


Quick Recursion 

Recursion is the best tool for working with trees and graphs. But 
perhaps you’ve studied recursion and decided it’s too complicated. 
You just can’t think that way. That limits the kind of programming 
you can do. 

Good news! Recursion is actually easy. It’s just badly taught. 

See, many instructors talk about how the computer does it. They go 
on and on about what happens at each level of the recursion and 
how each level relates to other levels. The problem is that you can’t 
think in multiple levels. Nobody can. And you don’t have to. 

This book will show you how you can write recursive programs. 
Once you understand a few simple rules, you will wonder why 
you ever thought recursion was complicated. You’ll be able to 
write recursive programs quickly and easily. 

Well, as quick and easy as programming ever is, anyway.   
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Preface   

R ECURSION IS CONSIDERED TO BE AN “ADVANCED” TOPIC. 
It shouldn’t be. 

When my oldest daughter was in high school, she was deeply 
involved in a multiplayer dungeon (MUD) game. She implemented 
an email system for it, using a language called Forth, which uses 
recursion extensively. 

When she went to college, she took a programming class. After a 
week or so she called home and asked me, “Daddy, what are loops 
for?” When I explained, she said, “Why not just use recursion? It’s 
so much simpler.” 

I agree.   
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C H A P T E R 1 

Understanding 
Recursion   

1.1 A NOTE ON LANGUAGES 
Any programming book needs examples, and examples have to 
be in some language. 

This book uses two well-known languages, Java and Python 3. 
The code is kept simple, without any language-specific “tricks,” 
so it should be accessible even to programmers who know nei
ther of these languages. 

That said, it is impossible to avoid all language-specific features 
and still have working code. Python uses indentation to show 
nesting of statements, while Java uses braces. To remove leading 
blanks, Python uses strip() while Java uses trim(). Differences 
such as these should not greatly obscure the examples. 

1.2 RECURSIVE DEFINITIONS 
A recursive definition is a definition in which the thing being 
defined occurs as part of its own definition. 
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Sounds circular, doesn’t it? Circular definitions, in computer 
science as elsewhere, are valueless and should be avoided. The 
distinction between a recursive and a circular definition lies in the 
use of the work “part.” Any recursive definition has two parts: 

1. a noncircular part, or basis, which is like an ordinary de
finition, and directly specifies some objects that fit the 
definition; and  

2. a recursive (circular) part, which allows you to use the 
objects that fit the definition in determining whether new 
objects also fit the definition. 

Some examples should clarify these ideas. 

Here is an ordinary definition: 

Vowel: one of the letters “a,” “e,” “i,” “o,” “u,” or “y.”  

Clearly, there are exactly six things that fit the above definition of 
a vowel. Now consider the following circular definition: 

Yowl: any yowl followed by a vowel.  

By this definition, any yowl followed by a vowel is also a yowl; 
thus, if we could find one thing which is a yowl, then any things 
formed by adding vowels to that yowl would themselves be 
yowls. The problem is in finding that first yowl. Since we have no 
place to start, the definition is circular, and valueless. 

Now consider the following definition: 

Howl:  

1. the letter “h,” or  

2. any howl followed by a vowel. 
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This definition is recursive. The first part is an ordinary definition, 
and tells us that the letter “h” is a howl; this gives us a basis, or 
place to start. The second part is the recursive part; it tells us that, 
since “h” is a howl, so are “ha,” “he,” “hi,” “ho,” “hu,” and “hy.” 
But since these are howls too, so also must be “haa,” “hae,” …, 
“hyy,” …. “haaeeuooeea,” etc. 

Note that this is a “good” definition in the sense that some things 
are howls, some things are not howls, and it is easy to tell from 
the definition which are which. The “circularity” of the second 
part of the definition causes no harm because the first part 
provides a basis. 

Recursion abounds in computer science. A typical definition of 
“identifier” (or “variable name”), for example, is as follows. 

Identifier:  

1. a letter, or  

2. an identifier followed by a letter, digit, or underscore. 

Notice that the definitions of both “howl” and “identifier” allow 
arbitrarily long strings. It is possible to write recursive definitions 
which limit the size of the things being defined, but in general 
this is neither easy nor desirable. Instead, if there must be limits, 
they are set by some external agency. Some programming lan
guages, for example, allow arbitrarily long identifiers, but require 
that two different identifiers must differ in the first k characters, 
where k is set by the implementation. In the same way, the 
maximum length of a howl might be determined by your lung 
capacity. 

You have probably noticed that the above definitions don’t have 
to be recursive; they could be made into ordinary definitions by 
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using the phrase “any number of …,” which can be implemented 
with a loop. This is true—we don’t need recursion. In fact, re
cursion is never absolutely necessary, merely useful. 

The definitions we have considered so far have all been examples 
of direct recursion. For an example of indirect recursion, con
sider the following pair of definitions (adapted from Lisp): 

S-expression: an identifier or a list. 

List: a sequence consisting of  

1. a left parenthesis,  

2. zero or more S-expressions separated by blanks, and  

3. a right parenthesis. 

Thus, the following things are lists (and also S-expressions): 

() 

(ZIP ZAP ZOT) 

(ONE (TWO THREE) ((FOUR)) FIVE) 

(() IXOHOXI ()) 

These definitions are mutually recursive: each is defined in 
terms of the other. The basis for the S-expression is an identifier, 
while the basis for the list is the sequence (). 

To show that these definitions “work,” consider the S-expression 
(NOT (HARD)).  

1. (NOT (HARD)) is an S-expression because it is a list. 
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2. (NOT (HARD)) is a list because it consists of a left par
enthesis, the two S-expressions NOT and (HARD), and a right 
parenthesis.  

3. NOT is an S-expression because it is an identifier.  

4. (HARD) is an S-expression because it is a list.  

5. (HARD) is a list because it consists of a left parenthesis, the 
S-expression HARD, and a right parenthesis.  

6. HARD is an S-expression because it is an identifier. 

Q.E.D. 

Of course you don’t have to go through this complete process 
every time you see an S-expression, but we were being very 
formal. 

Now is a good time to put in a plug for the usefulness of re
cursion. The definition of “list” given above may seem confusing 
at first (if you’re not used to recursive definitions), but I chal
lenge anyone to write a reasonable definition of “list” which is 
equivalent to the one given above, yet does not use any form of 
recursion. 

1.3 A SIMPLE RECURSIVE PROCEDURE 
A recursive procedure (or function, or method, or subroutine) is 
a procedure that calls itself to do part of the work. 

Again, the trick is in the use of the word “part.” If it called itself 
to do all of the work, the result would be an infinite recursion 
(the recursive equivalent of an infinite loop). Just as a loop does 
some part of the work during each iteration of the loop, so must 
a recursive procedure do some part of the work at each level of 
recursion, until eventually all the work is done. 
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We’ll start with a simple example. This will be a function to ask 
the user a question that requires a yes or no answer. If the user 
responds with a word beginning with ‘y’ or ‘Y,’ the function will 
return True. If the user’s response begins with ‘n’ or ‘N,’ the 
function will return False. 

In Python: 

def ask_yes_or_no(question): 
answer = input(question + ' ').strip().lower() 
if len(answer) > 0: 

if answer[0] == 'y': 
return True 

if answer[0] == 'n': 
return False 

print('Please answer with yes or no.') 

# Now what? 

In Java: 

private static boolean askYesOrNo(String question) { 
char answer = ' '; 
System.out.print(question + "  "); 
String line = scanner.nextLine(); 
if (line.length() > 0) { 

answer = line.toLowerCase().charAt(0); 
if (answer == 'y') return true; 
if (answer == 'n') return false; 

} 
System.out.println("Please answer with yes or no."); 
// Now what? 

} 

Without recursion, the obvious thing to do is to embed the code 
in a loop and set some kind of a flag to indicate whether the user 
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has responded correctly. If the user doesn’t answer with a yes or 
no, then complain and go through the loop again. 

Instead of doing that, what if we just called the method again, 
and returned whatever it returned? 

In Python: 

def ask_yes_or_no(question): 
answer = input(question + ' ').strip().lower() 
if len(answer) > 0: 

if answer[0] == ‘y': 
return True 

if answer[0] == 'n': 
return False 

print('Please answer with yes or no.') 

return ask_yes_or_no(question) 

In Java: 

private static boolean askYesOrNo(String question) { 
char answer = ' '; 
System.out.print(question + "  "); 
String line = scanner.nextLine(); 
if (line.length() > 0) { 

answer = line.toLowerCase().charAt(0); 
if (answer == 'y') return true; 
if (answer == 'n') return false; 

} 
System.out.println("Please answer with yes or no."); 

return askYesOrNo(question); 
} 

This code could result in an infinite recursion, but that will only 
happen if the user never provides an acceptable response. For 
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code that doesn’t require a user response, a few simple rules (to 
be described) must be followed. 

1.4 FACTORIAL 
The usual first example of recursion is the factorial function. We 
will use it for the same reason everyone else does: It is simple. 

The factorial of a positive integer n, written n!, is the product of all 
the positive integers from 1 up to and including n. Thus, we have 

1! == 1 
2! == 1 ∗ 2 == 2 
3! == 1 ∗ 2 ∗ 3 == 6 
4! == 1 ∗ 2 ∗ 3 ∗ 4 == 24 

and so on. 

Note that, for example, 4! == 1 ∗ 2 ∗ 3 ∗ 4 == (1 ∗ 2 ∗ 3) ∗ 4 == 
3! ∗ 4, and in general n! == (n - 1)! ∗ n. This leads to the 
following recursive definition: 

The factorial of a positive integer n is  

1. 1, if n == 0 (base case), or  

2. (n - 1)! ∗ n, if n > 0 (recursive part). 

This definition leads immediately to the following Python 
program: 

def factorial(n): 
"Computes the factorial of its argument." 
if n == 0: 

return 1 
else: 

return factorial(n - 1) ∗ n 
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Or the equivalent Java program: 

public static int factorial(int n) { 
if (n == 0) return 1; 
else return n ∗ factorial(n - 1); 

} 

This function has a base case (when n == 0) and a recursive part 
(when n is positive), and it does part of the work (multiplying 
by n) at each level of the recursion. Thus it seems as though the 
function might possibly work. But if this is the first time you 
have seen recursion, you may not be comfortable with it. 

Some authors suggest that the best way to understand a recursive 
function is to trace through it, keeping track of what happens at 
every call and every return of the function. By all means work 
through such a trace, if doing so helps you believe recursion can 
actually work. But you should never think of tracing through a 
recursive procedure as a means of understanding, such a pro
cedure. “Tracing through” has probably kept thousands of 
people from ever really understanding recursion. The purpose of 
this book is to describe a better technique. 

1.5 THE PRINCIPLE OF INFORMATION HIDING 
Perhaps the single most important tool we have for controlling 
the complexity of programs is modularization: breaking a 
single complex program up into several simpler, logically in
dependent computations. Depending on the programming 
language, these are called by various names: functions, methods, 
procedures, etc. 

Whenever a program is broken into two parts, there comes into 
being an interface between them. This interface consists of the 
parameter list, any global or common variables they may share 
between them, any results returned or exceptions raised, and often 
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more subtle ways of information transmission. If modularization 
is to succeed in reducing complexity, this interface must be kept as 
narrow and as explicit as possible. 

The best way to keep the interface narrow is to ensure that each 
routine does just one thing, and that that thing can be easily 
described in an English sentence with few or no “buts” and 
“excepts” in it. Keeping parameter lists short and avoiding global 
variables can also help. 

The best way to make the interface explicit is to ensure, when
ever possible, that all information transmission occurs via the 
parameter list, not through global variables. There are those who 
feel global variables should be avoided entirely, but I don’t take 
such an extreme position. It is often more convenient to have 
global access to arrays and other large data structures; just take 
special care not to modify them accidentally. 

Side effects should also be avoided. The main effect of a routine 
is the thing it’s supposed to do; side effects are the little extra 
things it does. Side effects are dangerous even when they’re 
intentional. For example, if a function factorial(n) com
putes n!, that’s its main effect; but if it also stores the result in a 
global variable, that’s a side effect. This is bad because it hap
pens in the factorial function, but errors that result from this 
side effect will show up in any code which calls factorial. 
Since these routines may themselves be correct, the likely result 
is that the programmer spends hours trying to debug the wrong 
routines. 

We are now in a position to state the Principle of Information 
Hiding: Every routine should mind its own business. No routine 
should meddle in the affairs of another. Or, somewhat more 
formally, 
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• A routine should use only the information provided to it, 
preferably via its parameter list. If it must access global 
data, that fact must be clearly and unambiguously specified.  

• A routine should return a single result (in Python, this 
could be a tuple of values) and do nothing else. If it must 
modify global data, that fact must be clearly and un
ambiguously specified. 

• A routine should be independent of its context. For ex
ample, if some routine calls a sort method,  

• that routine should neither know nor care just how the 
sort method operates, so long as the sorting happens,  

• and in addition, the sort method should neither know 
nor care why its calling routine wants the sorting done. 

Similar rules hold for classes and objects. An object holds various 
kinds of data; the class of the object holds methods to manipulate 
that data. An object’s data should be accessed and modified only 
by the methods given in its class, never from outside the class. 

Here are three simple examples of violations of the Principle 
of Information Hiding. In each case, the function is supposed to 
return the minimum or maximum value in a non-empty list of 
integers. Can you spot the violations? 

def minimum1(numbers): 
"""Return the smallest number in a list.""" 
numbers.sort() 
return numbers[0] 

def minimum2(numbers): 
"""Return the smallest number in a list.""" 
global i 
min = numbers[0] 
for i in range(1, len(numbers)): 
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if numbers[i] < min: 
min = numbers[i] 

return min 

def maximum(numbers): 
"""Return the largest number in a list.""" 
max = 0 
for i in range(0, len(numbers)): 

if numbers[i] > max: 
max = numbers[i] 

return max 

The answers are given at the end of this section. 

These examples are trivial, and in real life are not likely to cause 
major problems. Things get worse when the rest of the program 
gets more interesting. 

The following skeleton program controls a two-player game be
tween the human and the computer, in which the players alternate 
moves. The Principle of Information Hiding has been largely 
respected in this example; indeed, it is impossible to deduce from 
the program just which game is being played. 

def main(): 
setup() 
player = choose_who_goes_first() 
game_over = False 
while not game_over: 

if player == 'human': 
move = ask_human_for_move() 
(game_over, result) = make_move(player, move) 
player = 'computer' 

else: # player == 'computer' 
move = decide_move() 
(game_over, result) = make_move(player, move) 
player = 'human' 
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print("Game over!") 
print(result) 

def ask_human_for_move(): 
move = input('Enter your move: ') 
if legal_move(move): 

return move 
else: 

print("That's not legal. Try again.") 
return ask_human_for_move() 

It is possible to understand this program and verify its correctness, 
given very simple assumptions about what the called routines 
do. For example, we would expect choose_who_goes_first()  to 
somehow decide who plays first and to set its parameter to 
“human” or “computer” accordingly. All information relevant 
to the operation of the main program is fully specified in the 
parameter lists. 

I have not shown any of the declarations. There could be a 
structured variable “board” which represents a playing board; if 
there is only one of it, and if it is used by all routines, it might be 
a good idea to make “board” a global variable rather than to put 
it in the parameter list of every routine. 

Now consider an alternate version of the same program. 

def main(): 
global k 
setup() 
choose_who_goes_first() 
while not game_over: 

if player == 'human': 
ask_human_for_move() 
check_if_move_is_legal() 
k = k - 1 
make_move() 
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else: # player == 'computer' 
decide_move() 
k = k + 1 
make_move() 

print("Game over!") 
print(result) 

Due to the many violations of the Principle of Information 
Hiding, it is impossible to tell whether the program is correct or 
not, without extensive reference to the called routines.  

• What routine or routines update player? Do they do it in 
such a way that the main program works?  

• If the human’s move is not legal, has player already been 
updated?  

• How does make_move know whose move to make?  

• Where is result determined?  

• When does the game end? Where is this determined?  

• Is k being initialized properly? Computed properly? What 
is it anyway, and where is it used? 

