
Lea
rning

 Typ
eScrip

t
Lea

rning
 Typ

eScrip
t

Josh Goldberg

Learning
TypeScript
Enhance Your Web Development Skills
Using Type-Safe JavaScript

WEB PL ATFORM

“Learning TypeScript is an
excellent, approachable
resource. Josh introduces
the key parts of TypeScript
without getting bogged
down by unnecessary
details.”

—Ryan Cavanaugh
Principal Software Engineering Manager,

Microsoft; Development Lead, TypeScript

“Josh’s expertise bursts
through the pages of
Learning TypeScript. The
content is not only deeply
educational, but fun and
compelling as well.”

—Cassidy Williams
Developer Experience Engineer,

Startup Advisor, and Investor

Learning TypeScript

US $49.99	 CAN $62.99
ISBN: 978-1-098-11033-8

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

TypeScript has conquered the world of JavaScript. Identified
in developer surveys as one of the world’s fastest growing
and most popular languages, TypeScript is widely used in
consumer and business companies across the world and is
frequently credited with helping massive web applications
scale. But what exactly is TypeScript? How and why does it
work, and how can we use it?

This practical book takes beginner and advanced JavaScript
programmers alike from knowing nothing about “types” or
“type systems” to full mastery of TypeScript fundamentals.

You’ll learn:

•	 Benefits of TypeScript and general characteristics of its type
system on top of “vanilla” JavaScript

•	 How to inform TypeScript’s type system with development-
only type annotations

•	 How TypeScript analyzes and understands code to help you
augment your existing development patterns

•	 How TypeScript helps you work with arrays, classes,
functions, objects, and other important built-in JavaScript
constructs

•	 How to effectively use the plethora of TypeScript
configuration options to tailor the TypeScript compiler to
your teams and projects

•	 A variety of IDE integrations such as automated refactors
and intelligent code searches provided by TypeScript to help
you develop quickly with fewer bugs

Josh Goldberg is an open source
maintainer and software consultant who
contributes to TypeScript and the projects
in its ecosystem, such as typescript-eslint
and TypeStat. Previously, Josh was a
staff frontend developer on the web
platform team at Codecademy, where
he spearheaded the company’s usage of
TypeScript and helped create its Learn
TypeScript course.

Praise for Learning TypeScript

If you ever screamed back at red squiggly lines in your code, then go read Learning
TypeScript. Goldberg masterfully puts everything in context while staying practical,

showing us that TypeScript is never a restriction, but a valuable asset.
—Stefan Baumgartner, senior product architect, Dynatrace;

founder, oida.dev

Josh puts TypeScript’s most important concepts front and center, and explains
them with clear examples and a touch of humor. A must-read for the

JavaScript author who wants to write TypeScript like a pro.
—Andrew Branch, software engineer on TypeScript, Microsoft

Learning TypeScript is an excellent resource for programmers who have coded at least
a little before, but may have shied away from typed languages. It goes

a level deeper than the TypeScript handbook to give you
confidence in using TypeScript in your own projects.

—Boris Cherny, software engineer, Meta;
author, Programming TypeScript

We don’t know what types code is but we’re very proud of Josh
and are sure it will be a lovely book.

—Frances and Mark Goldberg

Josh is that rare individual who is passionate about both acquiring a deep command of
the fundamentals and explaining concepts to beginners. I think this book will quickly

become a canonical resource for TypeScript novices and experts alike.
—Beyang Liu, CTO and cofounder, Sourcegraph

Learning TypeScript is a fantastic introduction and reference to the TS language. Josh’s
writing is clear and informative, and that helps with explaining often-confusing TS

concepts and syntax. It’s a great place to start for anyone new to TypeScript!
—Mark Erikson, senior frontend engineer, Replay;

maintainer, Redux

Learning TypeScript is a great book to start your TypeScript journey. It gives you the tools
to understand the language, the type system, and the IDE integration, and

how to use all these to get the most out of your TypeScript experience.
—Titian Cernicova Dragomir, software engineer, Bloomberg LP

Josh has been a critical part of the TypeScript community for many years, and
I’m really excited for folks to be able to benefit from his deep understanding

and accessible teaching style through Learning TypeScript.
—James Henry, consultant architect, Nrwl; 4x Microsoft MVP;

creator, angular-eslint and typescript-eslint

Josh is not just a very talented software engineer: he is also an excellent mentor;
you can feel his passion for education throughout this book. Learning TypeScript is

structured masterfully, and it contains practical, real-world examples that will
take TypeScript newbies and enthusiasts to the next level. I can confidently

say that Learning TypeScript is the definitive guide for anyone looking
to learn or improve their knowledge about TypeScript.

—Remo Jansen, CEO, Wolk Software

In Learning TypeScript, Josh Goldberg breaks down TypeScript’s most complex concepts
into calm, straightforward descriptions and digestible examples that are sure to serve

as a learning aid and reference for years to come. From the first haiku
to the last joke, Learning TypeScript is a wonderful introduction

to the language that’s just my type. No pun intended.
—Nick Nisi, staff engineer, C2FO

They used to say, “Always bet on JavaScript.” Now it’s, “Always bet on TypeScript,”
and this book will be the industry’s most recommended resource. Guaranteed.

—Joe Previte, open source TypeScript engineer

Reading Learning TypeScript is like spending time with a warm and smart friend
who delights in telling you fascinating things. You’ll walk away entertained and

educated about TypeScript whether you knew a lot or a little beforehand.
—John Reilly, group principal engineer, Investec;
maintainer, ts-loader; Definitely Typed historian

Learning TypeScript is a comprehensive yet approachable guide to the TypeScript
language and ecosystem. It covers the broad feature set of TypeScript while providing

suggestions and explaining trade-offs based on broad experience.
—Daniel Rosenwasser, program manager, TypeScript, Microsoft;

TC39 representative

This is my favorite resource for learning TypeScript. From introductory
to advanced topics, it’s all clear, concise, and comprehensive.

I found Josh to be an excellent—and fun—writer.
—Loren Sands-Ramshaw, author, The GraphQL Guide;

TypeScript SDK engineer, Temporal

If you are looking to be an effective TypeScript developer, Learning TypeScript
has you covered all the way from beginning to advanced concepts.

—Basarat Ali Syed, principal engineer, SEEK;
author, Beginning NodeJS and TypeScript Deep Dive;

Youtuber (Basarat Codes); Microsoft MVP

This book is a great way to learn the language and
a perfect complement to the TypeScript Handbook.

—Orta Therox, ex-TypeScript compiler engineer, Puzmo

Josh is one of the clearest and most dedicated TypeScript communicators in the world,
and his knowledge is finally in book form! Beginners and experienced devs alike

will love the careful curation and sequencing of topics. The tips, notes, and
warnings in the classic O’Reilly style are worth their weight in gold.

—Shawn “swyx” Wang, head of DX, Airbyte

This book will truly help you learn TypeScript. The theory chapters together with
the practice projects strike a good learning balance and cover just about every aspect

of the language. Reviewing this book even taught this old dog some new tricks.
I finally understand the subtleties of Declaration Files. Highly recommended.

—Lenz Weber-Tronic, full stack developer, Mayflower Germany;
maintainer, Redux

Learning TypeScript is an accessible, engaging book that distills Josh’s years of experience
developing a TypeScript curriculum to teach you everything you need to know

in just the right order. Whatever your programming background,
you’re in good hands with Josh and Learning TypeScript.
—Dan Vanderkam, senior staff software engineer, Google;

author, Effective TypeScript

Learning TypeScript is the book I wish I had when I first got into TypeScript. Josh’s passion
for teaching new users oozes from every page. It’s thoughtfully organized

into easily digestible chunks, and it covers everything
you need to become a TypeScript expert.

—Brad Zacher, software engineer, Meta;
core maintainer, typescript-eslint

Josh Goldberg

Learning TypeScript
Enhance Your Web Development Skills

Using Type-Safe JavaScript

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-11033-8

[LSI]

Learning TypeScript
by Josh Goldberg

Copyright © 2022 Josh Goldberg. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn
Development Editor: Rita Fernando
Production Editor: Clare Jensen
Copyeditor: Piper Editorial Consulting LLC
Proofreader: nSight, Inc.

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

June 2022: First Edition

Revision History for the First Edition
2022-06-03: First Release
2022-07-01: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098110338 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning TypeScript, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098110338

This book is dedicated to my incredible partner, Mariah, who introduced me to the joy of
adopting backyard cats and has regretted it ever since. Toot.

Table of Contents

Preface. xvii

Part I. Concepts

1. From JavaScript to TypeScript. 3
History of JavaScript 3
Vanilla JavaScript’s Pitfalls 4

Costly Freedom 4
Loose Documentation 4
Weaker Developer Tooling 5

TypeScript! 6
Getting Started in the TypeScript Playground 6

TypeScript in Action 6
Freedom Through Restriction 7
Precise Documentation 8
Stronger Developer Tooling 8
Compiling Syntax 10

Getting Started Locally 10
Running Locally 11
Editor Features 12

What TypeScript Is Not 12
A Remedy for Bad Code 12
Extensions to JavaScript (Mostly) 13
Slower Than JavaScript 13
Finished Evolving 14

Summary 14

ix

2. The Type System. 17
What’s in a Type? 17

Type Systems 19
Kinds of Errors 20

Assignability 21
Understanding Assignability Errors 21

Type Annotations 22
Unnecessary Type Annotations 23

Type Shapes 24
Modules 25

Summary 27

3. Unions and Literals. 29
Union Types 29

Declaring Union Types 30
Union Properties 30

Narrowing 31
Assignment Narrowing 31
Conditional Checks 32
Typeof Checks 33

Literal Types 33
Literal Assignability 35

Strict Null Checking 36
The Billion-Dollar Mistake 36
Truthiness Narrowing 37
Variables Without Initial Values 38

Type Aliases 39
Type Aliases Are Not JavaScript 39
Combining Type Aliases 40

Summary 40

4. Objects. 43
Object Types 43

Declaring Object Types 44
Aliased Object Types 45

Structural Typing 45
Usage Checking 46
Excess Property Checking 47
Nested Object Types 48
Optional Properties 50

Unions of Object Types 51
Inferred Object-Type Unions 51

x | Table of Contents

Explicit Object-Type Unions 52
Narrowing Object Types 53
Discriminated Unions 53

Intersection Types 54
Dangers of Intersection Types 55

Summary 57

Part II. Features

5. Functions. 61
Function Parameters 61

Required Parameters 62
Optional Parameters 63
Default Parameters 64
Rest Parameters 64

Return Types 65
Explicit Return Types 66

Function Types 67
Function Type Parentheses 68
Parameter Type Inferences 69
Function Type Aliases 69

More Return Types 70
Void Returns 70
Never Returns 72

Function Overloads 72
Call-Signature Compatibility 73

Summary 74

6. Arrays. 75
Array Types 76

Array and Function Types 76
Union-Type Arrays 76
Evolving Any Arrays 77
Multidimensional Arrays 78

Array Members 78
Caveat: Unsound Members 79

Spreads and Rests 79
Spreads 79
Spreading Rest Parameters 80

Tuples 80
Tuple Assignability 81

Table of Contents | xi

Tuple Inferences 83
Summary 85

7. Interfaces. 87
Type Aliases Versus Interfaces 87
Types of Properties 89

Optional Properties 89
Read-Only Properties 90
Functions and Methods 91
Call Signatures 92
Index Signatures 93
Nested Interfaces 96

Interface Extensions 97
Overridden Properties 98
Extending Multiple Interfaces 99

Interface Merging 99
Member Naming Conflicts 100

Summary 101

8. Classes. 103
Class Methods 103
Class Properties 104

Function Properties 105
Initialization Checking 106
Optional Properties 108
Read-Only Properties 108

Classes as Types 109
Classes and Interfaces 111

Implementing Multiple Interfaces 112
Extending a Class 114

Extension Assignability 114
Overridden Constructors 116
Overridden Methods 117
Overridden Properties 118

Abstract Classes 119
Member Visibility 120

Static Field Modifiers 122
Summary 123

9. Type Modifiers. 125
Top Types 125

any, Again 125

xii | Table of Contents

unknown 126
Type Predicates 127
Type Operators 129

keyof 129
typeof 131

Type Assertions 132
Asserting Caught Error Types 133
Non-Null Assertions 134
Type Assertion Caveats 135

Const Assertions 137
Literals to Primitives 137
Read-Only Objects 139

Summary 140

10. Generics. 141
Generic Functions 142

Explicit Generic Call Types 143
Multiple Function Type Parameters 144

Generic Interfaces 145
Inferred Generic Interface Types 146

Generic Classes 147
Explicit Generic Class Types 148
Extending Generic Classes 149
Implementing Generic Interfaces 150
Method Generics 151
Static Class Generics 152

Generic Type Aliases 152
Generic Discriminated Unions 153

Generic Modifiers 154
Generic Defaults 154

Constrained Generic Types 155
keyof and Constrained Type Parameters 156

Promises 157
Creating Promises 157
Async Functions 158

Using Generics Right 159
The Golden Rule of Generics 159
Generic Naming Conventions 160

Summary 161

Table of Contents | xiii

Part III. Usage

11. Declaration Files. 165
Declaration Files 165
Declaring Runtime Values 166

Global Values 168
Global Interface Merging 168
Global Augmentations 169

Built-In Declarations 170
Library Declarations 170
DOM Declarations 172

Module Declarations 173
Wildcard Module Declarations 174

Package Types 174
declaration 174
Dependency Package Types 175
Exposing Package Types 176

DefinitelyTyped 177
Type Availability 178

Summary 179

12. Using IDE Features. 181
Navigating Code 182

Finding Definitions 183
Finding References 184
Finding Implementations 185

Writing Code 186
Completing Names 186
Automatic Import Updates 187
Code Actions 188

Working Effectively with Errors 191
Language Service Errors 192

Summary 197

13. Configuration Options. 199
tsc Options 199

Pretty Mode 200
Watch Mode 200

TSConfig Files 201
tsc --init 202
CLI Versus Configuration 202

File Inclusions 203

xiv | Table of Contents

include 203
exclude 204

Alternative Extensions 204
JSX Syntax 204
resolveJsonModule 206

Emit 207
outDir 207
target 208
Emitting Declarations 209
Source Maps 210
noEmit 212

Type Checking 212
lib 212
skipLibCheck 213
Strict Mode 213

Modules 218
module 219
moduleResolution 219
Interoperability with CommonJS 220
isolatedModules 221

JavaScript 222
allowJs 222
checkJs 223
JSDoc Support 224

Configuration Extensions 225
extends 225
Configuration Bases 227

Project References 227
composite 228
references 229
Build Mode 229

Summary 231

Part IV. Extra Credit

14. Syntax Extensions. 235
Class Parameter Properties 236
Experimental Decorators 238
Enums 239

Automatic Numeric Values 241
String-Valued Enums 242

Table of Contents | xv

Const Enums 243
Namespaces 244

Namespace Exports 245
Nested Namespaces 247
Namespaces in Type Definitions 248
Prefer Modules Over Namespaces 248

Type-Only Imports and Exports 249
Summary 251

15. Type Operations. 253
Mapped Types 253

Mapped Types from Types 254
Changing Modifiers 256
Generic Mapped Types 258

Conditional Types 259
Generic Conditional Types 260
Type Distributivity 261
Inferred Types 262
Mapped Conditional Types 263

never 263
never and Intersections and Unions 263
never and Conditional Types 264
never and Mapped Types 264

Template Literal Types 265
Intrinsic String Manipulation Types 267
Template Literal Keys 267
Remapping Mapped Type Keys 268

Type Operations and Complexity 270
Summary 271

Glossary. 273

Index. 281

xvi | Table of Contents

Preface

My journey to TypeScript was not a direct or quick one. I started off in school
primarily writing Java, then C++, and like many new developers raised on statically
typed languages, I looked down on JavaScript as “just” the sloppy little scripting
language people throw onto websites.

