000/

Figure 13-2. Empty Digital Clock

This behavior happens because we only generate the HTML static code to return to
the client side, but no Vue is available in the browser. The same goes for any interac-
tive behavior, such as the onClick event handler. To solve this interactive problem, we
need to mount our app in hydration mode, allowing Vue to take over the static
HTML and make it interactive and dynamic once the HTML is available on the
browser side. We can do this by defining an entry-client.js, which will use the
createApp() from app.js to get the app instance. The browser will execute this file
and mount the Vue instance to the correct element in the DOM (Example 13-4).

Example 13-4. The entry-client. js file for mounting the app instance in hydration
mode

import { createApp } from './app.js';

createApp().mount('#app');

We will also update the server.js file to load the entry-client.js file in the
browser using the <script> tag, and enable serving client files in the browser
(Example 13-5).

Example 13-5. Update server. js to load entry-client. js in the browser

S/

server.get('/', (req, res) => {
const app = createApp();

304 | Chapter 13: Server-Side Rendering with Vue

renderToString(app).then((html) => {
res.send(’
<!DOCTYPE html>
<html>
<head>
<title>Vue SSR Demo - Digital Clock</title>
<script type="importmap">
{
"imports": {
"vue": "https://unpkg.com/vue@3/dist/vue.esm-browser.js"
}
}
</script>
<script type="module" src="/entry-client.js"></script> ‘9
</head>
<body>
<div id="app">${html}</div>
</body>
</html>
s
s
b

server.use(express.static('.')); 6)
@ Load the source for the vue package using importmap
® Load the entry-client. js file in the browser using a <script> tag

© Enable serving client files in the browser

When we restart the server and refresh the browser, we will see the clock displayed
with the updated date and time.

Figure 13-3. Digital Clock

Using DOM API and Node APl in SSR

You can’t use DOM APIs and web APIs in SSR, since those are
browser-only APIs. You also can’t use Node API for client-side
components only, such as fs for file reader.

Server-Side Rendering (SSR) | 305

We have learned how to create a simple SSR Vue application. Nevertheless, when we
need to handle a more complex application, such as using Vue SFC, code splitting,
Vue Router, which may require window API, and so on, we may need to build an
engine to handle application code bundling, rendering with the right bundled code,
wrapping Vue Router to work, etc., which can be a tedious task.

Instead, we can use a framework that already provides this engine, such as Nuxt.js,
discussed in the next section.

Server-Side Rendering with Nuxt.Js

Nuxt.js (Nuxt) is an open source modular-based SSR framework built on Vue. It
offers many features out of the box, such as file-based routing systems, performance
optimization, different build mode, etc., while focusing on the developer’s experience
(Figure 13-4).

Figure 13-4. Nuxt.js official website

As a modular-based framework, the Nuxt package acts as the core, where we can plug
other Nuxt-supported modules into the app to extend an application’s core function-
ality. You can find the list of available Nuxt modules at Nuxt modules official docu-
mentation, including modules for SEO, PWA, i18n, etc.

Visit Nuxts official documentation to learn more about its API
documentation, installation, and primary use cases for reference.
At the time of writing, Nuxt 3.4.2 is the latest version.

306 | Chapter 13: Server-Side Rendering with Vue

https://oreil.ly/hkdnj
https://oreil.ly/hkdnj
https://oreil.ly/1B2vg

In this section, we will create our Pizza House application featured in Chapter 8 using
Nuxt. We will start with the following command to create a new Nuxt application:

npx nuxi init pizza-house

pizza-house is our project name, and nuxi is the Nuxt CLI that will scaffold a Nuxt
application with the following main files:

app.vue
The root component for the application.

nuxt.config.ts
The configuration file for Nuxt, including setting up the plugins, CSS path, appli-
cation metadata, etc.

Nuxt will create the application with TypeScript support by default.

Nuxt will also create script commands for building and running the application
locally in package. json, as seen in Example 13-6.
Example 13-6. The package. json file for Nuxt application

"scripts": {
"build": "nuxt build",

"dev": "nuxt dev",
"generate": "nuxt generate",
"preview": "nuxt preview",

"postinstall": "nuxt prepare"

1

After running the yarn command to install the dependencies, we can run the yarn
dev command to start the application locally and visit http://localhost:3000 to see the
default Nuxt landing page.

Since Nuxt supports file-based routing using the pages folder, we will now define our
routing systems under this folder:

index.vue
The home page for the application. Nuxt will automatically map this page to the
root path (/).

pizzas/index.vue
The page displaying the list of pizzas, with the path /pizzas.

Server-Side Rendering with Nuxt.Js | 307

pizzas/[id].vue
This is a dynamic nested page, where [1d] is the placeholder for the pizza’s id for
displaying the pizza details. Nuxt will automatically map this page to the
path /pizzas/:id, such as /pizza/1, /pizza/2, etc.

Next, we need to replace the content of app.vue with the code in Example 13-7 to
have the routing system working.

Example 13-7. Update app. vue to use Nuxt’s layout and page components

<template>
<div>
<NuxtLayout>
<NuxtPage/>
</NuxtLayout>
</div>
</template>

NuxtLayout is the layout component for the application, and NuxtPage is the page
component for the application. Nuxt will replace these components with the defined
pages and layout components automatically.

Lets add the code from Example 13-8 to pages/index.vue to display the home page.

Example 13-8. Home page for the Pizza House application

<template>
<h1>This is the home view of the Pizza stores</h1>
</template>

And the code from Example 13-9 to pages/pizzas/index.vue to display the list of
pizzas.

Example 13-9. Pizzas page for the Pizza House application

<template>
<div class="pizzas-view--container">
<h1>Pizzas</h1>

<l v-for="pizza in pizzas" :key="pizza.id">
<PizzaCard :pizza="pizza" />
</1i>

</div>
</template>
<script lang="ts" setup>
import { usePizzas } from "@/composables/usePizzas";
import PizzaCard from "@/components/PizzaCard.vue";

308 | Chapter 13: Server-Side Rendering with Vue

const { pizzas } = usePizzas();
</script>

This page uses the PizzaCard component from Example 11-1 and the usePizzas
composable from composables/usePizzas.ts to get a list of pizzas for displaying,
with the code from Example 13-10.

Example 13-10. Composable for the Pizza House application

import type { Pizza } from "@/types/Pizza";
import { ref, type Ref } from "vue";

export function usePizzas(): { pilzzas: Ref<Pizza[]> } {
return {
pizzas: ref([

id: "1",
title: "Pina Colada Pizza",
price: "10.00",
description:
"A delicious combination of pineapple, coconut, and coconut milk.",
image:
"https://res.cloudinary.com/mayashavin/image/upload/Demo/pina_colada_pizza.jpg",
quantity: 1,
1,
{
id: "2",
title: "Pepperoni Pizza",
price: "12.00",
description:
"A delicilous combination of pepperoni, cheese, and pineapple.”,
image:
"https://res.cloudinary.com/mayashavin/image/upload/Demo/pepperoni_pizza.jpg",
quantity: 2,
1
{
id: "3",
title: "Veggie Pizza",
price: "9.00",
description:
"A delicious combination of mushrooms, onions, and peppers."”,
image:
"https://res.cloudinary.com/mayashavin/image/upload/Demo/veggie_pizza.jpg",
quantity: 1,
1,
D,
IH
}

When we run the application using yarn dev, we will see the home page
(Figure 13-5) and the pizzas page (Figure 13-6), respectively, displayed in the
browser.

Server-Side Rendering with Nuxt.Js | 309

Figure 13-5. Home page for the Pizza House application

Figure 13-6. Pizzas page for the Pizza House application

Now we will implement the pizza details page by adding the code from
Example 13-11 to pages/pizzas/[id].vue.

