


Quick Data Structures
If you want to upgrade your programming skills, the most impor‑
tant thing you need is a solid understanding of fundamental data 
structures. The proper choice of data structures distinguishes 
excellent programmers from merely competent ones.

As an experienced programmer, you use data structures—at least 
arrays—all the time. However, you may not be familiar with hash 
tables, trees and binary trees, priority queues, directed and undi‑
rected graphs, and other data structures at your disposal.

A good choice of data structures will simplify your job, not 
complicate it. Your code will be not only faster but also easier to 
understand and debug. There is no downside to using the right 
data structures for the job.

This book

• Provides an understanding of the fundamental building 
blocks of data structures

• Describes the construction and use of all common data 
structures

• Explains the simple math required for selecting efficient data 
structures

• Equips you with everything you need to choose data struc‑
tures or devise appropriate new ones



Quick Programming Series
Most programming books are either textbooks aimed at begin‑
ners, or tomes intended to provide everything the programmer 
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Preface

Many years ago, a friend came to me with a problem.

Back then, you typed your program on punched cards and put 
them in a tray along with other programs to be run. Some hours 
later, you would get the printed results.

My friend’s problem was that his program was taking more than 
20 minutes to run on the Control Data 6600, which (in those days) 
was the world’s fastest computer. According to the Computation 
Center rules, any program that took more than 20 minutes would 
be stopped and not run again until the weekend when the com‑
puter was less busy. My friend asked me if I could speed up his 
program.

The program was doing a lot of table look‑ups, using an ordi‑
nary array. I replaced the array with a hash table–a change which 
reduced the running time to under 20 seconds. My friend didn’t 
fully trust my work because, as he later told me, he spent the entire 
weekend hand‑checking the results.

Times have changed, and today’s computers are orders of mag‑
nitude faster than the “supercomputers” of yesteryear. That same 
program would, today, run in a few milliseconds.
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Today’s computers are so fast and have so much memory that, for 
most programs, it doesn’t make sense to worry about efficiency. 
However, there are important exceptions: video games, popular 
websites, deep learning, weather modeling, and more. Besides, 
why struggle with a poor choice of data structures when there 
might be one perfectly suited to your needs?
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Author

I’m David Matuszek, known to most of my students as 
“Dr. Dave.”

I wrote my first program on punched cards in 1963 and immedi‑
ately got hooked.

I taught my first computer classes in 1970 as a graduate student in 
computer science at the University of Texas in Austin. I eventually 
earned a PhD there, and I’ve been teaching ever since. Admittedly, 
I spent over a dozen years in industry, but even then I taught as an 
adjunct for Villanova University.

I finally left the industry and joined the Villanova faculty full time 
for a few years before moving to the University of Pennsylvania, 
where I directed a master’s program (MCIT, Master’s in Computer 
and Information Technology) for students transitioning into com‑
puter science from other disciplines.

Throughout my career, my main interests have been in artificial 
intelligence (AI) and programming languages. I’ve used a lot of 
programming languages.

I retired in 2017, but I can’t stop teaching, so I’m writing a series 
of “quick start” books on programming and programming lan‑
guages. I’ve also written three science fiction novels—Ice Jockey, 
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All True Value, and A Prophet in Paradise—and I expect to write 
more. Check them out!

And, hey, if you’re a former student, drop me a note. I’d love to 
hear from you!

david.matuszek@gmail.com

mailto:david.matuszek@gmail.com
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Where’s the Code?

This isn’t a recipe book. If you want the code for, say, a merge 
sort, you can do a web search and find code for a merge sort 

in any of the couple dozen most common languages. Instead, 
the goal of this book is to explain (for example) how a merge sort 
works, and when and why you might want to use one. Once you 
understand that, you can write your own or grab one of the many 
published versions.

Code isn’t always the best way to explain an algorithm or data 
structure—but sometimes it is. In such cases, the code should be 
as readable as possible.

It’s generally agreed that Python is the most readable language, 
but every language has glitches. Python’s for loop is

for i in range(0, n):
 # do something

and it isn’t necessarily obvious to a non‑Python programmer that 
this means:

for i from 0 up to but not including n {
 # do something
}
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Similarly, Python has dictionaries, “lists,” and sets, which we will 
try to avoid. Consequently, the code in this book is “Python‑like” 
but, in the interest of making code as readable as possible for 
everyone, not necessarily “real” Python.

There is one feature we retain from Python. Good programming 
style demands that code be indented properly, and in Python, this 
is a requirement, not just a style rule. In this book, indentation is 
used to indicate code controlled by an if or while statement, mak‑
ing braces unnecessary.



https://taylorandfrancis.com


1DOI: 10.1201/9781003625506‑1 

C h a p t e r  1

Building Blocks

A data structure is a way of organizing information so 
that it can be retrieved and updated quickly and easily.

Any data structure can be created from just three basic compo‑
nents: arrays, nodes, and pointers.

A node is a (generally small) collection of named fields that hold 
data values. Nodes may be of varied types and sizes, may be arbi‑
trarily complex, and often contain links to other nodes. For exam‑
ple, a node used to represent a customer may have a field named 
customerId to hold a unique integer, a field named email to hold a 
link to an email address represented as a string, and a field named 
orderHistory that holds a link to another node type whose values 
represent an order history.

In object‑oriented languages, a node is almost always represented 
by an object, but any method of associating the various pieces of 
information can be made to work.

A pointer (also called a reference or a link) provides access to 
a data value that is located elsewhere in memory. Originally, a 

https://doi.org/10.1201/9781003625506-1
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pointer was an address in physical memory, and it can still be 
thought of that way.

An array is a linear sequence of values, all of the same type and size. 
Because all the values are the same size, the array can be efficiently 
indexed—the location in memory of the n‑th element is simply the 
starting location of the array plus n times the element size.

Note: When an array appears to have elements of vary‑
ing sizes (e.g., an array of strings), each value in the 
array is actually a link to the actual data (a string). This 
link is exposed to the programmer in some languages, 
while other languages limit access to it.

These three elements can be combined into an uncountable num‑
ber of data structures. For the student, this means that there are 
a great many common data structures to be studied; however, the 
underlying concepts are simple, and new data structures can eas‑
ily be invented as needed.

1.1 POINTERS AND REFERENCES
A link is almost always implemented as an address of some loca‑
tion in memory. This could be an absolute address, based on the 
physical memory of the computer, or (much more likely) it could 
be a relative address, based on the location in memory occupied 
by the program. Either way, an address is implemented as an inte‑
ger value.

The difference between a pointer and a reference is that a pointer 
exposes its integer value to the programmer, who can then per‑
form arithmetic on it, resulting in a pointer to a new location in 
memory. Pointers are common in the C family of languages.

Pointers raise security concerns. Unless handled with extreme 
care, they can allow malicious code to be loaded as data and then 
executed.



Building Blocks   ◾   3

A reference can be stored and duplicated like any other data value, it 
can be dereferenced to get the item it points at, and two references can 
be compared for equality. No other operations are provided. Because 
the integer implementation is hidden, references are inherently more 
secure than pointers and require less syntax. This is how links are 
handled in Java, Python, and most other modern languages.

1.2 ARRAYS
An array is a deceptively simple data structure. It’s just a linear 
sequence of values, generally all of the same type. To index into 
it, the language simply adds the index value times the element 
size to the starting location, giving the desired memory location. 
Indexing is a very fast operation.

There are minor variations. Depending on the language, the first 
location might have an index of 0, an index of 1, or some integer 
chosen by the programmer. Some languages allow discrete data 
types, such as characters, to be used as indices.

Usually, the size of the array is defined when it is created and can‑
not later be changed. Again, this is language‑dependent.

Some languages (Fortran, for example) allow arrays to have two 
or more dimensions. It may be important to know the order in 
which values are stored (rows first or columns first), because some 
operations will depend on this ordering.

In any language based on C, all arrays are one‑dimensional, but 
the values in the array may themselves be arrays. In these lan‑
guages, the size of an array is not a part of its type, so arrays 
within an array are not all required to be the same size; if they are 
of differing sizes, the result is called a ragged array.

Finally, an array is usually implemented as more than just a 
sequence of values. Java, for instance, stores the array length and 
the element type along with the array values.
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1.3 STRING ARRAYS
A string is a sequence of characters. Strings are almost always 
implemented as arrays, with one character per array location. 
Some languages expose the implementation, allowing a string 
to be accessed like any other array, while other languages hide 
the implementation but provide a host of functions for working 
with them.

To index efficiently into an array, all the values in the array must 
be the same size. Since strings may be of different sizes, there is 
really no such thing as an “array of strings.” Such an array actu‑
ally contains pointers to strings; the strings themselves are stored 
elsewhere. See Figure 1.1.

The same is true when a node is depicted as containing a string: 
The node actually contains a pointer to the string.

Strings are almost always stored in a data structure called a heap 
(see Chapter 9). Heaps have the ability to hold data of varying 
sizes.

FIGURE 1.1 String array implementation.
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C h a p t e r  2

Essential Math

You cannot ignore math when studying data structures. It 
doesn’t require much math, and you don’t need to solve com‑

plex equations. There are only two things required of you:

• First, you need to understand that some growth rates are 
better or worse than others (e.g., exponential growth is 
much worse than linear growth).

• Second, you need to be able to analyze a program to deter‑
mine which kind of growth occurs as the amount of data 
increases. This is (usually) much simpler than it sounds.

In general, we would like to know

• How much memory is required by the program?

• How long will the program take to run?

This chapter covers all the mathematics necessary for a basic 
understanding of how to determine these factors. Along the way, 
several popular sorting algorithms are described.

https://doi.org/10.1201/9781003625506-2
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It is very unusual for algorithms to require explosive amounts 
of memory, but quite common for them to demand excessive 
amounts of time. For this reason, our analyses are primarily about 
running time.

After reading this chapter, you will understand what “Big‑O” 
notation is all about.

2.1 THE IMPORTANCE OF EFFICIENCY
There are two contradictory views that can be taken on the mat‑
ter of efficiency. Although contradictory, each is correct—in the 
proper context.

On the one hand, computers are literally millions of times 
faster than they were a few decades ago. Back then, comput‑
ers were expensive, while human labor was (relatively) cheap. It 
was important to get value out of every machine cycle. Today, 
however, the economics are completely reversed, and it is—
to put it gently—unwise to spend an hour of a programmer’s 
time to save a millisecond of computer time. For a large major‑
ity of programs, efficiency simply is not and should not be a  
concern.

On the other hand, there are situations in which efficiency is 
essential. Some examples are video games, large simulations of 
complex systems such as weather patterns, artificial intelligence, 
and very heavily used websites. Using the proper data structure 
can often make a program hundreds of times faster, usually with 
little or no additional programming effort.

The bottom line is: The effective programmer knows when to 
spend effort on making a program more efficient and when not to. 
Knowledge of data structures is the key to doing this.
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2.2 ANALYSIS OF ALGORITHMS
An algorithm is a well‑defined, step‑by‑step procedure that is 
guaranteed to terminate. There are literally thousands of pub‑
lished algorithms.

To analyze an algorithm means:

• developing a formula for predicting how fast an algorithm 
is, based on the size of the input (time complexity) and/or

• developing a formula for predicting how much memory an 
algorithm requires, based on the size of the input (space 
complexity).

Usually, time is our biggest concern because many algorithms 
require a fixed amount of space.

Since the formula depends on the “size” of the input, we need 
some measure of the size, and that depends on the nature of the 
problem.

• When searching an array, the “size” of the input could be the 
size of the array.

• When merging two arrays, the “size” could be the sum of the 
two array sizes.

• When computing the nth Fibonacci number or the nth facto‑
rial, the “size” is n.

The “size” should be a parameter that can be used to calculate 
the actual time (or space) required. It is frequently obvious what 
this parameter is, but sometimes some experimentation may 
be required. Sometimes we need two or more parameters—for 
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instance, if we are dealing with a two‑dimensional array where 
the rows and columns are treated very differently.

Of course, a program doesn’t usually do just one thing. Maybe it 
sorts an array as just one part of a complicated series of opera‑
tions. Some of those operations may take far more time (or far less 
time) than sorting the array. How do we put all this together to 
compute a “total” running time?

The short answer is, we simplify. We simplify a lot.

If one part of the program takes linear time and another part takes 
quadratic time, we completely ignore the linear part and say the pro‑
gram takes quadratic time. For small problems, the linear part might 
take longer than the quadratic part, but small problems don’t take 
very long anyway. For large problems that require large amounts of 
time, the quadratic part will completely overshadow the linear part.

We might like to find the average time to perform an algorithm.

Unfortunately, that usually isn’t well‑defined. We will consider sev‑
eral sorting algorithms, and for most of them, the actual time they 
take is determined by how out of order the array is. But—how out of 
order is the “average” array? The question is essentially unanswerable.

We usually have to be satisfied with finding the worst (longest) 
time required, and sometimes this is even what we want (e.g., for 
time‑critical operations). Big‑O notation is all about how to sim‑
plify the estimated worst‑case time (or space) requirements.

2.3 CONSTANT TIME
An operation takes constant time if there is some constant k such 
that this operation never takes more than k nanoseconds (or sec‑
onds, or whatever measure you wish to use). That is, there is a 
strict limit on how long the operation can take.
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Here are some things that take constant time:

• Any standard arithmetic or Boolean operation.

• A call to a method that takes constant time.

• An if statement, where the test takes constant time and each 
branch (true or false) takes constant time.

• A switch statement, where each case takes constant time.

Notice that for an if or switch statement, the possible branches 
don’t have to take the same amount of time, just that each takes no 
more than k time, for some constant k.

Here are some things that probably take more than constant time:

• A loop.

• A call to a complex or recursive method.

An operation that takes constant time k is said to be O(1), that is, 
“Big‑O of one.” Notice that we don’t care how big the constant k is.

2.4 LINEAR TIME
An operation takes linear time if doubling the amount of data 
doubles the running time. Or, if tripling the amount of data tri‑
ples the running time. In general, multiplying the size of the data 
set by n multiplies the running time by n.

Summing up the elements of an array of size n is a linear opera‑
tion. Searching an array to find the largest or the smallest element 
is a linear operation. Counting up to n and doing something that 
takes constant time for each number is also linear time.

You might notice that some operations, such as adding up all the 
numbers in an array, are not exactly doubled if you double the 
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size of the array. That’s true; it takes some small amount of time 
to set up the loop. So the actual time required to sum up an array 
of n numbers is c+kn, where c is the (constant) amount of time 
required to set up the loop and k is the (constant) amount of time 
required to add each element. This expression is linear in n. The 
Big‑O notation for an expression linear in n is O(n). Notice that we 
don’t care about the size of c or k; they are just constants, so we 
ignore them.

2.5 QUADRATIC TIME
Many array sorting methods require quadratic time; that is, if the 
array size is increased by a factor of n, then the time required to 
sort that array goes up by a factor of n2. An array ten times larger 
takes a hundred times longer to sort.

Here we will briefly consider three such sorting algorithms. They 
are of interest because they are easy to implement, because they 
illustrate how to informally determine the Big‑O running time 
of an algorithm, and because they can be used to describe the 
important concept of a loop invariant.

Note: We refer to the “first” and “last” indices in the array 
because many programming languages use zero as the 
smallest index, several languages use one, and some lan‑
guages allow an arbitrary starting index.

2.6 BUBBLE SORT
A bubble sort proceeds as follows:

• Set some variable limit to the index of the last element in the 
array and set a flag variable swapped to true.

• While limit is greater than the first index and swapped is 
true:

• Set swapped to false.
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• For index i ranging from the first index in the array up 
to and including limit‑1:

• If array[i] > array[i+1], swap the two values and set 
swapped to true.

• Subtract 1 from limit.

While we generally think of using loops to change things (e.g., 
sorting an array), an equally valid view is that loops keep 
some condition invariant. An invariant is some condition that 
remains true even when the variables in the condition change 
their values.

For a bubble sort, the loop invariant is: All array locations greater 
than limit are correctly sorted and in their final location. This is 
true initially because there are no locations greater than limit. 
After one pass through the while loop, limit is reduced by one, 
and the value in the last array location is the largest value. After 
the second pass, limit has been reduced again, and the last two 
array elements are correctly placed. And so on. At the end, all ele‑
ments are sorted.

In bubble sort, the while loop is executed up to n times, where n 
is the size of the array. (It could be fewer if no swaps occur, but as 
usual, we’re interested in the worst case.) The inner for loop is ini‑
tially executed n‑1 times, but each time the number of executions 
is reduced, so on average it is executed about n/2 times. Dropping 
the constants, the outer loop is executed n times, and for each of 
those times, the inner loop is executed n times, so the overall run‑
ning time is n times n, or O(n2).

The actual running time of bubble sort depends on the initial state 
of the array. For a random array, the expected running time is 
quadratic, but bubble sorting an array that is already in sorted 
order takes only O(n) time.
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Although bubble sort has the same Big‑O running time as inser‑
tion sort and selection sort, it is generally the slowest of the three. 
There is another reason to avoid it: Bubble sort is the sorting tech‑
nique most often invented by beginners, so it has a bad reputation 
as amateurish.

2.7 CHARACTERISTIC OPERATIONS
In computing time complexity, one good approach is to count 
characteristic operations. A characteristic operation is an opera‑
tion that occurs at least as often during the execution of an algo‑
rithm as any other operation, so the number of times this operation 
occurs determines the Big‑O running time of the algorithm.

Sorting algorithms essentially do two things: compare two values 
and swap two values. At each step, swaps may or may not occur, 
but comparisons will always occur. Therefore, comparisons make 
a good characteristic operation; swaps do not.

Bubble sort proceeds in a series of n passes, where n is the size of 
the array. The average length of each pass, L, is n/2. During each of 
those passes, L comparisons are made. Therefore, n passes times 
n/2 comparisons equals n2/4, or O(n2).

Note: The careful reader will notice that all the values 
mentioned in the previous paragraph are approximate. 
For example, the number of passes made during a bub‑
ble sort is n‑1, not n. The important point is that these 
simplifications do not affect the conclusion that the 
running time is O(n2).

For most sorting algorithms, the number of comparisons made is 
a suitable choice for the characteristic operation because it con‑
trols all the other actions. Other types of algorithms  require a 
different choice of characteristic operation.
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If the algorithm has an innermost loop, we might just look at how 
many times that loop is executed. If a single pass through that 
loop takes constant time, the loop itself can be considered a char‑
acteristic operation.

2.8 INSERTION SORT
For insertion sort, we’ll approach things a bit differently by start‑
ing with the loop invariant and using it to develop the algorithm. 
Here it is: The first n elements of the array are in sorted order.

The invariant for insertion sort differs from that of bubble sort in 
two respects. First, we’re moving elements to the beginning of the 
array, rather than to the end. This is minor, and either algorithm 
could be adjusted to work from the other end. The second difference 
is important: The elements are sorted with respect to one another but 
can still be moved about; they may not be in their final positions.

To begin, notice that when we consider only the first value, it is 
trivially true that it is in sorted order.

Now suppose that the first k values are in sorted order. What about 
the next value, at location k+1? If it is at least as large as the imme‑
diately preceding value, it can remain where it is. Otherwise, we 
can take that value out of location k+1 and insert it somewhere 
earlier. We can use a binary search (see Section 2.11) to find where 
among the first k values it should be inserted, and we can move 
all the values between that location and location k up one space. 
Conveniently, the value that was in location k can be moved to 
location k+1, which has just been vacated.

Analysis: We run once through the outer loop, giving a factor 
of n. Each time, we perform a binary search (which takes log(n) 
time) and then move, on average, n/4 elements, so that each time 
through the outer loop the work required is log(n)+n. (It’s n/4 
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because we move, on average, half of the already sorted values, 
which is, on average, half of the total values.) We ignore constants, 
so the result is n×(log(n)+n), or n×log(n)+n2. Finally, n×log(n) 
grows more slowly than n2, so our final result is O(n2).

Often, we are sorting not just numbers but objects according to some 
key value. A stable sort is one that does not change the order of objects 
with equal keys. For example, if we are sorting customers by name 
and “John Smith” from New York comes before “John Smith” from 
Boston, those objects should remain in the same order after sorting.

Insertion sort is a stable sort.

2.9 SELECTION SORT
Selection sort is probably the easiest to describe. Here’s how it 
works:

Search the entire array to find the smallest value. Swap it with the 
value in the first location. Search the array starting from the sec‑
ond location to find the smallest remaining value and swap it with 
the value in the second location. Search the array starting from 
the third location to find the smallest remaining value and swap it 
with the value in the third location. And so on.

At each step, we search the unsorted part of the array for the 
smallest value and swap it with the value just past the sorted part, 
so the sorted part gets larger by one value.