My first substantial project in the language was a silly remake of the original Super
Mario Bros. video game in pure HTML5/CSS/JavaScript and, typical of many first
projects, was an absolute mess. In the beginning of the project I instinctively disliked
JavaScript’s weird flexibility and lack of guardrails. It was only toward the end that I
really began to respect JavaScript’s features and quirks: its flexibility as a language, its
ability to mix and match small functions, and its ability to just work in user browsers
within seconds of page load.

By the time I finished that first project, I had fallen in love with JavaScript.

Static analysis (tools that analyze your code without running it) such as TypeScript
also gave me a queasy gut feeling at first. JavaScript is so breezy and fluid, I thought,
why bog ourselves down with rigid structures and types? Were we reverting back to the
worlds of Java and C++ that I had left behind?

Coming back to my old projects, it took me all of 10 minutes of struggling to read
through my old, convoluted JavaScript code to understand how messy things could
get without static analysis. The act of cleaning that code up showed me all the places
I would have benefited from some structure. From that point on, I was hooked onto
adding as much static analysis to my projects as I could.

It’s been nearly a decade since I first tinkered with TypeScript, and I enjoy it as much
as ever. The language is still evolving with new features and is more useful than ever
in providing safety and structure to JavaScript.

I hope that by reading Learning TypeScript you can learn to appreciate TypeScript the
way I do: not just as a means to find bugs and typos—and certainly not a substantial

xvii

change to JavaScript code patterns—but as JavaScript with types: a beautiful system
for declaring the way our JavaScript should work, and helping us stick to it.

Who Should Read This Book
If you have an understanding of writing JavaScript code, can run basic commands in
a terminal, and are interested in learning about TypeScript, this book is for you.

Maybe you’ve heard TypeScript can help you write a lot of JavaScript with fewer bugs
(true!) or document your code well for other people to read (also true!). Maybe you’ve
seen TypeScript show up in a lot of job postings, or in a new role you’re starting.

Whatever your reason, as long as you come in knowing the fundamentals of Java‐
Script—variables, functions, closures/scope, and classes—this book will take you
from no TypeScript knowledge to mastering the fundamentals and most important
features of the language. By the end of this book, you will understand:

• The history and context for why TypeScript is useful on top of “vanilla”•
JavaScript

• How a type system models code•
• How a type checker analyzes code•
• How to use development-only type annotations to inform the type system•
• How TypeScript works with IDEs (Integrated Development Environments) to•

provide code exploration and refactoring tools

And you will be able to:

• Articulate the benefits of TypeScript and general characteristics of its type sys‐•
tem.

• Add type annotations where useful in your code.•
• Represent moderately complex types using TypeScript’s built-in inferences and•

new syntax.
• Use TypeScript to assist local development in refactoring code.•

Why I Wrote This Book
TypeScript is a wildly popular language in both industry and open source:

• GitHub’s 2021 and 2020 State of the Octoverses have it at the platform’s fourth•
top language, up from seventh in 2019 and 2018 and tenth in 2017.

• StackOverflow’s 2021 Developer Survey has it at the world’s third most loved•
language (72.73% of users).

xviii | Preface

• The 2020 State of JS Survey shows TypeScript has consistently high satisfaction•
and usage amounts as both a build tool and variant of JavaScript.

For frontend developers, TypeScript is well supported in all major UI libraries and
frameworks, including Angular, which strongly recommends TypeScript, as well as
Gatsby, Next.js, React, Svelte, and Vue. For backend developers, TypeScript generates
JavaScript that runs natively in Node.js; Deno, a similar runtime by Node’s creator,
emphasizes directly supporting TypeScript files.

However, despite this plethora of popular project support, I was rather disappointed
by the lack of good introductory content online when I first learned the language.
Many of the online documentation sources didn’t do a great job of explaining what a
“type system” is or how to use it. They often assumed a great deal of prior knowledge
in both JavaScript and strongly typed languages, or were written with only cursory
code examples.

Not seeing an O’Reilly book with a cute animal cover introducing TypeScript years
ago was a disappointment. While other books on TypeScript from publishers includ‐
ing O’Reilly now exist prior to this one, I couldn’t find a book that focuses on the
foundations of the language quite the way I wanted: why it works the way it does and
how its core features work together. A book that starts with a foundational explana‐
tion of the language before adding on features one-by-one. I’m thrilled to be able to
make a clear, comprehensive introduction to TypeScript language fundamentals for
readers who aren’t already familiar with its principles.

Navigating This Book
Learning TypeScript has two purposes:

• You can read through it once to understand TypeScript as a whole.•
• Later, you can refer back to it as a practical introductory TypeScript language•

reference.

This book ramps up from concepts to practical use across three general sections:

• Part I, “Concepts”: How JavaScript came to be, what TypeScript adds to it, and•
the foundations of a type system as TypeScript creates it.

• Part II, “Features”: Fleshing out how the type system interacts with the major•
parts of JavaScript you’d work with when writing TypeScript code.

• Part III, “Usage”: Now that you understand the features that make up the Type‐•
Script language, how to use them in real-world situations to improve your code
reading and editing experience.

Preface | xix

I’ve thrown in a Part IV, “Extra Credit” section at the end to cover lesser-used but
still occasionally useful TypeScript features. You won’t need to deeply know them
to consider yourself a TypeScript developer. But they’re all useful concepts that will
likely come up as you use TypeScript for real-world projects. Once you’ve finished
understanding the first three sections, I highly recommend studying up on the extra
credit section.

Each chapter starts with a haiku to get into the spirit of its contents and ends
with a pun. The web development community as a whole and TypeScript’s commu‐
nity within it are known for being jovial and welcoming of newcomers. I tried to
make this book pleasant to read for learners like me who don’t appreciate long, dry
writings.

Examples and Projects
Unlike many other resources that introduce TypeScript, this book intentionally focu‐
ses on introducing language features with standalone examples showing just the
new information rather than delving into medium- or large-sized projects. I prefer
this method of teaching because it puts a spotlight on the TypeScript language
first and foremost. TypeScript is useful across so many frameworks and platforms—
many of which undergo API updates regularly—that I didn’t want to keep anything
framework- or platform-specific in this book.

That being said, it is supremely useful when learning a programming language to
exercise concepts immediately after they’re introduced. I highly recommend taking a
break after each chapter to rehearse that chapter’s contents. Each chapter ends with a
suggestion to visit its section on https://learningtypescript.com and work through the
examples and projects listed there.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, data types, statements, and keywords.

This element signifies a tip or suggestion.

xx | Preface

https://learningtypescript.com

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://learningtypescript.com.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Learning Typescript
by Josh Goldberg (O’Reilly). Copyright 2022 Josh Goldberg, 978-1-098-11033-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning

Preface | xxi

https://learningtypescript.com
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com

platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/learning-typescript.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://www.youtube.com/oreillymedia.

Acknowledgments
This book was a team effort, and I’d like to sincerely thank everybody who made
it possible. First and foremost my superhuman editor-in-chief, Rita Fernando, for
an incredible amount of patience and excellent guidance throughout the authoring
journey. Additional shoutout to the rest of the O’Reilly crew: Kristen Brown, Suzanne
Huston, Clare Jensen, Carol Keller, Elizabeth Kelly, Cheryl Lenser, Elizabeth Oliver,
and Amanda Quinn. You all rock!

Many deep thanks to the tech reviewers for their consistently top-notch pedagogical
insights and TypeScript expertise: Mike Boyle, Ryan Cavanaugh, Sara Gallagher,
Michael Hoffman, Adam Reineke, and Dan Vanderkam. This book wouldn’t be the
same without you, and I hope I successfully captured the intent of all your great
suggestions!

xxii | Preface

http://oreilly.com
https://oreil.ly/learning-typescript
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://www.youtube.com/oreillymedia

Further thanks to the assorted peers and praise quoters who gave spot reviews on the
book that helped me improve technical accuracy and writing quality: Robert Blake,
Andrew Branch, James Henry, Adam Kaczmarek, Loren Sands-Ramshaw, Nik Stern,
and Lenz Weber-Tronic. Every suggestion helps!

Lastly, I’d like to thank my family for their love and support over the years. My
parents, Frances and Mark, and brother, Danny—thanks for letting me spend time
with Legos and books and video games. To my spouse Mariah Goldberg for her
patience during my long bouts of editing and writing, and our cats Luci, Tiny, and
Jerry for distinguished fluffiness and keeping me company.

Preface | xxiii

PART I

Concepts

CHAPTER 1

From JavaScript to TypeScript

Before talking about TypeScript, we need to first understand where it came from:
JavaScript!

History of JavaScript
JavaScript was designed in 10 days by Brendan Eich at Netscape in 1995 to be
approachable and easy to use for websites. Developers have been poking fun at its
quirks and perceived shortcomings ever since. I’ll cover some of them in the next
section.

JavaScript has evolved tremendously since 1995, though! Its steering committee,
TC39, has released new versions of ECMAScript—the language specification that
JavaScript is based on—yearly since 2015 with new features that bring it in line
with other modern languages. Impressively, even with regular new language versions,
JavaScript has managed to maintain backward compatibility for decades in varying
environments, including browsers, embedded applications, and server runtimes.

Today, JavaScript is a wonderfully flexible language with a lot of strengths. One
should appreciate that while JavaScript has its quirks, it’s also helped enable the
incredible growth of web applications and the internet.

Show me the perfect programming language and I’ll show you a language with no
users.

—Anders Hejlsberg, TSConf 2019

3

JavaScript today
Supports browsers decades past

Beauty of the web

Vanilla JavaScript’s Pitfalls
Developers often refer to using JavaScript without any significant language extensions
or frameworks as “vanilla”: referring to it being the familiar, original flavor. I’ll
soon go over why TypeScript adds just the right flavor to overcome these particular
major pitfalls, but it’s useful to understand just why they can be painful. All these
weaknesses become more pronounced the larger and longer-lived a project gets.

Costly Freedom
Many developers’ biggest gripe with JavaScript is unfortunately one of its key features:
JavaScript provides virtually no restrictions in how you structure your code. That
freedom makes it a ton of fun to start a project in JavaScript!

As you get to have more and more files, though, it becomes apparent how that
freedom can be damaging. Take the following snippet, presented out of context from
some fictional painting application:

function paintPainting(painter, painting) {
 return painter
 .prepare()
 .paint(painting, painter.ownMaterials)
 .finish();
}

Reading that code without any context, you can only have vague ideas on how to call
the paintPainting function. Perhaps if you’ve worked in the surrounding codebase
you may recall that painter should be what’s returned by some getPainter function.
You might even make a lucky guess that painting is a string.

Even if those assumptions are correct, though, later changes to the code may invalid‐
ate them. Perhaps painting is changed from a string to some other data type, or
maybe one or more of the painter’s methods are renamed.

Other languages might refuse to let you run code if their compiler determines it
would likely crash. Not so with dynamically typed languages—those that run code
without checking if it will likely crash first—such as JavaScript.

The freedom of code that makes JavaScript so fun becomes a real pain when you want
safety in running your code.

Loose Documentation
Nothing exists in the JavaScript language specification to formalize describing what
function parameters, function returns, variables, or other constructs in code are
meant to be. Many developers have adopted a standard called JSDoc to describe
functions and variables using block comments. The JSDoc standard describes how

4 | Chapter 1: From JavaScript to TypeScript

you might write documentation comments placed directly above constructs such as
functions and variables, formatted in a standard way. Here’s an example, again taken
out of context:

/**
 * Performs a painter painting a particular painting.
 *
 * @param {Painting} painter
 * @param {string} painting
 * @returns {boolean} Whether the painter painted the painting.
 */
function paintPainting(painter, painting) { /* ... */ }

JSDoc has key issues that often make it unpleasant to use in a large codebase:

• Nothing stops JSDoc descriptions from being wrong about code.•
• Even if your JSDoc descriptions were previously correct, during code refactors•

it can be difficult to find all the now-invalid JSDoc comments related to your
changes.

• Describing complex objects is unwieldy and verbose, requiring multiple stand‐•
alone comments to define types and their relationships.

Maintaining JSDoc comments across a dozen files doesn’t take up too much time, but
across hundreds or even thousands of constantly updating files can be a real chore.

Weaker Developer Tooling
Because JavaScript doesn’t provide built-in ways to identify types, and code easily
diverges from JSDoc comments, it can be difficult to automate large changes to
or gain insights about a codebase. JavaScript developers are often surprised to see
features in typed languages such as C# and Java that allow developers to perform class
member renamings or jump to the place an argument’s type was declared.

You may protest that modern IDEs such as VS Code do provide
some development tools such as automated refactors to JavaScript.
True, but: they use TypeScript or an equivalent under the hood for
many of their JavaScript features, and those development tools are
not as reliable or as powerful in most JavaScript code as they are in
well-defined TypeScript code.

Vanilla JavaScript’s Pitfalls | 5

TypeScript!
TypeScript was created internally at Microsoft in the early 2010s then released and
open sourced in 2012. The head of its development is Anders Hejlsberg, notable for
also having lead the development of the popular C# and Turbo Pascal languages.
TypeScript is often described as a “superset of JavaScript” or “JavaScript with types.”
But what is TypeScript?

TypeScript is four things:

Programming language
A language that includes all the existing JavaScript syntax, plus new TypeScript-
specific syntax for defining and using types

Type checker
A program that takes in a set of files written in JavaScript and/or TypeScript,
develops an understanding of all the constructs (variables, functions…) created,
and lets you know if it thinks anything is set up incorrectly

Compiler
A program that runs the type checker, reports any issues, then outputs the
equivalent JavaScript code

Language service
A program that uses the type checker to tell editors such as VS Code how to
provide helpful utilities to developers

Getting Started in the TypeScript Playground
You’ve read a good amount about TypeScript by now. Let’s get you writing it!

The main TypeScript website includes a “Playground” editor at https://www.typescript
lang.org/play. You can type code into the main editor and see many of the same
editor suggestions you would see when working with TypeScript locally in a full IDE
(Integrated Development Environment).

Most of the snippets in this book are intentionally small and self-contained enough
that you could type them out in the Playground and tinker with them for fun.

TypeScript in Action
Take a look at this code snippet:

const firstName = "Georgia";
const nameLength = firstName.length();
// ~~~~~~
// This expression is not callable.

6 | Chapter 1: From JavaScript to TypeScript

https://www.typescriptlang.org/play
https://www.typescriptlang.org/play

The code is written in normal JavaScript syntax—I haven’t introduced TypeScript-
specific syntax yet. If you were to run the TypeScript type checker on this code, it
would use its knowledge that the length property of a string is a number—not a
function—to give you the complaint shown in the comment.

If you were to paste that code into the playground or an editor, it would be told by the
language service to give you a little red squiggly under length indicating TypeScript’s
displeasure with your code. Hovering over the squigglied code would give you the
text of the complaint (Figure 1-1).

Figure 1-1. TypeScript reporting an error on string length not being callable

Being told of these simple errors in your editor as you type them is a lot more
pleasant than waiting until a particular line of code happens to be run and throw an
error. If you tried to run that code in JavaScript, it would crash!

Freedom Through Restriction
TypeScript allows us to specify what types of values may be provided for parameters
and variables. Some developers find having to explicitly write out in your code how
particular areas are supposed to work to be restrictive at first.

But! I would argue that being “restricted” in this way is actually a good thing! By
restricting our code to only being able to be used in the ways you specify, TypeScript
can give you confidence that changes in one area of code won’t break other areas of
code that use it.

If, say, you change the number of required parameters for a function, TypeScript will
let you know if you forget to update a place that calls the function.

In the following example, sayMyName was changed from taking in two parameters
to taking one parameter, but the call to it with two strings wasn’t updated and so is
triggering a TypeScript complaint:

Getting Started in the TypeScript Playground | 7

// Previously: sayMyName(firstName, lastName) { ...
function sayMyName(fullName) {
 console.log(`You acting kind of shady, ain't callin' me ${fullName}`);
}

sayMyName("Beyoncé", "Knowles");
// ~~~~~~~~~
// Expected 1 argument, but got 2.