Example 13-11. Pizza details component

<template>
<section v-if="pizza" class="pizza--container">

310 | Chapter 13: Server-Side Rendering with Vue

<div class="pizza--details">
<h1>{{ pizza.title }}</h1>
<div>
<p>{{ pizza.description }}</p>
<div class="pizza-stock--section">
Stock: {{ pizza.quantity || 0 }}
Price: ${{ pizza.price }}
</div>
</div>
</div>
</section>
<p v-else>No pizza found</p>
</template>
<script setup lang="ts">
import { usePizzas } from "@/composables/usePizzas";

const route = useRoute(); (1]
const { pizzas } = usePizzas();
const pizza = pizzas.value.find(
(pizza) => pizza.id === route.params.id ‘9

);

</script>

© Use useRoute, the global composable from Vue Router, to get the current route’s

information.

® route.params.id is the id of the pizza in the URL.

When we go to /pizzas/1, we will see the pizza details page displayed in the browser

(Figure 13-7).

Figure 13-7. The details page of pizza with id 1

Server-Side Rendering with Nuxt.Js

M

Unlike a regular Vue application, we can’t map the routing params
id to the id props of the PizzaDetails component. Instead, we
need to use the useRoute composable to get the current route’s
information, including its parameters.

Next, we will implement a default layout for our application with a navigation bar. We
will create a new file, layouts/default.vue, with the code from Example 13-12.

Example 13-12. Default layout for the Pizza House application

<template>
<nav>
<NuxtLink to="/">Home</NuxtLink> (1)
<NuxtLink to="/pizzas">Pizzas</NuxtLink>
</nav>
<main>
<slot /> (2]
</nain>
</template>
<style scoped>
nav {
display: flex;
gap: 20px;
justify-content: center;
}
</style>

@ NuxtLink is the Nuxt component for rendering link elements, similar to Router
Link in Vue Router.

® <slot /> is the slot element to render the page’s content.

Nuxt will replace NuxtLayout with the default layout, and we will see the navigation
bar displayed in the browser (Figure 13-8).

Figure 13-8. Default layout for the Pizza House application

312 | Chapter 13: Server-Side Rendering with Vue

We can also create different layout files in layouts and pass the desired layout file
name to the props name of NuxtLayout. Nuxt will pick up the suitable layout compo-
nent to render based on its value. For example, we can create a new layout file, lay
outs/pizzas.vue, with the code from Example 13-13.

Example 13-13. Pizzas layout for the Pizza House application

<template>
<h1>Pizzas Layout</h1>
<main>
<slot />
</main>
</template>

In app.vue, we will pass the layout name to the name props of NuxtLayout condition-
ally (Example 13-14).

Example 13-14. Using pizzas layout for PizzaDetails component

<template>
<NuxtLayout :name="customLayout">
<NuxtPage />
</NuxtLayout>
</template>
<script setup lang="ts">
import { computed } from "vue";

const customLayout = computed(

O =1
const isPizzalayout = useRoute().path.startsWith("/pizzas/");
return isPizzalayout ? 'pilzzas' : 'default';
}
)s
</script>

When we head to /pizzas/1, we will see the pizza details page rendered with the
layouts/pizzas layout (Figure 13-9).

Apart from the pages structure, the rest of the application structure
is the same as a regular Vue application. Hence, converting a Vue
application to a Nuxt application is straightforward.

With SSR, we can achieve a quicker initial page load and better SEO since the
browser receives our app’s fully populated HTML file. However, a disadvantage of

Server-Side Rendering with Nuxt.Js | 313

SSR is that with every browser refresh, the app requires complete reloading, com-
pared to the client-side rendering with single-page application approach.’

Figure 13-9. Pizza details page rendered with custom layout

In addition, since SSR requires populating the page content dynamically on the server
before returning the page content file to the browser, it can lead to a delay in render-
ing the page, and any interaction that requires page content changes can cause multi-
ple server requests, affecting the app’s performance overall. We can use the static side
generator (SSG) approach to address this issue.

Static Side Generator (SSG)

The static side generator (SSG) is a type of server-side rendering. Unlike regular
server-side rendering, SSG will generate and index all the pages in the application at
build time, and serve those pages to the browser on demand. By doing so, it ensures
the initial load and the performance on the client side.

This approach is suitable for applications that dont require
dynamic content, such as blogs, documentation, etc. However, if
your application contains dynamic content such as user-generated
content (authentication, etc.), consider using SSR or a hybrid
approach instead.

5 Single-page application is an approach to dynamically replace the current view with new data without the
need to reload the entire page.

314 | Chapter 13: Server-Side Rendering with Vue

https://oreil.ly/zqTn1
https://oreil.ly/zqTn1

Using SSG in Nuxt is straightforward. We can use the yarn generate command, in
the same codebase. This command will generate the static files for the application in
the dist directory, ready for deployment.

The generate command will generate the static files for the application in the .out
put/public directory, ready for deployment (Figure 13-10).

Server built in 944ms
Generated public .output/public
i Initializing prerenderer
i Prerendering 4 initial routes with crawler

v You can now deploy .output/public to any static hosting!

Figure 13-10. The . output directory after running yarn generate

That’s all it takes. The last step is to deploy the dist directory to a static hosting ser-
vice, such as Netlify, Vercel, etc. These hosting platforms will deliver the static files to
the browser on demand using a Content Delivery Network (CDN) with caches.

Last Words

In this chapter, we learned how to build SSR and SSG applications with Nuxt. With
that, we end our journey together in this book.

We have covered all the basics of Vue, including the core concepts, the Options API,
the lifecycle of a Vue component, and how to use the Composition API effectively to
create a robust and reusable component system in a Vue application. We also learned
how to integrate Vue Router and Pinia to create a fully working Vue application with
routings and data state management. We explored different aspects of developing a
flow for a Vue application, from unit testing with Vitest and E2E testing with Play-
wright to creating a deployment pipeline with GitHub workflows and hosting using
Netlify.

You are now ready to explore more advanced Vue topics, and you have the necessary
skills to build your own Vue projects. So, where should you go from here? A variety
of possibilities await you. Start building your Vue applications and explore the Vue
ecosystem further. If you want to develop content-based sites, consider digging

LastWords | 315

deeper into Nuxt. If you are into making a UI library for Vue, check out Vite and
design systems concepts like atomic design.

Regardless of your choice, the skills you have learned in Vue will always be handy on
your journey to becoming a great frontend engineer and Vue developer. Hopefully
this book will be your companion as a reference and foundation along the way.

Developing web applications, especially with Vue, is fun and exciting. Start creating
and share what you achieve!