Ignoring constants, we perform n searches, and each search 
examines n elements, so the running time is O(n2).

The loop invariant is that the first k elements are sorted and in 
their final position, as k varies from 1 to the size of the array.
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2.10 EXPONENTS AND LOGARITHMS
If you are familiar with logarithms, you can skip this section.

Exponentiation, or raising a number to a power, is the process of 
multiplying several copies of that number together. For example, 
103, or “ten raised to the power of 3,” means three tens multiplied 
together: 10×10×10=1000. The number that is multiplied by itself 
(in this example, 10) is called the base.

Taking the logarithm of a number is the inverse process: Given a 
number and a base, how many copies of the base must be multiplied 
together to get the number? In our example, three tens must be 
multiplied together to get 1000, so the logarithm of 1000 (base 10)  
is 3. We write this as log101000 = 3.

A shorthand phrase for remembering this is: “Logarithms are 
exponents.” That is, if x = bn, then logbx = n.

Logarithms are not necessarily whole numbers. The logarithm 
(base 10) of 1001 is slightly more than 3 (in fact, it’s about 
3.000434), while the logarithm (base 10) of 999 is slightly less than 
3 (about 2.99957).

Any positive number may be used as the base. Here are the three 
most commonly used kinds of logarithms:

• Common logarithms are those that use 10 as a base; these 
are often encountered in engineering.

• Natural logarithms use the number e (approximately 
2.718281828459045) and are favored by mathematicians.

• Binary logarithms use 2 as a base and are favored by com‑
puter scientists.
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The various logarithms differ only by a constant factor. In par‑
ticular, the binary logarithm of a number is approximately 3.322 
times the common logarithm of that number. Since the common 
logarithm of 1000 is 3, the binary logarithm of 1000 is approxi‑
mately 3.322 × 3, or 9.966.

Here’s a convenient way to think about binary logarithms: Given 
a number, how many times do you have to cut it in half to get to 1?

Starting with the number 64, repeated halving gives 32, 16, 8, 4, 2, 
and 1. That’s six halvings to get to exactly 1, so log264 is 6.

Things won’t usually work out this exactly. Starting with 60 instead 
of 64, we get the sequence 30, 15, 7.5, 3.75, 1.875, and 0.9375. This 
tells us that five halvings (1.875) isn’t enough, but six halvings 
(0.9375) is slightly less than 1, so the binary logarithm must be 
between 5 and 6, and closer to 6. (The true value is about 5.907.)

This idea of “cutting in half” will occur quite often in our discus‑
sion of algorithm timing.

2.11 BINARY SEARCH
Binary search is an algorithm for searching a sorted array for a 
particular value.

In a binary search, you only search the array between two indi‑
ces—we’ll call them left and right. These indices are initially the 
lowest and highest possible indices, and they will gradually move 
toward each other. If the item is not in the array, the indices will 
cross, and left will become greater than right.

Assuming the array is sorted in increasing order, the algorithm is 
as follows:

• If left is greater than right, return failure; the item is not 
in the array.
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• Compute mid as the (integer) average of left and right.

• If array[mid] is the sought‑after item, return mid.

• If array[mid] is too large, recursively search between left 
and mid‑1;

• Otherwise, array[mid] is too small, so recursively search 
between mid+1 and right.

At each point we either find the item and return, or we recur‑
sively search half the remaining elements. Since we are eliminat‑
ing half the remaining elements each time, the required time is 
actually binary logarithmic time (logarithms to the base 2), which 
we could write as O(log2n). Recall, however, that it doesn’t matter 
which base we use, as the results only differ by a constant. Since 
we ignore constants, we write logarithmic time simply as O(log n).

The recursive binary search requires four parameters—the item 
to be sought, the array, and the additional parameters left and 
right. It would be nice not to have to explain those additional 
parameters to the user. We can avoid this with the use of a façade 
function:

Terminology: A façade function is a function whose 
only job is to provide a nicer interface to the function 
that does the actual work.

In this example, the façade function will take only two param‑
eters: the item sought and the array. It will then determine the 
appropriate initial values for left and right and make a single call 
to the recursive function.

In some languages, the façade function and the recursive func‑
tion can have the same name. In other languages, different 
names are required, and the façade function should have the 
more user‑friendly name. If the programming language allows 
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functions to be nested, the recursive version can be “hidden” 
inside the façade function.

2.12 QUICKSORT
The quicksort algorithm is one of the fastest sorting algorithms 
known. It is a recursive algorithm—that is, the quicksort method 
calls itself.

Here’s the basic idea:

• Some number from the array is chosen as a pivot.

• The array is partitioned into two parts. The numbers less 
than the pivot are moved to the left side of the array, while the 
numbers greater than or equal to the pivot are moved to the 
right side of the array.

• The smaller numbers in the left partition are quicksorted, 
and independently, the larger numbers in the right partition 
are quicksorted.

• If the size of the partition (the right index minus the left 
index) is zero or one, the recursion “bottoms out,” and 
that partition is fully sorted.

The top‑level quicksort method itself is practically self‑explana‑
tory. Here is the complete method (in Python):

function quicksort(array, left, right):
    if left < right:
        p = partition(array, left, right)
        quicksort(array, left, p)
        quicksort(array, p + 1, right)

The initial test (left < right) checks whether anything more 
needs to be done. The initial call will be with the entire array, so 
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left will be zero (in most languages), and right will be the size of 
the array minus one. If quicksort is called with left greater than 
or equal to right, the partition size is zero or one, and this branch 
of the recursion is finished.

The partition method moves smaller numbers to the left, larger 
numbers to the right, and returns the index p of the rightmost 
small number. How this is done will be explained after the follow‑
ing example.

• Start with the array [68, 81, 20, 50, 60, 78, 47, 90].

• If we take 68 as the pivot, we can partition the array into 
two parts: [47, 60, 20, 50 | 81, 78, 68, 90]. The first part 
contains the numbers less than 68, while the second part 
contains the numbers greater than or equal to 68. Neither 
part is sorted.

• Quicksort the left part, [47, 60, 20, 50].

• Taking 47 as the pivot, we partition this into the two 
parts [20 | 60, 47, 50].

• The [20] part consists of a single number, so no further 
sorting is necessary.

• [60, 47, 50] can be partitioned into [50, 47 | 60], using 
60 as the pivot.

• The [50, 47] part requires another quicksort step, but 
the [60] part does not.

• The initial left partition is now completely sorted.

• Quicksort the right part, [81, 78, 68, 90].

• Taking 81 as the pivot, this can be partitioned into [68, 
78 | 81, 90].
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• The two parts of [68, 78 | 81, 90] can each be quick‑
sorted (to no effect, since they are already in the correct 
order).

• The initial right partition is now completely sorted.

The partition method works as follows. Given an array segment 
to be partitioned, choose some value in the array segment to serve 
as a pivot. In the above example, we always chose the leftmost 
value in the array. Then search from the left end for a value greater 
than or equal to the pivot, and search from the right for a value 
less than the pivot. If the left index is still less than the right index, 
swap the two values.

With this array segment, using 68 as the pivot, the search from the 
left finds 68, while the search from the right finds 50.

[68, 81, 20, 47, 60, 78, 50, 90]
  →                          ←
Swapping these two values, we get

[50, 81, 20, 47, 60, 78, 68, 90]

Continuing the searches from where we left off (just to the right of 
the 50 and just to the left of the 68), we find 81 as greater than 68, 
and 60 as less than 68.

[50, 81, 20, 47, 60, 78, 68, 90]
       →           ←
Swapping these two values gives us

[50, 60, 20, 47, 81, 78, 68, 90]
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Continuing the searches from where we left off (just to the right of 
the 60 and just to the left of the 81), we find 81 as the first number 
greater than 68, and 47 as the first number less than 68.

[50, 60, 20, 47, 81, 78, 68, 90]
                ←   →
At this point, the left index has become greater than (or equal to) 
the right index, so the partition operation is finished; the num‑
bers 50 to 47 are all less than 68, and the numbers 81 to 90 are all 
greater than or equal to 68. The index of 47 (the rightmost number 
in the left partition) is returned as p, the value of the partition 
method.

That’s the complete algorithm.

In the above example, we took the first value in each array seg‑
ment as the pivot. Other options include picking the value in the 
center of the array segment and picking a random value in the 
array segment. Each approach may have some minor advantages.

Quicksort is faster than insertion sort for large arrays, but for 
small arrays (up to 10 or 12 elements), insertion sort is faster. For 
this reason, a hybrid sort is sometimes implemented, where small 
partitions are sorted using insertion sort. This additional effort is 
probably worthwhile for a library routine to be used by the gen‑
eral public.

2.13 ANALYZING QUICKSORT
Quicksort is a recursive algorithm. To analyze it—that is, to deter‑
mine its running time—we need to know two things: the run‑
ning time of the partition method, and the depth of the recursion. 
Multiplying these two numbers together will give us the result.
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To partition the entire array, we find a large number from the left 
end, a small number from the right end, and swap them. Every 
element of the array is compared to the pivot once and possibly 
swapped with another element. The comparison and the possi‑
ble swap each take constant time, and there are n elements in the 
array, so to partition the entire array takes O(n) time.

But that’s just for the first level of partitioning. What about the 
second level? In our example, the array was split in half, but each 
partition operation had half as much to do, so ½O(n) + ½O(n) = 
O(n). If the array were split differently, it would still work out: 
⅓O(n) + ⅔O(n) = O(n). We can conclude that O(n) work is done at 
each depth of the recursion.

The depth of the recursion in this example is 3. We started with 
an array of size 8, cut it into two pieces each of size 4, cut those 
into pieces of size 2, and cut those into pieces of size 1. Thus, we 
cut the array in half three times to get to a size of 1. In terms of 
logarithms, log2(8) = 3. More generally, we can expect quicksort 
to have a recursive depth of log2(n) for an array of size n.

Initial conclusion: Quicksort has a running time of O(n × log(n)), 
usually written as just O(n log n), where n is the size of the array.

While our initial conclusion is basically correct, there are caveats. 
Our example was chosen so that each partition operation split the 
part being sorted into equal halves; this is the best case. For a ran‑
dom array, the expected size of the division is roughly ⅓ and ⅔. 
This isn’t as neat, but a careful analysis still results in an expected 
running time of O(n log n).

The worst case occurs when every partition operation splits an 
array segment of size n into a segment of size 1 and a segment of 
size n‑1. The depth of the recursion is then O(n) instead of O(log n),  
and O(n) times O(n) gives quicksort a running time of O(n2).
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Unfortunately, the worst case will occur when the pivot is chosen 
to be the first element (or the last element) in the array segment, 
and the array is already sorted. The amount of work done at each 
level of the recursion is still O(n), but the maximum depth of the 
recursion, instead of being log(n), is now n. In this case, quicksort 
takes O(n2) time.

There are a couple of ways to avoid this. You can do a pre‑check 
to make sure the array isn’t already sorted; or you can choose 
the middle element rather than the end element of the array 
segment; or you can choose a random element in the array seg‑
ment. Other approaches are possible and almost always work, but 
there is no way to absolutely guarantee that quicksort won’t take  
O(n2) time.

Final conclusion: Quicksort almost always has a running time of 
O(n log n), where n is the size of the array, but there is no guaran‑
tee that it won’t take O(n2) time. Therefore, quicksort should not be 
used in critical applications where an O(n log n) running time is 
an absolute requirement.

When O(n log n) running time is a requirement, merge sort is a 
good alternative.

2.14 MERGE SORT
Merge sort, like quicksort, is a recursive algorithm. Like quick‑
sort, at each level of the recursion, it divides the array into two 
parts. Unlike quicksort, however, the two parts are always of 
approximately equal size, thus guaranteeing O(n log n) running 
time. Here’s how it works:

• Copy half the numbers into a new array, and the remaining 
numbers into a second new array. (If the array size is odd, 
one array will be slightly larger than the other.)
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• Independently merge sort the two smaller arrays. If an array 
size is 0 or 1, it is already sorted.

• Merge the two arrays by repeatedly comparing the small‑
est numbers in each and copying the smaller back into the 
original array. When all numbers in either array have been 
copied, copy any remaining numbers in the other array.

For example, we will start with the array A = [56, 1, 44, 17, 24, 
60, 71, 51]. Copy the two halves of this array into new arrays B 
and C, so B = [56, 1, 44, 17] and C = [24, 60, 71, 51].

Merge sort B to get [1, 17, 44, 56].

Merge sort C to get [24, 51, 60, 71].

Finally, merge B and C back into array A. See Figure 2.1.

Merge sort is much slower than quicksort on average but has a 
guaranteed running time of O(n log n). Like quicksort, it can be 
sped up by switching to an insertion sort for smaller arrays.

Merge sort is not an in‑place sort, so it requires additional storage. 
Since each recursion cuts the size of the array in half, recursions 
will proceed to a depth of O(log n). Memory requirements would 
therefore seem to be O(n log n), but this is incorrect.

As long as the code is executed sequentially (not in parallel), the 
extra space is ½n for the first level of recursion, then ½(½n) = ¼n for 
the second level, then ½(¼n) = ⅛n, and so on; the sum of these is O(n).  

FIGURE 2.1 Merging two arrays.
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So while O(n log n) space may be required in total, only O(n) space 
is required at any one time.

2.15 EVEN FASTER SORTS
The best sorts we have seen so far have running times of O(n log 
n). Is it possible to do better?

You will often see that the answer is “no.” The proof is based on 
the fact that an array of n values can be arranged in n! ways, and 
to sort these out requires n×log(n) decisions.

But that proof assumes that all values may be distinct. In this 
section, we will discuss two sorting algorithms, each of which 
requires only O(n) time.

Algorithm 1

Suppose you have an array of a thousand scores, where each score is 
in the range 0 to 25. All you need to do is set up an array of 26 loca‑
tions (0 to 25), zero out the array, and for each score, add 1 to the 
corresponding location of your array of counts. After all scores have 
been tallied, you can put these scores back into the original array.

Of course, each score probably has associated information, such 
as who made that score. That complicates the bookkeeping but 
doesn’t affect the running time, which is O(n).

This is a special case because there are only a small, finite number 
of scores.

Algorithm 2

Back when programs were typed onto punched cards, one line of 
text per card, the last 8 columns of each card were reserved for a 
card number. The idea was that if your cards were numbered, and 
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you dropped the deck, they could be put in order again by using a 
large machine called a card sorter.

To use the machine, you would put cards in a bin, set the machine 
to sort on the least significant digit (often column 80), and start 
it. As you waited, the machine would place every card with a zero 
in column 80 into hopper zero, every card with a one in column 
80 into hopper one, and so on. Then you would take the ten decks 
out, put them together, and run them through again, this time on 
the second least significant digit. Then the third. And so on.

Each pass through the card sorter would take O(n) time, where n 
was the number of cards. To sort on d digits required d passes, so 
the total running time was O(d  ×  n). For any given card deck, d was 
a constant number of digits, so O(d  ×  n) could be regarded as O(n) 
running time.

Although punched‑card sorters are long obsolete, the ideas behind 
this algorithm can still be used in certain specialized problems.

2.16 BIG‑O NOTATION
Big‑O notation represents a huge simplification when comput‑
ing the running time of an algorithm. We eliminate most of the 
constants. In the case of a polynomial, we eliminate all but the 
highest term, so O(n2  +  3n  +  5) becomes simply O(n2). If we are add‑
ing terms and one term has a higher degree than the others, we 
discard the lower degree terms: O(n2)  +  O(n) becomes simply O(n2). 
Have we oversimplified things?

For small problems, yes. With Big‑O, we assume that small prob‑
lems run fast enough anyway (usually true, but not always), and 
it’s the large problems that we need to be concerned about.
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Key takeaway: Big‑O is all about large problems.

We can order Big‑O times from best to worst:

• O(0) — Zero time. Avoid doing it at all.

• O(1) — Constant time.

• O(log n) — Log time.

• O(n) — Linear time.

• O(n log n) — Log‑linear time.

• O(n2) — Quadratic time.

• O(n3) — Cubic time.

• O(nk) — Polynomial time, k > 3.

• O(2n) — Exponential time.

For large values of n, these represent a range of values almost 
impossible to express in a single graph. See Figure 2.2 for a com‑
parison of just a few of these running times.

FIGURE 2.2 Comparison of running times.
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There are also some algorithms that require superexponential 
time, such as O(2 )nc

. Any such algorithms are beyond the scope 
of this book.

2.17 BIG‑O AND FRIENDS
I said at the beginning of this chapter that it was important to 
understand Big‑O notation. This final section is optional; feel free 
to skip it if you’re tired of analysis, or continue if you want a little 
deeper understanding.

Along with Big‑O, two other measures are sometimes encoun‑
tered. They are Big‑Ω (“big omega”) and Big‑Θ (“big theta”). 
Loosely speaking, here’s what these measures tell us:

• Big‑Ω — The algorithm always takes at least this long.

• Big‑Θ — This is how long the algorithm really takes.

• Big‑O — The algorithm never takes longer than this.

Big‑Ω gives us a minimum running time as a function of n, the 
problem size. This usually isn’t very interesting. Some sorting 
techniques are Big‑Ω(n) because they go through the array and 
find nothing out of place.

Big‑Θ is the actual running time and is what we would really like 
to have, but that’s not always well‑defined. Quicksort usually runs 
in n log(n) time, but it could take n2 time, so there isn’t a Big‑Θ 
value for it. Big‑O is the best we can do. In fact, Big‑O is the best 
we usually can do, which is why you don’t hear much about Big‑Θ.

Big‑O is usually taken to mean the upper limit on how long an algo‑
rithm takes, but it can also be used to mean an upper limit. If an 
algorithm actually takes quadratic time, O(n2), then it can correctly 
be described as O(n3), O(n4), O(2n), O(n × 2n), and in many other ways. 
A catch‑all term for these longer running times is called little‑o.
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An algorithm has little‑o running time if, for sufficiently large n, 
the algorithm is always faster than this. Put another way, if an 
algorithm takes O(f(n)) running time and also o(g(n)) running 
time, then f(n)/g(n) approaches zero as n goes to infinity.

Again, notice that we simply don’t care what happens for small 
values of n, but only care about what happens when n is greater 
than some number N. The precise value of N doesn’t matter; only 
that it exists.

Here are the algorithms we’ve covered so far:

• Binary search: Ω(1) (constant time), O(log n).

• Bubble sort: Ω(n), O(n2).

• Insertion sort: Ω(n), O(n2).

• Selection sort: Ω(n2), O(n2), ϴ(n2).

• Quicksort: Ω(n log n), O(n2).

• Mergesort: Ω(n log n), ϴ(n log n), O(n log n).

One way to check your understanding of these algorithms and 
Big‑O notation would be to review the algorithms and see if you 
agree with the above list.

2.18 EXPONENTIAL TIME
Some problems require exponential time, and only the small‑
est of such problems can be solved on conventional computers. 
(Quantum computing may change this.)

One example is the well‑known traveling salesman problem.  
A salesman wishes to visit a certain number of cities, traveling the 
minimum possible total distance, and returning to his starting 
point. If the cities in question are the 48 capitals of the contiguous 
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United States, there are 47! (47 factorial) possible paths. If the 
salesman is limited, at each city, to choosing from five different 
cities (say, the five nearest ones), there are still about 546 possible 
paths.

Optimizing is finding the best solution. This may require finding 
and comparing all solutions, which isn’t always possible.

Satisficing is finding a solution that is “good enough.” If there is 
no clear definition of “good enough,” then it may be necessary to 
use the best result found in the time available, whether or not it is 
satisfactory.

Here’s an analogy: If you are about to buy a car, there may be one 
car out there that is the best choice for you. To find it, you would 
have to visit every car dealer, compare all the models, compare all 
the features of each model, and compare their prices and warran‑
ties. Nobody can do that. Instead, you satisfice: You shop around, 
get a general idea of what is available, and buy the best car you can 
find with the time and energy you have available.

For many exponential problems, satisficing is the best you can do.
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C h a p t e r  3

Hash Tables and 
Hash Maps I

After arrays, a hash map is probably the most important 
data structure you will ever need.

Most large programs spend a considerable amount of time look‑
ing things up. Hash tables and hash maps are data structures that 
allow very fast lookup.

A table is just a list of values, and looking up something in a table 
means finding if it is in the table and possibly noting its location. 
A map is a data structure that associates keys with values; looking 
something up means finding the matching key and returning the 
associated value.

Python programmers: A dictionary is basically a hash 
map.