It may seem at this point that we have drifted away from the topic of 
recursion, and perhaps we have, since the Principle of Information 
Hiding applies to all programs. As we shall see in a later section, 
however, it has a special importance for recursive programs. 

Answers to questions about information hiding violations:  

1. minimum1:  Sorting the list is a rather drastic side effect.  

2. minimum2:  The function changes the global variable “i.”  

3. maximum:  This function assumes that the list is not 
composed entirely of negative numbers. 
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The last of these (maximum) deserves a little more explanation. As 
a general-purpose function, it is an error to assume that the 
input is not a list of negative numbers. As part of a program 
where this never occurs, the function will work, but it assumes 
too much about its context. At some future date, code may be 
added to the program which violates this assumption. The best 
solution is to fix the code; next best is to modify the comment to 
specify “… in a list of numbers, not all of which are negative.” 

1.6 WHEN TO USE RECURSION 
It is an easily proved fact that you never need recursion; any 
recursive program can be changed into a non-recursive one that 
uses a stack. (In the same way you can prove that any program 
could be written in absolute binary.) 

The best answer to the question of when to use recursion is, 
simply, when you happen to find it useful. You never just set out to 
“use recursion,” any more than you just set out to “use a loop.” 
You program; sometimes you use a loop, sometimes you use an 
array, sometimes you do input/output, and sometimes you recur. 

But that’s not a very useful answer when you’re first getting 
started. We’ll try to be more specific. 

One good rule of thumb is to use recursion when you are processing 
recursively defined data structures. If you try to evaluate an ar
ithmetic expression, for example, parentheses may be used to en
close a “subexpression” which must be evaluated first, and is an 
expression in its own right. If you’re writing code to evaluate ar
ithmetic expressions, there are only two reasonable ways to do this: 
recursively, or by “simulating” recursion with an explicit stack. 

Another (equivalent) rule is to handle nested structures with re
cursion. As an example, in many languages, any statement may be 
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nested in an if statement, even another if statement. There is a 
clear use for recursion in any processor (compiler, preprocessor, 
interpreter, debugger, pretty printer) for such a language. 

Finally, programs that use a single stack can often be written 
more clearly as recursive programs which don’t use a stack. 
(Programs that use two or more stacks, however, often cannot be 
rewritten as recursive programs without any stacks; but the proof 
is beyond the scope of this manuscript.) 

1.7 WHEN NOT TO USE RECURSION 
Every recursive call uses additional memory. The current values 
of the parameters and other variables at every level must be kept 
in storage. Modern computers have enough memory that this is 
usually not an issue—but it can be. 

Most programming languages will simply let a recursion run 
until memory is exhausted, at which point the program will 
crash. Python, however, sets an arbitrary, but very reasonable, 
maximum recursion depth of 1000. 

Note: Python’s depth limit can be changed by calling 
sys.setrecursionlimit(limit).  

Most recursively defined data structures are nowhere near this 
deep. For example, a balanced binary tree containing one billion 
nodes would only be about 30 levels deep. 

Lists, like arrays, may have thousands of elements. For these, a 
method that recurs for every element may be impractical, and a 
less storage-intensive loop should be used. 

1.8 THE FOUR RULES 
Here we propose four rules which, if understood and followed, 
will result in working recursive programs. Once you become 
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comfortable with recursion you will realize that these rules are 
not absolute, and can be violated for good cause, if care is taken; 
but stick with them for now.  

1. Handle the base cases first.  

2. Only recur with a simpler case.  

3. Don’t use external variables.  

4. Don’t look down. 

1.8.1 Rule 1. Handle the Base Cases First 
A base case is a task that can be computed directly with no need 
for recursion. For example, in the factorial program, the only 
base case is n == 0, and the result returned is 1. Other programs 
may have multiple base cases, each directly computable. The first 
thing any recursive program should do is test for base cases. 

Often there is a choice between using recursion and using a loop. 
If efficiency is critical, a loop is usually the better choice. 
Otherwise, the simpler alternative should be chosen. 

The purpose of a base case isn’t to avoid recursion altogether. 
The purpose of a base case is to stop a recursion. That brings us 
to the second rule. 

1.8.2 Rule 2. Recur Only with a Simpler Case 
This rule is crucial for preventing circularity and infinite re
cursion. If you ever, even once, recur with the same (or harder) 
problem, your program immediately disappears off into Cloud- 
Cuckoo Land. 

Every recursive call should be with a simpler case of the same kind 
of problem. But what does it mean to be “simpler”? If the problem 
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is numeric and the base case is zero, then simpler may mean with a 
smaller number. If the problem is processing an array, simpler 
might mean with a smaller array, or a smaller part of an array. 
Simpler might mean a more nearly sorted array, a shorter ar
ithmetic expression, a shorter list, or just about anything else, so 
long as it is in some way “closer” to a base case. 

In addition, the solution of the simpler case must also be useful 
in solving the harder case. For example, 10! can be computed by 
solving the simpler case of 9! and then multiplying this result by 
10. To evaluate the expression 3 ∗ (2 + 4), it is first necessary to 
evaluate the subexpression (2 + 4). 

Once you have established your base cases, those are the “sim
plest” cases, and “simpler” is anything that is in some clear way 
“closer” to one or more of those base cases. Sometimes it is ob
vious when we are getting closer, as in the factorial function: As 
long as n is greater than 0, clearly n − 1 is closer to 0. Similarly, 
when we evaluate expressions, it may be obvious that a shorter 
expression is a simpler one; or perhaps it is an expression with 
fewer parentheses, or fewer arithmetic operators. When you write 
a recursive function, you must be clear in your mind just when a 
problem is “closer” to the base case (hence “simpler”), and you 
must stick to it. 

Suppose we try to speed up the factorial function by doing two 
multiplications at each level of recursion, rather than just one. 
We might get 

def bad_factorial(n): 
if n == 0: 

return 1 
else: 

return n ∗ (n - 1) ∗ bad_factorial(n - 2) 
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Or in Java: 

public static int badFactorial(int n) { 
if (n == 0) return 1; 
else return n ∗ (n - 1) ∗ factorial(n - 2); 

} 

This doesn’t work. Before you read any further, try to figure out 
the error for yourself. Then figure out the simple fix. 

The problem is that n - 2 isn’t necessarily “closer” to 0 than n is. 
In particular, if n is odd, so is n - 2, and soon we will overshoot 0 
and try to compute the factorials of -1,-3,-5, and so on. It is part 
of the notion of “closer” that (in a finite system), if we get closer 
enough times, sooner or later we will get there. (This can be 
corrected by changing the test to if n == 0 or n == 1.) 

So you have to be careful that your notion of “closer” will sooner 
or later get you there. 

If this all sounds vague and mysterious, don’t panic. For any 
particular, concrete problem, it is 99% certain that it will be ob
vious what meaning to attach to the word “simpler.” But do take 
20 seconds, before you rush ahead with the program, to decide 
what the word means. Then each time you write a recursive call, 
make sure you recur with a simpler problem. 

1.8.2.1 An Aside: The Collatz Conjecture 
It is almost always easy to determine whether a recursive case is 
closer to the base case. However, the Collatz conjecture is a rare 
counterexample. In Python, 

def collatz(n): 
if n == 1: 

return 1 
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elif n % 2 == 0: 
return collatz(n // 2) # integer division 

else: 
return collatz(3 ∗ n + 1) 

The conjecture is that the collatz function will terminate for all 
positive integers. There is only one base case: If n is 1, the result is 
one. Therefore, if the function does terminate, the result will be 1. 

Does it terminate? If n is even, collatz is called with half of n, 
which is closer to 1. But if n is odd, collatz is called with 3 ∗ n + 1, 
which is larger than n but even, so the parameter will come down 
again, just not as far. 

The Collatz conjecture has mathematicians stumped. It has been 
checked by computer programs for all values up to 268, and always 
terminates. There must be some measure by which both n/2 
and 3n + 1 are “closer” to one, but it obviously isn’t just the size of 
the number. A mathematical proof of termination has yet to be 
discovered. 

1.8.3 Rule 3. Don’t Use External Variables 
Local variables are variables that can only be used inside the 
function in which they are defined; they are inaccessible outside 
the function. But it goes deeper than that. Local variables can 
only be used in one particular instantiation (call) of a function. 
If the function is called again, it uses a whole new set of local 
variables. 

Suppose you have two functions, A and B. If function A calls 
function B, here’s what happens:  

1. When A calls B, all the local variables of A are tucked away 
in a safe place, inaccessible to B (or anything else). 
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2. If A calls B with arguments, the values of those arguments 
are copied into B’s parameters. 

3. New storage locations are allocated for all the local vari
ables of B, including the variables in B’s parameter list. This 
storage allocation may happen immediately, or it may 
happen as needed by function B.  

4. Function B executes its code, using the values in its new 
storage locations. When done, function B returns a single 
result to A, and all storage used by all the local variables of 
B is recycled.  

5. When A receives a result from B, all its local variables are 
brought “out of hiding,” still with the same values they had 
when B was called. 

Here’s the key point: All those same actions occur when a func
tion calls itself. The local variable names are reused for the new 
values, and their previous values are restored when the call 
returns. 

Global variables are different. Consider the following sequence:  

1. Compute a value for x,  

2. make a recursive call,  

3. use x, expecting it to have the value you computed in (1). 

If x is a local variable, there is no problem. Variable x will not be 
changed by the recursive call. But if x is a global variable, it will 
be changed by the recursive call. Step (1) above changes it. 

Local variables don’t cause any problems. They just don’t. They 
are safe from whatever happens at other levels of the recursion. 
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However, if a recursive routine uses and modifies an external 
variable, such as a global, then you can only understand and debug 
the routine by understanding how the calling routine manipulates 
the variable and also how the called routine manipulates the 
variable. This requires you to think about many levels of the re
cursive routine, all at the same time. For most programmers (and 
possibly all programmers), this is impossible. 

There are two ways in which you can safely use an external 
variable in a recursive routine:  

• Never change the value of an external variable, only look at 
it; or,  

• Never use the value of an external variable, only change it 
(a counter, for example). 

This doesn’t mean that you cannot both use and change a global 
variable in a recursive method; you can, but it becomes very 
difficult to reason about. 

It is helpful to understand that a variable can only hold a limited 
amount of information, typically four bytes (depending on the 
system). Four bytes is enough to hold quite large integers, 
floating point numbers, booleans, and pointers, but it isn’t en
ough to hold complex values like arrays, lists, sets, tuples, or 
dictionaries. These larger structures are stored elsewhere, and a 
pointer to them is stored in the variable. 

A recursive routine thus may access four types of variables:  

1. Local variables, which are declared inside the routine itself, 
and are totally safe.  

2. Parameters that are “passed by value,” that is, the actual 
value of the argument can fit in a single variable, and it is 
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this value which is copied into the parameter. Such para
meters act like local variables.  

3. Global variables, which are external to the routine. Any 
change to a global variable is visible everywhere. It is safe 
to only look at them, and it is safe to only update them 
(for example, incrementing a counter), but trying to work 
with them in any meaningful way will quickly lead to in
comprehensible code.  

4. Parameters that are “passed by reference.” Arrays, lists, and 
other data structures cannot fit in a single variable, so what 
is copied into the parameter is a reference (or pointer) to 
the actual value. These behave like global variables. 

Moral: Make sure all your variables are either local or are 
by-value parameters. If you can’t, make sure you never 
change the value of a global variable or parameter. And if 
you must alter global variables, think long and hard about 
what you’re doing. 

Technical Note: Starting in Python 3, integers can be of 
unlimited size. A variable holding a very large integer would 
normally hold a reference, rather than the actual value. 
However, large numbers are immutable, so integers continue 
to behave as they have always done, regardless of how large 
they are. 

Fortunately, it is easy to get into the habit of avoiding globals. 
You don’t have to think through the reasons each time. Just 
avoid them. 

1.8.3.1 Deep Copies 
You never need a complex data structure to be a global variable; 
it can always be passed around as a parameter. Doing so is ef
ficient because what you are actually passing is a reference 
(pointer) to the data structure. 
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Modifying a data structure within a recursive function has the 
same problems as modifying a global variable. Since what you 
have is a reference to the data structure, any modifications to it 
happen at all levels of the recursion. 

Sometimes the whole point of the recursive function is to modify 
the data structure. In this case, a simpler case (Rule 2) is usually 
to use just part of the data structure. 

Other times, a data structure might be modified on a trial-and- 
error basis, for example when searching for a solution, after which 
the changes must be undone. Undoing changes can be efficient but 
error-prone. Another approach is to pass a copy of the data 
structure rather than the original; the entire copy can be discarded 
when the function returns, leaving the original untouched. 

Copies can be shallow or deep. A shallow copy is a simple copy of 
all the top-level values in the data structure. For example, con
sider the following Python array: 

a = [1, [2, 3], 4] 

(Python calls this a list, but it’s actually more like an array.) The 
variable a now holds a reference to the array. If we do a simple 
assignment, b = a, the reference is copied into b, so that now a 
and b both refer to the same array. Again, it is the reference that 
is copied, not the actual array. The same thing happens when a is 
passed to b as a parameter. 

b = a 
b[0] = 10 
b[1][0] = 20 
print(a)  # prints [10, [20, 3], 4] 

Python has a copy method. The array a has three values: the 
integer 1, a reference to the array [2, 3], and the integer 4. When 
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the array itself is copied, these three values are the ones that are 
copied into the new array. 

b = a.copy() 
b[0] = 10 
b[1][0] = 20 
print(a)  # prints [1, [20, 3], 4] 

The value 1 in array a was not changed, but the value 2 was 
changed to 20. This happened because only the reference to the 
array [2, 3] was copied, not the complete array. A deep copy, on 
the other hand, copies the entire structure. 

import copy 
a = [1, [2, 3], 4] 
b = copy.deepcopy(a) 
b[0] = 10 
b[1][0] = 20 
print(a)  # prints [1, [2, 3], 4] 

Copying a data structure can be expensive, and deep copying 
even more expensive, but if you must make tentative modifica
tions to a data structure in a recursive function, you may need to 
work on a copy. 

1.8.4 Rule 4. Don’t Look Down 
When you reach a recursive call, don’t go back to the top of your 
routine and start working through it all over again. Don’t try to 
“trace through” recursive calls. That way lies madness. 

Consider this: if you are working your way through a complex 
but non-recursive routine, and it calls a sorting routine, do you 
drop everything and rush off to see if the sorting routine works? 
Of course not. You simply assume that the sorting routine works 
(if you have doubts you save them for later), and keep going in 
the routine you’re checking. Rule 4 simply says to treat all calls 
this way, even recursive ones. 

Understanding Recursion ▪ 25 



It may seem odd at first to assume the called routine works, 
when that called routine happens to be the very one you’re 
checking. However, you must do so: the human mind does have 
limitations. Pretend, if it helps, that you are not actually recur
ring, but rather calling an entirely different routine (which 
happens to have the same name) that you know to be correct. 

What is involved here is perhaps best described as a “leap of faith.” 
You have to learn to trust recursion; to believe that, if you can get 
the routine correct at this level, then you don’t have to worry about 
any deeper levels. Until you can bring yourself to make this 
commitment, you will be compelled to look down into the re
cursion, and you will never untangle what you see there. 

Think about rules one to three, and try to convince yourself 
logically that a program written according to these rules ought to 
work. Then, even if you can’t yet manage rule four, pretend you 
do when you write your program. 

Now run your program. It will have errors, of course—programs 
always do—but steadfastly refuse to look down. Go over rules one, 
two, and three, and make sure you didn’t violate one of these. 
Next, go over the program the same way you always would, 
looking for errors that have nothing to do with the recursion itself 
(the error doesn’t have to be in the recursion, remember). If this 
too fails, get help. 

Don’t even think about looking down, for this one simple 
reason: it doesn’t help. 

If the notion of “faith” bothers you, think about the novice 
programmer who complains that his program can’t be wrong, so 
the computer must have made a mistake. You may have once 
done this yourself. In time, all programmers learn to trust the 
computer; now you must learn to trust recursion. 
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1.9 WHAT THE COMPUTER DOES 
This section is optional; feel free to skip it. 