That code would run without crashing in JavaScript, but its output would be different
from expected (it wouldn’t include "Knowles"):

You acting kind of shady, ain't callin' me Beyoncé

Calling functions with the wrong number of arguments is exactly the sort of short-
sighted JavaScript freedom that TypeScript restricts.

Precise Documentation
Let’s look at a TypeScript-ified version of the paintPainting function from earlier.
Although I haven’t yet gone over the specifics of TypeScript syntax for documenting
types, the following snippet still hints at the great precision with which TypeScript
can document code:

interface Painter {
 finish(): boolean;
 ownMaterials: Material[];
 paint(painting: string, materials: Material[]): boolean;
}

function paintPainting(painter: Painter, painting: string): boolean { /* ... */ }

A TypeScript developer reading this code for the first time could understand that
painter has at least three properties, two of which are methods. By baking in syntax
to describe the “shapes” of objects, TypeScript provides an excellent, enforced system
for describing how objects look.

Stronger Developer Tooling
TypeScript’s typings allow editors such as VS Code to gain much deeper insights into
your code. They can then use those insights to surface intelligent suggestions as you
type. These suggestions can be incredibly useful for development.

If you’ve used VS Code to write JavaScript before, you might have noticed that
it suggests “autocompletions” as you write code with built-in types of objects like
strings. If, say, you start typing the member of something known to be a string,
TypeScript can suggest all the members of the strings (Figure 1-2).

8 | Chapter 1: From JavaScript to TypeScript

Figure 1-2. TypeScript providing autocompletion suggestions in JavaScript for a string

When you add TypeScript’s type checker for understanding code, it can give you
these useful suggestions even for code you’ve written. Upon typing painter. in
the paintPainting function, TypeScript would take its knowledge that the painter
parameter is of type Painter and the Painter type has the following members
(Figure 1-3).

Figure 1-3. TypeScript providing autocompletion suggestions in JavaScript for a string

Snazzy! I’ll cover a plethora of other useful editor features in Chapter 12, “Using IDE
Features”.

Getting Started in the TypeScript Playground | 9

Compiling Syntax
TypeScript’s compiler allows us to input TypeScript syntax, have it type checked,
and get the equivalent JavaScript emitted. As a convenience, the compiler may also
take modern JavaScript syntax and compile it down into its older ECMAScript
equivalents.

If you were to paste this TypeScript code into the Playground:

const artist = "Augusta Savage";
console.log({ artist });

The Playground would show you on the right-hand side of the screen that this would
be the equivalent JavaScript output by the compiler (Figure 1-4).

Figure 1-4. TypeScript Playground compiling TypeScript code into equivalent JavaScript

The TypeScript Playground is a great tool for showing how source TypeScript
becomes output JavaScript.

Many JavaScript projects use dedicated transpilers such as Babel
(https://babeljs.io) instead of TypeScript’s own to transpile source
code into runnable JavaScript. You can find a list of common
project starters on https://learningtypescript.com/starters.

Getting Started Locally
You can run TypeScript on your computer as long as you have Node.js installed. To
install the latest version of TypeScript globally, run the following command:

npm i -g typescript

Now, you’ll be able to run TypeScript on the command line with the tsc (TypeScript
Compiler) command. Try it with the --version flag to make sure it’s set up properly:

tsc --version

10 | Chapter 1: From JavaScript to TypeScript

https://babeljs.io
https://learningtypescript.com/starters

It should print out something like Version X.Y.Z—whichever version is current as of
you installing TypeScript:

$ tsc --version
Version 4.7.2

Running Locally
Now that TypeScript is installed, let’s have you set up a folder locally to run Type‐
Script on code. Create a folder somewhere on your computer and run this command
to create a new tsconfig.json configuration file:

tsc --init

A tsconfig.json file declares the settings that TypeScript uses when analyzing your
code. Most of the options in that file aren’t going to be relevant to you in this book
(there are a lot of uncommon edge cases in programming that the language needs to
account for!). I’ll cover them in Chapter 13, “Configuration Options”. The important
feature is that now you can run tsc to tell TypeScript to compile all the files in that
folder and TypeScript will refer to that tsconfig.json for any configuration options.

Try adding a file named index.ts with the following contents:

console.blub("Nothing is worth more than laughter.");

Then, run tsc and provide it the name of that index.ts file:

tsc index.ts

You should get an error that looks roughly like:

index.ts:1:9 - error TS2339: Property 'blub' does not exist on type 'Console'.

1 console.blub("Nothing is worth more than laughter.");
          ~~~~

Found 1 error.

Indeed, blub does not exist on the console. What was I thinking?

Before you fix the code to appease TypeScript, note that tsc created an index.js for
you with contents including the console.blub.

This is an important concept: even though there was a type error
in our code, the syntax was still completely valid. The TypeScript
compiler will still produce JavaScript from an input file regardless
of any type errors.

Getting Started Locally | 11



Correct the code in index.ts to call console.log and run tsc again. There should
be no complaints in your terminal, and the index.js file should now contain updated
output code:

console.log("Nothing is worth more than laughter.");

I highly recommend playing with the book’s snippets as you read
through them, either in the playground or in an editor with Type‐
Script support, meaning it runs the TypeScript language service
for you. Small self-contained exercises, as well as larger projects,
are also available to help you practice what you’ve learned on
https://learningtypescript.com.

Editor Features
Another benefit of creating a tsconfig.json file is that when editors are opened to
a particular folder, they will now recognize that folder as a TypeScript project. For
example, if you open VS Code in a folder, the settings it uses to analyze your
TypeScript code will respect whatever’s in that folder’s tsconfig.json.

As an exercise, go back through the code snippets in this chapter and type them in
your editor. You should see drop-downs suggesting completions for names as you
type them, especially for members such as the log on console.

Very exciting: you’re using the TypeScript language service to help yourself write
code! You’re on your way to being a TypeScript developer!

VS Code comes with great TypeScript support and is itself built
in TypeScript. You don’t have to use it for TypeScript—virtually all
modern editors have excellent TypeScript support either built-in
or available via plugins—but I do recommend it for at least trying
out TypeScript while reading through this book. If you do use a
different editor, I also recommend enabling its TypeScript support.
I’ll cover editor features more deeply in Chapter 12, “Using IDE
Features”.

What TypeScript Is Not
Now that you’ve seen how wonderful TypeScript is, I have to warn you about some
limitations. Every tool excels at some areas and has limitations in others.

A Remedy for Bad Code
TypeScript helps you structure your JavaScript, but other than enforcing type safety, it
doesn’t enforce any opinions on what that structure should look like.

12 | Chapter 1: From JavaScript to TypeScript

https://learningtypescript.com


Good!

TypeScript is a language that everyone is meant to be able to use, not an opinionated
framework with a target audience. You can write code using whatever architectural
patterns you’re used to from JavaScript, and TypeScript will support them.

If anybody tries to tell you that TypeScript forces you to use classes, or makes it hard
to write good code, or whatever code style complaints are out there, give them a
stern look and tell them to pick up a copy of Learning TypeScript. TypeScript does
not enforce code style opinions such as whether to use classes or functions, nor is
it associated with any particular application framework—Angular, React, etc.—over
others.

Extensions to JavaScript (Mostly)
TypeScript’s design goals explicitly state that it should:

• Align with current and future ECMAScript proposals•
• Preserve runtime behavior of all JavaScript code•

TypeScript does not try to change how JavaScript works at all. Its creators have tried
very hard to avoid adding new code features that would add to or conflict with
JavaScript. Such a task is the domain of TC39, the technical committee that works on
ECMAScript itself.

There are a few older features in TypeScript that were added many years ago to reflect
common use cases in JavaScript code. Most of those features are either relatively
uncommon or have fallen out of favor, and are only covered briefly in Chapter 14,
“Syntax Extensions”. I recommend staying away from them in most cases.

As of 2022, TC39 is investigating adding a syntax for type annota‐
tions to JavaScript. The latest proposals have them acting as a form
of comments that do not impact code at runtime and are used
only for development-time systems such as TypeScript. It will be
many years until type comments or some equivalent are added to
JavaScript, so they won’t be mentioned elsewhere in this book.

Slower Than JavaScript
Sometimes on the internet, you might hear some opinionated developers complain
that TypeScript is slower than JavaScript at runtime. That claim is generally inaccu‐
rate and misleading. The only changes TypeScript makes to code are if you ask it to
compile your code down to earlier versions of JavaScript to support older runtime
environments such as Internet Explorer 11. Many production frameworks don’t use
TypeScript’s compiler at all, instead using a separate tool for transpilation (the part of

What TypeScript Is Not | 13



compiling that converts source code from one programming language into another)
and TypeScript only for type checking.

TypeScript does, however, add some time to building your code. TypeScript code
must be compiled down to JavaScript before most environments, such as browsers
and Node.js, will run it. Most build pipelines are generally set up so that the perfor‐
mance hit is negligible, and slower TypeScript features such as analyzing code for
likely mistakes are done separately from generating runnable application code files.

Even projects that seemingly allow running TypeScript code
directly, such as ts-node and Deno, themselves internally convert
TypeScript code to JavaScript before running it.

Finished Evolving
The web is nowhere near finished evolving, and thus neither is TypeScript. The
TypeScript language is constantly receiving bug fixes and feature additions to match
the ever-shifting needs of the web community. The basic tenets of TypeScript you’ll
learn in this book will remain about the same, but error messages, fancier features,
and editor integrations will improve over time.

In fact, while this edition of the book was published with TypeScript version 4.7.2 as
the latest, by the time you started reading it, we can be certain a newer version has
been released. Some of the TypeScript error messages in this book might even already
be out of date!

Summary
In this chapter, you read up on the context for some of JavaScript’s main weaknesses,
where TypeScript comes into play, and how to get started with TypeScript:

• A brief history of JavaScript•
• JavaScript’s pitfalls: costly freedom, loose documentation, and weaker developer•

tooling
• What TypeScript is: a programming language, a type checker, a compiler, and a•

language service
• TypeScript’s advantages: freedom through restriction, precise documentation,•

and stronger developer tooling

14 | Chapter 1: From JavaScript to TypeScript



• Getting started writing TypeScript code on the TypeScript Playground and locally•
on your computer

• What TypeScript is not: a remedy for bad code, extensions to JavaScript (mostly),•
slower than JavaScript, or finished evolving

Now that you’ve finished reading this chapter, practice what
you’ve learned on https://learningtypescript.com/from-javascript-to-
typescript.

What happens if you spot errors running the TypeScript compiler?

You’d better go catch them!

Summary | 15

https://learningtypescript.com/from-javascript-to-typescript
https://learningtypescript.com/from-javascript-to-typescript




CHAPTER 2

The Type System

I talked briefly in Chapter 1, “From JavaScript to TypeScript” about the existence of
a “type checker” in TypeScript that looks at your code, understands how it’s meant
to work, and lets you know where you might have messed up. But how does a type
checker work, really?

What’s in a Type?
A “type” is a description of what a JavaScript value shape might be. By “shape” I mean
which properties and methods exist on a value, and what the built-in typeof operator
would describe it as.

For example, when you create a variable with the initial value "Aretha":

let singer = "Aretha";

TypeScript can infer, or figure out, that the singer variable is of type string.

The most basic types in TypeScript correspond to the seven basic kinds of primitives
in JavaScript:

• null•
• undefined•
• boolean // true or false•
• string // "", "Hi!", "abc123", …•
• number // 0, 2.1, -4, …•
• bigint // 0n, 2n, -4n, …•
• symbol // Symbol(), Symbol("hi"), …•

17

JavaScript’s power
Comes from flexibility
Be careful with that!



For each of these values, TypeScript understands the type of the value to be one of the
seven basic primitives:

• null; // null•
• undefined; // undefined•
• true; // boolean•
• "Louise"; // string•
• 1337; // number•
• 1337n; // bigint•
• Symbol("Franklin"); // symbol•

If you ever forget the name of a primitive, you can type a let variable with a
primitive value into the TypeScript Playground or an IDE and hover your mouse over
the variable’s name. The resultant popover will include the name of the primitive,
such as this screenshot showing hovering over a string variable (Figure 2-1).

Figure 2-1. TypeScript showing a string variable’s type in its hover information

TypeScript is also smart enough to be able to infer the type of a variable whose start‐
ing value is computed. In this example, TypeScript knows that the ternary expression
always results in a string, so the bestSong variable is a string:

// Inferred type: string
let bestSong = Math.random() > 0.5
  ? "Chain of Fools"
  : "Respect";

Back in the TypeScript Playground or your IDE, try hovering your cursor on that
bestSong variable. You should see some info box or message telling you that Type‐
Script has inferred the bestSong variable to be type string (Figure 2-2).

Figure 2-2. TypeScript reporting a let variable as being its string literal type from its
ternary expression

18 | Chapter 2: The Type System

https://typescriptlang.org/play
https://typescriptlang.org/play


Recall the differences between objects and primitives in JavaScript:
classes such as Boolean and Number wrap around their primitive
equivalents. TypeScript best practice is generally to refer to the
lower-case names, such as boolean and number, respectively.

Type Systems
A type system is the set of rules for how a programming language understands what
types the constructs in a program may have.

At its core, TypeScript’s type system works by:

• Reading in your code and understanding all the types and values in existence•
• For each value, seeing what type its initial declaration indicates it may contain•
• For each value, seeing all the ways it’s used later on in code•
• Complaining to the user if a value’s usage doesn’t match with its type•

Let’s walk through this type inference process in detail.

Take the following snippet, in which TypeScript is emitting a type error about a
member property being erroneously called as a function:

let firstName = "Whitney";
firstName.length();
//        ~~~~~~
//  This expression is not callable.
//    Type 'Number' has no call signatures

TypeScript came to that complaint by, in order:

1. Reading in the code and understanding there to be a variable named firstName1.
2. Concluding that firstName is of type string because its initial value is a string,2.

"Whitney"

3. Seeing that the code is trying to access a .length member of firstName and call3.
it like a function

4. Complaining that the .length member of a string is a number, not a function (it4.
can’t be called like a function)

Understanding TypeScript’s type system is an important skill for understanding Type‐
Script code. Code snippets in this chapter and throughout the rest of this book will
display more and more complex types that TypeScript will be able to infer from code.

What’s in a Type? | 19



Kinds of Errors
While writing TypeScript, the two kinds of “errors” you’ll come across most fre‐
quently are:

Syntax
Blocking TypeScript from being converted to JavaScript

Type
Something mismatched has been detected by the type checker

The differences between the two are important.

Syntax errors
Syntax errors are when TypeScript detects incorrect syntax that it cannot understand
as code. These block TypeScript from being able to properly generate output Java‐
Script from your file. Depending on the tooling and settings you’re using to convert
your TypeScript code to JavaScript, you might still get some kind of JavaScript output
(in default tsc settings, you will). But if you do, it likely won’t look like what you
expect.

This input TypeScript has a syntax error for an unexpected let:

let let wat;
//      ~~~
// Error: ',' expected.

Its compiled JavaScript output, depending on the TypeScript compiler version, may
look something like:

let let, wat;

Although TypeScript will do its best to output JavaScript code
regardless of syntax errors, the output code will likely not be what
you wanted. It’s best to fix syntax errors before attempting to run
the output JavaScript.

Type errors
Type errors occur when your syntax is valid but the TypeScript type checker has
detected an error with the program’s types. These do not block TypeScript syntax
from being converted to JavaScript. They do, however, often indicate something will
crash or behave unexpectedly if your code is allowed to run.

You saw this in Chapter 1, “From JavaScript to TypeScript” with the console.blub
example, where the code was syntactically valid but TypeScript could detect it would
likely crash when run:

20 | Chapter 2: The Type System



console.blub("Nothing is worth more than laughter.");
//      ~~~~
// Error: Property 'blub' does not exist on type 'Console'.

Even though TypeScript may output JavaScript code despite the presence of type
errors, type errors are generally a sign that the output JavaScript likely won’t run the
way you wanted. It’s best to read them and consider fixing any reported issues before
running JavaScript.