Whether we are looking up values in a hash table or looking up 
keys in a hash map, the algorithm is the same. Since a table is 
slightly simpler than a map, we’ll start with tables.

https://doi.org/10.1201/9781003625506-3
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3.1 BASIC HASH TABLES
Consider the problem of searching an unordered array for a given 
value. Either the value is in the array or it isn’t. If it isn’t, we need 
to look at all n elements to determine this. But if the value is in 
the array, we will find it after looking at n/2 elements, on average. 
Either way, the search takes linear O(n) time.

If the array is sorted, we can do a binary search. A binary search 
requires O(log n) time and is about equally fast whether the elem‑
ent is found or not. It doesn’t seem like we could do much better— 
but we can.

Suppose we were to come up with a “magic function” that, given a 
value to search for, would tell us exactly where in the array to look. 
If the value is in that location, it’s in the array, and if it’s not in that 
location, it’s not in the array.

This “magic function” would have no other purpose. If we look 
at how the function transforms its input to its output, it probably 
won’t make sense (it’s magic, after all). This function is called a 
hash function because it “makes hash” of its inputs.

We can’t actually do magic, but we can come close. We’ll demon‑
strate with an extremely small but otherwise reasonable example.

Suppose you are a bird watcher and want to keep a table of all 
the birds you have seen. You can look in the table to determine if 
you’ve seen a particular kind of bird, and you can add new birds 
to the table. We’ll use an array of ten elements (absurdly small, 
but big enough for an example). For a hash function, we’ll use the 
number of characters in the bird’s name.

Remember: Since strings vary in length, an “array of 
strings” is really an array of pointers to strings.
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So far, you’ve seen a wren, a cardinal, a robin, and a chickadee, 
and your hash table looks like the table on the right of Figure 3.1.

With this table, you can tell you have seen a robin by computing 
hashCode("robin") = 5 and finding "robin" at location 5 of the 
table. You haven’t seen a sparrow, because hashCode("sparrow") is 7,  
and location 7 of the hash table is empty.

Suppose you next see a hummingbird and want to add it to the 
table. Unfortunately, “hummingbird” is 11 characters long, and 
there are only ten locations in our table. The solution, regardless 
of what hash function is used, is to always take the result mod the 
table size.

Reminder: Mod (short for “modulo”) is the remain‑
der of an integer division. For example, 14 mod 5 is 4, 
since 5 goes into 14 twice with 4 left over. In many lan‑
guages the symbol % denotes this “mod” operation.

Note: Our example assumes 0‑based arrays. If your 
language uses 1‑based arrays, use (i–1) % n + 1 instead 
of i % n, where i is the index and n is the table size.

Since hashCode("hummingbird") % 10 = 1, "hummingbird" goes into 
location 1 of the table; see Figure 3.2.

FIGURE 3.1 Hash table.
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A more serious problem occurs when we spot a crow, hash‑
Code("crow") % 10 = 4. (It’s easier to always take the mod rather 
than first checking whether we need to.) Location 4 already con‑
tains the word wren. This is called a collision.

When a collision occurs, one solution is to probe (look at) the next 
location, and the next, and the next, until we find an empty loca‑
tion. In our “crow” example, we see that location 4 is already occu‑
pied (and not by “crow”), so we look at location 5 and see that it is 
already occupied (and not by “crow”), so we look at location 6 and 
it’s empty, so we can put “crow” in location 6.

If we had found a location with “crow” in it, we would know that 
“crow” was already in the table, and we could stop there.

If instead of trying to add “crow” to the table, we simply wanted 
to know if it was already there, we would follow the same proce‑
dure. We would probe location 4 (“wren”), location 5 (“robin”), 
and location 6 (empty). Since we find an empty location before 
finding “crow,” it follows that “crow” is not in the table.

3.2 HASH FUNCTIONS
Properly implemented, looking something up in a hash table or 
putting something into a hash table will take only O(1) constant 
time. This is an impressive claim; can we justify it?

FIGURE 3.2 Modified hash table.
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The full math is beyond this book, but we can approach it. Let’s 
start with two assumptions. (1) Our hash function is really good, 
so different inputs almost always produce different outputs.  
(2) Our table is really big, so collisions are highly unlikely. In these 
circumstances, it should be obvious that most searches take con‑
stant time, at the cost of a great deal of wasted space.

Let’s look at the hash function first.

• The hash function must be deterministic—given the same 
input, it will always produce the same result. This means it 
can’t use random numbers, the time of day, or anything like 
that.

• The hash function should be fast to compute. After all, the 
goal is speedy lookup.

• The hash function should give a wide range of values  
(ideally, any 32‑ or 64‑bit positive integer).

• The hash function should give very different results for even 
tiny changes in the input.

Let’s look at the hash function in our example: the length of a 
bird’s name. It will always produce the same result for the same 
bird’s name (required); counting letters is reasonably fast (good); 
it gives a very small range of values (even the longest name is 
probably only a couple of dozen characters (bad)); and names like 
“catbird” and “cowbird” have the same hash code (bad). All in all, 
not a very good hash function.

Your programming language probably provides much better hash 
functions for common objects. For a string s, Java uses:

s[0]*31^(n‑1) + s[1]*31^(n‑2) + ... + s[n‑1]
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where s[i] is the ith character of the string, n is the length of the 
string, and ̂  indicates exponentiation. (Exponentiation to a power 
of 2 is a fast operation, as it is simply a bit shift.)

The size of the hash table also matters. Obviously, we don’t want it 
to get too full. The more the hash table contains, the more collisions 
will occur. The more collisions occur, the slower it will be to look 
something up or to insert something. A good rule of thumb is to 
make the table large enough so that it never gets more than about 
70% full. At this size, we can typically find the correct location 
with only two or three probes. (Some individual searches might 
take quite a bit longer, but on average we can expect constant time.)

We might create a hash table with 1000 entries—a nice round 
number. Surprisingly, a nice round number is a poor choice for 
the size of a hash table. Here’s why:

Suppose f is a factor of the table size t, that is, t = f x for some inte‑
ger x. We find a hash code h for the value we want to put in the 
table and compute h mod t (h % t) to decide where to insert it. 
Unfortunately, if h has f as a factor, then h % t will also have f as a 
factor. There are only a limited number of table locations that are 
multiples of f, therefore collisions are more likely.

Consequently, we prefer a table size that has as few factors as pos‑
sible. A prime number has the fewest number of factors, namely, 
itself and 1. Therefore, we should choose a prime number close to 
the size we want—say, 997 or 1009, rather than 1000.

3.3 HASH TABLE NOTES
When values are added to a hash table, the first entries receive the 
best locations. As the table fills up, later entries encounter more 
collisions. This means that when entering values from a “natural” 
source, such as words from English text (or the birds in your back‑
yard), the values needed most often will be the fastest to look up.
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Hash tables should be created with enough space so that they don’t 
become too full—preferably not more than about 70%. However, 
even up to about 95%, hash tables are still quite efficient. When a 
hash table becomes too full, the usual solution is to allocate space 
for a larger table and rehash everything.

It is not usually possible to delete an item from a hash table. If this 
must be done, one approach is to leave the item in the table but 
somehow mark it as not available. Another approach is to remove 
all the values in the surrounding “clump” and then reinsert all but 
the unwanted value. A third approach is to use a linked hash table 
(see Section 6.8).

3.4 HASH MAPS
A hash map is a simple extension of a hash table. Associated with 
each entry in the map is some data about that entry, often in the 
form of a link.

There are two simple ways to implement such a hash map. First, 
it can be done with an array of objects, where each object has a 
string field to contain the name of a bird, and a pointer to infor‑
mation about that bird. See Figure 3.3.

The second implementation is to use two arrays: one for bird 
names and the other for bird information. The bird name can be 

FIGURE 3.3 Hash map.
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looked up in the first array, and the same index can be used to 
access information in the second array.

3.5 ABSTRACT DATA TYPES
A data type is characterized by (1) a set of values, such as {..., ‑2, 
‑1, 0, 1, 2,...}, or {true, false}; (2) a data representation, which is 
common to all these values E; and (3) a set of operations, which 
can be applied uniformly to all these values.

To abstract is to leave out unnecessary information. In an abstract 
data type (ADT), the data representation is abstracted away; only 
the values and operations are provided.

For example, suppose you define a “lookup table” in which a user 
can (1) create a new lookup table, (2) add an item to the table, and 
(3) test if an item is in the table. Then you hide the implementation 
(by making the array “private,” or however you hide code in your 
language), so that no other access to the lookup table is allowed. 
You have an ADT.

Hiding the implementation is important for two main reasons. 
First, it allows you to modify the implementation as needed. 
Second, it helps localize errors.

You might implement a lookup table as a sorted array and use a 
binary search to insert or look up values. If you didn’t hide the 
implementation, someone who wants the smallest value in the 
lookup table might simply get the first element of the array. This 
code will break if you change the implementation from a sorted 
array to a hash table.

The primary user of your lookup table is probably yourself. If you 
need to get the smallest value in the table, you can add a new oper‑
ation to do this. Then, if you change the implementation, you just 
need to recode this operation along with all the others.
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Errors happen. If some error puts your lookup table in an incon‑
sistent state, and the only access to the implementation is through 
methods you provide, then the error is in your methods. But if 
the implementation is exposed, then any code anywhere in the 
program could be causing the problem (and you bear the blame).

Moral: Data structures should always be implemented 
as abstract data types.

One of the benefits of object‑oriented languages is the ability to 
treat a data structure as an “object,” with a hidden implementa‑
tion and a limited set of operations on that object.

3.5.1 ADT as a Contract

Every ADT should have a contract (or specification) that tells the 
users everything they need to know in order to use the ADT, and 
does not tell the user anything they do not need to know. In par‑
ticular, they do not need to know your data representation or your 
algorithms.

A contract is an agreement between two parties. In this case, one 
party is the implementer of the ADT, who is concerned with mak‑
ing the operations correct and efficient, and the other party is the 
applications programmer, who just wants to use the ADT to get 
a job done. It doesn’t matter if you are both of these parties; the 
contract is still helpful for good code and is critical in any large 
project.

What makes a good contract? If you buy a house, you want to pay 
as little as possible. If you sell a house, you want to get as much as 
possible. You want a contract that is in your favor.

The same principle applies when designing an ADT. You will 
almost always be in a position where you know what the ADT 
will be used for, and you should provide that much functionality 
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and no more. This keeps down both the cost and the complexity 
of your ADT. Of course, it’s nice if the design is such that more 
functionality can be added later, when it may be needed, but it’s 
generally a mistake to write code before it is actually needed.

When designing an ADT, keep efficiency in mind and use an 
implementation that reduces the Big‑O running time of the most 
frequently used operations.

Your ADT should be documented. Just do it! Programmers are 
notoriously bad at getting around to documenting code, so here is 
an area where it’s easy to excel.

If the documentation is too hard to write, this probably means the 
ADT is too hard to use. In that case, it’s the ADT that should be 
fixed.

If you design for generality, it’s easy to add functionality later—
but you can’t remove functionality unless you are absolutely sure 
that it has never been used.
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C h a p t e r  4

Recursion

A recursive definition is a definition in which the thing 
being defined occurs as part of its own definition. Many data 

structures are defined recursively; for example, a list may contain 
sublists. Functions can call themselves to solve simpler subprob‑
lems. We will see many examples of both.

This chapter exists because recursion is frequently (and unfortu‑
nately) considered an “advanced” topic. It shouldn’t be. Recursive 
code is no harder to understand than loops and is often easier. 
Moreover, recursion is essential for working with many data 
structures.

If you are comfortable with recursion, feel free to skip this chap‑
ter. There’s nothing in it specifically about data structures, so you 
won’t miss anything.

4.1 RECURSIVE DATA STRUCTURES
A natural number can be defined recursively:

• 1, or

• Any natural number plus 1.

https://doi.org/10.1201/9781003625506-4
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So 1 is a natural number because of rule one; 2 is a natural number 
because it is the natural number 1 plus 1; 3 is a natural number 
because it is the natural number 2 plus 1; and so on.

As a more practical example, a list is:

• An open parenthesis,

• Zero or more numbers or lists, and

• A close parenthesis.

By this definition, (), (1 2 17), and ((1) (1 2) (1 2 3)) are all lists.

Indirect recursion occurs when a thing is defined in terms of 
other things, but those other things are defined in terms of the 
first thing. For example,

An arithmetic expression is any of:

• A number,

• A sum, product, difference, or quotient, or

• Parentheses around an arithmetic expression.

A sum is:

• An arithmetic expression,

• A plus sign, and

• An arithmetic expression.

… and similarly for product, difference, and quotient. We’ve 
left out a few operations, but the above is sufficient to express  
(1 + 2) * (3 + 4 + 5).
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Recursion is a common characteristic of nested structures such as 
lists, arithmetic expressions, and computer programs (statements 
within statements). We’ll see many examples of these.

4.2 RECURSIVE FUNCTIONS
Functions (or “methods,” if you prefer) can also be recursive. 
A  recursive function is one that calls itself. Every modern pro‑
gramming language allows recursive functions, and they are 
extremely useful for working with recursive data structures.

When a function is entered, it gets a new set of local variables. 
In a recursive function, these have the same names as in other 
levels of the recursion, but they occupy different storage locations 
and therefore can have different values. This makes it possible to 
change a local variable at one level of recursion without affecting 
those variables with the same name at other levels.

Parameters passed by value are effectively local variables.

The (inevitable) first example of a recursive function is the 
factorial.

The factorial of a natural number n is the product of all the natu‑
ral numbers up to and including n. For example, the factorial of 5  
(written 5!) is the result of 1 × 2 × 3 × 4 × 5. From this, it’s easy 
to see that 5! can be computed by multiplying 4! by 5, that is, 
(1 × 2 × 3 × 4) × 5.

Since the factorial of 1 is simply 1, we can write the factorial func‑
tion as

function factorial(n):
    If n == 1, return 1,
    else return factorial(n ‑ 1) * n.
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Here, the n == 1 case is a base case: a case that can be computed 
without recursion. Every recursive function must have at least one 
base case.

The advantage of using the factorial to demonstrate recursion is 
that it is easy to understand; the disadvantage is that using a loop 
is arguably simpler and certainly much more efficient. This isn’t a 
great use of recursion.

Here’s a somewhat better example. Suppose you want to ask the 
user a yes–no question but don’t trust the user to respond sensibly.

function askYesOrNo(question):
    Display the question.
    Read in the answer.
    If answer starts with “Y” or “y”, return TRUE.
    If answer starts with “N” or “n”, return FALSE.
    Display “Please answer with ‘yes’ or ‘no’.”.
    Call askYesOrNo(question) and return the result.

If the user responds with, say, Maybe, this code just calls itself 
again, and the answer returned is then returned from the original 
call. It works for any sequence of unacceptable answers, not just 
one. You can do the same thing without recursion, but it takes a 
little extra work.

4.3 FOUR RULES
There are four rules that are very helpful in writing recursive 
functions, particularly if you are just learning to use recursion.

 1. Do the base cases first.

 2. Recur only with simpler cases.

 3. Don’t use non‑local variables.

 4. Don’t look down.
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4.3.1 Rule 1: Do Base Cases First

Every valid recursive definition consists of two parts:

• One or more base cases, where you compute the answer 
directly, without recursion; and

• One or more recursive cases, where you do part of the work 
and recur with a simpler problem.

Every recursive function must have base cases. If your function 
accidentally recurs with what should have been a base case, it’s 
likely to result in an infinite recursion. Checking for and handling 
base cases before doing any recursions, although not absolutely 
necessary, makes this problem less likely.

The following definition of the factorial function works equally 
well for natural numbers.

function factorial(n):
    If n > 1, return factorial(n ‑ 1) * n,
    else return 1.

This version does not explicitly list n==1 as a base case and, in fact, 
it behaves differently for zero and negative numbers.

4.3.2 Rule 2: Recur Only with Simpler Cases

If the problem isn’t simple enough to be a base case, break it into 
two parts:

• A simpler problem or problems of the same kind, and

• Extra work to use the solution of the simpler problem to 
solve the given problem.

The factorial function clearly does this. The simpler problem is 
finding the factorial of a smaller number (a number closer to 1), 
and the extra work is multiplying by n.
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“Simpler” means “more like a base case.” It can involve using a 
smaller number, a smaller part of a data structure, or just about 
anything.

Any time you recur with a case that isn’t closer to a base case, you 
get the recursive equivalent of an infinite loop.

function factorial(n):
    If n == 1, return 1,
    else return factorial(n).

4.3.3 Rule 3: Don’t Use Non‑Local Variables

Ideally, a function should use its parameters, and only its param‑
eters, to compute a result. This makes the function more self‑con‑
tained and therefore easier to understand and debug.

A global variable is one that is accessible to all parts of the pro‑
gram. It doesn’t (typically) get copied, so any change to it is visible 
everywhere in the program.

If a parameter is passed by reference, this means that there is only 
one copy of that value, and what the function receives is a link 
or pointer to that value. Therefore, a reference parameter behaves 
like a global variable.

It’s acceptable for a recursive function to refer to a global variable, 
as long as it doesn’t also change it. For example, a recursive func‑
tion can look up values in a dictionary or a hash table.

It’s also acceptable for a recursive function to modify a global 
variable if that variable isn’t used in the computation. For exam‑
ple, a recursive function might use a global variable to count the 
number of times an operation is performed.

The problem arises when we try to both modify a global vari‑
able and use it in the recursion. This usually isn’t a problem with 
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simple numerical calculations, but can get complicated when a 
data structure is involved.

4.3.4 Rule 4: Don’t Look Down

Some texts have suggested that the way to understand a recur‑
sive function is to examine how it works at all levels of recur‑
sion. This may be a good way to convince yourself that recursion 
can work, but it’s not a good way to try to understand or debug 
a particular recursive function. It’s hard enough to understand 
one level of one function at a time; it’s almost impossible to keep 
track of many levels of the same function all at once. Don’t  
even try!

If you try to understand a non‑recursive function that happens 
to call other functions, you do not immediately start examining 
those other functions to see how they work. Instead, you begin by 
assuming that those other functions are correct.

The same should hold for recursive functions. In order to under‑
stand a recursive function, you should assume the recursive calls 
are doing the correct thing. If there is an error in them, then 
that same error occurs at this level, where you can find it. If you 
can get this level correct, you will automatically get  all levels  
correct.

There is never any need to “look down” into a recursion.

4.4 EXAMPLES OF RECURSION
We’ll briefly consider three examples. First is our old friend, the 
factorial.

function factorial(n):
    If n == 1, return 1,
    else return factorial(n ‑ 1) * n.

We ask the following questions:
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• Did we cover all possible cases?

• If n is a natural number (a positive integer), then n is 
either 1 or larger than 1, so we have covered all cases.

• If n is not a natural number (0, negative, or a real num‑
ber), then there are cases for which the function may not 
(and does not) work.

• Did we recur only with simpler cases?

• The “simplest” case is 1, and every recursive call is with a 
number that is closer to 1, so yes.

• Did we change any non‑local variables?

• No.

Therefore, the function is probably correct.

For a second example, let’s try to make factorial more efficient by 
performing two multiplications at each level.

function factorial(n):
    If n == 1, return 1,
    else return factorial(n ‑ 2) * (n ‑ 1) * n.

We’ll ask the same questions again.

• Did we cover all possible cases?

• If n is a natural number (a positive integer), then n is 
either 1 or larger than 1, so we have covered all cases.

• As before, n must be a natural number.

• Did we recur only with simpler cases?

• Is every recursive call with a number closer to 1? No, 
because 1 is odd, and if we start with an even number, 
we’ll recur only with even numbers, and overshoot 1.
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Finally, we’ll look at the Fibonacci series. This is a sequence of 
natural numbers starting with 1, 1. Each subsequent number is the 
sum of the two previous numbers, giving 1, 1, 2, 3, 5, 8, 13, 21, and 
so on. The n‑th Fibonacci number is easy to compute with a loop.

The first and second Fibonacci numbers are both 1. The definition 
of the n‑th Fibonacci number, for n > 2, is

fibonacci(n) = fibonacci(n ‑ 1) + fibonacci(n ‑ 2)

and this is also easy to compute with two recursions.

function fibonacci(n):
    If n < 3, return 1
    else return fibonacci(n ‑ 1) + fibonacci(n ‑ 2).

While easy (and correct), this is not efficient. Since there are two 
recursions at each level, the number of calls increases exponen‑
tially. For n = 10, only 109 calls are required, but for n = 30, 1664079 
calls are required. For an efficient solution, see Section 13.5.
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C h a p t e r  5

Stacks, Queues, 
and Deques

Stacks, queues, and deques are similar data structures. They 
consist of a linear sequence of values, to which new values can 

be added at an end or removed from an end.

• In a stack, insertions and deletions are performed at the 
same end.

• In a queue, insertions are performed at one end and dele‑
tions at the other end.