Here’s the factorial function again. 

def factorial(n): 
if n == 0: 

return 1 
else: 

return factorial(n - 1) ∗ n 

Suppose the program calls factorial with 3. What happens?  

1. The value 3 is assigned to the local variable n.  

• n is not zero, so the function “remembers” that n is 3, (it 
puts 3 on a stack) and calls factorial with 2.  

2. The value 2 is assigned to the local variable n.  

• n is not zero, so the function puts 2 on a stack and calls 
factorial with 1.  

3. The value 1 is assigned to the local variable n.  

• n is not zero, so the function puts 1 on a stack and calls 
factorial with 0.  

4. The value 0 is assigned to the local variable n.  

• n is zero, so the function returns 1.  

5. The function pops the 1 from the stack (it was put on the 
stack in step 3).  

• The function multiplies the 1 from the function call by 
the 1 from the stack, and returns 1.  

6. The function pops the 2 from the stack (it was put on the 
stack in step 2). 
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• The function multiplies the 1 from the function call by 
the 2 from the stack, and returns 2.  

7. The function pops the 3 from the stack (it was put on the 
stack in step 1).  

• The function multiplies the 2 from the function call by 
the 3 from the stack, and returns 6.  

8. The function returns with 6 as the final result. 

According to many textbooks, this is how you are supposed to 
understand recursion. It doesn’t work for me, and it probably 
doesn’t work for you. 

1.10 REMOVING RECURSION 
As has been mentioned, recursion is never necessary; anything 
that can be done with recursion can also be done using stacks 
and loops. 

A stack is a first-in last-out data structure. That is, values can be 
added to the stack, and they can be taken from the stack, but 
they will be removed in the opposite order from which they were 
added. Think of a stack of books—you can add a book to the top 
of the stack, or take a book from the top of the stack. If you put 
several books onto a stack, the first book will be at the bottom of 
the stack, and it will be the last book you can get to. 

Java has a Stack class. Python doesn’t, but Python lists can be 
used like stacks. Here are the basic operations in the Java Stack 
class, along with the equivalent list operations in Python.  

• stack.push(value)—adds value to the stack. In Python, use 
list.append(value).  

• stack.pop()—removes and returns the top value. In Python, 
use list.pop(). 
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• stack.peek()—returns the top value of the stack but does 
not remove it. In Python, use list [-1].  

• stack.empty()—tests if the stack is empty. In Python, use 
list == []. 

The way recursion is implemented “under the hood” is fairly 
simple. All local values are pushed onto a stack when the re
cursive call is made and restored from the stack when the call 
returns. This can be simulated with a loop, exiting the loop when 
the base case is reached. 

Here again is the recursive version: 

def r_factorial(n): 
"""Compute the factorial of its argument.""" 
if n == 0: 

return 1 
else: 

return r_factorial(n - 1) ∗ n 

And here is a version that uses a stack to simulate recursion: 

def factorial(n): 
"""Compute the factorial of its argument.""" 
stack = [] 
while n != 0: 

stack.append(n) # "push" 
n = n - 1 

fac = 1 
while stack != []: 

n = stack.pop() 
fac = fac ∗ n 

return fac 

In the non-recursive version, putting n on the stack and setting 
n to n – 1 is the equivalent of saving the local variable n and 
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making a recursive call with n – 1. Popping the stack and putting 
the top value back in n is the equivalent of returning from a re
cursive call. 

Clearly, the recursive version factorial is simpler; the point is 
to show that recursion can be implemented by using a stack. 
The main reason one might wish to do so is that recursion, 
especially very deep recursion (thousands of levels), can be 
computationally expensive, due to the amount of space re
quired by the stack. 

1.11 TAIL RECURSION 
A function is tail recursive if the recursion is the very last thing 
done in the function. If the function contains more than one 
recursive call, it is tail recursive if every recursive call is the last 
operation in the function. 

Consider, once more, the factorial function. 

def factorial(n): 
"""Compute the factorial of its argument.""" 
if n == 0: 

return 1 
else: 

return factorial(n - 1) ∗ n 

This function is not tail recursive. The recursive call occurs in the 
last statement of the function, but it is not the last thing done; 
after the recursive call, the result of that call is multiplied by n. 

The factorial function can be made tail-recursive by pulling the 
multiplication into an extra parameter (an accumulator) and 
providing a user-facing function (a façade) to call it. This is a 
technique that will be discussed in more detail later. For the 
present, here is the code. 
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def factorial(n): 
return fac(n, 1) 

def fac(n, acc):  
if n == 0: 

return acc 
else: 

return fac(n - 1, n ∗ acc) 

In a recursive function, every call gives you a new set of local 
variables. The advantage of tail recursion is that local variables 
are not used again after the recursive call. Because they are not 
used again, there is no need to create a new set; the existing 
variables can be reused. This makes it much simpler to replace 
the recursion with a loop. 

def factorial(n): 
acc = 1 
while n != 0: 

acc = n ∗ acc 
n = n - 1 

return acc 

Some languages, such as Scala, are sometimes able to detect tail 
recursion and perform this optimization by themselves. For other 
languages, including Python and Java, it is up to the programmer 
to do the optimization manually. 

1.12 RECURSIVE DRAWINGS 
No description of recursion would be complete without at least a 
mention of recursive drawings. 

As an example, draw a square. At each corner of the square, draw a 
square half as large, centered at that corner. For each of those 
squares, draw squares half as large, centered at each of the corners 
of those squares. Continue until the squares get too small. The 
result will look something like Figure 1.1. 
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Recursive drawings can be made in both Python and Java, but it’s a 
lot of work. The Processing “language” is basically a layer on top of 
either Python or Java that provides very nice drawing tools. 

Here is a program to make the above drawing in Processing, 
using Python syntax: 

size(400, 400) 
background(255) 
rectMode(CENTER) 
noFill() 

FIGURE 1.1 Recursive squares.    
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def squares(x, y, size): 
if size < 12: 

return 
square(x, y, size) 
half = size / 2 
squares(x - half, y - half, half) 
squares(x + half, y - half, half) 
squares(x - half, y + half, half) 
squares(x + half, y + half, half) 

squares(200, 200, 175) 

(The built-in square method is the one that does the actual 
drawing.) Here is the same program in Java: 

public void settings() { 
size(400, 400); 

} 
void squares(int x, int y, int size) { 

if (size < 12) return; 
square(x, y, size); 
int half = size / 2; 
squares(x - half, y - half, half); 
squares(x + half, y - half, half); 
squares(x - half, y + half, half); 
squares(x + half, y + half, half); 

} 

void draw() { 
background(255); 
rectMode(CENTER); 
noFill(); 
squares(200, 200, 175); 

} 

1.13 FORTRAN AND LISP 
The two most important programming languages from the 
1950s, Fortran and Lisp, are still in use, although they have 
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evolved considerably. Both have had an immense influence on 
the programming languages we use today. It can be argued that 
modern, conventional languages are structurally most like 
Fortran, but incorporate most of the ideas from Lisp. 

Fortran was used for numerical processing; it was built around 
numbers, arrays, and loops. Early versions had no symbols or 
lists and did not support recursion. 

Lisp was used for nonnumerical processing (in particular, what 
we today would call “artificial intelligence” applications). It was 
built around lists, symbols, and recursion. It had numbers 
(awkwardly) but not arrays or loops. 

It should therefore be no surprise that, while recursion can 
sometimes be useful for dealing with arrays, it is far more im
portant in working with lists and other recursively defined data 
structures.  
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C H A P T E R 2 

Data Structures   

2.1 ARRAYS 
An array is a sequence of values, all of the same data type, stored 
in contiguous memory locations. Any element can be efficiently 
accessed by its index in the array. In most languages, the 
minimum index is zero and the maximum index is the size of 
the array minus one. 

2.1.1 Array Maximum 
This time we will devise a recursive Python program to find the 
maximum value in an array. Again, it would be better to do this 
without recursion, but it is difficult to find simple examples that 
really need recursion, at least until we have discussed some re
cursively defined data structures. 

When looking for the maximum value in a nonempty array, what 
is a simpler problem of the same sort? Obviously, finding the 
maximum of a smaller array. So we will plan to recur only with 
smaller arrays, and our base case will be the smallest array—that is, 
an array of only one element. 
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Here is one approach: Take a number from one end of the array; 
recursively find the maximum of the remaining array; compare 
the maximum to the one number taken, and the maximum is the 
larger of these. For a base case, the maximum of a single-element 
array is that element. 

While this approach is workable, it isn’t very interesting. Here’s an 
approach I like better: Divide the array (approximately) in half; 
recursively find the maximum of each half; return the larger of 
these two maxima as the grand maximum. Again, the base case is a 
one-element array, with that one element as the maximum. 

This logic translates easily into Python code. 

def maximum(numbers): 
"""Find the maximum value in list 'numbers'.""" 
if len(numbers) == 1: 

return numbers[0] 
mid = len(numbers) // 2 # integer division 
leftmax = maximum(numbers[0:mid]) 
rightmax = maximum(numbers[mid:len(numbers)]) 
if leftmax > rightmax: 

return leftmax 
else: 

return rightmax 

Note: Array slicing (the [mid:len] syntax) makes a 
copy of that part of the array, so the above function is 
much less efficient than it might appear.  

The same algorithm isn’t quite as easy in Java, which does not 
support passing in part of an array as an argument. Instead, we 
use a helper method that takes two additional arguments, the 
lower bound and the upper bound of an interval in the array. No 
copying is involved, so this will be much more efficient than 
the Python version. 
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public static int maximum(int[] numbers) { 
return maxHelper(numbers, 0, numbers.length - 1); 

} 

private static int maxHelper(int[] numbers, 
int lo, int hi) { 

if (lo == hi) return numbers[lo]; 
int mid = (lo + hi) / 2; 
int leftmax = maxHelper(numbers, lo, mid); 
int rightmax = maxHelper(numbers, mid + 1, hi); 
if (leftmax > rightmax) return leftmax; 
else return rightmax; 

} 

Do these programs satisfy the four rules?  

1. Do they handle the base case(s) first? Yes, if there is 
only one number in the array interval, that number is 
returned.  

2. Do they recur only with a simpler case? Yes, there are two 
recursions, each with either a smaller array or an array 
interval of size 1. 

3. Do they have side effects that interfere with the calling pro
gram? No, because every variable is local, and the numbers 
list or array is not changed. 

4. Do we need to “look down” into the recursion, or other
wise consider what is happening at some other level? No, 
we don’t. 

And we’re done. 

2.1.2 Quicksort 
Quicksort is one of the most widely used sorting algorithms, and 
it is inherently recursive. 
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Quicksort was invented by one of the programming greats, Tony 
Hoare. At the time he was unable to implement the algorithm in 
Autocode, which did not support recursion. When attending a 
course on Algol 60, one of the first programming languages 
(after Lisp) to support recursion, he was able to do so. 

The trickiest part of writing a quicksort algorithm is not the 
recursive part, but is instead a nonrecursive method, usually 
called partition, that it uses. 

The partition method takes three parameters: an array, a 
smallest index, and a largest index. Then, the partition method:  

1. chooses any number from within the given array interval 
(often the first number, because that’s easy), and uses this 
number as the pivot;  

2. rearranges the numbers in the array interval so that the 
numbers less than the pivot precede all the numbers 
larger than the pivot, and the pivot is in between the 
two groups (numbers equal to the pivot may be in either 
group); and  

3. returns the index at which the pivot value ended up. 

For example, given the array 

[5, 7, 1, 9, 8, 2, 3, 2, 9, 4, 5, 1, 3] 

the partition method might choose 5 as the pivot, produce the 
array 

[2, 3, 1, 1, 4, 2, 3, 5, 9, 8, 5, 9, 7] 

and return 7 as the index of the pivot. 
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In this example, all the numbers less than 5 are to the left of the 
pivot (the first 5), and all the numbers greater than 5 are to the 
right of the pivot. (Another 5 happened to end up to the right of 
the pivot.) Note that the array is not yet sorted, merely divided 
into numbers less than or equal to the pivot and numbers greater 
than or equal to the pivot. 

As mentioned, the code for partition tends to be difficult to 
program correctly. Since partition is not itself recursive, we 
will leave the actual code to Appendix A for Java and Appendix B 
for Python. 

Here is the code for quicksort, first in Python: 

def quicksort(array, left, right): 
if left < right: 

p = partition(array, left, right) 
quicksort(array, left, p - 1) 
quicksort(array, p + 1, right) 

then in Java: 

public static void quicksort(int[] array, 
int left, 
int right) { 

if (left < right) { 
int p = partition(array, left, right); 
quicksort(array, left, p - 1); 
quicksort(array, p + 1, right); 

} 
} 

Is this a correct recursion?  

• The base case is when left is greater than or equal to right. 
There is nothing more to do, and quicksort terminates. 
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• Each recursive call is with a smaller part of the array, so the 
difference right - left  decreases until it becomes zero or 
negative.  

• The methods are self-contained, using no global variables. 

• quicksort uses another method, partition. The pro
grammer must understand what this method does, but 
understanding how it works is irrelevant to understanding 
quicksort itself. 

Here’s a call to quicksort in Python: 

quicksort(array, 0, len(array) - 1) 

Here’s a call to quicksort in Java: 

Quicksort.quicksort(array, 0, array.length - 1); 

Finally, it should be noted that, while quicksort is extremely 
fast on average, it can be inefficient in some cases. Unfortunately, 
a worst case occurs when it is applied to an array that is already 
sorted. Many of the various modifications to quicksort are an 
attempt to deal with this problem. 

2.2 LISTS 
A list is either empty, or it has a head (a first element) and a tail 
(a list of all the remaining elements). This is a recursive defini
tion with the empty list serving as a base case. 

The elements of a list may be a value of any sort, including other 
lists. This allows for some fairly complex structures to be built. 

Every list must come to an end, and that occurs when the tail is 
the empty list. An empty list can be represented by the value 
null (in Java) or None (in Python). 
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There are only a very few basic operations on a list. They are as 
follows:  

• Test if the list is empty.  

• Get the head of a nonempty list.  

• Get the tail of a nonempty list.  

• Construct a new list with a given head and a given tail. 

2.2.1 Lists in Java 
Recursion is best demonstrated using singly linked lists, which 
Java does not provide. The practical programmer should use 
Java’s more complex lists, but for instructional purposes we will 
implement and use a simple singly linked list class. 

Here’s all the code needed for a basic implementation of a list 
type (in Java): 

public class List { 
public Object head; 
public List tail; 

public List(Object head, List tail) { 
this.head = head; 
this.tail = tail; 

} 
} 

The above code includes a constructor and provides direct access 
to the head and the tail. To test if a list is empty, test if it is 
equal to null. To test if something is a (nonempty) list, use 
Java’s instanceof operator. 

Almost all list algorithms follow the same mantra: Do some
thing with the head and recur with the tail, stopping when the 
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list is empty. This is a special case of the usual approach to re
cursion: An empty list is a base case, and the tail of a list is 
simpler than the entire list. 

One of the things we might want to do with lists is to test whether 
two lists are equal, that is, they have equal elements in the same 
order. Conceptually, this is very easy: Two lists are equal if their 
heads are equal and their tails are equal. As is frequently the case 
in Java, the need to check for null greatly complicates the code. 
The head of a list may be null because it contains an empty list as 
a member. The tail of a list will be null if the element is the last 
thing in the list. Any expression of the form x.equals(y) will be 
in error if x could possibly be null. 

It is surprisingly difficult to write a single equals method for 
lists, but pulling the null tests into a separate function (eq) 
results in readable code. 

@Override 
public boolean equals(Object obj) { 

if (! (obj instanceof List)) return false; 
List that = (List) obj; 
return eq(this.head, that.head) && 

eq(this.tail, that.tail);  
} 

Java requires that the parameter to equals be of type Object. 
Therefore, we must next check the type of the parameter obj, 
and return false if it isn’t a List. Then we can use a cast to save 
obj in variable that of type List. Once the bureaucracy is sa
tisfied, the actual work is done in the return statement. 

