

Why learn functional programming? Isn’t that some compli-
cated ivory-tower technique used only in obscure languages like
Haskell?

In fact, functional programming is actually very simple. It’s also
very powerful, as Haskell demonstrates by throwing away all the
conventional programming tools and using only functional pro-
gramming features. But it doesn’t have to be done that way.

Functional programming is a power tool that you can use in addi-
tion to all your usual tools, to whatever extent your current main-
stream language supports it. Most languages have at least basic
support.

In this book, we use Python and Java and, as a bonus, Scala. If you
prefer another language, there will be minor differences in syntax,
but the concepts are the same.

Give functional programming a try. You may be surprised
how much a single power tool can help you in your day-to-day
programming.

Quick Functional
Programming

https://taylorandfrancis.com

Quick Functional
Programming

David Matuszek

First edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 David Matuszek

Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all
materials or the consequences of their use. The authors and publishers have
attempted to trace the copyright holders of all material reproduced in this
publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged
please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be
reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including
photocopying, microfilming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work,
access www.copyright.com or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works
that are not available on CCC please contact mpkbookspermissions@tandf.
co.uk

Trademark notice: Product or corporate names may be trademarks or registered
trademarks and are used only for identification and explanation without intent
to infringe.

ISBN: 978-1-032-41532-1 (hbk)
ISBN: 978-1-032-41531-4 (pbk)
ISBN: 978-1-003-35854-1 (ebk)

DOI: 10.1201/9781003358541

Typeset in Minion
by SPi Technologies India Pvt Ltd (Straive)

http://dx.doi.org/10.1201/9781003358541
https://www.copyright.com

To all my students,
past, present, and future.

https://taylorandfrancis.com

vii

Contents

About the Author, xi

Preface, xiii

	Chapter 1    ◾    What Is Functional Programming?	 1

	Chapter 2    ◾    Methods and Functions	 5
	2.1	 Methods	 6

	2.1.1	 Methods in Python	 6
	2.1.2	 Methods in Java	 7
	2.1.3	 Methods in Scala	 9

	2.2	 Function Literals	 10

	2.2.1	 Function Literals in Python	 11
	2.2.2	 Function Literals in Java	 12
	2.2.3	 Function Literals in Scala	 13

	2.3	 Sorting Examples	 14

	2.3.1	 Sorting in Python	 14
	2.3.2	 Sorting in Java	 16
	2.3.3	 Sorting in Scala	 18

viii    ◾    Contents

	Chapter 3    ◾    Higher-Order Functions	 21
	3.1	 Higher-Order Functions in Python	 22

	3.2	 Higher-Order Functions in Java	 25

	3.3	 Higher-Order Functions in Scala	 27

	Chapter 4    ◾    Functional Interfaces in Java	 31
	4.1	 Single Abstract Methods	 31

	4.2	 Anonymous Inner Classes	 32

	4.3	 Defining Functional Interfaces	 33

	4.4	 Method References	 34

	4.5	 The Other Method Reference	 37

	4.6	 Provided Functional Interfaces	 38

	4.6.1	 IntPredicate	 38
	4.6.2	 Function Composition	 39
	4.6.3	 Predicates Again	 41
	4.6.4	 Unary Operators	 42
	4.6.5	 More Functions and Operators	 43
	4.6.6	 Suppliers and Consumers	 44

	Chapter 5    ◾    If Expressions	 47
	5.1	 If Expressions in Python	 47

	5.2	 If Expressions in Java	 48

	5.3	 If Expressions in Scala	 49

	Chapter 6    ◾    Comprehensions	 51
	6.1	 List Comprehensions in Python	 52

	6.2	 Comprehensions in Java	 54

	6.3	 For Expressions in Scala	 54

	6.4	 For Comprehensions in Scala	 57

Contents    ◾    ix

	Chapter 7    ◾    Closures	 59
	7.1	 Closures in Python	 60

	7.2	 Closures in Java	 61

	7.3	 Closures in Scala	 63

	7.4	 Closure Example	 64

	Chapter 8    ◾    Currying	 67
	8.1	 Currying in Python	 69

	8.2	 Currying in Java	 71

	8.3	 Currying in Scala	 72

	Chapter 9    ◾    Function Composition	 75
	9.1	 Function Composition in Python	 75

	9.2	 Function Composition in Java	 77

	9.3	 Function Composition in Scala	 78

	Chapter 10    ◾    Optional Values	 79
	10.1	 Optional in Python	 80

	10.2	 Optional in Java	 80

	10.3	 Option in Scala	 81

	Chapter 11    ◾    Lists	 83
	11.1	 Recursion	 84

	11.2	 Lists in Python	 86

	11.3	 Lists in Java	 87

	11.4	 Lists in Scala	 87

	Chapter 12    ◾    Streams	 91
	12.1	 Generators in Python	 92

	12.2	 Streams in Java	 92

x    ◾    Contents

	12.3	 Numeric Streams in Java	 95

	12.4	 Streams in Scala	 95

	Chapter 13    ◾    Important Functions	 97
	13.1	 Important Functions in Python	 98

	13.2	 Important Functions in Java	 99

	13.3	 Important Functions in Scala	 102

	13.4	 Additional Functions in Scala	 105

	Chapter 14    ◾    Pipelines	 107
	14.1	 Pipelines in Python	 109

	14.2	 Pipelines in Java	 110

	14.2.1	 Intermediate Operations	 110
	14.2.2	 Terminal Operations	 112
	14.2.3	 Collectors	 114
	14.2.4	 Example	 115

	14.3	 Pipelines in Scala	 116

	Chapter 15    ◾    Summary and Final Examples	 119
	15.1	 Examples in Python	 120

	15.2	 Examples in Java	 122

	15.3	 Examples in Scala	 123

Afterword� 125

Index, 127

xi

About the Author

I’m David Matuszek, known to most of my students as “Dr.
Dave.”

I wrote my first program on punched cards in 1963 and immedi-
ately got hooked.

I taught my first computer classes in 1970, as a graduate student in
Computer Science at The University of Texas in Austin. I eventu-
ally got my PhD from there, and I’ve been teaching ever since.
Admittedly, I spent over a dozen years in industry, but even then,
I taught as an adjunct for Villanova university.

I finally escaped from industry and joined the Villanova faculty
full time for a few years and then moved to the University of
Pennsylvania, where I directed a Master’s program (MCIT,
Masters in Computer and Information Technology) for students
coming into computer science from another discipline.

Throughout my career, my main interests have been in artificial
intelligence (AI) and programming languages. I’ve used a lot of
programming languages.

I retired in 2017, but I can’t stop teaching, so I’m writing a series
of “quick start” books on programming and programming

xii    ◾    About the Author

languages. I’ve also written two science fiction novels, Ice Jockey
and All True Value, and I expect to write more. Check them out!

And hey, if you’re a former student of mine, drop me a note. I’d
love to hear from you!

david.matuszek@gmail.com

xiii

Preface

You probably think that functional programming (FP) is
something dreamed up by ivory-tower academics using

obscure languages that few people understand.

You’re right.

You probably think that those weird languages such as Haskell,
Standard ML, and OCaml are never going to be very popular with
ordinary programmers.

Right again.

But did you notice…

	•	 That ivory-tower academics are some pretty smart people?

	•	 That the programming language you use every day, what-
ever it is, is getting more FP features?

“Pure” functional programming, abandoning all the conventional
programming techniques, really is difficult. But you don’t have to
do that. Think of it this way: Conventional programming consists
of a collection of hand tools, and FP adds a power tool to the mix.
Just one—it doesn’t do everything, and you still need all the other
tools (unless you’re an ivory-tower academic), but where you can
use it, it saves a lot of work.

xiv    ◾    Preface

Here’s a spoiler: FP will let you replace many of your loops with
shorter, simpler, easier to understand function calls. Yes, there’s
some unfamiliar syntax involved, but it’s just syntax, and you can
get used to it very quickly. The new concepts, the parts you might
think are the most difficult, turn out to be trivially simple.

You may be surprised how much a single power tool can help you
in your day-to-day programming.

FP is coming into prominence now because it is a far better way to
write concurrent programs, suitable for multi-core computers.
However, this is only a book about functional programming, not
about concurrent programming; that would require a far larger
volume.

Each chapter after the first begins with an explanation of some
particular concept of functional programming. After that, there
are sections exemplifying that concept in each of three languages.

	•	 Python, because it is a simple, widely known language.
Python has only a few of the most basic FP features.

	•	 Java, because it is widely known and has many of the FP
features. The developers of these features have done an
awesome job in fitting these features into a language that
was never designed to hold them.

	•	 Scala, which has been designed from the ground up to be
both object oriented and functional, and therefore provides
the cleanest and most complete set of FP features.

I have tried to make this book accessible to programmers who
do not know Python or Scala. The FP features of these languages
can be understood without an in-depth knowledge of the language
in which they occur. Unfortunately, no such claim can be made
for Java.

1DOI: 10.1201/9781003358541-1

A mathematical function has arguments, and from those
arguments, it computes a result. Given the same arguments

again, it will produce the same result, every time. Consequently,

	•	 A function uses its arguments, and only its arguments, to
produce a result. It has no access to “global variables,” ran-
dom numbers, the time of day, or anything like that.

	•	 A function has no side effects. It does not change anything
in its environment. It does not change the values of its
arguments. It does no input or output.

	•	 A function has referential transparency. Once the value
of a function with certain arguments has been computed,
then any call to the function with those arguments, in any
context, may be replaced by that value.

A function with the above characteristics is called a pure
function.

C H A P T E R 1

What Is Functional
Programming?

http://dx.doi.org/10.1201/9781003358541-1

2    ◾    Quick Functional Programming

In a functional language, functions are values. This means that they
can be stored in variables, passed around as parameters, and
returned as the result of a function calls, just like any other type of
value. There are even operations on functions that produce new
functions.

Almost any programming language has functions, of course, but
in functional programming, the entire program is thought of as
being a function that has functions within it.

Obviously, programs need the ability to do input and output. One
reason purely functional languages such as Haskell are difficult is
that they require input/output to be put in a “walled garden”
where they don’t have to be seen by the rest of the code. The ability
of Haskell to do this is something of an intellectual feat, but its
practical value is controversial.

Another important idea from mathematics is that variables don’t
vary. If the value of a variable x is known, it has the same value
throughout the computation. If you want to model a process that
changes over time, you might say x' = f(x), where x' is a “new”
value; but it is also in a new variable, x'.

To model this in programming terms, we say that variables have
to be single assignment—once given a value, that value cannot be
changed. In addition, that value must be immutable; for example,
it cannot be an array whose elements can be changed.

The single-assignment property means that we need some way to
create new variables; not only x but also x', x'', x''', and so on for as
many variables as we need. This is easily done with recursion,
because every recursive call creates a new set of variables. Loops, on
the other hand, are used almost exclusively to change values, which
is contrary to the functional programming view. Because any task
that can be accomplished with loops can also be done with recur-
sion, functional programming uses recursion rather than loops.

What Is Functional Programming?    ◾    3

Because values must be immutable, memory demands for new
values can be high. This is dealt with by automatically garbage
collecting values that are no longer needed and by using persis-
tent data structures: A change to one part of the data structure
does not require making a complete copy of the parts that have
not changed.

Another consequence is that functional programming is expres-
sion-oriented rather than statement-oriented. An entire program
may consist of a single expression, along with definitions of vari-
ables and functions (which themselves consist of single
expressions).

In summary, pure functional programming requires that:

	•	 Functions are pure and can be treated as values.

	•	 Variables are single-assignment, and values are immutable.

	•	 Recursion is used in preference to loops.

	•	 Garbage collection is automatic and data structures are
persistent.

	•	 Programs are expression-oriented rather than statement-
oriented.

Pure functional programming can be done in specialized lan-
guages such as Haskell and OCaml. For the practicing pro-
grammer, however, such purity is unattainable in conventional
languages. This is not without its advantages; all the usual pro-
gramming tools, including loops, can be employed, while also
making use of functional programming features when they are
appropriate.

The reader may question why a less common language such as
Scala is included in this book. Python supports only the most

4    ◾    Quick Functional Programming

basic functional features; Java supports more features, but at the
cost of considerable added complexity; and purely functional lan-
guages such as Haskell seem downright “weird” to most pro-
grammers. Scala has an almost complete set of functional
programming features, but the syntax is much closer to that of
mainstream languages, so the Scala examples should be fairly
easy to understand.

5DOI: 10.1201/9781003358541-2

A method belongs to an object. It has access to the fields of
the object and can read and modify them. It can use other

methods in that object.

A function is, or should be, independent of the context in which it
occurs. It should use only its arguments in computing a result;
it should have no side effects; and it should have referential
transparency.

Of course, not all methods access the fields or call other meth-
ods of the object that owns them, and not all functions are
“pure” in the above sense.

One of the chief advantages of pure functions is that their cor-
rectness can be verified without taking context into account.
This makes pure functions much easier to debug. Another
advantage is that, since pure functions do not depend on con-
text, they can be passed around as freely as any other kind of
value.

C H A P T E R 2

Methods and
Functions

http://dx.doi.org/10.1201/9781003358541-2

6    ◾    Quick Functional Programming

2.1 � METHODS
The following sections summarize the syntax used for declaring
and using methods and describe how methods can sometimes be
used in place of functions.

2.1.1 � Methods in Python

Here is how you would define a simple method in Python:

 def plus(a, b):
 return a + b

A call to this method might look like this: c = plus(a, b).

In Python, the types of variables are not declared. The plus
method can be applied to integers, reals, or strings, since all of
these have a + operator.

We can show that the plus method is a value by copying it into
another variable:

 sum = plus

Following this assignment, the statement c = sum(a, b) does
exactly the same thing as c = plus(a, b).

Python is object oriented, so it has methods, and Python lets us
use them much like functions. Methods are defined within a class,
while functions are defined external to any class.

Here is a class definition:

 class Arithmetic():

 # Instance method
 def plus1(self, a, b):
 return a + b

Methods and Functions    ◾    7

 @staticmethod
 def plus2(a, b):
 return a + b

In the above class definition, plus1 is an instance method, so that it
belongs to every object created from the Arithmetic class. The par-
ticular object can be referenced inside the method via the variable
self, though that is not done in this example. To use this method,
prefix it with the name of the object that owns it, followed by a dot.

 obj = Arithmetic() # Creates an object
 print(obj.plus1(1, 2)) # Prints 3

Even though obj.plus1 is a method, not a function, we can assign
it to a new variable.

 sum1 = obj.plus1
 print(sum1(3, 4)) # Prints 7

A “static” method is essentially a function. Since another class
could define a method with the same name, you have to say in
which class plus2 is defined; however, it has no special access to
the fields or methods of that class.

 print(Arithmetic.plus2(5, 6)) # Prints 11

Similarly, just as we can assign obj.plus1 to a new variable, we
can assign Arithmetic.plus2 to a new variable.

 sum2 = Arithmetic.plus2
 print(sum2(7, 8)) # Prints 15

2.1.2 � Methods in Java

A typical Java method looks like this:

 public static int plus(int a, int b) {
 return a + b;
 }

8    ◾    Quick Functional Programming

Here, the initial int specifies the type of value returned from the
method; static means that it can be used directly from the class,
without first creating an object; plus is the name of the method;
and the parameters are both of type int. The next line calculates
a return value, which also must be of type int.

If this were a function, you could call it directly. Instead, you have
to define a class containing the method and then tell the class
(formally, send a message to the class) to execute the method. Or
you could create an object of that class and then send the message
plus to the object. Either way, the method doesn’t exist as an inde-
pendent function.

Java has the operator :: for converting a method to a function.
If the above method is defined in class FP, the corresponding
function is FP::plus. It can be used as follows:

 IntBinaryOperator sum = FP::plus;
 �System.out.println(sum.applyAsInt(3, 4));

The above code will print 7.

Briefly, functions that take two ints as parameters and produce an
int result must implement the IntBinaryOperator interface.
The method defined by this interface is applyAsInt. This type of
interface is one of many that will be explained in detail later.

Because sum is a function and functions are values, we can assign
it to another variable of the same type:

 IntBinaryOperator sum2 = sum;
 �System.out.println(sum2.applyAsInt(3, 4));

Since sum2 is the same as sum, this code will also print 7.

Methods and Functions    ◾    9

2.1.3 � Methods in Scala

Scala has both methods and functions.

Here is how you would define a simple method in Scala:

 def plus(a: Int, b: Int) = a + b

The method is named plus, and the two parameters a and b are
both declared to be of type Int (integer). The result of the compu-
tation is the sum of a and b, and Scala can deduce that it has type
Int.

Note: All values in Scala are objects; there are no “primitives.”

The method body follows the equals sign. If the method body con-
sists of more than a single expression, it is enclosed in braces, {}.
The value returned by the method is the value of the last expression
in the method body.

Methods can often be used where a function is expected.

 �def apply(fun: (Int, Int) => Int, a: Int, b: Int) =
 fun(a, b)

 apply(plus, 3, 4) // Prints 7

The apply method expects a function fun as a parameter. The
notation (Int, Int) => Int indicates the type of fun is a function
that takes two integer parameters and returns an integer result.

Methods are not values and cannot always be used in place of
functions. In particular, a method cannot be assigned to a new
variable. The workaround is to convert the method to a function
by following it with a single underscore.

10    ◾    Quick Functional Programming

Examples:

 val add = plus _ // note underscore
 println(plus(1, 2)) // prints 3
 println(add(3, 4)) // prints 7

In functional programming, variables don’t vary. Once a value
has been assigned to a variable, that value in that variable cannot
be changed—it is immutable.

Because Scala has strong support for functional programming,
but doesn’t insist on it, there are two ways to declare variables.
A variable declared with val (value) is immutable, while a variable
declared with var (variable) is the usual kind of mutable variable—
it can be reassigned at will. It is good technique to declare vari-
ables with val and only change the declaration to var if it becomes
necessary. In a completely functional program, this would never
become necessary.

When declaring a variable, there is no need to specify its type
(though you may). Scala determines this from the value assigned
to the variable.