• In a deque, insertions and deletions can be performed at 
either end.

5.1 STACKS
A stack is an abstract data type with the following operations:

• Create a new, empty stack.

• Test if a stack is empty.

https://doi.org/10.1201/9781003625506-5
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• Push a new value onto the stack.

• Peek at the “top” (most recently added) element of a stack. 
Return it but do not remove it.

• Pop (remove) the “top” element of a stack and return it.

Other operations may be added as needed, for example, returning 
the number of elements on the stack or testing if an element occurs 
within the stack, but the above operations are fundamental.

Items are inserted at one end of a stack and removed from the 
same end. The consequence is that items will be removed in the 
reverse order from that in which they were added. For this rea‑
son, a stack is sometimes called a LIFO (last in, first out) data 
structure.

A stack can be implemented with two components: one array and 
one integer. See Figure 5.1.

In Figure  5.1, the values a, b, c, and d, in that order, have been 
pushed onto the stack. The most recently pushed value, d, is at the 
top of the stack; the next item that is pushed will be added after it.

The integer top can be defined in several ways. It can be the index 
of the topmost element (as in Figure  5.1), the index of the first 
available location (just past d), or as a count of how many items 
are in the stack.

With this implementation, two errors can occur: overflow, in 
which the number of items added exceeds the size of the array, 

FIGURE 5.1 Array implementation of a stack.
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and underflow, when an attempt is made to peek or pop from an 
empty stack. In Section 6.2, we will see an implementation that 
allows stacks of virtually unlimited size.

All stack operations, except possibly creation, take O(1) time.

5.1.1 Example: Balancing Brackets

A simple use of stacks is to determine whether “brackets” (in 
the general sense, including parentheses, braces, HTML tags, or 
others) are balanced—that is, every open bracket has a matching 
close bracket.

Omitting all the enclosed content, we can determine that ([]({()}
[()])) is balanced; ([]({()}[())]) is not.

Simple counting is not enough to check balance, but you can do it 
with a stack. Going from left to right:

• If you see a (, [, or {, push it onto the stack.

• If you see a), ], or }, pop the stack and check whether you got 
the corresponding (, [, or {; if not, it’s an error.

• When you reach the end, check that the stack is empty.

5.1.2 Example: Expression Evaluation

You can evaluate an expression, such as 1+2*3+4, using two stacks: 
one for operands (numbers) and the other for operators.

The basic algorithm is as follows. Proceeding from left to right:

• If you see a number, push it onto the number stack.

• If you see an operator,

• While the top of the operator stack holds an operator of 
equal or higher precedence:
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• Pop the old operator,

• Pop the top two values from the number stack and 
apply the old operator to them, and

• Push the result onto the number stack,

• Push the new operator onto the operator stack.

• At the end, perform any remaining operations.

There are several elaborations that can be made.

If a unary minus is encountered, push a zero onto the  operand 
stack and proceed as you would for a subtraction operator. 
(A minus is a unary operator if it is the first thing in an expression, 
if it immediately follows an open parenthesis, or if it  immediately 
follows another operator.)

An opening parenthesis can be treated as a low‑priority operator 
that does nothing. When a right parenthesis is encountered, per‑
form all the operations on the operator stack up to the left paren‑
thesis, then remove the left parenthesis from the operator stack.

The operator stack will occasionally become empty. To avoid 
treating this as a special case, invent a new “operator” with the 
lowest possible priority and initialize the operator stack with this 
value. To apply this operator, just quit, because all the work has 
been done.

Table 5.1 shows the evaluation of 2*(3+4), using '_' as the “quit” 
operator.

5.1.3 Example: Stack Frames

All modern programming languages use a stack to keep track of 
function calls and local variables.
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Functions can call other functions and can be recursive  (they can 
call themselves). At each call, the location of the calling statement 
(the return address) is pushed onto a call stack. If no errors inter‑
rupt the process, each return from a function pops a value from 
the call stack, and execution returns to that popped location.

Each function has its own set of local variables, including its 
parameters. Storage for these variables is allocated when the func‑
tion is called and released when the function returns. These local 
variables are also pushed onto the call stack when the function is 
entered and popped off when the function returns.

If all the local variables can be determined at compile time, they 
can be put into a node called a stack frame. This single entity can 
then, along with the return address, be pushed onto and popped 
off from the stack.

5.2 QUEUES
A queue is an abstract data type with the following operations:

• Create a new, empty queue.

• Test if a queue is empty.

• Enqueue (add) a new value onto the “rear” of the queue.

TABLE 5.1 Evaluating 2*(3+4)

Scanned Value Operator Stack Operand Stack

2 ['_'] [2]

* ['_', '*'] [2]

( ['_', '*', '('] [2]

3 ['_', '*', '('] [2, 3]

+ ['_', '*', '(', '+'] [2, 3]

4 ['_', '*', '(', '+'] [2, 3, 4]

) ['_', '*'] [2, 7]

['_'] [14]
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• Peek at the element at the “front” of the queue. Return it but 
do not remove it.

• Dequeue (remove) the “front” element of a queue and 
return it.

Other operations may be added as needed; the above operations 
are fundamental.

Queues implement a “first come, first served” strategy. Items are 
inserted at one end of the queue and removed from the opposite 
end, similar to a checkout line in a store. Queues are sometimes 
called FIFO (first in, first out) data structures.

A queue can be implemented with three components: one array 
and two integers. Figure 5.2 shows what a queue would look like 
after the items a through g have been added to it and items a 
through c have been removed.

To enqueue (add) an element, the rear index must be incremented, 
and to dequeue (remove) an element, the front index must be 
incremented. As a result, the array contents “creep forward.” To 
deal with this, incrementation is done modulo the array size, so 
that the array is effectively circular—the first element immedi‑
ately follows the last element.

Note: If your language uses 1‑based arrays, use (i–1) 
% n + 1 instead of i % n, where i is the index and n is 
the table size.

FIGURE 5.2 Array implementation of a queue.
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When the queue has exactly one element, front and rear will be 
equal. When the queue is empty, rear will be equal to front‑1 (mod‑
ulo the array size). When every queue location holds a value, rear 
will also be equal to front‑1! This means an empty queue cannot 
be distinguished from a full queue. Obviously, this is a problem.

Here are three solutions.:

• Make the array large enough so that it never gets full. This 
works (for a while) but is a disaster waiting to happen. Please 
don’t do this.

• Declare the queue to be full when rear equals front‑2 
(modulo the array size), so that one array location remains 
unused. Any attempt to enqueue something more will result 
in an overflow error.

• Keep a count of the number of elements in the queue, and 
don’t let it exceed the array size. This also works, but it 
requires a bit more work and has no obvious advantages.

An attempt to dequeue something from an empty queue will 
result in an underflow error.

All queue operations, except possibly creation, take O(1) time.

5.3 DEQUES
A deque (pronounced “deck”) is an abstract data type. The opera‑
tions are the same as those of a queue, except that insertions and 
deletions (and peeks) may be performed at either end.

Deques are rarely used and the names of the operations vary 
considerably from one implementation to another. We might, for 
example, have add_left and add_right to enqueue items, or per‑
haps add_at_front and add_at_rear.

A deque, like a queue, can be implemented with an array and two 
integer indices. Like a queue, deque operations take O(1) time.
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C h a p t e r  6

Linked Lists

Most languages provide one or more data structures 
called “lists.” Don’t be misled by names! Any data structure 

that represents a sequence of values can be called a list. In Python, 
for example, a “list” is implemented as an array.

In many languages, a “list” is a structure built around one of the 
two types of basic lists that we will explore in this chapter: the 
singly linked list (SLL) and the doubly linked list (DLL).

6.1 SINGLY LINKED LISTS
An singly linked list (SLL) can be implemented as an abstract data 
type with the following operations:

• is_empty(list) — Test if the list is empty (has no elements).

• head(list) — Return the first element of the list.

• tail(list) — Return the portion of the list containing every‑
thing after the first element.

• cons(value, list) — Return the list with the value added as 
a new first element.

https://doi.org/10.1201/9781003625506-6
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The names of the operations may vary, but head, tail, and cons 
(“construct”) are commonly used. Surprisingly, these four opera‑
tions are all that are commonly needed.

Singly linked lists are implemented as a collection of nodes, where 
each node contains a value field and a next field. The value field 
can hold whatever data the programmer chooses, while the next 
field holds a pointer to the next node in the sequence. The next 
field of the last node in the list is a “null” pointer, one that doesn’t 
point to anything. Depending on your language, a null pointer 
could be null (Java), None (Python), the number 0 (C), or some‑
thing similar.

Figure 6.1 represents a singly linked lists containing the values a, 
b, c, and d. Links are represented by solid circles and arrows, while 
the slash represents a “null link.”

To create a non‑empty list, the simplest way to begin is to cons a 
value onto the empty list. Then cons a value onto that, and then 
another, building the list in reverse order. For example, Figure 6.1 
could be created using the following code.

myList = cons(a, cons(b, cons(c, cons(d, NULL))))

In this example, head(myList) is the value a, and tail(myList) is 
the list b, c, d. Also notice that head(tail(myList)) is the value b, 
and tail(tail(myList)) is the list c, d.

Recursive functions and singly linked lists are ideally suited for 
each other. To write a recursive function on a list, the fundamental 

FIGURE 6.1 A singly linked list.



Linked Lists   ◾   59

recipe is: Do something with the head and recur with the tail. For 
example, to find the length of a list:

 function length(L):
       if L is empty, return 0
       else return 1 + length(tail(L))

To find the sum of elements in a numerical list:

function sum(L):
   if L is empty, return 0
   else return head(L) + sum(tail(L))

To get the last element in a non‑empty list:

function last(L):
    if tail(L) is empty, return head(L)
    else return last(tail(L))

To get the largest element in a non‑empty numerical list:

function largest(L):
    if tail(L) is empty, return head(L)
    else:
        tail_max = largest(tail(L))
        if head(L) > tail_max, return head(L)
        else return tail_max

To reverse a stack, the simplest algorithm is to create a second, 
empty stack, and then successively move all the elements from the 
first stack onto the second stack.

function reverse(L, L2):
    if L is empty, return L2
    return reverse(tail(L), cons(head(L, L2)))
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To use reverse, the user must remember to create a second, empty 
stack and pass it in as the L2 parameter. This isn’t ideal. In cases 
like this, it’s better to provide a façade function—another func‑
tion that “stands in front of” the function that does the work, and 
whose only purpose is to provide a nicer interface.

function reverse(L):
    return help_reverse(L, empty list)

function help_reverse(L, L2):
    if L is empty, return L2
    return help_reverse(tail(L), cons(head(L, L2)))

The operations is_empty, head, and tail all take O(1) time. The 
cons operator allocates memory for a new node, which we can 
assume also takes O(1) time.

6.2 STACKS AS SINGLY LINKED LISTS
As noted earlier, a stack can be viewed as an abstract data type with 
the following operations: Create a new, empty stack; Test if a stack 
is empty; Push a new value onto the stack; Peek at the “top” of a 
stack; and Pop (remove and return) the “top” element of a stack.

A stack can be implemented directly with a singly linked list (see 
Figure 6.2).

The operations on a stack are almost exactly the same as the oper‑
ations on a linked list.

• To create a stack, create a singly linked list.

• To test if a stack is empty, test if the list is empty.

FIGURE 6.2 Stack as a linked list.
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• To push a value onto a stack, cons it onto the list, then set 
the pointer to the front of the list to the node containing this 
new value. That is, list = cons(value, list).

• To peek at a stack, return the head of the list.

• To pop a stack, get and hold the head. Then set the pointer 
to the list to the tail of the list. Return the held value. That is, 
value = head(list); list = tail(list); return value.

One advantage of this implementation over using an array is that 
stack overflow never happens. (You can run out of available mem‑
ory, but that’s a somewhat different problem.) Another advantage 
is that if you already have singly linked lists available, implement‑
ing stacks is trivial.

6.3 IMPLEMENTATION NOTES
The easiest way to create an singly linked list is to define a node 
type with head and tail fields, where the head holds a data value 
and the tail holds a pointer to the next node in the sequence. Then, 
it’s easy to define head(node), tail(node), cons(value, node), and 
other functions.

In an object‑oriented language, however, it’s generally desirable 
to define the methods on an object within the definition of the 
object. Consequently, you would write node.head(), node.tail(), 
and so on. With a more “public” implementation, you might be 
able to write just node.head and tail.head, but other methods 
would still need to be written as method calls, for example, node.
cons(value).

In an object‑oriented implementation of lists, empty lists cause 
some difficulties. If an empty list is represented by a null value, it’s 
not possible to write a list.is_empty() function, because you can’t 
call methods on a null value. Instead, to ask if a list is empty, you 
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have to explicitly ask whether list equals the null value. To avoid 
this problem, every list might begin with a special header node.

The use of a header node makes it easy to implement the is_empty 
method and allows the creation of an “empty” list that is distin‑
guishable from a null value. The disadvantage is that every use of 
the tail operation involves creating a new header node.

A “node,” like an “array,” is not a specific type, but rather a gen‑
eral designation for a class of types. You can have one kind of 
node for the elements of singly linked list, another kind for the 
nodes in a binary tree, and so on. In languages with strict typing, 
the type of every field in a node must be specified in advance. In 
particular, the type of every link must be specified in advance so 
that when the link is followed, the type of the node it references 
is known.

In languages with strict typing, it is still possible to have a linked 
list containing mixed types. The node will have multiple fields, 
one for each type needed, with an additional flag field to specify 
which field to use. In Figure 6.3, the first field indicates which of 
the other fields to use; unused fields are shown in gray.

In some applications, lists may have sublists—the values in a 
list may themselves be lists. In any reasonable application, there 
must be more than just lists of sublists of sublists of sublists; the 
list must include some actual data at some point. To make this 

FIGURE 6.3 List with mixed types.
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possible, the nodes must have separate fields for the (possible) data 
and the (possible) link.

A few languages have variant records or tagged unions. These are 
nodes containing a tag to specify which type of data is included so 
that the same memory may be used for different types.

6.4 LISTS IN FUNCTIONAL PROGRAMMING
More and more languages are adding functional programming 
features, and singly linked lists  are an important part of that.

One of the tenets of functional programming is that the value of a 
variable never changes; instead, new values are saved in new vari‑
ables. Two tools make this feasible: recursion, in which new local 
variables are created by recursive calls, and singly linked lists, in 
which the cons and tail operations return new lists without alter‑
ing the original list.

Figure 6.4 shows myList from a previous section. List2 is created 
by consing aa onto myList, and List3 is created by taking the tail 
of myList. Because pointers are “one way,” all this is “invisible” 
from the viewpoint of myList.

The operations defined for singly linked lists in Section 6.1 do not 
support any changes to the content of lists once they are created, 
which is perfect for functional programming languages. If such 
operations are provided, as they might be in a non‑functional lan‑
guage, the type of structure sharing shown in Figure 6.4 is highly 
inadvisable.

FIGURE 6.4 Three separate lists with shared storage.
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6.5 DOUBLY LINKED LISTS
A  doubly linked list (DLL) can be implemented as a collection of 
nodes. Each node contains a value, a link to its successor (if any), 
and a link to its predecessor (if any).

In Figure 6.5, the middle node (containing b) has a previous field 
pointing to the node containing a and a next field pointing to the 
node containing c.

As an abstract data type, the operations on a DLL might be 
called is_empty, front, rear, next, previous, add_to_front, and 
add_to_rear.

To refer to the list as a whole, you could define a header node with 
just the fields front and rear. The header points to the first and last 
nodes in the list (or contains null links if the list is empty).

Doubly linked lists can be useful in applications where it is neces‑
sary to traverse the list in either direction.

Operations that manipulate a list, such as inserting nodes at a par‑
ticular location or deleting nodes, are easier on a list that has links 
in both directions.

6.6 CIRCULAR LINKED LISTS
Doubly linked lists can be made circular so that the link in the 
last element, rather than being null, points back to the first ele‑
ment. When this is done, “first” and “last” cease to have meaning; 
given a link to any node in the list, you can go around and around 
the list in either the forward or backward direction, indefinitely.

FIGURE 6.5 A doubly linked list.
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Singly linked lists can also be made circular, but doing this loses 
the advantage of structure sharing (see Section 6.4).

6.7 PYTHON “LISTS”
In Python, a “list” is implemented as an array of pointers, along 
with two additional values: the number of locations allocated to 
the array (its capacity) and the number actually in use (its length).

The values in an array must be all the same type. The values in a 
Python list may be of varying types and sizes because the array 
contains only pointers, which are all of the same size.

Indexing into an array takes constant time, and dereferencing a 
pointer also takes constant time, so accessing an element by its 
array index takes constant time.

If the array has unused capacity, appending a new item to the end 
or removing one takes constant time.

If appending a new item exceeds the capacity, then space must be 
allocated for a new, larger array, and all the values in the array must 
be copied to the new array. This, of course, takes O(n) time; however, 
the new array is chosen to be large enough that adding enough new 
values will amortize (average out) so that the result will still be O(1).

A variable whose value is the array cannot simply be a pointer 
to the storage for that array, since the array may be moved in 
memory. Instead, such variables must be a handle (a pointer to 
a pointer) to the array. This way, when the array is moved, only a 
single pointer, in a fixed location, needs to be updated.

For example, suppose a Python list (an array of pointers) needs to 
be expanded. The list may be referenced by multiple variables (call 
them ref1, ref2, and ref3), making it difficult to find and change 
them all. Instead, the following steps are taken (see Figure 6.6):
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 1. A larger block of storage is allocated.

 2. All values are copied from the old storage block to the new 
storage block.

 3. The handle is changed to refer to the new storage block. This 
makes the old storage block available for garbage collection.

In Figure 6.6, the gray arrow indicates the original pointer from 
the handle, and the black arrow indicates the new pointer. Note 
that the variables ref1, ref2, and ref3 remain unchanged.

6.8 HASH TABLES AND HASH MAPS II
The problem of collisions in a hash table can be sidestepped by 
making each entry in the hash table a pointer to a list of entries. 
See Figure 6.7.

This approach means that a hash table never gets “full”—new 
entries can always be added (at least until memory is exhausted, 
but that’s a different problem).

FIGURE 6.6 Relocating an array using a handle.

FIGURE 6.7 A hash map using linked lists.



Linked Lists   ◾   67

When adding to a hash table, we must first check that the item 
isn’t already present. This requires stepping through all the items 
with the same hash code. If the word being added is dove, this 
would end at the node containing crow, so it costs about the same 
to add dove before wren or after crow. In many cases, more fre‑
quent items are seen and added earlier, making it desirable to add 
later, less common entries at the end.

To delete a node from a list, change the pointer of the previous 
node to point to the node after the one being deleted. That is, if 
node A points to node B and node B points to node C, you can 
delete node B by simply changing node A to point to node C. The 
memory used by B can then be deallocated or garbage collected.

A hash map is a hash table in which each entry has associated 
information. This can be achieved by adding a field to each node. 
See Figure 6.8 for a small portion of such a hash map.

FIGURE 6.8 A hash map using linked lists.
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C h a p t e r  7

Binary Trees

A binary tree is composed of zero or more nodes. Each 
node contains three components: a value (some sort of data 

item), a reference or pointer to a left child (which may be null), 
and a reference or pointer to a right child (which may be null). The 
children of a node are themselves binary trees.

A binary tree may be empty (contain no nodes). If not empty, a 
binary tree has a root node (usually drawn at the top), and every 
node in the binary tree is reachable from the root node by a unique 
path (see Figure 7.1).

A node with neither a left child nor a right child is called a leaf.

An abstract data type for a binary tree should have, at a mini‑
mum, functions for creating and navigating the binary tree. For 
example,

• create_binary_tree(value, left_child, right_child)

• add_left_child(node, value)

• add_right_child(node, value)

https://doi.org/10.1201/9781003625506-7
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• get_left_child(node)

• get_right_child(node)

• get_value(node)

• set_value(node, value)

• is_leaf(node)

These functions all take O(1) time, and their names are self‑ 
explanatory. Any additional binary tree functions can be built 
from this set.

Here is some additional terminology:

• Node A is the parent of node B if node B is a child of A.

• Node A is an ancestor of node B if there is a path from A to B.

• Node B is a descendant of A if A is an ancestor of B.

• Nodes A and B are siblings if they have the same parent.

FIGURE 7.1 A binary tree.
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• The size of a binary tree is the number of nodes in it.

• The depth of a node is its distance from the root.

• The depth of a binary tree is the depth of its deepest node.

Note: One thing binary trees do not usually have or 
need is a link from each node “upwards” to its parent. 
Such a link can be added if needed by the application.