The helper function eq can be used to avoid nullPointer- 
Exceptions with any types of objects, using the equals method 
defined for obj1. 
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private static boolean eq(Object obj1, Object obj2) { 
if (obj1 == null) return obj2 == null; 
return obj1.equals(obj2); 

} 

Another important operation is to test whether a given value is a 
member of a list. The method eq can again be used as a helper 
method. 

public static boolean member(Object obj, List lst) { 
if (lst == null) return false; 
if (eq(obj, lst.head)) return true; 
return member(obj, lst.tail); 

} 

The member method tests whether a value is a top-level member 
of a list. If we want to know whether a value exists anywhere in a 
list, possibly in a sublist or sub-sublist, we need a slightly more 
complex method. 

public static boolean deepMember(Object obj, List lst) { 
if (lst == null) return false; 
if (eq(obj, lst.head)) return true; 
if (lst.head instanceof List && 

deepMember(obj, (List) lst.head)) return true; 
return deepMember(obj, lst.tail); 

} 

2.2.2 Lists in Python 
According to the usual definition, a singly linked list (or briefly, list) 
is a linear data structure that has a head (first element) and a tail (all 
the remaining elements, in some order). Access to these two values, 
the head and the tail, is very efficient; access to any other values 
involves stepping through the intervening values to get to them. 

Python has a data structure called a “list,” but it is actually a 
complex data structure that has features of both arrays and lists. 
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This is convenient for many applications, but using it as if it were a 
singly linked list would be inefficient, and therefore inadvisable. 

It is easy to write a List class in Python that has the usual 
characteristics of a singly linked list. Such a class could begin like 
this: 

class List: 
def __init__(self, head, tail=None): 

"""Construct a List.""" 
self.head = head 
self.tail = tail 

As a first example of using the List class, we will count the 
number of elements in a list, using the aforementioned mantra, 
“Do something with the head and recur with the tail.” In this 
case, what we do with the head is simply count it. 

def length(lst): 
"""Count the top-level elements in a List.""" 
if lst == None: 

return 0 
return 1 + length(lst.tail) 

In order to print a list, we will need a method to represent it as a 
string. Here is an implementation of the __str__ method, as it 
would occur inside the List class. 

def __str__(self): 
"""Return a string representation 

of this List.""" 
return '[' + self.contents() + ']' 

def contents(self): 
"""Return a string representation of 

the contents of this List.""" 
s = str(self.head) 
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if self.tail != None: 
s += ', ' + self.tail.contents() 

return s 

In this code, only the helper method contents is recursive; 
the __str__ method simply add brackets around the result. 

Additional list methods in Python (equality testing, member, 
deepMember) are provided in Appendix K. 

2.2.3 Accumulators 
It’s easy to copy a list recursively; simply make a new list with a 
copy of the head and a copy of the tail. 

def list_copy(lst): 
if lst == None: 

return None 
return List(lst.head, list_copy(lst.tail)) 

The above code makes a shallow copy, which is adequate for the 
purposes of this section. 

Now consider the problem of creating a new list containing the 
same elements as a given list, but in reverse order. One way to do 
this is to use an accumulator: an additional parameter that in
crementally builds, or accumulates, the final result. 

The user of the reverse method should not have to know about 
the accumulator, and certainly should not have to provide one 
in the correct form. Hence we provide a façade method that 
takes a single list parameter and calls another function to do the 
actual work. 

def reverse(self): 
return self.rev(self, None) 
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def rev(self, lst, acc=None): 
if lst == None: 

return acc 
return lst.rev(lst.tail, 

List(lst.head, acc)) 

Each call of rev plucks an item from the original list (lst.head), 
adds it to the list being accumulated (List(lst.head, acc)), 
and recurs with the shorter original list (lst.tail) and the 
list being accumulated. When all the elements of the original list 
have been processed (lst == None), the complete reversed list is 
in acc. 

This follows the conventional method for a recursive list method: 
Handle the base case (lst == None) first, then do something with 
the head and recur with the tail. The accumulator is simply an
other variable that goes along for the ride. 

The Java code is similar. Since Java allows methods to be over
loaded (multiple methods may have the same name if the 
parameter lists are different), we can use the same name for both 
the façade method and the main method. 

public List reverse() { 
return reverse(this, null); 

} 

private List reverse(List lst, List acc) { 
if (lst == null) return acc; 
return reverse(lst.tail, 

new List(lst.head, acc)); 
} 

2.3 BINARY TREES 
We will define a binary tree (Figure 2.1) as either empty or 
consisting of a root node (object) that contains three parts: 
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• A value, which could be anything,  

• A left child, which is a binary tree; and  

• A right child, which is a binary tree. 

Binary trees are defined recursively: A (non-empty) binary tree 
consists of a value and two other binary trees. The values in each 
node are the user data, while the (references to) other binary 
trees provide the structure. 

Note: Yes, this definition allows a binary tree to be empty 
(null or None). This lets us think of a node as always 
having two children, one or both of which may be empty, 
and this simplifies programming. In mathematics, an empty 
binary tree would be called a degenerate case.  

All nodes are reachable (by one or more steps) from the root 
node. In general, it is only possible to move “down” in the binary 
tree (from parent to child), not “up” (from child to parent). A 
node that has neither a left child nor a right child is called a leaf 
and is used as the base case in many applications. 

There are some other constraints that a binary tree must sa
tisfy. A binary tree is not allowed to contain cycles; that is, a 
node may not have one of its own ancestors as a child. In 
addition, some (but not all) implementations insist that each 
node except the root has exactly one parent; this prevents 

FIGURE 2.1 A binary tree.    
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having shared subtrees, in which there may be more than one 
path from the root to a given node. Other implementations 
may have other kinds of constraints. 

Checking these constraints is complicated. Library implementa
tions of binary trees must do all this work, but it isn’t needed here. 
In this book, we need only the simplest implementations to il
lustrate recursive techniques. 

Here’s a definition of a BinaryTree class in Java: 

public class BinaryTree { 
public Object value; 
BinaryTree left = null; 
BinaryTree right = null; 

BinaryTree(Object value, 
BinaryTree left, 
BinaryTree right) { 

this.value = value; 
this.left = left; 
this.right = right; 

} 

BinaryTree(Object value) { 
// shortcut for making a leaf 
this(value, null, null); 
} 

} 

As defined above, the “value” in each node is type String. To 
make a more general binary tree, it could be Object. Even 
better, this class could be genericized, so that the binary tree 
could contain values of only some designated type. Our goal 
here, however, is to keep things simple, and that means ignoring 
generics. 
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Here’s the equivalent code in Python. 

class BinaryTree(object): 
def __init__(self, value, left=None, right=None): 

self.value = value 
self.left = left 
self.right = right 

With these constructors, trees have to be built from the bottom up. 
To construct a node, its child nodes must already have been de
fined. The example tree given above can be constructed like this: 

In Java: 

static BinaryTree makeTree() { 
BinaryTree root, a, b, c, d, e, f, g, h, i, j; 
g = new BinaryTree("G"); 
h = new BinaryTree("H"); 
i = new BinaryTree("I"); 
j = new BinaryTree("J"); 
c = new BinaryTree("C");  
d = new BinaryTree("D", g, null); 
e = new BinaryTree("E", h, i); 
f = new BinaryTree("F", null, j); 
a = new BinaryTree("A", c, d); 
b = new BinaryTree("B", e, f); 
return new BinaryTree("Root", a, b); 

} 

And in Python: 

def make_tree(): 
g = BinaryTree('G') 
h = BinaryTree('H') 
i = BinaryTree('I') 
j = BinaryTree('J')    
c = BinaryTree('C') 
d = BinaryTree('D', g, None) 
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e = BinaryTree('E', h, i) 
f = BinaryTree('F', None, j) 
a = BinaryTree('A', c, d) 
b = BinaryTree('B', e, f) 
return BinaryTree('Root', a, b) 

Binary trees will be used in a later section. Meanwhile, let’s ex
amine some recursive routines for manipulating binary trees. 

2.3.1 Printing Binary Trees 
Suppose we want to print a binary tree. Neither Java nor Python 
can print our binary trees in a useful fashion without some as
sistance. In Java, we will need to override the toString method; 
in Python we need to supply a __str__ method. 

One reasonable way to print a binary tree is this:  

• If a node has children, print its value; then, in parentheses, 
print its left subtree and its right subtree. Print "null" or 
"None" for a missing subtree.  

• If a node is a leaf, just print its value. 

With this approach, the example binary tree would print as 

Root(A(C, D(G, null)), B(E(H, I), F(null, J))) 

in Java, and 

Root(A(C, D(G, None)), B(E(H, I), F(None, J))) 

in Python. In both cases, the code is very simple. In Java, 

@Override 
public String toString() { 

if (left == null && right == null) { 
return value.toString(); 
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} 
return value + "(" + left + ", " + right + ")"; 

} 

and in Python, 

def __str__(self): 
if (self.left == None and 

self.right == None): 
return str(self.value) 

return (str(self.value) + "(" + 
str(self.left) + ", " + 
str(self.right) + ")") 

Are there base cases? Yes, whenever we reach a leaf, we don’t recur. 

Is each recursion simpler, that is, nearer a base case? Yes, each 
recursive call is with a child of the current node, so each re
cursive call is closer to the leaves. There is a caveat, however. A 
well-formed binary tree has no cycles; no node has a child that is 
also one of its ancestors. If this condition is violated, an infinite 
recursion will result. 

Are globals used? No, each method is self-contained. 

We can conclude from this that the recursive logic is correct. 
That does not, of course, guarantee that the implementation will 
be free of bugs; testing is still required. 

2.3.2 Counting Nodes 
As another quick example, we wish to count the nodes in a binary 
tree. 

Any node in a binary tree may be regarded as the root of a binary 
tree. From any node, its parent (if it has one) is not accessible. 
Therefore we can think of any node in a binary tree as being a 
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root node with two subtrees, a left subtree and a right subtree. 
The number of nodes in a binary tree is therefore 1 (the root 
node), plus the number of nodes in its left subtree, plus the 
number of nodes in its right subtree. 

A first cut at the node-counting method is therefore (in Python): 

def count_nodes(bt): 
return (1 

+ count_nodes(bt.left) 
+ count_nodes(bt.right) 

This isn’t quite right. It does work its way “down” the binary tree 
toward the leaves, but what happens once it gets there? There is 
no base case. 

We can make this complicated. We can say: If a node has no 
right child and no left child, then it’s a leaf, so count it as 1 and 
don’t recur. If it has only a left child, then add 1 to the result and 
recur on the left child. If it has only a right child, then add 1 to 
the result and recur on the right child. This would work. 

There is a much simpler approach. By our definition, a binary 
tree could be empty, so we can always recur on both the left child 
and the right child. If the recursive call is with None (an empty 
tree), that tree clearly contains no nodes, and 0 should be the 
value returned by the recursion. 

Base cases, you will remember, go first. 

def count_nodes(bt): 
if bt == None: 

return 0 
return (1 

+ count_nodes(bt.left) 
+ count_nodes(bt.right)) 

52 ▪ Quick Recursion 



The logic is identical for Java. 

static int countNodes(BinaryTree bt) { 
if (bt == null) return 0; 
return (1  

+ countNodes(bt.left) 
+ countNodes(bt.right)); 

} 

So the base case is an empty node, the recursive case is always with a 
smaller subtree, and there are no global variables to cause confusion. 

2.4 TREES 
Whereas a binary tree consists of a root node containing a value 
and up to two children, a (general) tree consists of a root node 
containing a value and any number of children. 

A BinaryTree class definition starts out like this: 

public class BinaryTree { 
public Object value; 
BinaryTree leftChild = null; 
BinaryTree rightChild = null; 
… 

} 

In contrast, the definition of a Tree class starts out like this: 

public class Tree { 
public Object value; 
private ArrayList children; 

or with generics, 

public class Tree<V> { 
public V value; 
private ArrayList<Tree<V>> children; 
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The code is similar in Python. 

class Tree: 
def __init__(self, value): 

self.value = value 
self.children = [] 

A Java implementation of a Tree class is provided in Appendix L. 

2.4.1 Parse Trees 
Every time a program is compiled, in virtually any language, the 
compiler creates a parse tree. This is a tree that represents the 
structure of a program. For example, the small code fragment 

if a > b: 
temp = a 
a = b 
b = temp 

is turned into a tree somewhat like the one in Figure 2.2. 

This parse tree can then be translated into another language 
(perhaps assembler), or it could be interpreted directly. 

FIGURE 2.2 A parse tree.    
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Here is some pseudocode to suggest how that might be done. 

function interpret(node): 
if node type is "if": 

if (interpret first child): 
interpret second child 

else: 
interpret third child (if present) 

else if node type is [something else] 
[do something else] 

2.4.2 Indirect Recursion 
A recursive method is simply another kind of method. There is 
nothing unusual about one recursive method calling another. 

Earlier we defined a Python method __str__ which is auto
matically called whenever a List object is to be printed or other
wise converted to a string. Now we can do the same for trees. 

def __str__(self): 
s = str(self.value) 
if self.children != None: 

s += str(self.children) 
return s 

This method is not obviously recursive. Given a Tree, it will 
return a string representation of the value in the root node and, 
if the root node has children, a string representation of the list 
of children. However, those children will themselves be Trees. 
When each child is converted to a string, it will be done by using 
the __str__ method in the Tree class. 

In other words, getting a string representation of a Tree involves 
calling a method to get a string representation of a list, which 
involves calling the method to get string representations of Trees. 
This is an example of indirect recursion. 
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Does the above method terminate? Although it isn’t placed first 
in the method, the above Tree method does have a base case 
when self.children == None. Each call works its way down the 
tree, so the base case will eventually be reached on every branch. 
If we can assume that stepping through a list terminates, then the 
procedure as a whole will terminate.  
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C H A P T E R 3 

Backtracking  

B ACKTRACKING IS A FORM of recursion. 

The usual scenario is that you are faced with a number of options, 
and you must choose one of these. After you make your choice you 
will get a new set of options; just what set of options you get de
pends on what choice you made. This procedure is repeated over 
and over until you reach a final state. If you made a good sequence 
of choices, your final state is a goal state; if you didn’t, it isn’t. 

Conceptually, you start at the root of a tree; the tree probably has 
some good leaves and some bad leaves, though it may be that the 
leaves are all good or all bad. You want to get to a good leaf. At 
each node, beginning with the root, you choose one of its chil
dren to move to, and you keep this up until you get to a leaf. 

Suppose you get to a bad leaf. You can backtrack to continue the 
search for a good leaf by revoking your most recent choice and 
trying out the next option in that set of options. If you run out of 
options, revoke the choice that got you here, and try another 
choice at that node. If you end up at the root with no options 
left, there are no good leaves to be found. 
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The following shows how backtracking might proceed on the 
tree in Figure 3.1:  

1. Starting at Root, your options are A and B. You choose A.  

2. At A, your options are C and D. You choose C.  

3. C is bad. Go back to A.  

4. At A, you have already tried C, and it failed. Try D.  

5. D is bad. Go back to A.  

6. At A, you have no options left to try. Go back to Root.  

7. At Root, you have already tried A. Try B.  

8. At B, your options are E and F. Try E.  

9. E is good. Congratulations! 

In this example we drew a picture of a tree. The tree is an abstract 
model of the possible sequences of choices we could make. There is 
also a data structure called a tree, but sometimes we don’t have a data 
structure to tell us what choices we have. (If we do have an actual tree 
data structure, backtracking on it is called depth-first tree searching.) 

3.1 THE BACKTRACKING ALGORITHM 
Here is the algorithm (in pseudocode) for doing backtracking, 
starting from a given node n: 

FIGURE 3.1 A tree with one good leaf.    
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function solvable(n): 
if n is a leaf node: 

if n is a goal node, return true 
else return false 

else: 
for each child c of n: 

if solvable(c), return true 
return false 

Notice that the algorithm is expressed as a boolean function. 
This is essential to understanding the algorithm. If solvable(n) 
is true, that means node n is part of a solution—that is, node n is 
one of the nodes on a path from the root to some goal node. We 
say that n is solvable. If solvable(n) is false, then there is no 
path that includes n to any goal node. 

How does this work?  

• If any child of n is solvable, then n is solvable.  

• If no child of n is solvable, then n is not solvable. 