Some projects are configured to block running code during devel‐
opment until all TypeScript type errors—not just syntax—are fixed.
Many developers, myself included, generally find this to be annoy‐
ing and unnecessary. Most projects have a way to not be blocked,
such as with the tsconfig.json file and configuration options covered
in Chapter 13, “Configuration Options”.

Assignability
TypeScript reads variables’ initial values to determine what type those variables are
allowed to be. If it later sees an assignment of a new value to that variable, it will
check if that new value’s type is the same as the variable’s.

TypeScript is fine with later assigning a different value of the same type to a variable.
If a variable is, say, initially a string value, later assigning it another string would be
fine:

let firstName = "Carole";
firstName = "Joan";

If TypeScript sees an assignment of a different type, it will give us a type error. We
couldn’t, say, initially declare a variable with a string value and then later on put in a
boolean:

let lastName = "King";
lastName = true;
// Error: Type 'boolean' is not assignable to type 'string'.

TypeScript’s checking of whether a value is allowed to be provided to a function call
or variable is called assignability: whether that value is assignable to the expected type
it’s passed to. This will be an important term in later chapters as we compare more
complex objects.

Understanding Assignability Errors
Errors in the format “Type…is not assignable to type…” will be some of the most
common types of errors you’ll see when writing TypeScript code.

Assignability | 21



The first type mentioned in that error message is the value the code is attempting to
assign to a recipient. The second type mentioned is the recipient being assigned the
first type. For example, when we wrote lastName = true in the previous snippet,
we were trying to assign the value of true—type boolean—to the recipient variable
lastName—type string.

You’ll see more and more complex assignability issues as you progress through this
book. Remember to read them carefully to understand reported differences between
actual and expected types. Doing so will make it much easier to work with TypeScript
when it’s giving you grief over type errors.

Type Annotations
Sometimes a variable doesn’t have an initial value for TypeScript to read. TypeScript
won’t attempt to figure out the initial type of the variable from later uses. It’ll consider
the variable by default to be implicitly the any type: indicating that it could be
anything in the world.

Variables that can’t have their initial type inferred go through what’s called an evolving
any: rather than enforce any particular type, TypeScript will evolve its understanding
of the variable’s type each time a new value is assigned.

Here, assigning the evolving any variable rocker is first assigned a string, which
means it has string methods such as toUpperCase, but then is evolved into a number:

let rocker; // Type: any

rocker = "Joan Jett"; // Type: string
rocker.toUpperCase(); // Ok

rocker = 19.58; // Type: number
rocker.toPrecision(1); // Ok

rocker.toUpperCase();
//     ~~~~~~~~~~~
// Error: 'toUpperCase' does not exist on type 'number'.

TypeScript was able to catch that we were calling the toUpperCase() method on a
variable evolved to type number. However, it wasn’t able to tell us earlier whether it
was intentional that we were evolving the variable from string to number in the first
place.

Allowing variables to be evolving any typed—and using the any type in general—
partially defeats the purpose of TypeScript’s type checking! TypeScript works best
when it knows what types your values are meant to be. Much of TypeScript’s type
checking can’t be applied to any typed values because they don’t have known types

22 | Chapter 2: The Type System



to be checked. Chapter 13, “Configuration Options” will cover how to configure
TypeScript’s implicit any complaints.

TypeScript provides a syntax for declaring the type of a variable without having to
assign it an initial value, called a type annotation. A type annotation is placed after the
name of a variable and includes a colon followed by the name of a type.

This type annotation indicates the rocker variable is meant to be type string:

let rocker: string;
rocker = "Joan Jett";

These type annotations exist only for TypeScript—they don’t affect the runtime code
and are not valid JavaScript syntax. If you run tsc to compile TypeScript source code
to JavaScript, they’ll be erased. For example, the previous example would be compiled
to roughly the following JavaScript:

// output .js file
let rocker;
rocker = "Joan Jett";

Assigning a value whose type is not assignable to the variable’s annotated type will
cause a type error.

This snippet assigns a number to a rocker variable previously declared as type
string, causing a type error:

let rocker: string;
rocker = 19.58;
// Error: Type 'number' is not assignable to type 'string'.

You’ll see through the next few chapters how type annotations allow you to augment
TypeScript’s insights into your code, allowing it to give you better features during
development. TypeScript contains an assortment of new pieces of syntax, such as
these type annotations that exist only in the type system.

Nothing that exists only in the type system gets copied over into
emitted JavaScript. TypeScript types don’t affect emitted JavaScript.

Unnecessary Type Annotations
Type annotations allow us to provide information to TypeScript that it wouldn’t
have been able to glean on its own. You could also use them on variables that
have immediately inferable types, but you wouldn’t be telling TypeScript anything it
doesn’t already know.

Type Annotations | 23



The following : string type annotation is redundant because TypeScript could
already infer that firstName be of type string:

let firstName: string = "Tina";
//           ~~~~~~~~ Does not change the type system...

If you do add a type annotation to a variable with an initial value, TypeScript will
check that it matches the type of the variable’s value.

The following firstName is declared to be of type string, but its initializer is the
number 42, which TypeScript sees as an incompatibility:

let firstName: string = 42;
//  ~~~~~~~~~
// Error: Type 'number' is not assignable to type 'string'.

Many developers—myself included—generally prefer not to add type annotations on
variables where the type annotations wouldn’t change anything. Having to manually
write out type annotations can be cumbersome—especially when they change, and
for the complex types I’ll show you later in this book.

It can sometimes be useful to include explicit type annotations on variables to clearly
document the code and/or to make TypeScript protected against accidental changes
to the variable’s type. We’ll see in later chapters how explicit type annotations can
sometimes explicitly tell TypeScript information it wouldn’t have inferred normally.

Type Shapes
TypeScript does more than check that the values assigned to variables match their
original types. TypeScript also knows what member properties should exist on
objects. If you attempt to access a property of a variable, TypeScript will make sure
that property is known to exist on that variable’s type.

Suppose we declare a rapper variable of type string. Later on, when we use that
rapper variable, operations that TypeScript knows work on strings are allowed:

let rapper = "Queen Latifah";
rapper.length; // ok

Operations that TypeScript doesn’t know to work on strings will not be allowed:

rapper.push('!');
//     ~~~~
// Property 'push' does not exist on type 'string'.

Types can also be more complex shapes, most notably objects. In the following
snippet, TypeScript knows the birthNames object doesn’t have a middleName key and
complains:

let cher = {
  firstName: "Cherilyn",

24 | Chapter 2: The Type System



  lastName: "Sarkisian",
};

cher.middleName;
//   ~~~~~~~~~~
//   Property 'middleName' does not exist on type
//   '{ firstName: string; lastName: string; }'.

TypeScript’s understanding of object shapes allows it to report issues with the usage
of objects, not just assignability. Chapter 4, “Objects” will describe more of Type‐
Script’s powerful features around objects and object types.

Modules
The JavaScript programming language did not include a specification for how files
can share code between each other until relatively recently in its history. ECMAScript
2015 added “ECMAScript modules,” or ESM, to standardize import and export
syntax between files.

For reference, this module file imports a value from a sibling ./values file and
exports a doubled variable:

import { value } from "./values";

export const doubled = value * 2;

To match with the ECMAScript specification, in this book I’ll use the following
nomenclature:

Module
A file with a top-level export or import

Script
Any file that is not a module

TypeScript is able to work with those modern module files as well as older files.
Anything declared in a module file will be available only in that file unless an explicit
export statement in that file exports it. A variable declared in one module with
the same name as a variable declared in another file won’t be considered a naming
conflict (unless one file imports the other file’s variable).

The following a.ts and b.ts files are both modules that export a similarly named
shared variable without issue. c.ts causes a type error because it has a naming
conflict between an imported shared and its own value:

// a.ts
export const shared = "Cher";

// b.ts
export const shared = "Cher";

Type Shapes | 25



// c.ts
import { shared } from "./a";
//       ~~~~~~
// Error: Import declaration conflicts with local declaration of 'shared'.

export const shared = "Cher";
//           ~~~~~~
// Error: Individual declarations in merged declaration
// 'shared' must be all exported or all local.

If a file is a script, though, TypeScript will consider it to be globally scoped, meaning
all scripts have access to its contents. That means variables declared in a script file
cannot have the same name as variables declared in other script files.

The following a.ts and b.ts files are considered scripts because they do not have
module-style export or import statements. That means their variables of the same
name conflict with each other as if they were declared in the same file:

// a.ts
const shared = "Cher";
//    ~~~~~~
// Cannot redeclare block-scoped variable 'shared'.

// b.ts
const shared = "Cher";
//    ~~~~~~
// Cannot redeclare block-scoped variable 'shared'.

If you see these “Cannot redeclare…” errors in a TypeScript file, it may be because
you have yet to add an export or import statement to the file. Per the ECMAScript
specification, if you need a file to be a module without an export or import state‐
ment, you can add an export {}; somewhere in the file to force it to be a module:

26 | Chapter 2: The Type System



// a.ts and b.ts
const shared = "Cher"; // Ok

export {};

TypeScript will not recognize the types of imports and exports
in TypeScript files written using older module systems such as
CommonJS. TypeScript will generally see values returned from
CommonJS-style require functions to be typed as any.

Summary
In this chapter, you saw how TypeScript’s type system works at its core:

• What a “type” is and the primitive types recognized by TypeScript•
• What a “type system” is and how TypeScript’s type system understands code•
• How type errors compare to syntax errors•
• Inferred variable types and variable assignability•
• Type annotations to explicitly declare variable types and avoid evolving any types•
• Object member checking on type shapes•
• ECMAScript module files’ declaration scoping compared to script files•

Now that you’ve finished reading this chapter, practice what you’ve
learned on https://learningtypescript.com/the-type-system.

Why did the number and string break up?

They weren’t each other’s types.

Summary | 27

https://learningtypescript.com/the-type-system




CHAPTER 3

Unions and Literals

Chapter 2, “The Type System” covered the concept of the “type system” and how it
can read values to understand the types of variables. Now I’d like to introduce two key
concepts that TypeScript works with to make inferences on top of those values:

Unions
Expanding a value’s allowed type to be two or more possible types

Narrowing
Reducing a value’s allowed type to not be one or more possible types

Put together, unions and narrowing are powerful concepts that allow TypeScript to
make informed inferences on your code many other mainstream languages cannot.

Union Types
Take this mathematician variable:

let mathematician = Math.random() > 0.5
    ? undefined
    : "Mark Goldberg";

What type is mathematician?

It’s neither only undefined nor only string, even though those are both potential
types. mathematician can be either undefined or string. This kind of “either or”
type is called a union. Union types are a wonderful concept that let us handle code
cases where we don’t know exactly which type a value is, but do know it’s one of two
or more options.

29

Nothing is constant
Values may change over time

(well, except constants)



TypeScript represents union types using the | (pipe) operator between the possible
values, or constituents. The previous mathematician type is thought of as string |
undefined. Hovering over the mathematician variable would show its type as string
| undefined (Figure 3-1).

Figure 3-1. TypeScript reporting the mathematician variable as being type string |
undefined

Declaring Union Types
Union types are an example of a situation when it might be useful to give an explicit
type annotation for a variable even though it has an initial value. In this example,
thinker starts off null but is known to potentially contain a string instead. Giving
it an explicit string | null type annotation means TypeScript will allow it to be
assigned values of type string:

let thinker: string | null = null;

if (Math.random() > 0.5) {
    thinker = "Susanne Langer"; // Ok
}

Union type declarations can be placed anywhere you might declare a type with a type
annotation.

The order of a union type declaration does not matter. You can
write boolean | number or number | boolean and TypeScript will
treat both the exact same.

Union Properties
When a value is known to be a union type, TypeScript will only allow you to access
member properties that exist on all possible types in the union. It will give you a
type-checking error if you try to access a type that doesn’t exist on all possible types.

30 | Chapter 3: Unions and Literals



In the following snippet, physicist is of type number | string. While .toString()
exists in both types and is allowed to be used, .toUpperCase() and .toFixed()
are not because .toUpperCase() is missing on the number type and .toFixed() is
missing on the string type:

let physicist = Math.random() > 0.5
    ? "Marie Curie"
    : 84;

physicist.toString(); // Ok

physicist.toUpperCase();
//        ~~~~~~~~~~~
// Error: Property 'toUpperCase' does not exist on type 'string | number'.
//   Property 'toUpperCase' does not exist on type 'number'.

physicist.toFixed();
//        ~~~~~~~
// Error: Property 'toFixed' does not exist on type 'string | number'.
//   Property 'toFixed' does not exist on type 'string'.

Restricting access to properties that don’t exist on all union types is a safety measure.
If an object is not known to definitely be a type that contains a property, TypeScript
will believe it unsafe to try to use that property. The property might not exist!

To use a property of a union typed value that only exists on a subset of the potential
types, your code will need to indicate to TypeScript that the value at that location in
code is one of those more specific types: a process called narrowing.

Narrowing
Narrowing is when TypeScript infers from your code that a value is of a more specific
type than what it was defined, declared, or previously inferred as. Once TypeScript
knows that a value’s type is more narrow than previously known, it will allow you to
treat the value like that more specific type. A logical check that can be used to narrow
types is called a type guard.

Let’s cover two of the common type guards TypeScript can use to deduce type
narrowing from your code.

Assignment Narrowing
If you directly assign a value to a variable, TypeScript will narrow the variable’s type
to that value’s type.

Here, the admiral variable is declared initially as a number | string, but after being
assigned the value "Grace Hopper", TypeScript knows it must be a string:

Narrowing | 31



let admiral: number | string;

admiral = "Grace Hopper";

admiral.toUpperCase(); // Ok: string

admiral.toFixed();
//      ~~~~~~~
// Error: Property 'toFixed' does not exist on type 'string'.

Assignment narrowing comes into play when a variable is given an explicit union
type annotation and an initial value too. TypeScript will understand that while the
variable may later receive a value of any of the union typed values, it starts off as only
the type of its initial value.

In the following snippet, inventor is declared as type number | string, but Type‐
Script knows it’s immediately narrowed to a string from its initial value:

let inventor: number | string = "Hedy Lamarr";

inventor.toUpperCase(); // Ok: string

inventor.toFixed();
//       ~~~~~~~
// Error: Property 'toFixed' does not exist on type 'string'.

Conditional Checks
A common way to get TypeScript to narrow a variable’s value is to write an if
statement checking the variable for being equal to a known value. TypeScript is smart
enough to understand that inside the body of that if statement, the variable must be
the same type as the known value:

// Type of scientist: number | string
let scientist = Math.random() > 0.5
    ? "Rosalind Franklin"
    : 51;

if (scientist === "Rosalind Franklin") {
    // Type of scientist: string
    scientist.toUpperCase(); // Ok
}

// Type of scientist: number | string
scientist.toUpperCase();
//        ~~~~~~~~~~~
// Error: Property 'toUpperCase' does not exist on type 'string | number'.
//   Property 'toUpperCase' does not exist on type 'number'.

32 | Chapter 3: Unions and Literals



Narrowing with conditional logic shows TypeScript’s type-checking logic mirroring
good JavaScript coding patterns. If a variable might be one of several types, you’ll
generally want to check its type for being what you need. TypeScript is forcing us to
play it safe with our code. Thanks, TypeScript!

Typeof Checks
In addition to direct value checking, TypeScript also recognizes the typeof operator
in narrowing down variable types.

Similar to the scientist example, checking if typeof researcher is "string" indi‐
cates to TypeScript that the type of researcher must be string:

let researcher = Math.random() > 0.5
    ? "Rosalind Franklin"
    : 51;

if (typeof researcher === "string") {
    researcher.toUpperCase(); // Ok: string
}

Logical negations from ! and else statements work as well:

if (!(typeof researcher === "string")) {
    researcher.toFixed(); // Ok: number
} else {
    researcher.toUpperCase(); // Ok: string
}

Those code snippets can be rewritten with a ternary statement, which is also sup‐
ported for type narrowing:

typeof researcher === "string"
    ? researcher.toUpperCase() // Ok: string
    : researcher.toFixed(); // Ok: number

Whichever way you write them, typeof checks are a practical and often used way to
narrow types.