316 | Chapter 13: Server-Side Rendering with Vue

Symbols
(pound sign) for v-slot, 88
: (colon), for v-bind, 31
? (question mark) syntax for query field in
passing data between routes, 199
@ (at symbol) for v-on, 41
* (backtick) for multi-level HTML code, 21
{} (curly braces)
binding data with JSX, 177
{{}} (mustache syntax), 22

A
AboutView sample component, 189
actions, stores, 221, 225, 229-233, 237
activeClass, 198
after-enter transition event, 249
after-leave transition event, 249
afterEach hook
E2E testing with Playwright, 282
navigation guard, 204
alias route configuration property, 191
.alt key modifier, 46
anchor, in URLs, 188
animation property, 239
animations, 239
(see also transitions)
controlling with transition events, 249
defining, 239
third-party libraries, 248-250
any type, avoiding, 169
app root component, mounting, 19
appear prop, 245
applications
client-side rendering, 299

Index

conﬁguration options, 9
connecting to databases, 170
creating, 9-11, 18
creating with NPM, 5
directories and file structure, 9
loading, 12
server-side rendering, 300-306
arrays
iterating over with v-for, 35-39
style arrays, 34
two-way binding with v-model, 29
asynchronous calls
E2E testing with Playwright, 286
loading data with Axios, 161, 165-170
reusable fetch component with Axios,
167-171
testing composables, 267
at symbol (@) for v-on, 41
attributes
binding style attributes, 33-35
transition attributes, 244, 245
attrs, functional components and, 178
Axios
advantages, 159
external data incorporation with, 159-171
fetch and, 159, 167-171
installing, 160

B

back(), 214

:backdrop selector, 133

backtick (') for multi-level HTML code, 21
base URLs, 194, 281

before-enter transition event, 249

317

before-leave transition event, 249
beforeCreate() hook

in lifecycle diagram, 69

loading data with Axios, 160

Options API, 66, 72
beforeDestroy() hook, 68
beforeEach hook

E2E testing with Playwright, 282

navigation guard, 204

testing composables, 266
beforeEnter

route configuration property, 191
beforeMount() hook, 66, 146
beforeMounted() hook, 160
beforeResolve navigation guard, 204
BeforeRouteEnter hook, 208
BeforeRouteLeave navigation guard, 208
BeforeRouteUpdate navigation guard, 208
beforeUnmount() hook, 67, 146
beforeUpdate() hook, 67
bindings

classes, 33

custom props, 197

dynamic rendering with component tag

and, 182

event listeners with v-on, 40-46

with JSX and render(), 177

key attribute and, 39

modal elements, 129

one-way, 24, 31

props, 31, 108-112, 197

slots, 85

style attributes, 33-35

template command syntax, 22

two-way, 26-31

with v-bind, 31, 108-112, 182

v-if and, 46

with v-model with lazy modifier, 30

with v-model, 26-31
breakpoints for debugging, 287
browsers

passing query parameters in address bar,

200

Playwright setup, 280

Vue Devtools setup, 6
bubbling and events, 42

C

caching
computed properties, 76
methods, 75
callbacks, 205
(see also lifecycle hooks)
route-level navigation guards, 205
watchers and, 148-151
.capture event modifier, 44
capture phase and events, 42
carts
state management and data flow, 217-218
stores with Pinia, 224-238
subscribing side effects to, 237
testing interactions, 272
cb, in watch() syntax, 148
CDN (Content Delivery Network), 315
children route configuration property, 191
Chrome
V8 engine and, 3
Vue Devtools and, 6
ci.yml file, 291
CI/CD (see Continuous Integration/Continu-
ous Deployment (CI/CD))
classes
adding with RouterView, 196
binding, 33
links, 193, 198
names, 33, 197
transitions, 241, 244, 249
cleanup
test environment, 266
unmounted hook and, 67
Clear(), 266
client-side rendering, 299
close(), modals, 129
code
configuration options for new projects, 10
coverage testing, 275-280, 292
colon (:), for v-bind, 31
compiling
on-demand compilation with Vite, 9
Single-File Components and, 1, 59
type checking and type validation at com-
pile time, 116
component route configuration property, 191
component tag, dynamic rendering with, 182
component(), 54

318 | Index

components, 11

(see also lifecycle hooks; SFC (Single-File
Component); watchers)

computed properties, 75-77

configuring and Options API, 18-21

dynamic rendering with component tag,
182

emitting data between, 107, 117-123

file repository structure, 11

functional, 178-179

h() function parameter, 175

JSX, 176

lifecycle diagram with hooks, 69

methods, 72-75

mixins, 93-97

navigation guards, component-level,
207-208

nested components and data flow, 107-117

passing data with props, 107-117

provide/inject pattern, 19, 123-125

refactoring into SFCs, 58

refs, 91-92

registering components globally, 54

registering JSX, 177

render() syntax, 174

scoped styling components, 90, 97-105

slots, 83-91

state and keep-alive, 183

stores, 225

Teleport, 126-135

testing, 268-273

TypeScript support, 59

wrapping components and Teleport, 127

components folder, 11
composables

component-level navigation guards, 207
location of, 154

names, 154

resources on, 158

server-side rendering with Nuxt, 309
testing, 158, 261-268

using, 154-158

Composition API

composables, 154-158

computed(), 145, 152-153, 221

data handling with reactive(), 138, 142-145
data handling with ref(), 138-143, 145
lifecycle hooks and, 146-148

setup hook and, 64, 137, 141

setup stores, 222
useFetch(), 170
watchers and, 148-151
compute(), 157
computed properties, 75-77, 79
computed property field, 75-77
computed(), 145, 152-153, 221
configuring
applications, 9
CI/CD pipeline, 291
components, Options API, 18-21
components, sharing configuration with
mixins, 93-97
Netlify, 297
Playwright, 280
routes, 10, 191
server-side rendering with Nuxt, 307
TypeScript, 9, 255
Vitest, 254-255, 275
Content Delivery Network (CDN), 315
context
functional components and, 178
setup hook, 64
slots and sharing data, 85
continuous delivery, 290
Continuous Integration/Continuous Deploy-
ment (CI/CD)
advantages, 289
configuration, 291
with Github Actions, 290-295, 297
with Netlify, 295-298
pipeline diagram, 290
Playwright setup, 280
testing, 254, 289, 292
tools, 290
coverage folder, 276
coverage, code
E2E testing with Playwright, 280
testing with Vitest, 275-279
unit testing and CI/CD, 292
create-vue, 9-11
createApp(), 18, 302
created() hook
data loading with Axios and, 160
in lifecycle diagram, 69
vs. mounted(), 72
using, 23, 25, 66
createElement, 174
createPinia, 220

Index | 319

createRouter(), 193
createSSRApp(), 301
createTestingPinia(), 273
createWebHistory, 194
creating phase, components' life cycle, 62
Cross-Site Request Forgery, 159
CSS, 97
(see also animations; style; transitions)
accessing data values with v-bind, 102
CSS Modules, 103-105
display rule, 49
order of style tags, 97
scoped styling components, 97-105
Single File Component structure and, 57-59
CSS Modules, 103-105
css prop, disabling default transition classes,
249
.ctrl key modifier, 46
curly braces ({})
binding data with JSX, 177
mustache syntax {{}}, 22

D
data

binding with JSX and render(), 177

binding with lazy modifier, 30

binding with v-model, 26-31

binding, one-way, 24, 31

binding, two-way, 26-31

composables and, 154-158

connecting application to external database,
170

creating reactive data from other reactive
date with computed(), 152-153

data flow and nested components, 107-117

data flow and state management, 217-218

data flow diagram, 107

emitting data between components, 107,
117-123

external data incorporation with Axios,
159-171

handling with reactive(), 138, 142-145

handling with ref(), 138-143, 145

iterating with v-for, 35-39

loading with Axios, 160-164

loading with Axios, asynchronous chal-
lenges, 165-170

passing between routes, 199-203

passing dynamic data with provide/inject
pattern, 123-125
reusable fetch component with Axios,
167-171
state handling and Options API, 19-24
data property
creating local state with data(), 20, 22-24
editing, 24
reactivity of, 24
data(), creating local data state with, 19, 22-24
data-testing attribute, E2E testing with Play-
wright, 283
data-v and scoped styling components, 99
debugging
CI/CD and, 289
E2E testing with Playwright Test for
VSCode, 287-288
:deep() and scoped styles, 101
deep, watcher field, 79-82, 148
default in props syntax, 111
defineComponent(), 60, 119
defineConfig(), E2E testing with Playwright,
281
defineEmits(), 121
defineProperty(), 25
defineProps(), 64, 116
defineStore(), 221
.delete key modifier, 46
deployment, 194
(see also Continuous Integration/Continu-
ous Deployment (CI/CD))
base URL and, 194
server-side rendering with static-side gener-
ators, 315
describe()
E2E testing with Playwright, 282
grouping tests in Vitest, 260
Description component, 20
destroyed hook, 68
Devtools (see Vue Devtools)
dialog element modals with Teleport compo-
nent, 127-135
directories, projects, 9
disabled prop and Teleport, 126, 135
display property and conditional display of ele-
ments with v-show, 49, 241
dist directory, 315
DOM (Document Object Model), 18