2.2 � FUNCTION LITERALS
A function literal is kind of a “lightweight” function. It is a way
of writing a function without necessarily giving it a name, so it is
sometimes called an anonymous function.

Function literals are values. They can be assigned to variables, but
a function literal is often used only in one place and just written
where it is needed. Function literals are most often used as argu-
ments in a function call.

The body of a function literal can be any length, but is most
often just a single expression. When the function is called, the
expression is evaluated and the result returned as the value of
the function.

Methods and Functions    ◾    11

Function literals do not add any “power” to a language. Instead,
their purpose is to provide a notation that is more concise, easier
to write, and easier to read.

Scala is expression oriented; in theory, a single expression can be
arbitrarily complex. However, as a matter of style, function literals
should be kept short, typically not more than a single line.

2.2.1 � Function Literals in Python

In Python, a function literal to add two numbers looks like this:

 lambda a, b: a + b

Instead of beginning with the keyword def and a name, a func-
tion literal begins with the keyword lambda. Then, there are zero
or more parameters, an equals sign, and an expression. The value
of the expression will be the result returned by the function. (The
keyword lambda was chosen for historical reasons.)

A literal function has no name and no scope, just as the integer
literal 5 has no name and no scope. It is a value that can be used in
an expression or as an expression all by itself.

Although a function literal starts out as an anonymous function,
it can be saved in a variable and used that way.

 plus = lambda a, b: a + b
 print(plus(3, 4)) # prints 7

But since a function literal is a function, it can be used without
first giving it a name.

 �print((lambda a, b: a + b)(3, 4)) # prints 7

The most common use of a function literal is as an argument to
another function.

12    ◾    Quick Functional Programming

 def combine(fun, a):
 result = a[0]
 for i in range(1, len(a)):
 result = fun(result, a[i])
 return result

 a = [1, 20, 300]
 �print(combine(lambda a, b: a + b, a)) # prints 321
 �print(combine(lambda a, b: a * b, a)) # prints 6000

2.2.2 � Function Literals in Java

Starting in Java 8, you can define a function literal as follows:

(parameters) -> expression_or_block

It is sometimes required to specify parameter types, as in a method
definition (int a, etc.). In many cases, the types may be omitted,
and Java can determine them.

If there is only one parameter, and its type is not specified, the
parentheses may be omitted. If there are no parameters, empty
parentheses are required.

The body of the function can be either a single expression or a
block of statements enclosed in braces, {}. In the latter case, it
must contain one or more return statements to specify the value
of the function.

A function literal to add two numbers looks like this:

 (a, b) -> a + b

In order to use this literal function, it must be given a name, and
that name must have the correct type. If the intent is to add inte-
gers and get an integer result, the type name is IntBinaryOperator.

Methods and Functions    ◾    13

But it’s more complicated than this. IntBinaryOperator is the
name of an interface, and that interface defines an abstract method
applyAsInt. To make this work, we save the function in a variable
of type IntBinaryOperator and then “send a message to” (i.e., call)
the abstract method.

 IntBinaryOperator add = (x, y) -> x + y;
 �System.out.println(add.applyAsInt(3, 4)); // prints 7

The requirement to have a name for every possible function
type adds considerably to the complexity of using function liter-
als in Java. Section 4.6, Provided Functional Interfaces, lists and
describes 43 types, but you can also define your own.

2.2.3 � Function Literals in Scala

Function literals in Scala are defined using the syntax (parame-
ters) => expression. Every parameter must have a specified type.

 val subtract = (a: Int, b: Int) => a - b

The return type is not required, but may be provided.

 �val subtract = (a: Int, b: Int): Int => a - b

The type of a function is easily specified: Just leave out the variable
names. For example, the type of subtract is (Int, Int) => Int.

Scala requires that method and function parameters must spec-
ify their type. For example, if you want to pass subtract as a
parameter to method doIt, the method definition would look
like this:

 def doIt(fn: (Int, Int) => Int,
 x: Int, y: Int) = fn(x, y)

The call doIt(subtract, 10, 3) will return 7.

14    ◾    Quick Functional Programming

More complex Scala function literals may be enclosed in braces;
the return value is the last value computed.

2.3 � SORTING EXAMPLES
The examples provided thus far have been trivial. It’s time for
some more compelling examples.

Most programming languages will provide a library method for
sorting an array into ascending order. Occasionally, however,
some other form of sorting is needed, and the provided method
is useless. The programmer must then write a completely new
sorting method, even though the only change needed is to deter-
mine which of two values should precede the other. This deter-
mination can easily be made by a function that is supplied as a
parameter.

2.3.1 � Sorting in Python

The following code is based on a standard insertion sort. There
is no need to understand in detail how it works; the important
points to notice are the inclusion of a parameter named precedes
and the replacement of the test n < a[j - 1] with the function
call precedes (n, a[j - 1]).

 def fun_sort(a, precedes):
 i = 1
 while i < len(a):
 n = a[i]
 j = i
 i = i + 1
 while j > 0 and precedes(n, a[j - 1]):
 a[j] = a[j - 1]
 j = j - 1
 a[j] = n

Methods and Functions    ◾    15

We can use this to sort list numbers from smallest to largest by
supplying smaller as a parameter.

 def smaller(a, b):
 return a < b

 fun_sort(numbers, smaller)

By using function literals, even the need to provide a separate
smaller function is eliminated.

 fun_sort(numbers, lambda a, b: a < b)

We can use fun_sort to sort an array in descending order:

 fun_sort(numbers, lambda a, b: a > b)

We can sort all odd numbers before all even numbers:

 fun_sort(numbers,
 �lambda a, b: a % 2 > b % 2

We can sort according to the last (ones) digit:

 �fun_sort(numbers, lambda a, b: a % 10 < b % 10)

We can sort according to the number of factors a number has:

 fun_sort(numbers,
 �lambda a, b: n_factors(a) < n_factors(b))

Additional uses can easily be imagined. Since Python is a dynam-
ically typed language, fun_sort can be applied to almost any list
of values.

16    ◾    Quick Functional Programming

2.3.2 � Sorting in Java

Numbers and strings have a predefined natural ordering. To sort
an array of numbers or of strings, we can use the sort method
in java.util.Arrays. This sorts the array in place; it does not
return a new array.

To define a “natural ordering” for any objects we create, the class
defining the objects should implement the Comparable interface
and provide a compareTo(object) method.

But Comparable is limited because each type of object can have only
one natural ordering. For more flexibility, the java.util.Arrays
class also provides a sort method with the following signature:

 sort(T[] a, Comparator<? super T> c)

This means, roughly speaking, that it will sort an array a of values
of type T, or any subclass of type T, according to a “Comparator” c.

Assume that we have a Planet class, where each Planet has a
name, an integer location that tells where it is in order from the
sun (Earth is third), and a floating-point mass.

If we want to sort planets in various ways, the traditional way of doing
this is to provide a Comparator class for each way we might want to
sort the Planets. To sort by location, here is a possible Comparator.

 public class PlanetLocationComparator<T>
 implements java.util.Comparator<T> {

 @Override
 public int compare(T o1, T o2) {
 Planet p1 = (Planet)o1;
 Planet p2 = (Planet)o2;
 return p1.location - p2.location;
 }
 }

Methods and Functions    ◾    17

We can use this Comparator to sort an array of planets.

 �PlanetLocationComparator<Planet> locationSorter =
 �new PlanetLocationComparator<Planet>();
 Arrays.sort(planets, locationSorter);

To sort planets by name, we would have to define another
Comparator class. If we wanted to sort in other ways, for example
by mass or by diameter, we would need still more Comparator
classes.

A Comparator is a functional interface; these will be described in
detail in Section 4. For now, it is enough to say that we can supply
a function literal as the second parameter to sort. This means that
we can replace all of the above code with the following:

 Arrays.sort(planets,
 �(p1, p2) -> p1.location - p2.location);

A Comparator has to return an integer value. The result should be
negative if the first argument is smaller, zero if they are equal, and
positive if the first argument is greater. Our location comparator
did exactly this.

Comparisons by mass, which is a double value, are somewhat
more complicated. If we simply cast each mass to an integer before
comparison, different masses could result in the same integer. The
solution is to do the subtraction using doubles, but use the signum
function to convert this difference to −1.0, 0.0, or +1.0 and then
cast the result to an integer.

 Arrays.sort(planets, (p1, p2) ->
 �(int)java.lang.Math.signum(p1.mass - p2.mass));

Strings have a natural ordering, so they have a compareTo method.
Fortunately, compareTo is also a functional interface.

18    ◾    Quick Functional Programming

 Arrays.sort(planets, (p1, p2) ->
 p1.name.compareTo(p2.name));

2.3.3 � Sorting in Scala

Scala provides a sorted method which will sort a sequence
according to its natural order. The natural order for numbers and
strings is what you would probably expect; it can be defined for
other types of objects.

Of more interest to us, Scala also provides a sortWith method.
Methods belong to objects and are called with dot syntax; so, to
sort an object such as a list, we would say:

object.sortWith(function)

If we have a list of integers, we can sort it however we like. All we
need to do is provide it with a function of two parameters, which
will return true if the value given to the first parameter should
precede the value given to the second parameter.

 �val numbers = List(31, 41, 59, 26, 53, 49, 16)
 �println(numbers.sortWith((a: Int, b: Int) => a < b))
 �// prints List(16, 26, 31, 41, 49, 53, 59)

 �println(numbers.sortWith((a: Int, b: Int) => a > b))
 �// prints List(59, 53, 49, 41, 31, 26, 16)

 �println(numbers.sortWith((a: Int, b: Int) =>
 �a % 10 < b % 10))
 �// prints List(31, 41, 53, 26, 16, 59, 49)

The last of these sorts the numbers according to their last digit.

The above examples used a list of integers. We can sort objects of
any type, for example, strings.

Methods and Functions    ◾    19

 �val languages = List("Python", "Java", "Scala")
 println(languages.sortWith(
 �(a: String, b: String) => a < b))
 // prints List(Java, Python, Scala)

 println(languages.sortWith(
 �(a: String, b: String) => a.length < b.length))
 // prints List(Java, Scala, Python)

As Scala is designed to be functional, sortWith always returns a
new list; it doesn’t modify the given list.

https://taylorandfrancis.com

21DOI: 10.1201/9781003358541-3

A function that takes another function as a parameter, or
returns a function as a result, is known as a higher-order

function. This name somehow makes the function seem special. It
isn’t. We don’t have a special name for a function that takes an
integer as an argument or returns an integer as a value, so why have
a special name for a function that takes or returns functions?

The purpose of giving a parameter to a function is to specialize
that function; that is, apply it to specific data. This remains true
when the parameter is itself a function.

In Section 2.3, we saw how a single sorting algorithm could be
specialized to sort an array or list according to almost any criteria,
simply by giving the method an appropriate function to compare
two values.

Often it is necessary to reduce an array or list to a single value: the
largest or smallest value, the sum or product of all the values, or

C H A P T E R 3

Higher-Order
Functions

http://dx.doi.org/10.1201/9781003358541-3

22    ◾    Quick Functional Programming

perhaps the number of elements in the array or list. In the follow-
ing sections, we will write a single function that can do all of these
things, simply by giving it a function that combines two values
into one.

3.1 � HIGHER-ORDER FUNCTIONS IN PYTHON
To add up the elements of a list, or to find the least and greatest
element, Python already has the functions sum, min, and max. (A
Python list is like an array in other languages.) It doesn’t come
with a product method to multiply together all the elements of a
list, but we could write one like this:

 def product(lst):
 result = lst[0]
 for i in range(1, len(lst)):
 result = result * lst[i]
 return result

The range function provides the numbers from 1 up to the length
of the list minus one, so if we call product(lst), the result will be
the product of all the numbers in lst.

 lst = [1, 2, 3, 4, 5]
 print(product(lst)) # prints 120

Note: We use the variable name lst because, if we used the
name list, that would override Python’s list function.

To find the sum of squares of all the numbers in a list, we could
copy the product function, change the name to sum_squares,
and replace the fourth line in the function with:

 result = result + lst[i] ** 2

Unfortunately, this isn’t quite correct, because the first element of
the list, lst[0], doesn’t get squared. To ensure that all the numbers

Higher-Order Functions    ◾    23

in the list get treated equally, we can include the first value in the
range and add a parameter to use as an initial value.

 def sum_squares(initial, lst):
 result = initial
 for i in range(0, len(lst)):
 result = result + lst[i] ** 2
 return result

Now the call sum_squares(0, lst) will work correctly.

To find the sum of all the positive numbers in the list, we could
change the name to sum_positives and replace the fourth line
with:

 result = result + max(0, lst[i])

All of these functions have essentially identical structure, and it
gets tiresome to write the same code over and over again. We have
already generalized the function by adding an initial value; let’s
generalize it further by providing a function to tell it how to com-
bine two elements. We’ll name this more general function fold.

 def fold(initial, fun, lst):
 result = initial
 for i in range(0, len(lst)):
 result = fun(result, lst[i])
 return result

Let’s define some functions to use with fold:

 def multiply(a, b):
 return a * b

 def count_if_odd(a, b):
 return a + b % 2

24    ◾    Quick Functional Programming

 def count_if_prime(a, b):
 if prime(b):
 return a + 1
 else:
 return a

 def longer(a, b):
 if len(a) > len(b):
 return a
 else:
 return b

Now we no longer have to write a loop to go through a list making
pairwise comparisons; instead, we can call the fold function.

 �print(fold(1, multiply, lst)) # prints 120
 �print(fold(0, count_if_odd, lst)) # prints 3
 �print(fold(0, count_if_prime, lst)) # prints 3

 �languages = ['Python', 'Java', 'Scala']
 print(fold(", longer, languages))
 # prints 'Python'

We can use the fold function in all these different ways because
the structure of the code used to combine all the elements is
identical; it just differs in the function used to combine a single
pair of elements.

To do the above, we had to write additional functions, one for
each new thing we wanted fold to do. Unless these functions are
needed elsewhere, our code could be improved by using function
literals.

 �print(fold(1, lambda a, b: a * b, lst))
 �print(fold(0, lambda a, b: a + b % 2, lst))

And similarly for the others.

Higher-Order Functions    ◾    25

3.2 � HIGHER-ORDER FUNCTIONS IN JAVA
We can define an integer array as follows:

 int[] ary = {1, 2, 3, 4, 5};

To sum up the numbers in this array, we could do it in Java like this:

 public static int addAll(int[] ary) {
 int result = ary[0];
 �for (int i = 1; i < ary.length; i++) {
 result += ary[i];
 }
 return result;
 }

 System.out.println(addAll(ary));

We could write almost identical methods to find the product of all
the numbers in an array, to find the largest or smallest value in an
array, and so on. This is a lot of code.

In Section 2.1.2, we defined a function plus, of type
IntBinaryOperator, in the class FP. We can now write a reduce
function that takes a parameter of this type to tell it how to com-
bine two values.

 public static int reduce(
 IntBinaryOperator fun, int[] ary) {
 int result = ary[0];
 for (int i = 1; i < ary.length; i++) {
 result = fun.applyAsInt(result, ary[i]);
 }
 return result;
 }

In Java, methods must be defined within a class. Since we are
already assuming the existence of a class named FP, let’s add the
following methods to that class.

26    ◾    Quick Functional Programming

 �public static int multiply(int a, int b) {
 return a * b;
 }

 public static int lesser(int a, int b) {
 return a < b ? a : b;
 }

 public static int greater(int a, int b) {
 return a > b ? a : b;
 }

We can use the :: operator to convert these methods to functions
and then pass them to the reduce method like this:

 System.out.println(reduce(FP::plus, ary));
 �System.out.println(reduce(FP::multiply, ary));
 �System.out.println(reduce(FP::lesser, ary));
 �System.out.println(reduce(FP::greater, ary));

These statements will print 15, 120, 1, and 5, respectively.

With function literals, we can bypass methods and go straight to
functions.

 System.out.println(
 reduce((a, b) -> a + b, ary));

 System.out.println(
 reduce((a, b) -> a * b, ary));

 System.out.println(
 �reduce((a, b) -> a < b ? a : b, ary));

 System.out.println(
 �reduce((a, b) -> a > b ? a : b, ary));

Higher-Order Functions    ◾    27

In every case, we are going through an array and combining
elements pairwise; the only difference is how we combine two
elements (by addition, multiplication, or choice).

3.3 � HIGHER-ORDER FUNCTIONS IN SCALA
In Scala, we can define a singly linked list like this:

 val list = List(1, 2, 3, 4, 5)

We could find the sum of all the integers in this list by setting up
a loop and iterating through the list, referring to each element by
its index. Iteration is efficient for arrays but not at all efficient for
lists. For lists, recursion is much more efficient.

A list is either empty or it isn’t. If it isn’t empty, it has a head (a first
element) and a tail (the rest of the list after the head). If there is
only one element in the list, the head is that one element, and the
tail is empty.

With this understanding of lists, we can sum up the elements of a
list like this:

 def addAll(list: List[Int]): Int =
 if (list.tail isEmpty) list.head
 else list.head + addAll(list.tail)

 println(addAll(list)) // prints 15

Explanation:

	•	 We begin by defining a method called addAll which takes as
its one parameter a list of integers and returns an integer result.

	•	 If the list contains only one value, then the tail of the list will
be empty (list.tail isEmpty), so we return the head of the
list, and we are done. Since there is only the one value in the
list, that value is also the sum.

28    ◾    Quick Functional Programming

	•	 This code will fail if given an empty list, because an empty
list has neither a head nor a tail. We will ignore this issue
for the present.

	•	 If the list has more than one value, we can find the sum of
all the elements by adding the first element to the sum of the
remaining elements.

If we want to find the product of all the elements of a list, or to
find the least or greatest value in a list, we could write very similar
methods to do these things. Alternatively, we could generalize the
above method. All we need to do is to pass in a function as an
additional parameter and use that function instead of addition.

Scala requires that we specify the type of every parameter. In this
case, we want to pass in a function that takes two integers as
parameters and produces an integer as a result. We write this type
as (Int, Int) => Int.