TypeScript’s type checker recognizes several more forms of narrowing that we’ll see in
later chapters.

Literal Types
Now that I’ve shown union types and narrowing for working with values that may be
two or more potential types, I’d like go the opposite direction by introducing literal
types: more specific versions of primitive types.

Literal Types | 33



Take this philosopher variable:

const philosopher = "Hypatia";

What type is philosopher?

At first glance, you might say string—and you’d be correct. philosopher is indeed a
string.

But! philosopher is not just any old string. It’s specifically the value "Hypatia".
Therefore, the philosopher variable’s type is technically the more specific "Hypatia".

Such is the concept of a literal type: the type of a value that is known to be a specific
value of a primitive, rather than any of those primitive’s values at all. The primitive
type string represents the set of all possible strings that could ever exist; the literal
type "Hypatia" represents just that one string.

If you declare a variable as const and directly give it a literal value, TypeScript will
infer the variable to be that literal value as a type. This is why, when you hover a
mouse over a const variable with an initial literal value in an IDE such as VS Code,
it will show you the variable’s type as that literal (Figure 3-2) instead of the more
general primitive (Figure 3-3).

Figure 3-2. TypeScript reporting a const variable as being specifically its literal type

Figure 3-3. TypeScript reporting a let variable as being generally its primitive type

You can think of each primitive type as a union of every possible matching literal
value. In other words, a primitive type is the set of all possible literal values of that
type.

Other than the boolean, null, and undefined types, all other primitives such as
number and string have a infinite number of literal types. The common types you’ll
find in typical TypeScript code are just those:

• boolean: just true | false•
• null and undefined: both just have one literal value, themselves•

34 | Chapter 3: Unions and Literals



• number: 0 | 1 | 2 | ... | 0.1 | 0.2 | ...•
• string: "" | "a" | "b" | "c" | ... | "aa" | "ab" | "ac" | ...•

Union type annotations can mix and match between literals and primitives. A repre‐
sentation of a lifespan, for example, might be represented by any number or one of a
couple known edge cases:

let lifespan: number | "ongoing" | "uncertain";

lifespan = 89; // Ok
lifespan = "ongoing"; // Ok

lifespan = true;
// Error: Type 'true' is not assignable to
// type 'number | "ongoing" | "uncertain"'

Literal Assignability
You’ve seen how different primitive types such as number and string are not assign‐
able to each other. Similarly, different literal types within the same primitive type—
e.g., 0 and 1—are not assignable to each other.

In this example, specificallyAda is declared as being of the literal type "Ada", so
while the value "Ada" may be given to it, the types "Byron" and string are not
assignable to it:

let specificallyAda: "Ada";

specificallyAda = "Ada"; // Ok

specificallyAda = "Byron";
// Error: Type '"Byron"' is not assignable to type '"Ada"'.

let someString = ""; // Type: string

specificallyAda = someString;
// Error: Type 'string' is not assignable to type '"Ada"'.

Literal types are, however, allowed to be assigned to their corresponding primitive
types. Any specific literal string is still a string.

In this code example, the value ":)", which is of type ":)", is being assigned to the
someString variable previously inferred to be of type string:

someString = ":)";

Who would have thought a simple variable assignment would be so theoretically
intense?

Literal Types | 35



Strict Null Checking
The power of narrowed unions with literals is particularly visible when working with
potentially undefined values, an area of type systems TypeScript refers to as strict null
checking. TypeScript is part of a surge of modern programming languages that utilize
strict null checking to fix the dreaded “billion-dollar mistake.”

The Billion-Dollar Mistake
I call it my billion-dollar mistake. It was the invention of the null reference in 1965…
This has led to innumerable errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage in the last 40 years.

—Tony Hoare, 2009

The “billion-dollar mistake” is a catchy industry term for many type systems allowing
null values to be used in places that require a different type. In languages without
strict null checking, code like this example that assign null to a string is allowed:

const firstName: string = null;

If you’ve previously worked in a typed language such as C++ or Java that suffers
from the billion-dollar mistake, it may be surprising to you that some languages don’t
allow such a thing. If you’ve never worked in a language with the strict null checking
before, it may be surprising that some languages allowed the billion-dollar mistake in
the first place!

The TypeScript compiler contains a multitude of options that allow changing how
it runs. Chapter 13, “Configuration Options” will cover TypeScript compiler options
in depth. One of the most useful opt-in options, strictNullChecks, toggles whether
strict null checking is enabled. Roughly speaking, disabling strictNullChecks adds
| null | undefined to every type in your code, thereby allowing any variable to
receive null or undefined.

With the strictNullChecks option set to false, the following code is consid‐
ered totally type safe. That’s wrong, though; nameMaybe might be undefined
when .toLowerCase is accessed from it:

let nameMaybe = Math.random() > 0.5
    ? "Tony Hoare"
    : undefined;

nameMaybe.toLowerCase();
// Potential runtime error: Cannot read property 'toLowerCase' of undefined.

36 | Chapter 3: Unions and Literals



1 The deprecated document.all object in browsers is also defined as falsy in an old quirk of legacy browser
compatibility. For the purposes of this book—and your own happiness as a developer—don’t worry about
document.all.

With strict null checking enabled, TypeScript sees the potential crash in the code
snippet:

let nameMaybe = Math.random() > 0.5
    ? "Tony Hoare"
    : undefined;

nameMaybe.toLowerCase();
// Error: Object is possibly 'undefined'.

Without strict null checking enabled, it’s much harder to know whether your code is
safe from errors due to accidentally null or undefined values.

TypeScript best practice is generally to enable strict null checking. Doing so helps
prevent crashes and eliminates the billion-dollar mistake.

Truthiness Narrowing
Recall from JavaScript that truthiness, or being truthy, is whether a value would be
considered true when evaluated in a Boolean context, such as an && operator or if
statement. All values in JavaScript are truthy except for those defined as falsy: false,
0, -0, 0n, "", null, undefined, and NaN.1

TypeScript can also narrow a variable’s type from a truthiness check if only some of
its potential values may be truthy. In the following snippet, geneticist is of type
string | undefined, and because undefined is always falsy, TypeScript can deduce
that it must be of type string within the if statement’s body:

let geneticist = Math.random() > 0.5
    ? "Barbara McClintock"
    : undefined;

if (geneticist) {
    geneticist.toUpperCase(); // Ok: string
}

geneticist.toUpperCase();
// Error: Object is possibly 'undefined'.

Logical operators that perform truthiness checking work as well, namely && and ?.:

geneticist && geneticist.toUpperCase(); // Ok: string | undefined
geneticist?.toUpperCase(); // Ok: string | undefined

Strict Null Checking | 37



Unfortunately, truthiness checking doesn’t go the other way. If all we know about a
string | undefined value is that it’s falsy, that doesn’t tell us whether it’s an empty
string or undefined.

Here, biologist is of type false | string, and while it can be narrowed down to
just string in the if statement body, the else statement body knows it can still be a
string if it’s "":

let biologist = Math.random() > 0.5 && "Rachel Carson";

if (biologist) {
    biologist; // Type: string
} else {
    biologist; // Type: false | string
}

Variables Without Initial Values
Variables declared without an initial value default to undefined in JavaScript. That
presents an edge case in the type system: what if you declare a variable to be a type
that doesn’t include undefined, then try to use it before assigning a value?

TypeScript is smart enough to understand that the variable is undefined until a value
is assigned. It will report a specialized error message if you try to use that variable,
such as by accessing one of its properties, before assigning a value:

let mathematician: string;

mathematician?.length;
// Error: Variable 'mathematician' is used before being assigned.

mathematician = "Mark Goldberg";
mathematician.length; // Ok

Note that this reporting doesn’t apply if the variable’s type includes undefined.
Adding | undefined to a variable’s type indicates to TypeScript that it doesn’t need to
be defined before use, as undefined is a valid type for its value.

The previous code snippet wouldn’t emit any errors if the type of mathematician is
string | undefined:

let mathematician: string | undefined;

mathematician?.length; // Ok

mathematician = "Mark Goldberg";
mathematician.length; // Ok

38 | Chapter 3: Unions and Literals



Type Aliases
Most union types you’ll see in code will generally only have two or three constituents.
However, you may sometimes find a use for longer union types that are inconvenient
to type out repeatedly.

Each of these variables can be one of four possible types:

let rawDataFirst: boolean | number | string | null | undefined;
let rawDataSecond: boolean | number | string | null | undefined;
let rawDataThird: boolean | number | string | null | undefined;

TypeScript includes type aliases for assigning easier names to reused types. A type
alias starts with the type keyword, a new name, =, and then any type. By convention,
type aliases are given names in PascalCase:

type MyName = ...;

Type aliases act as a copy-and-paste in the type system. When TypeScript sees a
type alias, it acts as if you’d typed out the actual type the alias was referring to. The
previous variables’ type annotations could be rewritten to use a type alias for the long
union type:

type RawData = boolean | number | string | null | undefined;

let rawDataFirst: RawData;
let rawDataSecond: RawData;
let rawDataThird: RawData;

That’s a lot easier to read!

Type aliases are a handy feature to use in TypeScript whenever your types start
getting complex. For now, that just includes long union types; later on it will include
array, function, and object types.

Type Aliases Are Not JavaScript
Type aliases, like type annotations, are not compiled to the output JavaScript. They
exist purely in the TypeScript type system.

The previous code snippet would compile to roughly this JavaScript:

let rawDataFirst;
let rawDataSecond;
let rawDataThird;

Because type aliases are purely in the type system, you cannot reference them in
runtime code. TypeScript will let you know with a type error if you are trying to
access something that won’t exist at runtime:

Type Aliases | 39



type SomeType = string | undefined;

console.log(SomeType);
//          ~~~~~~~~
// Error: 'SomeType' only refers to a type, but is being used as a value here.

Type aliases exist purely as a development-time construct.

Combining Type Aliases
Type aliases may reference other type aliases. It can sometimes be useful to have
type aliases refer to each other, such as when one type alias is a union of types that
includes (is a superset of) the union types within another type alias.

This IdMaybe type is a union of the types within Id as well as undefined and null:

type Id = number | string;

// Equivalent to: number | string | undefined | null
type IdMaybe = Id | undefined | null;

Type aliases don’t have to be declared in order of usage. You can have a type alias
declared earlier in a file reference an alias declared later in the file.

The previous code snippet could be rewritten to have IdMaybe come before Id:

type IdMaybe = Id | undefined | null; // Ok
type Id = number | string;

Summary
In this chapter, you went over union and literal types in TypeScript, along with how
its type system can deduce more specific (narrower) types from how our code is
structured:

• How union types represent values that could be one of two or more types•
• Explicitly indicating union types with type annotations•
• How type narrowing reduces the possible types of a value•
• The difference between const variables with literal types and let variables with•

primitive types
• The “billion-dollar mistake” and how TypeScript handles strict null checking•
• Using explicit | undefined to represent values that might not exist•
• Implicit | undefined for unassigned variables•
• Using type aliases to save typing long type unions repeatedly•

40 | Chapter 3: Unions and Literals



Now that you’ve finished reading this chapter, practice what you’ve
learned on https://learningtypescript.com/unions-and-literals.

Why are const variables so serious?

They take themselves too literally.

Summary | 41

https://learningtypescript.com/unions-and-literals




CHAPTER 4

Objects

Chapter 3, “Unions and Literals” fleshed out union and literal types: working with
primitives such as boolean and literal values of them such as true. Those primitives
only scratch the surface of the complex object shapes JavaScript code commonly uses.
TypeScript would be pretty unusable if it weren’t able to represent those objects. This
chapter will cover how to describe complex object shapes and how TypeScript checks
their assignability.

Object Types
When you create an object literal with {...} syntax, TypeScript will consider it to
be a new object type, or type shape, based on its properties. That object type will
have the same property names and primitive types as the object’s values. Accessing
properties of the value can be done with either value.member or the equivalent
value['member'] syntax.

TypeScript understands that the following poet variable’s type is that of an object
with two properties: born, of type number, and name, of type string. Accessing those
members would be allowed, but attempting to access any other member name would
cause a type error for that name not existing:

43

Object literals
A set of keys and values

Each with their own type



const poet = {
    born: 1935,
    name: "Mary Oliver",
};

poet['born']; // Type: number
poet.name; // Type: string

poet.end;
//   ~~~
// Error: Property 'end' does not exist on
// type '{ born: number; name: string; }'.

Object types are a core concept for how TypeScript understands JavaScript code.
Every value other than null and undefined has a set of members in its backing type
shape, and so TypeScript must understand the object type for every value in order to
type check it.

Declaring Object Types
Inferring types directly from existing objects is all fine and good, but eventually you’ll
want to be able to declare the type of an object explicitly. You’ll need a way to describe
an object shape separately from objects that satisfy it.

Object types may be described using a syntax that looks similar to object literals but
with types instead of values for fields. It’s the same syntax that TypeScript shows in
error messages about type assignability.

This poetLater variable is the same type from before with name: string and born:
number:

let poetLater: {
    born: number;
    name: string;
};

// Ok
poetLater = {
    born: 1935,
    name: "Mary Oliver",
};

poetLater = "Sappho";
// Error: Type 'string' is not assignable to
// type '{ born: number; name: string; }'

44 | Chapter 4: Objects



Aliased Object Types
Constantly writing out object types like { born: number; name: string; } would
get tiresome rather quickly. It’s more common to use type aliases to assign each type
shape a name.

The previous code snippet could be rewritten with a type Poet, which comes with
the added benefit of making TypeScript’s assignability error message a little more
direct and readable:

type Poet = {
    born: number;
    name: string;
};

let poetLater: Poet;

// Ok
poetLater = {
    born: 1935,
    name: "Sara Teasdale",
};

poetLater = "Emily Dickinson";
// Error: Type 'string' is not assignable to 'Poet'.

Most TypeScript projects prefer using the interface keyword
to describe object types, which is a feature I won’t cover until
Chapter 7, “Interfaces”. Aliased object types and interfaces are
almost identical: everything in this chapter applies to interfaces
as well.

I bring these object types up now because understanding how TypeScript interprets
object literals is an important part of learning about TypeScript’s type system. These
concepts will continue to be important once we switch over to features in the next
section of this book.

Structural Typing
TypeScript’s type system is structurally typed: meaning any value that happens to
satisfy a type is allowed to be used as a value of that type. In other words, when
you declare that a parameter or variable is of a particular object type, you’re telling
TypeScript that whatever object(s) you use, they need to have those properties.

Structural Typing | 45



The following WithFirstName and WithLastName aliased object types both only
declare a single member of type string. The hasBoth variable just so happens to
have both of them—even though it wasn’t declared as such explicitly—so it can be
provided to variables that are declared as either of the two aliased object types:

type WithFirstName = {
  firstName: string;
};

type WithLastName = {
  lastName: string;
};

const hasBoth = {
  firstName: "Lucille",
  lastName: "Clifton",
};

// Ok: `hasBoth` contains a `firstName` property of type `string`
let withFirstName: WithFirstName = hasBoth;

// Ok: `hasBoth` contains a `lastName` property of type `string`
let withLastName: WithLastName = hasBoth;

Structural typing not the same as duck typing, which comes from the phrase “If it
looks like a duck and quacks like a duck, it’s probably a duck.”

• Structural typing is when there is a static system checking the type—in Type‐•
Script’s case, the type checker.

• Duck typing is when nothing checks object types until they’re used at runtime.•

In summary: JavaScript is duck typed whereas TypeScript is structurally typed.

Usage Checking
When providing a value to a location annotated with an object type, TypeScript will
check that the value is assignable to that object type. To start, the value must have
the object type’s required properties. If any member required on the object type is
missing in the object, TypeScript will issue a type error.