320 | Index

(see also Virtual Document Object Model
(DOM))
accessing with Composition API hooks, 147
accessing with refs attribute, 91-92, 147
conditional rendering with v-if, v-else, and
v-else-if, 46-49
data structure, 13
event phases and, 42
reactivity and, 24-26
render() and, 173-177
server-side rendering and, 305
template command syntax, 21
understanding, 13-18
domains with Netlify, custom, 296
dynamic class names, 33

E
E2E (end-to-end) testing, 252
debugging, 287-288
with Playwright]S, 280-288
setup, 280-282
testing HTML rendering with Playwright]S,
271
writing tests, 282-284
e2e folder, 280
Edge, V8 engine and, 3
effect-move class, 247
.$el property, 63, 67
Electron, Vue Devtools and, 6
elem as alias for elements, 36
elements
conditional display of with v-show, 49
elem alias, 36
element binding and key attribute, 39
emits
custom events with defineEmits(), 121
functional components and, 178
modals, 129
passing data between components, 107,
117-123
emits(), testing emitted events, 272
emitted(), testing event components, 273
emitters, event
custom event emitters and functions, 108
functional components and, 178
modals, 129
passing data between components, 107,
117-123

testing, 272
end-to-end testing (see E2E (end-to-end) test-
ing)
.enter key modifier, 45
enter state, transitions, 241
enter transition event, 249
enter-active-class transition attribute, 244
enter-cancelled transition event, 249
enter-class transition attribute, 244
enter-to-class transition attribute, 244
entry-client.js, 304
env. prefix, 194
environment files and base URL, 194
environment parameter, Vitest, 254
errors
error messages and unknown routes,
215-216
loading data with Axios, 161, 164
unit testing, 268
.esc key modifier, 46
ESLint, 10, 40
event listeners
binding with v-on, 40-46
custom props, 197
event modifiers, 42-44
event modifiers, chaining, 44
events
binding event listeners with v-on, 40-46
controlling animations with transition
events, 249
custom event emitters and functions, 108
custom events with defineEmits(), 121
emitting, 107, 117-123
event modifiers, 42-44
event modifiers, chaining, 44
keyboard events and key code modifiers, 45
modals, 129
phases of, 42
testing interactions, 272
.exact key modifier, 46
exactActiveClass, 198
expect(), unit testing with Vitest, 256-261
Express.js, 300

F

fadein-enter-active transition attribute, 246
fadein-enter-to transition attribute, 246
fadein-leave-active transition attribute, 246

Index | 321

fadein-leave-to transition attribute, 246
fadein-move class, 247
FCP (First Contentful Paint), 300
fetch
Axios and, 159, 167-171
mocking for unit tests and, 265-268
file repository structure for projects, 11
find(), testing components with Vue Test Utils,
270,272
Firefox and Vue Devtools, 6
First Contentful Paint (FCP), 300
first render phase, components' life cycle, 62
flush, watcher field, 79, 148
flushPromises, 267
footer, modals, 127
forms, two-way binding with v-model, 26-31
forward(), 214
forward/back button, adding, 214
from, passing data with provide/inject pattern,
124
functional components, 178-179
functions
defining stores with, 222
functional components, 178-179
passing as props, 108
as refs, 92

G

-g flag, global scope for NPM, 5
generate command, static-side generator, 315
getters
object reactivity and, 25
stores, 221, 225
GitHub
Actions marketplace, 294
CI/CD with GitHub Actions, 290-295, 297
Netlify authorization, 296
work flow file, 291-295
global navigation guards, 204
global scope, NPM, 5
globals flag, Vitest, 255, 256
--globals parameter, Vitest, 256
go(), 214
gsap (GreenSock Animation Platform) library,
249

functional components and, 178
parameters table, 175
setup hook with, 65
using, 174-176
handler watcher field, 79
header, modals, 127
history, RouterOption property, 193
history, web
forward/back button, adding, 214
navigating to specific page in stack, 214
routing and, 193
HomeView sample component, 189
hooks, 19
(see also composables; lifecycle hooks)
build hooks and Netlify, 297
mixins and, 95
Options API role in, 19
provide/inject pattern, 19, 125
hosting platforms
base URLs and, 195
server-side rendering with static-side gener-
ators, 315
hot reloading with Vite, 9
href, building navigation bar with RouterLink
component, 197
html property, testing components with Vue
Test Utils, 270
HTTP (see Axios)
hydration mode, 304

|
i18n, 181
:id path pattern, 211
immediate, watcher field, 79, 148
import.meta.env and base URL, 194
index argument and v-for, 37
index.html file, 12, 299
index.ts file, 189, 192
initialize phase, components' life cycle, 62
inject() hook, 19, 125, 181
inject/provide pattern, 19, 123-125, 181
input element
E2E testing with Playwright, 283
toggling with event emitters, 118-123
inputRef, 147
install()
Netlify CLI, 298
plugins, 179-182

322 | Index

installing
Axios, 160
Istanbul, 275
Netlify CLI, 298
Node, 3
NPM, 3-5
packages with NPM, 5
packages with Yarn, 6
Pinia, 220
Pinia plugin, 181
plugins, 179-182
Vitest, 253
Vitest UI, 273
Vue Router, 181, 189
Yarn, 3,5
integration (see Continuous Integration/
Continuous Deployment (CI/CD))
integration testing, 252
interface, declaring custom types, 115
is prop, dynamic rendering with component
tag, 182
Istanbul, 275-279
isVisible()
dynamic class names and, 33
E2E testing with Playwright, 286
v-if and, 46
it(), unit testing with Vitest, 256-261
iterating
object properties, 38-40
with v-for, 35-39, 91

J

JavaScript
client-side rendering and, 299
JSX and render(), 176
transitions and animations, 240, 248-250
Jenkins, 290
JSDOM, 254
JSON and Axios, 159
JSX
configuration option for new projects, 10
registering JSX components, 177
render() and, 176
syntax, 177

K

keep-alive component, 183
key attribute

binding with, 39
group transitions, 246-247
iteration with v-for and, 37-40
provide/inject pattern and, 124
syntax, 40
uniqueness of, 37
valid values for, 40
key code modifiers, 45
keyboard events and key code modifiers, 45
@keyframes, animations and transitions, 239,
244

L

lang="ts" attribute, 59
layouts file, server-side rendering with Nuxt,
313
lazy two-way binding, 30
leave state, transitions, 241
leave transition event, 249
leave-active-class transition attribute, 244
leave-cancelled transition event, 249
leave-class transition attribute, 244
leave-to-class transition attribute, 244
libraries, third-party
animations and transitions, 245, 248-250
file repository structure, 11
lifecycle hooks, 63
(see also setup hook)
accessing this with, 23
Composition API and, 146-148
diagram, 69
loading data with Axios, 160-167
Options API and, 19
order of, 69-72, 95
Server-Side Rendering (SSR) and, 67
table of, 146
testing composables with, 264-268
understanding, 61-72
using, 63-72, 146-148
when to use, 72
state, 217
limit and plugins, 180
linkActiveClass, RouterOption property, 193
linkExactActiveClass, RouterOption property,
193
links
custom class names for, 198
RouterOption configuration, 193