Here are some important but less obvious definitions (see 
Figure 7.2):

• A binary tree is “full” or complete if there is no place to add a 
node without increasing the level of the tree (see Figure 7.2a).

• A binary tree of depth k is balanced if the subtree down to 
depth k‑1 is complete (see Figures  7.2a, c, and d).

• A binary tree is balanced and left‑justified if it is balanced 
and all the leaves at the deepest level are as far to the left as 
possible (see Figure 7.2d).

FIGURE 7.2 Types of binary trees.
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7.1 BINARY TREE TRAVERSALS
A binary tree is defined recursively: it consists of a root, a left sub‑
tree, and a right subtree. To traverse (or walk) the binary tree is to 
visit each node in the binary tree exactly once. Tree traversals are 
naturally recursive.

Since a binary tree has three “parts,” there are three possible ways 
to traverse the binary tree in a forward direction. These are named 
according to when the root is visited.

• Preorder: Root, left subtree, right subtree.

• Inorder: Left subtree, root, right subtree.

• Postorder: Left subtree, right subtree, root.

One way to visualize these traversals is to attach a “flag” to each node. 
For preorder, the flags go on the left of each node; for inorder, on the 
bottom of each node; and for postorder, on the right of each node. 
To traverse the binary tree, simply collect the flags (see Figure 7.3).

There are three additional ways to traverse a binary tree; these are 
simply the reverses of the forward traversals.

• Reverse preorder: Root, right subtree, left subtree.

• Reverse inorder: Right subtree, root, left subtree.

• Reverse postorder: Right subtree, left subtree, root.

FIGURE 7.3 Binary tree traversals.
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Most operations involving binary trees are best done recursively. 
For example, here is how to use a preorder traversal to make a 
copy of a binary tree.

function copy_tree(node): 
    If node is null, return null.
    root = create_leaf(copy(node)). 
    left = copy_tree(get_left_child(node)). 
    right = copy_tree(get_right_child(node)). 
    return new binary_tree(root, left, right)

7.2 BINARY SEARCH TREES
A binary search tree is a binary tree such that, for each node, the 
value in the node is greater than all the values in its left subtree 
and less than all the values in its right subtree. Such a binary tree 
is said to be sorted (see Figure 7.4 for two examples).

To insert a value into a binary search tree, compare its value to 
the value at the root node. If the new value is less, insert it into the 
left subtree; if greater, insert it into the right subtree. If the chosen 
subtree is absent, place the new value in that location.

Deletion of a value from a binary search tree is usually not imple‑
mented. If this operation is needed, Figure 7.7 (“Reheaping”) sug‑
gests how to go about it.

As the name implies, binary search trees are used primarily for 
fast lookup. If the tree is balanced, lookups (and insertions) are 

FIGURE 7.4 Binary search trees.
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O(log n). Other fast operations include finding the smallest value, 
finding the largest value, and performing an inorder traversal to 
get all the values in ascending order.

If a search tree is not balanced, lookups and insertions will take 
more than O(log n) time. In the worst case, if the values are 
inserted in ascending (or descending) order, all left subtrees (or 
all right subtrees) will be absent. This will result in O(n) insertion 
and lookup times.

7.3 TREE BALANCING
For efficiency, we would like our binary trees to be balanced. 
Insertions can unbalance a tree; in this section, we will show 
the simplest (but not the most efficient) technique for rebalanc‑
ing a tree.

Consider any node in the tree. If its left subtree is deeper than its 
right subtree, we can perform a right rotation (Figure 7.5, going 
from left to right). If the node’s right subtree is deeper than its left 
subtree, we can perform a left rotation (Figure  7.5, going from 
right to left).

In Figure 7.5, A and B are individual nodes with specific values, 
while the triangles marked x, y, and z represent complete subtrees 
containing any number of nodes.

FIGURE 7.5 Binary tree rotations.
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Consider the tree on the left, with A at the root. Since we are con‑
sidering binary search trees, all the values in x are smaller than 
any other values in the tree, and all the values in z are larger than 
any other values. Of more interest, the values in y are all less than 
A but greater than B.

We can perform a right rotation as follows: B keeps its left subtree 
x, and A keeps its right subtree z, but A becomes the root of a right 
subtree of B (allowable because A > B), and y becomes a new left 
subtree of A (allowable because the values in y are all greater than 
B but less than A). The inverse operation, left rotation, also main‑
tains the sorted order of the binary search tree.

As a check, notice that inorder traversals of the two trees in 
Figure 7.5 produce identical results: x‑B‑y‑A‑z.

To rotate right:

top = left child of root.
temp = right child of top.
right child of top = root.
left child of root = temp.
Use top as the new root.

To rotate left:

top = right child of root.
temp = left child of top.
left child of top = root.
right child of root = temp.
Use top as the new root.

Multiple rotations may be required to completely rebalance a 
binary search tree. One way to do this is to traverse the tree in 
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postorder, performing rotations as required. The efficiency of this 
method depends in part on how expensive it is to determine the 
depth of individual nodes.

For very large binary search trees, simple rotations may be too 
inefficient. There are more efficient techniques, such as red‑black 
trees and AVL trees, but these are complex and (in the opinion of 
this author) not worth committing to memory.

7.4 HEAPSORT
Heapsort is a well‑known, traditional sorting algorithm that any 
student of data structures would be expected to know. It is gener‑
ally slower than quicksort but has the advantage that its running 
time is always O(n2), so it is safer in time‑critical situations. In 
addition, it’s a really interesting algorithm.

We’ll explain heapsort in three stages. First, we’ll talk about build‑
ing a binary tree. Second, we’ll show how that binary tree can be 
mapped into an array. Third, we’ll show how rearranging values 
in the binary tree is equivalent to sorting the array.

We need two definitions:

• A node in a binary tree has the heap property if the value 
in the node is at least as large as the values in its children. 
(Leaves, having no children, automatically have the heap 
property.)

• A binary tree is a heap if every node in it has the heap 
property.

Note: The word “heap” is also used to denote a large area of 
memory from which the programmer can allocate blocks as 
needed and deallocate them (or allow them to be garbage col‑
lected) when no longer needed (see Chapter 9). This is a com‑
pletely unrelated meaning of the word “heap.”
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We’ll begin by building a binary tree, one node at a time.

In a binary tree, a node has links to its children, but (in most 
implementations) it has no link to its parent. We will just be talk‑
ing about a binary tree, not implementing one, so we can ignore 
that limitation.

7.4.1 Phase 1: Heapifying a Binary Tree

To begin, consider a binary tree with only one node. This node 
has no children; therefore, it has the heap property, and the entire 
binary tree is a heap.

Next, consider adding a node to a binary tree (of whatever size) 
that is a heap. For reasons that will be apparent later, we will add 
the node next to the leftmost node in the bottom level or, if that 
level is full, as the leftmost node in a new level. The result will be a 
binary tree that is balanced and left‑justified.

There are two cases: (1) The value in the new node may be smaller 
than or equal to the value in its parent. In this case, the parent 
node retains the heap property, and nothing more needs to be 
done. (2) The value in the new node may be larger than the value 
in its parent, in which case the parent no longer has the heap 
property, and we need to sift up (see Figure 7.6).

In Figure 7.6, the binary tree is initially a heap, but then a node 
containing 14 is added to it. Since 14 is greater than 10, these two 

FIGURE 7.6 Sifting up.
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values must be exchanged. But then 14 is less than 12, so these 
two values must be exchanged. This process continues up the tree, 
possibly as far as the root.

After sifting up, all nodes in the binary tree again have the heap 
property. This is because the values in all the affected nodes (except 
the one in the leaf) can only increase, so the values in those nodes 
are still at least as large as either of their children. The only node 
to have its value reduced is the newly added leaf, which has the 
heap property because it’s a leaf.

When all the values to be sorted have thus been added to the 
binary tree, the tree is a heap. It isn’t sorted—values seem to be 
somewhat randomly arranged—but the largest value is at the root.

Now it gets weird.

7.4.2 Phase 2: Removing the Root and Reheaping

Once our hypothetical binary tree has been completely built, we 
will do something that we would never do with an actual binary 
tree: We remove the root, resulting in (in the general case) two 
disconnected binary trees, each of which is a heap.

To repair the damage, we will remove the rightmost node in the 
bottom level of the tree and use it to replace the old root node. 
This gives a binary tree again, but the root node may not, and 
probably does not, have the heap property. We need to reheap the 
binary tree (see Figure 7.7).

FIGURE 7.7 Reheaping.
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To reheap the binary tree, exchange the value in the root node 
with the value in one of its two children, whichever is larger. 
(If  they are equal, choose either.) This restores the heap prop‑
erty of the node at the root, but the chosen child may or may 
not have the heap property. If it does not, exchange its value with 
that in the larger child; and so on, down the binary tree, until the 
value that was in the root reaches a position where it again has the 
heap property.

By repeatedly removing the root and reheaping the binary tree, 
we get a series of steadily decreasing (or at least, non‑increasing) 
values, so we have the conceptual basis of a sorting technique. 
To turn this into an actual sorting technique, we need to put the 
binary tree into an array and work with it there.

7.4.3 Phase 3: Mapping a Binary Tree into an Array

There is an obvious way to put a binary tree into an array. Put 
the root value into the first location, then put the values of its 
left and right children in the second and third locations. Next, 
put the values of the root’s grandchildren into the array, then the 
great‑grandchildren, and so on (see Figure 7.8).

This mapping of binary trees to arrays works only when the binary 
tree is balanced and left‑justified. If it isn’t, there will be “holes” in 

FIGURE  7.8 Array representation of a balanced, left‑justified binary 
tree.
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the array that don’t correspond to nodes, and these would have to 
be marked in some way.

There are simple formulas for finding the left child, right child, or 
parent of a node. They are slightly different for 0‑based arrays and 
1‑based arrays.

If the first location in the array is at index 1:

• The left child of a node at location k is at 2*k.

• The right child of a node at location k is at 2*k+1.

• The parent of a node at location k is at k/2, using integer 
division.

If the first location in the array is at index 0:

• The left child of a node at location k is at 2*k+1.

• The right child of a node at location k is at 2*k+2.

• The parent of a node at location k is at (k‑1)/2, using integer 
division.

Up to this point, we have only imagined performing the heap 
operations on a balanced, left‑justified binary tree. Now that we 
have a way to represent such a binary tree as an array, we can 
implement those operations.

7.4.4 The Complete Heapsort Algorithm

Finally, here is the code to heapsort an array.

Heapify the array.
While the array isn’t empty:
    Swap the first and last elements.
    Decrement the index of the "last" element by 1.
    Reheap the new root node.
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All the values to be sorted are already present in the array, but we 
will pretend otherwise. As nodes are added to or removed from 
the binary tree, the values to the right become “invisible” to us. In 
other words, we will think of only the initial part of the array as 
representing the binary tree.

Here’s the algorithm again, this time in words.

 1. Heapify the array. Initially, the only value “visible” to us 
is the root, in the first location, so it is a leaf and has the 
heap property. As we step forward in the array, successive 
values become visible to us, and for each new value, we 
need to check whether its parent still has the heap prop‑
erty. If not, we sift up, exchanging values with the parent, 
and possibly its parent’s parent, and so on. When all the 
nodes have thus become visible, the array is a heap, but it 
isn’t yet sorted.

 2. Repeatedly exchange the value in the root (first) location 
with the value in the last visible location. This is the array 
equivalent of removing the root and replacing it with the 
rightmost leaf in the lowest level of the tree. This puts the 
largest remaining value in the last visible location, which 
now becomes “invisible,” that is, no longer part of the binary 
tree. The root location probably no longer has the heap prop‑
erty, so it has to be reheaped by comparing its value with 
those of its two children, and so on down into the binary 
tree. When the visible part of the array is reduced to a single 
node, the array has been sorted.

7.4.5 Analysis

In the first phase, we “add” n nodes to the binary tree. Each added 
node may have to be sifted up. Since the tree is balanced, the max‑
imum depth is log(n), so for each node added we may have to do 
as many as log(n) exchanges; therefore, the running time of this 
phase is O(n log n).
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In the second phase, we “remove” n nodes (those currently at 
the root). Since these are replaced by nodes that probably do not 
have the heap property, they may have to be reheaped. The maxi‑
mum depth of the binary tree is log(n), so this phase also requires  
O(n log n) time.

Finally, O(n log n) plus O(n log n) is O(n log n).

7.5 HUFFMAN ENCODING
Huffman encoding is the data compression technique used for zip 
files, gif files, and others. It uses a binary tree to create the encoding.

The concept underlying Huffman encoding is entropy. Entropy is 
a measure of information content: the number of bits required to 
store data, rather than the number of bits typically used.

Entropy is sometimes called a measure of surprise. If you ran‑
domly choose a letter from a page of text, you won’t be very sur‑
prised if you get a T or an E, but you would be more surprised if 
you get a J or a Q. Common letters such as T and E have lower 
entropy than J or Q, so they should be represented with fewer bits. 
Huffman encoding does this.

To create an encoding for text, the first step is to find the frequen‑
cies of each character. (For photographs, we might do the same for 
pixels.) Letter frequencies for English can be found in numerous 
sources and vary slightly according to the text used; in the follow‑
ing example, we use some of the values from https://pi.math.cor‑
nell.edu/~mec/2003‑2004/cryptography/subs/frequencies.html.

Construction of the tree is quite simple. Make a list of the leaves 
and their associated frequencies. At each step, the two smallest 
values in the queue are removed, a new (non‑leaf) node is created 
with the sum of these values, and placed back in the list. (A prior‑
ity queue, described in Chapter 8, is ideal for this purpose.)

https://pi.math.cornell.edu/~mec/2003-2004/cryptography/subs/frequencies.html
https://pi.math.cornell.edu/~mec/2003-2004/cryptography/subs/frequencies.html
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For a small example using only eight characters, see Figure 7.9.

The encoding for each character is determined by the path from 
the root to that character, using 0 for the left child and 1 for the 
right child. For example, d is encoded as 010, and the word decade 
as 0101011000001010.

Text encoded in this way can be decoded because the codes have 
the unique prefix property: None of the resultant binary codes is a 
prefix of any other code. This property holds because, in a binary 
tree, a leaf is not on a path to any other node.

Using the above encoding, the entropy of English text is about 
4.7 bits/character. This can be considerably improved by using 
digraphs (letter pairs), trigraphs (letter triples), whole words, or 
even larger units. For whole words, the entropy measure drops to 
about 2.62 bits/character. Similar results can be expected for other 
languages that use an alphabet.

To decode a Huffman‑encoded file, the code table must be included 
with the encoded data. This is a minor cost for large files, but for 
small files, the encoded file plus the code table may be larger than 
the unencoded file.

FIGURE 7.9 Huffman encoding.
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Priority Queues

A queue is a last‑in, last‑out data structure. A priority queue, 
on the other hand, returns the highest priority item first; the 

order of insertion makes little difference. As an abstract data type, 
a priority queue could be defined to have the following operations:

• Create a new, empty priority queue.

• Add an item with a given priority to the priority queue.

• Look at the highest priority item.

• Remove and return the highest priority item.

• Test if the priority queue is empty.

This isn’t the only way an ADT (abstract data type) could be defined 
for a priority queue. For example, the test for whether a priority 
queue is empty could be replaced by a function that returns the 
number of elements it contains. As another example, instead of 
the priority being inherent in the element to be added, it could 
be assigned when the element is added. And, of course,  many 
 additional operations could be added.

https://doi.org/10.1201/9781003625506-8
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The point is that there is not one universally agreed‑upon way to 
define an ADT. Rather, what is important is that the programmer 
defines some fixed set of operations for a data structure and pro‑
hibits others by hiding the implementation.

8.1 PRIORITY QUEUE IMPLEMENTATIONS
There are numerous ways a priority queue could be implemented. 
It could be done with

• An unsorted array. Insertion time would be O(1), removal 
time would be O(n).

• A sorted array. Insertion time would be O(n), removal time 
would be O(n log n).

• An unbalanced (random) binary tree. Depending on imple‑
mentation, insertion and deletion times would range from 
O(1) to O(n).

• A balanced binary tree. Insertion and deletion times would 
both be O(log n), and rebalancing the binary tree after each 
operation would take an additional O(log n).

The last of these is the fastest implementation; the disadvantage 
is that binary tree balancing algorithms are complicated. We will 
consider a simpler but in some ways equivalent implementation, 
using a heap (see Section 7.4).

In the heapsort algorithm, an array can be used to represent a 
left‑justified balanced binary tree (defined in Chapter 7). In such 
an array, there are simple formulas that can be applied to the array 
index of a node to find the indices of that node’s parent, left child, 
and right child. As the algorithm runs, it repeatedly generates the 
largest remaining value in the array.

With that reminder, here’s how to implement a priority queue:
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• Define an array with enough capacity to hold as many val‑
ues as can occur in the priority queue at any one time. (This 
requires judgment or the use of an array such as Python’s 
“list” that has flexible bounds.) Be sure to test for overflow.

• To insert a value, put it at the end of the current values in the 
array, and then sift up until that value is in its proper place.

• To get and remove a value, return the value in the first loca‑
tion (the “root”), replace it with the value in the last location, 
and reheap.

This works if the “highest priority” is represented by the largest 
number. Frequently, however, the highest priority is often repre‑
sented by the lowest number, with priority 1. This requires a redef‑
inition of “heap property.”

To heapsort an array into ascending order, we defined the heap 
property of a node to be that the value in the node is at least as 
large as the values in its children. If we instead define the heap 
property to mean “at least as small,” then the heapsort will sort an 
array into descending order. In a priority queue, this change will 
result in always returning the smallest numeric value, that is, the 
one with the highest priority.
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Heaps

As shown in Section 5.1.3, all modern programming 
 languages use a stack to keep track of local variables. Local 

variables and parameters are added to the stack when a function is 
entered and removed from the stack when the function exits. This 
works fine for fixed‑size values such as numbers and pointers.

Larger items, such as arrays, nodes, and strings, are kept in a 
heap. As an abstract data type, the heap has only two funda‑
mental actions: (1) allocate a block of storage of a given size from 
the heap and return a pointer to it, and (2) deallocate a block of 
 storage—that is, recycle it by returning it to the heap.

Some languages make it the responsibility of the programmer to 
allocate and deallocate storage, while other languages allocate 
storage automatically as needed and use garbage collection (see 
Section 9.3) to recycle it afterward. Either way, the storage is on 
a heap.

https://doi.org/10.1201/9781003625506-9
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9.1 HEAP IMPLEMENTATION
A heap is a single large block of storage, perhaps a few megabytes, 
to be parceled out and used as needed. Heaps are used by every 
programming language that allows new objects or arrays to be 
created during program execution.

A block is a single, contiguous area of storage within the heap. It 
has a header containing at least two items of information: a pointer 
to another block and the size of the block. The pointer is used to 
organize blocks into a singly linked list, and the size needs to be 
known when the block is deallocated. See Figure 9.1.

Initially, the entire heap consists of a single block, and the system 
has a pointer (let’s call it free) to that block. We will fill up the 
heap from the far end (the end farthest from the header).

To allocate a block of size n:

• Find an unused block in the heap that has at least n+2 storage 
locations available.

• Use the n+2  locations at the end of the block we just found 
to create a new block, and reduce the size of the block it was 
taken from by n+2.

• Set the size of the new block. The pointer field is not used.

• For security reasons, zero out the user data area of the block.

• Give the user a pointer to the new block.

FIGURE 9.1 Single node used for a heap.
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Figure 9.2 (1) shows the state of the heap after A has been allocated, 
and then B, and then C. Note that the blocks may be of different 
sizes. After each allocation, the size of the free block is decreased.

In Figure  9.2 (2), the block assigned to A has been deallocated. 
The free pointer points to this newly deallocated block, while the 
pointer in the block is assigned the previous value of free. This 
begins a linked list of deallocated blocks.

In Figure  9.2 (3), the block assigned to C has been deallocated. 
Pointers have been updated to maintain a list of deallocated 
blocks.

Under heavy use, heaps are subject to a problem called fragmen‑
tation. While there may be enough total free space to allocate a 
large block, that space is in fragments—consisting of small blocks 
scattered throughout the heap.

To deal with fragmentation, contiguous free blocks may be 
coalesced. In Figure  9.2 (3), the topmost unused area and the 
adjacent one pointed to by free could be combined into a single, 
larger block. The algorithm for doing this, which we will only hint 
at here, involves sorting the links to unused blocks by storage 
address.

FIGURE 9.2 Heap before and after allocations and deallocations.
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A more effective approach to dealing with fragmentation is 
to pack all the blocks in active use into one end of the heap. 
This can’t be done if the user has pointers to the active blocks, 
but it is possible if the user is only given handles (pointers 
to pointers) to the active blocks. This allows the actual block 
pointers to be updated as the blocks are moved. After this, all 
unused blocks will be contiguous and can be coalesced into 
one large block.