Here is the generalized method:

 def reduce(fun: (Int, Int) => Int,
 list: List[Int]): Int =
 if (list.tail isEmpty) list head
 �else fun(list.head, reduce(fun, list tail))

And here are some examples of using that method:

 def add(a: Int, b: Int) = a + b
 def multiply(a: Int, b: Int) = a * b
 �def lesser(a: Int, b: Int) = if (a < b) a else b
 �def greater(a: Int, b: Int) = if (a > b) a else b

 println(reduce(add, list))
 println(reduce(multiply, list))
 println(reduce(lesser, list))
 println(reduce(greater, list))

Higher-Order Functions    ◾    29

These calls print 15, 120, 1, and 5, respectively.

We can instead use function literals. The code is a bit shorter and
does not define otherwise unwanted methods.

 �println(reduce((a: Int, b: Int) => a + b, list))

 �println(reduce((a: Int, b: Int) => a * b, list))

 println(reduce((a: Int, b: Int) =>
 �if (a < b) a else b, list))

 println(reduce((a: Int, b: Int) =>
 �if (a > b) a else b, list))

https://taylorandfrancis.com

31DOI: 10.1201/9781003358541-4

Unlike the other chapters, this one is unique to Java;
there is no Python or Scala counterpart because those lan-

guages had no need of functional interfaces.

Before Java 8, Java had no functions, but it had a lot of classes and
a lot of methods. These methods weren’t compatible with func-
tions. However, many of these classes implemented interfaces,
and many that didn’t could easily be retrofitted to implement
interfaces.

As a way of making this older code compatible with functions,
Java 8 introduced functional interfaces.

4.1 � SINGLE ABSTRACT METHODS
In Java, an interface is a list of abstract (unimplemented) methods,
possibly along with some other things. A class can implement an
interface by supplying definitions for those methods.

C H A P T E R 4

Functional Interfaces
in Java

http://dx.doi.org/10.1201/9781003358541-4

32    ◾    Quick Functional Programming

If an interface lists several abstract methods, all of them must be
defined before the interface can be used. However, if the interface
lists exactly one SAM (Single Abstract Method), only that one
method must be defined. If we invoke the interface and supply a
single function, Java will understand that the function is taking
the place of that one method. For this reason, any interface with
exactly one SAM is called a functional interface.

The function we supply must have the same number and types
of parameters as the method it is replacing. Since Java knows the
parameter types required by that method, we don’t need to
specify them in our function.

For example, the ActionListener interface has one SAM,
actionPerformed, which requires an ActionEvent as an argu-
ment. Since ActionListener is a functional interface, we can
replace the actionPerformed method with a function definition,
and we don’t need to say that the function parameter has type
ActionEvent.

 ActionListener listener = event -> {…}

Some familiar interfaces that can be treated as functional inter-
faces include java.lang.Runnable with a run() method and
java.util.Comparator with a compare(T obj1, T obj2) method.

Note: Although the documentation for Comparator lists
another abstract method, equals(Object obj), that
method doesn’t have to be implemented in Comparator,
because Comparator can inherit an implementation of
equals from Object.

4.2 � ANONYMOUS INNER CLASSES
Java has a number of interfaces that can be implemented as anony-
mous inner classes. To respond to a button click in a user interface,
we would typically implement java.awt.event.ActionListener

Functional Interfaces in Java    ◾    33

as an inner class attached to a button. Here’s the original way of
doing this:

 �myButton.addActionListener(new ActionListener() {
 @Override
 �public void actionPerformed(ActionEvent e) {
 HandleButtonClick();
 }});

In Java 8, we still need to call addActionListener, but we can
skip over creating the ActionListener object and just supply a
function for the actionPerformed method.

 myButton.addActionListener(
 (ActionEvent e) -> {
 HandleButtonClick();
 });

The resultant code is more direct and slightly less verbose.

A minor variation on this is to define the ActionListener
separately, as a function:

 ActionListener listener = e -> {
 HandleButtonClick();
 };
 myButton.addActionListener(listener);

In this case, the compiler is able to infer the type of e, namely,
ActionEvent.

4.3 � DEFINING FUNCTIONAL INTERFACES
Any existing functional interface can be used as a type, or you can
define your own. For example,

34    ◾    Quick Functional Programming

 @FunctionalInterface
 public interface Diddler {
 public abstract int diddle(int x);
 }

Diddler can be used like this:

 Diddler y = x -> 3 * x + 1;
 �System.out.println(y.diddle(5)); // prints 16

Here’s a slightly more complex example, using type parameters:

 @FunctionalInterface
 public interface Fun2<A, B, R> {
 public R apply(A a, B b);
 }

Here’s an example of using Fun2:

 Fun2<Integer, Integer, Integer> fn =
 (Integer a, Integer b) -> a % b;
 �System.out.println(fn.apply(20, 7)); // prints 6

4.4 � METHOD REFERENCES
Java has tens of thousands of methods, but methods aren’t func-
tions. The method reference operator, ::, is a way of “wrapping”
a method inside a functional interface, so that it can be used as if
it were a function.

Essentially, x :: m is an abbreviation of x -> x.m(…), where m has
an unspecified number of parameters. If there is more than one
method named m, method resolution is performed in the usual
way, by the types and number of parameters.

Functional Interfaces in Java    ◾    35

Here are examples of method reference operators. Explanations
are after the code.

 import java.util.function.*;

 public class MetRef {

 public static void applyTo10(
 �IntUnaryOperator intOp) { // 1
 �int result = intOp.applyAsInt(10); // 2
 System.out.println(result);
 }

 public static int square(int x) {
 return x * x;
 }

 public int cube(int x) {
 return x * x * x;
 }

 �public static void main(final String[] args) {

 // Using a lambda
 applyTo10(x -> x / 2); // 3

 // Using a static method
 applyTo10(MetRef :: square); // 4

 // Using a constructor
 �Supplier<MetRef> ms = MetRef :: new; // 5
 MetRef m = ms.get(); // 6
 �System.out.println(m.getClass()); // 7

 // Using an instance method
 applyTo10(m :: cube); // 8
 }
 }

36    ◾    Quick Functional Programming

Explanations:

	 1.	applyTo10 is a static function that takes one param-
eter, intOp, of type IntUnaryOperator. An IntUnary
Operator is a functional interface whose SAM takes one
integer argument and returns an integer result.

	 2.	intOp.applyAsInt(10) takes the parameter intOp and calls
its SAM applyAsInt with the parameter 10. The following
line prints the result.

	 3.	applyTo10(x -> x / 2) calls applyTo10 with a simple
lambda; 5 is printed.

	 4.	applyTo10(MetRef :: square) calls applyTo10 with the
method square, which is a static method of class MetRef;
100 is printed. (Compare to #8 below.)

	 5.	MetRef :: new is the form for calling the constructor of
the class MetRef; notice the use of the keyword new. Since
this particular constructor takes no argument and returns an
object, it must be a supplied (see Section 4.6.6); and since the
type of object supplied is a MetRef, the type must be Supplier
<MetRef>.

	 6.	 The supplier in #5 can supply only one object, the newly
constructed MetRef. We use the supplier’s get method to
retrieve it.

	 7.	 We print the type of the object retrieved in #6. As expected,
it prints class MetRef.

	 8.	cube is an instance method, so you can only apply it if you
have an instance. We created an instance m in #5 and #6
above. Here, we use m :: cube to reference the instance
method, just as we used MetRef :: square in #4 to refer-
ence the static method. The result, 1000, is printed.

Functional Interfaces in Java    ◾    37

4.5 � THE OTHER METHOD REFERENCE
There is a fourth kind of method reference in which we specify a
particular instance (object) and the instance method we wish to
use, but do not supply the parameters until later. The syntax for
this is simply instance::method.

As a first example, suppose we have a class Person with instance
variables name and age, a setter method for age, and an instance
variable bob of type Person. (We omit the code for this class
because it is so routine.) We can create a functional interface to
change Bob’s age like this:

 Consumer<Integer> g = bob::setAge;

We can use method g like this:

 g.accept(44);

The setAge method is defined as public void setAge(int age).
Because it returns nothing (void), the corresponding functional
interface must be a Consumer. Because its single argument is an
int, the type of functional interface must be Consumer<Integer>.
Finally, this functional interface has a single abstract method,
accept.

As a second example, the String class has an instance method
indexOf which takes a string to search for in the given instance
and returns the index at which it is found. That is,

 �System.out.println("computer".indexOf("t"));

will print 5. Comparable code to do the same thing is:

 String s = "computer";
 �Function<String, Integer> find = s::indexOf;
 System.out.println(find.apply("t"));

38    ◾    Quick Functional Programming

The parameters and return type of indexOf require the use of
a Function<String, Integer> with the single abstract method
apply.

4.6 � PROVIDED FUNCTIONAL INTERFACES
In addition to the interfaces that are functional by default because
they have only one single abstract method, Java provides 43 new
predefined functional interfaces. In this section, I have tried to
organize those functional interfaces in as memorable a fashion as
I can and provide some useful mnemonics.

Frankly, these interfaces are unnecessary. They are more efficient
than any interfaces you can write but add no functionality. The
previous sections showed how you can define your own func-
tional interfaces. If you are reading this book simply to get an
understanding of functional programming, you can skip ahead
to Section 5, If Expressions, or you can quickly skim this list of
predefined functional operators.

To use these functional interfaces, import java.util.function.*.

4.6.1 � IntPredicate

In this section, we take an in-depth look at one functional
interface.

The interface IntPredicate has boolean test(int value) as its
SAM (Single Abstract Method). Here is an example of its use:

 IntPredicate even = n -> n % 2 == 0;
 �System.out.println(even.test(3)); // prints false

The first thing to notice is that IntPredicate takes no type param-
eters; its SAM takes an integer and returns a boolean.

Functional Interfaces in Java    ◾    39

There is a more general interface, Predicate<T>, which takes a
type parameter T; its SAM takes a parameter of type T and returns
a boolean. It can be used almost exactly the same way as
IntPredicate, but it is much slower, because the int argument n
must be boxed into an Integer.

 �Predicate<Integer> even2 = n -> n % 2 == 0;
 �System.out.println(even2.test(3)); // prints false

Java makes a distinction between primitives and objects.
Primitives are simple values: int, double, long, and boolean, to
name the most common kinds. However, type parameters (such
as T above) must be object types; they cannot be primitives. To
deal with this, Java introduced wrapper classes, that is, classes
whose purpose is to hold a single primitive value. An Integer is a
wrapper that holds a single int, Boolean holds a single boolean,
and so on. So, while we cannot say Predicate<int>, we can say
Predicate<Integer>.

Sometime later, Java introduced automatic wrapping and unwrap-
ping, so that the user could use, for example, an int where an
Integer was required (as n in the even2 example above), and the
compiler would quietly create the necessary object. (However,
primitive types still can’t be used as type parameters.)

Wrapping and unwrapping is inefficient. IntPredicate takes a
primitive int as an argument; this means it can’t take any other
kind of argument, but it can be much more efficient. About half
the provided functional interfaces are present simply to avoid
wrapping and unwrapping.

4.6.2 � Function Composition

While a functional interface must have exactly one abstract
method, Java 8 allows interfaces to also have static methods

40    ◾    Quick Functional Programming

and default methods (as specified using the static and default
keywords). A primary distinction between these is that default
methods may be overridden, while static methods cannot be
overridden.

The IntPredicate interface has, in addition to its abstract test
method, the following default methods:

	•	 default IntPredicate and(IntPredicate other)

	•	 default IntPredicate or(IntPredicate other)

	•	 default IntPredicate negate()

Values can be combined in various ways (addition, etc.) to form
new values. In an functional language, functions are values, so
there should be some way of combining functions to form new
functions. One of these ways is function composition. The above
default methods allow us to compose abstract methods from the
IntPredicate interface.

The and and or methods are short-circuit methods. For and, if
the first method evaluates to false, the second method need not
be evaluated; the result must be false. For or, if the first method
evaluates to true, the second method need not be evaluated; the
result must be true. We can demonstrate this by writing a couple
of functions that include print statements.

 �IntPredicate big = n ->
 { System.out.print("big ");
 return n > 1000; };

 IntPredicate even = n ->
 { System.out.print("even ");
 return n % 2 == 0; };

 IntPredicate bigEven = big.and(even);

Functional Interfaces in Java    ◾    41

 �System.out.println(bigEven.test(6));
 // prints: big false

 �System.out.println(bigEven.test(6000));
 // prints: big even true

 �System.out.println(big.or(even).test(1001));
 // prints: big true

Above, we used the and method to compose big and even to cre-
ate a new method, which we then assigned to the variable bigEven
(of type IntPredicate).

In the last print statement above, we did something a little dif-
ferent. We used the or method to compose big and even, but
rather than giving the resultant function a name, we used it
directly.

The third method, negate, negates its argument:

 �System.out.println(even.negate().test(5));
 // prints: even true

 IntPredicate odd = even.negate();
 �System.out.println(odd.test(5)); // prints: even true

Note: The above call to odd prints, somewhat confusing-
ly, the word even. This is because odd calls even, which
prints its name. It is generally poor style to do both com-
putation and input/output in a single function.

4.6.3 � Predicates Again

As we have seen, Predicate<T> is a functional interface with a
SAM (Single Abstract Method), boolean test(T t). Table 4.1 lists
all the predicates along with their SAMs.

42    ◾    Quick Functional Programming

Most of these have no type parameters because none are needed.
All of them have the default methods and, or, and negate.

4.6.4 � Unary Operators

As the name implies, unary operators apply to a single argument.
There are four functional interfaces defined by Java 8, and each of
them returns a result of the same type as its argument; they are
listed in Table 4.2.

Each of these has two default methods and one static method. The
default methods are:

	•	 f.andThen(g): Returns a function that applies f to its argu-
ment and then applies g to that result.

	•	 f.compose(g): Returns a function that applies g to its argu-
ment and then applies f to that result.

TABLE 4.2  Unary operators and their SAMs

Interface Single Abstract Method

DoubleUnaryOperator double applyAsDouble(double operand)
IntUnaryOperator int applyAsInt(int operand)
LongUnaryOperator long applyAsLong (long operand)
UnaryOperator<T> T apply(T operand)

TABLE 4.1  The predicates and their SAMs

Interface Single Abstract Method

Predicate<T> boolean test(T t)
DoublePredicate boolean test(double value)
IntPredicate boolean test(int value)
LongPredicate boolean test(long value)
BiPredicate<T, U> boolean test(T t, U u)

Functional Interfaces in Java    ◾    43

The default methods take a parameter of the same type as the
interface and produce the same type as a result. That is, the default
methods for DoubleUnaryOperator take a DoubleUnaryOperator
as a parameter and produce a DoubleUnaryOperator result, and
similarly for each of the other unary operators.

The single static method is identity(), which always returns the
argument given to it. For example, IntUnaryOperator.identity().
applyAsInt(77) returns 77.

4.6.5 � More Functions and Operators

The most general functional interfaces and their SAMs (single
abstract methods) are given in Table 4.3.

A number of the remaining functional interfaces are named
using the word Function or Operator. They are hard to group
in any meaningful manner. However, the names tell a lot about
them.

	•	 If the name contains Bi or Binary, its SAM takes two param-
eters; otherwise, its SAM takes a single parameter.

	•	 If the name starts with Double, Int, or Long, and is not
a Supplier, then its SAM takes parameters of that type.
(Suppliers take no arguments.)

	•	 If the name contains To, for example, DoubleToInt, then its
SAM returns the primitive type after To (an int).

TABLE 4.3  Functional interfaces and their SAMs

Interface Single Abstract Method

Function<T, R> R apply(T t)
BiFunction<T, U, R> R apply(T t, U u)
BinaryOperator<T> T apply(T t1, T t2)

44    ◾    Quick Functional Programming

	•	 If the name begins with ToDouble, ToInt, or ToLong, then
its SAM takes parameterized types (<T t> or [if the name
also includes Bi] <T t, U u>) as parameters and returns the
named type.

	•	 If the name ends in Operator, its SAM returns the same type
as its arguments; but if the name ends in Function, then it
returns a parameterized type.

	•	 If a functional interface has double, int, or long as its return
type, its SAM is named applyAsDouble, applyAsInt, or
applyAsLong, respectively. Otherwise, its SAM is named
apply.

The above rules do not apply to suppliers, consumers, or predi-
cates. Table 4.4 lists the functional interfaces to which it does apply.

4.6.6 � Suppliers and Consumers

A supplier is a function that takes no arguments but returns some
value. It may read data from a file or return the time or a random
number.

TABLE 4.4  Usefully named interfaces

BiFunction LongBinaryOperator

BinaryOperator LongFunction
DoubleBinaryOperator LongToDoubleFunction
DoubleFunction LongToIntFunction
DoubleToIntFunction LongUnaryOperator
DoubleToLongFunction ToDoubleBiFunction
DoubleUnaryOperator ToDoubleFunction
Function ToIntBiFunction
IntBinaryOperator ToIntFunction
IntFunction ToLongBiFunction
IntToDoubleFunction ToLongFunction
IntToLongFunction UnaryOperator
IntUnaryOperator

Functional Interfaces in Java    ◾    45

A consumer is a function that takes an argument, does something
with it, and returns void. For example, the argument may be
logged, printed, or saved to a file.

As no new concepts are involved, the supplier functional inter-
faces and their SAMs are listed in Table 4.5, and the consumer
functional interfaces and their SAMs are listed in Table 4.6.

The first five consumer methods, Consumer through LongConsumer,
also have a default andThen method.

TABLE 4.5  Suppliers

Interface Single Abstract Method

Supplier<T > T get()
BooleanSupplier boolean getAsBoolean()
DoubleSupplier double getAsDouble()
IntSupplier int getAsInt()
LongSupplier long getAsLong()

TABLE 4.6  Consumers

Interface Single Abstract Method

Consumer<T> void accept(T t)
BiConsumer<T, U> void accept(T t, U u)
DoubleConsumer void accept(double value)
IntConsumer void accept(int value)
LongConsumer void accept(long value)
ObjDoubleConsumer<T > void accept(T t, double value)
ObjIntConsumer<T > void accept(T t, int value)
ObjLongConsumer<T > void accept(T t, long value)

https://taylorandfrancis.com

47DOI: 10.1201/9781003358541-5

An if statement chooses which of several statements to
execute, but an if expression chooses which of several expres-

sions to evaluate. The value of the chosen expression is the value of
the if expression.