Index | 323

linters, 10, 40

lists, iterating over with v-for, 35-39
loading property and state, 166
localhost port number, 191
localStorage, 170

location, in URLs, 187

logging with side effects, 238

M

main section, modals, 127
main.ts file
file repository structure, 11
importing, 12
Pinia plugin, 181
Vue Router and, 181, 189, 195
memoizing and rendering with v-memo, 51-54
.meta key modifier, 46
meta route configuration property, 191
methods
vs. computed properties, 75
mixins and, 95
triggering, 75
understanding, 72-75
methods property, 72
mixins, 93-97
mixins property, 93-97
MobX, 219
mockRejected ValueOnce(), 268
mockResolvedValueOnce(), 266
mocks, 265-268
modals, 127-135
mode prop, route transitions, 248
Model-View-Controller (MVC) pattern, 2
Model-View-ViewModel (MVVM) pattern, 2
module attribute, CSS Modules, 103-105
mount() method
root component, 19
testing components with Vue Test Utils,
268-270
mounted() hook
equivalent in Composition API, 146
in lifecycle diagram, 69
using, 67, 72
mounting
apps and client-side rendering, 299
apps and server-side rendering, 304
lifecycle hooks, 146
mounted hook, 67, 72

order for components, 63
phase in components' life cycle, 63
root component, 19
testing components with Vue Test Utils, 268
watchers and, 150
mustache syntax {{}}, injecting data property
with, 22
MVC (Model-View-Controller) pattern, 2
MVVM (Model-View-ViewModel) pattern, 2

N

name attribute, named slots, 87-91
name, route configuration property, 191
named slots, 87-91
names
classes, 33, 197
composables, 154
projects, 9
routes, 191
stores, 221
navigation bar, building with RouterLink com-
ponent, 197
navigation guards, 204-208
nested components
data flow and, 107-117
h() function parameter, 175
nested paths, 210
nested properties, watchers, 79-82
nested routes, 208-211
Netlify, CI/CD with, 295-298
newValue, watcher option field argument, 148
next(), navigation guards, 205
nextTick(), 25
node command, 3
Node Package Manager (NPM) (see NPM
(Node package manager))
Node.js
CI/CD with GitHub Actions, 292
installing, 3
server-side rendering, 301, 305
version, 3, 292
nodes, virtual (see VNode)
not modifier, expect(), 257
NPM (Node package manager)
creating projects, 5, 9-11
global scope, 5
installing, 3-5
installing packages with, 5

324 | Index

installing Yarn, 6
resources on, 5
version, 5
npm command, 3
numbers, two-way binding with v-model, 31
nuxt.config.ts file, 307
Nuxt.js, 306-315
NuxtLayout, 308, 312
NuxtLink, 312
NuxtPage, 308

0

object dereferencing syntax and scoped slots, 86
object properties, iterating with v-for, 38-40
oldValue, watcher option field argument, 148
$onAction, 237
onBeforeMount() hook, 146, 265-268
onBeforeMounted() hook, 146, 165
onBeforeRouteLeave(), 207
onBeforeRouteUpdate(), 207
onBeforeUpdate() hook, 146
.once event modifier, 44
one-way binding, 24
onMounted() hook, 146, 165
onTrack, watcher field, 148
onTrigger, watcher field, 148
onUnMounted() hook, 146
onUpdated() hook, 146, 165
open attribute, modals, 129
Options API, 18
(see also setup hook)
data(), 22-24
directive basics, 26-54
disadvantages, 137
navigation guards, 208
properties, 19
registering components globally, 54
routing and, 203
state handling, 19-24
storing state, 22-24
template property, 19-22, 173
understanding, 18-21
watchers, 77-83
options, in watch() syntax, 148
order
CSS styles, 97
lifecycle hooks, 69-72
lifecycle hooks and mixins, 95

mounting components, 63

navigation guards, 208

rendering and Teleport component, 135
side effects, 238

unit tests, 260

P

package-lock.json file, 5
package.json file
installing packages with NPM, 5
server-side rendering with Nuxt, 307
packages
managing with NPM, 4
managing with Yarn, 4, 5
versions, 5
pages folder, server-side rendering with Nuxt,
307
.passive event modifier, 44
path route configuration property, 191
path section in URLs, 187
pathMatch parameter, 215
:pathMatch(), 215
paths
dynamic routes, 211
nested, 210
regular expressions patterns, 215
route configuration property, 191
performance
client-side rendering, 300
computed properties, 76
layout update problem, 14
object reactivity, 25
optimizing rendering with v-once and v-
memo, 51-54
reactive(), 145
ref(), 142
server-side rendering, 314
side effects, 238
static-side generator (SSG), 314
Virtual DOM and, 16-18
Vue size and, 2
watchEffect(), 151
watchers, 76, 81
Pinia
configuration option for new projects, 10
creating instances, 220
installing, 181, 220
resources on, 219

Index | 325

shopping carts with, 224-238
side effects, 236
state management with, 219-238
stores, creating, 220-226
stores, removing items from, 233-235
stores, testing events with, 273
stores, unit testing, 235
version, 220
pixel-to-screen pipeline, 14
placeholder text, 51
Playwright Test for VSCode, 287-288
playwright.config.ts file, 280
Playwright]S, 271, 280-288
plugins
adding, 179-182
file repository structure, 11
store side effects, 236
syntax, 180
uses, 181
pound sign () for v-slot, 88
Prettier configuration option for new projects,
10
.prevent event modifier, 44
projects configuration option, E2E testing with
Playwright, 281
Promises
flushing, 267
loading data with Axios, 161
properties
computed, 75-77, 79
iterating over object properties with v-for,
38-40
nested properties and watchers, 79-82
props
binding reactive data and passing props
with v-bind, 31, 108-112
custom props, binding, 197
custom props, declaring, 113-115
declaring with defineProps() and withDe-
faults(), 116
declaring with strings, 111
declaring with types, 107-117
decoupling route parameters, 203
default values, 111-113
defining, 64, 108
dynamic rendering with component tag,
182
emitting data between components, 107,
117-123

functional components and, 178
h() function parameter, 175
keep-alive component, 184
mandatory, 111
modals, 129
navigation bar with RouterLink component,
197
passing data between components, 107-117
passing data with multiple props, 109
passing functions as, 108
setup hook, 64
syntax, 111
Teleport component, 126-135
validating, 111-113
props, route configuration property, 191
PropType, 115
provide() hook, 19, 125, 181
provide/inject pattern, 19, 123-125, 181
proxy and reactive(), 144
public directory, static-side generator, 315

Q

query field, passing data between routes,
199-203

query parameters in URLs, 188

question mark (?) syntax for query field in
passing data between routes, 199

queues, object reactivity and, 25

R
rasterization, 14
reactive(), 138, 142-145
reactivity
editing data properties, 24
reactive() and, 143-145
ref() and, 138-143
setup hook and, 65
understanding, 24-26
unit tests and, 263
redirect property, 216
redirect route configuration property, 191
ref attribute, accessing DOM, 91-92, 147
ref object, 138-143
ref()
handling data with, 138-143, 144, 147
wrapping in unit tests, 263
.ref, for functions as refs, 92
reference tag, configuring Vitest, 255

