

Quick Data Structures
If you want to upgrade your programming skills, the most impor‑
tant thing you need is a solid understanding of fundamental data
structures. The proper choice of data structures distinguishes
excellent programmers from merely competent ones.

As an experienced programmer, you use data structures—at least
arrays—all the time. However, you may not be familiar with hash
tables, trees and binary trees, priority queues, directed and undi‑
rected graphs, and other data structures at your disposal.

A good choice of data structures will simplify your job, not
complicate it. Your code will be not only faster but also easier to
understand and debug. There is no downside to using the right
data structures for the job.

This book

• Provides an understanding of the fundamental building
blocks of data structures

• Describes the construction and use of all common data
structures

• Explains the simple math required for selecting efficient data
structures

• Equips you with everything you need to choose data struc‑
tures or devise appropriate new ones

Quick Programming Series
Most programming books are either textbooks aimed at begin‑
ners, or tomes intended to provide everything the programmer
needs to know. Books in this series fulfil an important niche by
offering a bridge for programmers who need a quick entry into a
language, and do not need to know everything about it yet.

PUBLISHED BOOKS IN THE SERIES
Quick Data Structures

Quick Java

Quick Functional Programming

Quick JavaScript

Quick Recursion

Quick Python 3

Quick Data Structures

David Matuszek

Designed cover image: 100covers.com

First edition published 2026
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2026 David Matuszek

Reasonable efforts have been made to publish reliable data and information, but the
author and publisher cannot assume responsibility for the validity of all materials or
the consequences of their use. The authors and publishers have attempted to trace
the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we
may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be
reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including
photocopying, microfilming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access
www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978‑750‑8400. For works that are not available
on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered
trademarks and are used only for identification and explanation without intent to
infringe.

ISBN: 978‑1‑041‑03813‑9 (hbk)
ISBN: 978‑1‑041‑03810‑8 (pbk)
ISBN: 978‑1‑003‑62550‑6 (ebk)

DOI: 10.1201/9781003625506

Typeset in Minion
by codeMantra

http://100covers.com
http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003625506

To all my students
past, present, and future

https://taylorandfrancis.com

vii

Contents

Preface, xii

Author, xiv

Where’s the Code?, xvi

Chapter 1 ◾ Building Blocks 1
1.1 Pointers and References 2

1.2 Arrays 3

1.3 String Arrays 4

Chapter 2 ◾ Essential Math 5
2.1 The Importance of Efficiency 6

2.2 Analysis of Algorithms 7

2.3 Constant Time 8

2.4 Linear Time 9

2.5 Quadratic Time 10

2.6 Bubble Sort 10

2.7 Characteristic Operations 12

2.8 Insertion Sort 13

2.9 Selection Sort 14

2.10 Exponents and Logarithms 15

2.11 Binary Search 16

viii ◾ Contents

2.12 Quicksort 18

2.13 Analyzing Quicksort 21

2.14 Merge Sort 23

2.15 Even Faster Sorts 25

2.16 Big‑O Notation 26

2.17 Big‑O and Friends 28

2.18 Exponential Time 29

Chapter 3 ◾ Hash Tables and Hash Maps I 31
3.1 Basic Hash Tables 32

3.2 Hash Functions 34

3.3 Hash Table Notes 36

3.4 Hash Maps 37

3.5 Abstract Data Types 38

3.5.1 ADT as a Contract 39

Chapter 4 ◾ Recursion 41
4.1 Recursive Data Structures 41

4.2 Recursive Functions 43

4.3 Four Rules 44

4.3.1 Rule 1: Do Base Cases First 45
4.3.2 Rule 2: Recur Only with Simpler Cases 45
4.3.3 Rule 3: Don’t Use Non‑Local Variables 46
4.3.4 Rule 4: Don’t Look Down 47

4.4 Examples of Recursion 47

Contents ◾ ix

Chapter 5 ◾ Stacks, Queues, and Deques 50
5.1 Stacks 50

5.1.1 Example: Balancing Brackets 52
5.1.2 Example: Expression Evaluation 52
5.1.3 Example: Stack Frames 53

5.2 Queues 54

5.3 Deques 56

Chapter 6 ◾ Linked Lists 57
6.1 Singly Linked Lists 57

6.2 Stacks as Singly Linked Lists 60

6.3 Implementation Notes 61

6.4 Lists in Functional Programming 63

6.5 Doubly Linked Lists 64

6.6 Circular Linked Lists 64

6.7 Python “Lists” 65

6.8 Hash Tables and Hash Maps II 66

Chapter 7 ◾ Binary Trees 68
7.1 Binary Tree Traversals 71

7.2 Binary Search Trees 72

7.3 Tree Balancing 73

7.4 Heapsort 75

7.4.1 Phase 1: Heapifying a Binary Tree 76
7.4.2 Phase 2: Removing the Root and Reheaping 77
7.4.3 Phase 3: Mapping a Binary Tree into

an Array 78

x ◾ Contents

7.4.4 The Complete Heapsort Algorithm 79
7.4.5 Analysis 80

7.5 Huffman Encoding 81

Chapter 8 ◾ Priority Queues 83
8.1 Priority Queue Implementations 84

Chapter 9 ◾ Heaps 86
9.1 Heap Implementation 87

9.2 Deallocation Problems 89

9.3 Garbage Collection 90

9.3.1 Reference Counting 90
9.3.2 Mark and Sweep 91

Chapter 10 ◾ Trees 92
10.1 Applications of Trees 93

10.1.1 File Systems 94
10.1.2 Family Trees 94
10.1.3 Game Trees 95
10.1.4 Expressions 96

10.2 Tree Searching 97

10.2.1 Depth‑First Searching 98
10.2.2 Breadth‑First Searching 99
10.2.3 Depth‑First Iterative Deepening 100
10.2.4 State‑Space Searches 102
10.2.5 Pruning 105
10.2.6 Alpha–Beta Searching 106

10.3 Tries 109

Contents ◾ xi

Chapter 11 ◾ Graphs 112
11.1 Graph Applications 114

11.2 Adjacency Matrix Representations 115

11.3 Representation by Sets 116

11.4 Searching a Graph 117

11.5 Sparse Arrays 119

11.6 Dijkstra’s Algorithm 121

11.7 Spanning Trees 122

11.8 Mazes 124

11.9 Heuristic Searching 126

11.9.1 Solving the Fifteen Puzzle 127
11.9.2 The A* Algorithm 128
11.9.3 IDA* 129

Chapter 12 ◾ Hypergraphs 131
12.1 Plexes 132

Chapter 13 ◾ Algorithm Types 135
13.1 Simple Recursive Algorithms 135

13.2 Backtracking Algorithms 135

13.2.1 Virtual Trees 137
13.3 Divide and Conquer Algorithms 138

13.4 Greedy Algorithms 139

13.5 Dynamic Programming Algorithms 139

13.6 Brute Force Algorithms 143

13.7 Randomized Algorithms 144

Afterword, 145

Index, 147

xii

Preface

Many years ago, a friend came to me with a problem.

Back then, you typed your program on punched cards and put
them in a tray along with other programs to be run. Some hours
later, you would get the printed results.

My friend’s problem was that his program was taking more than
20 minutes to run on the Control Data 6600, which (in those days)
was the world’s fastest computer. According to the Computation
Center rules, any program that took more than 20 minutes would
be stopped and not run again until the weekend when the com‑
puter was less busy. My friend asked me if I could speed up his
program.

The program was doing a lot of table look‑ups, using an ordi‑
nary array. I replaced the array with a hash table–a change which
reduced the running time to under 20 seconds. My friend didn’t
fully trust my work because, as he later told me, he spent the entire
weekend hand‑checking the results.

Times have changed, and today’s computers are orders of mag‑
nitude faster than the “supercomputers” of yesteryear. That same
program would, today, run in a few milliseconds.

Preface ◾ xiii

Today’s computers are so fast and have so much memory that, for
most programs, it doesn’t make sense to worry about efficiency.
However, there are important exceptions: video games, popular
websites, deep learning, weather modeling, and more. Besides,
why struggle with a poor choice of data structures when there
might be one perfectly suited to your needs?

xiv

Author

I’m David Matuszek, known to most of my students as
“Dr. Dave.”

I wrote my first program on punched cards in 1963 and immedi‑
ately got hooked.

I taught my first computer classes in 1970 as a graduate student in
computer science at the University of Texas in Austin. I eventually
earned a PhD there, and I’ve been teaching ever since. Admittedly,
I spent over a dozen years in industry, but even then I taught as an
adjunct for Villanova University.

I finally left the industry and joined the Villanova faculty full time
for a few years before moving to the University of Pennsylvania,
where I directed a master’s program (MCIT, Master’s in Computer
and Information Technology) for students transitioning into com‑
puter science from other disciplines.

Throughout my career, my main interests have been in artificial
intelligence (AI) and programming languages. I’ve used a lot of
programming languages.

I retired in 2017, but I can’t stop teaching, so I’m writing a series
of “quick start” books on programming and programming lan‑
guages. I’ve also written three science fiction novels—Ice Jockey,

Author ◾ xv

All True Value, and A Prophet in Paradise—and I expect to write
more. Check them out!

And, hey, if you’re a former student, drop me a note. I’d love to
hear from you!

david.matuszek@gmail.com

mailto:david.matuszek@gmail.com

xvi

Where’s the Code?

This isn’t a recipe book. If you want the code for, say, a merge
sort, you can do a web search and find code for a merge sort

in any of the couple dozen most common languages. Instead,
the goal of this book is to explain (for example) how a merge sort
works, and when and why you might want to use one. Once you
understand that, you can write your own or grab one of the many
published versions.

Code isn’t always the best way to explain an algorithm or data
structure—but sometimes it is. In such cases, the code should be
as readable as possible.

It’s generally agreed that Python is the most readable language,
but every language has glitches. Python’s for loop is

for i in range(0, n):
 # do something

and it isn’t necessarily obvious to a non‑Python programmer that
this means:

for i from 0 up to but not including n {
 # do something
}

Where’s the Code? ◾ xvii

Similarly, Python has dictionaries, “lists,” and sets, which we will
try to avoid. Consequently, the code in this book is “Python‑like”
but, in the interest of making code as readable as possible for
everyone, not necessarily “real” Python.

There is one feature we retain from Python. Good programming
style demands that code be indented properly, and in Python, this
is a requirement, not just a style rule. In this book, indentation is
used to indicate code controlled by an if or while statement, mak‑
ing braces unnecessary.

https://taylorandfrancis.com

1DOI: 10.1201/9781003625506‑1

C h a p t e r 1

Building Blocks

A data structure is a way of organizing information so
that it can be retrieved and updated quickly and easily.

Any data structure can be created from just three basic compo‑
nents: arrays, nodes, and pointers.

A node is a (generally small) collection of named fields that hold
data values. Nodes may be of varied types and sizes, may be arbi‑
trarily complex, and often contain links to other nodes. For exam‑
ple, a node used to represent a customer may have a field named
customerId to hold a unique integer, a field named email to hold a
link to an email address represented as a string, and a field named
orderHistory that holds a link to another node type whose values
represent an order history.

In object‑oriented languages, a node is almost always represented
by an object, but any method of associating the various pieces of
information can be made to work.

A pointer (also called a reference or a link) provides access to
a data value that is located elsewhere in memory. Originally, a

https://doi.org/10.1201/9781003625506-1

2 ◾ Quick Data Structures

pointer was an address in physical memory, and it can still be
thought of that way.

An array is a linear sequence of values, all of the same type and size.
Because all the values are the same size, the array can be efficiently
indexed—the location in memory of the n‑th element is simply the
starting location of the array plus n times the element size.

Note: When an array appears to have elements of vary‑
ing sizes (e.g., an array of strings), each value in the
array is actually a link to the actual data (a string). This
link is exposed to the programmer in some languages,
while other languages limit access to it.

These three elements can be combined into an uncountable num‑
ber of data structures. For the student, this means that there are
a great many common data structures to be studied; however, the
underlying concepts are simple, and new data structures can eas‑
ily be invented as needed.

1.1 POINTERS AND REFERENCES
A link is almost always implemented as an address of some loca‑
tion in memory. This could be an absolute address, based on the
physical memory of the computer, or (much more likely) it could
be a relative address, based on the location in memory occupied
by the program. Either way, an address is implemented as an inte‑
ger value.

The difference between a pointer and a reference is that a pointer
exposes its integer value to the programmer, who can then per‑
form arithmetic on it, resulting in a pointer to a new location in
memory. Pointers are common in the C family of languages.

Pointers raise security concerns. Unless handled with extreme
care, they can allow malicious code to be loaded as data and then
executed.

Building Blocks ◾ 3

A reference can be stored and duplicated like any other data value, it
can be dereferenced to get the item it points at, and two references can
be compared for equality. No other operations are provided. Because
the integer implementation is hidden, references are inherently more
secure than pointers and require less syntax. This is how links are
handled in Java, Python, and most other modern languages.

1.2 ARRAYS
An array is a deceptively simple data structure. It’s just a linear
sequence of values, generally all of the same type. To index into
it, the language simply adds the index value times the element
size to the starting location, giving the desired memory location.
Indexing is a very fast operation.

There are minor variations. Depending on the language, the first
location might have an index of 0, an index of 1, or some integer
chosen by the programmer. Some languages allow discrete data
types, such as characters, to be used as indices.

Usually, the size of the array is defined when it is created and can‑
not later be changed. Again, this is language‑dependent.

Some languages (Fortran, for example) allow arrays to have two
or more dimensions. It may be important to know the order in
which values are stored (rows first or columns first), because some
operations will depend on this ordering.

In any language based on C, all arrays are one‑dimensional, but
the values in the array may themselves be arrays. In these lan‑
guages, the size of an array is not a part of its type, so arrays
within an array are not all required to be the same size; if they are
of differing sizes, the result is called a ragged array.

Finally, an array is usually implemented as more than just a
sequence of values. Java, for instance, stores the array length and
the element type along with the array values.

4 ◾ Quick Data Structures

1.3 STRING ARRAYS
A string is a sequence of characters. Strings are almost always
implemented as arrays, with one character per array location.
Some languages expose the implementation, allowing a string
to be accessed like any other array, while other languages hide
the implementation but provide a host of functions for working
with them.

To index efficiently into an array, all the values in the array must
be the same size. Since strings may be of different sizes, there is
really no such thing as an “array of strings.” Such an array actu‑
ally contains pointers to strings; the strings themselves are stored
elsewhere. See Figure 1.1.

The same is true when a node is depicted as containing a string:
The node actually contains a pointer to the string.

Strings are almost always stored in a data structure called a heap
(see Chapter 9). Heaps have the ability to hold data of varying
sizes.

FIGURE 1.1 String array implementation.

5DOI: 10.1201/9781003625506‑2

C h a p t e r 2

Essential Math

You cannot ignore math when studying data structures. It
doesn’t require much math, and you don’t need to solve com‑

plex equations. There are only two things required of you:

• First, you need to understand that some growth rates are
better or worse than others (e.g., exponential growth is
much worse than linear growth).

• Second, you need to be able to analyze a program to deter‑
mine which kind of growth occurs as the amount of data
increases. This is (usually) much simpler than it sounds.

In general, we would like to know

• How much memory is required by the program?

• How long will the program take to run?

This chapter covers all the mathematics necessary for a basic
understanding of how to determine these factors. Along the way,
several popular sorting algorithms are described.

https://doi.org/10.1201/9781003625506-2

6 ◾ Quick Data Structures

It is very unusual for algorithms to require explosive amounts
of memory, but quite common for them to demand excessive
amounts of time. For this reason, our analyses are primarily about
running time.

After reading this chapter, you will understand what “Big‑O”
notation is all about.

2.1 THE IMPORTANCE OF EFFICIENCY
There are two contradictory views that can be taken on the mat‑
ter of efficiency. Although contradictory, each is correct—in the
proper context.

On the one hand, computers are literally millions of times
faster than they were a few decades ago. Back then, comput‑
ers were expensive, while human labor was (relatively) cheap. It
was important to get value out of every machine cycle. Today,
however, the economics are completely reversed, and it is—
to put it gently—unwise to spend an hour of a programmer’s
time to save a millisecond of computer time. For a large major‑
ity of programs, efficiency simply is not and should not be a
concern.

On the other hand, there are situations in which efficiency is
essential. Some examples are video games, large simulations of
complex systems such as weather patterns, artificial intelligence,
and very heavily used websites. Using the proper data structure
can often make a program hundreds of times faster, usually with
little or no additional programming effort.

The bottom line is: The effective programmer knows when to
spend effort on making a program more efficient and when not to.
Knowledge of data structures is the key to doing this.

Essential Math ◾ 7

2.2 ANALYSIS OF ALGORITHMS
An algorithm is a well‑defined, step‑by‑step procedure that is
guaranteed to terminate. There are literally thousands of pub‑
lished algorithms.

To analyze an algorithm means:

• developing a formula for predicting how fast an algorithm
is, based on the size of the input (time complexity) and/or

• developing a formula for predicting how much memory an
algorithm requires, based on the size of the input (space
complexity).

Usually, time is our biggest concern because many algorithms
require a fixed amount of space.

Since the formula depends on the “size” of the input, we need
some measure of the size, and that depends on the nature of the
problem.

• When searching an array, the “size” of the input could be the
size of the array.

• When merging two arrays, the “size” could be the sum of the
two array sizes.

• When computing the nth Fibonacci number or the nth facto‑
rial, the “size” is n.

The “size” should be a parameter that can be used to calculate
the actual time (or space) required. It is frequently obvious what
this parameter is, but sometimes some experimentation may
be required. Sometimes we need two or more parameters—for

8 ◾ Quick Data Structures

instance, if we are dealing with a two‑dimensional array where
the rows and columns are treated very differently.

Of course, a program doesn’t usually do just one thing. Maybe it
sorts an array as just one part of a complicated series of opera‑
tions. Some of those operations may take far more time (or far less
time) than sorting the array. How do we put all this together to
compute a “total” running time?

The short answer is, we simplify. We simplify a lot.

If one part of the program takes linear time and another part takes
quadratic time, we completely ignore the linear part and say the pro‑
gram takes quadratic time. For small problems, the linear part might
take longer than the quadratic part, but small problems don’t take
very long anyway. For large problems that require large amounts of
time, the quadratic part will completely overshadow the linear part.

We might like to find the average time to perform an algorithm.

Unfortunately, that usually isn’t well‑defined. We will consider sev‑
eral sorting algorithms, and for most of them, the actual time they
take is determined by how out of order the array is. But—how out of
order is the “average” array? The question is essentially unanswerable.

We usually have to be satisfied with finding the worst (longest)
time required, and sometimes this is even what we want (e.g., for
time‑critical operations). Big‑O notation is all about how to sim‑
plify the estimated worst‑case time (or space) requirements.

2.3 CONSTANT TIME
An operation takes constant time if there is some constant k such
that this operation never takes more than k nanoseconds (or sec‑
onds, or whatever measure you wish to use). That is, there is a
strict limit on how long the operation can take.

Essential Math ◾ 9

Here are some things that take constant time:

• Any standard arithmetic or Boolean operation.

• A call to a method that takes constant time.

• An if statement, where the test takes constant time and each
branch (true or false) takes constant time.

• A switch statement, where each case takes constant time.

Notice that for an if or switch statement, the possible branches
don’t have to take the same amount of time, just that each takes no
more than k time, for some constant k.

Here are some things that probably take more than constant time:

• A loop.

• A call to a complex or recursive method.

An operation that takes constant time k is said to be O(1), that is,
“Big‑O of one.” Notice that we don’t care how big the constant k is.

2.4 LINEAR TIME
An operation takes linear time if doubling the amount of data
doubles the running time. Or, if tripling the amount of data tri‑
ples the running time. In general, multiplying the size of the data
set by n multiplies the running time by n.

Summing up the elements of an array of size n is a linear opera‑
tion. Searching an array to find the largest or the smallest element
is a linear operation. Counting up to n and doing something that
takes constant time for each number is also linear time.

You might notice that some operations, such as adding up all the
numbers in an array, are not exactly doubled if you double the

10 ◾ Quick Data Structures

size of the array. That’s true; it takes some small amount of time
to set up the loop. So the actual time required to sum up an array
of n numbers is c+kn, where c is the (constant) amount of time
required to set up the loop and k is the (constant) amount of time
required to add each element. This expression is linear in n. The
Big‑O notation for an expression linear in n is O(n). Notice that we
don’t care about the size of c or k; they are just constants, so we
ignore them.

2.5 QUADRATIC TIME
Many array sorting methods require quadratic time; that is, if the
array size is increased by a factor of n, then the time required to
sort that array goes up by a factor of n2. An array ten times larger
takes a hundred times longer to sort.

Here we will briefly consider three such sorting algorithms. They
are of interest because they are easy to implement, because they
illustrate how to informally determine the Big‑O running time
of an algorithm, and because they can be used to describe the
important concept of a loop invariant.

Note: We refer to the “first” and “last” indices in the array
because many programming languages use zero as the
smallest index, several languages use one, and some lan‑
guages allow an arbitrary starting index.

2.6 BUBBLE SORT
A bubble sort proceeds as follows:

• Set some variable limit to the index of the last element in the
array and set a flag variable swapped to true.

• While limit is greater than the first index and swapped is
true:

• Set swapped to false.

Essential Math ◾ 11

• For index i ranging from the first index in the array up
to and including limit‑1:

• If array[i] > array[i+1], swap the two values and set
swapped to true.

• Subtract 1 from limit.

While we generally think of using loops to change things (e.g.,
sorting an array), an equally valid view is that loops keep
some condition invariant. An invariant is some condition that
remains true even when the variables in the condition change
their values.

For a bubble sort, the loop invariant is: All array locations greater
than limit are correctly sorted and in their final location. This is
true initially because there are no locations greater than limit.
After one pass through the while loop, limit is reduced by one,
and the value in the last array location is the largest value. After
the second pass, limit has been reduced again, and the last two
array elements are correctly placed. And so on. At the end, all ele‑
ments are sorted.

In bubble sort, the while loop is executed up to n times, where n
is the size of the array. (It could be fewer if no swaps occur, but as
usual, we’re interested in the worst case.) The inner for loop is ini‑
tially executed n‑1 times, but each time the number of executions
is reduced, so on average it is executed about n/2 times. Dropping
the constants, the outer loop is executed n times, and for each of
those times, the inner loop is executed n times, so the overall run‑
ning time is n times n, or O(n2).

The actual running time of bubble sort depends on the initial state
of the array. For a random array, the expected running time is
quadratic, but bubble sorting an array that is already in sorted
order takes only O(n) time.

12 ◾ Quick Data Structures

Although bubble sort has the same Big‑O running time as inser‑
tion sort and selection sort, it is generally the slowest of the three.
There is another reason to avoid it: Bubble sort is the sorting tech‑
nique most often invented by beginners, so it has a bad reputation
as amateurish.