If expressions are not unique to functional programming, but
they add considerably to the range of things a function literal can
do while keeping it reasonably concise. Also, functional languages
tend to be expression oriented, so they require if expressions. For
these reasons, a brief review of if expressions is in order.

5.1 � IF EXPRESSIONS IN PYTHON
The body of a literal function must be a single expression. Python’s
if expression extends the range of what can be done in that expres-
sion. The syntax is:

 value1 if condition else value2

C H A P T E R 5

If Expressions

http://dx.doi.org/10.1201/9781003358541-5

48    ◾    Quick Functional Programming

The condition is evaluated, and if true, value1 is computed and
returned; but if false, value2 is computed and returned.

We can use if expressions to find the least and greatest values in a list:

 least =
 fold(lst[0], lambda a, b: a if a < b else b, lst)

 greatest =
 fold(lst[0], lambda a, b: a if a > b else b, lst)

If you remember how the fold function works its way down a list,
starting with the first element and combining each value with the
next value in the list, the above is neither difficult to understand
nor difficult to read.

5.2 � IF EXPRESSIONS IN JAVA
Java has the so-called ternary expression, with the syntax

 condition ? valueIfTrue : valueIfFalse

The type and the value of this expression both depend on the
condition. If the condition is true, the value of the expression
is valueIfTrue, with the corresponding type; if the condition is
false, the value of the expression is valueIfFalse, and the type is
the type of that expression.

The ternary expression can only be used in a context where either
type is acceptable. For example, the following assignment is legal:

 Object ternary = true ? 123 : "abc";

The following is not legal:

 int ternary = true ? 123 : "abc";

If Expressions    ◾    49

If you combine two or more ternary expressions, it is a good idea
to use parentheses to make the code more readable.

 �int score = s < 0 ? 0 : (s > 100 ? 100 : s);

5.3 � IF EXPRESSIONS IN SCALA
An if expression:

	•	 begins with if (condition) expression,

	•	 has any number of else if (condition) expression clauses, and

	•	 ends with an optional else expression.

The value of the if expression is the value of the first expression
whose condition evaluates to true.

 val a = 5
 val b = 8.0
 val max = if (a > b) a else b

Since a is not greater than b, the second expression, b, is evaluated
and assigned to the variable max.

The type of the result is always a type that can hold any value cho-
sen. In the above example, a is an Int and b is a Double; either
value can be assigned to a Double, but 8.0 cannot be assigned to
an Int, so the result must be of type Double, regardless of which
value is chosen.

In most functional languages, an if expression must have an
else part, because an expression has to have some value. Scala,
however, allows the else part to be omitted. If no expression is
chosen and there is no else clause, the result will be (), which is
the special “unit” value. This affects the return type of the if
expression.

50    ◾    Quick Functional Programming

If an expression has no else clause, then:

	•	 If every expression results in a number, a boolean, or the
unit value, the result will be of type AnyVal.

	•	 If any expression results in any other type of object, the
result will be of type Any.

51DOI: 10.1201/9781003358541-6

A comprehension is a concise way to construct a new
sequence of values, based on a sequence that has already

been defined. For example, given a list of numbers, we might con-
struct a list of the squares of those numbers.

One of the principles of functional programming is that data val-
ues are, or should be, immutable. In an imperative program, one
might loop through an array and square each element, thus mutat-
ing the array. Comprehensions are more functional because they
apply a transformation to each element and return the trans-
formed sequence, but do not modify the original sequence.

In functional programming, the list is the most commonly used
type of sequence, but there may be comprehensions for other
types as well.

C H A P T E R 6

Comprehensions

http://dx.doi.org/10.1201/9781003358541-6

52    ◾    Quick Functional Programming

6.1 � LIST COMPREHENSIONS IN PYTHON
Python has four kinds of comprehensions: list, set, dictionary,
and generator comprehensions. We will go into detail only with
list comprehensions; the others are very similar.

A list comprehension looks like this:

 [expression for variable in list if condition]

A list comprehension computes a new list based on an existing
list. It steps through the list, puts each value from the list into
the variable, tests the condition, and if the condition is satisfied,
computes the expression and puts it into the new list. The test part
(if condition) can be omitted, in which case every value in list is
used in creating the new list.

Typically, both the condition and the expression use the vari-
able, but this is not a requirement.

Here are some examples, along with the values they produce.
Assume in each case that nums is the list [1, 2, 3, 4, 5].

 [10 * x for x in nums if x < 4]
 # Result is [10, 20, 30]

 [1 for x in nums if even(x)]
 # Result is [1, 1]

 [x * x for x in nums]
 # Result is [1, 4, 9, 16, 25]

 �[v for v in "functional" if v in "aeiou"]
 # Result is ['u', 'i', 'o', 'a']

The last example uses the fact that Python can treat a string as a
list of letters.

Comprehensions    ◾    53

A list comprehension can be used wherever a list can be used.

 print([x * x for x in
 [2 * y for y in range(1, 5)]])
 # Prints [4, 16, 36, 64]

You can even combine if expressions with list comprehensions.

 for n in [x // 2 if x % 2 == 0
 else 3 * x + 1
 for x in range(1, 5)]:
 print(n)
 # Prints four lines: 4, 1, 10, 2

Note: In Python, // is integer division.

A set is a data structure in which there are no duplicate values,
and for which the order of values is irrelevant.

A set comprehension looks just like a list comprehension, except
that it is enclosed in braces, {}, rather than brackets, [].

 {c.upper() for c in "bookkeeper" if c in "aeiou"}
 # Result is {'E', 'O'}

A dictionary is a number of key:value pairs, enclosed in braces.

 d = {'one': 1, 'two': 2, 'three':3, 'four':4}

A dictionary comprehension will step through the keys.

 �{key:d[key] for key in d if key[0] == 't'}
 # Result is {‘two': 2, 'three': 3}

A generator comprehension looks like a list comprehension,
except that it uses parentheses, (), instead of brackets, []. The

54    ◾    Quick Functional Programming

difference is that the generator is an object that produces values
one at a time when its next() method is called. If there are no
more values, an exception is raised.

Generator comprehensions can be used in for loops; the loop
handles the exception.

 for e in (x * x for x in [1, 2, 3]):
 print(e)
 # Prints 1, 4, and 9

There is no way to determine in advance whether the generator
has any additional values.

6.2 � COMPREHENSIONS IN JAVA
Java does not have comprehensions.

6.3 � FOR EXPRESSIONS IN SCALA
Scala’s for comprehensions are based on for expressions and will
be covered in the next section.

A for expression, when used as a statement for its side effects, has
the syntax

 for (sequence) expression

In this form, the value returned is always the Unit value, ().

The sequence can be quite complex. It always starts with a gen-
erator (indicated by the <- arrow) to provide a sequence of values.
In the following examples, the comment (after //) shows what is
printed, with each value on a separate line.

Comprehensions    ◾    55

 for (e <- List(2, 3, 5, 7)) println(e)
 // prints 2, 3, 5, 7

 for (e <- 1 to 5) println(e)
 // prints 1, 2, 3, 4, 5

 for (e <- 1 until 5) println(e)
 // prints 1, 2, 3, 4

 for (e <- 1 to 10 by 3) println(e)
 // prints 1, 4, 7, 10

 for (e <- List.range(1, 5)) println(e)
 // prints 1, 2, 3, 4

 for (e <- List.range(1, 10, 3)) println(e)
 // prints 1, 4, 7

 for (e <- "abc") println(e)
 // prints a, b, c

There can be more than one generator. For example, the following
will print out, in 81 lines, a crude multiplication table:

 for (i <- 2 to 10;
 j <- 2 to 10)
 println(i + "*" + j + "=" + i * j)

The initial generator may be followed by additional generators,
definitions, and filters.

	•	 A definition has the form variable = expression (the key-
words var and val are not used here). Variables defined in
this way are local to the for expression; they are not available
afterward.

56    ◾    Quick Functional Programming

	•	 A filter has the form if condition. If the condition is false,
the currently generated value is discarded, and computation
continues with the next generated value (if any).

Examples:

 for (e <- 1 to 6;
 if e != 4)
 println(e) // prints 1, 2, 3, 5, 6

 // print the same multiplication table as before
 for (i <- 2 to 10;
 j <- 2 to 10;
 ij = i * j)
 println(i + "*" + j + "=" + ij)

 for (e <- "computer";
 v <- "aeiou";
 if e == v)
 println(e) // prints o, u, e

 for (v <- "aeiou";
 e <- "computer";
 if e == v)
 println(e) // prints e, o, u

 val n = 100
 for (e <- 2 to Math.sqrt(n).toInt;
 if n % e == 0)
 println(e) // prints 2, 4, 5, 10

 // print all 2-digit numbers containing 7
 for (n <- 10 to 100;
 s = n.toString();
 if s contains '7')
 println(n)

Comprehensions    ◾    57

6.4 � FOR COMPREHENSIONS IN SCALA
A for comprehension has the syntax

 for (sequence) yield expression

Just as in the case of a for expression without a yield, the sequence
begins with a generator and may contain any number of genera-
tors, definitions, and filters. Variables defined in the sequence
may be used (with their current values) in the expression.

A for comprehension is used for its value, so usually that value is
assigned to a variable.

Examples:

 val a = for (e <- 1 to 6;
 if e != 4
) yield e
 // sets a to Vector(1, 2, 3, 5, 6)

 val n = 50
 val b = for (e <- 2 to n;
 if n % e == 0
) yield e
 // sets b to Vector(2, 5, 10, 25, 50)

 val c = for (e <- "computer";
 if "aeiou" contains e
) yield e
 // sets c to the string "oue"

Suppose we wish to find all 5-digit numbers that (a) are palin-
dromes and (b) whose sum of digits is 20. This can be done with
a single for comprehension, assigning the result to the variable p.

58    ◾    Quick Functional Programming

 val p = for (
 n <- 10000 to 99999;
 s1 = n toString();
 s2 = s1 reverse;
 if s1 == s2;
 d = for (x <- s1) yield x asDigit;
 sum = d.sum
 if sum == 20
) yield n

The value this assigns to p is List(15851, 16661, 17471, …, 91019).

The same computation can be made in an imperative way, using
loops and assignment statements, but the code is harder to read
and understand.

 var p: List[Int] = List()
 for (n <- 10000 to 99999) {
 var s1 = n toString;
 var s2 = s1 reverse;
 if (s1 == s2) {
 var sum = 0
 for (x <- s1) {
 sum += x.asDigit
 }
 if (sum == 20) {
 p = p :+ n
 }
 }
 }

59DOI: 10.1201/9781003358541-7

Ideally, a function should be pure: it should take no infor-
mation from the environment in which it is defined. An impure

function is one that uses values in its environment.

Because a function is a value, it can be put in a variable and that
variable can be transported a long way from where the function
was defined. The environment in which the function was defined
may no longer exist, and the storage that environment used for
variables may have been garbage collected. If the function is
impure—if it uses variables from that environment—they may
now have garbage values. Obviously, this is undesirable.

A closure is a way to prevent this from happening, by “closing
over” any such external values and carrying them along with the
function. How this is implemented is not important; what is
important is that the programmer does not have to be concerned
with whether the function still works.

C H A P T E R 7

Closures

http://dx.doi.org/10.1201/9781003358541-7

60    ◾    Quick Functional Programming

7.1 � CLOSURES IN PYTHON
Consider the following code:

 x = 1
 def my_closure(y):
 return lambda z: x + y + z

In this function,

	•	 x is not a local variable of my_closure but is defined outside
the function.

	•	 y is considered to be a local variable because it is a parameter.

	•	 my_closure returns a function which takes a parameter z.

	•	 When called, the returned function will compute the sum
x + y + z.

Now, we call my_closure and save the returned function in a
variable c:

 c = my_closure(10)

Finally, we call the returned function (now in c) with the argu-
ment 100 and print the result:

 print('c(100) is', c(100))
 # prints: c(100) is 111

(x = 1, y = 10, and z = 100, so their sum is 111).

Under ordinary circumstances, local variables of a function
(including parameters such as y) are deleted and the memory they
use is recycled when the function returns. That didn’t happen
here.

Closures    ◾    61

The function my_closure returned a function which was assigned
to c. This function contained a reference to local variable y, which
the function defined by lambda has “captured,” or “closed over,”
so that it wasn’t deleted. (This would work equally well if the inner
function were defined by def rather than by lambda.)

Changes to the global variable x and the parameter z have the
results that should be expected:

 x = 5
 print('c(200) is', c(200))
 # prints: c(200) is 215

The external variable x has been changed to 5; the parameter z
of the function now named c is set to 200, but the function c was
created with 10 as the value of its parameter y, and that value has
been retained.

7.2 � CLOSURES IN JAVA
In Java, a method cannot be defined within another method, but
a function can be defined within a method (or within another
function).

As a simple example, suppose we want to write a function that sim-
ply adds 10 to its argument. The function itself can be written as,

 (x) -> x + 10

Now, let’s write a method that returns this function. To do this, we
have to figure out the type of the function. Since it takes an int as
a parameter and returns an int as a value, the type has to be
IntUnaryOperator.

 IntUnaryOperator add10() {
 return (x) -> x + 10;
 }

62    ◾    Quick Functional Programming

The SAM (Single Abstract Method) defined for IntUnary
Operator is applyAsInt; therefore, we can call the function
returned by add10 like this:

 IntUnaryOperator adder = add10();
 System.out.println(adder.applyAsInt(5)); // prints 15

This isn’t yet a closure, as it does not refer to any variables in the
enclosing method. We can modify the method and function to
get this:

 IntUnaryOperator addN() {
 int y = 10;
 return (x) -> x + y;
 }

The function returned by addN can be called in a similar fashion
(using applyAsInt) and will produce the same results. This is as
close to being a closure as Java gets. However, the following is ille-
gal and will not work:

 IntUnaryOperator addN() {
 int y = 9;
 y = y + 1;
 return (x) -> x + y;
 }

The reason this fails is that Java cannot actually close over vari-
ables. What it can do is close over constants. If a variable is declared
to be final, or if it is “effectively final” because it is assigned a
value once and never changed, then its value can be used in the
function returned by the method.

Closures    ◾    63

7.3 � CLOSURES IN SCALA
Here is a simple method that takes a parameter x and returns a
function that will multiply its parameter by x.

 def conversion(factor: Double) =
 (x: Int) => factor * x

This is an example of a closure. The variable factor is a param-
eter, so it is a local variable of the conversion method, but it is
used in a function that is returned by conversion. The method
has “closed over” this variable.

Here, are some examples of using the above method:

 val inch2cm = conversion(2.54)
 val pounds2kg = conversion(0.453592)

 print(inch2cm(12)) // Prints 30.48
 print(pounds2kg(150)) // Prints 68.0388

In the above, the variable being closed over has a fixed value. It is
not the value that is being closed over, but the variable itself. In the
following code, the remind function closes over the variable date.

 var date = new Date()

 def remind(name: String) =
 “\nDear " + name + ", It is now " + date +
 ",\nand I am writing to remind you …"

Each time the remind function is called, it uses the current value
of date, not necessarily the value it had at the time the function
was defined.

64    ◾    Quick Functional Programming

 println(remind("Jane"))
 Thread.sleep(1000) // pause one second
 date = new Date()
 println(remind("Bill"))

Notice that the printed times differ by one second.

 Dear Jane, It is now Thu Nov 24 16:08:11 EST 2022,
 and I am writing to remind you …

 Dear Bill, It is now Thu Nov 24 16:08:12 EST 2022,
 and I am writing to remind you …

7.4 � CLOSURE EXAMPLE
A simple cubic polynomial can be written as,

 ax3 + bx2 +cx + d

where a, b, c, and d are the coefficients. If we were given the task of
graphing several polynomials with different coefficients, we could
write a polynomial function that, given the coefficients, returned
a function that used those coefficients. We’ll use Python for this
example; Scala is similar.

 def polynomial(a, b, c, d):
 return lambda x: (a * x**3 + b * x**2 + c * x + d)

 p = polynomial(1, 10, 100, 1000)
 print(p(1), p(10)) # prints 1111 4000

This works, but we have to call polynomial with a new set of coef-
ficients each time we want to graph another polynomial. A better
solution is to close over the coefficients and get a single function
that uses the coefficients from the environment.

Closures    ◾    65

 def poly():
 �return lambda x: (a * x**3 + b * x**2 + c * x + d)

 f = poly()

Now, let’s test our new function f:

 a, b, c, d = 1, 10, 100, 1000
 print(f(1), f(10)) # prints 1111 4000

 a = 0; d = 0
 print(f(1), f(10)) # prints 110 2000

https://taylorandfrancis.com

67DOI: 10.1201/9781003358541-8

No description of functional programming would be
complete without a mention of currying. Currying is a tech-

nique developed by the mathematician Haskell Curry (the pro-
gramming language Haskell is also named after him). Currying is
a technique to convert a function that takes multiple parameters
into a series of functions, each taking a single function.

In the following example, we curry a formula function of four
arguments into four functions (named f, g, h, and j), each
taking a single argument. The example is in Python because it
has simpler syntax than either Java or Scala.

 def formula(x, a, b, c):
 return (a * x ** 2) + (b * x) + c

One way of currying the formula function is as follows:

 def f(x):
 def g(a):
 def h(b):

C H A P T E R 8

Currying

http://dx.doi.org/10.1201/9781003358541-8

68    ◾    Quick Functional Programming

 def j(c):
 return (a * x ** 2) + (b * x) + c
 return j
 return h
 return g

 print(f(10)(1)(2)(3)) // 1*100 + 2*10 + 3 = 123

When function f(10) is called, it returns a function g. Function
g is a closure; it “closes over” the value of 10 for x, which is used
inside function g. When that function is called with the argument
1, the function returned by f(10)(1) has closed over the value
1 for a; and so on. By the time we get to function j, values have
been assigned to all of x, a, b, and c, and the expression can
be evaluated.