Hence, to decide whether any non-leaf node n is solvable (part of 
a path to a goal node), all you have to do is test whether any child 
of n is solvable. This is done recursively, on each child of n. In 
the above code, this is done by the lines 

for each child c of n: 
if solvable(c), return true 

return false 

Eventually, the recursion will “bottom out” at a leaf node. If the 
leaf node is a goal node, it is solvable; if the leaf node is not a goal 
node, it is not solvable. This is our base case. In the above code, 
this is done by the lines 
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if n is a leaf node:  
if n is a goal node, return true 
else return false 

The backtracking algorithm is simple and important. You should 
understand it thoroughly. Another way of stating it is as follows: 

To search a tree:  

1. If the tree consists of a single leaf, test whether it is a goal 
node, and return the result;  

2. Otherwise, search the subtrees of this tree until you find 
one containing a goal node, or until you have searched 
them all without finding a goal node. 

In the above, we have assumed that any goal node would be a 
leaf. The algorithm can easily be adapted to the case where goal 
nodes may occur within the tree, not just at the leaves. 

3.2 NONRECURSIVE BACKTRACKING 
Backtracking is a rather typical recursive algorithm, and any 
recursive algorithm can be rewritten as a stack algorithm. In fact, 
that is how your recursive algorithms are translated into ma
chine or assembly language. 

boolean solve(Node n): 
put node n on the stack 
while the stack is not empty: 

topnode = the node at the top of the stack 
if topnode is a leaf: 

if it is a goal node, return true 
else pop it off the stack 

else: 
if topnode has untried children: 

push the next untried child onto the stack 
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else pop the node off the stack 
return false 

Starting from the root, the only nodes that can be pushed onto the 
stack are the children of the node currently on the top of the stack, 
and these are only pushed on one child at a time; hence, the nodes 
on the stack always describe a valid path in the tree. Nodes are 
removed from the stack only when it is known that they have no 
goal nodes among their descendants. Therefore, if the root node 
gets removed (making the stack empty), there must have been no 
goal nodes at all, and no solution to the problem. 

When the stack algorithm terminates successfully, the nodes on 
the stack form (in reverse order) a path from the root to a goal 
node. 

Similarly, when the recursive algorithm finds a goal node, the 
path information is embodied (in reverse order) in the sequence 
of recursive calls. Thus as the recursion unwinds, the path can 
be recovered one node at a time, by (for instance) printing the 
node at the current level, or storing it in an array. 

Here is the recursive backtracking algorithm, modified slightly to 
print (in reverse order) the nodes along the successful path: 

boolean solve(Node n) { 
if n is a leaf node { 

if the leaf is a goal node { 
print n 
return true 

} 
else return false 

} else { 
for each child c of n { 

if solve(c) succeeds { 
print n 
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return true 
} 

} 
return false 

} 
} 

3.3 KEEPING BACKTRACKING SIMPLE 
All of these versions of the backtracking algorithm are pretty 
simple, but when applied to a real problem, they can get pretty 
cluttered up with details. Even determining whether the node is a 
leaf can be complex: for example, if the path represents a series 
of moves in a chess endgame problem, the leaves are the 
checkmate and stalemate solutions. 

To keep the program clean, therefore, tests like this should be 
encapsulated in methods. In a chess game, for example, you could 
test whether a node is a leaf by writing a gameOver method (or you 
could even call it isLeaf). This method would encapsulate all the 
ugly details of figuring out whether any possible moves remain. 

Notice that the backtracking algorithms require us to keep track, 
for each node on the current path, which of its children have 
been tried already (so we don’t have to try them again). In the 
above code, we made this look simple, by just saying for each 
child c of n. In reality, it may be difficult to figure out what the 
possible children are, and there may be no obvious way to step 
through them. In chess, for example, a node can represent one 
arrangement of pieces on a chessboard, and each child of that 
node can represent the arrangement after some piece has made a 
legal move. How do you find these children, and how do you 
keep track of which ones you’ve already examined? 

The most straightforward way to keep track of which children of 
the node have been tried is as follows: Upon initial entry to the 
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node (that is, when you first get there from above), make a list of 
all its children. As you try each child, take it off the list. When 
the list is empty, there are no remaining untried children, and 
you can return “failure.” This is a simple approach, but it may 
require quite a lot of additional work. 

There is an easier way to keep track of which children have been 
tried, if you can define an ordering on the children. If there is an 
ordering, and you know which child you just tried, you can 
determine which child to try next. 

For example, you might be able to number the children 1 through 
n, and try them in numerical order. Then, if you have just tried 
child k, you know that you have already tried children 1 through 
k - 1, and you have not yet tried children k + 1 through n. Or, if 
you are trying to color a map with just four colors, you can always 
try red first, then yellow, then green, then blue. If child yellow fails, 
you know to try child green next. If you are searching a maze, you 
can try choices in the order left, straight, and right (or perhaps 
north, east, south, west). 

It isn’t always easy to find a simple way to order the children of a 
node. In the chess game example, you might number your pieces 
(or perhaps the squares of the board) and try them in numerical 
order; but in addition, each piece may also have several moves, 
and these must also be ordered. 

You can probably find some way to order the children of a node. 
If the ordering scheme is simple enough, you should use it; but if 
it is too cumbersome, you are better off keeping a list of untried 
children. 

3.4 PRUNING AND FOUR COLORING 
One of the things that simplifies a binary tree search is that, at 
each choice point, you can ignore all the previous choices. 
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Previous choices don’t give you any information about what you 
should do next; as far as you know, both the left and the right 
child are equally likely to be solutions. In many problems, 
however, you may be able to eliminate children immediately, 
without recursion. This is called pruning. 

Consider, for example, the problem of four-coloring a map. It is a 
theorem of mathematics that any map on a plane, no matter how 
convoluted the countries are (so long as they are not in separate, 
unconnected pieces), can be colored with at most four colors, so 
that no two countries that share a border are the same color. 

Here is one way that we can represent the map shown in  
Figure 3.2 in Java: 

void createMap() { 
map = new int[13][]; 
map[0] = new int[] { 1, 2, 3, 9, 12 }; 
map[1] = new int[] { 0, 2, 5 }; 

FIGURE 3.2 A map to color with four colors.    

64 ▪ Quick Recursion 



map[2] = new int[] { 0, 1, 3, 4, 5 }; 
map[3] = new int[] { 0, 2, 4, 6, 8, 9  }; 
map[4] = new int[] { 2, 3, 5, 6, 7, 8 }; 
map[5] = new int[] { 1, 2, 4, 8, 11 }; 
map[6] = new int[] { 3, 4, 7, 8 }; 
map[7] = new int[] { 4, 6, 8 }; 
map[8] = new int[] { 3, 4, 5, 6, 7, 9, 10, 11 }; 
map[9] = new int[] { 0, 3, 8, 10, 12 }; 
map[10] = new int[] { 8, 9, 11, 12 }; 
map[11] = new int[] { 5, 8, 10, 12}; 
map[12] = new int[] { 0, 9, 10, 11 }; 

} 

This problem can be viewed as a decision tree. Starting with a 
completely uncolored map (the root of the decision tree), we 
have a choice of four different colors for the root node. Having 
picked a color for the root node, we now have a choice of four 
colors for the next node (one of its children). And so on. 

To color a map, first choose a color for the first country, then a 
color for the second country, and so on, until all countries are 
colored. Here are two ways to do this: 

Method 1. For each country, recur with each possible 
color, and continue until there are no more countries. 
When all countries have been colored, check whether we 
are at a goal node (the map is correctly colored), and if 
not, backtrack. 

Method 2. For each country, try only those colors that have 
not already been used for an adjacent country, and recur. 
Backtrack if no color can be used. If and when we run out 
of countries, we have successfully colored the map.  

In this section, we use Java to describe a backtracking algorithm 
that solves the map coloring problem. The complete code for 
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Java can be found in Appendix I, and the equivalent code for 
Python in Appendix J. 

The colors are represented by integers, from RED=1 to BLUE=4, 
while 0 indicates that a country has not yet been colored. We 
define the following helper methods. The helper method code 
isn’t displayed here because it’s not important for understanding 
how the backtracking works.  

• boolean goodColoring()  

• Used by method 1 to test (at a leaf node) whether the 
entire map is colored correctly.  

• boolean okToColor(int country, int color)  

• Used by method 2 to check, at every node, whether there 
is an adjacent node already colored with the given color. 

Method 1 does not do any pruning, but tries each possible col
oring until it finds one that works: 

boolean explore1(int country, Color color) { 
if (country >= map.length) 

return goodColoring(); 
mapColors[country] = color; 
for (Color c : Color.values()) { 

if (explore1(country + 1, c)) { 
return true; 

} 
} 
mapColors[country] = Color.NONE; 
return false; 

} 

Method 2 prunes by eliminating a color for a country if some 
adjacent country already has that color: 
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boolean explore2(int country, Color color) { 
if (country >= map.length) 

return true; 
if (okToColor(country, color)) { 

mapColors[country] = color; 
for (Color i : Color.values()) { 

if (explore2(country + 1, i)) 
return true; 

} 
} 
return false; 

} 

The two methods seem pretty similar. You might expect the 
method that does pruning to be faster, and you would be correct. 
You might, however, be surprised at just how much faster it is. 
Here is a typical timing result: 

Method 1: 2355638070 ns. 

Method 2: 20516 ns.  

In other words, method 1 takes about 115 thousand times longer on 
this particular problem. The difference is that the second method 
stops searching as soon as it detects that, with the choices made so 
far, no solution is possible. When coloring a country, if an adjacent 
country already has that color, it does not explore further. 

Because Python is a dynamic language, it is inherently slower 
than Java. Here are the results of a run in Python: 

Method 1: 575.22 seconds (almost 10 minutes) 

Method 2: 0.0574 seconds  
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In this trial, method 1 is almost exactly one hundred thousand 
times slower, very comparable to the results in Java. 

The point is not that Python is slower than Java; today’s com
puters are fast enough that the difference matters only in a 
few kinds of resource-intensive programs. Rather, the point is 
that the expense of backtracking is exponential on the size of 
the problem. To deal with anything other than toy problems, 
pruning is not a luxury, but a necessity. 

3.5 BINARY TREE SEARCH I 
For starters, let’s do the simplest possible example of back
tracking, which is searching an actual tree. We will also use the 
simplest kind of tree, a binary tree. 

Reminder: A binary tree is a data structure composed of 
nodes. One node is designated as the root node. Each 
node has a value, a left child, and a right child, where 
each child could be “empty” (null or None). A node 
with only empty children is called a leaf.  

For our purposes, we will say that the value in a node will be its 
name, and in addition the node will contain a boolean value to 
tell whether it is a goal node. The first example in this chapter 
(which we repeat here) shows a binary tree (Figure 3.3). 

FIGURE 3.3 A tree with one good leaf.    
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Here’s a definition of a BinaryTree class in Java (slightly 
modified from the version given earlier): 

public class BinaryTree { 
String name; 
BinaryTree leftChild = null; 
BinaryTree rightChild = null; 
boolean isGoalNode = false; 

BinaryTree(String name, 
BinaryTree left, 
BinaryTree right, 
boolean isGoalNode) { 

this.name = name; 
leftChild = left; 
rightChild = right; 
this.isGoalNode = isGoalNode; 

} 
} 

As defined above, the “value” in each node is its name, of type 
String. To make a more special-purpose binary tree, this class 
should be genericized, so that the binary tree could contain va
lues of any type. Our goal here, however, is to keep things 
simple, and that means ignoring generics. 

Another unusual thing about the above code is that every node in a 
binary tree is marked as to whether it is a goal node. In an actual 
program, this would involve computation (Are there three Xs in a 
row? Is the opponent’s king in check?). Again, the goal is simplicity. 

Here’s the equivalent code in Python. 

class BinaryTree(object): 

def __init__(self, name, left_child, 
right_child, is_goal_node): 
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self.name = name 
self.left_child = left_child 
self.right_child = right_child 
self.is_goal_node = is_goal_node 

Next we will create a TreeSearch class, and in it we will define 
a method makeTree()  which constructs the above binary tree. 
In Java: 

static BinaryTree makeTree() { 
BinaryTree root, a, b, c, d, e, f; 
c = new BinaryTree("C", null, null, false); 
d = new BinaryTree("D", null, null, false); 
e = new BinaryTree("E", null, null, true); 
f = new BinaryTree("F", null, null, false); 
a = new BinaryTree("A", c, d, false); 
b = new BinaryTree("B", e, f, false); 
root = new BinaryTree("Root", a, b, false); 
return root; 

} 

And in Python: 

def make_tree(): 
c = BinaryTree('C', None, None, False) 
d = BinaryTree('D', None, None, False) 
e = BinaryTree('E', None, None, True) 
f = BinaryTree('F', None, None, False) 
a = BinaryTree('A', c, d, False) 
b = BinaryTree('B', e, f, False) 
root = BinaryTree('Root', a, b, False) 
return root 

Notice the order in which the tree nodes were constructed. Our 
constructor requires values for the left subtree and the right 
subtree, so either we have to construct those first, or we have to 
go back later and fill them in. In other words, we have to work 
from the leaves up to the root. 
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Here’s a main method in Java to create a binary tree and try to 
solve it: 

public static void main(String args[]) { 
BinaryTree tree = makeTree(); 
System.out.println(solvable(tree)); 

} 

And Python: 

def main(): 
tree = make_tree() 
print(solvable(tree)) 

And finally, here is the recursive backtracking routine (in pseu
docode) to “solve” the binary tree by finding a goal node. This 
code only determines whether there is a goal node; it does not 
report how to get to it from the root. 

function solvable(binaryTree): 
1. if node is null/None, return false 
2. if node is a goal node return true 
3. if solvable(node.leftChild), return true 
4. if solvable(node.rightChild), return true 
5. return false 

} 

Here’s what the numbered lines are doing:  

1. A null node is not solvable. This statement is so that we can 
call this method with the children of a node, without first 
checking whether those children actually exist.  

2. If the node we are given is a goal node, return success.  

3. See if the left child of node is solvable, and if so, conclude 
that node is solvable. We will only get to this line if node is 
non-null and is not a goal node. 
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4. See if the right child of node is solvable, and if so, conclude 
that node is solvable. We will only get to this line if node is 
neither null nor a goal node, and if the left child of node 
is not solvable.  

5. If we get here, neither child of node is solvable, so node 
itself is not solvable. 

This program runs correctly and, when used with the above ex
ample tree, returns true as the result. 

3.6 BINARY TREE SEARCH II 
There is a problem with the code that we have developed so far. 
Our solvable method returns a boolean result: true if there is a 
solution, false if there is not. We might want to know more 
than that. We might want to know how to get to a solution; that 
is, what path do we follow to get to a goal state? 

If we are doing things recursively, the solution is to accumulate 
the results in a list. When a goal node is found, create a list and 
put that node in it. Then, as the recursion “unwinds,” put each 
node in turn into the list. 

Java has lists, of course, but they are complex and use non
standard terminology. For our purposes we will instead use the 
List class defined in Section 2.2.1. Python’s lists are much 
simpler, so we will use those directly. 

Again, we use strings as the values in the list (the head), and this 
could be generalized. For simplicity, head and tail are publicly 
available variables, not methods. 

Now, instead of a solvable method that only returns true or 
false, we can write a solve method that returns a path from the 
root node to the goal. Here it is in Java: 
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/** 
* Find goal node and report path. 
*/ 
static List solve(BinaryTree node) { 

List temp; 
if (node == null) { 

return null; 
} 
if (node.isGoalNode) { 

return new List(node.name, null); 
} 
temp = solve(node.leftChild); 
if (temp != null) { 

return new List(node.name, temp); 
} 
temp = solve(node.rightChild); 
if (temp != null) { 

return new List(node.name, temp); 
} 
return null; 

} 

And in Python: 

def solve(node): 
"""Find goal node and report path.""" 
if node == None: 

return None 

if node.is_goal_node: 
return [node.name] 

temp = solve(node.left_child) 
if temp != None: 

return [node.name] + temp 

temp = solve(node.right_child) 
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if temp != None: 
return [node.name] + temp 

return None 

Now, if we call solve with the BinaryTree that we have been 
using as an example, it produces a list as a result. If we print the 
list, we get … well, Python prints something useful, but in Java, 
we get something like List@6d06d69c. If we want to actually see 
the results, we need to add a toString method to our List class. 
We might as well do that recursively. 