The following FirstAndLastNames aliased object type requires that both the first
and last properties exist. An object containing both of those is allowed to be used in
a variable declared to be of type FirstAndLastNames, but an object without them is
not:

type FirstAndLastNames = {
  first: string;
  last: string;
};

46 | Chapter 4: Objects



// Ok
const hasBoth: FirstAndLastNames = {
  first: "Sarojini",
  last: "Naidu",
};

const hasOnlyOne: FirstAndLastNames = {
  first: "Sappho"
};
// Property 'last' is missing in type '{ first: string; }'
// but required in type 'FirstAndLastNames'.

Mismatched types between the two are not allowed either. Object types specify both
the names of required properties and the types those properties are expected to be. If
an object’s property doesn’t match, TypeScript will report a type error.

The following TimeRange type expects the start member to be of type Date. The
hasStartString object is causing a type error because its start is type string
instead:

type TimeRange = {
  start: Date;
};

const hasStartString: TimeRange = {
  start: "1879-02-13",
  // Error: Type 'string' is not assignable to type 'Date'.
};

Excess Property Checking
Typescript will report a type error if a variable is declared with an object type and its
initial value has more fields than its type describes. Therefore, declaring a variable to
be of an object type is a way of getting the type checker to make sure it has only the
expected fields on that type.

The following poetMatch variable has exactly the fields described in the object
type aliased by Poet, while extraProperty causes a type error for having an extra
property:

type Poet = {
    born: number;
    name: string;
}

// Ok: all fields match what's expected in Poet
const poetMatch: Poet = {
  born: 1928,
  name: "Maya Angelou"
};

Structural Typing | 47



const extraProperty: Poet = {
    activity: "walking",
    born: 1935,
    name: "Mary Oliver",
};
// Error: Type '{ activity: string; born: number; name: string; }'
// is not assignable to type 'Poet'.
//   Object literal may only specify known properties,
//   and 'activity' does not exist in type 'Poet'.

Note that excess property checks only trigger for object literals being created in
locations that are declared to be an object type. Providing an existing object literal
bypasses excess property checks.

This extraPropertyButOk variable does not trigger a type error with the previous
example’s Poet type because its initial value happens to structurally match Poet:

const existingObject = {
    activity: "walking",
    born: 1935,
    name: "Mary Oliver",
};

const extraPropertyButOk: Poet = existingObject; // Ok

Excess property checks will trigger anywhere a new object is being created in a
location that expects it to match an object type—which as you’ll see in later chap‐
ters includes array members, class fields, and function parameters. Banning excess
properties is another way TypeScript helps make sure your code is clean and does
what you expect. Excess properties not declared in their object types are often either
mistyped property names or unused code.

Nested Object Types
As JavaScript objects can be nested as members of other objects, TypeScript’s object
types must be able to represent nested object types in the type system. The syntax
to do so is the same as before but with a { ... } object type instead of a primitive
name.

Poem type is declared to be an object whose author property has firstName: string
and lastName: string. The poemMatch variable is assignable to Poem because it
matches that structure, while poemMismatch is not because its author property
includes name instead of firstName and lastName:

type Poem = {
    author: {
        firstName: string;
        lastName: string;
    };

48 | Chapter 4: Objects



    name: string;
};

// Ok
const poemMatch: Poem = {
    author: {
        firstName: "Sylvia",
        lastName: "Plath",
    },
    name: "Lady Lazarus",
};

const poemMismatch: Poem = {
    author: {
        name: "Sylvia Plath",
    },
    // Error: Type '{ name: string; }' is not assignable
    // to type '{ firstName: string; lastName: string; }'.
    //   Object literal may only specify known properties, and 'name'
    //   does not exist in type '{ firstName: string; lastName: string; }'.
    name: "Tulips",
};

Another way of writing the type Poem would be to extract out the author property’s
shape into its own aliased object type, Author. Extracting out nested types into their
own type aliases also helps TypeScript give more informative type error messages.
In this case, it can say 'Author' instead of '{ firstName: string; lastName:
string; }':

type Author = {
    firstName: string;
    lastName: string;
};

type Poem = {
    author: Author;
    name: string;
};

const poemMismatch: Poem = {
    author: {
        name: "Sylvia Plath",
    },
    // Error: Type '{ name: string; }' is not assignable to type 'Author'.
    //     Object literal may only specify known properties,
    //     and 'name' does not exist in type 'Author'.
    name: "Tulips",
};

Structural Typing | 49



It is generally a good idea to move nested object types into their
own type name like this, both for more readable code and for more
readable TypeScript error messages.

You’ll see in later chapters how object type members can be other types such as arrays
and functions.

Optional Properties
Object type properties don’t all have to be required in the object. You can include
a ? before the : in a type property’s type annotation to indicate that it’s an optional
property.

This Book type requires only a pages property and optionally allows an author.
Objects adhering to it may provide author or leave it out as long as they provide
pages:

type Book = {
  author?: string;
  pages: number;
};

// Ok
const ok: Book = {
    author: "Rita Dove",
    pages: 80,
};

const missing: Book = {
    author: "Rita Dove",
};
// Error: Property 'pages' is missing in type
// '{ author: string; }' but required in type 'Book'.

Keep in mind there is a difference between optional properties and properties whose
type happens to include undefined in a type union. A property declared as optional
with ? is allowed to not exist. A property declared as required and | undefined must
exist, even if the value is undefined.

The editor property in the following Writers type may be skipped in declaring
variables because it has a ? in its declaration. The author property does not have a ?,
so it must exist, even if its value is just undefined:

type Writers = {
  author: string | undefined;
  editor?: string;
};

50 | Chapter 4: Objects



// Ok: author is provided as undefined
const hasRequired: Writers = {
  author: undefined,
};

const missingRequired: Writers = {};
//    ~~~~~~~~~~~~~~~
// Error: Property 'author' is missing in type
// '{}' but required in type 'Writers'.

Chapter 7, “Interfaces” will cover more on other kinds of properties, while Chap‐
ter 13, “Configuration Options” will describe TypeScript’s strictness settings around
optional properties.

Unions of Object Types
It is reasonable in TypeScript code to want to be able to describe a type that can
be one or more different object types that have slightly different properties. Further‐
more, your code might want to be able to type narrow between those object types
based on the value of a property.

Inferred Object-Type Unions
If a variable is given an initial value that could be one of multiple object types,
TypeScript will infer its type to be a union of object types. That union type will have
a constituent for each of the possible object shapes. Each of the possible properties
on the type will be present in each of those constituents, though they’ll be ? optional
types on any type that doesn’t have an initial value for them.

This poem value always has a name property of type string, and may or may not have
pages and rhymes properties:

const poem = Math.random() > 0.5
  ? { name: "The Double Image", pages: 7 }
  : { name: "Her Kind", rhymes: true };
// Type:
// {
//   name: string;
//   pages: number;
//   rhymes?: undefined;
// }
// |
// {
//   name: string;
//   pages?: undefined;
//   rhymes: boolean;
// }

poem.name; // string

Unions of Object Types | 51



poem.pages; // number | undefined
poem.rhymes; // booleans | undefined

Explicit Object-Type Unions
Alternately, you can be more explicit about your object types by being explicit with
your own union of object types. Doing so requires writing a bit more code but comes
with the advantage of giving you more control over your object types. Most notably, if
a value’s type is a union of object types, TypeScript’s type system will only allow access
to properties that exist on all of those union types.

This version of the previous poem variable is explicitly typed to be a union type that
always has the always property along with either pages or rhymes. Accessing names is
allowed because it always exists, but pages and rhymes aren’t guaranteed to exist:

type PoemWithPages = {
    name: string;
    pages: number;
};

type PoemWithRhymes = {
    name: string;
    rhymes: boolean;
};

type Poem = PoemWithPages | PoemWithRhymes;

const poem: Poem = Math.random() > 0.5
  ? { name: "The Double Image", pages: 7 }
  : { name: "Her Kind", rhymes: true };

poem.name; // Ok

poem.pages;
//   ~~~~~
// Property 'pages' does not exist on type 'Poem'.
//   Property 'pages' does not exist on type 'PoemWithRhymes'.

poem.rhymes;
//   ~~~~~~
// Property 'rhymes' does not exist on type 'Poem'.
//   Property 'rhymes' does not exist on type 'PoemWithPages'.

Restricting access to potentially nonexistent members of objects can be a good thing
for code safety. If a value might be one of multiple types, properties that don’t exist on
all of those types aren’t guaranteed to exist on the object.

52 | Chapter 4: Objects



Just as how unions of literal and/or primitive types must be type narrowed to access
properties that don’t exist on all type constituents, you’ll need to narrow those object
type unions.

Narrowing Object Types
If the type checker sees that an area of code can only be run if a union typed value
contains a certain property, it will narrow the value’s type to only the constituents
that contain that property. In other words, TypeScript’s type narrowing will apply to
objects if you check their shape in code.

Continuing the explicitly typed poem example, check whether "pages" in poem acts
as a type guard for TypeScript to indicate that it is a PoemWithPages. If poem is not a
PoemWithPages, then it must be a PoemWithRhymes:

if ("pages" in poem) {
    poem.pages; // Ok: poem is narrowed to PoemWithPages
} else {
    poem.rhymes; // Ok: poem is narrowed to PoemWithRhymes
}

Note that TypeScript won’t allow truthiness existence checks like if (poem.pages).
Attempting to access a property of an object that might not exist is considered a type
error, even if used in a way that seems to behave like a type guard:

if (poem.pages) { /* ... */ }
//       ~~~~~
// Property 'pages' does not exist on type 'PoemWithPages | PoemWithRhymes'.
//   Property 'pages' does not exist on type 'PoemWithRhymes'.

Discriminated Unions
Another popular form of union typed objects in JavaScript and TypeScript is to have
a property on the object indicate what shape the object is. This kind of type shape
is called a discriminated union, and the property whose value indicates the object’s
type is a discriminant. TypeScript is able to perform type narrowing for code that type
guards on discriminant properties.

For example, this Poem type describes an object that can be either a new
PoemWithPages type or a new PoemWithRhymes type, and the type property indicates
which one. If poem.type is "pages", then TypeScript is able to infer that the type
of poem must be PoemWithPages. Without that type narrowing, neither property is
guaranteed to exist on the value:

Unions of Object Types | 53



type PoemWithPages = {
    name: string;
    pages: number;
    type: 'pages';
};

type PoemWithRhymes = {
    name: string;
    rhymes: boolean;
    type: 'rhymes';
};

type Poem = PoemWithPages | PoemWithRhymes;

const poem: Poem = Math.random() > 0.5
  ? { name: "The Double Image", pages: 7, type: "pages" }
  : { name: "Her Kind", rhymes: true, type: "rhymes" };

if (poem.type === "pages") {
    console.log(`It's got pages: ${poem.pages}`); // Ok
} else {
    console.log(`It rhymes: ${poem.rhymes}`);
}

poem.type; // Type: 'pages' | 'rhymes'

poem.pages;
//   ~~~~~
// Error: Property 'pages' does not exist on type 'Poem'.
//   Property 'pages' does not exist on type 'PoemWithRhymes'.

Discriminated unions are my favorite feature in TypeScript because they beautifully
combine a common elegant JavaScript pattern with TypeScript’s type narrowing.
Chapter 10, “Generics” and its associated projects will show more around using
discriminated unions for generic data operations.

Intersection Types
TypeScript’s | union types represent the type of a value that could be one of two or
more different types. Just as JavaScript’s runtime | operator acts as a counterpart to
its & operator, TypeScript allows representing a type that is multiple types at the same
time: an & intersection type. Intersection types are typically used with aliased object
types to create a new type that combines multiple existing object types.

The following Artwork and Writing types are used to form a combined WrittenArt
type that has the properties genre, name, and pages:

54 | Chapter 4: Objects



type Artwork = {
    genre: string;
    name: string;
};

type Writing = {
    pages: number;
    name: string;
};

type WrittenArt = Artwork & Writing;
// Equivalent to:
// {
//   genre: string;
//   name: string;
//   pages: number;
// }

Intersection types can be combined with union types, which is sometimes useful to
describe discriminated unions in one type.

This ShortPoem type always has an author property, then is also a discriminated
union on a type property:

type ShortPoem = { author: string } & (
    | { kigo: string; type: "haiku"; }
    | { meter: number; type: "villanelle"; }
);

// Ok
const morningGlory: ShortPoem = {
    author: "Fukuda Chiyo-ni",
    kigo: "Morning Glory",
    type: "haiku",
};

const oneArt: ShortPoem = {
    author: "Elizabeth Bishop",
    type: "villanelle",
};
// Error: Type '{ author: string; type: "villanelle"; }'
// is not assignable to type 'ShortPoem'.
//   Type '{ author: string; type: "villanelle"; }' is not assignable to
//   type '{ author: string; } & { meter: number; type: "villanelle"; }'.
//     Property 'meter' is missing in type '{ author: string; type: "villanelle"; }'
//     but required in type '{ meter: number; type: "villanelle"; }'.

Dangers of Intersection Types
Intersection types are a useful concept, but it’s easy to use them in ways that confuse
either yourself or the TypeScript compiler. I recommend trying to keep code as
simple as possible when using them.

Intersection Types | 55



Long assignability errors
Assignability error messages from TypeScript get much harder to read when you
create complex intersection types, such as one combined with a union type. This
will be a common theme with TypeScript’s type system (and typed programming
languages in general): the more complex you get, the harder it will be to understand
messages from the type checker.

In the case of the previous code snippet’s ShortPoem, it would be much more readable
to split the type into a series of aliased object types to allow TypeScript to print those
names:

type ShortPoemBase = { author: string };
type Haiku = ShortPoemBase & { kigo: string; type: "haiku" };
type Villanelle = ShortPoemBase & { meter: number; type: "villanelle" };
type ShortPoem = Haiku | Villanelle;

const oneArt: ShortPoem = {
    author: "Elizabeth Bishop",
    type: "villanelle",
};
// Type '{ author: string; type: "villanelle"; }'
// is not assignable to type 'ShortPoem'.
//   Type '{ author: string; type: "villanelle"; }'
//   is not assignable to type 'Villanelle'.
//     Property 'meter' is missing in type
//     '{ author: string; type: "villanelle"; }'
//     but required in type '{ meter: number; type: "villanelle"; }'.

never
Intersection types are also easy to misuse and create an impossible type with. Primi‐
tive types cannot be joined together as constituents in an intersection type because
it’s impossible for a value to be multiple primitives at the same time. Trying to &
two primitive types together will result in the never type, represented by the keyword
never:

type NotPossible = number & string;
// Type: never

The never keyword and type is what programming languages refer to as a bottom
type, or empty type. A bottom type is one that can have no possible values and can’t
be reached. No types can be provided to a location whose type is a bottom type:

let notNumber: NotPossible = 0;
//  ~~~~~~~~~
// Error: Type 'number' is not assignable to type 'never'.

let notString: never = "";
//  ~~~~~~~~~
// Error: Type 'string' is not assignable to type 'never'.

56 | Chapter 4: Objects



Most TypeScript projects rarely—if ever—use the never type. It comes up once in a
while to represent impossible states in code. Most of the time, though, it’s likely to be
a mistake from misusing intersection types. I’ll cover it more in Chapter 15, “Type
Operations”.

Summary
In this chapter, you expanded your grasp of the TypeScript type system to be able to
work with objects:

• How TypeScript interprets types from object type literals•
• Describing object literal types, including nested and optional properties•
• Declaring, inferring, and type narrowing with unions of object literal types•
• Discriminated unions and discriminants•
• Combining object types together with intersection types•

Now that you’ve finished reading this chapter, practice what you’ve
learned on https://learningtypescript.com/objects.

How does a lawyer declare their TypeScript type?

“I object!”

Summary | 57

https://learningtypescript.com/objects




PART II

Features





CHAPTER 5

Functions

In Chapter 2, “The Type System”, you saw how to use type annotations to annotate
values of variables. Now, you’ll see how to do the same with function parameters and
return types—and why that can be useful.