2.7 CHARACTERISTIC OPERATIONS
In computing time complexity, one good approach is to count
characteristic operations. A characteristic operation is an opera‑
tion that occurs at least as often during the execution of an algo‑
rithm as any other operation, so the number of times this operation
occurs determines the Big‑O running time of the algorithm.

Sorting algorithms essentially do two things: compare two values
and swap two values. At each step, swaps may or may not occur,
but comparisons will always occur. Therefore, comparisons make
a good characteristic operation; swaps do not.

Bubble sort proceeds in a series of n passes, where n is the size of
the array. The average length of each pass, L, is n/2. During each of
those passes, L comparisons are made. Therefore, n passes times
n/2 comparisons equals n2/4, or O(n2).

Note: The careful reader will notice that all the values
mentioned in the previous paragraph are approximate.
For example, the number of passes made during a bub‑
ble sort is n‑1, not n. The important point is that these
simplifications do not affect the conclusion that the
running time is O(n2).

For most sorting algorithms, the number of comparisons made is
a suitable choice for the characteristic operation because it con‑
trols all the other actions. Other types of algorithms require a
different choice of characteristic operation.

Essential Math ◾ 13

If the algorithm has an innermost loop, we might just look at how
many times that loop is executed. If a single pass through that
loop takes constant time, the loop itself can be considered a char‑
acteristic operation.

2.8 INSERTION SORT
For insertion sort, we’ll approach things a bit differently by start‑
ing with the loop invariant and using it to develop the algorithm.
Here it is: The first n elements of the array are in sorted order.

The invariant for insertion sort differs from that of bubble sort in
two respects. First, we’re moving elements to the beginning of the
array, rather than to the end. This is minor, and either algorithm
could be adjusted to work from the other end. The second difference
is important: The elements are sorted with respect to one another but
can still be moved about; they may not be in their final positions.

To begin, notice that when we consider only the first value, it is
trivially true that it is in sorted order.

Now suppose that the first k values are in sorted order. What about
the next value, at location k+1? If it is at least as large as the imme‑
diately preceding value, it can remain where it is. Otherwise, we
can take that value out of location k+1 and insert it somewhere
earlier. We can use a binary search (see Section 2.11) to find where
among the first k values it should be inserted, and we can move
all the values between that location and location k up one space.
Conveniently, the value that was in location k can be moved to
location k+1, which has just been vacated.

Analysis: We run once through the outer loop, giving a factor
of n. Each time, we perform a binary search (which takes log(n)
time) and then move, on average, n/4 elements, so that each time
through the outer loop the work required is log(n)+n. (It’s n/4

14 ◾ Quick Data Structures

because we move, on average, half of the already sorted values,
which is, on average, half of the total values.) We ignore constants,
so the result is n×(log(n)+n), or n×log(n)+n2. Finally, n×log(n)
grows more slowly than n2, so our final result is O(n2).

Often, we are sorting not just numbers but objects according to some
key value. A stable sort is one that does not change the order of objects
with equal keys. For example, if we are sorting customers by name
and “John Smith” from New York comes before “John Smith” from
Boston, those objects should remain in the same order after sorting.

Insertion sort is a stable sort.

2.9 SELECTION SORT
Selection sort is probably the easiest to describe. Here’s how it
works:

Search the entire array to find the smallest value. Swap it with the
value in the first location. Search the array starting from the sec‑
ond location to find the smallest remaining value and swap it with
the value in the second location. Search the array starting from
the third location to find the smallest remaining value and swap it
with the value in the third location. And so on.

At each step, we search the unsorted part of the array for the
smallest value and swap it with the value just past the sorted part,
so the sorted part gets larger by one value.

Ignoring constants, we perform n searches, and each search
examines n elements, so the running time is O(n2).

The loop invariant is that the first k elements are sorted and in
their final position, as k varies from 1 to the size of the array.

Essential Math ◾ 15

2.10 EXPONENTS AND LOGARITHMS
If you are familiar with logarithms, you can skip this section.

Exponentiation, or raising a number to a power, is the process of
multiplying several copies of that number together. For example,
103, or “ten raised to the power of 3,” means three tens multiplied
together: 10×10×10=1000. The number that is multiplied by itself
(in this example, 10) is called the base.

Taking the logarithm of a number is the inverse process: Given a
number and a base, how many copies of the base must be multiplied
together to get the number? In our example, three tens must be
multiplied together to get 1000, so the logarithm of 1000 (base 10)
is 3. We write this as log101000 = 3.

A shorthand phrase for remembering this is: “Logarithms are
exponents.” That is, if x = bn, then logbx = n.

Logarithms are not necessarily whole numbers. The logarithm
(base 10) of 1001 is slightly more than 3 (in fact, it’s about
3.000434), while the logarithm (base 10) of 999 is slightly less than
3 (about 2.99957).

Any positive number may be used as the base. Here are the three
most commonly used kinds of logarithms:

• Common logarithms are those that use 10 as a base; these
are often encountered in engineering.

• Natural logarithms use the number e (approximately
2.718281828459045) and are favored by mathematicians.

• Binary logarithms use 2 as a base and are favored by com‑
puter scientists.

16 ◾ Quick Data Structures

The various logarithms differ only by a constant factor. In par‑
ticular, the binary logarithm of a number is approximately 3.322
times the common logarithm of that number. Since the common
logarithm of 1000 is 3, the binary logarithm of 1000 is approxi‑
mately 3.322 × 3, or 9.966.

Here’s a convenient way to think about binary logarithms: Given
a number, how many times do you have to cut it in half to get to 1?

Starting with the number 64, repeated halving gives 32, 16, 8, 4, 2,
and 1. That’s six halvings to get to exactly 1, so log264 is 6.

Things won’t usually work out this exactly. Starting with 60 instead
of 64, we get the sequence 30, 15, 7.5, 3.75, 1.875, and 0.9375. This
tells us that five halvings (1.875) isn’t enough, but six halvings
(0.9375) is slightly less than 1, so the binary logarithm must be
between 5 and 6, and closer to 6. (The true value is about 5.907.)

This idea of “cutting in half” will occur quite often in our discus‑
sion of algorithm timing.

2.11 BINARY SEARCH
Binary search is an algorithm for searching a sorted array for a
particular value.

In a binary search, you only search the array between two indi‑
ces—we’ll call them left and right. These indices are initially the
lowest and highest possible indices, and they will gradually move
toward each other. If the item is not in the array, the indices will
cross, and left will become greater than right.

Assuming the array is sorted in increasing order, the algorithm is
as follows:

• If left is greater than right, return failure; the item is not
in the array.

Essential Math ◾ 17

• Compute mid as the (integer) average of left and right.

• If array[mid] is the sought‑after item, return mid.

• If array[mid] is too large, recursively search between left
and mid‑1;

• Otherwise, array[mid] is too small, so recursively search
between mid+1 and right.

At each point we either find the item and return, or we recur‑
sively search half the remaining elements. Since we are eliminat‑
ing half the remaining elements each time, the required time is
actually binary logarithmic time (logarithms to the base 2), which
we could write as O(log2n). Recall, however, that it doesn’t matter
which base we use, as the results only differ by a constant. Since
we ignore constants, we write logarithmic time simply as O(log n).

The recursive binary search requires four parameters—the item
to be sought, the array, and the additional parameters left and
right. It would be nice not to have to explain those additional
parameters to the user. We can avoid this with the use of a façade
function:

Terminology: A façade function is a function whose
only job is to provide a nicer interface to the function
that does the actual work.

In this example, the façade function will take only two param‑
eters: the item sought and the array. It will then determine the
appropriate initial values for left and right and make a single call
to the recursive function.

In some languages, the façade function and the recursive func‑
tion can have the same name. In other languages, different
names are required, and the façade function should have the
more user‑friendly name. If the programming language allows

18 ◾ Quick Data Structures

functions to be nested, the recursive version can be “hidden”
inside the façade function.

2.12 QUICKSORT
The quicksort algorithm is one of the fastest sorting algorithms
known. It is a recursive algorithm—that is, the quicksort method
calls itself.

Here’s the basic idea:

• Some number from the array is chosen as a pivot.

• The array is partitioned into two parts. The numbers less
than the pivot are moved to the left side of the array, while the
numbers greater than or equal to the pivot are moved to the
right side of the array.

• The smaller numbers in the left partition are quicksorted,
and independently, the larger numbers in the right partition
are quicksorted.

• If the size of the partition (the right index minus the left
index) is zero or one, the recursion “bottoms out,” and
that partition is fully sorted.

The top‑level quicksort method itself is practically self‑explana‑
tory. Here is the complete method (in Python):

function quicksort(array, left, right):
 if left < right:
 p = partition(array, left, right)
 quicksort(array, left, p)
 quicksort(array, p + 1, right)

The initial test (left < right) checks whether anything more
needs to be done. The initial call will be with the entire array, so

Essential Math ◾ 19

left will be zero (in most languages), and right will be the size of
the array minus one. If quicksort is called with left greater than
or equal to right, the partition size is zero or one, and this branch
of the recursion is finished.

The partition method moves smaller numbers to the left, larger
numbers to the right, and returns the index p of the rightmost
small number. How this is done will be explained after the follow‑
ing example.

• Start with the array [68, 81, 20, 50, 60, 78, 47, 90].

• If we take 68 as the pivot, we can partition the array into
two parts: [47, 60, 20, 50 | 81, 78, 68, 90]. The first part
contains the numbers less than 68, while the second part
contains the numbers greater than or equal to 68. Neither
part is sorted.

• Quicksort the left part, [47, 60, 20, 50].

• Taking 47 as the pivot, we partition this into the two
parts [20 | 60, 47, 50].

• The [20] part consists of a single number, so no further
sorting is necessary.

• [60, 47, 50] can be partitioned into [50, 47 | 60], using
60 as the pivot.

• The [50, 47] part requires another quicksort step, but
the [60] part does not.

• The initial left partition is now completely sorted.

• Quicksort the right part, [81, 78, 68, 90].

• Taking 81 as the pivot, this can be partitioned into [68,
78 | 81, 90].

20 ◾ Quick Data Structures

• The two parts of [68, 78 | 81, 90] can each be quick‑
sorted (to no effect, since they are already in the correct
order).

• The initial right partition is now completely sorted.

The partition method works as follows. Given an array segment
to be partitioned, choose some value in the array segment to serve
as a pivot. In the above example, we always chose the leftmost
value in the array. Then search from the left end for a value greater
than or equal to the pivot, and search from the right for a value
less than the pivot. If the left index is still less than the right index,
swap the two values.

With this array segment, using 68 as the pivot, the search from the
left finds 68, while the search from the right finds 50.

[68, 81, 20, 47, 60, 78, 50, 90]
 → ←
Swapping these two values, we get

[50, 81, 20, 47, 60, 78, 68, 90]

Continuing the searches from where we left off (just to the right of
the 50 and just to the left of the 68), we find 81 as greater than 68,
and 60 as less than 68.

[50, 81, 20, 47, 60, 78, 68, 90]
 → ←
Swapping these two values gives us

[50, 60, 20, 47, 81, 78, 68, 90]

Essential Math ◾ 21

Continuing the searches from where we left off (just to the right of
the 60 and just to the left of the 81), we find 81 as the first number
greater than 68, and 47 as the first number less than 68.

[50, 60, 20, 47, 81, 78, 68, 90]
 ← →
At this point, the left index has become greater than (or equal to)
the right index, so the partition operation is finished; the num‑
bers 50 to 47 are all less than 68, and the numbers 81 to 90 are all
greater than or equal to 68. The index of 47 (the rightmost number
in the left partition) is returned as p, the value of the partition
method.

That’s the complete algorithm.

In the above example, we took the first value in each array seg‑
ment as the pivot. Other options include picking the value in the
center of the array segment and picking a random value in the
array segment. Each approach may have some minor advantages.

Quicksort is faster than insertion sort for large arrays, but for
small arrays (up to 10 or 12 elements), insertion sort is faster. For
this reason, a hybrid sort is sometimes implemented, where small
partitions are sorted using insertion sort. This additional effort is
probably worthwhile for a library routine to be used by the gen‑
eral public.

2.13 ANALYZING QUICKSORT
Quicksort is a recursive algorithm. To analyze it—that is, to deter‑
mine its running time—we need to know two things: the run‑
ning time of the partition method, and the depth of the recursion.
Multiplying these two numbers together will give us the result.

22 ◾ Quick Data Structures

To partition the entire array, we find a large number from the left
end, a small number from the right end, and swap them. Every
element of the array is compared to the pivot once and possibly
swapped with another element. The comparison and the possi‑
ble swap each take constant time, and there are n elements in the
array, so to partition the entire array takes O(n) time.

But that’s just for the first level of partitioning. What about the
second level? In our example, the array was split in half, but each
partition operation had half as much to do, so ½O(n) + ½O(n) =
O(n). If the array were split differently, it would still work out:
⅓O(n) + ⅔O(n) = O(n). We can conclude that O(n) work is done at
each depth of the recursion.

The depth of the recursion in this example is 3. We started with
an array of size 8, cut it into two pieces each of size 4, cut those
into pieces of size 2, and cut those into pieces of size 1. Thus, we
cut the array in half three times to get to a size of 1. In terms of
logarithms, log2(8) = 3. More generally, we can expect quicksort
to have a recursive depth of log2(n) for an array of size n.

Initial conclusion: Quicksort has a running time of O(n × log(n)),
usually written as just O(n log n), where n is the size of the array.

While our initial conclusion is basically correct, there are caveats.
Our example was chosen so that each partition operation split the
part being sorted into equal halves; this is the best case. For a ran‑
dom array, the expected size of the division is roughly ⅓ and ⅔.
This isn’t as neat, but a careful analysis still results in an expected
running time of O(n log n).

The worst case occurs when every partition operation splits an
array segment of size n into a segment of size 1 and a segment of
size n‑1. The depth of the recursion is then O(n) instead of O(log n),
and O(n) times O(n) gives quicksort a running time of O(n2).

Essential Math ◾ 23

Unfortunately, the worst case will occur when the pivot is chosen
to be the first element (or the last element) in the array segment,
and the array is already sorted. The amount of work done at each
level of the recursion is still O(n), but the maximum depth of the
recursion, instead of being log(n), is now n. In this case, quicksort
takes O(n2) time.

There are a couple of ways to avoid this. You can do a pre‑check
to make sure the array isn’t already sorted; or you can choose
the middle element rather than the end element of the array
segment; or you can choose a random element in the array seg‑
ment. Other approaches are possible and almost always work, but
there is no way to absolutely guarantee that quicksort won’t take
O(n2) time.

Final conclusion: Quicksort almost always has a running time of
O(n log n), where n is the size of the array, but there is no guaran‑
tee that it won’t take O(n2) time. Therefore, quicksort should not be
used in critical applications where an O(n log n) running time is
an absolute requirement.

When O(n log n) running time is a requirement, merge sort is a
good alternative.

2.14 MERGE SORT
Merge sort, like quicksort, is a recursive algorithm. Like quick‑
sort, at each level of the recursion, it divides the array into two
parts. Unlike quicksort, however, the two parts are always of
approximately equal size, thus guaranteeing O(n log n) running
time. Here’s how it works:

• Copy half the numbers into a new array, and the remaining
numbers into a second new array. (If the array size is odd,
one array will be slightly larger than the other.)

24 ◾ Quick Data Structures

• Independently merge sort the two smaller arrays. If an array
size is 0 or 1, it is already sorted.

• Merge the two arrays by repeatedly comparing the small‑
est numbers in each and copying the smaller back into the
original array. When all numbers in either array have been
copied, copy any remaining numbers in the other array.

For example, we will start with the array A = [56, 1, 44, 17, 24,
60, 71, 51]. Copy the two halves of this array into new arrays B
and C, so B = [56, 1, 44, 17] and C = [24, 60, 71, 51].

Merge sort B to get [1, 17, 44, 56].

Merge sort C to get [24, 51, 60, 71].

Finally, merge B and C back into array A. See Figure 2.1.

Merge sort is much slower than quicksort on average but has a
guaranteed running time of O(n log n). Like quicksort, it can be
sped up by switching to an insertion sort for smaller arrays.

Merge sort is not an in‑place sort, so it requires additional storage.
Since each recursion cuts the size of the array in half, recursions
will proceed to a depth of O(log n). Memory requirements would
therefore seem to be O(n log n), but this is incorrect.

As long as the code is executed sequentially (not in parallel), the
extra space is ½n for the first level of recursion, then ½(½n) = ¼n for
the second level, then ½(¼n) = ⅛n, and so on; the sum of these is O(n).

FIGURE 2.1 Merging two arrays.

Essential Math ◾ 25

So while O(n log n) space may be required in total, only O(n) space
is required at any one time.

2.15 EVEN FASTER SORTS
The best sorts we have seen so far have running times of O(n log
n). Is it possible to do better?

You will often see that the answer is “no.” The proof is based on
the fact that an array of n values can be arranged in n! ways, and
to sort these out requires n×log(n) decisions.

But that proof assumes that all values may be distinct. In this
section, we will discuss two sorting algorithms, each of which
requires only O(n) time.

Algorithm 1

Suppose you have an array of a thousand scores, where each score is
in the range 0 to 25. All you need to do is set up an array of 26 loca‑
tions (0 to 25), zero out the array, and for each score, add 1 to the
corresponding location of your array of counts. After all scores have
been tallied, you can put these scores back into the original array.

Of course, each score probably has associated information, such
as who made that score. That complicates the bookkeeping but
doesn’t affect the running time, which is O(n).

This is a special case because there are only a small, finite number
of scores.

Algorithm 2

Back when programs were typed onto punched cards, one line of
text per card, the last 8 columns of each card were reserved for a
card number. The idea was that if your cards were numbered, and

26 ◾ Quick Data Structures

you dropped the deck, they could be put in order again by using a
large machine called a card sorter.

To use the machine, you would put cards in a bin, set the machine
to sort on the least significant digit (often column 80), and start
it. As you waited, the machine would place every card with a zero
in column 80 into hopper zero, every card with a one in column
80 into hopper one, and so on. Then you would take the ten decks
out, put them together, and run them through again, this time on
the second least significant digit. Then the third. And so on.

Each pass through the card sorter would take O(n) time, where n
was the number of cards. To sort on d digits required d passes, so
the total running time was O(d × n). For any given card deck, d was
a constant number of digits, so O(d × n) could be regarded as O(n)
running time.

Although punched‑card sorters are long obsolete, the ideas behind
this algorithm can still be used in certain specialized problems.

2.16 BIG‑O NOTATION
Big‑O notation represents a huge simplification when comput‑
ing the running time of an algorithm. We eliminate most of the
constants. In the case of a polynomial, we eliminate all but the
highest term, so O(n2 + 3n + 5) becomes simply O(n2). If we are add‑
ing terms and one term has a higher degree than the others, we
discard the lower degree terms: O(n2) + O(n) becomes simply O(n2).
Have we oversimplified things?

For small problems, yes. With Big‑O, we assume that small prob‑
lems run fast enough anyway (usually true, but not always), and
it’s the large problems that we need to be concerned about.

Essential Math ◾ 27

Key takeaway: Big‑O is all about large problems.

We can order Big‑O times from best to worst:

• O(0) — Zero time. Avoid doing it at all.

• O(1) — Constant time.

• O(log n) — Log time.

• O(n) — Linear time.

• O(n log n) — Log‑linear time.

• O(n2) — Quadratic time.

• O(n3) — Cubic time.

• O(nk) — Polynomial time, k > 3.

• O(2n) — Exponential time.

For large values of n, these represent a range of values almost
impossible to express in a single graph. See Figure 2.2 for a com‑
parison of just a few of these running times.

FIGURE 2.2 Comparison of running times.

28 ◾ Quick Data Structures

There are also some algorithms that require superexponential
time, such as O(2)nc

. Any such algorithms are beyond the scope
of this book.

2.17 BIG‑O AND FRIENDS
I said at the beginning of this chapter that it was important to
understand Big‑O notation. This final section is optional; feel free
to skip it if you’re tired of analysis, or continue if you want a little
deeper understanding.

Along with Big‑O, two other measures are sometimes encoun‑
tered. They are Big‑Ω (“big omega”) and Big‑Θ (“big theta”).
Loosely speaking, here’s what these measures tell us:

• Big‑Ω — The algorithm always takes at least this long.

• Big‑Θ — This is how long the algorithm really takes.

• Big‑O — The algorithm never takes longer than this.

Big‑Ω gives us a minimum running time as a function of n, the
problem size. This usually isn’t very interesting. Some sorting
techniques are Big‑Ω(n) because they go through the array and
find nothing out of place.

Big‑Θ is the actual running time and is what we would really like
to have, but that’s not always well‑defined. Quicksort usually runs
in n log(n) time, but it could take n2 time, so there isn’t a Big‑Θ
value for it. Big‑O is the best we can do. In fact, Big‑O is the best
we usually can do, which is why you don’t hear much about Big‑Θ.

Big‑O is usually taken to mean the upper limit on how long an algo‑
rithm takes, but it can also be used to mean an upper limit. If an
algorithm actually takes quadratic time, O(n2), then it can correctly
be described as O(n3), O(n4), O(2n), O(n × 2n), and in many other ways.
A catch‑all term for these longer running times is called little‑o.

Essential Math ◾ 29

An algorithm has little‑o running time if, for sufficiently large n,
the algorithm is always faster than this. Put another way, if an
algorithm takes O(f(n)) running time and also o(g(n)) running
time, then f(n)/g(n) approaches zero as n goes to infinity.

Again, notice that we simply don’t care what happens for small
values of n, but only care about what happens when n is greater
than some number N. The precise value of N doesn’t matter; only
that it exists.

Here are the algorithms we’ve covered so far:

• Binary search: Ω(1) (constant time), O(log n).

• Bubble sort: Ω(n), O(n2).

• Insertion sort: Ω(n), O(n2).

• Selection sort: Ω(n2), O(n2), ϴ(n2).

• Quicksort: Ω(n log n), O(n2).

• Mergesort: Ω(n log n), ϴ(n log n), O(n log n).

One way to check your understanding of these algorithms and
Big‑O notation would be to review the algorithms and see if you
agree with the above list.

2.18 EXPONENTIAL TIME
Some problems require exponential time, and only the small‑
est of such problems can be solved on conventional computers.
(Quantum computing may change this.)

One example is the well‑known traveling salesman problem.
A salesman wishes to visit a certain number of cities, traveling the
minimum possible total distance, and returning to his starting
point. If the cities in question are the 48 capitals of the contiguous

30 ◾ Quick Data Structures

United States, there are 47! (47 factorial) possible paths. If the
salesman is limited, at each city, to choosing from five different
cities (say, the five nearest ones), there are still about 546 possible
paths.