326 | Index

regular expressions and paths, 215
rejects modifier, expect(), 257
render()
DOM and, 173-177
JSX and, 176
using, 19, 21
rendering, 19
(see also animations; server-side rendering;
transitions)
chaining conditional, 47
client-side, 299
conditional display of elements with v-
show, 49
conditional rendering and loading data with
Axios, 162-164, 167
conditional rendering with v-if, v-else, and
v-else-if, 46-49, 162-164, 167
current page with RouterView component,
195
displaying text with v-text, 51
dynamic rendering with component tag,
182
dynamically displaying HTML code with v-
html, 50
h() render function with setup hook, 65
modals, 132, 134
once only with v-once, 51
optimizing with v-once and v-memo, 51-54
Options API role in, 19
phases and components' life cycle, 62
with render(), 19
with render(), 173-177
Teleport component and, 134
with template, 19-22, 173
testing with Playwright]S, 271
renderToString(), server-side rendering, 303
repository structure for projects, 11
required, props syntax, 111
$reset(), 234
resolves modifier, expect(), 257
root component, 18, 19
root elements, 60
root nodes and render(), 175
rotate transition effect, 244
route-level navigation guards, 205
router folder, 11, 189, 192
router-link-active, 211
router-link-exact-active, 211
router-view element and transitions, 247

RouteRecordRaw, 192

RouterLink component, 197

RouterOptions, 193

routers
adding router instances to application, 195
creating router instances, 193
forward/back button, adding, 214

RouterView component, 195

routes, RouterOption property, 193

routing
adding router instances to application, 195
building navigation bar with RouterLink

component, 197
client-side rendering and, 300
conﬁguration options, 10, 191
decoupling route parameters, 203
defining routes, 191-193
dynamic routes, 211-214
error messages, 215-216
file repository structure, 11
forward/back button, adding, 214
handling unknown routes, 215-216
named routes, 191, 193
navigation guards, 204-208
nested routes, 208-211
passing data between routes, 199-203
rendering current page with RouterView
component, 195

route transitions, 248
server-side rendering with Nuxt, 307, 311
single-page applications and, 188
understanding, 187

run-time
asynchronous data calls with Axios, 165-170
type checking, 117
type validation, 116

S

scope, unit testing and, 261
scoped slots, 86
scoped styling components
child components and, 101
with CSS Modules, 103-105
overriding, 101
slots and, 86, 90, 101
using, 97-105
script section, Vue SFCs, 57
script tag and security, 50

Index | 327

search
passing data between routes, 200-203
route-level navigation guards, 205
syncing update and, 202
Search Engine Optimization (SEO), 300
security
Axios and, 159
Cross-Site Request Forgery, 159
script tag and, 50
v-html and, 50
.self event modifier, 44
sensitive route configuration property, 191
SEO (Search Engine Optimization), 300
server-side rendering
creating SSR apps, 300-306
lifecycle hooks and, 67
with Nuxt, 306-315
performance, 314
static-side generator (SSG), 314
understanding, 300-306
server.js command, 301-305
server.js file, 301
set, Composition API and, 141
setActivePinia(), 235
setInterval(), 25
setters, object reactivity and, 25
setTimeout(), 26
setup attribute, 64
setup hook
Composition API and, 64, 137
declaring props, 116
functional components, 179
in lifecycle diagram, 69
loading data with Axios, 161
Options API and, 139
vs. setup attribute, 64
syntax, 64
this and, 146
using, 63-66
setup stores, 222
setup-node, 292
SEC (Single-File Component)
compiling and, 59
dynamic rendering with component tag,
183
functional components, 179
importing, 59
refactoring regular components into, 58
structure, 57-61

trans-compiling and, 1, 59
shallowMount(), 268-270
shallowReactive(), 145
shallowRef(), 142, 145
.shift key modifier, 46
showModal(), 133
side effects

computed properties, 79

navigation guards, 204-208

order of, 238

performance, 238

subscribing stores, 236

watchers, 79
Single-File Component (see SFC (Single-File

Component))
single-page applications (SPAs)

routing with Vue Router, 188, 190-199

Vue advantages, 2
skeleton placeholder for state, 167
slidein transition effect, 240-250
.slidein-enter-active class selector, 241
.slidein-enter-from class selector, 241
.slidein-enter-to class selector, 241
.slidein-leave-active class selector, 241
.slidein-leave-from class selector, 241
.slidein-leave-to class selector, 241
:slot() and scoped styles, 101
slots

basic slots, 83

binding, 85

functional components and, 178

modals and, 127

named, 87-91

navigation bar with RouterLink component,

197
scoped slots, 86
scoped styles and, 90, 101
server-side rendering with Nuxt, 312
sharing data context, 85
understanding, 83-91
snapshots, testing components with Vue Test
Utils, 270
sources, in watch() syntax, 148
.space key modifier, 46
SPAs (see single-page applications (SPAs))
spread syntax (...) for reactive(), 144
spyOn, 265
src directory, 11
SSG (static-side generator), 314

328 | Index

state
composables and, 154-158
creating local state with data(), 20, 22-24
data flow and state management, 217-218
keep-alive component, 183
loading property and, 166
management with Pinia, 217-238
Options API role in handling, 19
reusable fetch component with Axios,
167-171
skeleton placeholder for, 167
state management systems
connecting applications to databases and,
170
Pinia, 217-238
tools for, 219
state, store property, 221
static-side generator (SSG), 314
.stop event modifier, 44
stores
activating, 235
adding items to cart, 226-229
creating, 220-226, 235
displaying cart items with actions, 229-233
file repository structure, 11
names, 221
with Pinia, 224-238
properties of, 220
removing items from, 233-235
resetting state, 234
setup stores, 222
side effects, 236
state management role, 219
testing, 235, 273
using in cart component, 226
stores folder, file repository structure, 11
storeToRefs(), 224
strict route configuration property, 191
string property key, unit testing with Vitest, 256
strings
declaring props with, 111
injecting plain HTML code for dynamic dis-
play with v-html, 50
style
accessing data values with v-bind, 102
binding attributes, 33-35
conditional display of elements with v-
show, 49
CSS modules, 103-105

modals, 133
navigation bar, 198
nested routes, 211
order of style tags, 97
rendering pages with RouterView, 196
scoped styling components, 90, 97-105
style arrays, 34
Vue SFCs, 57-59
style attribute, binding to, 33-35
$style property, scoped styles, 104
style section, Vue SFCs, 58
style tag, 97-99
$subscribe, 237
.system key modifier, 46

T
.tab key modifier, 46
target
dynamic rendering with component tag,
182
modals with Teleport component, 126,
134-135
phase and events, 42
TDD (see test-driven development (TDD))
Teleport component
disabling, 126
modals and, 127-135
rendering issues, 134
using, 126-135
template property, 19-22, 173
template section, Vue SFCs, 57
template tag, named slots, 88-91
templates
CI/CD with GitHub Actions, 294
Options API role in, 19-22
test field, configuring Vitest runner, 255
test(), 261
test-driven development (TDD), 252, 256, 259,
261
test.root directory, 276
testDir, 281
testing, 251
(see also E2E (end-to-end) testing; unit test-
ing; Vue Test Utils)
CI/CD and, 254, 289, 292
components, 268-273
composables, 158, 261-268
configuration options for new projects, 10