Function Parameters
Take the following sing function that takes in a song parameter and logs it:

function sing(song) {
  console.log(`Singing: ${song}!`);
}

What value type did the developer who wrote the sing function intend for the song
parameter to be provided with?

Is it a string? Is it an object with an overridden toString() method? Is this code
buggy? Who knows?!

Without explicit type information declared, we may never know—TypeScript will
consider it to be the any type, meaning the parameter’s type could be anything.

As with variables, TypeScript allows you to declare the type of function parameters
with a type annotation. Now we can use a : string to tell TypeScript that the song
parameter is of type string:

function sing(song: string) {
  console.log(`Singing: ${song}!`);
}

Much better: now we know what type song is meant to be!

61

Function arguments
In one end, out the other

As a return type



Note that you don’t need to add proper type annotations to function parameters for
your code to be valid TypeScript syntax. TypeScript might yell at you with type errors,
but the emitted JavaScript will still run. The previous code snippet missing a type
declaration on the song parameter will still convert from TypeScript to JavaScript.
Chapter 13, “Configuration Options” will cover how to configure TypeScript’s com‐
plaints about parameters that are implicitly of type any the way song is.

Required Parameters
Unlike JavaScript, which allows functions to be called with any number of arguments,
TypeScript assumes that all parameters declared on a function are required. If a
function is called with a wrong number of arguments, TypeScript will protest in the
form of a type error. TypeScript’s argument counting will come into play if a function
is called with either too few or too many arguments.

This singTwo function requires two parameters, so passing one argument and passing
three arguments are both not allowed:

function singTwo(first: string, second: string) {
  console.log(`${first} / ${second}`);
}

// Logs: "Ball and Chain / undefined"
singTwo("Ball and Chain");
//      ~~~~~~~~~~~~~~~~
// Error: Expected 2 arguments, but got 1.

// Logs: "I Will Survive / Higher Love"
singTwo("I Will Survive", "Higher Love"); // Ok

// Logs: "Go Your Own Way / The Chain"
singTwo("Go Your Own Way", "The Chain", "Dreams");
//                                      ~~~~~~~~
// Error: Expected 2 arguments, but got 3.

Enforcing that required parameters be provided to a function helps enforce type
safety by making sure all expected argument values exist inside the function. Failing
to ensure those values exist could result in unexpected behavior in code, such as the
previous singTwo function logging undefined or ignoring an argument.

Parameter refers to a function’s declaration of what it expects to
receive as an argument. Argument refers to a value provided to
a parameter in a function call. In the previous example, first
and second are parameters, while strings such as "Dreams" are
arguments.

62 | Chapter 5: Functions



Optional Parameters
Recall that in JavaScript, if a function parameter is not provided, its argument value
inside the function defaults to undefined. Sometimes function parameters are not
necessary to provide, and the intended use of the function is for that undefined
value. We wouldn’t want TypeScript to report type errors for failing to provide
arguments to those optional parameters. TypeScript allows annotating a parameter as
optional by adding a ? before the : in its type annotation—similar to optional object
type properties.

Optional parameters don’t need to be provided to function calls. Their types therefore
always have | undefined added as a union type.

In the following announceSong function, the singer parameter is marked optional.
Its type is string | undefined, and it doesn’t need to be provided by callers of the
function. If singer is provided, it may be a string value or undefined:

function announceSong(song: string, singer?: string) {
  console.log(`Song: ${song}`);

  if (singer) {
    console.log(`Singer: ${singer}`);
  }
}

announceSong("Greensleeves"); // Ok
announceSong("Greensleeves", undefined); // Ok
announceSong("Chandelier", "Sia"); // Ok

These optional parameters are always implicitly able to be undefined. In the previous
code, singer starts off as being of type string | undefined, then is narrowed to just
string by the if statement.

Optional parameters are not the same as parameters with union types that happen to
include | undefined. Parameters that aren’t marked as optional with a ? must always
be provided, even if the value is explicitly undefined.

The singer parameter in this announceSongBy function must be provided explicitly.
It may be a string value or undefined:

function announceSongBy(song: string, singer: string | undefined) { /* ... */ }

announceSongBy("Greensleeves");
// Error: Expected 2 arguments, but got 1.

announceSongBy("Greensleeves", undefined); // Ok
announceSongBy("Chandelier", "Sia"); // Ok

Function Parameters | 63



Any optional parameters for a function must be the last parameters. Placing an
optional parameter before a required parameter would trigger a TypeScript syntax
error:

function announceSinger(singer?: string, song: string) {}
//                                       ~~~~
// Error: A required parameter cannot follow an optional parameter.

Default Parameters
Optional parameters in JavaScript may be given a default value with an = and a
value in their declaration. For these optional parameters, because a value is provided
by default, their TypeScript type does not implicitly have the | undefined union
added on inside the function. TypeScript will still allow the function to be called with
missing or undefined arguments for those parameters.

TypeScript’s type inference works similarly for default function parameter values as
it does for initial variable values. If a parameter has a default value and doesn’t have
a type annotation, TypeScript will infer the parameter’s type based on that default
value.

In the following rateSong function, rating is inferred to be of type number, but is an
optional number | undefined in the code that calls the function:

function rateSong(song: string, rating = 0) {
  console.log(`${song} gets ${rating}/5 stars!`);
}

rateSong("Photograph"); // Ok
rateSong("Set Fire to the Rain", 5); // Ok
rateSong("Set Fire to the Rain", undefined); // Ok

rateSong("At Last!", "100");
//                   ~~~~~
// Error: Argument of type '"100"' is not assignable
// to parameter of type 'number | undefined'.

Rest Parameters
Some functions in JavaScript are made to be called with any number of arguments.
The ... spread operator may be placed on the last parameter in a function declara‐
tion to indicate any “rest” arguments passed to the function starting at that parameter
should all be stored in a single array.

TypeScript allows declaring the types of these rest parameters similarly to regular
parameters, except with a [] syntax added at the end to indicate it’s an array of
arguments.

64 | Chapter 5: Functions



Here, singAllTheSongs is allowed to take zero or more arguments of type string for
its songs rest parameter:

function singAllTheSongs(singer: string, ...songs: string[]) {
  for (const song of songs) {
    console.log(`${song}, by ${singer}`);
  }
}

singAllTheSongs("Alicia Keys"); // Ok
singAllTheSongs("Lady Gaga", "Bad Romance", "Just Dance", "Poker Face"); // Ok

singAllTheSongs("Ella Fitzgerald", 2000);
//                                 ~~~~
// Error: Argument of type 'number' is not
// assignable to parameter of type 'string'.

I’ll cover working with arrays in TypeScript in Chapter 6, “Arrays”.

Return Types
TypeScript is perceptive: if it understands all the possible values returned by a
function, it’ll know what type the function returns. In this example, singSongs is
understood by TypeScript to return a number:

// Type: (songs: string[]) => number
function singSongs(songs: string[]) {
  for (const song of songs) {
    console.log(`${song}`);
  }

  return songs.length;
}

If a function contains multiple return statements with different values, TypeScript
will infer the return type to be a union of all the possible returned types.

This getSongAt function would be inferred to return string | undefined because
its two possible returned values are typed string and undefined, respectively:

// Type: (songs: string[], index: number) => string | undefined
function getSongAt(songs: string[], index: number) {
  return index < songs.length
    ? songs[index]
    : undefined;
}

Return Types | 65



Explicit Return Types
As with variables, I generally recommend not bothering to explicitly declare the
return types of functions with type annotations. However, there are a few cases where
it can be useful specifically for functions:

• You might want to enforce functions with many possible returned values always•
return the same type of value.

• TypeScript will refuse to try to reason through return types of recursive function.•
• It can speed up TypeScript type checking in very large projects—i.e., those with•

hundreds of TypeScript files or more.

Function declaration return type annotations are placed after the ) following the list
of parameters.

For a function declaration, that falls just before the {:

function singSongsRecursive(songs: string[], count = 0): number {
  return songs.length ? singSongsRecursive(songs.slice(1), count + 1) : count;
}

For arrow functions (also known as lambdas), that falls just before the =>:

const singSongsRecursive = (songs: string[], count = 0): number =>
  songs.length ? singSongsRecursive(songs.slice(1), count + 1) : count;

If a return statement in a function returns a value not assignable to the function’s
return type, TypeScript will give an assignability complaint.

Here, the getSongRecordingDate function is explicitly declared as returning Date |
undefined, but one of its return statements incorrectly provides a string:

function getSongRecordingDate(song: string): Date | undefined {
  switch (song) {
    case "Strange Fruit":
      return new Date('April 20, 1939'); // Ok

    case "Greensleeves":
      return "unknown";
      // Error: Type 'string' is not assignable to type 'Date'.

    default:
      return undefined; // Ok
  }
}

66 | Chapter 5: Functions



Function Types
JavaScript allows us to pass functions around as values. That means we need a way to
declare the type of a parameter or variable meant to hold a function.

Function type syntax looks similar to an arrow function, but with a type instead of
the body.

This nothingInGivesString variable’s type describes a function with no parameters
and a returned string value:

let nothingInGivesString: () => string;

This inputAndOutput variable’s type describes a function with a string[] parameter,
an optional count parameter, and a returned number value:

let inputAndOutput: (songs: string[], count?: number) => number;

Function types are frequently used to describe callback parameters (parameters
meant to be called as functions).

For example, the following runOnSongs snippet declares the type of its getSongAt
parameter to be a function that takes in an index: number and returns a string.
Passing getSongAt matches that type, but logSong fails for taking in a string as its
parameter instead of a number:

const songs = ["Juice", "Shake It Off", "What's Up"];

function runOnSongs(getSongAt: (index: number) => string) {
  for (let i = 0; i < songs.length; i += 1) {
    console.log(getSongAt(i));
  }
}

function getSongAt(index: number) {
  return `${songs[index]}`;
}

runOnSongs(getSongAt); // Ok

function logSong(song: string) {
  return `${song}`;
}

runOnSongs(logSong);
//         ~~~~~~~
// Error: Argument of type '(song: string) => string' is not
// assignable to parameter of type '(index: number) => string'.
//   Types of parameters 'song' and 'index' are incompatible.
//     Type 'number' is not assignable to type 'string'.

Function Types | 67



The error message for runOnSongs(logSong) is an example of an assignability error
that includes a few levels of details. When complaining that two function types aren’t
assignable to each other, TypeScript will typically give three levels of detail, with
increasing levels of specificity:

1. The first indentation level prints out the two function types.1.
2. The next indentation level specifies which part is mismatched.2.
3. The last indentation level is the precise assignability complaint of the mis‐3.

matched part.

In the previous code snippet, those levels are:

1. logSongs: (strong: string) => string is the provided type being assigned to1.
the getSongAt: (index: number) => string recipient

2. The song parameter of logSong being assigned to the index parameter of2.
getSongAt

3. song’s number type is not assignable to index’s string type3.

TypeScript’s multiline errors can seem daunting at first. Reading
through them line-by-line and understanding what each part is
conveying goes a long way to comprehending the error.

Function Type Parentheses
Function types may be placed anywhere that another type would be used. That
includes union types.

In union types, parentheses may be used to indicate which part of an annotation is
the function return or the surrounding union type:

// Type is a function that returns a union: string | undefined
let returnsStringOrUndefined: () => string | undefined;

// Type is either undefined or a function that returns a string
let maybeReturnsString: (() => string) | undefined;

Later chapters that introduce more type syntaxes will show other places where func‐
tion types must be wrapped with parentheses.

68 | Chapter 5: Functions



Parameter Type Inferences
It would be cumbersome if we had to declare parameter types for every function we
write, including inline functions used as parameters. Fortunately, TypeScript can infer
the types of parameters in a function provided to a location with a declared type.

This singer variable is known to be a function that takes in a parameter of type
string, so the song parameter in the function later assigned to singer is known to be
a string:

let singer: (song: string) => string;

singer = function (song) {
  // Type of song: string
  return `Singing: ${song.toUpperCase()}!`; // Ok
};

Functions passed as arguments to parameters with function parameter types will have
their parameter types inferred as well.

For example, the song and index parameters here are inferred by TypeScript to be
string and number, respectively:

const songs = ["Call Me", "Jolene", "The Chain"];

// song: string
// index: number
songs.forEach((song, index) => {
  console.log(`${song} is at index ${index}`);
});

Function Type Aliases
Remember type aliases from Chapter 3, “Unions and Literals”? They can be used for
function types as well.

This StringToNumber type aliases a function that takes in a string and returns a
number, which means it can be used later to describe the types of variables:

type StringToNumber = (input: string) => number;

let stringToNumber: StringToNumber;

stringToNumber = (input) => input.length; // Ok

stringToNumber = (input) => input.toUpperCase();
//                          ~~~~~~~~~~~~~~~~~~~
// Error: Type 'string' is not assignable to type 'number'.

Similarly, function parameters can themselves be typed with aliases that happen to
refer to a function type.

Function Types | 69



This usesNumberToString function has a single parameter which is itself the Number
ToString aliased function type:

type NumberToString = (input: number) => string;

function usesNumberToString(numberToString: NumberToString) {
  console.log(`The string is: ${numberToString(1234)}`);
}

usesNumberToString((input) => `${input}! Hooray!`); // Ok

usesNumberToString((input) => input * 2);
//                            ~~~~~~~~~
// Error: Type 'number' is not assignable to type 'string'.

Type aliases are particularly useful for function types. They can save a lot of horizon‐
tal space in having to repeatedly write out parameters and/or return types.

More Return Types
Now, let’s look at two more return types: void and never.

Void Returns
Some functions aren’t meant to return any value. They either have no return state‐
ments or only have return statements that don’t return a value. TypeScript allows
using a void keyword to refer to the return type of such a function that returns
nothing.

Functions whose return type is void may not return a value. This logSong function is
declared as returning void, so it’s not allowed to return a value:

function logSong(song: string | undefined): void {
  if (!song) {
    return; // Ok
  }

  console.log(`${song}`);

  return true;
  // Error: Type 'boolean' is not assignable to type 'void'.
}

void can be useful as the return type in a function type declaration. When used in a
function type declaration, void indicates that any returned value from the function
would be ignored.

70 | Chapter 5: Functions



For example, this songLogger variable represents a function that takes in a song:
string and doesn’t return a value:

let songLogger: (song: string) => void;

songLogger = (song) => {
  console.log(`${songs}`);
};

songLogger("Heart of Glass"); // Ok

Note that although JavaScript functions all return undefined by default if no real
value is returned, void is not the same as undefined. void means the return type of
a function will be ignored, while undefined is a literal value to be returned. Trying to
assign a value of type void to a value whose type instead includes undefined is a type
error:

function returnsVoid() {
  return;
}

let lazyValue: string | undefined;

lazyValue = returnsVoid();
// Error: Type 'void' is not assignable to type 'string | undefined'.

The distinction between undefined and void returns is particularly useful for ignor‐
ing any returned value from a function passed to a location whose type is declared
as returning void. For example, the built-in forEach method on arrays takes in
a callback that returns void. Functions provided to forEach can return any value
they want. records.push(record) in the following saveRecords function returns a
number (the returned value from an array’s .push()), yet is still allowed to be the
returned value for the arrow function passed to newRecords.forEach:

const records: string[] = [];

function saveRecords(newRecords: string[]) {
  newRecords.forEach(record => records.push(record));
}

saveRecords(['21', 'Come On Over', 'The Bodyguard'])

The void type is not JavaScript. It’s a TypeScript keyword used to declare return types
of functions. Remember, it’s an indication that a function’s returned value isn’t meant
to be used, not a value that can itself be returned.

More Return Types | 71



Never Returns
Some functions not only don’t return a value, but aren’t meant to return at all.
Never-returning functions are those that always throw an error or run an infinite
loop (hopefully intentionally!).