Optimizing is finding the best solution. This may require finding
and comparing all solutions, which isn’t always possible.

Satisficing is finding a solution that is “good enough.” If there is
no clear definition of “good enough,” then it may be necessary to
use the best result found in the time available, whether or not it is
satisfactory.

Here’s an analogy: If you are about to buy a car, there may be one
car out there that is the best choice for you. To find it, you would
have to visit every car dealer, compare all the models, compare all
the features of each model, and compare their prices and warran‑
ties. Nobody can do that. Instead, you satisfice: You shop around,
get a general idea of what is available, and buy the best car you can
find with the time and energy you have available.

For many exponential problems, satisficing is the best you can do.

31DOI: 10.1201/9781003625506‑3

C h a p t e r 3

Hash Tables and
Hash Maps I

After arrays, a hash map is probably the most important
data structure you will ever need.

Most large programs spend a considerable amount of time look‑
ing things up. Hash tables and hash maps are data structures that
allow very fast lookup.

A table is just a list of values, and looking up something in a table
means finding if it is in the table and possibly noting its location.
A map is a data structure that associates keys with values; looking
something up means finding the matching key and returning the
associated value.

Python programmers: A dictionary is basically a hash
map.

Whether we are looking up values in a hash table or looking up
keys in a hash map, the algorithm is the same. Since a table is
slightly simpler than a map, we’ll start with tables.

https://doi.org/10.1201/9781003625506-3

32 ◾ Quick Data Structures

3.1 BASIC HASH TABLES
Consider the problem of searching an unordered array for a given
value. Either the value is in the array or it isn’t. If it isn’t, we need
to look at all n elements to determine this. But if the value is in
the array, we will find it after looking at n/2 elements, on average.
Either way, the search takes linear O(n) time.

If the array is sorted, we can do a binary search. A binary search
requires O(log n) time and is about equally fast whether the elem‑
ent is found or not. It doesn’t seem like we could do much better—
but we can.

Suppose we were to come up with a “magic function” that, given a
value to search for, would tell us exactly where in the array to look.
If the value is in that location, it’s in the array, and if it’s not in that
location, it’s not in the array.

This “magic function” would have no other purpose. If we look
at how the function transforms its input to its output, it probably
won’t make sense (it’s magic, after all). This function is called a
hash function because it “makes hash” of its inputs.

We can’t actually do magic, but we can come close. We’ll demon‑
strate with an extremely small but otherwise reasonable example.

Suppose you are a bird watcher and want to keep a table of all
the birds you have seen. You can look in the table to determine if
you’ve seen a particular kind of bird, and you can add new birds
to the table. We’ll use an array of ten elements (absurdly small,
but big enough for an example). For a hash function, we’ll use the
number of characters in the bird’s name.

Remember: Since strings vary in length, an “array of
strings” is really an array of pointers to strings.

Hash Tables and Hash Maps I ◾ 33

So far, you’ve seen a wren, a cardinal, a robin, and a chickadee,
and your hash table looks like the table on the right of Figure 3.1.

With this table, you can tell you have seen a robin by computing
hashCode("robin") = 5 and finding "robin" at location 5 of the
table. You haven’t seen a sparrow, because hashCode("sparrow") is 7,
and location 7 of the hash table is empty.

Suppose you next see a hummingbird and want to add it to the
table. Unfortunately, “hummingbird” is 11 characters long, and
there are only ten locations in our table. The solution, regardless
of what hash function is used, is to always take the result mod the
table size.

Reminder: Mod (short for “modulo”) is the remain‑
der of an integer division. For example, 14 mod 5 is 4,
since 5 goes into 14 twice with 4 left over. In many lan‑
guages the symbol % denotes this “mod” operation.

Note: Our example assumes 0‑based arrays. If your
language uses 1‑based arrays, use (i–1) % n + 1 instead
of i % n, where i is the index and n is the table size.

Since hashCode("hummingbird") % 10 = 1, "hummingbird" goes into
location 1 of the table; see Figure 3.2.

FIGURE 3.1 Hash table.

34 ◾ Quick Data Structures

A more serious problem occurs when we spot a crow, hash‑
Code("crow") % 10 = 4. (It’s easier to always take the mod rather
than first checking whether we need to.) Location 4 already con‑
tains the word wren. This is called a collision.

When a collision occurs, one solution is to probe (look at) the next
location, and the next, and the next, until we find an empty loca‑
tion. In our “crow” example, we see that location 4 is already occu‑
pied (and not by “crow”), so we look at location 5 and see that it is
already occupied (and not by “crow”), so we look at location 6 and
it’s empty, so we can put “crow” in location 6.

If we had found a location with “crow” in it, we would know that
“crow” was already in the table, and we could stop there.

If instead of trying to add “crow” to the table, we simply wanted
to know if it was already there, we would follow the same proce‑
dure. We would probe location 4 (“wren”), location 5 (“robin”),
and location 6 (empty). Since we find an empty location before
finding “crow,” it follows that “crow” is not in the table.

3.2 HASH FUNCTIONS
Properly implemented, looking something up in a hash table or
putting something into a hash table will take only O(1) constant
time. This is an impressive claim; can we justify it?

FIGURE 3.2 Modified hash table.

Hash Tables and Hash Maps I ◾ 35

The full math is beyond this book, but we can approach it. Let’s
start with two assumptions. (1) Our hash function is really good,
so different inputs almost always produce different outputs.
(2) Our table is really big, so collisions are highly unlikely. In these
circumstances, it should be obvious that most searches take con‑
stant time, at the cost of a great deal of wasted space.

Let’s look at the hash function first.

• The hash function must be deterministic—given the same
input, it will always produce the same result. This means it
can’t use random numbers, the time of day, or anything like
that.

• The hash function should be fast to compute. After all, the
goal is speedy lookup.

• The hash function should give a wide range of values
(ideally, any 32‑ or 64‑bit positive integer).

• The hash function should give very different results for even
tiny changes in the input.

Let’s look at the hash function in our example: the length of a
bird’s name. It will always produce the same result for the same
bird’s name (required); counting letters is reasonably fast (good);
it gives a very small range of values (even the longest name is
probably only a couple of dozen characters (bad)); and names like
“catbird” and “cowbird” have the same hash code (bad). All in all,
not a very good hash function.

Your programming language probably provides much better hash
functions for common objects. For a string s, Java uses:

s[0]*31^(n‑1) + s[1]*31^(n‑2) + ... + s[n‑1]

36 ◾ Quick Data Structures

where s[i] is the ith character of the string, n is the length of the
string, and ̂ indicates exponentiation. (Exponentiation to a power
of 2 is a fast operation, as it is simply a bit shift.)

The size of the hash table also matters. Obviously, we don’t want it
to get too full. The more the hash table contains, the more collisions
will occur. The more collisions occur, the slower it will be to look
something up or to insert something. A good rule of thumb is to
make the table large enough so that it never gets more than about
70% full. At this size, we can typically find the correct location
with only two or three probes. (Some individual searches might
take quite a bit longer, but on average we can expect constant time.)

We might create a hash table with 1000 entries—a nice round
number. Surprisingly, a nice round number is a poor choice for
the size of a hash table. Here’s why:

Suppose f is a factor of the table size t, that is, t = f x for some inte‑
ger x. We find a hash code h for the value we want to put in the
table and compute h mod t (h % t) to decide where to insert it.
Unfortunately, if h has f as a factor, then h % t will also have f as a
factor. There are only a limited number of table locations that are
multiples of f, therefore collisions are more likely.

Consequently, we prefer a table size that has as few factors as pos‑
sible. A prime number has the fewest number of factors, namely,
itself and 1. Therefore, we should choose a prime number close to
the size we want—say, 997 or 1009, rather than 1000.

3.3 HASH TABLE NOTES
When values are added to a hash table, the first entries receive the
best locations. As the table fills up, later entries encounter more
collisions. This means that when entering values from a “natural”
source, such as words from English text (or the birds in your back‑
yard), the values needed most often will be the fastest to look up.

Hash Tables and Hash Maps I ◾ 37

Hash tables should be created with enough space so that they don’t
become too full—preferably not more than about 70%. However,
even up to about 95%, hash tables are still quite efficient. When a
hash table becomes too full, the usual solution is to allocate space
for a larger table and rehash everything.

It is not usually possible to delete an item from a hash table. If this
must be done, one approach is to leave the item in the table but
somehow mark it as not available. Another approach is to remove
all the values in the surrounding “clump” and then reinsert all but
the unwanted value. A third approach is to use a linked hash table
(see Section 6.8).

3.4 HASH MAPS
A hash map is a simple extension of a hash table. Associated with
each entry in the map is some data about that entry, often in the
form of a link.

There are two simple ways to implement such a hash map. First,
it can be done with an array of objects, where each object has a
string field to contain the name of a bird, and a pointer to infor‑
mation about that bird. See Figure 3.3.

The second implementation is to use two arrays: one for bird
names and the other for bird information. The bird name can be

FIGURE 3.3 Hash map.

38 ◾ Quick Data Structures

looked up in the first array, and the same index can be used to
access information in the second array.

3.5 ABSTRACT DATA TYPES
A data type is characterized by (1) a set of values, such as {..., ‑2,
‑1, 0, 1, 2,...}, or {true, false}; (2) a data representation, which is
common to all these values E; and (3) a set of operations, which
can be applied uniformly to all these values.

To abstract is to leave out unnecessary information. In an abstract
data type (ADT), the data representation is abstracted away; only
the values and operations are provided.

For example, suppose you define a “lookup table” in which a user
can (1) create a new lookup table, (2) add an item to the table, and
(3) test if an item is in the table. Then you hide the implementation
(by making the array “private,” or however you hide code in your
language), so that no other access to the lookup table is allowed.
You have an ADT.

Hiding the implementation is important for two main reasons.
First, it allows you to modify the implementation as needed.
Second, it helps localize errors.

You might implement a lookup table as a sorted array and use a
binary search to insert or look up values. If you didn’t hide the
implementation, someone who wants the smallest value in the
lookup table might simply get the first element of the array. This
code will break if you change the implementation from a sorted
array to a hash table.

The primary user of your lookup table is probably yourself. If you
need to get the smallest value in the table, you can add a new oper‑
ation to do this. Then, if you change the implementation, you just
need to recode this operation along with all the others.

Hash Tables and Hash Maps I ◾ 39

Errors happen. If some error puts your lookup table in an incon‑
sistent state, and the only access to the implementation is through
methods you provide, then the error is in your methods. But if
the implementation is exposed, then any code anywhere in the
program could be causing the problem (and you bear the blame).

Moral: Data structures should always be implemented
as abstract data types.

One of the benefits of object‑oriented languages is the ability to
treat a data structure as an “object,” with a hidden implementa‑
tion and a limited set of operations on that object.

3.5.1 ADT as a Contract

Every ADT should have a contract (or specification) that tells the
users everything they need to know in order to use the ADT, and
does not tell the user anything they do not need to know. In par‑
ticular, they do not need to know your data representation or your
algorithms.

A contract is an agreement between two parties. In this case, one
party is the implementer of the ADT, who is concerned with mak‑
ing the operations correct and efficient, and the other party is the
applications programmer, who just wants to use the ADT to get
a job done. It doesn’t matter if you are both of these parties; the
contract is still helpful for good code and is critical in any large
project.

What makes a good contract? If you buy a house, you want to pay
as little as possible. If you sell a house, you want to get as much as
possible. You want a contract that is in your favor.

The same principle applies when designing an ADT. You will
almost always be in a position where you know what the ADT
will be used for, and you should provide that much functionality

40 ◾ Quick Data Structures

and no more. This keeps down both the cost and the complexity
of your ADT. Of course, it’s nice if the design is such that more
functionality can be added later, when it may be needed, but it’s
generally a mistake to write code before it is actually needed.

When designing an ADT, keep efficiency in mind and use an
implementation that reduces the Big‑O running time of the most
frequently used operations.

Your ADT should be documented. Just do it! Programmers are
notoriously bad at getting around to documenting code, so here is
an area where it’s easy to excel.

If the documentation is too hard to write, this probably means the
ADT is too hard to use. In that case, it’s the ADT that should be
fixed.

If you design for generality, it’s easy to add functionality later—
but you can’t remove functionality unless you are absolutely sure
that it has never been used.

41DOI: 10.1201/9781003625506‑4

C h a p t e r 4

Recursion

A recursive definition is a definition in which the thing
being defined occurs as part of its own definition. Many data

structures are defined recursively; for example, a list may contain
sublists. Functions can call themselves to solve simpler subprob‑
lems. We will see many examples of both.

This chapter exists because recursion is frequently (and unfortu‑
nately) considered an “advanced” topic. It shouldn’t be. Recursive
code is no harder to understand than loops and is often easier.
Moreover, recursion is essential for working with many data
structures.

If you are comfortable with recursion, feel free to skip this chap‑
ter. There’s nothing in it specifically about data structures, so you
won’t miss anything.

4.1 RECURSIVE DATA STRUCTURES
A natural number can be defined recursively:

• 1, or

• Any natural number plus 1.

https://doi.org/10.1201/9781003625506-4

42 ◾ Quick Data Structures

So 1 is a natural number because of rule one; 2 is a natural number
because it is the natural number 1 plus 1; 3 is a natural number
because it is the natural number 2 plus 1; and so on.

As a more practical example, a list is:

• An open parenthesis,

• Zero or more numbers or lists, and

• A close parenthesis.

By this definition, (), (1 2 17), and ((1) (1 2) (1 2 3)) are all lists.

Indirect recursion occurs when a thing is defined in terms of
other things, but those other things are defined in terms of the
first thing. For example,

An arithmetic expression is any of:

• A number,

• A sum, product, difference, or quotient, or

• Parentheses around an arithmetic expression.

A sum is:

• An arithmetic expression,

• A plus sign, and

• An arithmetic expression.

… and similarly for product, difference, and quotient. We’ve
left out a few operations, but the above is sufficient to express
(1 + 2) * (3 + 4 + 5).

Recursion ◾ 43

Recursion is a common characteristic of nested structures such as
lists, arithmetic expressions, and computer programs (statements
within statements). We’ll see many examples of these.

4.2 RECURSIVE FUNCTIONS
Functions (or “methods,” if you prefer) can also be recursive.
A recursive function is one that calls itself. Every modern pro‑
gramming language allows recursive functions, and they are
extremely useful for working with recursive data structures.

When a function is entered, it gets a new set of local variables.
In a recursive function, these have the same names as in other
levels of the recursion, but they occupy different storage locations
and therefore can have different values. This makes it possible to
change a local variable at one level of recursion without affecting
those variables with the same name at other levels.

Parameters passed by value are effectively local variables.

The (inevitable) first example of a recursive function is the
factorial.

The factorial of a natural number n is the product of all the natu‑
ral numbers up to and including n. For example, the factorial of 5
(written 5!) is the result of 1 × 2 × 3 × 4 × 5. From this, it’s easy
to see that 5! can be computed by multiplying 4! by 5, that is,
(1 × 2 × 3 × 4) × 5.

Since the factorial of 1 is simply 1, we can write the factorial func‑
tion as

function factorial(n):
 If n == 1, return 1,
 else return factorial(n ‑ 1) * n.

44 ◾ Quick Data Structures

Here, the n == 1 case is a base case: a case that can be computed
without recursion. Every recursive function must have at least one
base case.

The advantage of using the factorial to demonstrate recursion is
that it is easy to understand; the disadvantage is that using a loop
is arguably simpler and certainly much more efficient. This isn’t a
great use of recursion.

Here’s a somewhat better example. Suppose you want to ask the
user a yes–no question but don’t trust the user to respond sensibly.

function askYesOrNo(question):
 Display the question.
 Read in the answer.
 If answer starts with “Y” or “y”, return TRUE.
 If answer starts with “N” or “n”, return FALSE.
 Display “Please answer with ‘yes’ or ‘no’.”.
 Call askYesOrNo(question) and return the result.

If the user responds with, say, Maybe, this code just calls itself
again, and the answer returned is then returned from the original
call. It works for any sequence of unacceptable answers, not just
one. You can do the same thing without recursion, but it takes a
little extra work.

4.3 FOUR RULES
There are four rules that are very helpful in writing recursive
functions, particularly if you are just learning to use recursion.

 1. Do the base cases first.

 2. Recur only with simpler cases.

 3. Don’t use non‑local variables.

 4. Don’t look down.

Recursion ◾ 45

4.3.1 Rule 1: Do Base Cases First

Every valid recursive definition consists of two parts:

• One or more base cases, where you compute the answer
directly, without recursion; and

• One or more recursive cases, where you do part of the work
and recur with a simpler problem.

Every recursive function must have base cases. If your function
accidentally recurs with what should have been a base case, it’s
likely to result in an infinite recursion. Checking for and handling
base cases before doing any recursions, although not absolutely
necessary, makes this problem less likely.

The following definition of the factorial function works equally
well for natural numbers.

function factorial(n):
 If n > 1, return factorial(n ‑ 1) * n,
 else return 1.

This version does not explicitly list n==1 as a base case and, in fact,
it behaves differently for zero and negative numbers.

4.3.2 Rule 2: Recur Only with Simpler Cases

If the problem isn’t simple enough to be a base case, break it into
two parts:

• A simpler problem or problems of the same kind, and

• Extra work to use the solution of the simpler problem to
solve the given problem.

The factorial function clearly does this. The simpler problem is
finding the factorial of a smaller number (a number closer to 1),
and the extra work is multiplying by n.

46 ◾ Quick Data Structures

“Simpler” means “more like a base case.” It can involve using a
smaller number, a smaller part of a data structure, or just about
anything.

Any time you recur with a case that isn’t closer to a base case, you
get the recursive equivalent of an infinite loop.

function factorial(n):
 If n == 1, return 1,
 else return factorial(n).

4.3.3 Rule 3: Don’t Use Non‑Local Variables

Ideally, a function should use its parameters, and only its param‑
eters, to compute a result. This makes the function more self‑con‑
tained and therefore easier to understand and debug.

A global variable is one that is accessible to all parts of the pro‑
gram. It doesn’t (typically) get copied, so any change to it is visible
everywhere in the program.

If a parameter is passed by reference, this means that there is only
one copy of that value, and what the function receives is a link
or pointer to that value. Therefore, a reference parameter behaves
like a global variable.

It’s acceptable for a recursive function to refer to a global variable,
as long as it doesn’t also change it. For example, a recursive func‑
tion can look up values in a dictionary or a hash table.

It’s also acceptable for a recursive function to modify a global
variable if that variable isn’t used in the computation. For exam‑
ple, a recursive function might use a global variable to count the
number of times an operation is performed.

The problem arises when we try to both modify a global vari‑
able and use it in the recursion. This usually isn’t a problem with

Recursion ◾ 47

simple numerical calculations, but can get complicated when a
data structure is involved.

4.3.4 Rule 4: Don’t Look Down

Some texts have suggested that the way to understand a recur‑
sive function is to examine how it works at all levels of recur‑
sion. This may be a good way to convince yourself that recursion
can work, but it’s not a good way to try to understand or debug
a particular recursive function. It’s hard enough to understand
one level of one function at a time; it’s almost impossible to keep
track of many levels of the same function all at once. Don’t
even try!

If you try to understand a non‑recursive function that happens
to call other functions, you do not immediately start examining
those other functions to see how they work. Instead, you begin by
assuming that those other functions are correct.

The same should hold for recursive functions. In order to under‑
stand a recursive function, you should assume the recursive calls
are doing the correct thing. If there is an error in them, then
that same error occurs at this level, where you can find it. If you
can get this level correct, you will automatically get all levels
correct.

There is never any need to “look down” into a recursion.

4.4 EXAMPLES OF RECURSION
We’ll briefly consider three examples. First is our old friend, the
factorial.

function factorial(n):
 If n == 1, return 1,
 else return factorial(n ‑ 1) * n.

We ask the following questions:

48 ◾ Quick Data Structures

• Did we cover all possible cases?

• If n is a natural number (a positive integer), then n is
either 1 or larger than 1, so we have covered all cases.

• If n is not a natural number (0, negative, or a real num‑
ber), then there are cases for which the function may not
(and does not) work.

• Did we recur only with simpler cases?

• The “simplest” case is 1, and every recursive call is with a
number that is closer to 1, so yes.

• Did we change any non‑local variables?

• No.

Therefore, the function is probably correct.

For a second example, let’s try to make factorial more efficient by
performing two multiplications at each level.

function factorial(n):
 If n == 1, return 1,
 else return factorial(n ‑ 2) * (n ‑ 1) * n.

We’ll ask the same questions again.

• Did we cover all possible cases?

• If n is a natural number (a positive integer), then n is
either 1 or larger than 1, so we have covered all cases.

• As before, n must be a natural number.

• Did we recur only with simpler cases?

• Is every recursive call with a number closer to 1? No,
because 1 is odd, and if we start with an even number,
we’ll recur only with even numbers, and overshoot 1.

Recursion ◾ 49

Finally, we’ll look at the Fibonacci series. This is a sequence of
natural numbers starting with 1, 1. Each subsequent number is the
sum of the two previous numbers, giving 1, 1, 2, 3, 5, 8, 13, 21, and
so on. The n‑th Fibonacci number is easy to compute with a loop.

The first and second Fibonacci numbers are both 1. The definition
of the n‑th Fibonacci number, for n > 2, is

fibonacci(n) = fibonacci(n ‑ 1) + fibonacci(n ‑ 2)

and this is also easy to compute with two recursions.

function fibonacci(n):
 If n < 3, return 1
 else return fibonacci(n ‑ 1) + fibonacci(n ‑ 2).

While easy (and correct), this is not efficient. Since there are two
recursions at each level, the number of calls increases exponen‑
tially. For n = 10, only 109 calls are required, but for n = 30, 1664079
calls are required. For an efficient solution, see Section 13.5.

50 DOI: 10.1201/9781003625506‑5

C h a p t e r 5

Stacks, Queues,
and Deques

Stacks, queues, and deques are similar data structures. They
consist of a linear sequence of values, to which new values can

be added at an end or removed from an end.

• In a stack, insertions and deletions are performed at the
same end.

• In a queue, insertions are performed at one end and dele‑
tions at the other end.

• In a deque, insertions and deletions can be performed at
either end.

5.1 STACKS
A stack is an abstract data type with the following operations:

• Create a new, empty stack.

• Test if a stack is empty.

https://doi.org/10.1201/9781003625506-5

Stacks, Queues, and Deques ◾ 51

• Push a new value onto the stack.

• Peek at the “top” (most recently added) element of a stack.
Return it but do not remove it.

• Pop (remove) the “top” element of a stack and return it.

Other operations may be added as needed, for example, returning
the number of elements on the stack or testing if an element occurs
within the stack, but the above operations are fundamental.