Index | 329

with coverage runners, 275-279, 280
events with Pinia stores, 273
files and directories for, 254, 277, 281
GUI for, 273-275
importance of, 251
integrating testing, 252
manual, 251
pyramid, 252
resources on, 252
stores, 235, 273
tools, 267
with Vitest, 253-264, 275
testing components with Vue Test Utils, 271
tests folder, 254, 277
text
displaying text with v-text, 51
placeholder, 51
text(), testing components with Vue Test Utils,
270
then(), loading data with Axios, 161
this
accessing computed property's value, 76
created hook and, 66
data object property and, 23
lifecycle hooks and, 23
passing dynamic data with provide/inject
pattern, 123-125
setup hook and, 63, 146
wrapping components and TypeScript, 119
this.$route, 203
this.$router, 203
this.$watch() method, 82-83
threshold number for code coverage, 279
Time to Interactive (TTI), 300
timeouts
transitions and animations, 242, 244
unit testing with Vitest, 257
timers, 25
title, modals, 129
toBe matcher, expect(), 257
toEqual matcher, expect(), 257
toggling
cart, 229-233
with event emitters, 118-123
transition effects, 241
toHaveBeenCalledWith(), 266
toMatchSnapshot(), 270
trace recording, E2E testing with Playwright,
281

trans-compiler, Vue as, 1
transform property, 242
transition component, 240-246
transition property, 240
transition-group, 246-247
transitions
class selectors table, 241
controlling animations with transition
events, 249
custom class attributes, 244
defining, 240
disabling default transition classes, 249
enter state, 241
groups of elements, 246-247
on initial render, 245
leave state, 241
route transitions, 248
third-party libraries, 245, 248
with transition component, 240-246
understanding, 239
trigger(), 272
try/catch blocks, loading data with Axios, 161
tsconfig.json file, 255
TTI (Time to Interactive), 300
two-way binding with v-model, 26-31
type checking
any type and, 169
custom events and, 122
props, 111-117
testing with Vitest, 255
type validation
compile-time with TypeScript, 116
props, 111-113, 116
run-time with Vue, 116
Single-File Component format and, 59
type, declaring props syntax, 111, 115
types
declaring props with, 107-117
declaring props with custom type checking,
113-115
specifying in unit testing with Vitest, 256
specifying return object type in ref(), 139
type inference and ref(), 139
TypeScript
and any type, 169
compile-time type checking and validation,
116
components and support for, 59
conﬁguration options, 9, 255

330 | Index

defineProps() and, 116

file repository structure, 11

loading data with Axios, 162

server-side rendering with Nuxt, 307
setup hook and, 65

Single-File Component format and, 59
specifying return object type in ref(), 139
Vite support, 9

Vue 3 support for, 2

wrapping components and, 119

U

-u flag for updating snapshots, 271
unit testing, 251
composables, 261-268
grouping tests, 260
order of tests, 260
scope and, 261
specifying target folder, 254
stores, 235
with Vitest, 253-264
writing tests, 256-261
unmounted() hook, 67, 146
unmounting phase, components' life cycle, 63
updated() hook, 67, 146
updating phase, components' life cycle, 63
URLSs (Uniform Resource Locators)
base URL, 194, 281
routing and, 187
use configuration option, E2E testing with
Playwright, 281
use prefix for composables, 154
use()
plugins, 180
routers, 195
useCssModule(), 105
useFetch(), 170
useRoute(), 199, 215, 311
useSearch(), 224

)
-v command, 3
v-bind
binding reactive data and passing props, 31,
108-112
dynamic rendering with component tag,
182
slots, 85

styling and, 102
syntax, 31
v-else, 46-49
v-else-if, 46-49, 164
v-for
binding slots, 85
refs and, 91
using, 35-39
v-html, 50
v-if
conditional rendering with, 46, 162-164
loading data with Axios, 162-164
transitions, 241
vs. v-show, 50
v-lot, 248
v-memo, 51-54
v-model, 26-31
v-model.lazy, 30
v-model.number, 31
v-model.trim, 31
v-on, 40-46
v-once, 51
v-show
conditional display of elements with, 49
transitions, 241
vs. v-if, 50
v-slot
named slots, 87-91
navigation bar with RouterLink component,
197
pound sign (#) for, 88
v-text, 51
V8 engine, 3
validation and navigation guards, 204
validation, type (see type validation)
value property, accessing ref object, 138
values, default for props, 111-113
variables, passing and binding dynamic with v-
bind, 108-112
versions
Node, 3,292
NPM, 5
Nuxt, 306
packages, 5
Pinia, 220
Vue Router, 190
Yarn, 6
views folder, 11, 189
Virtual Document Object Model (DOM)

Index | 331

data structure, 16
reactivity and, 24-26
understanding, 13
virtual nodes (see VNode)
vite.config.ts file, 275
Vite.js
advantages, 9
installing Pinia, 220
localhost port number, 191
Pinia and Vue Router plugins, 181
Vitest
components testing, 268-273
configuration option for new projects, 10
configuring, 254-255, 275
continuous integration (CI) and, 254
coverage runner, 275-279
global mode, 255, 256
grouping tests, 260
GUI, 273-275
installing, 253
specifying target folder, 254
testing composables, 261-268
using, 253-264
watch mode, 254, 278
writing tests, 256-261
vitest command, 254
VNode
functional components, 178
render(), 174-176
understanding Virtual DOM, 17
Volar, 61
VSCode
debugging E2E testing with Playwright,
287-288
TypeScript support, 61
Vue
advantages of, 1
directive basics, 26-54
icon, 8
resources on, 2
setup, 1-12
Vue CLI tool, 9
Vue Devtools
editing data properties, 24
setup, 6
uses, 8
viewing changes in, 28
viewing lifecycle order, 71
.vue extension for Single-File Component, 57

Vue Options API (see Options APT)
Vue Router
adding manually, 189
adding router instances to application, 195
advantages, 188
building navigation bar with RouterLink
component, 197
configuration option for new projects, 10
creating router instances, 193
decoupling route parameters, 203
defining routes, 191-193
dynamic routes, 211-214
handing unknown routes, 215-216
installing, 181, 189
navigation guards, 204-208
nested routes, 208-211
passing data between routes, 199-203
rendering current page with RouterView
component, 195
single-page applications (SPAs), 188,
190-199
version, 190
Vue SFC (see SEC (Single-File Component))
Vue Test Utils
components testing, 268-273
composables testing, 267
VueUse, 158
Vuex, 219

W
watch mode, Vitest, 254, 278
watch property, 77-82
watch()
mapping data between composables, 157
search and passing data between routes, 202
watch() hook, 148-151
watchEffect(), 151
watchers
Composition API and, 148-151
conditional watchers with this.$watch(),
82-83
search and passing data between routes, 202
side effects, 79
stopping, 149
using, 77-83, 148-151
whitespaces, two-way binding with v-model, 31
withDefaults(), 116

332 | Index

worker configuration option, E2E testing with
Playwright, 281

wrapper, testing components with Vue Test
Utils, 270, 273

X

XMLHttpRequest, 159
XState, 219

Y

YAML and Github work flow file, 291

Yarn
installing, 3, 5
installing packages with, 6
version, 6

yarn command, 6

yarn.lock file, 6

Index

333

About the Author

Maya Shavin is a Senior Software Engineer at Microsoft, marked by a distinguished
educational background that includes an MBA, BSc in Computer Science, and a BA
in Economics. Specializing in the web and frontend development, her proficiency
spans TypeScript, React, and Vue.

As a core maintainer of StorefrontUI, an open source ecommerce framework, she
prioritizes delivering performant and accessible components while emphasizing the
importance of solid vanilla JavaScript knowledge.

Beyond coding, she shines as an internationally recognized speaker and published
author, advocating passionately for web development, UX/UI, accessibility, and
robust coding standards. She enjoys sharing her knowledge on her blog and on X
(Twitter) @mayashavin, speaking at conferences, and delivering hands-on workshops
on web development, and Vue in particular.

https://mayashavin.com

Colophon

The animal on the cover of Learning Vue is a Eurasian golden oriole (Oriolus oriolus).
These birds can be found as far west as Western Europe and Scandinavia and east
toward China. They are migratory birds that tend to spend winters in southern
Africa.