Currying may seem like a mathematical “trick” with little practi-
cal value. If we insist on the strict mathematical definition of
currying, this is probably true; but we can generalize the concept
into something more useful.

Generalized definition: To curry a function is to absorb
(close over) one or more parameters, yielding a new func-
tion with fewer parameters. The absorbed parameters are
treated as constants in the new function.

In our (nonmathematical) definition, it doesn’t have to be the first
parameter that is closed over, nor do we have to close over just one
parameter.

Currying isn’t all that useful if it is used to create just one new
function. Rather, you should think of currying as a way to build a
“factory” that can create a number of similar functions, each with
different values of its parameters.

Comparison with closures: The purpose of a closure is
to capture information from its environment, so that the

Currying    ◾    69

function can be used elsewhere. Closures aren’t usually
versions of an existing function that has more parameters.

The purpose of currying is to generate a series of functions
as specializations of an existing function. The “internal”
functions defined by the curried function are closures
because they use information provided by the enclosing
function(s), but the outermost function (f in the above
example) is usually not a closure.

8.1 � CURRYING IN PYTHON
Currying, as generalized in the previous section, is a way to take a
function of several arguments and fix, or “bake in,” specific values
of one or more arguments, so that only the remaining arguments
need to be specified. As an example, we will start with the follow-
ing function:

 def prefix(before, text):
 return before + text

If we want the before parameter to have the value 'Note:', it’s easy
enough to write a function that calls prefix:

 def note(text):
 return prefix('Note: ', text)

This gives us the desired function, but it isn’t currying. If we
wanted a series of functions, each with a different value for before,
we could make multiple copies of the note function and edit each
one to do what we want. Alternatively, we can write a function
curry2 that takes prefix as one of its arguments and writes the
note function (and some others) for us.

 def curry2(fun, arg):
 return lambda text: fun(arg, text)

70    ◾    Quick Functional Programming

 note = curry2(prefix, 'Note: ')
 warn = curry2(prefix, 'Warning! ')
 pow2 = curry2(pow, 2)

 �print(note('Sealed unit.'))
 # prints 'Note: Sealed unit.'
 �print(warn('Live wire!'))
 # prints 'Warning! Live wire!'
 print(pow2(10)) # prints 1024

Currying is most often used to absorb the first parameter into a
function. The above curry2 function does this but only for the
special case of a function with exactly two arguments. A more
general curry function can be written to handle an arbitrary
number of arguments.

 def curry(f, x):
 return lambda *args: f(x, *args)

 def formula(x, a, b, c):
 return (a * x ** 2) + (b * x) + c

 use_10_for_x = curry(formula, 10)
 print(use_10_for_x(1, 2, 3)) # prints 123

In the above definition of the curry function, the first asterisk
is used to wrap any number of arguments into a list, while the
second is used to unwrap that list into discrete arguments.

Again from a mathematical viewpoint, currying absorbs the first
argument into a function to create a new function. We don’t have to
be so limited. We can absorb any arguments we like into a new func-
tion. For example, sometimes we want to surround some text with
braces, sometimes parentheses, sometimes something else.

 def surround(before, text, after):
 return before + text + after

Currying    ◾    71

 def enclose(fun, before, after):
 return lambda text: fun(before, text, after)

 parens = enclose(surround, '(', ')')
 print(parens('see above')) # prints '(see above)’

The enclose function takes a function (surround) as one of its
arguments and produces a specialized function as its result. Thus,
it is a reasonable example of currying.

If you are comfortable with the idea of a function returning a
function, however, you can write a simpler enclose function that
doesn’t need surround at all.

 def enclose(before, after):
 return lambda text: before + text + after

 parens = enclose('(', ')')
 braces = enclose('{ ', ' }')
 sic = enclose(", '[sic]')
 bold = enclose('', '')

 print(parens('see above')) # prints '(see above')
 print(braces('1, 2, 3')) # prints '{ 1, 2, 3 }'
 print(sic('nuculear')) # prints 'nuculear[sic]'
 print(bold('now!')) # prints 'now!'

8.2 � CURRYING IN JAVA
Currying can be done in Java with the traditional syntax. In this
example, we will curry a function that multiplies its two param-
eters to get one that multiplies its one parameter by a constant.

 public static IntUnaryOperator f1(int x) {
 return new IntUnaryOperator() {
 @Override
 public int applyAsInt(int y) {

72    ◾    Quick Functional Programming

 return x * y;
 }
 };
 }

Or with the much shorter “lambda” syntax:

 public static Function<Integer, Integer> f2(int x) {
 return y -> x * y;
 }

The first of these can be called as,

 IntUnaryOperator h1 = f1(3);
 System.out.println(h1.applyAsInt(7));

The second can be called as,

 Function h2 = f2(3);
 System.out.println(h2.apply(7));

In both cases, 21 will be printed.

Somewhat more generally, the following can curry a two-parameter
integer function into a one-parameter integer function.

 IntUnaryOperator curry(int x, IntBinaryOperator op) {
 return z -> op.applyAsInt(x, z);

 IntUnaryOperator add12 = curry(12, simpleAdd);
 System.out.println(add12.applyAsInt(4)); // 16

8.3 � CURRYING IN SCALA
Currying can be done in Scala the same way that it can in Python.
For example, we will take a function that adds a prefix to some

Currying    ◾    73

text and curry it to make a prefix “factory” to create any number
of specialized functions.

 def prefix(pre: String,
 text: String): String = pre + text

 def curry2(f: (String, String) => String,
 arg1: String) =
 (arg2: String) => f(arg1, arg2)

 val note = curry2(prefix, "Note: ")
 val caution = curry2(prefix, "Caution: ")

 println(note("Refer to the manual."))
 println(caution("Unplug before opening."))

Since Scala is designed to be a functional language, there is a simpler
way of doing this. By giving prefix two parameter lists, supplying a
value for only the first will return a curried function.

 def prefix(pre: String)
 (text: String): String = pre + text

 val warn = prefix("Warning: ") _
 val danger = prefix("Danger! ")("Live wire!")

 println(warn("Surface may be hot."))
 println(danger)

In the definition of warn, a final underscore is necessary to reas-
sure Scala that the lack of an argument list is not an error. Called
with one argument list, warn returns a function; called with two,
warn returns the resultant string.

A function in Scala may be defined with any number of parame-
ter lists, with any number of parameters in each. Calling such a

74    ◾    Quick Functional Programming

function with fewer argument lists will return a function that
requires the remaining argument lists.

Similar to currying, Scala has partially applied functions. To par-
tially apply a function, simply replace a value or values in the
argument list with underscores, along with their types. The result
is a function that can later be called with just the missing
arguments.

 def formula(x: Int, a: Int, b: Int, c: Int) =
 (a * x * x) + (b * x) + c

 println(formula(10, 1, 2, 3)) // prints 123

 val f10 = formula(10, _: Int, _:Int, _:Int)
 println(f10(4, 5, 6)) // prints 456

 val fx = formula(_: Int, 7, 8, 9)
 println(fx(10)) // prints 789

75DOI: 10.1201/9781003358541-9

Functions are values, so there should be some way to oper-
ate on functions to produce new functions.

Function composition is the simplest of these operations. It takes
two functions f and g and produces a new function h such that
h(x) = f(g(x)).

Function composition is straightforward in almost any program-
ming language. Functional programming languages sometimes
provide a more abbreviated syntax for doing this.

9.1 � FUNCTION COMPOSITION IN PYTHON
It’s quite easy in Python to create new functions from old ones.
For example,

 big = lambda x: x > 1000
 even = lambda x: x % 2 == 0

 big_even = lambda x: big(x) and even(x)

C H A P T E R 9

Function Composition

http://dx.doi.org/10.1201/9781003358541-9

76    ◾    Quick Functional Programming

This is very much like writing,

 def big_even(x):
 return big(x) and even(x)

There’s nothing much new here; we’re just calling functions from
within other functions. We can do the same thing in a much more
general fashion, by writing a function that takes two functions as
arguments and returns a function.

 andf = lambda f, g: lambda x: f(x) and g(x)

This is a bit complicated, so let’s take it slow.

	 1.	 We’re assigning something to andf. The value we are assigning
must be a function, since it starts with lambda.

	 2.	 The part before the first colon is lambda f, g. The parameters
f and g could be any type; but if we look ahead, we see f(x)
and g(x), so f and g must be functions.

	 3.	 The part after the first colon is supposed to be the value
returned by the function; but what is it? Well, it starts with
lambda, so the value to be returned must also be a function.

	 4.	 The value being returned is therefore lambda x: f(x) and
g(x). This is a function that takes one argument, x, and does
something with it. Specifically, it calls the functions f and g
and combines the results using and.

Now, let’s try it.

 big_even_2 = andf(big, even)

 big_even_2(5) # Result is False
 big_even_2(5000) # Result is True
 big_even_2(9999) # Result is False

Function Composition    ◾    77

9.2 � FUNCTION COMPOSITION IN JAVA
Java has two methods for composing functions: andThen and
compose. These can be found in the Function interface in java.
util.function.

function1.andThen(function2) returns a function. This new
function applies function1 to the parameter and then applies
function2 to the result.

function1.compose(function2) returns a function. This new
function applies function2 to the parameter and then applies
function1 to the result.

Examples:

 IntUnaryOperator triple = x -> 3 * x;
 IntUnaryOperator square = x -> x * x;
 IntUnaryOperator tripleThenSquare =
 triple.andThen(square);
 IntUnaryOperator squareAfterTripling =
 triple.compose(square);

 System.out.println(tripleThenSquare
 .applyAsInt(5));
 // Prints 225

 System.out.println(squareAfterTripling
 .applyAsInt(5));
 // Prints 75

There are a number of limitations. For example, consider the fol-
lowing function:

 IntBinaryOperator larger =
 (x, y) -> x > y ? x : y;

Even though this function produces a single integer result, an
IntBinaryOperator has no andThen method. Consequently,
larger.andThen(square) is illegal.

78    ◾    Quick Functional Programming

9.3 � FUNCTION COMPOSITION IN SCALA
In Scala, andThen is a binary operator that composes two func-
tions. It creates a new function in which the result of calling the left
function is the value passed as an argument to the right function.
This is best explained by example.

In the following paragraphs, we first define a method adjust and
a function passing. Since adjust is a method, it will need to be
converted to a function before it can be used with andThen.

 def adjust(score: Int) =
 if (score < 0) 0
 else if (score > 100) 100
 else score

 val passing = (score: Int) => score >= 70

The method adjust takes an integer parameter and returns an
integer result. The function passing determines whether its argu-
ment is greater than or equal to 70.

To convert adjust to a function, we use the postfix operator _ (an
underscore) like this: adjust _.

We now have two functions that we can compose using andThen.
The resultant function, eval, takes one integer argument, calls
adjust with that integer, and then calls passing with the result.

 val eval = adjust _ andThen passing

Now, we can use the eval function.

 println(eval(69)) // Prints false
 println(eval(70)) // Prints true

79DOI: 10.1201/9781003358541-10

Tony Hoare invented the null pointer reference in 1965.
He did it because it was so easy to implement. He has called

it his “billion-dollar mistake.”

If you take the view that every variable has to have a value, and
every method has to return something, then you need null (or
None in Python). This is problematical for two reasons. First, if
you send a message to an object, and that object happens to be
null or None, an error will result. Second, if the variable or return
value is numeric, null cannot be used; some numeric value must
be chosen.

An alternative view is that some methods may return an optional
value. In strongly typed languages, this means that the value is
wrapped in a new type (Optional in Java and Option in Scala).
The compiler then enforces type checking, so that an optional
value cannot be used unless a value is actually present. Effectively,
this converts run-time errors into syntax errors, which are much
easier to deal with.

C H A P T E R 10

Optional Values

http://dx.doi.org/10.1201/9781003358541-10

80    ◾    Quick Functional Programming

10.1 � OPTIONAL IN PYTHON
Python does not have a way of representing optional values.
Instead, the special value None indicates that a variable or expres-
sion has no value.

None is the single value of the type NoneType. Because Python is
dynamic, the types of variables are not fixed; they have the type of
whatever value they contain. Hence, a function that is expected to
return a numeric value can return None instead.

Of course, the use of None in an expression where a number or
object is required will still result in an error.

10.2 � OPTIONAL IN JAVA
Every Java programmer is familiar with the NullPointerException.
This problem can be avoided by using the Optional class.

Optional is a wrapper for objects. An Optional object may con-
tain another object, or it may be empty. While this adds some
complexity in the short run, working with optional objects turns
out to be both easier and safer than working with objects that may
or may not be null.

Optional has no constructors. Instead, there are three static
methods in the Optional class of java.util:

	•	 Optional.of(v) wraps the non-null value v. It causes a
NullPointerException if v is null.

	•	 Optional.ofNullable(v) returns either an Optional that
contains a non-null value v or it returns an empty Optional.

	•	 Optional.empty() returns an empty Optional.

Optional can, and generally should, have a type parameter. If s is
a String, the following two statements are equivalent:

Optional Values    ◾    81

 Optional<String> a = Optional.of(s);
 Optional a = Optional.of(s);

Some of the additional methods on Optional objects include:

	•	 boolean equals(Object obj). Of course, all objects have
an equals method, but this works correctly even if the
Optional object contains null.

	•	 boolean isPresent() returns true if the Optional isn’t empty.

	•	 void ifPresent(Consumer c) sends the value, if there is one,
to the Consumer; otherwise, it does nothing.

	•	 T get() returns the value or throws a No Such Element
Exception if there isn’t one.

	•	 T orElse(T other) returns the value or returns other if there
isn’t a value.

	•	 T orElseGet(Supplier other) returns the value, or if there is
none, gets a value from the Supplier other.

Doubles, Integers, and Longs cannot be null. To wrap these
numeric types, there are three more classes in java.util, namely,

	•	 OptionalDouble

	•	 OptionalInt

	•	 OptionalLong.

Each of the numeric option classes has all the same methods, with
two differences. There is no ofNullable method in these classes,
and the get() method is replaced by getAsDouble(), getAsInt(),
or getAsLong().

10.3 � OPTION IN SCALA
Option is used when an operation may or may not succeed in
returning a value.

82    ◾    Quick Functional Programming

Option is a parameterized type, so one may have, for example, an
Option[String] type. The possible values of this type are
Some(value), where the value is of the correct type, or None, for
the case where no value has been found.

Example: val gender = Some("male")

Although a few operations are defined for Option types, it is far
more common to use a match expression to extract the value, if
one exists.

 gender match {
 case Some(g) => println("Gender is " + g)
 case None => println("Gender unknown")
 }

The above code tests whether gender is a Some or a None, and if it
is a Some, the value g is extracted and used.

NullPointerExceptions happen in Java when a variable is used
before being defined. Scala requires all variables to be given a
value when they are declared, thus eliminating one source of
NullPointerExceptions.

In Java, any method that returns an object could conceivably
return null instead. The only way to be sure that it doesn’t is to
examine the method code carefully. In Scala, if a method might or
might not return a result, it returns an Option. An Option is a
type, and Scala does thorough type checking. If an Option[String]
is used where a String is required, the error is caught at compile
time.

Scala has a null value so that it can interface with Java. There is no
other reason to ever use that value.

83DOI: 10.1201/9781003358541-11

In a purely functional language, all data is considered to be
immutable. Hence, every modification to a data structure

results in yet another immutable data structure. This could
quickly use up all available memory. This problem is mitigated in
two ways:

	•	 Data structures that are no longer reachable are automati-
cally garbage collected.

	•	 Data structures are persistent: a modification to an exist-
ing data structure results in the unmodified parts being
shared by both the new and the old versions of that data
structure.

The singly linked list (often referred to as just a list) is the
most important data structure in a functional programming.
It is simple to implement, and the four basic operations on a

C H A P T E R 11

Lists

http://dx.doi.org/10.1201/9781003358541-11

84    ◾    Quick Functional Programming

list automatically result in immutability and structure sharing.
Those operations are:

	•	 head returns the first value in the list.

	•	 tail returns the part of the list starting right after the head.

	•	 cons adds a value to the beginning of the list.

	•	 isEmpty tests whether the list is empty.

In Figure 11.1, list a can be formed by “cons-ing” the value "zero"
onto list b, and list b can be formed by taking the tail of list a.
These operations, and any operations built from these, do not
modify the existing lists.

Persistent data structures are key to concurrent programming. If
all values are immutable, then there is no need for a locking mech-
anism to guarantee exclusive access to shared data, and an entire
class of synchronization problems simply vanishes.

Functional programs use persistent data structures, especially
singly linked lists, far more than arrays. Other persistent data
structures are much more difficult to implement; a good func-
tional programming language will provide some of these, rather
than leaving implementation up to the programmer.

11.1 � RECURSION
Recursion is to lists what iteration is to arrays. Any computation
that can be done by iterating through an array can also be done by
recursing through a list, and vice versa.

FIGURE 11.1  Lists are persistent data structures.

Lists    ◾    85

If you are not familiar with recursion, it requires a somewhat dif-
ferent way of thinking about a problem. Almost all recursive func-
tions on lists follow a simple pattern: Do something with the head,
and recur with the tail. Stop the recursion when the tail is empty.

The following are some examples of recursion, going from easiest
to most complicated. To make the examples as readable as possi-
ble, the examples are in Scala but with the type information
deleted. Recall that in Scala, no return statement is needed; the
last value computed is the value returned.

To find the last element of a nonempty list:

 def last(list) =
 if (list.tail.isEmpty) list.head
 else last(list.tail)

To add up all the numbers in a list:

 def sum(list) =
 if (list.isEmpty) 0
 else list.head + sum(list.tail)

To double all the elements in a list:

 def double(list) =
 if (list.isEmpty) List()
 else cons(2 * list.head, double(list.tail))

To append two lists:

 def append(list1, list2) = {
 if (list1.isEmpty) list2
 else cons(list1.head, append(list1.tail, list2))
 }

86    ◾    Quick Functional Programming

To reverse a list:

 def reverse(list) =
 rev_helper(list, List())

 def rev_helper(list, acc) =
 if (list.isEmpty) acc
 else rev_helper(list.tail, cons(list.head, acc))

The append and reverse functions, although short, are actually
quite complex. Most recursive functions you are likely to write
will be longer but simpler.