Items are inserted at one end of a stack and removed from the
same end. The consequence is that items will be removed in the
reverse order from that in which they were added. For this rea‑
son, a stack is sometimes called a LIFO (last in, first out) data
structure.

A stack can be implemented with two components: one array and
one integer. See Figure 5.1.

In Figure 5.1, the values a, b, c, and d, in that order, have been
pushed onto the stack. The most recently pushed value, d, is at the
top of the stack; the next item that is pushed will be added after it.

The integer top can be defined in several ways. It can be the index
of the topmost element (as in Figure 5.1), the index of the first
available location (just past d), or as a count of how many items
are in the stack.

With this implementation, two errors can occur: overflow, in
which the number of items added exceeds the size of the array,

FIGURE 5.1 Array implementation of a stack.

52 ◾ Quick Data Structures

and underflow, when an attempt is made to peek or pop from an
empty stack. In Section 6.2, we will see an implementation that
allows stacks of virtually unlimited size.

All stack operations, except possibly creation, take O(1) time.

5.1.1 Example: Balancing Brackets

A simple use of stacks is to determine whether “brackets” (in
the general sense, including parentheses, braces, HTML tags, or
others) are balanced—that is, every open bracket has a matching
close bracket.

Omitting all the enclosed content, we can determine that ([]({()}
[()])) is balanced; ([]({()}[())]) is not.

Simple counting is not enough to check balance, but you can do it
with a stack. Going from left to right:

• If you see a (, [, or {, push it onto the stack.

• If you see a),], or }, pop the stack and check whether you got
the corresponding (, [, or {; if not, it’s an error.

• When you reach the end, check that the stack is empty.

5.1.2 Example: Expression Evaluation

You can evaluate an expression, such as 1+2*3+4, using two stacks:
one for operands (numbers) and the other for operators.

The basic algorithm is as follows. Proceeding from left to right:

• If you see a number, push it onto the number stack.

• If you see an operator,

• While the top of the operator stack holds an operator of
equal or higher precedence:

Stacks, Queues, and Deques ◾ 53

• Pop the old operator,

• Pop the top two values from the number stack and
apply the old operator to them, and

• Push the result onto the number stack,

• Push the new operator onto the operator stack.

• At the end, perform any remaining operations.

There are several elaborations that can be made.

If a unary minus is encountered, push a zero onto the operand
stack and proceed as you would for a subtraction operator.
(A minus is a unary operator if it is the first thing in an expression,
if it immediately follows an open parenthesis, or if it immediately
follows another operator.)

An opening parenthesis can be treated as a low‑priority operator
that does nothing. When a right parenthesis is encountered, per‑
form all the operations on the operator stack up to the left paren‑
thesis, then remove the left parenthesis from the operator stack.

The operator stack will occasionally become empty. To avoid
treating this as a special case, invent a new “operator” with the
lowest possible priority and initialize the operator stack with this
value. To apply this operator, just quit, because all the work has
been done.

Table 5.1 shows the evaluation of 2*(3+4), using '_' as the “quit”
operator.

5.1.3 Example: Stack Frames

All modern programming languages use a stack to keep track of
function calls and local variables.

54 ◾ Quick Data Structures

Functions can call other functions and can be recursive (they can
call themselves). At each call, the location of the calling statement
(the return address) is pushed onto a call stack. If no errors inter‑
rupt the process, each return from a function pops a value from
the call stack, and execution returns to that popped location.

Each function has its own set of local variables, including its
parameters. Storage for these variables is allocated when the func‑
tion is called and released when the function returns. These local
variables are also pushed onto the call stack when the function is
entered and popped off when the function returns.

If all the local variables can be determined at compile time, they
can be put into a node called a stack frame. This single entity can
then, along with the return address, be pushed onto and popped
off from the stack.

5.2 QUEUES
A queue is an abstract data type with the following operations:

• Create a new, empty queue.

• Test if a queue is empty.

• Enqueue (add) a new value onto the “rear” of the queue.

TABLE 5.1 Evaluating 2*(3+4)

Scanned Value Operator Stack Operand Stack

2 ['_'] [2]

* ['_', '*'] [2]

(['_', '*', '('] [2]

3 ['_', '*', '('] [2, 3]

+ ['_', '*', '(', '+'] [2, 3]

4 ['_', '*', '(', '+'] [2, 3, 4]

) ['_', '*'] [2, 7]

['_'] [14]

Stacks, Queues, and Deques ◾ 55

• Peek at the element at the “front” of the queue. Return it but
do not remove it.

• Dequeue (remove) the “front” element of a queue and
return it.

Other operations may be added as needed; the above operations
are fundamental.

Queues implement a “first come, first served” strategy. Items are
inserted at one end of the queue and removed from the opposite
end, similar to a checkout line in a store. Queues are sometimes
called FIFO (first in, first out) data structures.

A queue can be implemented with three components: one array
and two integers. Figure 5.2 shows what a queue would look like
after the items a through g have been added to it and items a
through c have been removed.

To enqueue (add) an element, the rear index must be incremented,
and to dequeue (remove) an element, the front index must be
incremented. As a result, the array contents “creep forward.” To
deal with this, incrementation is done modulo the array size, so
that the array is effectively circular—the first element immedi‑
ately follows the last element.

Note: If your language uses 1‑based arrays, use (i–1)
% n + 1 instead of i % n, where i is the index and n is
the table size.

FIGURE 5.2 Array implementation of a queue.

56 ◾ Quick Data Structures

When the queue has exactly one element, front and rear will be
equal. When the queue is empty, rear will be equal to front‑1 (mod‑
ulo the array size). When every queue location holds a value, rear
will also be equal to front‑1! This means an empty queue cannot
be distinguished from a full queue. Obviously, this is a problem.

Here are three solutions.:

• Make the array large enough so that it never gets full. This
works (for a while) but is a disaster waiting to happen. Please
don’t do this.

• Declare the queue to be full when rear equals front‑2
(modulo the array size), so that one array location remains
unused. Any attempt to enqueue something more will result
in an overflow error.

• Keep a count of the number of elements in the queue, and
don’t let it exceed the array size. This also works, but it
requires a bit more work and has no obvious advantages.

An attempt to dequeue something from an empty queue will
result in an underflow error.

All queue operations, except possibly creation, take O(1) time.

5.3 DEQUES
A deque (pronounced “deck”) is an abstract data type. The opera‑
tions are the same as those of a queue, except that insertions and
deletions (and peeks) may be performed at either end.

Deques are rarely used and the names of the operations vary
considerably from one implementation to another. We might, for
example, have add_left and add_right to enqueue items, or per‑
haps add_at_front and add_at_rear.

A deque, like a queue, can be implemented with an array and two
integer indices. Like a queue, deque operations take O(1) time.

57DOI: 10.1201/9781003625506‑6

C h a p t e r 6

Linked Lists

Most languages provide one or more data structures
called “lists.” Don’t be misled by names! Any data structure

that represents a sequence of values can be called a list. In Python,
for example, a “list” is implemented as an array.

In many languages, a “list” is a structure built around one of the
two types of basic lists that we will explore in this chapter: the
singly linked list (SLL) and the doubly linked list (DLL).

6.1 SINGLY LINKED LISTS
An singly linked list (SLL) can be implemented as an abstract data
type with the following operations:

• is_empty(list) — Test if the list is empty (has no elements).

• head(list) — Return the first element of the list.

• tail(list) — Return the portion of the list containing every‑
thing after the first element.

• cons(value, list) — Return the list with the value added as
a new first element.

https://doi.org/10.1201/9781003625506-6

58 ◾ Quick Data Structures

The names of the operations may vary, but head, tail, and cons
(“construct”) are commonly used. Surprisingly, these four opera‑
tions are all that are commonly needed.

Singly linked lists are implemented as a collection of nodes, where
each node contains a value field and a next field. The value field
can hold whatever data the programmer chooses, while the next
field holds a pointer to the next node in the sequence. The next
field of the last node in the list is a “null” pointer, one that doesn’t
point to anything. Depending on your language, a null pointer
could be null (Java), None (Python), the number 0 (C), or some‑
thing similar.

Figure 6.1 represents a singly linked lists containing the values a,
b, c, and d. Links are represented by solid circles and arrows, while
the slash represents a “null link.”

To create a non‑empty list, the simplest way to begin is to cons a
value onto the empty list. Then cons a value onto that, and then
another, building the list in reverse order. For example, Figure 6.1
could be created using the following code.

myList = cons(a, cons(b, cons(c, cons(d, NULL))))

In this example, head(myList) is the value a, and tail(myList) is
the list b, c, d. Also notice that head(tail(myList)) is the value b,
and tail(tail(myList)) is the list c, d.

Recursive functions and singly linked lists are ideally suited for
each other. To write a recursive function on a list, the fundamental

FIGURE 6.1 A singly linked list.

Linked Lists ◾ 59

recipe is: Do something with the head and recur with the tail. For
example, to find the length of a list:

 function length(L):
 if L is empty, return 0
 else return 1 + length(tail(L))

To find the sum of elements in a numerical list:

function sum(L):
 if L is empty, return 0
 else return head(L) + sum(tail(L))

To get the last element in a non‑empty list:

function last(L):
 if tail(L) is empty, return head(L)
 else return last(tail(L))

To get the largest element in a non‑empty numerical list:

function largest(L):
 if tail(L) is empty, return head(L)
 else:
 tail_max = largest(tail(L))
 if head(L) > tail_max, return head(L)
 else return tail_max

To reverse a stack, the simplest algorithm is to create a second,
empty stack, and then successively move all the elements from the
first stack onto the second stack.

function reverse(L, L2):
 if L is empty, return L2
 return reverse(tail(L), cons(head(L, L2)))

60 ◾ Quick Data Structures

To use reverse, the user must remember to create a second, empty
stack and pass it in as the L2 parameter. This isn’t ideal. In cases
like this, it’s better to provide a façade function—another func‑
tion that “stands in front of” the function that does the work, and
whose only purpose is to provide a nicer interface.

function reverse(L):
 return help_reverse(L, empty list)

function help_reverse(L, L2):
 if L is empty, return L2
 return help_reverse(tail(L), cons(head(L, L2)))

The operations is_empty, head, and tail all take O(1) time. The
cons operator allocates memory for a new node, which we can
assume also takes O(1) time.

6.2 STACKS AS SINGLY LINKED LISTS
As noted earlier, a stack can be viewed as an abstract data type with
the following operations: Create a new, empty stack; Test if a stack
is empty; Push a new value onto the stack; Peek at the “top” of a
stack; and Pop (remove and return) the “top” element of a stack.

A stack can be implemented directly with a singly linked list (see
Figure 6.2).

The operations on a stack are almost exactly the same as the oper‑
ations on a linked list.

• To create a stack, create a singly linked list.

• To test if a stack is empty, test if the list is empty.

FIGURE 6.2 Stack as a linked list.

Linked Lists ◾ 61

• To push a value onto a stack, cons it onto the list, then set
the pointer to the front of the list to the node containing this
new value. That is, list = cons(value, list).

• To peek at a stack, return the head of the list.

• To pop a stack, get and hold the head. Then set the pointer
to the list to the tail of the list. Return the held value. That is,
value = head(list); list = tail(list); return value.

One advantage of this implementation over using an array is that
stack overflow never happens. (You can run out of available mem‑
ory, but that’s a somewhat different problem.) Another advantage
is that if you already have singly linked lists available, implement‑
ing stacks is trivial.

6.3 IMPLEMENTATION NOTES
The easiest way to create an singly linked list is to define a node
type with head and tail fields, where the head holds a data value
and the tail holds a pointer to the next node in the sequence. Then,
it’s easy to define head(node), tail(node), cons(value, node), and
other functions.

In an object‑oriented language, however, it’s generally desirable
to define the methods on an object within the definition of the
object. Consequently, you would write node.head(), node.tail(),
and so on. With a more “public” implementation, you might be
able to write just node.head and tail.head, but other methods
would still need to be written as method calls, for example, node.
cons(value).

In an object‑oriented implementation of lists, empty lists cause
some difficulties. If an empty list is represented by a null value, it’s
not possible to write a list.is_empty() function, because you can’t
call methods on a null value. Instead, to ask if a list is empty, you

62 ◾ Quick Data Structures

have to explicitly ask whether list equals the null value. To avoid
this problem, every list might begin with a special header node.

The use of a header node makes it easy to implement the is_empty
method and allows the creation of an “empty” list that is distin‑
guishable from a null value. The disadvantage is that every use of
the tail operation involves creating a new header node.

A “node,” like an “array,” is not a specific type, but rather a gen‑
eral designation for a class of types. You can have one kind of
node for the elements of singly linked list, another kind for the
nodes in a binary tree, and so on. In languages with strict typing,
the type of every field in a node must be specified in advance. In
particular, the type of every link must be specified in advance so
that when the link is followed, the type of the node it references
is known.

In languages with strict typing, it is still possible to have a linked
list containing mixed types. The node will have multiple fields,
one for each type needed, with an additional flag field to specify
which field to use. In Figure 6.3, the first field indicates which of
the other fields to use; unused fields are shown in gray.

In some applications, lists may have sublists—the values in a
list may themselves be lists. In any reasonable application, there
must be more than just lists of sublists of sublists of sublists; the
list must include some actual data at some point. To make this

FIGURE 6.3 List with mixed types.

Linked Lists ◾ 63

possible, the nodes must have separate fields for the (possible) data
and the (possible) link.

A few languages have variant records or tagged unions. These are
nodes containing a tag to specify which type of data is included so
that the same memory may be used for different types.

6.4 LISTS IN FUNCTIONAL PROGRAMMING
More and more languages are adding functional programming
features, and singly linked lists are an important part of that.

One of the tenets of functional programming is that the value of a
variable never changes; instead, new values are saved in new vari‑
ables. Two tools make this feasible: recursion, in which new local
variables are created by recursive calls, and singly linked lists, in
which the cons and tail operations return new lists without alter‑
ing the original list.

Figure 6.4 shows myList from a previous section. List2 is created
by consing aa onto myList, and List3 is created by taking the tail
of myList. Because pointers are “one way,” all this is “invisible”
from the viewpoint of myList.

The operations defined for singly linked lists in Section 6.1 do not
support any changes to the content of lists once they are created,
which is perfect for functional programming languages. If such
operations are provided, as they might be in a non‑functional lan‑
guage, the type of structure sharing shown in Figure 6.4 is highly
inadvisable.

FIGURE 6.4 Three separate lists with shared storage.

64 ◾ Quick Data Structures

6.5 DOUBLY LINKED LISTS
A doubly linked list (DLL) can be implemented as a collection of
nodes. Each node contains a value, a link to its successor (if any),
and a link to its predecessor (if any).

In Figure 6.5, the middle node (containing b) has a previous field
pointing to the node containing a and a next field pointing to the
node containing c.

As an abstract data type, the operations on a DLL might be
called is_empty, front, rear, next, previous, add_to_front, and
add_to_rear.

To refer to the list as a whole, you could define a header node with
just the fields front and rear. The header points to the first and last
nodes in the list (or contains null links if the list is empty).

Doubly linked lists can be useful in applications where it is neces‑
sary to traverse the list in either direction.

Operations that manipulate a list, such as inserting nodes at a par‑
ticular location or deleting nodes, are easier on a list that has links
in both directions.

6.6 CIRCULAR LINKED LISTS
Doubly linked lists can be made circular so that the link in the
last element, rather than being null, points back to the first ele‑
ment. When this is done, “first” and “last” cease to have meaning;
given a link to any node in the list, you can go around and around
the list in either the forward or backward direction, indefinitely.

FIGURE 6.5 A doubly linked list.

Linked Lists ◾ 65

Singly linked lists can also be made circular, but doing this loses
the advantage of structure sharing (see Section 6.4).

6.7 PYTHON “LISTS”
In Python, a “list” is implemented as an array of pointers, along
with two additional values: the number of locations allocated to
the array (its capacity) and the number actually in use (its length).

The values in an array must be all the same type. The values in a
Python list may be of varying types and sizes because the array
contains only pointers, which are all of the same size.

Indexing into an array takes constant time, and dereferencing a
pointer also takes constant time, so accessing an element by its
array index takes constant time.

If the array has unused capacity, appending a new item to the end
or removing one takes constant time.

If appending a new item exceeds the capacity, then space must be
allocated for a new, larger array, and all the values in the array must
be copied to the new array. This, of course, takes O(n) time; however,
the new array is chosen to be large enough that adding enough new
values will amortize (average out) so that the result will still be O(1).

A variable whose value is the array cannot simply be a pointer
to the storage for that array, since the array may be moved in
memory. Instead, such variables must be a handle (a pointer to
a pointer) to the array. This way, when the array is moved, only a
single pointer, in a fixed location, needs to be updated.

For example, suppose a Python list (an array of pointers) needs to
be expanded. The list may be referenced by multiple variables (call
them ref1, ref2, and ref3), making it difficult to find and change
them all. Instead, the following steps are taken (see Figure 6.6):

66 ◾ Quick Data Structures

 1. A larger block of storage is allocated.

 2. All values are copied from the old storage block to the new
storage block.

 3. The handle is changed to refer to the new storage block. This
makes the old storage block available for garbage collection.

In Figure 6.6, the gray arrow indicates the original pointer from
the handle, and the black arrow indicates the new pointer. Note
that the variables ref1, ref2, and ref3 remain unchanged.

6.8 HASH TABLES AND HASH MAPS II
The problem of collisions in a hash table can be sidestepped by
making each entry in the hash table a pointer to a list of entries.
See Figure 6.7.

This approach means that a hash table never gets “full”—new
entries can always be added (at least until memory is exhausted,
but that’s a different problem).

FIGURE 6.6 Relocating an array using a handle.

FIGURE 6.7 A hash map using linked lists.

Linked Lists ◾ 67

When adding to a hash table, we must first check that the item
isn’t already present. This requires stepping through all the items
with the same hash code. If the word being added is dove, this
would end at the node containing crow, so it costs about the same
to add dove before wren or after crow. In many cases, more fre‑
quent items are seen and added earlier, making it desirable to add
later, less common entries at the end.

To delete a node from a list, change the pointer of the previous
node to point to the node after the one being deleted. That is, if
node A points to node B and node B points to node C, you can
delete node B by simply changing node A to point to node C. The
memory used by B can then be deallocated or garbage collected.

A hash map is a hash table in which each entry has associated
information. This can be achieved by adding a field to each node.
See Figure 6.8 for a small portion of such a hash map.

FIGURE 6.8 A hash map using linked lists.

68 DOI: 10.1201/9781003625506‑7

C h a p t e r 7

Binary Trees

A binary tree is composed of zero or more nodes. Each
node contains three components: a value (some sort of data

item), a reference or pointer to a left child (which may be null),
and a reference or pointer to a right child (which may be null). The
children of a node are themselves binary trees.

A binary tree may be empty (contain no nodes). If not empty, a
binary tree has a root node (usually drawn at the top), and every
node in the binary tree is reachable from the root node by a unique
path (see Figure 7.1).

A node with neither a left child nor a right child is called a leaf.

An abstract data type for a binary tree should have, at a mini‑
mum, functions for creating and navigating the binary tree. For
example,

• create_binary_tree(value, left_child, right_child)

• add_left_child(node, value)

• add_right_child(node, value)

https://doi.org/10.1201/9781003625506-7

Binary Trees ◾ 69

• get_left_child(node)

• get_right_child(node)

• get_value(node)

• set_value(node, value)

• is_leaf(node)

These functions all take O(1) time, and their names are self‑
explanatory. Any additional binary tree functions can be built
from this set.

Here is some additional terminology:

• Node A is the parent of node B if node B is a child of A.

• Node A is an ancestor of node B if there is a path from A to B.

• Node B is a descendant of A if A is an ancestor of B.

• Nodes A and B are siblings if they have the same parent.

FIGURE 7.1 A binary tree.

70 ◾ Quick Data Structures

• The size of a binary tree is the number of nodes in it.

• The depth of a node is its distance from the root.

• The depth of a binary tree is the depth of its deepest node.

Note: One thing binary trees do not usually have or
need is a link from each node “upwards” to its parent.
Such a link can be added if needed by the application.

Here are some important but less obvious definitions (see
Figure 7.2):

• A binary tree is “full” or complete if there is no place to add a
node without increasing the level of the tree (see Figure 7.2a).

• A binary tree of depth k is balanced if the subtree down to
depth k‑1 is complete (see Figures 7.2a, c, and d).

• A binary tree is balanced and left‑justified if it is balanced
and all the leaves at the deepest level are as far to the left as
possible (see Figure 7.2d).

FIGURE 7.2 Types of binary trees.

Binary Trees ◾ 71

7.1 BINARY TREE TRAVERSALS
A binary tree is defined recursively: it consists of a root, a left sub‑
tree, and a right subtree. To traverse (or walk) the binary tree is to
visit each node in the binary tree exactly once. Tree traversals are
naturally recursive.

Since a binary tree has three “parts,” there are three possible ways
to traverse the binary tree in a forward direction. These are named
according to when the root is visited.

• Preorder: Root, left subtree, right subtree.

• Inorder: Left subtree, root, right subtree.

• Postorder: Left subtree, right subtree, root.

One way to visualize these traversals is to attach a “flag” to each node.
For preorder, the flags go on the left of each node; for inorder, on the
bottom of each node; and for postorder, on the right of each node.
To traverse the binary tree, simply collect the flags (see Figure 7.3).

There are three additional ways to traverse a binary tree; these are
simply the reverses of the forward traversals.

• Reverse preorder: Root, right subtree, left subtree.

• Reverse inorder: Right subtree, root, left subtree.

• Reverse postorder: Right subtree, left subtree, root.

FIGURE 7.3 Binary tree traversals.

72 ◾ Quick Data Structures

Most operations involving binary trees are best done recursively.
For example, here is how to use a preorder traversal to make a
copy of a binary tree.

function copy_tree(node):
 If node is null, return null.
 root = create_leaf(copy(node)).
 left = copy_tree(get_left_child(node)).
 right = copy_tree(get_right_child(node)).
 return new binary_tree(root, left, right)

7.2 BINARY SEARCH TREES
A binary search tree is a binary tree such that, for each node, the
value in the node is greater than all the values in its left subtree
and less than all the values in its right subtree. Such a binary tree
is said to be sorted (see Figure 7.4 for two examples).

To insert a value into a binary search tree, compare its value to
the value at the root node. If the new value is less, insert it into the
left subtree; if greater, insert it into the right subtree. If the chosen
subtree is absent, place the new value in that location.

Deletion of a value from a binary search tree is usually not imple‑
mented. If this operation is needed, Figure 7.7 (“Reheaping”) sug‑
gests how to go about it.

As the name implies, binary search trees are used primarily for
fast lookup. If the tree is balanced, lookups (and insertions) are

FIGURE 7.4 Binary search trees.