9.2 DEALLOCATION PROBLEMS
There are two potential errors when deallocating (freeing) storage.

A block may be deallocated too soon, while it is still accessible 
to some variable (let’s call it x) in the program. Then the block 
may be allocated and used to hold some other, unrelated data. The 
variable x then becomes a dangling reference—it points to the 
wrong kind of data, and using x to modify that data could have 
serious consequences.

The other kind of error occurs when storage is no longer in use but 
isn’t deallocated, causing the heap to gradually fill up with inac‑
cessible data. This is called a memory leak; if the program runs 
long enough, it will fail with an “out of memory” error.

These errors are common in languages that leave allocation and 
deallocation up to the programmer; they are much rarer in lan‑
guages that perform garbage collection (see Section 9.3).

If you have to deallocate storage yourself, a good strategy is to 
keep track of which function or method “owns” the storage. The 
function that owns the storage is responsible for deallocating it. 
Ownership can be transferred to another function or method; 
you just need a clearly defined policy for determining ownership. 
In practice, this is easier said than done.
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9.3 GARBAGE COLLECTION
Garbage is storage that has been allocated but is no longer avail‑
able to the program. It’s easy to create garbage: (1) Allocate some 
storage and save the pointer to it in a variable. (2) Assign a differ‑
ent value to that variable.

A garbage collector automatically finds and deallocates garbage. 
This is far safer (and more convenient) than having the program‑
mer do it. Dangling references cannot happen, and memory leaks, 
while not impossible, are much less likely.

Practically every modern language, not including C++, uses gar‑
bage collection. While it is unlikely that you will ever need to write 
a garbage collector, it can be helpful to understand how they work.

There are two well‑known algorithms (and several less well‑known 
ones) for performing garbage collection: Reference counting and 
Mark and sweep.

9.3.1 Reference Counting

When a block of storage is allocated, it includes header data that 
contains an integer reference count. The reference count keeps 
track of how many references (pointers) there are to that block.

When a pointer to the block is duplicated and saved in a new vari‑
able, the reference count is incremented. If a variable is changed to 
no longer point to the block, the reference count is decremented. If 
the reference count reaches zero, no remaining program variables 
point to it, and it can immediately be garbage collected.

Reference counting is a simple technique that is occasionally used. 
However, it is unreliable. If object A contains a pointer to object 
B, and object B contains a pointer to object A, then each is refer‑
enced, even if nothing else in the program references either one.  
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Circular references such as this will fool the garbage collector, 
which won’t collect either object A or object B. The result is a mem‑
ory leak.

9.3.2 Mark and Sweep

When memory runs low, languages that use mark and sweep 
temporarily pause the program and run the garbage collector.

First, the garbage collector marks every block. (Blocks must have 
a field in the header for this purpose.)

Second, the garbage collector performs an exhaustive search, start‑
ing from every reference variable in the program, and unmarks all 
the storage it can reach. When it finishes, every block that is still 
marked must not be accessible from the program; it is garbage 
that can be freed.

For this technique to work, it must be possible to find every ref‑
erence variable. This can’t be done by searching the raw code; 
instead, each time a reference variable is created, its location must 
be recorded, probably in a linked list. This is additional overhead.

Mark and sweep is much more reliable than reference counting, 
but it takes substantial time and, unlike reference counting, it 
must be done all at once—nothing else can be going on. The pro‑
gram stops responding during garbage collection. This can be a 
problem for many real‑time applications.
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Trees

A tree is like a binary tree, except that each node may have 
any number of children. To emphasize the distinction, a tree 

is sometimes called a general tree.

The usual way to implement a tree is with nodes containing three 
fields: some data value, a link to a list of children, and a link to the 
next sibling. See Figure 10.1.

Most of the terminology used to describe binary trees (ancestor, 
sibling, depth, etc.) can also be used for general trees, and there 
are a few additional terms:

FIGURE 10.1 A general tree and its implementation.

https://doi.org/10.1201/9781003625506-10
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• An ordered tree is one in which the order of the children 
is important; an unordered tree is one in which the order 
doesn’t matter, and the children of a node can be thought of 
as a set.

• The branching factor of a node is the number of children it 
has.

• The branching factor of a tree is the average branching fac‑
tor of its nodes.

Branching factors can be important when determining the Big‑O 
running times of tree algorithms.

To define a tree as an abstract data type, the following operations 
must be defined:

• Construct a new, possibly empty tree.

• Add a child to a node.

• Iterate through the children of a node, or (if ordered) get the 
ith child of a node.

• Get and set the value in a node.

If node removal is permitted, that usually means deleting the 
entire subtree whose root is that node.

General trees can be traversed in preorder: Visit the root and 
then traverse each child. Similarly, general trees can be traversed 
in postorder: Traverse all the subtrees, and then visit the root. 
Inorder traversals are not well defined.

10.1 APPLICATIONS OF TREES
In this section, we discuss some of the most common applications 
of trees.



94   ◾   Quick Data Structures

10.1.1 File Systems

File systems are almost always implemented as a tree structure. 
The nodes in the tree are of (at least) two types: folders (also called 
directories) and plain files. Folders are nodes that may themselves 
have children, while plain files do not.

A folder also contains a link to its parent, usually indicated by two 
dots (..). In UNIX, the root of the tree is denoted by a forward 
slash (/); in Windows, the root is probably denoted by C:.

10.1.2 Family Trees

Family trees are a challenge to represent accurately. If we ignore 
such factors as adoption, there are two basic problems. First, each 
person represented has two parents. Second, people often have 
children with more than one partner.

One approach to overcoming these problems is to have, in addi‑
tion to nodes representing individuals, nodes representing mar‑
riages (or affairs). It gets complicated.

A better way to represent biological relationships is with an “upside 
down” binary tree so that the root is a single individual. Since it is 
a biological fact (so far) that every child has exactly two biological 
parents, we can use left child = mother and right child = father. The 
terminology gets a bit confusing, since “parent” and “child” have 
opposite meanings in a binary tree than in a family.

This approach can easily be extended to multiple individuals. 
Suppose you have an extensive family tree with some individual at 
the root. A related individual could then have a “mother link” (left 
child) to a node in that binary tree, a “father link” (right child) to 
a node in that tree, or both, or neither. In this way, subtrees could 
be shared between individuals. To complete the data structure, 



Trees   ◾   95

you could add a list of “root” individuals, forming a “forest” of 
binary trees.

However, such “biological family trees” are probably only use‑
ful for medical/genetic purposes. To properly represent the wide 
variations in “societal family trees” (with adoptions, remarriages, 
same‑sex marriages, etc.), some other data structure must be used, 
and it won’t be as simple as a tree.

10.1.3 Game Trees

Trees are used heavily in implementing games, particularly board 
games.

A node represents the state of the game at one point in time. For 
example, if the game is chess, the state would include the positions 
of all the pieces, whose turn it is, and whether check has been 
called.

Each possible move represents a single step from the current node. 
The branches from a node represent the possible moves; the chil‑
dren represent the new positions. Planning ahead (in a game) 
means choosing a path through the tree.

A complication arises if it is possible to return to an earlier state of 
the game, allowing players to repeat the same sequence of moves 
over and over, resulting in a game that never terminates.

One way to handle a repeated state is to ignore the fact that it 
has occurred previously and treat it as a new node in the usual 
fashion. In theory, this would result in an infinitely deep tree 
and could lead to an infinite loop when choosing a path through 
the tree. This might or might not be a problem—if a tree is being 
built, it is built as needed, so an infinitely large tree would not be 
built. Similarly, deciding on a move (i.e., determining which child 
node to go to next) almost always involves a limited search, since 
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finding a path all the way through to the end of the game is infea‑
sible for any game much larger than tic‑tac‑toe.

Another way to handle a repeated state is to give a node a link 
back up in the tree to one of its ancestors. While this isn’t exactly 
illegal, it violates the definition of a “tree,” and the result is more 
properly called a graph (see Chapter 11) and should be treated as 
such.

10.1.4 Expressions

When a program is compiled, the first step is almost always pars‑
ing the program. Parsing creates a tree structure that is equivalent 
in meaning to the text of the program.

In the resultant parse tree, a node that is a leaf could hold either 
a value or the name of a variable whose value could be looked 
up (e.g., in a hash table). A node that is not a leaf could hold the 
name or symbol for an operation to be applied to the values of its 
children.

Control statements (while, if, etc.) are considered to be just another 
kind of operator. For example, the statements “First assign 1 to m; 
then while m is less than 1000, multiply m by 2” can be represented 
as shown in Figure 10.2; the sequencing operation is represented 
by a semicolon so that A;B means “first do A, then do B.”

FIGURE 10.2 Tree representation of code.
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While you may never be called upon to write a compiler, any‑
thing that has syntax—dates, addresses, phone numbers—can be 
parsed into its components. If you can’t parse text inputs, you are 
limited to reading simple things like numbers and strings. But if 
you can parse text input, you can make sense of:

• tell Mary "Meet me at noon"
• fire phasers at 3, 7
• jane.doe@google.com
• 28°12"48'
• 3:30pm‑5pm

One simple approach, which we won’t go into any detail here, 
involves two phases. In the first phase, the code breaks the input 
into a list of tokens, for example, ["3", ":", "30", "pm", "‑", "5", 
"pm"]. In the second phase, the next operator is found, suitable 
operands are looked for in the list of tokens, and those are assem‑
bled into a tree structure.

10.2 TREE SEARCHING
A tree search starts at the root and explores nodes from there, 
looking for a goal node (a node that satisfies certain conditions, 
depending on the problem). Figure 10.3 shows a small tree with 
two goal nodes, K and O, as indicated by double circles.

FIGURE 10.3 A tree with goal nodes marked.

mailto:jane.doe@google.com


98   ◾   Quick Data Structures

For some problems, any goal node is acceptable (K or O); for other 
problems, you want a minimum‑depth goal node, that is, a goal 
node nearest the root (only K).

A depth‑first search (DFS) explores a path all the way to a leaf 
before backtracking (going back to a previous node and exploring 
from another child of that node).

In the example tree, after visiting A (the root), the search proceeds 
to B, and then to E. The search then backtracks to B and searches 
from F, which leads to I, then M, and then successive backtracking 
to I leads to N and finally to O. Since O is a goal node, the search is 
complete.

A breadth‑first search (BFS) explores nodes nearest the root 
before exploring nodes further away. In the example tree, a BFS 
would first visit A (the root), then B, C, and D, then E, F, G, and H, and 
finally I, J, and the goal node K.

10.2.1 Depth‑First Searching

To perform a depth‑first search (DFS) of a tree:

Put the root node on a stack. 
While the stack is not empty: 
    Remove a node from the stack. 
    If the node is a goal node, report success. 
    Put the children of the node onto the stack. 
Report failure.

At each step, the stack contains some nodes from several levels. The 
size of the stack required depends on the branching factor b. While 
searching level n, the stack contains approximately b  ×  n nodes.

When this method succeeds, it returns some goal node but doesn’t 
report the path taken to it.
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To perform a recursive depth‑first search,

function search(node): 
    If node is a goal, return success. 
    For each child c of node: 
        If search(c) is successful,
            save the node, and
            report success. 
    Return failure.

The stack only needs to be large enough to hold the deepest search 
path.

When the function succeeds, the (implicit) stack contains only 
the nodes on a path from the root to a goal. As the recursion 
“unwinds” through multiple levels, those nodes can be saved in 
some external data structure, such as a stack.

If a goal node nearest the root is required, depth‑first searching 
is inappropriate. It may find an arbitrarily deep goal node rather 
than a nearby one. It can also fail if there are extremely deep paths 
not containing a goal node.

10.2.2 Breadth‑First Searching

To perform a breadth‑first search (BFS) of a tree:

Put the root node on a queue. 
While the queue is not empty: 
    Remove a node from the queue. 
    If the node is a goal node, report success. 
    Put all children of the node onto the queue. 
Report failure.

The advantage of a breadth‑first search is that when it succeeds, 
it finds a minimum‑depth (nearest the root) goal node.
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Breadth‑first searching has some serious disadvantages.

• In a typical tree, the number of nodes at each level 
increases  exponentially with the depth. During the 
search, the queue will hold, at various times, all the nodes 
at  a  given  level. Hence, memory requirements may be 
infeasible.

• A successful breadth‑first search doesn’t provide the path to 
the goal node, and there is no recursive equivalent that will 
give the path.

• For a large tree, a breadth‑first search may take an exces‑
sively long time to find even a very nearby goal node.

10.2.3 Depth‑First Iterative Deepening

Depth‑first searches have reasonable memory requirements 
but may overlook nearby goal nodes. Breadth‑first searches 
find nearby goal nodes but may require excessive memory. A 
depth‑first iterative deepening search has both advantages: it 
will find nearby goal nodes while using a reasonable amount of 
memory.

We first consider depth‑limited searching. This is just a recur‑
sive depth‑first search with a counter to limit how deep the 
search goes.

function limitedDFS(node, limit, depth): 
    If depth > limit, return failure. 
    If node is a goal node, return success. 
    For each child of node: 
        If (limitedDFS(child, limit, depth + 1))
            Save node on an external stack. 
            return success. 
    Return failure.
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Since this method is basically DFS, when it succeeds, the path to 
a goal node can be recovered by pushing the current node onto a 
stack just before the return success statement.

We can now use this function to perform a depth‑first iterative 
deepening search.

limit = 0. 
found = false. 
While not found: 
    found = limitedDFS(root, limit, 0). 
    limit = limit + 1.

This code searches to depth 0 (root only), then if that fails, it searches 
to depth 1 (root and its children), then if that fails, it searches to 
depth 2 (root and its children and grandchildren), and so on.

Like BFS, if a goal node is found, it is a nearest node, and the path 
to it is on the stack.

Like DFS, the required stack size is only the search depth (plus 1).

One apparent disadvantage is that when doing a limited DFS to 
depth n, all the previous work (to depth n–1, n–2, etc.) is simply 
discarded. While true, this is less of a waste than it may appear. 
When searching a binary tree to depth 7, a single DFS requires 
searching 255 nodes, while iterative deepening requires search‑
ing 502 nodes. In general, iterative deepening takes about twice 
as long. With a tree that has a branching factor of 4, DFS to depth 
7 requires searching 21845 nodes, while iterative deepening 
searches 29124 nodes—about 4/3 = 1.33 times as long.

The higher the branching factor, the lower the relative cost of iter‑
ative deepening DFS. In general, if the branching factor is b, the 
difference is about b/(b–1).
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10.2.4 State‑Space Searches

Some problems are best represented as a search in a state space. A 
state space consists of a (possibly infinite) set of states and a set 
of operators.

The start state represents the initial problem. Applying an opera‑
tor to a state in the state space transforms it to another state in the 
state space. Some states may be goal states; these represent solu‑
tions to the problem.

Not all operators are applicable to all states.

Example 1: Maze

A maze can be represented as a state space. Each state repre‑
sents “where you are” in the maze. The start state represents 
your starting position, and the goal state represents the exit 
from the maze.

Operators (for a rectangular maze) are: move north, move 
south, move east, and move west. Each operator takes you 
to a new state, which is simply your location in the maze. 
Operators may not always apply because you are not allowed 
to walk through walls.

See Section 11.8 for an example of a rectangular maze.

Example 2: Sliding Blocks

One of the best‑known sliding block puzzles is the fifteen 
puzzle. It contains 15 tiles, numbered 1 through 15, in a 
4x4 grid. The start state is some apparently random configu‑
ration of the tiles, while the goal state is one where the num‑
bered tiles are in order; see Figure 10.4.

Note: In the fifteen puzzle, only half the possible config‑
urations are reachable from (or to) the goal state. If the 
state space is thought of as an undirected graph, it has two 
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distinct connected components. Hence, the start state 
cannot be completely random.

In this problem as in many others, the choice of operators is 
critically important. This choice affects both execution time 
and the difficulty of writing the code.

The obvious set of operators is to move an individual 
block either left, right, up, or down. As there are 15 blocks, 
this results in a total of 60 operators, at most four of which 
will be applicable from any given state. This isn’t ideal.

A much better set of operators is to move the space either 
left, right, up, or down. Of these four operators, at least two 
will be applicable from any given state.

We will return to this puzzle in Section 11.9.1.

Example 3: Angels and Demons

“Missionaries and cannibals” is a classic puzzle, but to avoid 
giving offense to any cannibals among my readers, I have 
recast it as “angels and demons.” (Besides, this simplifies 
finding appropriate images.)

Here’s the problem. Three angels and three demons want 
to cross a river. They have a canoe that will hold only one 
or two at a time (see Figure 10.5). Unfortunately, if at any 
time the demons outnumber the angels, they will destroy 
the angels. How do you get everyone safely across the river?

We will explore the state space of this problem in some‑
what more detail.

FIGURE 10.4 The fifteen puzzle, unsolved and solved.
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We need to represent the possible states, preferably in as 
simple a manner as possible. A triple of numbers is enough: 
The number of angels on the left bank, the number of 
demons on the left bank, and the number of canoes (zero or 
one) on the left bank.

We will define five possible operations, named a, d, aa, dd, 
and ad:

• a: Use the canoe to take 1 angel across the river.
• d: Use the canoe to take 1 demon across the river.
• aa: Use the canoe to take 2 angels across the river.
• dd: Use the canoe to take 2 demons across the river.
• ad: Use the canoe to take 1 angel and 1 demon across 

the river.

We don’t have to specify “west to east” or “east to west” 
because only one of these will be possible at any given time.

Figure  10.6 shows the initial portion of a state‑space 
search for this problem. The search space continues after the 
vertex in the bottom right.

In Figure 10.6, each node shows in the top line what is 
on the left bank and (redundantly) in the bottom line what 
is on the right bank. This redundancy does not need to be 
reflected in the code; it’s in the figure to make it easier to see 

FIGURE 10.5 Angels and demons—start state and goal state.
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when demons outnumber angels. A failure node (marked 
with a skull and crossbones) occurs when demons outnum‑
ber angels on either bank.

The search space is shown as an undirected graph. Most 
edges may be traversed in either direction; the exception 
is that there is no exit from a failure node. Because there 
are cycles in the graph, graph searching techniques (see 
Section 11.4) are appropriate.

10.2.5 Pruning

In any kind of search, pruning—deleting (or just ignoring) sub‑
trees that cannot contain a goal node—can save considerable 
effort. For very large search trees, it may also be advisable to prune 
subtrees that seem unlikely to contain a goal node so that more 
promising subtrees may be searched to a greater depth.

Pruning is important because the savings in time can be expo‑
nential. Consider a binary search tree: If one of the two children 
of the root can be pruned, search time is cut in half. Each of the 

FIGURE 10.6 Initial part of the search space for angels and demons.
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four grandchildren that can be pruned will save one‑quarter of 
the time. And so on. The higher in a tree that pruning occurs, the 
greater the savings.

10.2.6 Alpha–Beta Searching

In many tabletop games, such as chess, checkers, and backgam‑
mon, two players take turns choosing moves. This complicates the 
search for a winning move.

Because such games result in very large search trees, it is gener‑
ally not possible to search deep enough to find a winning node, so 
heuristics are used to evaluate the “goodness” of nodes. The idea of 
an alpha–beta search is to prune branches that are unlikely to be 
taken, thus allowing deeper searches on more promising branches.

An alpha cutoff occurs when it is your move, and you decide not 
to explore certain subtrees because you have already found a more 
promising subtree of that node. A beta cutoff occurs when it is 
your opponent’s move, and you believe that your opponent will 
not move into that subtree because it is more desirable to you.

Figure 10.7 shows the result of an alpha–beta search on a tree that 
is just barely big enough to show some examples. Your moves are 

FIGURE 10.7 Alpha–beta cutoffs.
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shown as rectangular nodes; your opponent’s moves are shown as 
round or rounded nodes.

a. The search extends down to node a, which has a heuristic value 
of 17.

b. The value 17 is brought up to node b. This is known as a prelimi‑
nary backed‑up value (PBV); it can change.

c. The next child of node b, node c, is evaluated. It has a heuristic 
value of 20.

b. Since 20 is better than 17, the PBV at b is replaced by 20.

d. A PBV of 20 is brought up to node d.

e. From node d, we explore down to node e, which has a heuristic 
value of 12.

f. Node f is assigned a PBV of 12.

g. Node g is visited, and it has a heuristic value of 18.

f. The PBV of 12 at node f is replaced by the better value of 18.

d. Node d is the opponent’s move, so they will replace the PBV of 
20 with the (better for them, worse for you) value of 18.

h. The PBV of 18 is brought up to node h.

i, j, k, l. Node l is explored, and gets a PBV of 15. But 15 is worse 
than the parent node’s PBV of 18, and your opponent will never 
bring up a larger value; therefore, there is no point in exploring 
any further subtrees of l. This is an alpha cutoff, and the value of 
15 is not brought up to node h.
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m, n, o, p. The leftmost child of p is explored, and p gets a PBV of 25.

q, r. Nodes q and r are explored, and a PBV of 32 is brought up to 
node r. But 32 is worse for your opponent than the PBV of 25 at p, 
so the value of 32 is not brought up, and a beta cutoff occurs.

h. The PBV of 25 at node p is better than the PBV of 18 at node h, 
so it replaces the value in node h.