11.2 � LISTS IN PYTHON
Python has a data structure called a “list,” but this is a misno-
mer. Python lists are not implemented as lists, either as singly
linked lists or as doubly linked lists; they are a more complex data
structure based on arrays. The resultant data structure has many
advantages, but it is not immutable.

As a consequence, Python does not have the usual head and tail
operations, which access parts of the list but do not modify it. To
simulate these, the programmer can write functions that take
both (1) the list and (2) an index into the list, indicating which
location is currently considered to be the head. It might be conve-
nient to combine these into a tuple.

Operations that involve stepping through a Python list should be
done using indices, which are far more efficient than repeatedly
copying parts of the list.

There are packages available to provide persistent, singly linked
lists for Python, and the interested reader is encouraged to seek
these out. Alternatively, it is not difficult to create a simple List
class in Python.

Lists    ◾    87

11.3 � LISTS IN JAVA
Java has a List interface that does not have head and tail opera-
tions. Lists in Java are doubly linked, not singly linked, and are
backed by an array, so they are not persistent: they cannot share
structure. This is a good design for iterating (looping) through a
list but is less convenient for recursion.

To recurse through a list (or an array) in Java, the programmer
can write methods that take both (1) the list or array and (2) an
index, indicating which location is currently considered to be the
head.

As with Python, it is not difficult to create a singly linked list class
in Java. Such a class should implement the four basic operations
(head, tail, cons, isEmpty) and could include any methods
that can be built from these four.

11.4 � LISTS IN SCALA
Scala has persistent singly linked lists.

A literal list is written in Scala as List(value1, value2, …, val-
ueN). The empty list is written as List() or as Nil.

All values in the list should be of the same type; if mixed types,
the type of the list is a type that can contain all the given values.
For example, List(5, 3.14) has type List[Double].

There are a few operations that can be considered basic to any use
of lists. These operations are very efficient (they take constant
time).

	•	 list.head is the first value in list. It is an error if list is empty.

	•	 list.tail is the rest of list after the head. It is an error if list
is empty.

88    ◾    Quick Functional Programming

	•	 value :: list returns a list whose head is value and whose tail
is list. (The :: operator is pronounced “cons.”)

	•	 list.isEmpty returns true if list has no values.

The following operations are less efficient because they involve
stepping through the list from beginning to end.

	•	 list.length returns the number of elements in list.

	•	 list.last returns the last element of list.

To preserve immutability, the following operations (except drop)
require copying all or part of a list.

	•	 list.init returns a list with the last element removed.

	•	 list.take(n) returns a list of the first n elements. Especially
useful for lazy lists (lists that generate elements only as
needed).

	•	 list.drop(n) returns a list with the first n elements removed.

	•	 list1 ::: list2 appends the two lists.

	•	 list.reverse returns a list in the reverse order.

	•	 list.splitAt(n) returns the tuple (list take n, list drop n).

	•	 A tuple is an ordered list of values enclosed in parentheses.

	•	 Dots and parentheses may often be omitted when there is
no ambiguity.

	•	 list1.zip(list2) returns a list of tuples, where the first tuple
contains the first element of list1 and the first element of
list2, the second tuple contains the second element of list1
and the second element of list2, and so forth. The length of
the result is the length of the shorter list.

Lists    ◾    89

	•	 list.mkString(str) converts each element of list into a
string and concatenates them with the string str in between
elements.

	•	 list.distinct returns a list with duplicated elements removed.

	•	 listOfLists.flatten takes a list of lists of elements and
returns a list of elements.

	•	 list :+ value returns a new list with value appended to the
end.

	•	 value +: list returns a new list with value prepended to the
beginning.

Scala’s lists are immutable; none of the above operations alter the
given list. When a list is returned as the result of an operation on
a list, it may share structure with the given list.

https://taylorandfrancis.com

91DOI: 10.1201/9781003358541-12

A stream is a means of providing a sequence of values, one at
a time, as needed. These values may come from an array, a col-

lection, a file, or they may be generated. A stream is not itself a data
structure, but it may get the values it returns from a data structure.

Because the values are only provided as needed, streams may be
infinite. For example, you might have a stream of all the natural
numbers, 1, 2, 3, … .

The main advantage of streams over lists is that not all values need
be present in memory at the same time. The disadvantage is that it
is easy to write a program that uses all the values in an infinite
stream, resulting in an infinite loop.

Streams are useful in building pipelines. A pipeline is a sequence
of operations applied to each element of a stream, only taking ele-
ments from the stream as needed.

Streams should not be confused with I/O streams.

C H A P T E R 12

Streams

http://dx.doi.org/10.1201/9781003358541-12

92    ◾    Quick Functional Programming

12.1 � GENERATORS IN PYTHON
Python doesn’t have streams, but it has other ways of producing a
sequence of values as needed. An iterator can be used to produce
a sequence of values from a data structure, while a generator can
compute a sequence of values as needed.

A generator is a function that contains a yield statement. This is
like a return statement, except that the position and state of the
function is “remembered”—the next call to the generator will
resume execution right after the yield statement.

Here is a function that returns a generator. The first use of the
generator will return the initial value, init. Each subsequent call
will return the next larger integer.

 def fromN(init):
 n = init
 while True:
 yield n
 n = n + 1

 gen = fromN(1)
 for i in range(0, 5):
 print(next(gen))

The call to fromN returns a generator, not an integer. The genera-
tor is saved in a variable named gen. After that, calls to next(gen)
will return 1 (the value given for init), then 2, then 3, and so on.

Note: The keyword yield also occurs in Scala but with a
different meaning. Don’t confuse the two.

12.2 � STREAMS IN JAVA
A Stream is an interface (defined in java.util.stream). As with
all interfaces, there are no constructors for streams. Instead,

Streams    ◾    93

there are various methods that will return a stream. Here are
some of them:

	•	 Stream.of(array), where array is an array of objects. (See s1
below.)

	•	 Arrays.stream(array), where array is an array of objects.
(See s2 below.)

	•	 Stream.of(value1, value2, …, valueN) returns a Stream of
those values. (See s3 below.)

	•	 Stream.of(list), where list is a List. (See s4 below.)

	•	 coll.stream(), where coll is any type of Collection, such as
ArrayList, LinkedList, or HashSet (see s5 below.)

	•	 With a StreamBuilder: (see s6 below.)

	•	 Create an empty StreamBuilder with Stream.builder(),

	•	 Add values to it with accept, and

	•	 Get the resultant stream with build().

Here are some examples of stream creation:

 String[] langs = { "Python", "Java", "Scala" };
 Stream s1 = Stream.of(langs);
 Stream s2 = Arrays.stream(langs);
 Stream s3 = Stream.of("Python", "Java", "Scala");
 Stream s4 = Arrays.asList(langs).stream();
 �Stream s5 = new HashSet(Arrays.asList(langs)).

stream();

 Stream.Builder builder = Stream.builder();
 builder.accept("Python");
 builder.accept("Java");
 builder.accept("Scala");
 Stream s6 = builder.build();

94    ◾    Quick Functional Programming

To anticipate a bit, we can print out the contents of streams s1
through s6 with code such as the following:

 s5.forEach(s -> System.out.println(s));

The results will be the same in each case (except for using HashSet,
in which the order of the results may be different).

Here are some other ways of creating a stream:

	•	 Stream.empty() returns an empty stream.

	•	 Stream.iterate(seed, unaryOperator) returns an infinite
stream in which the unaryOperator is iteratively applied
to the seed.

	•	 Example: Stream.iterate(1.0, (Double d) -> d / 2)
gives the infinite stream 1.0, 0.5, 0.25, 0.125, etc.

	•	 Stream.generate(supplier) returns an infinite stream in
which the values are provided by the supplier.

	•	 Example: Stream.generate(Math::random) will return
an infinite stream of random numbers.

	•	 collection.parallelStream() returns a stream in which
the elements could potentially be accessed in arbitrary
order.

Streams are generally ordered, in the sense that there is a definite
first element, a definite second element, and so on. Operations
performed on an ordered stream, even if those operations are
done in parallel, will produce an ordered result. The method
stream.unordered() removes this constraint. The stream it returns
is not changed in any way, except that parallel operations are now
allowed to produce their results in any order.

Streams    ◾    95

12.3 � NUMERIC STREAMS IN JAVA
The standard streams all contain objects. For efficiency, there
are three numeric streams: IntStream, LongStream, and
DoubleStream. As with general streams, there are no construc-
tors for numeric streams; rather, there are methods that return
numeric streams.

We illustrate with IntStream:

	•	 IntStream.empty() returns an empty IntStream.

	•	 IntStream.of(int1, int2, …, intN) returns an IntStream
containing the given integers.

	•	 IntStream.range(start, end) returns an IntStream of the
integers from start up to but not including end. Oddly, there
is no version of range that has a third step parameter.

	•	 intStream.boxed() returns a Stream<Integer> of the boxed
int values in intStream.

Most of the methods on a Stream are also available on an
IntStream: count, distinct, filter, etc. There are some dif-
ferences; for example, max, min, and sorted do not require a
Comparator as an argument.

Comparable methods are available for LongStream and
DoubleStream.

12.4 � STREAMS IN SCALA
There are several ways to create a stream in Scala. Most collections
have a toStream method.

	•	 List(1, 2, 3).toStream

	•	 Set(1, 2, 3).toStream

	•	 Array(1, 2, 3).toStream

96    ◾    Quick Functional Programming

	•	 Range(1, 10).toStream

	•	 (1 to 10).toStream

	•	 This is shorthand for Range(1, 10).toStream

	•	 (1 to 10 by 2).toStream

The Stream object provides a number of ways to create a stream.
Here are just a few:

Steam.empty
Stream.range(start, end, step)

	•	 Stream.from(start)

	•	 Produces an infinite stream of integers starting with start
and adding 1 each time.

	•	 Stream.from(start, step)

	•	 Produces an infinite stream of integers starting with start
and adding step each time.

	•	 Stream.iterate(start)(function)

	•	 Produces an infinite stream of integers starting with start
and applying function each time. (The two parameter
lists indicate a curried function; see Section 8.3.)

	•	 Example: Stream.iterate(2)(n => 2 * n) produces the
stream 2, 4, 8, 16, 32, and so on.

97DOI: 10.1201/9781003358541-13

There are three higher-order functions that may, in some
sense, be considered fundamental. A great many other

higher-order functions can be constructed with them. They are:

	•	 map — Applies a function to each element of a list, producing
a list of results of the same length as the given list.

	•	 filter — Applies a predicate to each element of a list, dis-
carding each element that fails the predicate, resulting in a
potentially shorter list.

	•	 fold or reduce — Produces a single value based on the con-
tents of a list. The distinction between these two functions is
that reduce will provide a default value if given an empty list.

The following sections describe the Python, Java, and Scala
versions of these methods. Scala has a particularly rich set of
higher-order functions, which are described in Section 14.4; you

C H A P T E R 13

Important Functions

http://dx.doi.org/10.1201/9781003358541-13

98    ◾    Quick Functional Programming

may wish to peruse these, even if you have no particular interest
in Scala, because you may find it useful to implement them in
your preferred language.

13.1 � IMPORTANT FUNCTIONS IN PYTHON
Three important higher-order functions are map, filter, and reduce.

	•	 map(function, list) returns an iterator for a new list of the
same length as list. It does this by applying function to each
element of list.

	•	 filter(test, list) returns an iterator for a new list that is
potentially shorter than list. It does this by applying test to
each generated element of list and discarding those values
for which test is false.

	•	 reduce(function, list, initial_value) returns a single value.
If list is empty, the result is initial_value; otherwise, the
function (which must have two parameters) is applied pair-
wise to the values in the list, starting with initial_value and
list[0]. Each application of function results in a value, which
is then combined with the next value in list.

Examples, where lst is [1, 2, 3, 4, 5, 6]:

 list(map(lambda x: 10 * x, lst))
 # Result is [10, 20, 30, 40, 50, 60]

 list(map(lambda x: (x, x * x), lst))
 �# Result is [(1, 1), (2, 4), (3, 9), (4, 16),

(5, 25), (6, 36)]

 list(filter(lambda x: x % 2 == 0, lst))
 # Result is [2, 4, 6]

 reduce(lambda x, y: x * y, lst, 1)
 # Result is 720

Important Functions    ◾    99

Python also has decorators. A decorator is a means of intercepting
a call to a function, so that when the program attempts to call the
function, control is instead given to a decorator of that function.
For example,

 def trace(fun):
 def wrapper(a, b):
 print("Calling", fun.__name__,
 "with", a, b)
 result = fun(a, b)
 print(" Returning", result)
 return result
 return wrapper

 @trace
 def multiply(x, y):
 return x * y

With this code, a call to multiply(5, 7) will return 35 as usual
but will also print the following:

 Calling multiply with 5 7
 Returning 35

The name trace isn’t special; any name will do, so long as the anno-
tation on the function multiply matches the name of the decorat-
ing function. Note that the function wrapper, defined inside trace,
has the same number of parameters as multiply.

Decorators in Python are quite simple to construct, because vari-
ables do not have a fixed type; their type is the type of the value that
happens to be in them at the time. While it is possible to construct
decorators in Java and Scala, that is beyond the scope of this book.

13.2 � IMPORTANT FUNCTIONS IN JAVA
Java has versions of the more important higher-order functions: map,
flatMap, filter, and reduce. These work only with streams, so to

100    ◾    Quick Functional Programming

use them with any collection, that collection must first be con-
verted to a stream, and the results converted back to a collection.

While it is generally true that generic types in Java need not be
parameterized (for example, you can use List for a list of integers
rather than List<Integer>), this no longer appears to be true for
streams. Type parameters have been omitted in most of this book,
but not in this section.

Here are some initial declarations:

 List<Integer> numbers = Arrays.asList(1,2,3,4,5);
 Stream<Integer> nums = numbers.stream();

Each of the following examples uses the stream nums. Since print-
ing the results uses up the stream, nums must be reassigned before
each example.

Map applies a function to each element of a stream, producing a
stream of results. In this first example, map is used to double each
number in stream nums.

 Stream<Integer> squares = nums.map(n -> n * 2);
 List<Integer> res1 =
 squares.collect(Collectors.toList());
 System.out.println(res1);
 // Prints map: [2, 4, 6, 8, 10]

The next two examples demonstrate the difference between map
and flatMap. For a stream of streams, flatMap “flattens” the
result by moving the elements in a sub-level up to the top level.

Since it is not easy in a single Java expression to create a stream of
integer arrays, we first define a method to do this.

Important Functions    ◾    101

 public static Stream<Integer> powers(Integer x) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(x);
 list.add(x * x);
 return list.stream();
 }

We can use this to create a stream of streams of integers, each sub-
stream containing a given number along with its square.

 Stream<Stream<Integer>> ssi = nums.map(n -> powers(n));

Then, collect and print the results:

 Stream<ArrayList<Integer>> sal =
 ssi.map(x -> (ArrayList<Integer>)
 x.collect(Collectors.toList()));
 List<List<Integer>> csal =
 sal.collect(Collectors.toList());
 System.out.println("map: " + csal);
 �// Prints map: [[1, 1], [2, 4], [3, 9], [4, 16],

[5, 25]]

Using flatMap produces the same numbers but in a flattened list.

 nums = numbers.stream();
 Stream<Integer> si = nums.flatMap(n -> powers(n));
 �ArrayList<Integer> ali = (ArrayList<Integer>)

si.collect(Collectors.toList());
 System.out.println("flatMap: " + ali);
 // Prints flatMap: [1, 1, 2, 4, 3, 9, 4, 16, 5, 25]

The filter method is used with a predicate to “filter out” from the
stream elements that do not satisfy the predicate. In this example,
we select only even numbers.

102    ◾    Quick Functional Programming

 Stream<Integer> evens = nums.filter(n -> n % 2 == 0);
 �List<Integer> res2 = evens.collect(Collectors.

toList());
 System.out.println("filter: " + res2);
 // Prints filter: [2, 4]

Finally, reduce is used to combine all the values in a stream into a sin-
gle value. In this example, the numbers are combined by adding them.

 int sum1 = nums.reduce(0, (x, y) -> x + y);
 System.out.println("reduce: " + sum1);
 // Prints reduce: 15

13.3 � IMPORTANT FUNCTIONS IN SCALA
A number of higher-order functions in Scala are of special
importance.

For the examples below, assume that list has the value List(1, 2,
3, 4, 5). The result of each function call is shown after the call.

	•	 list.map(function) returns a list in which the function of one
argument has been applied to each element.

	•	 list.map(x => x * x)

	 •	� List(1, 4, 9, 16, 25)

	•	 list.map(x => List(x, x * x))

	 •	� List(List(1, 1), List(2, 4), List(3, 9), List(4,
16), List(5, 25))

	•	 listOfLists.flatMap(function) returns a list in which the
function of one argument has been applied to each element
of each sublist. It removes one “level” of nesting.

	•	 list.flatMap(x => List(x, x * x))

	 •	 List(1, 1, 2, 4, 3, 9, 4, 16, 5, 25)

	•	 Compare this with list.map(x => List(x, x * x)) above.

Important Functions    ◾    103

	•	 list.filter(predicate) returns a list of the elements of the
given list for which the predicate is true.

	•	 list.filter(x => x % 2 == 0)

	 •	 List(2, 4)

The following functions reduce a list to a single value.

	•	 nonempty_list.reduceLeft(binary_function) applies the
function to each pair of elements of list, using each function
result as the new first argument to the function and returns
the final value. It is an error if list is empty.

	•	 nonempty_list.reduceRight(binary_function) is the same
as reduceLeft, except that it starts from the right end of the
list, using each function result as the new second argument
to the function.

	•	 list.foldLeft(value)(binary_function) does what reduceLeft
would do if value were appended to the beginning of list.
If list is empty, value is returned.

	•	 list.foldRight(value)(binary_function) does what reduce
Right would do if value were appended to the end of list.
If list is empty, value is returned.