Binary Trees ◾ 73

O(log n). Other fast operations include finding the smallest value,
finding the largest value, and performing an inorder traversal to
get all the values in ascending order.

If a search tree is not balanced, lookups and insertions will take
more than O(log n) time. In the worst case, if the values are
inserted in ascending (or descending) order, all left subtrees (or
all right subtrees) will be absent. This will result in O(n) insertion
and lookup times.

7.3 TREE BALANCING
For efficiency, we would like our binary trees to be balanced.
Insertions can unbalance a tree; in this section, we will show
the simplest (but not the most efficient) technique for rebalanc‑
ing a tree.

Consider any node in the tree. If its left subtree is deeper than its
right subtree, we can perform a right rotation (Figure 7.5, going
from left to right). If the node’s right subtree is deeper than its left
subtree, we can perform a left rotation (Figure 7.5, going from
right to left).

In Figure 7.5, A and B are individual nodes with specific values,
while the triangles marked x, y, and z represent complete subtrees
containing any number of nodes.

FIGURE 7.5 Binary tree rotations.

74 ◾ Quick Data Structures

Consider the tree on the left, with A at the root. Since we are con‑
sidering binary search trees, all the values in x are smaller than
any other values in the tree, and all the values in z are larger than
any other values. Of more interest, the values in y are all less than
A but greater than B.

We can perform a right rotation as follows: B keeps its left subtree
x, and A keeps its right subtree z, but A becomes the root of a right
subtree of B (allowable because A > B), and y becomes a new left
subtree of A (allowable because the values in y are all greater than
B but less than A). The inverse operation, left rotation, also main‑
tains the sorted order of the binary search tree.

As a check, notice that inorder traversals of the two trees in
Figure 7.5 produce identical results: x‑B‑y‑A‑z.

To rotate right:

top = left child of root.
temp = right child of top.
right child of top = root.
left child of root = temp.
Use top as the new root.

To rotate left:

top = right child of root.
temp = left child of top.
left child of top = root.
right child of root = temp.
Use top as the new root.

Multiple rotations may be required to completely rebalance a
binary search tree. One way to do this is to traverse the tree in

Binary Trees ◾ 75

postorder, performing rotations as required. The efficiency of this
method depends in part on how expensive it is to determine the
depth of individual nodes.

For very large binary search trees, simple rotations may be too
inefficient. There are more efficient techniques, such as red‑black
trees and AVL trees, but these are complex and (in the opinion of
this author) not worth committing to memory.

7.4 HEAPSORT
Heapsort is a well‑known, traditional sorting algorithm that any
student of data structures would be expected to know. It is gener‑
ally slower than quicksort but has the advantage that its running
time is always O(n2), so it is safer in time‑critical situations. In
addition, it’s a really interesting algorithm.

We’ll explain heapsort in three stages. First, we’ll talk about build‑
ing a binary tree. Second, we’ll show how that binary tree can be
mapped into an array. Third, we’ll show how rearranging values
in the binary tree is equivalent to sorting the array.

We need two definitions:

• A node in a binary tree has the heap property if the value
in the node is at least as large as the values in its children.
(Leaves, having no children, automatically have the heap
property.)

• A binary tree is a heap if every node in it has the heap
property.

Note: The word “heap” is also used to denote a large area of
memory from which the programmer can allocate blocks as
needed and deallocate them (or allow them to be garbage col‑
lected) when no longer needed (see Chapter 9). This is a com‑
pletely unrelated meaning of the word “heap.”

76 ◾ Quick Data Structures

We’ll begin by building a binary tree, one node at a time.

In a binary tree, a node has links to its children, but (in most
implementations) it has no link to its parent. We will just be talk‑
ing about a binary tree, not implementing one, so we can ignore
that limitation.

7.4.1 Phase 1: Heapifying a Binary Tree

To begin, consider a binary tree with only one node. This node
has no children; therefore, it has the heap property, and the entire
binary tree is a heap.

Next, consider adding a node to a binary tree (of whatever size)
that is a heap. For reasons that will be apparent later, we will add
the node next to the leftmost node in the bottom level or, if that
level is full, as the leftmost node in a new level. The result will be a
binary tree that is balanced and left‑justified.

There are two cases: (1) The value in the new node may be smaller
than or equal to the value in its parent. In this case, the parent
node retains the heap property, and nothing more needs to be
done. (2) The value in the new node may be larger than the value
in its parent, in which case the parent no longer has the heap
property, and we need to sift up (see Figure 7.6).

In Figure 7.6, the binary tree is initially a heap, but then a node
containing 14 is added to it. Since 14 is greater than 10, these two

FIGURE 7.6 Sifting up.

Binary Trees ◾ 77

values must be exchanged. But then 14 is less than 12, so these
two values must be exchanged. This process continues up the tree,
possibly as far as the root.

After sifting up, all nodes in the binary tree again have the heap
property. This is because the values in all the affected nodes (except
the one in the leaf) can only increase, so the values in those nodes
are still at least as large as either of their children. The only node
to have its value reduced is the newly added leaf, which has the
heap property because it’s a leaf.

When all the values to be sorted have thus been added to the
binary tree, the tree is a heap. It isn’t sorted—values seem to be
somewhat randomly arranged—but the largest value is at the root.

Now it gets weird.

7.4.2 Phase 2: Removing the Root and Reheaping

Once our hypothetical binary tree has been completely built, we
will do something that we would never do with an actual binary
tree: We remove the root, resulting in (in the general case) two
disconnected binary trees, each of which is a heap.

To repair the damage, we will remove the rightmost node in the
bottom level of the tree and use it to replace the old root node.
This gives a binary tree again, but the root node may not, and
probably does not, have the heap property. We need to reheap the
binary tree (see Figure 7.7).

FIGURE 7.7 Reheaping.

78 ◾ Quick Data Structures

To reheap the binary tree, exchange the value in the root node
with the value in one of its two children, whichever is larger.
(If they are equal, choose either.) This restores the heap prop‑
erty of the node at the root, but the chosen child may or may
not have the heap property. If it does not, exchange its value with
that in the larger child; and so on, down the binary tree, until the
value that was in the root reaches a position where it again has the
heap property.

By repeatedly removing the root and reheaping the binary tree,
we get a series of steadily decreasing (or at least, non‑increasing)
values, so we have the conceptual basis of a sorting technique.
To turn this into an actual sorting technique, we need to put the
binary tree into an array and work with it there.

7.4.3 Phase 3: Mapping a Binary Tree into an Array

There is an obvious way to put a binary tree into an array. Put
the root value into the first location, then put the values of its
left and right children in the second and third locations. Next,
put the values of the root’s grandchildren into the array, then the
great‑grandchildren, and so on (see Figure 7.8).

This mapping of binary trees to arrays works only when the binary
tree is balanced and left‑justified. If it isn’t, there will be “holes” in

FIGURE 7.8 Array representation of a balanced, left‑justified binary
tree.

Binary Trees ◾ 79

the array that don’t correspond to nodes, and these would have to
be marked in some way.

There are simple formulas for finding the left child, right child, or
parent of a node. They are slightly different for 0‑based arrays and
1‑based arrays.

If the first location in the array is at index 1:

• The left child of a node at location k is at 2*k.

• The right child of a node at location k is at 2*k+1.

• The parent of a node at location k is at k/2, using integer
division.

If the first location in the array is at index 0:

• The left child of a node at location k is at 2*k+1.

• The right child of a node at location k is at 2*k+2.

• The parent of a node at location k is at (k‑1)/2, using integer
division.

Up to this point, we have only imagined performing the heap
operations on a balanced, left‑justified binary tree. Now that we
have a way to represent such a binary tree as an array, we can
implement those operations.

7.4.4 The Complete Heapsort Algorithm

Finally, here is the code to heapsort an array.

Heapify the array.
While the array isn’t empty:
 Swap the first and last elements.
 Decrement the index of the "last" element by 1.
 Reheap the new root node.

80 ◾ Quick Data Structures

All the values to be sorted are already present in the array, but we
will pretend otherwise. As nodes are added to or removed from
the binary tree, the values to the right become “invisible” to us. In
other words, we will think of only the initial part of the array as
representing the binary tree.

Here’s the algorithm again, this time in words.

 1. Heapify the array. Initially, the only value “visible” to us
is the root, in the first location, so it is a leaf and has the
heap property. As we step forward in the array, successive
values become visible to us, and for each new value, we
need to check whether its parent still has the heap prop‑
erty. If not, we sift up, exchanging values with the parent,
and possibly its parent’s parent, and so on. When all the
nodes have thus become visible, the array is a heap, but it
isn’t yet sorted.

 2. Repeatedly exchange the value in the root (first) location
with the value in the last visible location. This is the array
equivalent of removing the root and replacing it with the
rightmost leaf in the lowest level of the tree. This puts the
largest remaining value in the last visible location, which
now becomes “invisible,” that is, no longer part of the binary
tree. The root location probably no longer has the heap prop‑
erty, so it has to be reheaped by comparing its value with
those of its two children, and so on down into the binary
tree. When the visible part of the array is reduced to a single
node, the array has been sorted.

7.4.5 Analysis

In the first phase, we “add” n nodes to the binary tree. Each added
node may have to be sifted up. Since the tree is balanced, the max‑
imum depth is log(n), so for each node added we may have to do
as many as log(n) exchanges; therefore, the running time of this
phase is O(n log n).

Binary Trees ◾ 81

In the second phase, we “remove” n nodes (those currently at
the root). Since these are replaced by nodes that probably do not
have the heap property, they may have to be reheaped. The maxi‑
mum depth of the binary tree is log(n), so this phase also requires
O(n log n) time.

Finally, O(n log n) plus O(n log n) is O(n log n).

7.5 HUFFMAN ENCODING
Huffman encoding is the data compression technique used for zip
files, gif files, and others. It uses a binary tree to create the encoding.

The concept underlying Huffman encoding is entropy. Entropy is
a measure of information content: the number of bits required to
store data, rather than the number of bits typically used.

Entropy is sometimes called a measure of surprise. If you ran‑
domly choose a letter from a page of text, you won’t be very sur‑
prised if you get a T or an E, but you would be more surprised if
you get a J or a Q. Common letters such as T and E have lower
entropy than J or Q, so they should be represented with fewer bits.
Huffman encoding does this.

To create an encoding for text, the first step is to find the frequen‑
cies of each character. (For photographs, we might do the same for
pixels.) Letter frequencies for English can be found in numerous
sources and vary slightly according to the text used; in the follow‑
ing example, we use some of the values from https://pi.math.cor‑
nell.edu/~mec/2003‑2004/cryptography/subs/frequencies.html.

Construction of the tree is quite simple. Make a list of the leaves
and their associated frequencies. At each step, the two smallest
values in the queue are removed, a new (non‑leaf) node is created
with the sum of these values, and placed back in the list. (A prior‑
ity queue, described in Chapter 8, is ideal for this purpose.)

https://pi.math.cornell.edu/~mec/2003-2004/cryptography/subs/frequencies.html
https://pi.math.cornell.edu/~mec/2003-2004/cryptography/subs/frequencies.html

82 ◾ Quick Data Structures

For a small example using only eight characters, see Figure 7.9.

The encoding for each character is determined by the path from
the root to that character, using 0 for the left child and 1 for the
right child. For example, d is encoded as 010, and the word decade
as 0101011000001010.

Text encoded in this way can be decoded because the codes have
the unique prefix property: None of the resultant binary codes is a
prefix of any other code. This property holds because, in a binary
tree, a leaf is not on a path to any other node.

Using the above encoding, the entropy of English text is about
4.7 bits/character. This can be considerably improved by using
digraphs (letter pairs), trigraphs (letter triples), whole words, or
even larger units. For whole words, the entropy measure drops to
about 2.62 bits/character. Similar results can be expected for other
languages that use an alphabet.

To decode a Huffman‑encoded file, the code table must be included
with the encoded data. This is a minor cost for large files, but for
small files, the encoded file plus the code table may be larger than
the unencoded file.

FIGURE 7.9 Huffman encoding.

83DOI: 10.1201/9781003625506‑8

C h a p t e r 8

Priority Queues

A queue is a last‑in, last‑out data structure. A priority queue,
on the other hand, returns the highest priority item first; the

order of insertion makes little difference. As an abstract data type,
a priority queue could be defined to have the following operations:

• Create a new, empty priority queue.

• Add an item with a given priority to the priority queue.

• Look at the highest priority item.

• Remove and return the highest priority item.

• Test if the priority queue is empty.

This isn’t the only way an ADT (abstract data type) could be defined
for a priority queue. For example, the test for whether a priority
queue is empty could be replaced by a function that returns the
number of elements it contains. As another example, instead of
the priority being inherent in the element to be added, it could
be assigned when the element is added. And, of course, many
 additional operations could be added.

https://doi.org/10.1201/9781003625506-8

84 ◾ Quick Data Structures

The point is that there is not one universally agreed‑upon way to
define an ADT. Rather, what is important is that the programmer
defines some fixed set of operations for a data structure and pro‑
hibits others by hiding the implementation.

8.1 PRIORITY QUEUE IMPLEMENTATIONS
There are numerous ways a priority queue could be implemented.
It could be done with

• An unsorted array. Insertion time would be O(1), removal
time would be O(n).

• A sorted array. Insertion time would be O(n), removal time
would be O(n log n).

• An unbalanced (random) binary tree. Depending on imple‑
mentation, insertion and deletion times would range from
O(1) to O(n).

• A balanced binary tree. Insertion and deletion times would
both be O(log n), and rebalancing the binary tree after each
operation would take an additional O(log n).

The last of these is the fastest implementation; the disadvantage
is that binary tree balancing algorithms are complicated. We will
consider a simpler but in some ways equivalent implementation,
using a heap (see Section 7.4).

In the heapsort algorithm, an array can be used to represent a
left‑justified balanced binary tree (defined in Chapter 7). In such
an array, there are simple formulas that can be applied to the array
index of a node to find the indices of that node’s parent, left child,
and right child. As the algorithm runs, it repeatedly generates the
largest remaining value in the array.

With that reminder, here’s how to implement a priority queue:

Priority Queues ◾ 85

• Define an array with enough capacity to hold as many val‑
ues as can occur in the priority queue at any one time. (This
requires judgment or the use of an array such as Python’s
“list” that has flexible bounds.) Be sure to test for overflow.

• To insert a value, put it at the end of the current values in the
array, and then sift up until that value is in its proper place.

• To get and remove a value, return the value in the first loca‑
tion (the “root”), replace it with the value in the last location,
and reheap.

This works if the “highest priority” is represented by the largest
number. Frequently, however, the highest priority is often repre‑
sented by the lowest number, with priority 1. This requires a redef‑
inition of “heap property.”

To heapsort an array into ascending order, we defined the heap
property of a node to be that the value in the node is at least as
large as the values in its children. If we instead define the heap
property to mean “at least as small,” then the heapsort will sort an
array into descending order. In a priority queue, this change will
result in always returning the smallest numeric value, that is, the
one with the highest priority.

86 DOI: 10.1201/9781003625506‑9

C h a p t e r 9

Heaps

As shown in Section 5.1.3, all modern programming
 languages use a stack to keep track of local variables. Local

variables and parameters are added to the stack when a function is
entered and removed from the stack when the function exits. This
works fine for fixed‑size values such as numbers and pointers.

Larger items, such as arrays, nodes, and strings, are kept in a
heap. As an abstract data type, the heap has only two funda‑
mental actions: (1) allocate a block of storage of a given size from
the heap and return a pointer to it, and (2) deallocate a block of
 storage—that is, recycle it by returning it to the heap.

Some languages make it the responsibility of the programmer to
allocate and deallocate storage, while other languages allocate
storage automatically as needed and use garbage collection (see
Section 9.3) to recycle it afterward. Either way, the storage is on
a heap.

https://doi.org/10.1201/9781003625506-9

Heaps ◾ 87

9.1 HEAP IMPLEMENTATION
A heap is a single large block of storage, perhaps a few megabytes,
to be parceled out and used as needed. Heaps are used by every
programming language that allows new objects or arrays to be
created during program execution.

A block is a single, contiguous area of storage within the heap. It
has a header containing at least two items of information: a pointer
to another block and the size of the block. The pointer is used to
organize blocks into a singly linked list, and the size needs to be
known when the block is deallocated. See Figure 9.1.

Initially, the entire heap consists of a single block, and the system
has a pointer (let’s call it free) to that block. We will fill up the
heap from the far end (the end farthest from the header).

To allocate a block of size n:

• Find an unused block in the heap that has at least n+2 storage
locations available.

• Use the n+2 locations at the end of the block we just found
to create a new block, and reduce the size of the block it was
taken from by n+2.

• Set the size of the new block. The pointer field is not used.

• For security reasons, zero out the user data area of the block.

• Give the user a pointer to the new block.

FIGURE 9.1 Single node used for a heap.

88 ◾ Quick Data Structures

Figure 9.2 (1) shows the state of the heap after A has been allocated,
and then B, and then C. Note that the blocks may be of different
sizes. After each allocation, the size of the free block is decreased.

In Figure 9.2 (2), the block assigned to A has been deallocated.
The free pointer points to this newly deallocated block, while the
pointer in the block is assigned the previous value of free. This
begins a linked list of deallocated blocks.

In Figure 9.2 (3), the block assigned to C has been deallocated.
Pointers have been updated to maintain a list of deallocated
blocks.

Under heavy use, heaps are subject to a problem called fragmen‑
tation. While there may be enough total free space to allocate a
large block, that space is in fragments—consisting of small blocks
scattered throughout the heap.

To deal with fragmentation, contiguous free blocks may be
coalesced. In Figure 9.2 (3), the topmost unused area and the
adjacent one pointed to by free could be combined into a single,
larger block. The algorithm for doing this, which we will only hint
at here, involves sorting the links to unused blocks by storage
address.

FIGURE 9.2 Heap before and after allocations and deallocations.

Heaps ◾ 89

A more effective approach to dealing with fragmentation is
to pack all the blocks in active use into one end of the heap.
This can’t be done if the user has pointers to the active blocks,
but it is possible if the user is only given handles (pointers
to pointers) to the active blocks. This allows the actual block
pointers to be updated as the blocks are moved. After this, all
unused blocks will be contiguous and can be coalesced into
one large block.

9.2 DEALLOCATION PROBLEMS
There are two potential errors when deallocating (freeing) storage.

A block may be deallocated too soon, while it is still accessible
to some variable (let’s call it x) in the program. Then the block
may be allocated and used to hold some other, unrelated data. The
variable x then becomes a dangling reference—it points to the
wrong kind of data, and using x to modify that data could have
serious consequences.

The other kind of error occurs when storage is no longer in use but
isn’t deallocated, causing the heap to gradually fill up with inac‑
cessible data. This is called a memory leak; if the program runs
long enough, it will fail with an “out of memory” error.

These errors are common in languages that leave allocation and
deallocation up to the programmer; they are much rarer in lan‑
guages that perform garbage collection (see Section 9.3).

If you have to deallocate storage yourself, a good strategy is to
keep track of which function or method “owns” the storage. The
function that owns the storage is responsible for deallocating it.
Ownership can be transferred to another function or method;
you just need a clearly defined policy for determining ownership.
In practice, this is easier said than done.

90 ◾ Quick Data Structures

9.3 GARBAGE COLLECTION
Garbage is storage that has been allocated but is no longer avail‑
able to the program. It’s easy to create garbage: (1) Allocate some
storage and save the pointer to it in a variable. (2) Assign a differ‑
ent value to that variable.

A garbage collector automatically finds and deallocates garbage.
This is far safer (and more convenient) than having the program‑
mer do it. Dangling references cannot happen, and memory leaks,
while not impossible, are much less likely.

Practically every modern language, not including C++, uses gar‑
bage collection. While it is unlikely that you will ever need to write
a garbage collector, it can be helpful to understand how they work.

There are two well‑known algorithms (and several less well‑known
ones) for performing garbage collection: Reference counting and
Mark and sweep.

9.3.1 Reference Counting

When a block of storage is allocated, it includes header data that
contains an integer reference count. The reference count keeps
track of how many references (pointers) there are to that block.

When a pointer to the block is duplicated and saved in a new vari‑
able, the reference count is incremented. If a variable is changed to
no longer point to the block, the reference count is decremented. If
the reference count reaches zero, no remaining program variables
point to it, and it can immediately be garbage collected.

Reference counting is a simple technique that is occasionally used.
However, it is unreliable. If object A contains a pointer to object
B, and object B contains a pointer to object A, then each is refer‑
enced, even if nothing else in the program references either one.

Heaps ◾ 91

Circular references such as this will fool the garbage collector,
which won’t collect either object A or object B. The result is a mem‑
ory leak.

9.3.2 Mark and Sweep

When memory runs low, languages that use mark and sweep
temporarily pause the program and run the garbage collector.

First, the garbage collector marks every block. (Blocks must have
a field in the header for this purpose.)

Second, the garbage collector performs an exhaustive search, start‑
ing from every reference variable in the program, and unmarks all
the storage it can reach. When it finishes, every block that is still
marked must not be accessible from the program; it is garbage
that can be freed.

For this technique to work, it must be possible to find every ref‑
erence variable. This can’t be done by searching the raw code;
instead, each time a reference variable is created, its location must
be recorded, probably in a linked list. This is additional overhead.

Mark and sweep is much more reliable than reference counting,
but it takes substantial time and, unlike reference counting, it
must be done all at once—nothing else can be going on. The pro‑
gram stops responding during garbage collection. This can be a
problem for many real‑time applications.

92 DOI: 10.1201/9781003625506‑10

C h a p t e r 10

Trees

A tree is like a binary tree, except that each node may have
any number of children. To emphasize the distinction, a tree

is sometimes called a general tree.

The usual way to implement a tree is with nodes containing three
fields: some data value, a link to a list of children, and a link to the
next sibling. See Figure 10.1.

Most of the terminology used to describe binary trees (ancestor,
sibling, depth, etc.) can also be used for general trees, and there
are a few additional terms:

FIGURE 10.1 A general tree and its implementation.

https://doi.org/10.1201/9781003625506-10

Trees ◾ 93

• An ordered tree is one in which the order of the children
is important; an unordered tree is one in which the order
doesn’t matter, and the children of a node can be thought of
as a set.

• The branching factor of a node is the number of children it
has.

• The branching factor of a tree is the average branching fac‑
tor of its nodes.

Branching factors can be important when determining the Big‑O
running times of tree algorithms.

To define a tree as an abstract data type, the following operations
must be defined:

• Construct a new, possibly empty tree.

• Add a child to a node.

• Iterate through the children of a node, or (if ordered) get the
ith child of a node.

• Get and set the value in a node.

If node removal is permitted, that usually means deleting the
entire subtree whose root is that node.