According to what has been determined so far, you should move 
from h to p, your opponent will likely move from p to n, and you 
should move from n to o. However, after your opponent’s move, 
you will probably have an opportunity to do another, deeper 
search and very likely get some different values.

More explicitly, an alpha cutoff occurs when:

• It is your opponent’s turn to move, and

• You have computed a PBV for this node’s parent, and

• The node’s parent has a higher PBV than this node, and

• This node has other children you no longer need to consider.

A beta cutoff occurs when:

• It is your turn to move, and

• You have computed a PBV for this node’s parent, and

• The node’s parent has a lower PBV than this node, and

• This node has other children you no longer need to consider.

Alpha–beta searching assumes that your opponent has the same 
heuristic function as you (i.e., they assign the same heuristic val‑
ues to nodes). This is probably an incorrect assumption, but better 
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heuristics and deeper searches tend to win out over weaker heu‑
ristics and shallower searches.

10.3 TRIES
A trie is a data structure used for storing and retrieving a very 
large collection of strings—say, a complete lexicon or a large num‑
ber of DNA nucleotide sequences.

The trie in Figure 10.8 represents 15 words: a, an, and, any, than, 
that, the, there, these, those, what, when, where, who, and why. 
Black nodes indicate that a complete word has been formed at that 
point. To locate a given word, start at the root and follow the link 
labeled with the first letter; then follow the link labeled with the 
second letter; and so on.

Conceptually a trie is a kind of tree, but the implementation is 
completely different. Instead of linked lists, tries use arrays. 
In our example, we will discuss a trie containing all and only 
English words that can be formed using the 26  lowercase let‑
ters. Figure 10.9 shows a part of the implementation of the trie in 
Figure 10.8; ellipses indicate parts that have been omitted from 
the figure.

FIGURE 10.8 A trie.
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At the root of our example trie is an array of 26  locations, cor‑
responding to the 26  lowercase letters. Each array contains two 
things: a link to a sub‑trie and a Boolean (not shown in Figure 10.9) 
indicating whether a complete word has been formed.

Letters are not explicit in the trie; they are implied by locations 
in the array. The first location of the root array contains a link to 
a sub‑trie for all words beginning with ‘a,’ the second contains a 
link to a sub‑trie for words beginning with ‘b,’ and so on. Each 
sub‑trie has the same form, with links to its own sub‑tries.

To look up the word ‘any,’ start in the root array and follow the link 
in the first location (a); from the array that link points to, follow 
the link in the fourteenth location (n); from that array, follow the 
link in the twenty‑fifth location (y). This is a leaf, so a‑n‑y is a word. 
(So are ‘a’ and ‘a‑n,’ but as they are not leaves, those array locations 
must contain a Boolean to indicate they are also complete words.)

Note: To convert letters to numeric indices, subtract the 
numeric value of 'a' from the numeric value of the letter; add 
1 if your arrays are 1‑based.

Tries have a large number of advantages.

• Tries are extremely efficient in terms of execution time.

• The time required to build a trie is O(nk), where n is the 
number of strings and k is the average length of a string.

FIGURE 10.9 Part of the trie implementation.
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• Insertion, deletion, and lookup each require only O(k) 
time.

• Words can be looked up in O(L) time, where L is the 
length of the word; non‑words may require even less 
time.

• The complete word list can be generated in alphabetical 
order using a preorder traversal.

• Tries can be used to find words with a given prefix, which 
can be useful for auto‑completion, for example.

It may seem that the space complexity required for a trie could 
be exponential. In theory, a trie using 26  letters might require 
26 raised to the power of the maximum word length. However, 
in practice, the space required is limited to a constant times the 
actual number of strings. While this may represent a substantial 
amount of storage, it isn’t exponential.

A trie can also be represented using hash maps instead of arrays. 
This approach has the advantage of supporting a flexible set of 
characters (e.g., Unicode) rather than a fixed‑size set, but it loses 
the ease of generating all words (or other types of strings) in 
alphabetical order.
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Graphs

A graph is a data structure that consists of a collection of 
vertices connected by edges. There are two kinds of graphs: 

directed graphs (sometimes called digraphs) and undirected 
graphs (see Figure 11.1). Edges in a digraph can be followed only 
in one direction, while edges in an undirected graph may be fol‑
lowed in either direction.

Since edges in a graph are often represented by pointers or ref‑
erences that can only be followed in one direction, edges in an 
undirected graph are often implemented by a pair of pointers, one 
in each direction.

In a graph, data is usually (but not necessarily) stored in the verti‑
ces. As shown in the graphs in Figure 11.1, data may also be stored 
in the edges.

FIGURE 11.1 Directed (left) and undirected (right) graphs.

https://doi.org/10.1201/9781003625506-11


Graphs   ◾   113

There are many ways to implement graphs. But first, some 
terminology.

• The size of a graph is the number of vertices it contains. The 
empty graph has no vertices, so its size is zero.

• If two vertices are connected by an edge, they are neighbors, 
and the vertices are adjacent to each other.

• The degree of a vertex is the number of edges it has.

• For directed graphs,

• If a directed edge goes from vertex S to vertex D, we call S 
the source and D the destination of the edge.

• An edge from S to D is an out‑edge of S and an in‑edge of 
D. S is a predecessor of D, and D is a successor of S.

• The in‑degree of a vertex is the number of in‑edges it 
has, while the out‑degree of a vertex is the number of 
out‑edges it has.

• A path is a list of edges such that every vertex but the last is 
the predecessor of the next vertex in the list.

• A cycle is a path whose first and last vertices are the same 
(e.g., [rock, scissors, paper, rock]).

• A cyclic graph contains at least one cycle, while an acyclic 
graph does not contain any cycles.

• An undirected graph is connected if there is a path from 
every vertex to every other vertex.

• A directed graph is strongly connected if there is a path from 
every vertex to every other vertex, and weakly connected if 
the underlying undirected graph (ignoring edge direction) 
is connected.
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• Vertex X is reachable from vertex Y if there is a path from 
Y to X.

• A subset of the vertices of a graph is a connected component 
(or just a component) if there is a path from every vertex in 
the subset to every other vertex in the subset.

The best way to implement a graph depends on how the graph is 
to be used; here are some questions to consider:

• How large is the graph?

• Is data associated with the vertices? With the edges?

• Should vertices be ordered? How about the out‑edges of a 
vertex?

• Which graph operations need to be efficient?

11.1 GRAPH APPLICATIONS
Graphs can be used for

• Finding a route to drive from one city to another

• Finding connecting flights from one city to another

• Determining least‑cost highway connections

• Designing optimal connections on a computer chip

• Implementing automata

• Implementing compilers

• Doing garbage collection

• Representing family histories

• Doing similarity testing (e.g., for a dating service)
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• Pert charts

• Playing games

• Finding a minimum‑length path.

11.2 ADJACENCY MATRIX REPRESENTATIONS
An adjacency matrix is a particularly simple way to represent 
a graph because it uses a matrix, or two‑dimensional array. 
Figure 11.2 shows an example of a directed graph and its repre‑
sentation as a matrix.

If there is an edge from vertex i to vertex j, then there is a value in 
row i and column j of the array. In a Boolean array, an edge can 
be represented by True and the absence of an edge by False. If the 
array is numeric, array entries can be used to represent values on 
the edges (miles from city A to city D, for example).

This representation shows connections between vertices but does 
not support storing data in those vertices. If that is needed, it must 
be done elsewhere.

An undirected graph can be represented in the same manner. If 
there is an edge between vertex i and vertex j, then there is a value 
in row i and column j of the array, but also in row j and column 
i (see Figure 11.3).

FIGURE 11.2 Matrix representation of a directed graph.
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The adjacency matrix for an undirected graph is symmetric about 
the main diagonal, as shown in Figure 11.3. Each edge is repre‑
sented by two marks, except in the special case where an edge goes 
from a vertex back to the same vertex.

For very dense graphs—ones in which there are edges between 
almost every pair of vertices—matrix representations may be 
appropriate. However, adjacency matrices require O(n2) space to 
represent n vertices, regardless of the number of edges. For less 
dense graphs, this disadvantage can be overcome by the use of a 
sparse array (see Section 11.5).

11.3 REPRESENTATION BY SETS
In this section, we will explore graph implementations using sets 
of vertices and sets of edges.

Reminder: A set is an unordered collection of values in which 
each value occurs either exactly once or not at all. By conven‑
tion, set values are shown enclosed in curly braces, {}.

Many languages provide sets as a built‑in data type. If not, they 
can be implemented, perhaps as a hash table. Our focus in this 
section will be on using sets, although if an ordering is desired, 
lists can be used instead.

FIGURE 11.3 Matrix representation of an undirected graph.
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An edge set implementation of a directed graph is just a set of 
edges, where each edge is a pair of values (link to source vertex 
and link to destination vertex) and possibly a value for the edge 
itself. If desired, the vertices themselves can be in a second set.

To represent an undirected graph, the two vertices of an edge can 
be treated as the two ends of the edge, rather than source and 
destination.

The main advantage of an edge set representation is that it is easy 
to implement. It also makes it easy to find vertices from an edge, 
but finding the edges from a vertex requires searching the set of 
edges. This makes finding a path from one vertex to another very 
inefficient.

An adjacency set implementation makes a graph much more 
navigable by including redundant information: An edge “knows 
about” its source and destination, while a vertex “knows about” its 
out‑edges (and possibly its in‑edges) (see Figure 11.4).

If the edges p through v have no associated values, they can be 
elided. Each vertex, instead of pointing to a set of edges, can point 
to the set of vertices reachable by following those edges.

11.4 SEARCHING A GRAPH
With certain modifications, any tree search technique can 
be applied to a graph. This includes depth‑first, breadth‑first, 
depth‑first iterative deepening, and almost any other type of 

FIGURE 11.4 Adjacency set representation of a graph.
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search. The difference is that a graph may have cycles, and any 
search technique must avoid getting caught in endless repetitions 
around a cycle.

To avoid getting trapped in a cycle, keep track of which vertices 
you have already searched, so you don’t repeat those searches. 
There are two ways to do this: (1) keep a list of vertices you have 
already visited, or (2) put a mark on the vertices you have visited. 
The latter approach is more intrusive—it might interfere with later 
searches—and in a team setting, you may not have the option to 
change how vertices are implemented.

We will compare the code for performing a depth‑first search 
(DFS) on a tree with doing the same kind of search on a graph. 
Other types of searches require similar changes.

Here is how to do DFS on a tree:

Put the root node on a stack. 
While the stack is not empty:
    Remove a node from the stack. 
    If the node is a goal node,
        return success,
    else 
         put all children of the node onto the stack. 
If you get to here, return failure.

Here is how to do DFS on a graph:

Put the starting vertex on a stack; 
While the stack is not empty:
    Remove a vertex from the stack. 
    If the vertex has already been visited,
         continue with the next loop iteration.
    If the vertex is a goal node,



Graphs   ◾   119

        return success,
    else, 
         put all the successors of the vertex
           onto the stack. 
If you get to here, return failure.

You can use DFS to find the connected components of an undi‑
rected graph. For each vertex in the graph, if it isn’t already in 
some component, create a new component for it, then perform a 
DFS, and add every reachable vertex to the same component. The 
result will be a set of components, that is, a set of sets of vertices.

The same approach does not work for finding connected compo‑
nents of a directed graph. To do that efficiently requires an algo‑
rithm (Union‑Find) not covered in this book.

11.5 SPARSE ARRAYS
A university or college might have thousands of students and 
thousands of courses. During their college career, a typical student 
will take perhaps a few dozen courses, get a grade in each of these, 
and will not take thousands of other courses. Suppose we represent 
this as an array with one row for each student and one column for 
each course; the student’s grades would be the values in the array. 
If an ordinary array is used, the waste of storage space would be 
phenomenal. Processing times would also be negatively affected.

For this and similar situations, a sparse array is appropriate. 
As an abstract data type, a sparse array can be used just like an 
ordinary array, but the implementation only allocates space for 
non‑null (or non‑zero) elements.

Consider the ADT (Abstract Data Type) for an ordinary 
two‑dimensional array. There are really only two necessary opera‑
tions: (1) given the row and column indices of an array location, 
store some value in that location, and (2) given the row and col‑
umn indices, fetch the value from that location.
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To implement these two operations for a sparse array, you could 
use a hash map (see Section 3.4), using some combination of the 
indices to compute a hash code. That works, but it turns out to 
make access to rows and columns very difficult.

Returning to the college example, you might ask: What courses 
has this student taken? or, Which students have taken this course? 
With a hash map representation, these would be very difficult 
questions to answer. In terms of an array, these questions are 
equivalent to finding all the non‑null values in a row and finding 
all the non‑null values in a column.

For each row, you can use a linked list. Each node in the linked 
list will contain the column number (which would be hard to find 
otherwise) and the value (grade) in that location of the array. You 
could then create a linked list of these “row lists.” Similarly, you 
can create a linked list of all the values in a column (along with 
their row numbers) and make a linked list of these.

Figure  11.5 shows a sparse array with both a list of “row lists” 
and a list of “column lists.” Since a node can be approached from 
either direction (row or column), it should contain both the row 
number and the column number, along with whatever other value 
it may hold.

If, as in the college example, you can expect almost every row and 
every column to contain some meaningful values, you can use an 

FIGURE 11.5 A sparse array and its representation.
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array instead of a list to hold links to the “row lists,” and another 
array of links for the “column lists.”

Sparse arrays are also useful in linear algebra, where you may 
have large matrices with almost all zero entries.

11.6 DIJKSTRA’S ALGORITHM
Dijkstra’s algorithm finds the least‑cost path in a graph from a 
given vertex to all reachable vertices. It is a complex algorithm, 
but is included in this book because many problems require find‑
ing a least‑cost path.

Dijkstra’s Algorithm builds a kind of “inverse tree,” where all 
paths lead to the root rather than from the root. To find the best 
path from vertex X to some vertex Y in this tree, we start at Y and 
follow the only available path back to X.

Each edge in the graph has a cost (or distance) measure on it. For 
the algorithm to work, no edges can have a negative cost.

For each vertex V, we need to keep track of three pieces of information:

• The cost of the best path to V that has been found so far.

• Whether the cost of the best path to V is final or is still only 
tentative. Initially, all costs are infinite (or some suitably 
large number) and tentative.

• A link (directed edge) from that vertex. Initially, all links 
are null.

We also need to keep a priority queue of vertices adjacent to the 
vertices that have been visited so far.

For the graph in Figure 11.6, begin by putting vertex X into the 
priority queue. The cost to get to X from itself is zero, that cost is 
final, and the directed edge is null. Then, at each step:
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 1. Pull from the priority queue the vertex N with the smallest 
tentative cost and mark that cost as final. (Any other path to 
N must cost more because it must go through a vertex with 
a higher tentative cost.)

 2. Add to the priority queue any vertices adjacent to N that are 
not already in the priority queue and whose cost is still ten‑
tative. Add links from each of those vertices back to N.

 3. For each vertex V adjacent to N that does not already have a 
final cost, compute the cost of getting to V by way of N (the 
cost of N plus the cost of the edge from N to V). If this cost 
is less than the tentative cost of V, update V’s tentative cost, 
and make it link back to N.

When the priority queue becomes empty, all vertices reachable 
from X have been processed and the “inverse tree” is complete.

11.7 SPANNING TREES
A spanning tree of a connected, undirected graph is a connected 
subgraph that includes all the vertices, but only enough of the 
edges to maintain connectivity. It will have one fewer edge than 
vertices and no cycles.

To find a spanning tree of a graph,

• Pick an initial vertex and call it part of the spanning tree.

• Do a search from the initial vertex.

FIGURE 11.6 Dijkstra’s algorithm.
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• Each time you find a vertex that is not in the spanning tree, 
add both the new vertex and the edge you followed to get to 
it to the spanning tree.

A graph typically has many possible spanning trees; the ones you 
find depend on the type of search you do. Figure 11.7 shows (a) an 
initial graph, (b) one possible spanning tree after a breadth‑first 
search, and (c) one possible spanning tree after a DFS.

Suppose you want to supply a set of houses (say, in a new subdivi‑
sion) with electric power, water, sewage lines, telephone lines, and 
internet. To keep costs down, you might want to connect some of 
these (such as water and sewage) with a spanning tree.

However, the houses are not all equal distances apart, and longer 
pipes cost more, so you might want to use a minimum‑cost span‑
ning tree. The cost of a spanning tree is the sum of the costs of its 
edges.

There are two basic algorithms for finding minimum‑cost span‑
ning trees, and both are greedy algorithms (see Section 13.4).

Kruskal’s algorithm ignores the vertices. It starts with no edges 
in the spanning tree and repeatedly adds the cheapest edge that 

FIGURE 11.7 Initial graph and two spanning trees.
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does not create a cycle. As the algorithm progresses, multiple dis‑
connected edges join up. When the correct number of edges have 
been added, the result is a minimum‑cost spanning tree.

Kruskal’s algorithm sounds simple. However, efficient testing for 
the existence of a cycle requires a complex algorithm (Union‑Find) 
which is beyond the scope of this book.

Prim’s algorithm starts with putting any one vertex into the 
spanning tree and creating a set of edges adjacent to that vertex. 
The main loop then consists of taking the cheapest edge from 
that set and testing whether the vertex to which it leads is already 
in the spanning tree. If so, the edge is discarded; otherwise, it 
and the new vertex are added to the spanning tree, and the edges 
from that vertex are added to the set of edges. The algorithm ends 
when the correct number of edges (or vertices) are in the span‑
ning tree.

An edge of the lowest cost can be found with a priority queue, and 
testing for a cycle is automatic. This makes Prim’s algorithm far 
simpler to implement than Kruskal’s algorithm.

If some redundancy is desired in a network, so that the graph 
remains connected when a single edge is removed, a spanning tree 
is not the best solution. Instead, a single cycle connecting all the 
vertices might be a better choice. The problem of finding such a 
cycle with the least cost is called the traveling salesman problem 
and is exponentially difficult.

11.8 MAZES
Typically, every location in a maze is reachable from the start‑
ing location, and there is only one path from start to finish. If 
the locations are “vertices” and the open doors between cells are 
“edges,” this describes a spanning tree (see Figure 11.8a).
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Since there is exactly one path between any pair of cells, any cells 
can be used as the “entrance” and “exit.” Often, both entrance and 
exit are to the outside of the maze, but it is also common for one 
or the other to be near the center of the maze.

There is an easy way to turn a rectangular array into a maze. It 
requires keeping track of two sets: The set of locations already in 
the spanning tree (call it TREE) and the set of locations not yet in 
the spanning tree but adjacent to some location in the spanning 
tree (call it ADJ).

Start with all walls present.
Define two sets, ADJ and TREE, initially empty.
Set X to any array location and add it to TREE.
While there are still locations not in TREE:
    Add to ADJ all the cells adjacent to X that
       aren't in either ADJ or TREE.
    Set Y to any cell from ADJ and put it in TREE.
    Erase the wall between Y and any adjacent
        location X that is in ADJ.

It usually works well, when selecting the next cell from ADJ, to 
choose one randomly.

FIGURE 11.8 Building a maze.
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Figure  11.8b shows a partially completed maze. The locations 
 containing an open circle are in TREE, and the shaded locations 
are in ADJ.

11.9 HEURISTIC SEARCHING
Search spaces can be very large, or even infinite. It is important to 
make searching as efficient as possible.

All the previous searches have been blind searches: They make no 
use of any knowledge of the problem. If we know something about 
the problem, we can usually do much better by using heuristics.

A heuristic is a “rule of thumb” for deciding which choice might 
be best. There is no general theory for finding heuristics because 
every problem is different. The choice of heuristics depends on 
knowledge of the problem.

This is the basic search algorithm:

Put the start node into OPEN.
    While OPEN is not empty:
        Take a node N from OPEN.
        If N is a goal node, report success.
        Put the children of N onto OPEN.
    Report failure.