Examples:

	•	 list.reduceLeft((a, b) => a + b) // (((1-2)-3)-4)-5 = 15

	•	 list.reduceRight((a, b) => a + b) // 1-(2-(3-(4-5))) = 15

	•	 list.foldLeft(0)((a, b) => a + b) // ((((0-1)-2)-3)-4)-5 = 15

	•	 list.foldRight(0)((a, b) => a + b) // 1-(2-(3-(4-(5-0)))) = 15

	•	 list.reduceLeft((a, b) => a - b) // (((1-2)-3)-4)-5 = -13

	•	 list.reduceRight((a, b) => a - b) // 1-(2-(3-(4-5))) = 3

104    ◾    Quick Functional Programming

	•	 list.foldLeft(0)((a, b) => a - b) // ((((0-1)-2)-3)-4)-5 = -15

	•	 list.foldRight(0)((a, b) => a - b) // 1-(2-(3-(4-(5-0)))) = 3

In a previous section, we discussed for comprehensions. These
are actually implemented as a combination of the functions map,
filter, and flatMap.

These two expressions are equivalent:

 �for (w <- words if ! w.contains('v')) yield
w.toUpperCase

 �words.filter(w => ! w.contains('v')).map(w =>

w.toUpperCase)

If words has the value List("Python", "Java", "Scala"), each of
the above would result in List("PYTHON", "SCALA").

When there is more than one generator, flatMap is also used.
The following expressions are equivalent:

 for (w <- words; c <- w) yield c.toUpper

 words.flatMap(w => w.toUpperCase)

and both result in List("P", "Y", "T", "H", "O", "N", "J", "A",
"V", "A", "S", "C", "A", "L", "A").

The functions foldLeft, foldRight, reduceLeft, and reduceR-
ight are all means of reducing a list to a single value. For example,
the following expression will return the longest word in a list of
words.

 �words.foldLeft("")((a, b) => if (a.length > b.length) a
else b)

Important Functions    ◾    105

13.4 � ADDITIONAL FUNCTIONS IN SCALA
Here are some additional higher-order functions in Scala. Where
an example is given, it is in the same form as the examples in the
previous section.

	•	 list.collect partial_function returns a list of the results
of the partial function, filtering out those where the partial
function does not apply.

	•	 A partial function is a function that is not necessarily
defined for every possible input.

	•	 list.dropWhile(predicate) returns a list omitting those values
at the front of the given list that satisfy the predicate.

	•	 list.exists(predicate) returns true if any element of the list
satisfies the predicate.

	•	 list.filterNot(predicate) returns a list of the elements of the
given list for which the predicate is false.

	•	 list.find(predicate) returns, as Some(value), the first value in the
list that satisfies the predicate, or None if no such value is found.

	•	 list.forall(predicate) returns true if every element of the
list satisfies the predicate.

	•	 list.groupBy(function) returns a Map of keys to values, where
the keys are the results of applying the function to each list
element, and the values are a List of values in the list such
that applying the function to that value yields that key.

	•	 List("one", "two", "three").groupBy(x => x.length)

	•	 Result is Map(5 -> List(three), 3 -> List(one, two))

	•	 list.indexWhere(predicate) returns the index of the first
value in the list that satisfies the predicate, or -1 if no such
value is found.

106    ◾    Quick Functional Programming

	•	 list.indexWhere(predicate, start) returns the index of the
first value in the list at or after start that satisfies the predi-
cate, or -1 if no such value is found.

	•	 list.lastIndexWhere(predicate) returns the index of the last
value in the list that satisfies the predicate, or -1 if no such
value is found.

	•	 list.lastIndexWhere(predicate, end) returns the index of
the last value before end in the list that satisfies the predicate,
or -1 if no such value is found.

	•	 list.partition(predicate) returns a tuple of two lists: a list
of values that satisfy the predicate, and a list of those that
do not.

	•	 list.scan(e)(binary_function) returns a list of cumulative
values starting with e, where each successive value is com-
puted by applying the function to the current value and the
next element.

	•	 list.scan(0)((a, b) => a + b) computes a running
total. Applied to List(1, 2, 3, 4, 5), the result will be
List(0, 1, 3, 6, 10, 15).

	•	 list.sortWith(comparisonFunction) sorts a list using the
two-parameter comparison function.

	•	 list.sortWith((a, b) => a > b) sorts list in descending order.

	•	 list.span(predicate) returns a tuple of two lists: a list of all
the values at the front of the list that satisfy the predicate,
and a list containing all the remaining values. In other
words, span is a combination of takeWhile and dropWhile.

	•	 list.takeWhile(predicate) returns a list of the values at the
front of the given list that satisfy the predicate, stopping
short of the first value that does not.

107DOI: 10.1201/9781003358541-14

An important use of streams is the creation of pipelines.
Pipelines provide a (relatively) easy way to do some parallel

processing. To give some insight into the nature of a pipeline, we
start with a nonprogramming example.

Around Easter, some people like to create a basket of colorful
eggs. To do this, one first has to purchase eggs. The eggs are
then hard-cooked. Next, they are put into cups containing various
colors of egg dye. The eggs are then taken out and allowed to dry
before being put into a basket. As a pipeline, the process looks
something like this:

 �purchase egg → cook egg → dye egg → dry egg → put
egg in basket

This could be done one egg at a time, but it wouldn’t be very effi-
cient. The eggs could be bought all at once, and they could be
cooked in several batches, depending on the size of pot available.
There could be several cups, each containing a different color of

C H A P T E R 14

Pipelines

http://dx.doi.org/10.1201/9781003358541-14

108    ◾    Quick Functional Programming

dye, so eggs could be dyed different colors simultaneously, or an
egg might have to wait until the desired color becomes available.
Eggs can be taken out to dry as soon as they have reached the
desired color, and they can be put in the basket once they are dry.
Clearly, a lot of parallelism is possible.

Here’s how a pipeline works:

	 1.	 A stream of values is created. The values might already
exist, for example, in an array or a list, and the stream simply
provides them. Or the values may be generated as required,
perhaps by a mathematical function. In the egg example, we
might consider purchasing the eggs as providing the initial
stream.

	 2.	 Zero or more intermediate operations are applied to the
stream. Each intermediate operation takes a value from the
stream it is given, applies some operation to it, and gives the
result to the next stream in the sequence. Not all values need
be passed along; some may be discarded. In the egg example,
cooking, dying, and drying are the intermediate operations,
and we might discard any eggs that crack when they are
cooked.

	 3.	 A terminal operation takes a stream and produces a final
result (a basket of eggs).

Assuming that all the eggs have been purchased, one way to do
this is to cook the first egg, dye it, dry it, put it in the basket, and
then proceed with the second egg. This is not necessarily how the
pipeline works.

Another way is to cook the second egg while the first egg is being
dyed; then to cook the third egg while the first egg is drying and
the second egg is being dyed; and so on. Again, this is not neces-
sarily how the pipeline works.

Pipelines    ◾    109

If, for example, eggs are slow to dye but quick to dry, then possibly
there are periods when no eggs are being dried. Meanwhile, there
may be cooked eggs waiting for an opportunity to be dyed. This is
the most likely way the pipeline works. Operations may be per-
formed in parallel but only when their inputs are available.

Pipelines operate on a “pull,” rather than a “push” basis.
Intermediate operations are said to be lazy—they perform only
when a subsequent operation demands input. According to the
Java API (application programming interface) documentation,
“execution begins when the terminal operation is invoked, and
ends when the terminal operation completes.” (The process
might stop when the egg basket is full, leaving uncooked and
undyed eggs.)

Intermediate operations may be stateless or stateful. A stateful
operation is one whose operation depends on something that
might change during the course of the pipeline (for example, the
egg dye gets used up); this may cause nondeterministic or incor-
rect results. A stateless operation is a pure function; its output
depends only on its input, so given the same input again, it will
produce the same result.

14.1 � PIPELINES IN PYTHON
In order to use pipelines in Python, a third-party package such as
scinkit-learn or the Apache Beam SDK must be installed. These
are somewhat complex and are not covered in this book. Here, we
just note that a suitable pipeline could look something like this:

 basket = for_each(egg)
 .purchase()
 .cook()
 .dye()
 .dry()
 .collect()

110    ◾    Quick Functional Programming

This is approximately the same as saying

 basket = []
 for egg in eggs:
 basket.append(dry(dye(cook(purchase(egg))))

There is a minor difference in readability and a more significant
difference in how easily the operations can be done in parallel.

14.2 � PIPELINES IN JAVA
A stream consists of three parts: A supplier, to provide initial
values; zero or more intermediate operations, to perform trans-
formations on those values; and a terminal operation, to pro-
duce a final result.

Earlier sections described various ways a stream may be created
(with Stream.of(list), for example). The following sections will
cover intermediate and terminal operations.

14.2.1 � Intermediate Operations

An intermediate operation is one that takes a Stream as input
and produces a Stream as output. All intermediate streams are
lazy; they don’t produce a value until the next operation in the
pipeline requests one.

	•	 filter(predicate) returns a stream containing all the values
that satisfy the predicate, and none of the values that fail the
predicate.

	•	 map(function) returns a stream in which each element is the
result of applying the function to the corresponding input
element.

	•	 distinct() returns a stream in which no element occurs
more than once (according to the equals method).

	•	 sorted() returns a stream in which the elements of the input
stream are returned according to their natural ordering.

Pipelines    ◾    111

	•	 sorted(comparator) returns a stream in which the elements
of the input stream are returned in the order defined by the
comparator.

	•	 peek(consumer) returns the elements of the given stream,
with the added feature that the element is sent to the con-
sumer. This is useful when debugging.

	•	 limit(maxSize) returns the elements of the given stream,
stopping after maxSize elements.

	•	 skip(maxSize) returns this stream after discarding the first
maxSize elements.

One additional intermediate operation, flatMap, requires addi-
tional explanation.

The flatMap(function) requires that function, when applied to
each element of the given stream, produces another stream. If
such a function were given to map, it would produce a stream of
streams. The flatMap function, however, “flattens” its output into
a single stream.

A pair of examples should help clarify this.

 Stream.of(1, 2, 3)
 .map(x -> Stream.of(x, x*x, x*x*x))
 .forEach(y -> System.out.println(
 Arrays.toString(y.toArray())));

When executed, the above code produces three lines: [1, 1, 1],
[2, 4, 8], and [3, 9, 27]. Replacing map with flatMap produces
a result which is simpler to print:

 Stream.of(1, 2, 3)
 .flatMap(x -> Stream.of(x, x*x, x*x*x))
 .forEach(y -> System.out.println(y));

112    ◾    Quick Functional Programming

In this case, the result (on nine lines) is 1 1 1 2 4 8 3 9 27.

14.2.2 � Terminal Operations

A terminal operation is one that takes a Stream as input but does
not produce a Stream as output; thus, it terminates a pipeline. The
terminal operation may return a value of some other type, or it
may return void.

Possibly the simplest terminal operation is forEach, which was
used in an earlier section. An example is:

 Stream s3 = Stream.of("Python", "Java", "Scala");
 s3.forEach(s -> System.out.println(s));

The argument of forEach must be a Consumer type, that is, a
function that takes an argument but whose return type is void.

Besides streams, forEach can be invoked on any Iterable objects,
such as lists and maps.

A stream can only be used once; after that, it is used up. If, for
example, you tried to do anything more with stream s3 above, you
would get the message IllegalStateException: stream has
already been operated upon or closed.

Some operations, such as max, are nonterminating if applied to an
infinite stream.

Most operations are nondeterministic when used with a parallel
stream. For example, multiple threads may share in the process-
ing of a forEach operation, so that every element gets processed,
but not necessarily in order.

Here is an alphabetical list of terminal operations defined by the
Stream interface:

Pipelines    ◾    113

	•	 allMatch(predicate) returns a boolean indicating
whether every element of this stream satisfies the predi-
cate (returns true if the stream is empty). If an element is
found that does not satisfy the predicate, no further ele-
ments are processed.

	•	 anyMatch(predicate) returns true if any element of this
stream satisfies the predicate. If such an element is found, no
further elements are processed.

	•	 collect(collector) and collect(collector, biconsumer1,
biconsumer2) return a collection of results. Collectors will
be discussed in the next section.

	•	 count() returns the number of elements in this stream.

	•	 findAny() returns an Optional containing an arbitrary ele-
ment of this stream or an empty Optional if the stream is
empty. No further elements are processed.

	•	 findFirst() returns an Optional containing the first ele-
ment of this stream or an empty Optional if this stream is
empty. No further elements are processed. The operation is
deterministic if the stream is ordered.

	•	 forEach(consumer) performs the consumer’s SAM (Single
Abstract Method) for every element of this stream, not nec-
essarily in order.

	•	 forEachOrdered(consumer) performs the consumer’s SAM
for every element of the sequence. If this stream is ordered,
the actions are performed in order.

	•	 max(comparator) returns the maximum element of this
stream, according to the comparator.

	•	 min(comparator) returns the minimum element of this
stream, according to the comparator.

114    ◾    Quick Functional Programming

	•	 noneMatch(predicate) returns true if there is no element of
this stream that satisfies the predicate (returns true if the
stream is empty). If an element is found that satisfies the
predicate, no further elements are processed.

	•	 reduce(binaryOperator) reduces the elements of this stream
to a single value by repeated application of the binary opera-
tor. Because the operations may be applied in any order, the
binary operator should be associative.

	•	 toArray() returns an array containing the elements of this
stream.

14.2.3 � Collectors

Collectors are terminal operators that return a Collection of
some sort, rather than a single value.

Note: toArray() is not a collector because Java arrays do
not implement the Collection interface.

Note: Take care to distinguish between the Collector
interface, the Collection interface, and the Collections
class.

The simplest collector method is java.util.stream.collect
(collector), in the Stream interface.

Here is a selection of suitable collectors from java.util.stream.
Collectors:

	•	 Collectors.toSet() returns a set.

	•	 Collectors.toList() returns a list.

	•	 toCollection(constructorFunction) returns a collec-
tion of the designated type, where the constructorFunc-
tion is a constructor wrapped as a function; for example,
LinkedList::new.

Pipelines    ◾    115

	•	 Collectors.partitioningBy(predicate) returns a Map
in which the keys are true and false, and the values are
ArrayLists of the values that do or do not satisfy the
predicate.

	•	 Collectors.groupingBy(function) returns a Map in which
the keys are the results of the function, and the values are
ArrayLists of the inputs to the function that produce the
given key.

14.2.4 � Example

Suppose you want to print all 5-digit numbers that (a) are pal-
indromes and (b) whose digits sum to 20. It can be done as
follows:

 Stream.iterate(10000, n -> n + 1)
 .limit(90000)
 .map(n -> n.toString())
 .filter(s -> s.equals(reverse(s)))
 .filter(s ->
 s.chars()
 .map(Character::getNumericValue)
 .sum() == 20)
 .forEach(s -> System.out.print(s + " "));

	 1.	 The iterate method creates an infinite stream of numbers,
starting with 10000 and going up by one each time.

	 2.	 The limit method cuts off the stream after 90000 numbers
(not after the number 90000). Most of the numbers will be
discarded by a later filter operation.

	 3.	 The map method uses ToString to convert each number into
a string.

	 4.	 The first filter method passes only those numbers whose
string representation is unchanged when it is reversed. (The
reverse method is given below.)

116    ◾    Quick Functional Programming

	 5.	 The second filter method passes only those strings whose
digits sum to 20.

	•	 s.chars() creates a stream of Unicode values from string s.

	•	 The map method uses getNumericValue to convert
each Unicode value to the corresponding numeric value
('0' to 0, '1' to 1, etc.)

	•	 The sum method adds all the digits, which are then
compared to 20.

	 6.	 The forEach method prints all the values that remain. If
we were to replace this with count() and print the result,
we would find that there are 39 5-digit palindromes whose
digits sum to 20.

The reverse method was programmed separately; it is:

 static String reverse(String s) {
 return new StringBuilder(s)
 .reverse()
 .toString();

This method could have been incorporated into the pipeline, but
it has been separated out for reasons of clarity.

The use of streams can make a program more readable. As
with most features, misuse can make a program less readable. The
second filter method in the above example demonstrates that a
stream can be created and used within another stream, but this
isn’t necessarily a good idea. The code would be more readable if
it used a separate digitSum method.

14.3 � PIPELINES IN SCALA
Suppose you want to print all 5-digit numbers that (a) are palin-
dromes and (b) whose digits sum to 20. (This is the same example
we just did in Java.) Here is some code to do that.

Pipelines    ◾    117

 println(Stream.range(10000, 1000000)
 .map(e => e.toString)
 .filter(e => e == e.reverse)
 .filter(e =>
 (e.toList).map(e => e.asDigit).sum == 20)
 .foreach(e => print(e + " "))
)

Explanation:

	 1.	 The Stream.range(10000, 1000000) call will generate con-
secutive integers starting with 10000 and going up to 99999.

	 2.	map(e => e.toString) will turn each number into a string.

	 3.	filter(e => e == e.reverse) will reverse each string and
discard it if it differs from the original string.

	 4.	 The next lines discard any numbers whose digits do not sum
to 20.

	•	 (e.toList) turns the string into a list of characters.

	•	 map(e => e.asDigit) turns each character in the list into
a single-digit number, returning a list of numbers.

	•	 sum adds the single-digit numbers in the list to produce a
“digit sum” for the given 5-digit number

	•	 Any number whose digit sum is not 20 is discarded
(filtered out).

	 5.	foreach(e => print(e + " ")) applies the print function to
each number in the resultant list (15851, 16661, 17471, …,
up to 109901).

https://taylorandfrancis.com

119DOI: 10.1201/9781003358541-15

Although seldom listed as an advantage of functional
programming, treating functions as values allows many if

not most loops to be replaced by function calls. The purpose of a
function call can often be understood at a glance, but this is sel-
dom true of loops. The programmer usually has to examine each
part of a loop to determine if it is correct.

A related issue is code duplication. Many loops in a typical pro-
gram are very similar to one another. Most loops perform map-
ping, filtering, reduction, or some combination of these. If a loop
can be specialized by simply supplying a function as a parameter,
this commonality can be exploited.