Male Eurasian golden orioles are predominantly a bright golden yellow. They have a
black tail and wings with yellow-tipped covert feathers. Their eyes are a deep maroon
and their beaks are a dark pink. Females are more green than yellow compared to
males. Their underbellies are a yellowy-white with dark streaks, and their wings are a
greenish brown. Despite their bright colors, Eurasian golden orioles can be difficult
to spot in the leafy tree canopies where they nest.

Because of their expansive range, Eurasian golden orioles can be found in a variety of
habitats. They can be found in deciduous forests (mainly oak, poplar, and ash trees),
riverine forests, orchards, large gardens, and mixed coniferous forests. In winter, they
live in semi-arid to humid woodlands and forest-savanna mosaic.

For food, Eurasian golden orioles use their beaks to peck insects out of crevices on
the ground and in trees. They are mostly insectivores and frugivores, but they have
occasionally been seen eating small vertebrates, seeds, nectar, and pollen.

The biggest threats to these birds are severe weather, habitat loss, and deforestation.
However, Eurasian golden orioles are still an abundant species that is considered to
be of least concern on endangered species lists. Many of the animals on O’Reilly cov-
ers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from British Birds. The series design is by Edie Freedman, Ellie Volckhausen, and
Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

O'REILLY"

Learn from experts.
Become one yourself.

Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

http://www.oreilly.com/online-learning

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Welcome to the Vue.js World!
	What Is Vue.js?
	The Benefits of Vue in Modern Web Development
	Installing Node.js
	NPM
	Yarn

	Vue Developer Tools
	Vite.js as a Builder Management Tool
	Create a New Vue Application
	File Repository Structure
	Summary

	Chapter 2. How Vue Works: The Basics
	Virtual DOM Under the Hood
	The Layout Update Problem
	What Is Virtual DOM?
	How Virtual DOM Works in Vue

	The Vue App Instance and Options API
	Exploring the Options API
	The Template Syntax
	Creating Local State with Data Properties
	How Reactivity in Vue Works
	Two-Way Binding with v-model
	Using v-model.lazy Modifier
	Binding Reactive Data and Passing Props Data with v-bind
	Binding to Class and Style Attributes
	Iterating over Data Collection Using v-for
	Iterating Through Object Properties
	Make the Element Binding Unique with Key Attribute

	Adding Event Listener to Elements with v-on
	Handling Events with v-on Event Modifiers
	Detecting Keyboard Events with Key Code Modifiers

	Conditional Rendering Elements with v-if, v-else,
and v-else-if
	Conditional Displaying Elements with v-show
	Dynamically Displaying HTML Code with v-html
	Displaying Text Content with v-text
	Optimizing Renders with v-once and v-memo
	Registering a Component Globally
	Summary

	Chapter 3. Composing Components
	Vue Single File Component Structure
	Using defineComponent() for TypeScript Support
	Component Lifecycle Hooks
	setup
	beforeCreate
	created
	beforeMount
	mounted
	beforeUpdate
	updated
	beforeUnmount
	unmounted

	Methods
	Computed Properties
	Watchers
	Observing for Changes in Nested Properties
	Using the this.$watch() Method

	The Power of Slots
	Using Named Slots with Template Tag and
v-slot Attribute
	Understanding Refs
	Sharing Component Configuration with Mixins
	Scoped Styling Components
	Applying CSS to a Child Component in Scoped Styles
	Applying Scoped Styles to Slot Content
	Accessing a Component’s Data Value in Style Tag with
v-bind() Pseudo-Class

	Styling Components with CSS Modules
	Summary

	Chapter 4. Interactions Between Components
	Nested Components and Data Flow in Vue
	Using Props to Pass Data to Child Components
	Declaring Prop Types with Validation and Default Values
	Declaring Props with Custom Type Checking
	Declaring Props Using defineProps() and withDefaults()

	Communication Between Components with
Custom Events
	Defining Custom Events Using defineEmits()
	Communicate Between Components with
provide/inject Pattern
	Using provide to Pass Data
	Using inject to Receive Data

	Teleport API
	Implementing a Modal with Teleport and the <dialog> Element
	Rendering Problem Using Teleport

	Summary

	Chapter 5. Composition API
	Setting Up Components with Composition API
	Handling Data with ref() and reactive()
	Using ref()
	Using reactive()

	Using the Lifecycle Hooks
	Understanding Watchers in Composition API
	Using computed()
	Creating Your Reusable Composables
	Summary

	Chapter 6. Incorporating External Data
	What Is Axios?
	Installing Axios
	Load Data with Lifecycle Hooks and Axios
	Async Data Requests in Run-Time: the Challenge
	Creating Your Reusable Fetch Component
	Connect Your Application with an External Database
	Summary

	Chapter 7. Advanced Rendering, Dynamic Components, and Plugin Composition
	The Render Function and JSX
	Using the Render Function
	Using the h Function to Create a VNode
	Writing JavaScript XML in the Render Function

	Functional Component
	Defining Props and Emits for Functional Component
	Adding Custom Functionality Globally with Vue Plugins
	Dynamic Rendering with the <component> Tag
	Keeping Component Instance Alive with <keep-alive>
	Summary

	Chapter 8. Routing
	What is Routing?
	Using Vue Router
	Installing Vue Router
	Defining Routes
	Creating a Router Instance
	Plugging the Router Instance Into the Vue Application
	Rendering the Current Page with the RouterView Component
	Build a Navigation Bar with the RouterLink Component

	Passing Data Between Routes
	Decoupling Route Parameters Using Props
	Understanding Navigation Guards
	Global Navigation Guards
	Route-Level Navigation Guards
	Component-Level Router Guards

	Creating Nesting Routes
	Creating Dynamic Routes
	Going Back and Forward with the Router Instance
	Handling Unknown Routes
	Summary

	Chapter 9. State Management with Pinia
	Understanding State Management in Vue
	Understanding Pinia
	Creating a Pizzas Store for Pizza House
	Creating a Cart Store for Pizza House
	Using the Cart Store in a Component
	Adding Items to the Cart from the Pizzas Gallery
	Displaying Cart Items with Actions
	Removing Items from the Cart Store
	Unit Testing Pinia Stores
	Subscribing Side Effects on Store Changes
	Summary

	Chapter 10. Transitioning and Animation in Vue
	Understanding CSS Transitions and CSS Animations
	Transition Component in Vue.js
	Using Custom Transition Class Attributes
	Adding Transition Effect on the Initial Render with appear

	Building Transition for a Group of Elements
	Creating Route Transitions
	Using Transition Events to Control Animation
	Summary

	Chapter 11. Testing in Vue
	Introduction to Unit Testing and E2E Testing
	Vitest as a Unit Testing Tool
	Configuring Vitest Using Parameters and Config File
	Writing Your First Test
	Testing Non-Lifecycle Composables
	Testing Composables with Lifecycle Hook
	Testing Components Using Vue Test Utils
	Testing Interaction and Events of a Component
	Using Vitest with a GUI
	Using Vitest with a Coverage Runner
	End-to-End Testing with PlaywrightJS
	Debugging E2E Tests Using Playwright Test Extension
for VSCode
	Summary

	Chapter 12. Continuous Integration/Continuous Deployment of Vue.Js Applications
	CI/CD in Software Development
	Continuous Integration
	Continuous Delivery
	Continuous Deployment

	CI/CD Pipeline with GitHub Actions
	Continuous Deployment with Netlify
	Deploying with Netlify CLI
	Summary

	Chapter 13. Server-Side Rendering with Vue
	Client-Side Rendering in Vue
	Server-Side Rendering (SSR)
	Server-Side Rendering with Nuxt.Js
	Static Side Generator (SSG)
	Last Words

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