General trees can be traversed in preorder: Visit the root and
then traverse each child. Similarly, general trees can be traversed
in postorder: Traverse all the subtrees, and then visit the root.
Inorder traversals are not well defined.

10.1 APPLICATIONS OF TREES
In this section, we discuss some of the most common applications
of trees.

94 ◾ Quick Data Structures

10.1.1 File Systems

File systems are almost always implemented as a tree structure.
The nodes in the tree are of (at least) two types: folders (also called
directories) and plain files. Folders are nodes that may themselves
have children, while plain files do not.

A folder also contains a link to its parent, usually indicated by two
dots (..). In UNIX, the root of the tree is denoted by a forward
slash (/); in Windows, the root is probably denoted by C:.

10.1.2 Family Trees

Family trees are a challenge to represent accurately. If we ignore
such factors as adoption, there are two basic problems. First, each
person represented has two parents. Second, people often have
children with more than one partner.

One approach to overcoming these problems is to have, in addi‑
tion to nodes representing individuals, nodes representing mar‑
riages (or affairs). It gets complicated.

A better way to represent biological relationships is with an “upside
down” binary tree so that the root is a single individual. Since it is
a biological fact (so far) that every child has exactly two biological
parents, we can use left child = mother and right child = father. The
terminology gets a bit confusing, since “parent” and “child” have
opposite meanings in a binary tree than in a family.

This approach can easily be extended to multiple individuals.
Suppose you have an extensive family tree with some individual at
the root. A related individual could then have a “mother link” (left
child) to a node in that binary tree, a “father link” (right child) to
a node in that tree, or both, or neither. In this way, subtrees could
be shared between individuals. To complete the data structure,

Trees ◾ 95

you could add a list of “root” individuals, forming a “forest” of
binary trees.

However, such “biological family trees” are probably only use‑
ful for medical/genetic purposes. To properly represent the wide
variations in “societal family trees” (with adoptions, remarriages,
same‑sex marriages, etc.), some other data structure must be used,
and it won’t be as simple as a tree.

10.1.3 Game Trees

Trees are used heavily in implementing games, particularly board
games.

A node represents the state of the game at one point in time. For
example, if the game is chess, the state would include the positions
of all the pieces, whose turn it is, and whether check has been
called.

Each possible move represents a single step from the current node.
The branches from a node represent the possible moves; the chil‑
dren represent the new positions. Planning ahead (in a game)
means choosing a path through the tree.

A complication arises if it is possible to return to an earlier state of
the game, allowing players to repeat the same sequence of moves
over and over, resulting in a game that never terminates.

One way to handle a repeated state is to ignore the fact that it
has occurred previously and treat it as a new node in the usual
fashion. In theory, this would result in an infinitely deep tree
and could lead to an infinite loop when choosing a path through
the tree. This might or might not be a problem—if a tree is being
built, it is built as needed, so an infinitely large tree would not be
built. Similarly, deciding on a move (i.e., determining which child
node to go to next) almost always involves a limited search, since

96 ◾ Quick Data Structures

finding a path all the way through to the end of the game is infea‑
sible for any game much larger than tic‑tac‑toe.

Another way to handle a repeated state is to give a node a link
back up in the tree to one of its ancestors. While this isn’t exactly
illegal, it violates the definition of a “tree,” and the result is more
properly called a graph (see Chapter 11) and should be treated as
such.

10.1.4 Expressions

When a program is compiled, the first step is almost always pars‑
ing the program. Parsing creates a tree structure that is equivalent
in meaning to the text of the program.

In the resultant parse tree, a node that is a leaf could hold either
a value or the name of a variable whose value could be looked
up (e.g., in a hash table). A node that is not a leaf could hold the
name or symbol for an operation to be applied to the values of its
children.

Control statements (while, if, etc.) are considered to be just another
kind of operator. For example, the statements “First assign 1 to m;
then while m is less than 1000, multiply m by 2” can be represented
as shown in Figure 10.2; the sequencing operation is represented
by a semicolon so that A;B means “first do A, then do B.”

FIGURE 10.2 Tree representation of code.

Trees ◾ 97

While you may never be called upon to write a compiler, any‑
thing that has syntax—dates, addresses, phone numbers—can be
parsed into its components. If you can’t parse text inputs, you are
limited to reading simple things like numbers and strings. But if
you can parse text input, you can make sense of:

• tell Mary "Meet me at noon"
• fire phasers at 3, 7
• jane.doe@google.com
• 28°12"48'
• 3:30pm‑5pm

One simple approach, which we won’t go into any detail here,
involves two phases. In the first phase, the code breaks the input
into a list of tokens, for example, ["3", ":", "30", "pm", "‑", "5",
"pm"]. In the second phase, the next operator is found, suitable
operands are looked for in the list of tokens, and those are assem‑
bled into a tree structure.

10.2 TREE SEARCHING
A tree search starts at the root and explores nodes from there,
looking for a goal node (a node that satisfies certain conditions,
depending on the problem). Figure 10.3 shows a small tree with
two goal nodes, K and O, as indicated by double circles.

FIGURE 10.3 A tree with goal nodes marked.

mailto:jane.doe@google.com

98 ◾ Quick Data Structures

For some problems, any goal node is acceptable (K or O); for other
problems, you want a minimum‑depth goal node, that is, a goal
node nearest the root (only K).

A depth‑first search (DFS) explores a path all the way to a leaf
before backtracking (going back to a previous node and exploring
from another child of that node).

In the example tree, after visiting A (the root), the search proceeds
to B, and then to E. The search then backtracks to B and searches
from F, which leads to I, then M, and then successive backtracking
to I leads to N and finally to O. Since O is a goal node, the search is
complete.

A breadth‑first search (BFS) explores nodes nearest the root
before exploring nodes further away. In the example tree, a BFS
would first visit A (the root), then B, C, and D, then E, F, G, and H, and
finally I, J, and the goal node K.

10.2.1 Depth‑First Searching

To perform a depth‑first search (DFS) of a tree:

Put the root node on a stack.
While the stack is not empty:
 Remove a node from the stack.
 If the node is a goal node, report success.
 Put the children of the node onto the stack.
Report failure.

At each step, the stack contains some nodes from several levels. The
size of the stack required depends on the branching factor b. While
searching level n, the stack contains approximately b × n nodes.

When this method succeeds, it returns some goal node but doesn’t
report the path taken to it.

Trees ◾ 99

To perform a recursive depth‑first search,

function search(node):
 If node is a goal, return success.
 For each child c of node:
 If search(c) is successful,
 save the node, and
 report success.
 Return failure.

The stack only needs to be large enough to hold the deepest search
path.

When the function succeeds, the (implicit) stack contains only
the nodes on a path from the root to a goal. As the recursion
“unwinds” through multiple levels, those nodes can be saved in
some external data structure, such as a stack.

If a goal node nearest the root is required, depth‑first searching
is inappropriate. It may find an arbitrarily deep goal node rather
than a nearby one. It can also fail if there are extremely deep paths
not containing a goal node.

10.2.2 Breadth‑First Searching

To perform a breadth‑first search (BFS) of a tree:

Put the root node on a queue.
While the queue is not empty:
 Remove a node from the queue.
 If the node is a goal node, report success.
 Put all children of the node onto the queue.
Report failure.

The advantage of a breadth‑first search is that when it succeeds,
it finds a minimum‑depth (nearest the root) goal node.

100 ◾ Quick Data Structures

Breadth‑first searching has some serious disadvantages.

• In a typical tree, the number of nodes at each level
increases exponentially with the depth. During the
search, the queue will hold, at various times, all the nodes
at a given level. Hence, memory requirements may be
infeasible.

• A successful breadth‑first search doesn’t provide the path to
the goal node, and there is no recursive equivalent that will
give the path.

• For a large tree, a breadth‑first search may take an exces‑
sively long time to find even a very nearby goal node.

10.2.3 Depth‑First Iterative Deepening

Depth‑first searches have reasonable memory requirements
but may overlook nearby goal nodes. Breadth‑first searches
find nearby goal nodes but may require excessive memory. A
depth‑first iterative deepening search has both advantages: it
will find nearby goal nodes while using a reasonable amount of
memory.

We first consider depth‑limited searching. This is just a recur‑
sive depth‑first search with a counter to limit how deep the
search goes.

function limitedDFS(node, limit, depth):
 If depth > limit, return failure.
 If node is a goal node, return success.
 For each child of node:
 If (limitedDFS(child, limit, depth + 1))
 Save node on an external stack.
 return success.
 Return failure.

Trees ◾ 101

Since this method is basically DFS, when it succeeds, the path to
a goal node can be recovered by pushing the current node onto a
stack just before the return success statement.

We can now use this function to perform a depth‑first iterative
deepening search.

limit = 0.
found = false.
While not found:
 found = limitedDFS(root, limit, 0).
 limit = limit + 1.

This code searches to depth 0 (root only), then if that fails, it searches
to depth 1 (root and its children), then if that fails, it searches to
depth 2 (root and its children and grandchildren), and so on.

Like BFS, if a goal node is found, it is a nearest node, and the path
to it is on the stack.

Like DFS, the required stack size is only the search depth (plus 1).

One apparent disadvantage is that when doing a limited DFS to
depth n, all the previous work (to depth n–1, n–2, etc.) is simply
discarded. While true, this is less of a waste than it may appear.
When searching a binary tree to depth 7, a single DFS requires
searching 255 nodes, while iterative deepening requires search‑
ing 502 nodes. In general, iterative deepening takes about twice
as long. With a tree that has a branching factor of 4, DFS to depth
7 requires searching 21845 nodes, while iterative deepening
searches 29124 nodes—about 4/3 = 1.33 times as long.

The higher the branching factor, the lower the relative cost of iter‑
ative deepening DFS. In general, if the branching factor is b, the
difference is about b/(b–1).

102 ◾ Quick Data Structures

10.2.4 State‑Space Searches

Some problems are best represented as a search in a state space. A
state space consists of a (possibly infinite) set of states and a set
of operators.

The start state represents the initial problem. Applying an opera‑
tor to a state in the state space transforms it to another state in the
state space. Some states may be goal states; these represent solu‑
tions to the problem.

Not all operators are applicable to all states.

Example 1: Maze

A maze can be represented as a state space. Each state repre‑
sents “where you are” in the maze. The start state represents
your starting position, and the goal state represents the exit
from the maze.

Operators (for a rectangular maze) are: move north, move
south, move east, and move west. Each operator takes you
to a new state, which is simply your location in the maze.
Operators may not always apply because you are not allowed
to walk through walls.

See Section 11.8 for an example of a rectangular maze.

Example 2: Sliding Blocks

One of the best‑known sliding block puzzles is the fifteen
puzzle. It contains 15 tiles, numbered 1 through 15, in a
4x4 grid. The start state is some apparently random configu‑
ration of the tiles, while the goal state is one where the num‑
bered tiles are in order; see Figure 10.4.

Note: In the fifteen puzzle, only half the possible config‑
urations are reachable from (or to) the goal state. If the
state space is thought of as an undirected graph, it has two

Trees ◾ 103

distinct connected components. Hence, the start state
cannot be completely random.

In this problem as in many others, the choice of operators is
critically important. This choice affects both execution time
and the difficulty of writing the code.

The obvious set of operators is to move an individual
block either left, right, up, or down. As there are 15 blocks,
this results in a total of 60 operators, at most four of which
will be applicable from any given state. This isn’t ideal.

A much better set of operators is to move the space either
left, right, up, or down. Of these four operators, at least two
will be applicable from any given state.

We will return to this puzzle in Section 11.9.1.

Example 3: Angels and Demons

“Missionaries and cannibals” is a classic puzzle, but to avoid
giving offense to any cannibals among my readers, I have
recast it as “angels and demons.” (Besides, this simplifies
finding appropriate images.)

Here’s the problem. Three angels and three demons want
to cross a river. They have a canoe that will hold only one
or two at a time (see Figure 10.5). Unfortunately, if at any
time the demons outnumber the angels, they will destroy
the angels. How do you get everyone safely across the river?

We will explore the state space of this problem in some‑
what more detail.

FIGURE 10.4 The fifteen puzzle, unsolved and solved.

104 ◾ Quick Data Structures

We need to represent the possible states, preferably in as
simple a manner as possible. A triple of numbers is enough:
The number of angels on the left bank, the number of
demons on the left bank, and the number of canoes (zero or
one) on the left bank.

We will define five possible operations, named a, d, aa, dd,
and ad:

• a: Use the canoe to take 1 angel across the river.
• d: Use the canoe to take 1 demon across the river.
• aa: Use the canoe to take 2 angels across the river.
• dd: Use the canoe to take 2 demons across the river.
• ad: Use the canoe to take 1 angel and 1 demon across

the river.

We don’t have to specify “west to east” or “east to west”
because only one of these will be possible at any given time.

Figure 10.6 shows the initial portion of a state‑space
search for this problem. The search space continues after the
vertex in the bottom right.

In Figure 10.6, each node shows in the top line what is
on the left bank and (redundantly) in the bottom line what
is on the right bank. This redundancy does not need to be
reflected in the code; it’s in the figure to make it easier to see

FIGURE 10.5 Angels and demons—start state and goal state.

Trees ◾ 105

when demons outnumber angels. A failure node (marked
with a skull and crossbones) occurs when demons outnum‑
ber angels on either bank.

The search space is shown as an undirected graph. Most
edges may be traversed in either direction; the exception
is that there is no exit from a failure node. Because there
are cycles in the graph, graph searching techniques (see
Section 11.4) are appropriate.

10.2.5 Pruning

In any kind of search, pruning—deleting (or just ignoring) sub‑
trees that cannot contain a goal node—can save considerable
effort. For very large search trees, it may also be advisable to prune
subtrees that seem unlikely to contain a goal node so that more
promising subtrees may be searched to a greater depth.

Pruning is important because the savings in time can be expo‑
nential. Consider a binary search tree: If one of the two children
of the root can be pruned, search time is cut in half. Each of the

FIGURE 10.6 Initial part of the search space for angels and demons.

106 ◾ Quick Data Structures

four grandchildren that can be pruned will save one‑quarter of
the time. And so on. The higher in a tree that pruning occurs, the
greater the savings.

10.2.6 Alpha–Beta Searching

In many tabletop games, such as chess, checkers, and backgam‑
mon, two players take turns choosing moves. This complicates the
search for a winning move.

Because such games result in very large search trees, it is gener‑
ally not possible to search deep enough to find a winning node, so
heuristics are used to evaluate the “goodness” of nodes. The idea of
an alpha–beta search is to prune branches that are unlikely to be
taken, thus allowing deeper searches on more promising branches.

An alpha cutoff occurs when it is your move, and you decide not
to explore certain subtrees because you have already found a more
promising subtree of that node. A beta cutoff occurs when it is
your opponent’s move, and you believe that your opponent will
not move into that subtree because it is more desirable to you.

Figure 10.7 shows the result of an alpha–beta search on a tree that
is just barely big enough to show some examples. Your moves are

FIGURE 10.7 Alpha–beta cutoffs.

Trees ◾ 107

shown as rectangular nodes; your opponent’s moves are shown as
round or rounded nodes.

a. The search extends down to node a, which has a heuristic value
of 17.

b. The value 17 is brought up to node b. This is known as a prelimi‑
nary backed‑up value (PBV); it can change.

c. The next child of node b, node c, is evaluated. It has a heuristic
value of 20.

b. Since 20 is better than 17, the PBV at b is replaced by 20.

d. A PBV of 20 is brought up to node d.

e. From node d, we explore down to node e, which has a heuristic
value of 12.

f. Node f is assigned a PBV of 12.

g. Node g is visited, and it has a heuristic value of 18.

f. The PBV of 12 at node f is replaced by the better value of 18.

d. Node d is the opponent’s move, so they will replace the PBV of
20 with the (better for them, worse for you) value of 18.

h. The PBV of 18 is brought up to node h.

i, j, k, l. Node l is explored, and gets a PBV of 15. But 15 is worse
than the parent node’s PBV of 18, and your opponent will never
bring up a larger value; therefore, there is no point in exploring
any further subtrees of l. This is an alpha cutoff, and the value of
15 is not brought up to node h.

108 ◾ Quick Data Structures

m, n, o, p. The leftmost child of p is explored, and p gets a PBV of 25.

q, r. Nodes q and r are explored, and a PBV of 32 is brought up to
node r. But 32 is worse for your opponent than the PBV of 25 at p,
so the value of 32 is not brought up, and a beta cutoff occurs.

h. The PBV of 25 at node p is better than the PBV of 18 at node h,
so it replaces the value in node h.

According to what has been determined so far, you should move
from h to p, your opponent will likely move from p to n, and you
should move from n to o. However, after your opponent’s move,
you will probably have an opportunity to do another, deeper
search and very likely get some different values.

More explicitly, an alpha cutoff occurs when:

• It is your opponent’s turn to move, and

• You have computed a PBV for this node’s parent, and

• The node’s parent has a higher PBV than this node, and

• This node has other children you no longer need to consider.

A beta cutoff occurs when:

• It is your turn to move, and

• You have computed a PBV for this node’s parent, and

• The node’s parent has a lower PBV than this node, and

• This node has other children you no longer need to consider.

Alpha–beta searching assumes that your opponent has the same
heuristic function as you (i.e., they assign the same heuristic val‑
ues to nodes). This is probably an incorrect assumption, but better

Trees ◾ 109

heuristics and deeper searches tend to win out over weaker heu‑
ristics and shallower searches.

10.3 TRIES
A trie is a data structure used for storing and retrieving a very
large collection of strings—say, a complete lexicon or a large num‑
ber of DNA nucleotide sequences.

The trie in Figure 10.8 represents 15 words: a, an, and, any, than,
that, the, there, these, those, what, when, where, who, and why.
Black nodes indicate that a complete word has been formed at that
point. To locate a given word, start at the root and follow the link
labeled with the first letter; then follow the link labeled with the
second letter; and so on.

Conceptually a trie is a kind of tree, but the implementation is
completely different. Instead of linked lists, tries use arrays.
In our example, we will discuss a trie containing all and only
English words that can be formed using the 26 lowercase let‑
ters. Figure 10.9 shows a part of the implementation of the trie in
Figure 10.8; ellipses indicate parts that have been omitted from
the figure.

FIGURE 10.8 A trie.

110 ◾ Quick Data Structures

At the root of our example trie is an array of 26 locations, cor‑
responding to the 26 lowercase letters. Each array contains two
things: a link to a sub‑trie and a Boolean (not shown in Figure 10.9)
indicating whether a complete word has been formed.

Letters are not explicit in the trie; they are implied by locations
in the array. The first location of the root array contains a link to
a sub‑trie for all words beginning with ‘a,’ the second contains a
link to a sub‑trie for words beginning with ‘b,’ and so on. Each
sub‑trie has the same form, with links to its own sub‑tries.

To look up the word ‘any,’ start in the root array and follow the link
in the first location (a); from the array that link points to, follow
the link in the fourteenth location (n); from that array, follow the
link in the twenty‑fifth location (y). This is a leaf, so a‑n‑y is a word.
(So are ‘a’ and ‘a‑n,’ but as they are not leaves, those array locations
must contain a Boolean to indicate they are also complete words.)

Note: To convert letters to numeric indices, subtract the
numeric value of 'a' from the numeric value of the letter; add
1 if your arrays are 1‑based.

Tries have a large number of advantages.

• Tries are extremely efficient in terms of execution time.

• The time required to build a trie is O(nk), where n is the
number of strings and k is the average length of a string.

FIGURE 10.9 Part of the trie implementation.

Trees ◾ 111

• Insertion, deletion, and lookup each require only O(k)
time.

• Words can be looked up in O(L) time, where L is the
length of the word; non‑words may require even less
time.

• The complete word list can be generated in alphabetical
order using a preorder traversal.

• Tries can be used to find words with a given prefix, which
can be useful for auto‑completion, for example.

It may seem that the space complexity required for a trie could
be exponential. In theory, a trie using 26 letters might require
26 raised to the power of the maximum word length. However,
in practice, the space required is limited to a constant times the
actual number of strings. While this may represent a substantial
amount of storage, it isn’t exponential.

A trie can also be represented using hash maps instead of arrays.
This approach has the advantage of supporting a flexible set of
characters (e.g., Unicode) rather than a fixed‑size set, but it loses
the ease of generating all words (or other types of strings) in
alphabetical order.

112 DOI: 10.1201/9781003625506‑11

C h a p t e r 11

Graphs

A graph is a data structure that consists of a collection of
vertices connected by edges. There are two kinds of graphs:

directed graphs (sometimes called digraphs) and undirected
graphs (see Figure 11.1). Edges in a digraph can be followed only
in one direction, while edges in an undirected graph may be fol‑
lowed in either direction.

Since edges in a graph are often represented by pointers or ref‑
erences that can only be followed in one direction, edges in an
undirected graph are often implemented by a pair of pointers, one
in each direction.

In a graph, data is usually (but not necessarily) stored in the verti‑
ces. As shown in the graphs in Figure 11.1, data may also be stored
in the edges.

FIGURE 11.1 Directed (left) and undirected (right) graphs.

https://doi.org/10.1201/9781003625506-11

Graphs ◾ 113

There are many ways to implement graphs. But first, some
terminology.

• The size of a graph is the number of vertices it contains. The
empty graph has no vertices, so its size is zero.

• If two vertices are connected by an edge, they are neighbors,
and the vertices are adjacent to each other.

• The degree of a vertex is the number of edges it has.

• For directed graphs,

• If a directed edge goes from vertex S to vertex D, we call S
the source and D the destination of the edge.

• An edge from S to D is an out‑edge of S and an in‑edge of
D. S is a predecessor of D, and D is a successor of S.

• The in‑degree of a vertex is the number of in‑edges it
has, while the out‑degree of a vertex is the number of
out‑edges it has.

• A path is a list of edges such that every vertex but the last is
the predecessor of the next vertex in the list.

• A cycle is a path whose first and last vertices are the same
(e.g., [rock, scissors, paper, rock]).

• A cyclic graph contains at least one cycle, while an acyclic
graph does not contain any cycles.

• An undirected graph is connected if there is a path from
every vertex to every other vertex.

• A directed graph is strongly connected if there is a path from
every vertex to every other vertex, and weakly connected if
the underlying undirected graph (ignoring edge direction)
is connected.

114 ◾ Quick Data Structures

• Vertex X is reachable from vertex Y if there is a path from
Y to X.

• A subset of the vertices of a graph is a connected component
(or just a component) if there is a path from every vertex in
the subset to every other vertex in the subset.

The best way to implement a graph depends on how the graph is
to be used; here are some questions to consider:

• How large is the graph?

• Is data associated with the vertices? With the edges?

• Should vertices be ordered? How about the out‑edges of a
vertex?