We begin with some pseudocode: 

function toString(list): 
if the tail is null, return the head 
else return head + toString(the tail) 

This recursive method takes a list as a parameter. Unfortunately, 
the toString method, in order to properly override the version 
inherited from Object, cannot have parameters. For this reason, 
we move the recursion into a helper method, contents, and 
have toString call contents. 

@Override 
public String toString() { 

String s = ("[ "); 
s += contents(this); 
return s + ("]"); 

} 

private String contents(List list) { 
if (list.tail == null) { 

return list.head + " "; 
} else { 

return list.head + " " + contents(list.tail); 
} 

} 
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With this addition, the resultant list prints as [ Root B E ]. 

If the above code looks familiar, it is because we have previously 
written the equivalent function in Python. 

Complete code for binary tree searching is given in Appendix C 
for Java and in Appendix D for Python. 

3.7 TREE AND GRAPH SEARCHES 
A node in a binary tree may have a left child, a right child, or 
neither or both of these. A node in a (general) tree, on the other 
hand, may have any number of children. 

To search a (finite) binary tree for a goal node, the algorithm is 
really quite simple. 

To search from a node: 
if the node doesn't exist, return false. 
if the node is a goal node, return success. 
if searching from the left child succeeds, 

return success. 
if searching from the right child succeeds, 

return success. 
return failure. 

The algorithm for searching a general tree is practically the same, 

To search from a node: 
if the node is a goal node, 

return success. 
for each child of the node: 

if searching from that child succeeds, 
return success. 

return failure. 

Binary trees and general trees do not contain cycles. That is, by 
going “down” into a tree, following links to children, you will never 
find yourself back at the same node you started from. 
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Graphs may contain cycles. By going from one node to the next, 
you might find yourself back where you started. Graphs are 
not hierarchically organized and do not have one distinguished 
root node, so instead of referring to the children of a node, we 
talk about its neighbors—the other nodes you can get to from 
this node. 

Searching a graph is like searching a tree, except that we want to 
avoid getting stuck in a cycle, visiting the same nodes over and 
over again. In principle, this is simple—any time we visit a node 
we’ve been to before, call that a failure. After all, we didn’t find 
anything the last time we were here, so we won’t this time, either. 

To search from a node: 
if the node is a goal node, 

return success. 
if we've been at this node before, 

return failure. 
for each neighbor of the node: 

if searching from that neighbor succeeds, 
return success. 

return failure. 

There are two basic ways to tell if we’ve been at a node before.  

1. When we get to the node, look for a mark. If there is one, we 
know we’ve been there before, so we don’t need to search from 
there again. Otherwise, mark it and continue the search.  

• A marking algorithm both looks at values in the graph and 
changes them. This is contrary to our general advice not 
to do both in a recursion. However, in this case, we don’t 
have to consider other levels of the recursion—either we’ve 
been to this node before, or we haven’t.  

2. Keep a set of all the nodes we’ve been to, and look to see if 
this node is in that set. If not, add it to the set. 
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As an example, suppose you want to get from Smallville to 
Metropolis. You have a map on which the cities are nodes, and 
two cities are neighbors if there is a highway from one to the 
other, with no intervening cities. A simple graph search will 
(eventually) find a path from one to the other. 

This example suggests a number of ways in which the search 
might be improved. We might have distances marked on each 
highway between two cities, and we would prefer to minimize 
distances. We might know that Metropolis is east of Smallville, 
so we would prefer to go in that direction. Some roads might 
be toll roads, which we can take if there isn’t a better alternative. 
Some roads might be one-way. And so on. 

Most libraries provide list, binary tree, and tree objects, but not 
graph objects. Because of the high variability in types and uses of 
graphs, there is not a “best” way to represent a graph, nor is there 
a best way to search a graph. Implementation of graph structures 
is usually left up to the individual programmer. 

3.8 DEBUGGING TECHNIQUES 
Often our first try at a program doesn’t work, and we need to 
debug it. 

We have emphasized that one should not “look down” into a re
cursion when trying to write or understand a recursive routine. 
Debuggers are sometimes helpful, but using one to debug a recursive 
routine strongly encourages just this approach, because you can only 
see the state of the program from moment to moment. Using print 
statements can be much more helpful for this kind of debugging; they 
allow you to see the overall structure, and to match calls with results. 

There are some simple tricks to making effective use of print 
statements. These tricks can be applied to any program, but are 
especially useful when you are trying to debug recursive routines. 
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Trick #1: Indent when you print method entries and exits. 
Often, the best debugging technique is to print every 
method call and return (or at least the most important 
ones). You probably want to print, for each method, what 
parameters it came in with, and what value it leaves with. 
However, if you just print a long list of these, it’s hard to 
match up method exits with their corresponding entries. 
Indentation that shows the level of nesting can help.  

Indenting requires keeping track of the current level of indenta
tion. This can be done with an additional parameter, or with the 
use of a global variable. The use of global variables is strongly 
discouraged in general, but if a global variable is used only for 
this one purpose, it should not affect the proper functioning of 
the code. 

Trick #2: Use specialized print methods for debugging. 
Don’t clutter up your actual code more than you must. 
Also, remember that code inserted for debugging pur
poses can itself contain bugs, or (in the worst case) can 
affect the results, so be very careful with it.  

When debugging, it is useful to see what arguments each func
tion is called with, and what value it returns. This is some of the 
same information provided by a debugger, but printed, so it can 
be seen all at once. For tracing the binary tree search, we will use 
the following methods:  

• void enter(BinaryTree node)—Prints the name of the 
function being entered and the value of its parameter, then 
increases the indentation level. A call to this method will be 
the first line of each function we want to trace.  

• boolean yes()—Reduces the indentation level, prints an 
exit message, and returns true. We will replace each re
turn true with return yes(). 
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• boolean no()—Reduces the indentation level, prints an 
exit message, and returns false. We will replace each 
return false with return no().  

• String name(BinaryTree node)—A helper method to 
return the name of the node, or null if given a null node. 

As written, these debugging methods are specific to the tree search 
problem; more general versions are given in Appendix E for Java 
and Appendix F for Python. 

Here is an implementation of the methods in Java. 

static String indent = ""; 

static String name(BinaryTree node) { 
if (node == null) return null; 
else return node.name; 

} 

static void enter(BinaryTree node) { 
System.out.println(indent + "Entering solvable(" + 

name(node) + ")"); 
indent = indent + "|  "; 

} 

static boolean yes(BinaryTree node) { 
indent = indent.substring(3); 
System.out.println(indent + "solvable(" + 

name(node) + ") returns true"); 
return true; 

} 

static boolean no(BinaryTree node) { 
indent = indent.substring(3); 
System.out.println(indent + "solvable(" + 

name(node) + ") returns false"); 
return false; 

} 
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To use this code, we modify solvable. Here is the original version: 

static boolean solvable(BinaryTree node) { 
if (node == null) return false; 
if (node.isGoalNode) return true; 
if (solvable(node.leftChild)) return true; 
if (solvable(node.rightChild)) return true; 
return false; 

} 

Here is the modified version: 

static boolean solvable(BinaryTree node) { 
enter(node); 
if (node == null) return no(node); 
if (node.isGoalNode) return yes(node); 
if (solvable(node.leftChild)) return yes(node); 
if (solvable(node.rightChild)) return yes(node); 
return no(node); 

} 

And here is the result: 

Entering solvable(Root) 
| Entering solvable(A) 
| | Entering solvable(C) 
| | | Entering solvable(null) 
| | | solvable(null) returns false 
| | | Entering solvable(null) 
| | | solvable(null) returns false 
| | solvable(C) returns false 
| | Entering solvable(D) 
| | | Entering solvable(null) 
| | | solvable(null) returns false 
| | | Entering solvable(null) 
| | | solvable(null) returns false 
| | solvable(D) returns false 
| solvable(A) returns false 
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| Entering solvable(B) 
| | Entering solvable(E) 
| | solvable(E) returns true 
| solvable(B) returns true 
solvable(Root) returns true 

Trick #3: Never discard your debugging statements. 
Writing debugging statements is programming, too. Often 
it’s as much work to debug the debugging statements as it is 
to debug the actual program. Once your program is 
working, why throw this code away?  

Obviously, you don’t want to print out all this debugging in
formation from a program you are ready to submit (or to turn 
over to your manager). You could comment out the debugging 
calls, but that can be a lot of work. What’s more, in the above 
example, you would have to replace every return yes(node) with 
return true, and every return no(node) with return false. All 
these changes might introduce new bugs into your program. 

The simple solution is to make your debugging statements con
ditional. For example, 

static final boolean debugging = false; 

static void enter(BinaryTree node) { 
if (debugging) { 

System.out.println(indent + 
"Entering solvable(" + 

name(node) + 
")"); 

indent = indent + "|  "; 
} 

} 

static boolean yes(BinaryTree node) { 
if (debugging) { 
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indent = indent.substring(3); 
System.out.println(indent + 

"solvable(" + 
name(node) + 
") returns true"); 

} 
return true; 

} 

static boolean no(BinaryTree node) { 
if (debugging) { 

indent = indent.substring(3); 
System.out.println(indent + 

"solvable(" + 
name(node) + 
") returns false"); 

} 
return false; 

} 

In industry, actual programs often have multiple flags to control 
different aspects of debugging. Don’t worry too much about 
making your code larger; modern compilers will notice that since 
the variable debugging is final, it can never be true, and the 
debugging code will be discarded. 

Trick #4: To find out how you got to a particular place in 
the code, create an Exception and print its stack trace.  

Since an Exception is an object like any other, you can create 
and throw your own exceptions. However, Java programmers 
don’t always realize that you can create an Exception without 
throwing it. Instead, you can simply use it to print out a stack 
trace. For example, the following code 

new Exception("Alpha").printStackTrace(System.out); 
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will print out a message something like this, and the program 
will then continue normally. That is, the above code just acts like 
a print statement. 

java.lang.Exception: Alpha 
at TreeSearch.solvable(TreeSearch.java:53) 
at TreeSearch.solvable(TreeSearch.java:57) 
at TreeSearch.main(TreeSearch.java:72) 
etc. 

A similar trick works in Python. 

import traceback 
traceback.print_stack() 

3.9 THE FROG PUZZLE 
The following puzzle is sometimes called the “frog puzzle.” You 
have some number n of frogs facing right and the same number 
of toads facing left. The playing board consists simply of a line of 
2n + 1 spaces on which to put the frogs and toads. Start with the 
right-facing frogs on the left end, the left-facing toads at the right 
end, and a single free space in between. The goal is to reverse the 
positions of the frogs and toads (Figure 3.4A and 3.4B) 

FIGURE 3.4A Starting position of the frog puzzle.    

FIGURE 3.4B Desired final position.    
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The frogs and toads can only move forward; they cannot back 
up. At each move, a frog or toad can either  

• move one space ahead, if that space is clear, or  

• jump ahead over exactly one frog or toad, if the space just 
beyond that frog or toad is clear. 

For example, you could make the sequence of moves shown in  
Figures 3.4C–3.4H. 

FIGURE 3.4C Starting position of the frog puzzle.    

FIGURE 3.4D Frog has moved ahead.    

FIGURE 3.4E Toad has jumped frog.    

FIGURE 3.4F Frog has moved ahead.    

FIGURE 3.4G Frog has jumped toad.    
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Now to the program. The main program will initialize the board, 
and call a recursive backtracking routine to attempt to solve the 
puzzle. The backtracking routine will either succeed and print 
out a winning path, or it will fail, and the main program will 
have to print out the bad news. 

The backtracking method below is named solveAndPrint. It 
has no way to return a solution; rather, it just prints its results as 
it returns from finding a goal state. The method has to check 
whether it is at a leaf, which in this case means a position from 
which no further moves are possible. 

Each possible move will result in a new board position, and these 
new board positions are the children of the current board posi
tion. Hence to find the children of a node (that is, of a board 
position), we need only find the possible moves from that node. 
Remember that it is also highly desirable to find an order on 
these possible moves. 

Here, it is time to stop and take thought. To make progress, we 
must analyze the game to some extent. Probably a number of 
approaches would work, and what follows is based on the way I 
worked it out. If you were to program this puzzle, you might find 
a different but equally valid approach. 

First, notice that if a frog or toad has a move, that move is 
unique: if it can move ahead one square, then it cannot jump. If 
it can jump, it cannot move ahead one square. This suggests that 
to find the possible moves, we might assign numbers to the frogs 
and toads, and check each one in turn. When we have looked at 

FIGURE 3.4H Toad has moved ahead; no more moves are possible.    
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all the frogs and toads, we have looked at all the possible moves. 
This would require having a table to keep track of where each 
frog or toad is, or else somehow “marking” each one with its 
number and searching the board each time to find the one we 
want. Neither alternative is very attractive. 

Next, notice that for a given board position, each frog or toad 
occupies a unique space. Hence, instead of talking about moving 
a particular frog or toad, we can talk about moving the frog or 
toad in a particular space. If a move is possible from a given 
space, then that must be the only move possible from that space, 
because if the frog or toad in that space has a move, it is unique. 
There is a slight complication because not every space contains a 
frog or toad, but at least the spaces (unlike the frogs and toads) 
stay in one place. 

Now we have a simpler ordering of moves to use in our program. 
Just check, in order, the 2n + 1 spaces of the board. For each 
space, either there is exactly one move, or no move is possible. 
With this understanding, we can write a canMove method to 
determine whether a move is possible from a given position:  

• If the position is empty, no move is possible;  

• If the position contains a right-facing frog, the method 
checks for a move or jump to the right;  

• If the position contains a left-facing toad, the method 
checks for a move or jump to the left. 

We write another method makeMove that will take a board and a 
position, make a move from that position, and return as its value 
a new board. (We could write this somewhat more efficiently by 
changing the old board, rather than creating a new one, but here 
we are more concerned with simplicity.) 

86 ▪ Quick Recursion 



Here is the central backtracking method in Python: 

def solve_and_print(board): 
"""Recursively solve the puzzle and print 

the reversed sequence of boards.""" 
if puzzle_solved(board): 

return True 
for i in range(0, len(board)): 

if can_move(board, i): 
new_board = make_move(board, i) 
if solve_and_print(new_board): 

print_board(board) 
return True 

return False 

And in Java: 

/** 
* Recursively solve the puzzle and print 
* the reversed sequence of boards. 
*/ 
boolean solveAndPrint(String[] board) { 

if (puzzleSolved(board)) { 
return true; 

} 
for (int position = 0; 

position < BOARD_SIZE; 
position++) { 

if (canMove(board, position)) { 
String[] newBoard = 

makeMove(board, position); 
if (solveAndPrint(newBoard)) { 

printBoard(newBoard); 
return true; 

} 
} 

} 
return false; 

} 
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Along with canMove and makeMove, we are using methods 
puzzleSolved and printBoard with meanings that should be 
obvious. 

Here is some output from the Java version of the program; the 
output from Python is similar: 

Toad Toad Toad [  ] Frog Frog Frog  
Toad Toad Toad Frog [  ] Frog Frog  
Toad Toad [  ] Frog Toad Frog Frog  
Toad [  ] Toad Frog Toad Frog Frog  
Toad Frog Toad [  ] Toad Frog Frog  
Toad Frog Toad Frog Toad [  ] Frog  
Toad Frog Toad Frog Toad Frog [  ]  
Toad Frog Toad Frog [  ] Frog Toad  
Toad Frog [  ] Frog Toad Frog Toad  
[  ] Frog Toad Frog Toad Frog Toad  
Frog [  ] Toad Frog Toad Frog Toad  
Frog Frog Toad [  ] Toad Frog Toad  
Frog Frog Toad Frog Toad [  ] Toad  
Frog Frog Toad Frog [  ] Toad Toad  
Frog Frog [  ] Frog Toad Toad Toad  
Frog Frog Frog [  ] Toad Toad Toad 

Notice that the solution is given in reverse order: Frogs start out 
on the left and toads on the right, as in the last line. This is 
because once a solution is found, it is printed out from the re
cursive routine as that routine unwinds. To return a solution, 
rather than just print it out, the steps should be saved in a stack, 
and the stack returned to the calling program. 