The most important use of functional programming, however, is
programming concurrency. Now that single-core machines are
largely a thing of the past, the ability to write concurrent, multi-
threaded programs is essential.

C H A P T E R 15

Summary and Final
Examples

http://dx.doi.org/10.1201/9781003358541-15

120    ◾    Quick Functional Programming

The traditional approach to concurrent programming is to share
data among threads. When this is done, great care must be taken to
prevent more than one thread from accessing any particular piece
of data while another thread could possibly be modifying that same
data. Failure to do this results in nondeterminism. The most com-
mon (and most serious) consequence is that errors are seldom dis-
covered until the application has been deployed and gets significant
use. This is a balancing act because the expense of protecting every
bit of data in this way tends to obviate the value of concurrency.

Functional programming provides a different approach. Because
data is immutable, it can be shared across threads with no prob-
lem. Because the data structures used are persistent (minor vari-
ants in the data structure share the common parts), memory
requirements are feasible. In short, functional programming is a
far safer and easier approach to concurrent programming.

This book is about functional programming, not concurrent
programming. The goal has been to demonstrate the value of the
functional approach in ordinary programming and to lay the
groundwork for use in concurrency.

15.1 � EXAMPLES IN PYTHON
Proper use of functional features makes programs easier to read
and debug. Consider the following examples of code to find the
minimum value in a list my_list:

 least = my_list[0]

 for i in range(1, len(my_list)):
 if least < my_list[i]:
 least = my_list[i]

compared to

 �least = reduce(lambda a, b: a if a < b else b, my_list)

Summary and Final Examples    ◾    121

The careful reader will have noticed that one of the above code
blocks contains an error.

For a more extended example, the following code computes the
checksum for an ISBN (International Standard Book Number).
Rather than trying to describe the algorithm, we will let the code
speak for itself.

Here is the traditional approach:

 def get_digits(number):
 """Given an int or string, return a list
 of the digits in it."""
 string = str(number)
 return [x for x in string if x.isdigit()]

 def compute_isbn_13_checksum(number):
 """Given the first 12 digits (as an
 int or string) of an ISBN-13 number,
 compute the 13th (checksum) digit."""
 digits = get_digits(number)
 sum = 0
 for i in range(0, 12):
 if i % 2 == 0:
 sum += int(digits[i])
 else:
 sum += 3 * int(digits[i])
 mod = sum % 10
 return 0 if mod == 0 else 10 - mod

Here is a more functional approach:

 def isbn13_checksum(isbn):
 """Given the first 12 digits (as an
 int or string) of an ISBN-13 number,
 compute the 13th (checksum) digit."""
 �digits = [int(x) for x in str(isbn) if

x.isdigit()]
 addend = lambda i:

122    ◾    Quick Functional Programming

 digits[i] if i % 2 == 0
 else 3 * digits[i]
 mod = sum([addend(i)
 for i in range(0, 12)]) % 10
 return 0 if mod == 0 else 10 - mod

Both of the above methods have been tested and work correctly.

15.2 � EXAMPLES IN JAVA
To find the minimum value in an array of integers, one could write:

 static int least(int[] ary) {
 int least = ary[0];
 for (int i = 0; i < ary.length; i++) {
 if (ary[i] < least) least = ary[i];
 }
 return least;
 }
 System.out.println("Least is " + least(ary));

It might (or might not) be somewhat simpler to write:

 System.out.println("Least is " +
 Arrays
 .stream(ary)
 .reduce(ary[0],
 (int x, int y) ->
 x < y ? x : y));
 }

As in the Python example in the previous section, the alert reader
will notice that the code with a loop contains an error.

As a longer example, the following code computes the checksum
for an ISBN-13 (International Standard Book Number). This is a
12-digit number with the 13th number serving as a checksum.

Summary and Final Examples    ◾    123

 /**
 * Given a 12 digit ISBN number, compute
 the 13th (checksum) digit.
 */
 private static int isbn13_checksum(String s) {
 // Remove possible dashes
 String[] ss = s.replaceAll("-", "").split("");
 String[] odds = new String[6];
 String[] evens = new String[6];
 for (int i = 0; i < 6; i++) {
 odds[i] = ss[2 * i];
 evens[i] = ss[2 * i + 1];
 }
 Stream<Integer> oddstream =
 Stream.of(odds).map(x -> new Integer(x));
 Stream<Integer> evenstream =
 Stream.of(evens).map(x -> 3 * new Integer(x));

 int sum = Stream.concat(oddstream, evenstream)
 .reduce(0, (a, b) -> a + b);
 int mod = sum % 10;
 return mod == 0 ? 0 : 10 - mod;
 }

There appears to be no way in Java to separate a stream into two
distinct streams, so the first part of this method turns the input
string into two separate arrays of strings.

It is difficult to argue that the use of streams and other functional
features adds any clarity to the algorithm.

15.3 � EXAMPLES IN SCALA
In Scala, it is natural to work with lists rather than arrays and with
recursion rather than loops.

124    ◾    Quick Functional Programming

The minimum value in a list ls can be found recursively:

 def least(ls: List[Int]): Int =
 if (ls.tail isEmpty) ls.head
 else {
 val lt = least(ls.tail)
 if (ls.head < lt) ls.head else lt
 }

 println(least(ls))

Or the minimum value can be found with a reduce operation:

 println(ls.reduceLeft((a, b) => if (a < b) a else b))

Or one can simply use the min function: println(ls.min).

As a longer example, one can compute the checksum for an ISBN
(International Standard Book Number) in a completely functional
way with a pipeline:

 def isbn13_checksum(isbn: String) = {
 val total = isbn
 .filter(c => c isDigit)
 .map(c => c.asDigit)
 .grouped(2).toList
 .map(p => p(0) + 3 * p(1))
 .sum
 val mod = total % 10
 if (mod == 0) 0 else 10 - mod
 }

The grouped(2) function above returns a new list containing the
first two elements of the given list, then the second two elements,
and so on.

125DOI: 10.1201/9781003358541-16

In writing this book, I have tried to be as objective as possible.
This section, however, reflects my personal, subjective views.

The reader may have different views, in which case I hope we can
disagree amicably.

Python is an excellent language, and the first one I go to for much
of my programming. Its developer, Guido van Rossum, has been
against adding functional programming to Python. The few FP
features that he has added have been done extremely well and are
very useful.

I have used Java extensively since its inception. It is a workhorse of
a language. While it is overly verbose and has too many special
cases, it was a breakthrough language in its time.

Throughout its history, the people continuing to develop Java have
done a great job of adding new features in such a way as to break
few or no existing programs. Adding some FP features to Java
under these constraints was clearly a major effort and an impres-
sive technical achievement. The addition of functions and the abil-
ity to use them with legacy code are definitely improvements.

I will freely admit that getting some of the Java examples in this
book to work was a nightmare. It is very likely that someone more
familiar with the FP features could write the same examples in a

Afterword

http://dx.doi.org/10.1201/9781003358541-16

126    ◾    Quick Functional Programming

simpler fashion. Personally, I remain unconvinced that many of
the new features add anything useful to the language.

Scala was designed to be similar to Java, in order to make it easier
for Java programmers to adopt the new language. (The similarity is
not particularly evident in this book, because I have ignored the
object-oriented features in favor of the functional features.) Some
have argued that Scala is more difficult to learn than Java, but
I have not found it so—certainly not if Java’s functional features are
included in the comparison!

The usual recommendation for programmers who wish to learn
functional programming is to learn Haskell. Haskell is purely
functional, and anyone who learns Haskell definitely understands
functional programming.

My recommendation is somewhat different. Scala is a much easier
language to learn and is much more practical in the real world. It
has most of the features of Haskell but doesn’t take away all the
tools you already know; it just adds to them. It runs on the JVM
(Java virtual machine). And it certainly isn’t as verbose as Java.

I hope this slim volume has gotten you started on the road to being
a functional programmer. Besides being a powerful technique,
programming in a functional way is simply more fun.

127

Index

:: cons operator (Scala), 88
:: method reference operator (Java),

8, 26
<- operator (Scala), 54
_ underscore operator (Scala), 78

A

abstract methods (Java), 31
ActionEvent class (Java), 32
ActionListener interface (Java), 32
actionPerformed method(Java), 32
addAll method (Scala), 27
adjust method (Scala), 78
and method (Java), 40
andf function (Python), 76
andThen method (Java), 42, 77
andThen operator (Scala), 78
anonymous function, 10
anonymous inner class (Java), 32
Any type (Scala), 50
AnyVal type (Scala), 50
Apache Beam SDK, 109
append method, 85
apply method (Scala), 9
applyAsInt, 8, 13, 25, 62

B

big_even function (Python), 75
billion-dollar mistake, 79
button click, 32

C

closure, 59, 68
in Python, 60
in Java, 61
in Scala, 63

closure example, 64
Collection interface (Java), 114
Collections class (Java), 114
Collector interface (Java), 114
Collectors (Java), 114
Comparable interface (Java), 16
Comparator interface (Java),

16, 32
compose method (Java), 77
comprehensions, 51

in Python, 52
in Java, lack of, 54

cons to a list, 84
consumer, 45
Consumer interface (Java), 37
Consumers, table (Java), 45
conversion method (Scala), 63
cubic polynomial, 64
curry method (Java), 72
Curry, Haskell, 67
currying, 67

in Python, 69
in Java, 71
in Scala, 72
compared with closures, 68
generalized, 68

128    ◾    Index

D

decorator (Python), 99
default method (Java), 40
definition, in comprehension (Scala), 55
dictionary comprehension (Python), 53
Diddler interface (Java), 34
dot syntax (Python), 7, 18
DoubleStream (Java), 95
doubly linked list (Java), 87

E

Easter eggs, 107
eggs, Easter, 107
empty list, 27
enclose method (Python), 71
eval function (Scala), 78
expression-oriented, 3

F

factory, 68
filter function, 97

in Python, 98
in Java, 101
in Scala, 103

filter, in comprehension (Scala), 56
flatMap function (Java), 100, 111
flatMap function (Scala), 102
fold function, 97

in Python, 23, 48
foldLeft function (Scala), 103
foldRight function (Scala), 103
for comprehension (Scala), 54, 57, 104
for expression (Scala), 54
forEach operation (Java), 112
formula method (Python), 67, 70
FP (Functional Programming), xiii
FP class (Java), 8, 25
function, 5
function composition, 75

in Python, 75
in Java, 39, 77

in Scala, 78
function literal, 10

in Python, 11
in Java, 12
in Scala, 13

functional interface (Java), 17, 31, 32
defining, 33
naming rules, 43
predefined, 38
table, 43

functional programming, xiii, 119

G

garbage collection, 3, 83
generator (Python), 92
generator (Scala), 54
generator comprehension

(Python), 53
global variables, 1

H

Haskell, xiii, 2, 3, 126
head of a list, 27, 84
higher order function, 21

in Python, 22
in Java, 25
in Scala, 27
list (in Scala), 105

Hoare, Tony, 79

I

identity method (Java), 43
if expression, 47

in Python, 47
in Java, 48
in Scala, 49
without else (Scala), 49

IllegalStateException (Java), 112
immutable, 2, 10

data structure, 83
implementing an interface (Java), 31

Index    ◾    129

impure function, 59
indexOf method (Java), 37
insertion sort, 14
instance::method (Java), 37
IntBinaryOperator (Java), 8, 12, 25
interface (Java), 31, 32
intermediate operation, 108

in Java, 110
IntPredicate (Java), 38
IntStream (Java), 95
IntUnaryOperator (Java), 36, 61
ISBN example

in Python, 121
in Java, 122
in Scala, 124

isPresent method (Java), 81
ivory-tower, xiii

J

Java, xiv

L

lambda (Python), 11
lambda syntax (Java), 72
lazy lists (Scala), 88
lazy operations (Java), 109
lazy stream (Java), 110
list comprehension (Python), 52
list data type, 83

in Python, 86
in Java, 87
in Scala, 87
operations (in Scala), 87

LongStream (Java), 95

M

map function, 97
in Python, 98
in Java, 100
in Scala, 102

match expression (Scala), 82

methods, 5
in Python, 6
in Java, 7
in Scala, 9

method reference (Java), 34, 37
minimum value in list

in Python, 120
in Java, 122
in Scala, 124

multiple parameter lists (Scala), 73
multiplication table (Scala), 55
mutable, 10

N

natural order (Scala), 18
natural ordering (Java), 16
negate method (Java), 40
Nil (Scala), 87
None (Python), 80
note method (Python), 69
null pointer reference

billion-dollar mistake, 79
in Java, 79
in Scala, 82

numeric streams (Java), 95

O

objects (Java), 39
OCaml, xiii, 3
ofNullable method (Java), 80
optional value, 79

in Java, 80
in Scala, 81

or method (Java), 40
orElse method (Java), 81

P

palindrome, 57
in Java, 115
in Scala, 57, 116

parameter lists, multiple (Scala), 73

130    ◾    Index

partially applied function (Scala), 74
passing function (Scala), 78
persistent data structure, 3, 83
Person class, 37
pipeline, 73, 91, 107

in Python, 109
in Java, 110
in Scala, 116

Planet class (Java), 16
poly closure (Python), 65
polynomial (Scala), 64
power tool, xiii
predicates, table (Java), 42
prefix method (Scala), 73
primitives (Java), 39
pull basis, 109
pure function, 1, 59
push basis, 109
Python, xiv

R

range function (Python), 22
recommendations, 103
recursion, 2, 84
recursive function pattern, 85
reduce function, 97

in Python, 98
in Java, 25, 102
in Scala, 28

reduceLeft function (Scala), 103
reduceRight function (Scala), 103
referential transparency, 1
remind function (Scala), 63
reverse method, 86
Runnable interface (Java), 32

S

SAM (Single Abstract Method)
(Java), 32

Scala, xiv
scinkit-learn, 109
sending a message (Java), 7

sequence (Scala), 57
set (Python), 53
set comprehension (Python), 53
short-circuit method, 40
side effects, 1
single assignment, 2
singly-linked list (Scala), 27, 83, 87
sort method (Java), 17
sorting

in Python, 14
in Java, 17
in Scala, 18

Standard ML, xiii
stateful operation, 109
stateless operation, 109
statement-oriented, 3
static (Java), 8, 39, 40
static method (Python), 6
stream, 91

in Java, 92
in Scala, 95
example (Java), 115
example (Scala), 117

stream creation, 108
in Java, 93
in Scala, 95

stream of streams (Java), 100
sum_squares function (Python), 23
supplier (Java), 36, 44, 110
Suppliers, table (Java), 45
surround method (Python), 70

T

tail of a list, 27,84
terminal operation, 108

in Java, 110, 112
list (Java), 112

ternary expression (Java), 48
toArray method (Java), 114
toStream method (Scala), 95
tuple (Scala), 88
two parameter lists (Scala), 73
type parameters (Java), 33, 39

Index    ◾    131

U

unary operator, 42
unary operators, table (Java), 42
underscore (Scala), 9, 73, 78
unit value (Scala), 49
usefully named interfaces, table (Java), 44

V

val and var (Scala), 10
variables don’t vary, 2

W

warn method
in Python, 70
in Scala, 73

wrapper classes (Java),
39

Y

yield (Scala), 57
yield statement (Python), 92

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	About the Author
	Preface
	Chapter 1: What Is Functional Programming?
	Chapter 2: Methods and Functions
	2.1 Methods
	2.1.1 Methods in Python
	2.1.2 Methods in Java
	2.1.3 Methods in Scala

	2.2 Function Literals
	2.2.1 Function Literals in Python
	2.2.2 Function Literals in Java
	2.2.3 Function Literals in Scala

	2.3 Sorting Examples
	2.3.1 Sorting in Python
	2.3.2 Sorting in Java
	2.3.3 Sorting in Scala

	Chapter 3: Higher-Order Functions
	3.1 Higher-Order Functions in Python
	3.2 Higher-Order Functions in Java
	3.3 Higher-Order Functions in Scala

	Chapter 4: Functional Interfaces in Java
	4.1 Single Abstract Methods
	4.2 Anonymous Inner Classes
	4.3 Defining Functional Interfaces
	4.4 Method References
	4.5 The Other Method Reference
	4.6 Provided Functional Interfaces
	4.6.1 IntPredicate
	4.6.2 Function Composition
	4.6.3 Predicates Again
	4.6.4 Unary Operators
	4.6.5 More Functions and Operators
	4.6.6 Suppliers and Consumers

	Chapter 5: If Expressions
	5.1 If Expressions in Python
	5.2 If Expressions in Java
	5.3 If Expressions in Scala

	Chapter 6: Comprehensions
	6.1 List Comprehensions in Python
	6.2 Comprehensions in Java
	6.3 For Expressions in Scala
	6.4 For Comprehensions in Scala

	Chapter 7: Closures
	7.1 Closures in Python
	7.2 Closures in Java
	7.3 Closures in Scala
	7.4 Closure Example

	Chapter 8: Currying
	8.1 Currying in Python
	8.2 Currying in Java
	8.3 Currying in Scala

	Chapter 9: Function Composition
	9.1 Function Composition in Python
	9.2 Function Composition in Java
	9.3 Function Composition in Scala

	Chapter 10: Optional Values
	10.1 Optional in Python
	10.2 Optional in Java
	10.3 Option in Scala

	Chapter 11: Lists
	11.1 Recursion
	11.2 Lists in Python
	11.3 Lists in Java
	11.4 Lists in Scala

	Chapter 12: Streams
	12.1 Generators in Python
	12.2 Streams in Java
	12.3 Numeric Streams in Java
	12.4 Streams in Scala

	Chapter 13: Important Functions
	13.1 Important Functions in Python
	13.2 Important Functions in Java
	13.3 Important Functions in Scala
	13.4 Additional Functions in Scala

	Chapter 14: Pipelines
	14.1 Pipelines in Python
	14.2 Pipelines in Java
	14.2.1 Intermediate Operations
	14.2.2 Terminal Operations
	14.2.3 Collectors
	14.2.4 Example

	14.3 Pipelines in Scala

	Chapter 15: Summary and Final Examples
	15.1 Examples in Python
	15.2 Examples in Java
	15.3 Examples in Scala

	Afterword
	Index