• Which graph operations need to be efficient?

11.1 GRAPH APPLICATIONS
Graphs can be used for

• Finding a route to drive from one city to another

• Finding connecting flights from one city to another

• Determining least‑cost highway connections

• Designing optimal connections on a computer chip

• Implementing automata

• Implementing compilers

• Doing garbage collection

• Representing family histories

• Doing similarity testing (e.g., for a dating service)

Graphs ◾ 115

• Pert charts

• Playing games

• Finding a minimum‑length path.

11.2 ADJACENCY MATRIX REPRESENTATIONS
An adjacency matrix is a particularly simple way to represent
a graph because it uses a matrix, or two‑dimensional array.
Figure 11.2 shows an example of a directed graph and its repre‑
sentation as a matrix.

If there is an edge from vertex i to vertex j, then there is a value in
row i and column j of the array. In a Boolean array, an edge can
be represented by True and the absence of an edge by False. If the
array is numeric, array entries can be used to represent values on
the edges (miles from city A to city D, for example).

This representation shows connections between vertices but does
not support storing data in those vertices. If that is needed, it must
be done elsewhere.

An undirected graph can be represented in the same manner. If
there is an edge between vertex i and vertex j, then there is a value
in row i and column j of the array, but also in row j and column
i (see Figure 11.3).

FIGURE 11.2 Matrix representation of a directed graph.

116 ◾ Quick Data Structures

The adjacency matrix for an undirected graph is symmetric about
the main diagonal, as shown in Figure 11.3. Each edge is repre‑
sented by two marks, except in the special case where an edge goes
from a vertex back to the same vertex.

For very dense graphs—ones in which there are edges between
almost every pair of vertices—matrix representations may be
appropriate. However, adjacency matrices require O(n2) space to
represent n vertices, regardless of the number of edges. For less
dense graphs, this disadvantage can be overcome by the use of a
sparse array (see Section 11.5).

11.3 REPRESENTATION BY SETS
In this section, we will explore graph implementations using sets
of vertices and sets of edges.

Reminder: A set is an unordered collection of values in which
each value occurs either exactly once or not at all. By conven‑
tion, set values are shown enclosed in curly braces, {}.

Many languages provide sets as a built‑in data type. If not, they
can be implemented, perhaps as a hash table. Our focus in this
section will be on using sets, although if an ordering is desired,
lists can be used instead.

FIGURE 11.3 Matrix representation of an undirected graph.

Graphs ◾ 117

An edge set implementation of a directed graph is just a set of
edges, where each edge is a pair of values (link to source vertex
and link to destination vertex) and possibly a value for the edge
itself. If desired, the vertices themselves can be in a second set.

To represent an undirected graph, the two vertices of an edge can
be treated as the two ends of the edge, rather than source and
destination.

The main advantage of an edge set representation is that it is easy
to implement. It also makes it easy to find vertices from an edge,
but finding the edges from a vertex requires searching the set of
edges. This makes finding a path from one vertex to another very
inefficient.

An adjacency set implementation makes a graph much more
navigable by including redundant information: An edge “knows
about” its source and destination, while a vertex “knows about” its
out‑edges (and possibly its in‑edges) (see Figure 11.4).

If the edges p through v have no associated values, they can be
elided. Each vertex, instead of pointing to a set of edges, can point
to the set of vertices reachable by following those edges.

11.4 SEARCHING A GRAPH
With certain modifications, any tree search technique can
be applied to a graph. This includes depth‑first, breadth‑first,
depth‑first iterative deepening, and almost any other type of

FIGURE 11.4 Adjacency set representation of a graph.

118 ◾ Quick Data Structures

search. The difference is that a graph may have cycles, and any
search technique must avoid getting caught in endless repetitions
around a cycle.

To avoid getting trapped in a cycle, keep track of which vertices
you have already searched, so you don’t repeat those searches.
There are two ways to do this: (1) keep a list of vertices you have
already visited, or (2) put a mark on the vertices you have visited.
The latter approach is more intrusive—it might interfere with later
searches—and in a team setting, you may not have the option to
change how vertices are implemented.

We will compare the code for performing a depth‑first search
(DFS) on a tree with doing the same kind of search on a graph.
Other types of searches require similar changes.

Here is how to do DFS on a tree:

Put the root node on a stack.
While the stack is not empty:
 Remove a node from the stack.
 If the node is a goal node,
 return success,
 else
 put all children of the node onto the stack.
If you get to here, return failure.

Here is how to do DFS on a graph:

Put the starting vertex on a stack;
While the stack is not empty:
 Remove a vertex from the stack.
 If the vertex has already been visited,
 continue with the next loop iteration.
 If the vertex is a goal node,

Graphs ◾ 119

 return success,
 else,
 put all the successors of the vertex
 onto the stack.
If you get to here, return failure.

You can use DFS to find the connected components of an undi‑
rected graph. For each vertex in the graph, if it isn’t already in
some component, create a new component for it, then perform a
DFS, and add every reachable vertex to the same component. The
result will be a set of components, that is, a set of sets of vertices.

The same approach does not work for finding connected compo‑
nents of a directed graph. To do that efficiently requires an algo‑
rithm (Union‑Find) not covered in this book.

11.5 SPARSE ARRAYS
A university or college might have thousands of students and
thousands of courses. During their college career, a typical student
will take perhaps a few dozen courses, get a grade in each of these,
and will not take thousands of other courses. Suppose we represent
this as an array with one row for each student and one column for
each course; the student’s grades would be the values in the array.
If an ordinary array is used, the waste of storage space would be
phenomenal. Processing times would also be negatively affected.

For this and similar situations, a sparse array is appropriate.
As an abstract data type, a sparse array can be used just like an
ordinary array, but the implementation only allocates space for
non‑null (or non‑zero) elements.

Consider the ADT (Abstract Data Type) for an ordinary
two‑dimensional array. There are really only two necessary opera‑
tions: (1) given the row and column indices of an array location,
store some value in that location, and (2) given the row and col‑
umn indices, fetch the value from that location.

120 ◾ Quick Data Structures

To implement these two operations for a sparse array, you could
use a hash map (see Section 3.4), using some combination of the
indices to compute a hash code. That works, but it turns out to
make access to rows and columns very difficult.

Returning to the college example, you might ask: What courses
has this student taken? or, Which students have taken this course?
With a hash map representation, these would be very difficult
questions to answer. In terms of an array, these questions are
equivalent to finding all the non‑null values in a row and finding
all the non‑null values in a column.

For each row, you can use a linked list. Each node in the linked
list will contain the column number (which would be hard to find
otherwise) and the value (grade) in that location of the array. You
could then create a linked list of these “row lists.” Similarly, you
can create a linked list of all the values in a column (along with
their row numbers) and make a linked list of these.

Figure 11.5 shows a sparse array with both a list of “row lists”
and a list of “column lists.” Since a node can be approached from
either direction (row or column), it should contain both the row
number and the column number, along with whatever other value
it may hold.

If, as in the college example, you can expect almost every row and
every column to contain some meaningful values, you can use an

FIGURE 11.5 A sparse array and its representation.

Graphs ◾ 121

array instead of a list to hold links to the “row lists,” and another
array of links for the “column lists.”

Sparse arrays are also useful in linear algebra, where you may
have large matrices with almost all zero entries.

11.6 DIJKSTRA’S ALGORITHM
Dijkstra’s algorithm finds the least‑cost path in a graph from a
given vertex to all reachable vertices. It is a complex algorithm,
but is included in this book because many problems require find‑
ing a least‑cost path.

Dijkstra’s Algorithm builds a kind of “inverse tree,” where all
paths lead to the root rather than from the root. To find the best
path from vertex X to some vertex Y in this tree, we start at Y and
follow the only available path back to X.

Each edge in the graph has a cost (or distance) measure on it. For
the algorithm to work, no edges can have a negative cost.

For each vertex V, we need to keep track of three pieces of information:

• The cost of the best path to V that has been found so far.

• Whether the cost of the best path to V is final or is still only
tentative. Initially, all costs are infinite (or some suitably
large number) and tentative.

• A link (directed edge) from that vertex. Initially, all links
are null.

We also need to keep a priority queue of vertices adjacent to the
vertices that have been visited so far.

For the graph in Figure 11.6, begin by putting vertex X into the
priority queue. The cost to get to X from itself is zero, that cost is
final, and the directed edge is null. Then, at each step:

122 ◾ Quick Data Structures

 1. Pull from the priority queue the vertex N with the smallest
tentative cost and mark that cost as final. (Any other path to
N must cost more because it must go through a vertex with
a higher tentative cost.)

 2. Add to the priority queue any vertices adjacent to N that are
not already in the priority queue and whose cost is still ten‑
tative. Add links from each of those vertices back to N.

 3. For each vertex V adjacent to N that does not already have a
final cost, compute the cost of getting to V by way of N (the
cost of N plus the cost of the edge from N to V). If this cost
is less than the tentative cost of V, update V’s tentative cost,
and make it link back to N.

When the priority queue becomes empty, all vertices reachable
from X have been processed and the “inverse tree” is complete.

11.7 SPANNING TREES
A spanning tree of a connected, undirected graph is a connected
subgraph that includes all the vertices, but only enough of the
edges to maintain connectivity. It will have one fewer edge than
vertices and no cycles.

To find a spanning tree of a graph,

• Pick an initial vertex and call it part of the spanning tree.

• Do a search from the initial vertex.

FIGURE 11.6 Dijkstra’s algorithm.

Graphs ◾ 123

• Each time you find a vertex that is not in the spanning tree,
add both the new vertex and the edge you followed to get to
it to the spanning tree.

A graph typically has many possible spanning trees; the ones you
find depend on the type of search you do. Figure 11.7 shows (a) an
initial graph, (b) one possible spanning tree after a breadth‑first
search, and (c) one possible spanning tree after a DFS.

Suppose you want to supply a set of houses (say, in a new subdivi‑
sion) with electric power, water, sewage lines, telephone lines, and
internet. To keep costs down, you might want to connect some of
these (such as water and sewage) with a spanning tree.

However, the houses are not all equal distances apart, and longer
pipes cost more, so you might want to use a minimum‑cost span‑
ning tree. The cost of a spanning tree is the sum of the costs of its
edges.

There are two basic algorithms for finding minimum‑cost span‑
ning trees, and both are greedy algorithms (see Section 13.4).

Kruskal’s algorithm ignores the vertices. It starts with no edges
in the spanning tree and repeatedly adds the cheapest edge that

FIGURE 11.7 Initial graph and two spanning trees.

124 ◾ Quick Data Structures

does not create a cycle. As the algorithm progresses, multiple dis‑
connected edges join up. When the correct number of edges have
been added, the result is a minimum‑cost spanning tree.

Kruskal’s algorithm sounds simple. However, efficient testing for
the existence of a cycle requires a complex algorithm (Union‑Find)
which is beyond the scope of this book.

Prim’s algorithm starts with putting any one vertex into the
spanning tree and creating a set of edges adjacent to that vertex.
The main loop then consists of taking the cheapest edge from
that set and testing whether the vertex to which it leads is already
in the spanning tree. If so, the edge is discarded; otherwise, it
and the new vertex are added to the spanning tree, and the edges
from that vertex are added to the set of edges. The algorithm ends
when the correct number of edges (or vertices) are in the span‑
ning tree.

An edge of the lowest cost can be found with a priority queue, and
testing for a cycle is automatic. This makes Prim’s algorithm far
simpler to implement than Kruskal’s algorithm.

If some redundancy is desired in a network, so that the graph
remains connected when a single edge is removed, a spanning tree
is not the best solution. Instead, a single cycle connecting all the
vertices might be a better choice. The problem of finding such a
cycle with the least cost is called the traveling salesman problem
and is exponentially difficult.

11.8 MAZES
Typically, every location in a maze is reachable from the start‑
ing location, and there is only one path from start to finish. If
the locations are “vertices” and the open doors between cells are
“edges,” this describes a spanning tree (see Figure 11.8a).

Graphs ◾ 125

Since there is exactly one path between any pair of cells, any cells
can be used as the “entrance” and “exit.” Often, both entrance and
exit are to the outside of the maze, but it is also common for one
or the other to be near the center of the maze.

There is an easy way to turn a rectangular array into a maze. It
requires keeping track of two sets: The set of locations already in
the spanning tree (call it TREE) and the set of locations not yet in
the spanning tree but adjacent to some location in the spanning
tree (call it ADJ).

Start with all walls present.
Define two sets, ADJ and TREE, initially empty.
Set X to any array location and add it to TREE.
While there are still locations not in TREE:
 Add to ADJ all the cells adjacent to X that
 aren't in either ADJ or TREE.
 Set Y to any cell from ADJ and put it in TREE.
 Erase the wall between Y and any adjacent
 location X that is in ADJ.

It usually works well, when selecting the next cell from ADJ, to
choose one randomly.

FIGURE 11.8 Building a maze.

126 ◾ Quick Data Structures

Figure 11.8b shows a partially completed maze. The locations
 containing an open circle are in TREE, and the shaded locations
are in ADJ.

11.9 HEURISTIC SEARCHING
Search spaces can be very large, or even infinite. It is important to
make searching as efficient as possible.

All the previous searches have been blind searches: They make no
use of any knowledge of the problem. If we know something about
the problem, we can usually do much better by using heuristics.

A heuristic is a “rule of thumb” for deciding which choice might
be best. There is no general theory for finding heuristics because
every problem is different. The choice of heuristics depends on
knowledge of the problem.

This is the basic search algorithm:

Put the start node into OPEN.
 While OPEN is not empty:
 Take a node N from OPEN.
 If N is a goal node, report success.
 Put the children of N onto OPEN.
 Report failure.

If OPEN is a stack, this is a depth‑first search; if OPEN is a queue,
this is a breadth‑first search; and if OPEN is a priority queue sorted
according to most promising first, we have a best‑first search.

If the search space is a graph that contains cycles, provision must
be made to avoid searching from any given vertex more than
once.

Graphs ◾ 127

11.9.1 Solving the Fifteen Puzzle

In this section, we develop a heuristic for solving the fifteen puzzle
that was described earlier in Section 10.2.4 (see Figure 11.9). Our
states are the possible arrangements of tiles, and our operations
are moving the blank (by sliding an adjacent tile into it) in one of
four directions.

For any given state, we can compute an estimate of the number
of moves required to reach the goal state. This will be our heu‑
ristic measure—the smaller the measure, the more desirable the
state. The goal state itself will have a heuristic measure of zero
(no moves required).

To compute the heuristic measure: For each piece, count how
many moves it would take to move the piece into its proper posi‑
tion if no other pieces were in the way. Do this for every piece and
add up the counts. The result is a (very) optimistic measure of how
many moves it will take to solve the puzzle.

Note: The distance covered to get from one point to another
when only horizontal and vertical moves are allowed, is called
the Manhattan distance.

In Figure 11.9, the 3 is two moves from its proper location; the 10
is two moves away; the 13 is five moves away; and so on.

With this heuristic, we can perform a best‑first search.

FIGURE 11.9 Fifteen puzzle (repeated image).

128 ◾ Quick Data Structures

• Create a priority queue to hold the states of the puzzle along
with their heuristic measures.

• Initialize the priority queue with the start state and its heu‑
ristic measure.

• As long as the priority queue isn’t empty,

• Take the state with the best heuristic measure from the
priority queue and call it the current state.

• Find the adjacent states by making all possible moves
from the current state. For each adjacent state that has
not been visited previously, compute its heuristic mea‑
sure and add it to the priority queue.

The search space is a graph, so it is important to avoid getting
caught in a cycle.

The number of possible arrangements of the tiles is 16!, but
only half of these are reachable from the goal node, so there are
16!/2 = 10,461,394,944,000 states in the search space. Even our sim‑
ple heuristic measure leads to a very quick solution.

11.9.2 The A* Algorithm

The simple form of a best‑first search keeps a set of nodes to
explore and uses a heuristic function (applied to each of those
nodes) to decide which node to explore next.

The A* (or A‑star) algorithm is a best‑first search with the addi‑
tional feature that the distance already traversed (from the root to
each node) is added to the heuristic function.

Let g(N) be the distance from the start state to node N. Let h(N) be a
heuristic estimate of the distance from node N to a goal node. Then,
f(N) = g(N) + h(N) is the (partially known and partially estimated)
distance from the start node to a goal node (see Figure 11.10).

Graphs ◾ 129

Memory requirements of A* depend on the quality of the heuristic
function.

• If h(N) is a constant (it supplies no useful information), then
A* is identical to a breadth‑first search, and requires mem‑
ory exponential in the branching factor.

• If h(N) is a perfect estimator, memory requirements will
be minimal because A* will go straight to a goal with no
searching required.

The quality of the solution also depends on h(N). It can be proved
that if h(N) is optimistic (never overestimates the distance to a
goal), then A* will find an optimal solution, that is, one that has
the shortest path to a goal.

In the previous section, our heuristic for the fifteen puzzle was
(very) optimistic; therefore, an A* search will find a solution with
the fewest possible moves.

11.9.3 IDA*
In the worst case (that is, with a poor heuristic), A* is equivalent
to a breadth‑first search and will require exponential storage.
Iterative deepening, which was described in Section 10.2.3, can be
applied to the A* algorithm.

FIGURE 11.10 A* algorithm: f(N) = g(N) + h(N).

130 ◾ Quick Data Structures

Iterative deepening uses depth‑limited searching, where the
search only proceeds to a fixed depth; at each iteration, the depth
limit is increased. Iterative‑deepening A* (IDA*) is just like itera‑
tive deepening, but instead of using g(N) (the actual depth so far)
to limit searching, it uses f(N) (the estimated total depth).

IDA* gives the same results as A*; however, because IDA* is essen‑
tially a DFS, storage requirements are linear in the length of the
path, instead of exponential in the branching factor.

The best searches combine a basic blind search technique with
heuristic knowledge about the problem space, and A* and its vari‑
ations, especially IDA*, are the best heuristic search techniques
known.

131DOI: 10.1201/9781003625506‑12

C h a p t e r 12

Hypergraphs

There is no generally accepted definition of a hypergraph.
Perhaps the best that can be said is: A hypergraph is a col‑

lection of zero or more graphs, generalized in some way. In this
section, we will discuss some extreme generalizations, followed by
an implementation.

Consider the following sentence: “John thinks Martha is a
Martian.” Figure 12.1 shows a hypergraph that captures this but
remains neutral on the question of whether Martha is really from
Mars.

The elements of a graph are vertices and edges, while the elements
of a hypergraph are vertices, edges, and graphs.

FIGURE 12.1 “John thinks Martha is a Martian.”

https://doi.org/10.1201/9781003625506-12

132 ◾ Quick Data Structures

Now consider how a hypergraph like this might be generalized by
using sets instead of single values.

• Other people might also think Martha is a Martian, so the
“thinks” edge could have a set of sources, rather than just
one.

• This probably isn’t the only thing John thinks, so “thinks”
could have a set of targets (destinations).

• Vertices (and graphs, and even edges) might belong to a set
of graphs.

Other generalizations are possible. In Figure 12.1, a graph rather
than a vertex is the target of an edge, so it seems reasonable to
allow a graph to also be a source of an edge. Probably less use‑
ful, but still conceivable, the source or target of an edge might be
another edge.

Finally, there is no reason to restrict the sources and targets of an
edge to all be in the same graph.

12.1 PLEXES
We can represent arbitrarily complex hypergraphs by means of a
simple data structure called a plex. A plex consists of some user
data (e.g., “John”) and four sets of plexes.

A plex is multipurpose: It can represent a graph, a vertex, or an
edge. The four plex sets that it contains are

• containers: The plexes that “contain” this plex. For example,
a graph may be a container for vertices and edges.

• contents: The plexes “contained in” this plex. For example, a
graph may have vertices and edges as its contents.

Hypergraphs ◾ 133

• origins: The plexes “from which” this plex comes. For exam‑
ple, the origin (source) of an edge may be a vertex.

• targets: The plexes “to which” this plex goes. For example,
an edge may have a vertex as its target.

There are two simple validity rules:

• If plex X is a container of plex Y, then plex Y is a content of
plex X, and vice versa.

• If plex X is an origin of plex Y, then plex Y is a target of plex
X, and vice versa.

Plexes allow almost anything. For example, a plex that represents
an edge may have multiple sources and multiple targets. A plex
that represents a vertex may belong to multiple graphs, and it may
have multiple graphs within it. And so on.

The hypergraph in the previous section, “John thinks Martha is a
Martian,” could be represented by the seven plexes in Table 12.1.
In this table, we can see, for example, that the edge “is‑a” has its
origin at “Martha”; therefore, “Martha” has a target of “is‑a.”

TABLE 12.1 “John thinks Martha is a Martian”

Plex Containers Contents Origins Targets

Graph G John, thinks, Subgraph S

John Graph G thinks

thinks Graph G John Subgraph S

Subgraph S Graph G Martha, is‑a, martian thinks

Martha Subgraph S is‑a

is‑a Subgraph S Martha martian

Martian Subgraph S is‑a

134 ◾ Quick Data Structures

The terminology can be confusing. In general, it is easy to see that
an edge that goes from A to B has A as its origin and B as its termi‑
nation. The consequence of the validity rules is that the out‑edges
of a vertex are its targets, and the in‑edges are its origins.

A plex can represent a vertex, an edge, or a graph, and there is noth‑
ing inherent in the plex structure to indicate which is intended. Of
course, such a field could be added.

Plex structures are extremely flexible; probably too flexible. They
provide an example of what can be done with data structures, but
perhaps not what should be done. If hypergraphs are ever actu‑
ally needed for a project (which is unlikely), plexes stand ready
to serve.

135DOI: 10.1201/9781003625506‑13

C h a p t e r 13

Algorithm Types

Algorithms that use a similar problem‑solving approach can
be grouped together. By classifying algorithms into types, we

can highlight the various ways in which a problem can be attacked.

In this section, we will consider several different types of algo‑
rithms, many of which have been seen in the earlier parts of this
book.

13.1 SIMPLE RECURSIVE ALGORITHMS
A “simple” recursive algorithm is one that (1) solves the base cases
directly, (2) recurs with a simpler subproblem, and (3) may do
some extra work to convert the solution to the simpler subprob‑
lem into a solution to the given problem.

The factorial function and many operations on linked‑lists (see
Chapter 6) are examples that make simple use of recursion.

13.2 BACKTRACKING ALGORITHMS
Suppose you need to decide among various choices, where (1) you
don’t have enough information to know what to choose, (2) each
decision leads to a new set of choices, and (3) some sequence of

https://doi.org/10.1201/9781003625506-13

136 ◾ Quick Data Structures

choices (possibly more than one) may be a solution to your prob‑
lem. Backtracking is a depth‑first recursive search for a solution.
That is, at each stage it makes a choice, and later may return to the
same point and try a different choice.