Complete programs for the frog puzzle are given in Appendix G 
for Java and Appendix H for Python. 

3.10 FROGS ACCUMULATOR 
In the previous section, we implemented the Frog Puzzle, using a 
rather awkward solveAndPrint method. As the name implied, 
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the method was not able to return a solution to the caller; it 
could only print the solution (in reverse order). Mixing I/O and 
computation together in a single function is poor style. Using a 
façade method and an accumulator, we can now write a purely 
computational solve method. 

List solve(String[] board) { 
return new List(board, solve(board, null));         

} 

private List solve(String[] board, List acc) { 
if (puzzleSolved(board)) { 

return new List(board, acc); 
} 
for (int position = 0; 

position < BOARD_SIZE; 
position++) { 

if (canMove(board, position)) { 
String[] newBoard = 

makeMove(board, position); 
List result = solve(newBoard, acc); 
if (result != null) { 

return new List(newBoard, result); 
} 

} 
} 
return null; 

} 

We can mirror this logic in Python: 

def solve(board): 
"""Façade method.""" 
return [board] + solve2(board, []) 

def solve2(board, acc): 
"""Recursively solve the frog puzzle.""" 
if puzzle_solved(board): 

return [board] + acc 

Backtracking ▪ 89 



for i in range(0, len(board)): 
if can_move(board, i): 

new_board = make_move(board, i) 
result = solve2(new_board, acc) 
if result != []: 

return [new_board] + result 
return [] 

The above functions are essentially correct, but with a minor 
problem: The final (solved) board occurs twice at the end of the 
list. This occurs in part because, in our simple implementation, 
we cannot distinguish between an empty list and a failure flag; 
both are represented by null (Java) or None (Python). The 
problem can be corrected by moving the puzzle_solved test 
further down into the function. 

def solve2(board, acc): 
"""Recursively solve the frog puzzle.""" 
for i in range(0, len(board)): 

if can_move(board, i): 
new_board = make_move(board, i) 
if puzzle_solved(new_board): 

return [new_board] + acc 
result = solve2(new_board, acc) 
if result != []:  

return [new_board] + result 
return [] 

The same change in logic can be applied to the Java version. 

With this change, the test for the base case is not the first thing 
done by the method. That makes the method somewhat harder 
to understand, but still not terribly difficult.  
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Afterword  

R ecursion is all too often considered to be an “advanced” topic. 
While this little volume has covered a number of advanced 

topics that involve recursion—tail recursion, pruning, recursive 
data structures, the use of accumulators, and backtracking— 
recursion itself is simple. 

As an experiment, I began using some recursive examples in my 
introductory programming courses, without even mentioning 
the term “recursion.” The course had a laboratory setting where I 
and my assistants went from student to student, helping them 
with their problems, so it was easy to tell which concepts caused 
difficulty. Beginners had all the usual problems, such as getting 
loop indices correct and deciding when to use functions, but the 
occasional use of recursion caused no additional problems. 

As the saying goes, “When your only tool is a hammer, every 
problem looks like a nail.” Recursion is another tool in your 
programming toolbox. Sometimes it’s the right tool; sometimes 
it isn’t. Throughout this book, I’ve tried to suggest appropriate 
uses, but in the end, your own experience will be your best guide.  
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Appendix A:  
Quicksort in Java  

public static void quicksort(int[] array, 
int left, 
int right) { 

if (left < right) { 
int p = partition(array, left, right); 
quicksort(array, left, p - 1); 
quicksort(array, p + 1, right); 

} 
} 

static int partition(int[] arr, int lo, int hi) { 
int pivot = arr[hi]; 
int i = lo - 1; 
for (int j = lo; j < hi; j++) { 

if (arr[j] < pivot) { 
i += 1; 
swap(arr, i, j); 

} 
} 
swap(arr, i + 1, hi); 
return i + 1; 

}   
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static void swap(int[] arr, int i, int j) { 
int temp = arr[i]; 
arr[i] = arr[j]; 
arr[j] = temp; 

} 
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Appendix B:  
Quicksort in Python  

def quicksort(array, left, right): 
if left < right: 

p = partition(array, left, right) 
quicksort(array, left, p - 1) 
quicksort(array, p + 1, right) 

def partition(arr, lo, hi): 
pivot = arr[hi] 
i = lo - 1 
for j in range(lo, hi): 

if arr[j] < pivot: 
i += 1 
arr[i], arr[j] = arr[j], arr[i] 

arr[i + 1], arr[hi] = arr[hi], arr[i + 1] 
return i + 1 
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Appendix C:  
Binary Tree Search  
in Java  

public class BinaryTree { 
String name; 
BinaryTree leftChild = null; 
BinaryTree rightChild = null; 
boolean isGoalNode = false; 

BinaryTree(String name, 
BinaryTree left, 
BinaryTree right, 
boolean isGoalNode) { 

this.name = name; 
leftChild = left; 
rightChild = right; 
this.isGoalNode = isGoalNode; 

} 
} 

public class List { 
public String head; 
public List tail; 
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public List(String head, List tail) { 
this.head = head; 
this.tail = tail; 

}   

@Override 
public String toString() { 

String s = ("[ "); 
s += contents(this); 
return s + ("]"); 

}   

private String contents(List list) { 
if (list.tail == null) { 

return list.head + " "; 
} else { 

return list.head + " " + contents(list.tail); 
} 

} 
} 

public class TreeSearch { 

static BinaryTree makeTree() { 
BinaryTree root, a, b, c, d, e, f; 
c = new BinaryTree("C", null, null, false); 
d = new BinaryTree("D", null, null, false); 
e = new BinaryTree("E", null, null, true); 
f = new BinaryTree("F", null, null, false); 
a = new BinaryTree("A", c, d, false); 
b = new BinaryTree("B", e, f, false); 
root = new BinaryTree("Root", a, b, false); 
return root; 

} 

static boolean solvable(BinaryTree node) { 
if (node == null) return false; 
if (node.isGoalNode) return true; 
if (solvable(node.leftChild)) return true; 
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if (solvable(node.rightChild)) return true; 
return false; 

} 

static List solve(BinaryTree node) { 
List temp; 
if (node == null) { 

return null; 
} 
if (node.isGoalNode) { 

return new List(node.name, null); 
} 
temp = solve(node.leftChild); 
if (temp != null) { 

return new List(node.name, temp); 
} 
temp = solve(node.rightChild); 
if (temp != null) { 

return new List(node.name, temp); 
} 
return null; 

} 

public static void main(String args[]) { 
BinaryTree tree = makeTree(); 
System.out.println(solvable(tree)); 
System.out.println(solve(tree)); 

} 
} 
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Appendix D:  
Binary Tree Search  
in Python  

class BinaryTree(object): 

def __init__(self, name, left_child, 
right_child, is_goal_node): 

self.name = name 
self.left_child = left_child 
self.right_child = right_child 
self.is_goal_node = is_goal_node 

def make_tree(): 
c = BinaryTree('C', None, None, False) 
d = BinaryTree('D', None, None, False) 
e = BinaryTree('E', None, None, True) 
f = BinaryTree('F', None, None, False) 
a = BinaryTree('A', c, d, False) 
b = BinaryTree('B', e, f, False) 
root = BinaryTree('Root', a, b, False) 
return root 
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def solvable(node): 
if node == None: return False 
if node.is_goal_node: return True 
if solvable(node.left_child): return True 
if solvable(node.right_child): return True 
return False 

def solve(node): 
if node == None: 

return None 
if node.is_goal_node: 

return [node.name] 
temp = solve(node.left_child) 
if temp != None: 

return [node.name] + temp 
temp = solve(node.right_child) 
if temp != None: 

return [node.name] + temp 
return None   

def main(): 
tree = make_tree() 
print(solvable(tree)) 
print(solve(tree)) 

main() 
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Appendix E:  
Java Debugging  

H ERE IS A MORE GENERAL version of the debugging methods 
enter, yes, and no that are described in the text. Java 

varargs are used for the parameters of the method being de-
bugged, and redundant printing has been eliminated. In addi-
tion, the global variable debugging has been added to make it 
easy to turn debugging on and off. 

static String indent = ""; 
static boolean debugging = false; 

static void enter(String method, Object … args) { 
if (! debugging) return; 
String[] strs = new String[args.length]; 
for (int i = 0; i < args.length; i++) { 

strs[i] = "" + args[i]; 
} 
String s = indent + method + "("; 
s += String.join(", ", strs) + ")"; 
System.out.println(s); 
indent = indent + "|  "; 

} 
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static boolean yes() { 
if (! debugging) return true; 
indent = indent.substring(3); 
System.out.println(indent + "true"); 
return true; 

} 

static boolean no() { 
if (! debugging) return false; 
indent = indent.substring(3); 
System.out.println(indent + "false"); 
return false; 

} 

For methods that return an object of some kind, rather than a 
boolean, it is tempting to write something like 

static Object result(Object obj) { 
if (! debugging) return obj; 
indent = indent.substring(3); 
System.out.println(indent + obj); 
return obj; 

} 

Unfortunately, while this method can accept any kind of object (or 
primitive) as an argument, it will return a value of type Object, 
and this is likely to be unacceptable to the calling program. One 
solution is to write multiple methods, each with a different type of 
parameter, for example, 

static BinaryTree result(BinaryTree obj) { 
if (! debugging) return obj; 
indent = indent.substring(3); 
System.out.println(indent + obj); 
return obj; 

} 

static String result(String obj) { 
if (! debugging) return obj; 
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indent = indent.substring(3); 
System.out.println(indent + obj); 
return obj; 

} 

and so on. Alternatively, the debugging methods could be put in 
a class of their own (probably a good idea) and could be gen-
ericized (probably much less helpful). 
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Appendix F:  
Python Debugging  

T HE DEBUGGING TECHNIQUE described in the text can also be 
employed in Python. Two global variables are used: indent, 

to control the indentation level; and debugging, to turn de-
bugging on or off.  

• Put enter(args) at the entrance to any method you want 
to trace. Any number of arguments may be supplied.  

• Replace every return True with return yes().  

• Replace every return False with  return no().  

• Replace every return or return None with  return 
nothing().  

• Replace every return value with return result(value). 

This can result in a large number of changes in the code, but 
using the debugging variable means that these changes do not 
have to be reversed. For example, the solve method in the tree 
search example changes from: 
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def solve(node): 
"""Find goal node and report path.""" 
if node == None: 

return None 

if node.is_goal_node: 
return [node.name] 

temp = solve(node.left_child) 
if temp != None: 

return [node.name] + temp 

temp = solve(node.right_child) 
if temp != None: 

return [node.name] + temp 

return None 

To: 

def solve(node): 
"""Find goal node and report path.""" 
enter(node) 
if node == None: 

return nothing() 

if node.is_goal_node: 
return result([node.name])   

temp = solve(node.left_child) 
if temp != None: 

return result([node.name] + temp) 

temp = solve(node.right_child) 
if temp != None: 

return result([node.name] + temp)   

return nothing() 
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The tracing methods used are displayed below. All but enter 
have essentially the same structure. In fact, only enter and 
result are needed; the others are mere convenience functions. 

indent = "" 
debugging = True 

def enter(*args): 
if not debugging: return 
import inspect 
global indent 
fargs = [str(x) for x in args] 
print(indent + inspect.stack()[1].function +  
str(fargs)) 
indent += "|  " 

def yes(): 
if not debugging: return True 
global indent 
indent = indent[3:] 
print(indent + "True") 
return True 

def no(): 
if not debugging: return False 
global indent 
indent = indent[3:] 
print(indent + "False") 
return False 

def result(value): 
if not debugging: return value 
global indent 
indent = indent[3:] 
print(indent + str(value)) 
return value 

def nothing():   
if not debugging: return None 
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global indent 
indent = indent[3:] 
print(indent + "None") # can be omitted 
return None 

The call inspect.stack()[1].function in the above code may 
be unfamiliar. It returns the name of the calling method, so that 
this does not have to be supplied as a parameter. 
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Appendix G:  
Frog Puzzle in Java  

import java.util.Arrays; 

public class FrogPuzzle { 
static final int BOARD_SIZE = 7; 
static String frog = "Frog"; 
static String toad = "Toad"; 
static String empty = "[  ]"; 

public static void main(String[] args) { 
FrogPuzzle bt = new FrogPuzzle(); 
String[] board = new String[BOARD_SIZE]; 
setup(board); 
bt.solveAndPrint(board); 
bt.printBoard(board);  

} 

/** 
* Create initial board. 
*/ 
private static void setup(String[] board) { 

int length = board.length; 
int half = length / 2; 
for (int i = 0; i < half; i++) { 
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board[i] = frog; 
board[length - 1 - i] = toad; 

} 
board[half] = empty; 

} 

/** 
* Initial solution method: Recursively solve 
* the puzzle and print the reversed sequence 
* of boards. 
*/ 
boolean solveAndPrint(String[] board) { 

if (puzzleSolved(board)) { 
return true; 

} 
for (int position = 0; 

position < BOARD_SIZE; 
position++) { 

if (canMove(board, position)) { 
String[] newBoard = 

makeMove(board, position); 
if (solveAndPrint(newBoard)) { 

printBoard(newBoard); 
return true; 

} 
} 

} 
return false; 

}   

/** 
* Façade method for revised solution. 
*/ 
List solve(String[] board) { 

return new List(board, solve(board, null)); 
} 

/** 
* Improved solution method: Recursively solve 

112 ▪ Appendix G: Frog Puzzle in Java 



* the frog puzzle and return the solution. 
*/ 
private List solve(String[] board, List acc) { 

for (int position = 0; 
position < BOARD_SIZE; 
position++) { 

if (canMove(board, position)) { 
String[] newBoard = 

makeMove(board, position); 
if (puzzleSolved(newBoard)) { 

return new List(newBoard, acc); 
} 
List result = solve(newBoard, acc); 
if (result != null) { 

return new List(newBoard, result); 
} 

} 
} 
return null; 

} 

/** 
* Print the frog puzzle board. 
*/ 
private void printBoard(String[] board) { 

for (String a : board) { 
System.out.print(a + " "); 

} 
System.out.println(); 

} 

/** 
* Move the frog or toad at board[index], 
* returning a new board, not the original. 
*/ 
private String[] makeMove(String[] board, 

int index) { 
int next = -1; 
if (board[index] == frog) { 
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if (isEmpty(board, index + 1)) { 
next = index + 1; 

} 
else next = index + 2; 

} 
else { 

if (isEmpty(board, index - 1)) { 
next = index - 1; 

} 
else next = index - 2; 

} 
String[] nextBoard = 

Arrays.copyOf(board, board.length); 
nextBoard[next] = board[index]; 
nextBoard[index] = empty; 
return nextBoard; 

} 

/** 
* Is move possible from board[index]? 
*/ 
private boolean canMove(String[] board, 

int index) { 
if (board[index] == frog) { 

return isEmpty(board, index + 1) || 
isEmpty(board, index + 2); 

} 
if (board[index] == toad) { 

return isEmpty(board, index - 1) || 
isEmpty(board, index - 2); 

} 
return false; 

}  

/** 
* Is board[index] a legal location and empty? 
*/ 
private boolean isEmpty(String[] board, 

int index) { 
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return index >= 0 && 
index < board.length && 
board[index] == empty; 

} 

/** 
* Test if the goal has been reached. 
*/ 
private boolean puzzleSolved(String[] board) { 

int half = board.length / 2; 
for (int i = 0; i < half; i++) { 

if (board[i] != toad) return false; 
} 
if (board[half] == empty) { 

// printBoard(board); 
return true; 

} 
return false; 