If OPEN is a stack, this is a depth‑first search; if OPEN is a queue, 
this is a breadth‑first search; and if OPEN is a priority queue sorted 
according to most promising first, we have a best‑first search.

If the search space is a graph that contains cycles, provision must 
be made to avoid searching from any given vertex more than 
once.
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11.9.1 Solving the Fifteen Puzzle

In this section, we develop a heuristic for solving the fifteen puzzle 
that was described earlier in Section 10.2.4 (see Figure 11.9). Our 
states are the possible arrangements of tiles, and our operations 
are moving the blank (by sliding an adjacent tile into it) in one of 
four directions.

For any given state, we can compute an estimate of the number 
of moves required to reach the goal state. This will be our heu‑
ristic measure—the smaller the measure, the more desirable the 
state. The goal state itself will have a heuristic measure of zero 
(no moves required).

To compute the heuristic measure: For each piece, count how 
many moves it would take to move the piece into its proper posi‑
tion if no other pieces were in the way. Do this for every piece and 
add up the counts. The result is a (very) optimistic measure of how 
many moves it will take to solve the puzzle.

Note: The distance covered to get from one point to another 
when only horizontal and vertical moves are allowed, is called 
the Manhattan distance.

In Figure 11.9, the 3 is two moves from its proper location; the 10 
is two moves away; the 13 is five moves away; and so on.

With this heuristic, we can perform a best‑first search.

FIGURE 11.9 Fifteen puzzle (repeated image).
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• Create a priority queue to hold the states of the puzzle along 
with their heuristic measures.

• Initialize the priority queue with the start state and its heu‑
ristic measure.

• As long as the priority queue isn’t empty,

• Take the state with the best heuristic measure from the 
priority queue and call it the current state.

• Find the adjacent states by making all possible moves 
from the current state. For each adjacent state that has 
not been visited previously, compute its heuristic mea‑
sure and add it to the priority queue.

The search space is a graph, so it is important to avoid getting 
caught in a cycle.

The number of possible arrangements of the tiles is 16!, but 
only half of these are reachable from the goal node, so there are 
16!/2 = 10,461,394,944,000 states in the search space. Even our sim‑
ple heuristic measure leads to a very quick solution.

11.9.2 The A* Algorithm

The simple form of a best‑first search keeps a set of nodes to 
explore and uses a heuristic function (applied to each of those 
nodes) to decide which node to explore next.

The A* (or A‑star) algorithm is a best‑first search with the addi‑
tional feature that the distance already traversed (from the root to 
each node) is added to the heuristic function.

Let g(N) be the distance from the start state to node N. Let h(N) be a 
heuristic estimate of the distance from node N to a goal node. Then, 
f(N) = g(N) + h(N) is the (partially known and partially estimated) 
distance from the start node to a goal node (see Figure 11.10).
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Memory requirements of A* depend on the quality of the heuristic 
function.

• If h(N) is a constant (it supplies no useful information), then 
A* is identical to a breadth‑first search, and requires mem‑
ory exponential in the branching factor.

• If h(N) is a perfect estimator, memory requirements will 
be minimal because A* will go straight to a goal with no 
searching required.

The quality of the solution also depends on h(N). It can be proved 
that if h(N) is optimistic (never overestimates the distance to a 
goal), then A* will find an optimal solution, that is, one that has 
the shortest path to a goal.

In the previous section, our heuristic for the fifteen puzzle was 
(very) optimistic; therefore, an A* search will find a solution with 
the fewest possible moves.

11.9.3 IDA*
In the worst case (that is, with a poor heuristic), A* is equivalent 
to a breadth‑first search and will require exponential storage. 
Iterative deepening, which was described in Section 10.2.3, can be 
applied to the A* algorithm.

FIGURE 11.10 A* algorithm: f(N) = g(N) + h(N).
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Iterative deepening uses depth‑limited searching, where the 
search only proceeds to a fixed depth; at each iteration, the depth 
limit is increased. Iterative‑deepening A* (IDA*) is just like itera‑
tive deepening, but instead of using g(N) (the actual depth so far) 
to limit searching, it uses f(N) (the estimated total depth).

IDA* gives the same results as A*; however, because IDA* is essen‑
tially a DFS, storage requirements are linear in the length of the 
path, instead of exponential in the branching factor.

The best searches combine a basic blind search technique with 
heuristic knowledge about the problem space, and A* and its vari‑
ations, especially IDA*, are the best heuristic search techniques 
known.
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Hypergraphs

There is no generally accepted definition of a hypergraph. 
Perhaps the best that can be said is: A hypergraph is a col‑

lection of zero or more graphs, generalized in some way. In this 
section, we will discuss some extreme generalizations, followed by 
an implementation.

Consider the following sentence: “John thinks Martha is a 
Martian.” Figure 12.1 shows a hypergraph that captures this but 
remains neutral on the question of whether Martha is really from 
Mars.

The elements of a graph are vertices and edges, while the elements 
of a hypergraph are vertices, edges, and graphs.

FIGURE 12.1 “John thinks Martha is a Martian.”

https://doi.org/10.1201/9781003625506-12
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Now consider how a hypergraph like this might be generalized by 
using sets instead of single values.

• Other people might also think Martha is a Martian, so the 
“thinks” edge could have a set of sources, rather than just 
one.

• This probably isn’t the only thing John thinks, so “thinks” 
could have a set of targets (destinations).

• Vertices (and graphs, and even edges) might belong to a set 
of graphs.

Other generalizations are possible. In Figure 12.1, a graph rather 
than a vertex is the target of an edge, so it seems reasonable to 
allow a graph to also be a source of an edge. Probably less use‑
ful, but still conceivable, the source or target of an edge might be 
another edge.

Finally, there is no reason to restrict the sources and targets of an 
edge to all be in the same graph.

12.1 PLEXES
We can represent arbitrarily complex hypergraphs by means of a 
simple data structure called a plex. A plex consists of some user 
data (e.g., “John”) and four sets of plexes.

A plex is multipurpose: It can represent a graph, a vertex, or an 
edge. The four plex sets that it contains are

• containers: The plexes that “contain” this plex. For example, 
a graph may be a container for vertices and edges.

• contents: The plexes “contained in” this plex. For example, a 
graph may have vertices and edges as its contents.
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• origins: The plexes “from which” this plex comes. For exam‑
ple, the origin (source) of an edge may be a vertex.

• targets: The plexes “to which” this plex goes. For example, 
an edge may have a vertex as its target.

There are two simple validity rules:

• If plex X is a container of plex Y, then plex Y is a content of 
plex X, and vice versa.

• If plex X is an origin of plex Y, then plex Y is a target of plex 
X, and vice versa.

Plexes allow almost anything. For example, a plex that represents 
an edge may have multiple sources and multiple targets. A plex 
that represents a vertex may belong to multiple graphs, and it may 
have multiple graphs within it. And so on.

The hypergraph in the previous section, “John thinks Martha is a 
Martian,” could be represented by the seven plexes in Table 12.1. 
In this table, we can see, for example, that the edge “is‑a” has its 
origin at “Martha”; therefore, “Martha” has a target of “is‑a.”

TABLE 12.1 “John thinks Martha is a Martian”

Plex Containers Contents Origins Targets

Graph G John, thinks, Subgraph S

John Graph G thinks

thinks Graph G John Subgraph S

Subgraph S Graph G Martha, is‑a, martian thinks

Martha Subgraph S is‑a

is‑a Subgraph S Martha martian

Martian Subgraph S is‑a
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The terminology can be confusing. In general, it is easy to see that 
an edge that goes from A to B has A as its origin and B as its termi‑
nation. The consequence of the validity rules is that the out‑edges 
of a vertex are its targets, and the in‑edges are its origins.

A plex can represent a vertex, an edge, or a graph, and there is noth‑
ing inherent in the plex structure to indicate which is intended. Of 
course, such a field could be added.

Plex structures are extremely flexible; probably too flexible. They 
provide an example of what can be done with data structures, but 
perhaps not what should be done. If hypergraphs are ever actu‑
ally needed for a project (which is unlikely), plexes stand ready 
to serve.
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Algorithm Types

Algorithms that use a similar problem‑solving approach can 
be grouped together. By classifying algorithms into types, we 

can highlight the various ways in which a problem can be attacked.

In this section, we will consider several different types of algo‑
rithms, many of which have been seen in the earlier parts of this 
book.

13.1 SIMPLE RECURSIVE ALGORITHMS
A “simple” recursive algorithm is one that (1) solves the base cases 
directly, (2) recurs with a simpler subproblem, and (3) may do 
some extra work to convert the solution to the simpler subprob‑
lem into a solution to the given problem.

The factorial function and many operations on linked‑lists (see 
Chapter 6) are examples that make simple use of recursion.

13.2 BACKTRACKING ALGORITHMS
Suppose you need to decide among various choices, where (1) you 
don’t have enough information to know what to choose, (2) each 
decision leads to a new set of choices, and (3) some sequence of 

https://doi.org/10.1201/9781003625506-13
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choices (possibly more than one) may be a solution to your prob‑
lem. Backtracking is a depth‑first recursive search for a solution. 
That is, at each stage it makes a choice, and later may return to the 
same point and try a different choice.

Depth‑first searching of a tree has been described in Section 
10.2.1, and the modifications for searching a graph are described 
in Section 11.4.

Example 1: Solving a Maze

Given a maze, the task is to find a path from start to finish. 
At each intersection, you have to decide between three or 
fewer choices: You can go straight, you can go left, or you 
can go right. You don’t have enough information to choose 
correctly, and each choice leads to another set of choices 
(another intersection). One or more sequences of choices 
will, if the maze is solvable, lead to a solution.

Example 2: Four‑Coloring a Map

The four‑color theorem states that only four colors are 
required to color any map so that any countries that share a 
border are different colors.

To color a map, try to choose a color for the n‑th coun‑
try (initially the first country) that isn’t used by any adja‑
cent country. If you can, and if this is the last country, report 
success; otherwise recursively color the next country. If you 
can’t choose a color, report failure.

At each step, you don’t have enough information to choose 
the correct color; each choice leads to another set of choices 
(or failure); and one or more sequences of choices will lead to 
a solution (if the map representation is correct).
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Example 3: Peg Jumping Puzzle

In a peg jumping puzzle, all holes but one are filled with 
pegs. The only allowable moves are to jump one peg over 
another peg, and remove the jumped‑over peg. The goal is to 
remove all pegs but one.

As in the other examples, you have to choose a move on 
the basis of incomplete information, each move leads to 
other possible moves, and (given a well‑designed puzzle) 
some sequence of moves will lead to a solution.

13.2.1 Virtual Trees

There is a type of data structure called a tree. We are not using 
it here, but if we diagram the sequence of choices we make, the 
diagram looks like a tree (see Figure 13.1).

We search this virtual tree for a goal node—one that represents 
a solution to the problem we are trying to solve. If we reach 
a non‑goal node from which we have no legal moves (a failure 
node), we backtrack to the most recent node that has remaining 
choices.

FIGURE 13.1 A virtual tree.
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Here is a partial trace:

• Start at node A. There are three choices; follow edge 1 to B.

• From B, there are two choices. Follow edge 2 to a dead end 
(a failure node).

• Backtrack to node B (edge 3).

• From B, take the remaining edge, edge 4, to another failure 
node.

• Backtrack to B (edge 5).

• There are no more choices from B, so backtrack (edge 6) 
to A.

After several more moves, we follow edge 17 to a goal node, and 
quit with success. Had it failed, there was another choice from A, 
but we never needed to explore it.

13.3 DIVIDE AND CONQUER ALGORITHMS
A divide and conquer algorithm is one that divides a problem 
into two or more smaller subproblems of the same type, solves 
these subproblems recursively, and combines the solutions into a 
solution to the original problem.

Quicksort and mergesort are common examples of divide and 
conquer algorithms.

In quicksort, the array is partitioned into two parts and each part 
is sorted independently. No additional work is required to com‑
bine the two sorted parts.

In mergesort, the array is cut in half, and each half is sorted inde‑
pendently. Then the two halves are merged.
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Binary search is sometimes called a divide and conquer algo‑
rithm. Traditionally, however, an algorithm is only called “divide 
and conquer” if it contains at least two recursive calls. Under this 
definition, binary search does not qualify.

13.4 GREEDY ALGORITHMS
A greedy algorithm is one in which a locally optimal choice is 
made at each step. The result might or might not be an optimal 
solution to the entire problem.

US coins come in denominations of 1, 5, 10, 25, and 50 cents. To 
find the minimum number of US coins to make any amount, the 
greedy method always works. At each step, just choose the largest 
coin that does not overshoot the desired amount.

For example, to make 42¢, choose the 25¢ coin, leaving 17¢. Then 
choose the 10¢ coin, leaving 7¢. Then choose the 5¢ coin, leaving 2¢.  
Then choose the 1¢ coin, leaving 1¢. Finally, choose the 1¢ coin, for 
a total of five coins.

The greedy method would not work if we did not have 5¢ coins. 
To make 42¢, the method would result in nine coins, but it could 
be done with six. It also would not work if, instead of removing 5¢ 
coins, we also had 17¢ coins.

This greedy algorithm is O(log n). It can be guaranteed to find an 
optimal result for some problems, but not for others.

To find the minimum number of coins for any given coin set, we 
need a dynamic programming algorithm.

13.5 DYNAMIC PROGRAMMING ALGORITHMS
A dynamic programming algorithm remembers past results and 
uses them to find new results.
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In order to solve a problem of size k, a dynamic programming 
algorithm will first solve the smallest problem of that type, then 
the next smallest, and so on up to k. For each value of k, the solu‑
tion found is saved and used at a later step.

A good first example is the Fibonacci series, introduced in 
Section 4.3.

function fibonacci(n):
    If n < 3, return 1
    else return fibonacci(n ‑ 1) + fibonacci(n ‑ 2).

This is an exponential algorithm. It makes two recursive calls at 
each level of the recursion, so the total number of calls keeps dou‑
bling. A dynamic programming version of this algorithm requires 
only linear time.

function fibonacci(n):
    Create an array to hold n integers.
    Set the first two array values to 1.
    For each remaining array location,
        set the array value to the sum of the
          two previous values.
    Return the value in the last array location.

As required by the dynamic programming approach, values of 
fibonacci(n) are first computed for the smallest values of n, and 
later values in the fibonacci series are computed from earlier values.

The reader may notice that an array isn’t necessary for this prob‑
lem; it can be done with only a few variables, but the resultant 
code is harder to understand.

As a more interesting example, we will return to the coin count‑
ing problem.
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As noted earlier, the greedy algorithm finds an optimal solution 
for making change with American coins (1, 5, 10, 25, and 50 cents). 
It does not work well for every possible set of coins. For example, 
if the coins are 1, 3, 7, 10, and 25 cents, the greedy algorithm for 
15  cents would result in one 10¢ coin, one 3¢ coin, and two 1¢ 
coins, for a total of four coins; a better solution is two 7¢ coins and 
one 1¢ coin, for a total of three coins.

We will consider two algorithms for solving the coin problem. 
The first is basically a divide and conquer algorithm, with terrible 
(exponential) running time.

To make K cents:
    If there is a K‑cent coin,
        return 1 as the coin count for K
    Otherwise, for each value i < K,
        Solve for i cents.
        Solve for K‑1 cents.
        If the sum is fewer coins for K,
            Save these two solutions.
    Return the combination of these
        two solutions.

Again taking the example of making 15¢ from 1, 3, 7, 10, and 
25  cent coins, this would compute the best solutions for 1 and 
14 cents, then for 2 and 13 cents, and so on, for all combinations 
that add up to 15.

If the best solution for 15¢ turns out to be 7 cents (one 7¢ coin) 
plus 8  cents (one 7¢ coin and one 1¢ coin), then the algorithm 
would combine these to get two 7¢ coins and one 1¢ coin.

This algorithm works. For 20¢, you may have to wait a bit for the 
answer; for 50¢, it’s unfeasible.
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The second solution uses dynamic programming, and it’s light‑
ning fast. The trick is to solve for one cent, then two cents, then 
three cents, all the way up to the desired amount. As the solution 
is found for each value, it is stored and never computed again.

Exactly as in the dynamic programming version, for 15 cents we 
compute the best solutions for 1 and 14 cents, then for 2 and 13 cents, 
and so on, for all combinations that add up to 15. Then, we combine 
the two solutions. The difference is that instead of recursively com‑
puting the solution pairs each time, we simply look them up.

For M from 1 to K:
    If there is an M‑cent coin,
        that one coin is the minimum;
        save 1 as the coin count for M.
    Otherwise,
        Store a very large coin count for M.
        For each value i < M,
            Look up the coin counts for i cents
              and for M‑i cents.
            If the sum is better than the
             saved coin count for M,
                save this as the coin count for M.
    Return the coin count for K.

The running time for this algorithm is O(KN), where K is the desired 
amount and N is the number of different kinds of coins.

Dynamic programming is generally used for optimization prob‑
lems, where there are multiple solutions and the goal is to find the 
“best” one.

In order to use dynamic programming to solve a problem, the 
problem must satisfy the principle of optimality: the optimal 
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solution is a combination of the optimal solutions for subprob‑
lems. Or, looking at this in reverse, if a problem has an optimal 
solution, it contains optimal solutions to its subproblems.

In the coin example, if the optimal way to make change for K 
involves making change for A and for B, where K = A + B, then 
that is the optimal way to make change for A and the optimal way 
to make change for B.

13.6 BRUTE FORCE ALGORITHMS
A brute force algorithm is one that tries all possibilities until a 
solution is found.

Whether a brute force algorithm is adequate for a given task 
depends on the problem size and the algorithmic complexity. 
Discovering a randomly generated password has exponential 
complexity. The traveling salesman problem (see Section 2.18) is a 
typical example of a problem for which the best‑known solution 
requires exponential time.

Sum of subsets is another such problem. Suppose you are given a 
list or set of n positive numbers, such as [22, 26, 31, 39, 43, 56], 
and are asked to find a subset of the numbers that total to a certain 
amount, say 100. Each number either is or is not in the solution, so 
there are 2n possible subsets to try—or, in this tiny example, 26 = 64  
subsets. Clearly, this is an exponential problem.

The binary nature of this problem (a number is either in the subset 
or it isn’t) makes it convenient to use binary numbers in the solu‑
tion. Generate the 64 6‑bit binary numbers 000000 up to 111111. 
Multiply each number in the list by the corresponding bit value; 
for example, if the binary number is 110001, compute:

22*1 + 26*1 + 31*0 + 39*0 + 43*0 + 56*1 = 104
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As is often the case, pruning (see Section 10.2.5) can help consid‑
erably. For example, if the count has reached 000111, the total is 
138, and all remaining numbers of the form xxx111 can be ignored. 
Other stratagems can be employed to further reduce the number 
of subsets examined, but in the end, this problem remains stub‑
bornly exponential in difficulty.

13.7 RANDOMIZED ALGORITHMS
A randomized algorithm uses a random number at least once 
during the computation to make a decision.

Technically, Quicksort could be considered a randomized algo‑
rithm if random numbers are used to choose pivot, but this is a 
minor use and hardly counts.

More often, randomized algorithms are used for problems in 
which choices must be made and there is no good way to make 
them. In these problems, multiple attempts are made to solve the 
problem, making random choices, and either a solution is found, 
or the program keeps track of the “best so far” solution.

Here’s a real‑life example from my teaching experience. I had my 
students doing pair programming—two people working together 
on the same assignment. For the first assignment, pairs were cho‑
sen randomly. (Assume, for simplicity, that I had an even number 
of students.)

For each subsequent assignment, I again wanted to assign students 
to pairs randomly, with the additional constraint that every stu‑
dent got a different partner each time. I could think of no better 
algorithm than choosing pairs randomly, one pair at a time, and 
starting over if the constraints were violated. The program was 
slow, sometimes taking a couple of minutes, but it got me through 
the semester.
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Afterword

If you have finished this little volume, you have a good understand‑
ing of how data structures are constructed from three simple ele‑
ments—arrays, nodes, and pointers. You have been introduced to 
all the most common data structures, and you can recognize the 
importance of Big‑O running times and how to estimate them.

Few programming languages provide data structures beyond 
stacks, hash maps, and doubly (but not singly) linked lists. If your 
language has the data structure you need, use it; it is probably 
well debugged and efficiently implemented. You might find imple‑
mentations on the Web that you can adapt and debug. Beyond 
that, you should now be able to create data structures as you need 
them—possibly ternary trees, a heap for fixed size nodes, or a pri‑
ority queue for partially ordered items.

A thoughtful and informed choice of data structures will greatly 
improve your code, but no amount of attention to code can com‑
pensate for a poor choice of data structures. Start with the data 
structures you need, and the rest will follow.
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