Depth‑first searching of a tree has been described in Section
10.2.1, and the modifications for searching a graph are described
in Section 11.4.

Example 1: Solving a Maze

Given a maze, the task is to find a path from start to finish.
At each intersection, you have to decide between three or
fewer choices: You can go straight, you can go left, or you
can go right. You don’t have enough information to choose
correctly, and each choice leads to another set of choices
(another intersection). One or more sequences of choices
will, if the maze is solvable, lead to a solution.

Example 2: Four‑Coloring a Map

The four‑color theorem states that only four colors are
required to color any map so that any countries that share a
border are different colors.

To color a map, try to choose a color for the n‑th coun‑
try (initially the first country) that isn’t used by any adja‑
cent country. If you can, and if this is the last country, report
success; otherwise recursively color the next country. If you
can’t choose a color, report failure.

At each step, you don’t have enough information to choose
the correct color; each choice leads to another set of choices
(or failure); and one or more sequences of choices will lead to
a solution (if the map representation is correct).

Algorithm Types ◾ 137

Example 3: Peg Jumping Puzzle

In a peg jumping puzzle, all holes but one are filled with
pegs. The only allowable moves are to jump one peg over
another peg, and remove the jumped‑over peg. The goal is to
remove all pegs but one.

As in the other examples, you have to choose a move on
the basis of incomplete information, each move leads to
other possible moves, and (given a well‑designed puzzle)
some sequence of moves will lead to a solution.

13.2.1 Virtual Trees

There is a type of data structure called a tree. We are not using
it here, but if we diagram the sequence of choices we make, the
diagram looks like a tree (see Figure 13.1).

We search this virtual tree for a goal node—one that represents
a solution to the problem we are trying to solve. If we reach
a non‑goal node from which we have no legal moves (a failure
node), we backtrack to the most recent node that has remaining
choices.

FIGURE 13.1 A virtual tree.

138 ◾ Quick Data Structures

Here is a partial trace:

• Start at node A. There are three choices; follow edge 1 to B.

• From B, there are two choices. Follow edge 2 to a dead end
(a failure node).

• Backtrack to node B (edge 3).

• From B, take the remaining edge, edge 4, to another failure
node.

• Backtrack to B (edge 5).

• There are no more choices from B, so backtrack (edge 6)
to A.

After several more moves, we follow edge 17 to a goal node, and
quit with success. Had it failed, there was another choice from A,
but we never needed to explore it.

13.3 DIVIDE AND CONQUER ALGORITHMS
A divide and conquer algorithm is one that divides a problem
into two or more smaller subproblems of the same type, solves
these subproblems recursively, and combines the solutions into a
solution to the original problem.

Quicksort and mergesort are common examples of divide and
conquer algorithms.

In quicksort, the array is partitioned into two parts and each part
is sorted independently. No additional work is required to com‑
bine the two sorted parts.

In mergesort, the array is cut in half, and each half is sorted inde‑
pendently. Then the two halves are merged.

Algorithm Types ◾ 139

Binary search is sometimes called a divide and conquer algo‑
rithm. Traditionally, however, an algorithm is only called “divide
and conquer” if it contains at least two recursive calls. Under this
definition, binary search does not qualify.

13.4 GREEDY ALGORITHMS
A greedy algorithm is one in which a locally optimal choice is
made at each step. The result might or might not be an optimal
solution to the entire problem.

US coins come in denominations of 1, 5, 10, 25, and 50 cents. To
find the minimum number of US coins to make any amount, the
greedy method always works. At each step, just choose the largest
coin that does not overshoot the desired amount.

For example, to make 42¢, choose the 25¢ coin, leaving 17¢. Then
choose the 10¢ coin, leaving 7¢. Then choose the 5¢ coin, leaving 2¢.
Then choose the 1¢ coin, leaving 1¢. Finally, choose the 1¢ coin, for
a total of five coins.

The greedy method would not work if we did not have 5¢ coins.
To make 42¢, the method would result in nine coins, but it could
be done with six. It also would not work if, instead of removing 5¢
coins, we also had 17¢ coins.

This greedy algorithm is O(log n). It can be guaranteed to find an
optimal result for some problems, but not for others.

To find the minimum number of coins for any given coin set, we
need a dynamic programming algorithm.

13.5 DYNAMIC PROGRAMMING ALGORITHMS
A dynamic programming algorithm remembers past results and
uses them to find new results.

140 ◾ Quick Data Structures

In order to solve a problem of size k, a dynamic programming
algorithm will first solve the smallest problem of that type, then
the next smallest, and so on up to k. For each value of k, the solu‑
tion found is saved and used at a later step.

A good first example is the Fibonacci series, introduced in
Section 4.3.

function fibonacci(n):
 If n < 3, return 1
 else return fibonacci(n ‑ 1) + fibonacci(n ‑ 2).

This is an exponential algorithm. It makes two recursive calls at
each level of the recursion, so the total number of calls keeps dou‑
bling. A dynamic programming version of this algorithm requires
only linear time.

function fibonacci(n):
 Create an array to hold n integers.
 Set the first two array values to 1.
 For each remaining array location,
 set the array value to the sum of the
 two previous values.
 Return the value in the last array location.

As required by the dynamic programming approach, values of
fibonacci(n) are first computed for the smallest values of n, and
later values in the fibonacci series are computed from earlier values.

The reader may notice that an array isn’t necessary for this prob‑
lem; it can be done with only a few variables, but the resultant
code is harder to understand.

As a more interesting example, we will return to the coin count‑
ing problem.

Algorithm Types ◾ 141

As noted earlier, the greedy algorithm finds an optimal solution
for making change with American coins (1, 5, 10, 25, and 50 cents).
It does not work well for every possible set of coins. For example,
if the coins are 1, 3, 7, 10, and 25 cents, the greedy algorithm for
15 cents would result in one 10¢ coin, one 3¢ coin, and two 1¢
coins, for a total of four coins; a better solution is two 7¢ coins and
one 1¢ coin, for a total of three coins.

We will consider two algorithms for solving the coin problem.
The first is basically a divide and conquer algorithm, with terrible
(exponential) running time.

To make K cents:
 If there is a K‑cent coin,
 return 1 as the coin count for K
 Otherwise, for each value i < K,
 Solve for i cents.
 Solve for K‑1 cents.
 If the sum is fewer coins for K,
 Save these two solutions.
 Return the combination of these
 two solutions.

Again taking the example of making 15¢ from 1, 3, 7, 10, and
25 cent coins, this would compute the best solutions for 1 and
14 cents, then for 2 and 13 cents, and so on, for all combinations
that add up to 15.

If the best solution for 15¢ turns out to be 7 cents (one 7¢ coin)
plus 8 cents (one 7¢ coin and one 1¢ coin), then the algorithm
would combine these to get two 7¢ coins and one 1¢ coin.

This algorithm works. For 20¢, you may have to wait a bit for the
answer; for 50¢, it’s unfeasible.

142 ◾ Quick Data Structures

The second solution uses dynamic programming, and it’s light‑
ning fast. The trick is to solve for one cent, then two cents, then
three cents, all the way up to the desired amount. As the solution
is found for each value, it is stored and never computed again.

Exactly as in the dynamic programming version, for 15 cents we
compute the best solutions for 1 and 14 cents, then for 2 and 13 cents,
and so on, for all combinations that add up to 15. Then, we combine
the two solutions. The difference is that instead of recursively com‑
puting the solution pairs each time, we simply look them up.

For M from 1 to K:
 If there is an M‑cent coin,
 that one coin is the minimum;
 save 1 as the coin count for M.
 Otherwise,
 Store a very large coin count for M.
 For each value i < M,
 Look up the coin counts for i cents
 and for M‑i cents.
 If the sum is better than the
 saved coin count for M,
 save this as the coin count for M.
 Return the coin count for K.

The running time for this algorithm is O(KN), where K is the desired
amount and N is the number of different kinds of coins.

Dynamic programming is generally used for optimization prob‑
lems, where there are multiple solutions and the goal is to find the
“best” one.

In order to use dynamic programming to solve a problem, the
problem must satisfy the principle of optimality: the optimal

Algorithm Types ◾ 143

solution is a combination of the optimal solutions for subprob‑
lems. Or, looking at this in reverse, if a problem has an optimal
solution, it contains optimal solutions to its subproblems.

In the coin example, if the optimal way to make change for K
involves making change for A and for B, where K = A + B, then
that is the optimal way to make change for A and the optimal way
to make change for B.

13.6 BRUTE FORCE ALGORITHMS
A brute force algorithm is one that tries all possibilities until a
solution is found.

Whether a brute force algorithm is adequate for a given task
depends on the problem size and the algorithmic complexity.
Discovering a randomly generated password has exponential
complexity. The traveling salesman problem (see Section 2.18) is a
typical example of a problem for which the best‑known solution
requires exponential time.

Sum of subsets is another such problem. Suppose you are given a
list or set of n positive numbers, such as [22, 26, 31, 39, 43, 56],
and are asked to find a subset of the numbers that total to a certain
amount, say 100. Each number either is or is not in the solution, so
there are 2n possible subsets to try—or, in this tiny example, 26 = 64
subsets. Clearly, this is an exponential problem.

The binary nature of this problem (a number is either in the subset
or it isn’t) makes it convenient to use binary numbers in the solu‑
tion. Generate the 64 6‑bit binary numbers 000000 up to 111111.
Multiply each number in the list by the corresponding bit value;
for example, if the binary number is 110001, compute:

22*1 + 26*1 + 31*0 + 39*0 + 43*0 + 56*1 = 104

144 ◾ Quick Data Structures

As is often the case, pruning (see Section 10.2.5) can help consid‑
erably. For example, if the count has reached 000111, the total is
138, and all remaining numbers of the form xxx111 can be ignored.
Other stratagems can be employed to further reduce the number
of subsets examined, but in the end, this problem remains stub‑
bornly exponential in difficulty.

13.7 RANDOMIZED ALGORITHMS
A randomized algorithm uses a random number at least once
during the computation to make a decision.

Technically, Quicksort could be considered a randomized algo‑
rithm if random numbers are used to choose pivot, but this is a
minor use and hardly counts.

More often, randomized algorithms are used for problems in
which choices must be made and there is no good way to make
them. In these problems, multiple attempts are made to solve the
problem, making random choices, and either a solution is found,
or the program keeps track of the “best so far” solution.

Here’s a real‑life example from my teaching experience. I had my
students doing pair programming—two people working together
on the same assignment. For the first assignment, pairs were cho‑
sen randomly. (Assume, for simplicity, that I had an even number
of students.)

For each subsequent assignment, I again wanted to assign students
to pairs randomly, with the additional constraint that every stu‑
dent got a different partner each time. I could think of no better
algorithm than choosing pairs randomly, one pair at a time, and
starting over if the constraints were violated. The program was
slow, sometimes taking a couple of minutes, but it got me through
the semester.

145

Afterword

If you have finished this little volume, you have a good understand‑
ing of how data structures are constructed from three simple ele‑
ments—arrays, nodes, and pointers. You have been introduced to
all the most common data structures, and you can recognize the
importance of Big‑O running times and how to estimate them.

Few programming languages provide data structures beyond
stacks, hash maps, and doubly (but not singly) linked lists. If your
language has the data structure you need, use it; it is probably
well debugged and efficiently implemented. You might find imple‑
mentations on the Web that you can adapt and debug. Beyond
that, you should now be able to create data structures as you need
them—possibly ternary trees, a heap for fixed size nodes, or a pri‑
ority queue for partially ordered items.

A thoughtful and informed choice of data structures will greatly
improve your code, but no amount of attention to code can com‑
pensate for a poor choice of data structures. Start with the data
structures you need, and the rest will follow.

https://taylorandfrancis.com

147

Index

Note: Bold page numbers indicate where the term is defined.

absolute address 2
abstract data type 38
acyclic graph 113
adjacency matrix 115
adjacency set of graph 117
adjacent vertices 113
ADT 38
algorithm 7

algorithm types 135
alpha‑beta search 106
alpha cutoff 106
analysis of algorithms 7
ancestor of a node 69
angels and demons 103
arithmetic expression 42
array 2, 3

of strings 2
A‑star (A*) algorithm 128
average time 8
AVL‑trees 74
backtracking 98, 135
balancing brackets 52
base case 44
best‑first search 126, 128
beta cutoff 106

BFS 98
Big‑O 6

time comparisons 27

Big‑ϴ 28
Big‑Ω 28
binary logarithms 15, 16
binary search 13, 16

recursive 17
binary search tree 72
binary tree 68

as an array 78
balanced 69
balancing 73
traversal 71

blind search 126
block 86, 87
board games 95
brackets, balancing 52
branching factor 93
breadth‑first search 98, 99
brute force algorithm 143
bubble sort 10

call stack 54
card number 26
card sorter 26
characteristic operation 12
circular linked list 64
coalescing blocks 88
coin counting 139, 144
college courses example 119
collision 34

148 ◾ Index

common logarithms 15
component of a graph 114
connected component of a graph 114
connected graph 113
constant time 8
cons onto a list 57
contents, in a plex 132
contract 39
Control Data 6600 xii
convert letters to numbers 110
cutting in half 16
cycle 113
cyclic graph 113

dangling reference 89
data compression 81
data representation 38
data structure 1
data type 38
deletion from a binary tree 72
depth‑first iterative deepening 100, 101
depth‑first search 98
depth‑limited searching 100
depth of a binary tree 69
depth of a node 70
deque (data structure) 50, 56
dequeue (operation) 55, 57
dereferencing 3
descendant of a node 69
destination of an edge 113
deterministic 35
DFS 98

on a graph 118
dictionary 31
digraphs 112
Dijkstra’s algorithm 121
directed graphs 112
directories 94
divide and conquer algorithm 138
DLL 57, 64
documenting code 40
don’t look down 44, 47
doubly linked list 57, 64

edge set of a graph 117
efficiency 6
enqueue 54
entropy 81
exponential algorithm 140
exponential time 29
exponentiation 15
expression evaluation 52

façade function 17, 60
factorial 43, 45, 47
failure node 105, 137
faster sorting algorithms 25
Fibonacci series 49, 140
fields 1
FIFO 55
fifteen puzzle 102

solving 127
file systems 94
flags on binary trees 71
folders 94
four‑color theorem 136
four rules of recursion 44
fragmentation 88
free pointer 87
functional programming 63

game trees 95
garbage collection 90
general tree 92
gif files 81
global variable 46
goal node 97, 137
goal states 102
graph 112

applications 114
searching 117

greedy algorithm 139

handle 65, 89
hashCode 33
hash function 32, 34
hash map 31, 66

Index ◾ 149

as list 66
hash table 32, 66

deletions 37
as list 67
size 36

header node 62, 87
head of a list 57
heap 4, 75, 86

two meanings 75
heapify (method) 76
heap implementation 87
heap property 75

redefined 85
heapsort 75

analysis 80
complete algorithm 79

heuristic 126
measure 127
search 126

hiding the implementation 38
Huffman encoding 81
hypergraph 131

IDA* 129
implementation hiding 38
implicit stack 99
in‑degree 113
indentation xvi, xvii
in‑edge 113
inorder traversal 71
insertion sort 13
invariant 11

loop invariant 10
inverse tree 121
iterative‑deepening A* 129

Java’s hash function 35

Kruskal’s algorithm 123

leaf 68
least cost path in a graph 121

left child of a node 68
formula 79

left‑justified binary tree 70
left rotation 73
linear algebra 121
linear time 9
link 2
list 57

implementation 62
in Python 57, 65

little‑o 28
localizing errors 39
local variables 43
logarithms 15
logarithms are exponents 15
lookup table 38
loop invariant 10

magic function 32
Manhattan distance 127
mark and sweep 91
Martian example 131
maze 102, 124, 136
memory leak 89
merge sort 23
missionaries and cannibals 103
modulo 33

natural logarithms 15
neighbor of a vertex 113
node 1
non‑local variables 46

O(1) 9
O(log n) 9
O(n2) 10
optimistic heuristic 129
optimization problems 142
Optimizing 30
ordered tree 93
origins, in a plex 133
out‑degree 113

150 ◾ Index

out‑edge 113
overflow

of a priority queue 81
of a queue 56
of a stack 52

pair programming 144
parameter passing

by reference 46
by value 43

parent of a node 69
formula 79

parse tree 96
parsing 96
partition 18

method 20
path 113
PBV 107
peek

queue operation 55
stack operation 51

peg jumping puzzle 137
pivot 18
plex 132
pointer 1, 2
pop (stack operation) 51
postorder traversal 71
predecessor vertex 113
preliminary backed‑up value 107
preorder traversal 71
previous field 64
prime number 36
Prim’s algorithm 124
principle of optimality 142
priority queue 81, 83

implementation 84
probe 34
pruning 105
push (stack operation) 51
Python xvi, 31, 65

quadratic time 10
queue 50, 54
quicksort 18
quit operator 53

ragged array 3
raising to a power 15
randomized algorithm 144
reachable vertex 114
recursion 41

indirect 42
infinite 45

recursive cases 45
recursive definitions 41
red‑black trees 74
reference 1
reference counting 90
reheap (method) 77
relative address 2
return address 54
reverse binary tree traversals 71
right child of a node 68

formula 79
right rotation 73
root node 68

removal 77
rule of thumb 126

satisficing 30
searching

alpha‑beta 106
binary 13, 16, 17
graph 117
tree 97

selection sort 14
set 116
shared subtrees 94
siblings of a node 69
sift up (method) 76
simple recursive algorithm 135

Index ◾ 151

singly linked list 57
size of a binary tree 70
size of the input 7
sliding block puzzle 102
SLL 57
sort algorithm

bubble sort 10
insertion sort 13
merge sort 23
quicksort 18
selection sort 14

sorted binary tree 72
source of an edge 113
space complexity 7
spanning tree 122, 125
sparse array 119
specification 39
stable sort 14
stack 50

as linked list 60
mapped into an array 51
reversing 59

stack frames 53
state space 102
storage allocation 86
strict typing 62
string array 4
strongly connected graph 113
structure sharing 63
sublist 62
successor vertex 113
sum of subsets 143

superexponential time 28
surprise, measure of 81

table 31
tagged unions 63
tail of a list 57
targets, in a plex 133
tentative cost 121
time complexity 7
traveling salesman problem

29, 124
traversal of binary tree 71
tree, general 92

searching 97
trie 109

underflow
of queue 56
of stack 52

undirected graphs 112
Union‑Find algorithm 119, 124
unique prefix property 82

variant records 63
vertex, vertices 112
virtual trees 137

weakly connected graph 113

yes‑no question 44

zip files 81

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Preface
	Author
	Where’s the Code?
	Chapter 1 Building Blocks
	1.1 Pointers and References
	1.2 Arrays
	1.3 String Arrays

	Chapter 2 Essential Math
	2.1 The Importance of Efficiency
	2.2 Analysis of Algorithms
	2.3 Constant Time
	2.4 Linear Time
	2.5 Quadratic Time
	2.6 Bubble Sort
	2.7 Characteristic Operations
	2.8 Insertion Sort
	2.9 Selection Sort
	2.10 Exponents and Logarithms
	2.11 Binary Search
	2.12 Quicksort
	2.13 Analyzing Quicksort
	2.14 Merge Sort
	2.15 Even Faster Sorts
	2.16 Big-O Notation
	2.17 Big-O and Friends
	2.18 Exponential Time

	Chapter 3 Hash Tables and Hash Maps I
	3.1 Basic Hash Tables
	3.2 Hash Functions
	3.3 Hash Table Notes
	3.4 Hash Maps
	3.5 Abstract Data Types
	3.5.1 ADT as a Contract

	Chapter 4 Recursion
	4.1 Recursive Data Structures
	4.2 Recursive Functions
	4.3 Four Rules
	4.3.1 Rule 1: Do Base Cases First
	4.3.2 Rule 2: Recur Only with Simpler Cases
	4.3.3 Rule 3: Don’t Use Non-Local Variables
	4.3.4 Rule 4: Don’t Look Down

	4.4 Examples of Recursion

	Chapter 5 Stacks, Queues, and Deques
	5.1 Stacks
	5.1.1 Example: Balancing Brackets
	5.1.2 Example: Expression Evaluation
	5.1.3 Example: Stack Frames

	5.2 Queues
	5.3 Deques

	Chapter 6 Linked Lists
	6.1 Singly Linked Lists
	6.2 Stacks as Singly Linked Lists
	6.3 Implementation Notes
	6.4 Lists in Functional Programming
	6.5 Doubly Linked Lists
	6.6 Circular Linked Lists
	6.7 Python “Lists”
	6.8 Hash Tables and Hash Maps II

	Chapter 7 Binary Trees
	7.1 Binary Tree Traversals
	7.2 Binary Search Trees
	7.3 Tree Balancing
	7.4 Heapsort
	7.4.1 Phase 1: Heapifying a Binary Tree
	7.4.2 Phase 2: Removing the Root and Reheaping
	7.4.3 Phase 3: Mapping a Binary Tree into an Array
	7.4.4 The Complete Heapsort Algorithm
	7.4.5 Analysis

	7.5 Huffman Encoding

	Chapter 8 Priority Queues
	8.1 Priority Queue Implementations

	Chapter 9 Heaps
	9.1 Heap Implementation
	9.2 Deallocation Problems
	9.3 Garbage Collection
	9.3.1 Reference Counting
	9.3.2 Mark and Sweep

	Chapter 10 Trees
	10.1 Applications of Trees
	10.1.1 File Systems
	10.1.2 Family Trees
	10.1.3 Game Trees
	10.1.4 Expressions

	10.2 Tree Searching
	10.2.1 Depth-First Searching
	10.2.2 Breadth-First Searching
	10.2.3 Depth-First Iterative Deepening
	10.2.4 State-Space Searches
	10.2.5 Pruning
	10.2.6 Alpha–Beta Searching

	10.3 Tries

	Chapter 11 Graphs
	11.1 Graph Applications
	11.2 Adjacency Matrix Representations
	11.3 Representation by Sets
	11.4 Searching a Graph
	11.5 Sparse Arrays
	11.6 Dijkstra’s Algorithm
	11.7 Spanning Trees
	11.8 Mazes
	11.9 Heuristic Searching
	11.9.1 Solving the Fifteen Puzzle
	11.9.2 The A* Algorith m
	11.9.3 IDA*

	Chapter 12 Hypergraphs
	12.1 Plexes

	Chapter 13 Algorithm Types
	13.1 Simple Recursive Algorithms
	13.2 Backtracking Algorithms
	13.2.1 Virtual Trees

	13.3 Divide and Conquer Algorithms
	13.4 Greedy Algorithms
	13.5 Dynamic Programming Algorithms
	13.6 Brute Force Algorithms
	13.7 Randomized Algorithms

	Afterword
	Index