} 
} 
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Appendix H:  
Frog Puzzle in Python  

frog = 'frog' 
toad = 'toad' 
empty = '    ' 

def setup(size): 
"""Create initial puzzle state.""" 
board = [empty] * size 
for i in range(0, size // 2): 

board[i] = frog 
board[-i - 1] = toad 

return board 

def can_move(board, index): 
"""Is move possible from board[index]?""" 
if board[index] == frog: 

return (is_empty(board, index + 1) or 
is_empty(board, index + 2)) 

if board[index] == toad: 
return (is_empty(board, index - 1) or 

is_empty(board, index - 2+)) 
return False 
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def is_empty(board, index): 
"""Is board[index] a legal location and empty?""" 
return (index >= 0 and 

index < len(board) and 
board[index] == empty) 

def make_move(board, index): 
"""Move the frog or toad at board[index], 

returning a new board, not the original.""" 
next_board = board[:] 
if board[index] == frog: 

if board[index + 1] == empty: 
next = index + 1 

else: 
next = index + 2 

else: # toad 
if board[index - 1] == empty: 

next = index - 1 
else: 

next = index - 2 
next_board[next] = board[index] 
next_board[index] = empty 
return next_board 

def solve_and_print(board): 
"""Initial solution method: Recursively 

solve the puzzle and print the reversed 
sequence of boards.""" 

if puzzle_solved(board): 
return True 

for i in range(0, len(board)): 
if can_move(board, i): 

new_board = make_move(board, i) 
if solve_and_print(new_board): 

print_board(board) 
return True 

return False 
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def solve(board): 
"""Façade method for revised solution.""" 
return [board] + solve2(board, []) 

def solve2(board, acc): 
"""Improved solution method: Recursively 

solve the frog puzzle.""" 
for i in range(0, len(board)): 

if can_move(board, i): 
new_board = make_move(board, i) 
if puzzle_solved(new_board): 

return [new_board] + acc 
result = solve2(new_board, acc) 
if result != []: 

return [new_board] + result 
return [] 

def print_board(board): 
"""Print the frog puzzle board.""" 
print('-' * (7 * len(board) + 1)) 
print('|', ' | '.join(board), '|') 
print('-' * (7 * len(board) + 1)) 

def puzzle_solved(board): 
"""Test if the goal has been reached.""" 
half = len(board) // 2 
for i in range(0, half): 

if board[i] != toad: 
return False 

if board[half] == empty: 
print_board(board) 
return True 

return False 

def main(): 
board = setup(7) 
print_board(board) 
solve_and_print(board) 

main() 
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Appendix I:  
Map Coloring in Java  

public class ColoredMap { 

public enum Color { 
RED, YELLOW, GREEN, BLUE, NONE 

} 

Color[] mapColors = new Color[] { 
Color.NONE, Color.NONE, 
Color.NONE, Color.NONE, 
Color.NONE, Color.NONE, 
Color.NONE, Color.NONE, 
Color.NONE, Color.NONE, 
Color.NONE, Color.NONE, 
Color.NONE 

}; 
int map[][]; 
Debugging db = new Debugging(); 

void createMap() { 
map = new int[13][]; 
map[0] = new int[] { 1, 2, 3, 9, 12 }; 
map[1] = new int[] { 0, 2, 5 }; 
map[2] = new int[] { 0, 1, 3, 4, 5 }; 
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map[3] = new int[] { 0, 2, 4, 6, 8, 9  }; 
map[4] = new int[] { 2, 3, 5, 6, 7, 8 }; 
map[5] = new int[] { 1, 2, 4, 8, 11 }; 
map[6] = new int[] { 3, 4, 7, 8 }; 
map[7] = new int[] { 4, 6, 8 }; 
map[8] = new int[] { 3, 4, 5, 6, 7, 9, 10, 11 }; 
map[9] = new int[] { 0, 3, 8, 10, 12 }; 
map[10] = new int[] { 8, 9, 11, 12 }; 
map[11] = new int[] { 5, 8, 10, 12}; 
map[12] = new int[] { 0, 9, 10, 11 }; 

} 

/** 
* Tries all possible map colorings 
* until getting a four-colored map. 
*/ 
boolean explore1(int country, Color color) { 

if (country >= map.length) 
return goodColoring(); 

mapColors[country] = color; 
for (Color c : Color.values()) { 

if (explore1(country + 1, c)) { 
return true; 

} 
} 
mapColors[country] = Color.NONE; 
return false; 

} 

/** 
* Uses pruning to find a four-colored map. 
*/ 
boolean explore2(int country, Color color) { 

// Backtracking with pruning 
if (country >= map.length) 

return true; 
if (okToColor(country, color)) { 

mapColors[country] = color; 
for (Color i : Color.values()) { 
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if (explore2(country + 1, i)) 
return true; 

} 
} 
return false; 

} 

/** 
* Returns true if no country adjacent to this 
* one has already been given this color. 
*/ 
boolean okToColor(int country, Color color) { 

if (color == Color.NONE) return false; 
for (int i = 0; i < map[country].length; i++) { 

int ithAdjCountry = map[country][i]; 
if (mapColors[ithAdjCountry] == color) { 

return false; 
} 

} 
return true; 

} 

/** 
* Return true if the map is properly colored. 
*/ 
boolean goodColoring() { 

for (int i = 0; i < map.length; i++) { 
for (int j = 0; j < map[i].length; j++) { 

if (mapColors[i] ==  
mapColors[map[i][j]]) { 

return false; 
} 

} 
} 
return true; 

} 

void printMap() { 
for (int i = 0; i < mapColors.length; i++) { 
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System.out.println("map[" + i + "] is " + 
mapColors[i]); 

} 
} 

public static void main(String args[]) { 
ColoredMap m; 
long ns; 

m = new ColoredMap(); 
m.createMap(); 
ns = System.nanoTime(); 
m.explore1(0, Color.RED); 
ns = System.nanoTime() - ns; 
m.printMap(); 
System.out.println(ns + " ns.\n"); 

m = new ColoredMap(); 
m.createMap(); 
ns = System.nanoTime(); 
m.explore2(0, Color.RED); 
ns = System.nanoTime() - ns; 
m.printMap(); 
System.out.println(ns + " ns.\n"); 

} 
} 
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Appendix J:  
Map Coloring in 
Python  

import time 

colors = ['RED', 'YELLOW', 'GREEN', 'BLUE', 'NONE'] 

def create_map(): 
global map, map_colors 
map_colors = [None] * 13 
map = [None] * 13 
map[0] = [ 1, 2, 3, 9, 12 ] 
map[1] = [ 0, 2, 5 ] 
map[2] = [ 0, 1, 3, 4, 5 ] 
map[3] = [ 0, 2, 4, 6, 8, 9  ] 
map[4] = [ 2, 3, 5, 6, 7, 8 ] 
map[5] = [ 1, 2, 4, 8, 11 ] 
map[6] = [ 3, 4, 7, 8 ] 
map[7] = [ 4, 6, 8 ] 
map[8] = [ 3, 4, 5, 6, 7, 9, 10, 11 ] 
map[9] = [ 0, 3, 8, 10, 12 ] 
map[10] = [ 8, 9, 11, 12 ] 
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map[11] = [ 5, 8, 10, 12] 
map[12] = [ 0, 9, 10, 11 ] 

def explore1(country, color): 
"""Tries all possible map colorings 

until finding one that works.""" 
if country >= len(map): 

return good_coloring(); 
map_colors[country] = color 
for c in colors: 

if explore1(country + 1, c): 
return True; 

return False 

def explore2(country, color): 
"""Uses pruning to ignore map 

colorings that cannot work.""" 
if country >= len(map): 

return True 
if ok_to_color(country, color): 

map_colors[country] = color 
for c in colors: 

if explore2(country + 1, c): 
return True 

return False 

def ok_to_color(country, color): 
"""Returns true if this color is not 

in use by any adjacent country.""" 
if color == 'NONE': 

return False 
for i in range(0, len(map[country])): 

ith_adj_country = map[country][i] 
if (map_colors[ith_adj_country] == color): 

return False 
return True 

def good_coloring(): 
"""Returns true if a four-coloring 
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has been found.""" 
for i in range(0, len(map)): 

for j in range(0, len(map[i])): 
if map_colors[i] == map_colors[map[i][j]]: 
return False 

return True 

def main(): 
global map_colors 

m = create_map() 
start = time.time() 
explore2(0, 'RED') 
print(map_colors) 
end = time.time() 
print("time: ", end - start) 

m = create_map() 
start = time.time() 
explore1(0, 'RED') 
print(map_colors) 
end = time.time() 
print("time: ", end - start) 

main() 
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Appendix K:  
Lists in Python  

P YTHON’S “LISTS” BEAR LITTLE resemblance to conventional 
singly linked lists. In most cases, it is easier to treat Python’s 

lists as arrays, and use loops rather than recursion to process 
them. Recursion should be used for data structures which, unlike 
Python’s lists, are recursively defined. 

The following is code for a simple implementation of singly 
linked lists. 

class List: 
def __init__(self, head, tail=None): 

"""Construct a List.""" 
self.head = head 
self.tail = tail 

def __str__(self): 
"""Return a string representation 

of this List.""" 
return '[' + self.contents() + ']' 

def contents(self): 
"""Return a string representation of 
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the contents of this List.""" 
s = str(self.head) 
if self.tail != None: 

s += ' ' + self.tail.contents() 
return s 

def __eq__(self, other): 
"""Test if this List equals other.""" 
if type(other) != List: 

return False 
if self == []: 

return other == []; 
if other == []: 

return False 
return (self.head == other.head and 

self.tail == other.tail) 

Within the class, we use the word self to refer to the list being 
operated on. For methods outside the class, we will use the 
variable lst. It is inadvisable to spell this as ‘list,’ because 
doing so would replace the usual meaning of that word. 

def to_List(lst): 
"""Convert Python list to List.""" 
if lst == []: 

return None 
if type(lst[0]) == list: 

head = to_List(lst[0]) 
else: 

head = lst[0] 
return List(head, to_List(lst[1:])) 

def member(x, lst): 
"""Test if x is a top-level element 

of List lst.""" 
if lst == None: # out of elements 

return False 
if lst.head == x: 
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return True 
else: 

return member(x, lst.tail) 

def deep_member(x, lst): 
"""Test if x is a member, at any level, 

of List lst.""" 
if lst == None: 

return False 
if lst.head == x: 

return True 
if type(lst.head) == List: 

if deep_member(x, lst.head): 
return True 

return deep_member(x, lst.tail) 

def length(lst): 
"""Return the number of top-level 

elements in List lst.""" 
if lst == None: 

return 0 
return 1 + length(lst.tail) 
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Appendix L:  
Trees in Java  

T HE FOLLOWING IS A REASONABLY complete implementation of a 
general Tree class. It includes a parse method for con-

verting a string representation of a Tree into a Tree of Strings. 

import java.util.ArrayList; 
import java.util.Iterator; 
import java.util.LinkedList; 
import java.util.List; 
import java.util.StringTokenizer; 

/** 
* General tree class. 
*/ 
public class Tree<V> { 

public V value; 
private ArrayList<Tree<V>> children; 

/** 
* Constructs a single Tree node with the given value. 
*/ 
public Tree(V value) { 

this.value = value; 
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children = new ArrayList<Tree<V>>(); 
} 

/** 
* Tests whether the given Object is a Tree 
* that is equal to this Tree. 
*/ 
@Override 
public boolean equals(Object o) { 

if (!(o instanceof Tree)) { 
return false; 

} 
Tree<?> that = (Tree) o; 

if (! eq(this.value, that.value)) { 
return false; 

} 
return this.children.equals(that.children); 

} 

/** 
* Tests whether two possibly null values are equal. 
*/ 
private static boolean eq(Object o1, Object o2) { 

if (o1 == null) { 
return o2 == null; 

} 
return o1.equals(o2); 

} 

/** 
* Returns a list of the children of this node. 
* If the node has no children, an empty list 
*  is returned. 
*/ 
public List<Tree<V>> children() { 

return children; 
} 
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/** 
* Returns the i-th child of this node. 
*/ 
public Tree<V> getChild(int i) { 

return children.get(i); 
} 

/** 
* Adds a node as the new last child of this tree. 
*/ 
public Tree<V> addChild(Tree<V> newChild) 

throws IllegalArgumentException { 
if (newChild.contains(this)) { 

String message = this + " is already in " +  
newChild; 

throw new IllegalArgumentException(message); 
} 
children.add(newChild); 
return this; 
} 

/** 
* Creates a new node with the given value and 
*  adds it as the last child of this Tree node. 
*/ 
public Tree<V> addChild(V val) { 

children.add(new Tree<V>(val)); 
return this; 

} 

/** 
* Returns a string representing this tree. 
* The string does not contain newlines. 
* The general form of the output is: 
* value(child child … child)<. 
*/ 
@Override 
public String toString() { 

if (children.size() == 0) { 
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return value.toString(); 
} 
String result = value + "("; 
boolean first = true; 
for (Tree<V> child : children) { 

if (!first) 
result += " "; 

first = false; 
result += child.toString(); 

} 
return result + ")"; 

} 

/** 
* Prints this tree as an indented structure. 
*/ 
public void print() { 

print(this, ""); 
} 

/** 
* Prints the tree as an indented structure, 
* with the root indented by the given amount. 
*/ 
private void print(Tree<V> node, String indent) { 

if (node == null) { 
return; 

} 
System.out.println(indent + node.value); 
for (Iterator<Tree<V>> iter =  

node.children.iterator(); 
iter.hasNext();) { 
print(iter.next(), indent + "   "); 

} 
} 

/** 
* Returns a string that, if printed, will show 
* the given node as an indented tree structure. 
*/   
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public String toMultilineString() { 
return toMultilineString(this, ""); 

} 

/** 
* Returns a string that, if printed, will show the 
* given node as an indented tree structure, with 
* the initial line prefixed by the indent string. 
*/  
private String toMultilineString(Tree<V> node,  
String indent) { 

if (node == null) { 
return ""; 

} 
String result = indent + node.value + "\n"; 
if ("block".equals(node.value .toString())) { 

indent += "|"; 
} 
for (Iterator<Tree<V>> iter =  

node.children.iterator(); 
iter.hasNext();) { 
Tree<V> next = iter.next(); 
result += toMultilineString(next,  
indent + "   "); 

} 
return result; 

} 

/** 
* Parses a string of the general form 
* value(child, child, … , child) and returns the 
* corresponding tree. Children may be separated 
* by commas and/or spaces. 
* Node values are all Strings. 
*/ 
public static Tree<String> parse(String s) 

throws IllegalArgumentException { 
StringTokenizer tokenizer = 
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new StringTokenizer(s, " (),", true); 
List<String> tokens = new LinkedList<String>(); 
while (tokenizer.hasMoreTokens()) { 

String token = tokenizer.nextToken(); 
if (token.trim().length() == 0) continue; 
if (token.equals(",")) continue; 
tokens.add(token); 

} 
Tree<String> result = parse(tokens); 
if (tokens.size() > 0) { 

throw new IllegalArgumentException( 
"Leftover tokens: " + tokens); 

} 
return result; 

} 

/** 
* Parses and returns one tree, consisting of 
* a value and possible children (enclosed in 
* parentheses), starting at the first element 
* of tokens. Returns null if this token is a 
* close parenthesis, or if there are no 
* more tokens. 
*/ 
private static Tree<String> parse(List<String>  
tokens) 

throws IllegalArgumentException { 
// No tokens -- return null 
if (tokens.size() == 0) { 

return null; 
} 
// Get the next token and remove it from the list 
String token = tokens.remove(0); 
// If the token is an open parenthesis 
if (token.equals("(")) { 

throw new IllegalArgumentException( 
"Unexpected open parenthesis before " +  
tokens); 

} 
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// If the token is a close parenthesis, we are 
// at the end of a list of children 
if (token.equals(")")) { 

return null; 
} 
// Make a tree with this token as its value 
Tree<String> tree = new Tree<String>(token); 
// Check for children 
if (tokens.size() > 0 &&  

tokens.get(0).equals("(")) { 
tokens.remove(0); 
Tree<String> child; 
while ((child = parse(tokens)) != null) { 

tree.addChild(child); 
} 

} 
return tree; 

} 

/** 
* Tests whether this tree contains the node 
* passed in as a parameter. 
*/ 
public boolean contains(Tree<V> node) { 

if (this == node) 
return true; 

for (Tree<V> child : children) { 
if (child.contains(node)) 

return true; 
} 
return false; 

} 
}  
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