If a function is meant to never return, adding an explicit : never type annotation
indicates that any code after a call to that function won’t run. This fail function
only ever throws an error, so it can help TypeScript’s control flow analysis with type
narrowing param to string:

function fail(message: string): never {
    throw new Error(`Invariant failure: ${message}.`);
}

function workWithUnsafeParam(param: unknown) {
    if (typeof param !== "string") {
        fail(`param should be a string, not ${typeof param}`);
    }

    // Here, param is known to be type string
    param.toUpperCase(); // Ok
}

never is not the same as void. void is for a function that returns
nothing. never is for a function that never returns.

Function Overloads
Some JavaScript functions are able to be called with drastically different sets of
parameters that can’t be represented just by optional and/or rest parameters. These
functions can be described with a TypeScript syntax called overload signatures: declar‐
ing different versions of the function’s name, parameters, and return types multiple
times before one final implementation signature and the body of the function.

When determining whether to emit a syntax error for a call to an overloaded func‐
tion, TypeScript will only look at the function’s overload signatures. The implementa‐
tion signature is only used by the function’s internal logic.

This createDate function is meant to be called either with one timestamp parameter
or with three parameters—month, day, and year. Calling with either of those numbers
of arguments is allowed, but calling with two arguments would cause a type error
because no overload signature allows for two arguments. In this example, the first two
lines are the overload signatures, and the third line is the implementation signature:

72 | Chapter 5: Functions



function createDate(timestamp: number): Date;
function createDate(month: number, day: number, year: number): Date;
function createDate(monthOrTimestamp: number, day?: number, year?: number) {
  return day === undefined || year === undefined
    ? new Date(monthOrTimestamp)
    : new Date(year, monthOrTimestamp, day);
}

createDate(554356800); // Ok
createDate(7, 27, 1987); // Ok

createDate(4, 1);
// Error: No overload expects 2 arguments, but overloads
// do exist that expect either 1 or 3 arguments.

Overload signatures, as with other type system syntaxes, are erased when compiling
TypeScript to output JavaScript.

The previous code snippet’s function would compile to roughly the following
JavaScript:

function createDate(monthOrTimestamp, day, year) {
  return day === undefined || year === undefined
    ? new Date(monthOrTimestamp)
    : new Date(year, monthOrTimestamp, day);
}

Function overloads are generally used as a last resort for com‐
plex, difficult-to-describe function types. It’s generally better to
keep functions simple and avoid using function overloads when
possible.

Call-Signature Compatibility
The implementation signature used for an overloaded function’s implementation
is what the function’s implementation uses for parameter types and return type.
Thus, the return type and each parameter in a function’s overload signatures must
be assignable to the parameter at the same index in its implementation signature.
In other words, the implementation signature has to be compatible with all of the
overload signatures.

This format function’s implementation signature declares its first parameter to be a
string. While the first two overload signatures are compatible for also being type
string, the third overload signature’s () => string type is not compatible:

Function Overloads | 73



function format(data: string): string; // Ok
function format(data: string, needle: string, haystack: string): string; // Ok

function format(getData: () => string): string;
//       ~~~~~~
// This overload signature is not compatible with its implementation signature.

function format(data: string, needle?: string, haystack?: string) {
  return needle && haystack ? data.replace(needle, haystack) : data;
}

Summary
In this chapter, you saw how a function’s parameters and return types can be inferred
or explicitly declared in TypeScript:

• Declaring function parameter types with type annotations•
• Declaring optional parameters, default values, and rest parameters to change type•

system behavior
• Declaring function return types with type annotations•
• Describing functions that don’t return a usable value with the void type•
• Describing functions that don’t return at all with the never type•
• Using function overloads to describe varying function call signatures•

Now that you’ve finished reading this chapter, practice what you’ve
learned on https://learningtypescript.com/functions.

What makes a TypeScript project good?

It functions well.

74 | Chapter 5: Functions

https://learningtypescript.com/functions


CHAPTER 6

Arrays

JavaScript arrays are wildly flexible and can hold any mixture of values inside:

const elements = [true, null, undefined, 42];

elements.push("even", ["more"]);
// Value of elements: [true, null, undefined, 42, "even", ["more"]]

In most cases, though, individual JavaScript arrays are intended to hold only one
specific type of value. Adding values of a different type may be confusing to readers,
or worse, the result of an error that could cause problems in the program.

TypeScript respects the best practice of keeping to one data type per array by remem‐
bering what type of data is initially inside an array, and only allowing the array to
operate on that kind of data.

In this example, TypeScript knows the warriors array initially contains string typed
values, so while adding more string typed values is allowed, adding any other type of
data is not:

const warriors = ["Artemisia", "Boudica"];

// Ok: "Zenobia" is a string
warriors.push("Zenobia");

warriors.push(true);
//            ~~~~
// Argument of type 'boolean' is not assignable to parameter of type 'string'.

You can think of TypeScript’s inference of an array’s type from its initial members
as similar to how it understands variable types from their initial values. TypeScript
generally tries to understand the intended types of your code from how values are
assigned, and arrays are no exception.

75

Arrays and tuples
One flexible and one fixed

Choose your adventure



Array Types
As with other variable declarations, variables meant to store arrays don’t need to have
an initial value. The variables can start off undefined and receive an array value later.

TypeScript will want you to let it know what types of values are meant to go in
the array by giving the variable a type annotation. The type annotation for an array
requires the type of elements in the array followed by a []:

let arrayOfNumbers: number[];

arrayOfNumbers = [4, 8, 15, 16, 23, 42];

Array types can also be written in a syntax like Array<number>
called class generics. Most developers prefer the simpler number[].
Classes are covered in Chapter 8, “Classes”, and generics are cov‐
ered in Chapter 10, “Generics”.

Array and Function Types
Array types are an example of a syntax container where function types may need
parentheses to distinguish what’s in the function type or not. Parentheses may be used
to indicate which part of an annotation is the function return or the surrounding
array type.

The createStrings type here, which is a function type, is not the same as
stringCreators, which is an array type:

// Type is a function that returns an array of strings
let createStrings: () => string[];

// Type is an array of functions that each return a string
let stringCreators: (() => string)[];

Union-Type Arrays
You can use a union type to indicate that each element of an array can be one of
multiple select types.

When using array types with unions, parentheses may need to be used to indicate
which part of an annotation is the contents of the array or the surrounding union
type. Using parentheses in array union types is important—the following two types
are not the same:

76 | Chapter 6: Arrays



// Type is either a number or an array of strings
let stringOrArrayOfNumbers: string | number[];

// Type is an array of elements that are each either a number or a string
let arrayOfStringOrNumbers: (string | number)[];

TypeScript will understand from an array’s declaration that it is a union-type array
if it contains more than one type of element. In other words, the type of an array’s
elements is the union of all possible types for elements in the array.

Here, namesMaybe is (string | undefined)[] because it has both string values and
an undefined value:

// Type is (string | undefined)[]
const namesMaybe = [
  "Aqualtune",
  "Blenda",
  undefined,
];

Evolving Any Arrays
If you don’t include a type annotation on a variable initially set to an empty array,
TypeScript will treat the array as evolving any[], meaning it can receive any content.
As with evolving any variables, we don’t like evolving any[] arrays. They partially
negate the benefits of TypeScript’s type checker by allowing you to add potentially
incorrect values.

This values array starts off containing any elements, evolves to contain string
elements, then again evolves to include number | string elements:

// Type: any[]
let values = [];

// Type: string[]
values.push('');

// Type: (number | string)[]
values[0] = 0;

As with variables, allowing arrays to be evolving any typed—and using the any type
in general—partially defeats the purpose of TypeScript’s type checking. TypeScript
works best when it knows what types your values are meant to be.

Array Types | 77



Multidimensional Arrays
A 2D array, or an array of arrays, will have two “[]”s:

let arrayOfArraysOfNumbers: number[][];

arrayOfArraysOfNumbers = [
  [1, 2, 3],
  [2, 4, 6],
  [3, 6, 9],
];

A 3D array, or an array of arrays of arrays, will have three “[]”s. 4D arrays have four
“[]”s. 5D arrays have five “[]”s. You can guess where this is going for 6D arrays and
beyond.

These multidimensional array types don’t introduce any new concepts to array types.
Think of a 2D array as taking in the original type, which just so happens to have [] at
the end, and adding a [] after it.

This arrayOfArraysOfNumbers array is of type number[][], which is also
representable by (number[])[]:

// Type: number[][]
let arrayOfArraysOfNumbers: (number[])[];

Array Members
TypeScript understands typical index-based access for retrieving members of an array
to give back an element of that array’s type.

This defenders array is of type string[], so defender is a string:

const defenders = ["Clarenza", "Dina"];

// Type: string
const defender = defenders[0];

Members of union typed arrays are themselves that same union type.

Here, soldiersOrDates is of type (string | Date)[], so the soldierOrDate vari‐
able is of type string | Date:

const soldiersOrDates = ["Deborah Sampson", new Date(1782, 6, 3)];

// Type: Date | string
const soldierOrDate = soldiersOrDates[0];

78 | Chapter 6: Arrays



Caveat: Unsound Members
The TypeScript type system is known to be technically unsound: it can get types
mostly right, but sometimes its understanding about the types of values may be
incorrect. Arrays in particular are a source of unsoundness in the type system. By
default, TypeScript assumes all array member accesses return a member of that array,
even though in JavaScript, accessing an array element with an index greater than the
array’s length gives undefined.

This code gives no complaints with the default TypeScript compiler settings:

function withElements(elements: string[]) {
  console.log(elements[9001].length); // No type error
}

withElements(["It's", "over"]);

We as readers can deduce that it’ll crash at runtime with “Cannot read property
'length' of undefined”, but TypeScript intentionally does not make sure retrieved
array members exist. It sees elements[9001] in the code snippet as being type
string, not undefined.

TypeScript does have a --noUncheckedIndexedAccess flag that
makes array lookups more restricted and type safe, but it’s quite
strict and most projects don’t use it. I don’t cover it in this
book. Chapter 13, “Configuration Options”, links to resources that
explain all of TypeScript’s configuration options in depth.

Spreads and Rests
Remember ... rest parameters for functions from Chapter 5, “Functions”? Rest
parameters and array spreading, both with the ... operator, are key ways to interact
with arrays in JavaScript. TypeScript understands both of them.

Spreads
Arrays can be joined together using the ... spread operator. TypeScript understands
the result array will contain values that can be from either of the input arrays.

If the input arrays are the same type, the output array will be that same type. If two
arrays of different types are spread together to create a new array, the new array will
be understood to be a union type array of elements that are either of the two original
types.

Here, the conjoined array is known to contain both values that are type string and
values that are type number, so its type is inferred to be (string | number)[]:

Spreads and Rests | 79



// Type: string[]
const soldiers = ["Harriet Tubman", "Joan of Arc", "Khutulun"];

// Type: number[]
const soldierAges = [90, 19, 45];

// Type: (string | number)[]
const conjoined = [...soldiers, ...soldierAges];

Spreading Rest Parameters
TypeScript recognizes and will perform type checking on the JavaScript practice
of ... spreading an array as a rest parameter. Arrays used as arguments for rest
parameters must have the same array type as the rest parameter.

The logWarriors function below takes in only string values for its ...names rest
parameter. Spreading an array of type string[] is allowed, but a number[] is not:

function logWarriors(greeting: string, ...names: string[]) {
  for (const name of names) {
    console.log(`${greeting}, ${name}!`);
  }
}

const warriors = ["Cathay Williams", "Lozen", "Nzinga"];

logWarriors("Hello", ...warriors);

const birthYears = [1844, 1840, 1583];

logWarriors("Born in", ...birthYears);
//                     ~~~~~~~~~~~~~
// Error: Argument of type 'number' is not
// assignable to parameter of type 'string'.

Tuples
Although JavaScript arrays may be any size in theory, it is sometimes useful to use an
array of a fixed size—also known as a tuple. Tuple arrays have a specific known type
at each index that may be more specific than a union type of all possible members of
the array. The syntax to declare a tuple type looks like an array literal, but with types
in place of element values.

Here, the array yearAndWarrior is declared as being a tuple type with a number at
index 0 and a string at index 1:

let yearAndWarrior: [number, string];

yearAndWarrior = [530, "Tomyris"]; // Ok

80 | Chapter 6: Arrays



yearAndWarrior = [false, "Tomyris"];
//                ~~~~~
// Error: Type 'boolean' is not assignable to type 'number'.

yearAndWarrior = [530];
// Error: Type '[number]' is not assignable to type '[number, string]'.
//   Source has 1 element(s) but target requires 2.

Tuples are often used in JavaScript alongside array destructuring to be able to assign
multiple values at once, such as setting two variables to initial values based on a single
condition.

For example, TypeScript recognizes here that year is always going to be a number and
warrior is always going to be a string:

// year type: number
// warrior type: string
let [year, warrior] = Math.random() > 0.5
  ? [340, "Archidamia"]
  : [1828, "Rani of Jhansi"];

Tuple Assignability
Tuple types are treated by TypeScript as more specific than variable length array
types. That means variable length array types aren’t assignable to tuple types.

Here, although we as humans may see pairLoose as having [boolean, number]
inside, TypeScript infers it to be the more general (boolean | number)[] type:

// Type: (boolean | number)[]
const pairLoose = [false, 123];

const pairTupleLoose: [boolean, number] = pairLoose;
//    ~~~~~~~~~~~~~~
// Error: Type '(number | boolean)[]' is not
// assignable to type '[boolean, number]'.
//   Target requires 2 element(s) but source may have fewer.

If pairLoose had been declared as a [boolean, number] itself, the assignment of its
value to pairTuple would have been permitted.

Tuples of different lengths are also not assignable to each other, as TypeScript
includes knowing how many members are in the tuple in tuple types.

Here, tupleTwoExtra must have exactly two members, so although tupleThree starts
with the correct members, its third member prevents it from being assignable to
tupleTwoExtra:

const tupleThree: [boolean, number, string] = [false, 1583, "Nzinga"];

const tupleTwoExact: [boolean, number] = [tupleThree[0], tupleThree[1]];

Tuples | 81



const tupleTwoExtra: [boolean, number] = tupleThree;
//    ~~~~~~~~~~~~~
// Error: Type '[boolean, number, string]' is
// not assignable to type '[boolean, number]'.
//   Source has 3 element(s) but target allows only 2.

Tuples as rest parameters
Because tuples are seen as arrays with more specific type information on length and
element types, they can be particularly useful for storing arguments to be passed to a
function. TypeScript is able to provide accurate type checking for tuples passed as ...
rest parameters.

Here, the logPair function’s parameters are typed string and number. Trying to pass
in a value of type (string | number)[] as arguments wouldn’t be type safe as the
contents might not match up: they could both be the same type, or one of each
type in the wrong order. However, if TypeScript knows the value to be a [string,
number] tuple, it understands the values match up:

function logPair(name: string, value: number) {
  console.log(`${name} has ${value}`);
}

const pairArray = ["Amage", 1];

logPair(...pairArray);
// Error: A spread argument must either have a
// tuple type or be passed to a rest parameter.

const pairTupleIncorrect: [number, string] = [1, "Amage"];

logPair(...pairTupleIncorrect);
// Error: Argument of type 'number' is not
// assignable to parameter of type 'string'.

const pairTupleCorrect: [string, number] = ["Amage", 1];

logPair(...pairTupleCorrect); // Ok

If you really want to go wild with your rest parameters tuples, you can mix
them with arrays to store a list of arguments for multiple function calls.
Here, trios is an array of tuples, where each tuple also has a tuple for its
second member. trios.forEach(trio => logTrio(...trio)) is known to be
safe because each ...trio happens to match the parameter types of logTrio.
trios.forEach(logTrio), however, is not assignable because that is attempting to
pass the entire [string, [number, boolean] as the first parameter, which is type
string:

82 | Chapter 6: Arrays



function logTrio(name: string, value: [number, boolean]) {
  console.log(`${name} has ${value[0]} (${value[1]}`);
}

const trios: [string, [number, boolean]][] = [
  ["Amanitore", [1, true]],
  ["Æthelflæd", [2, false]],
  ["Ann E. Dunwoody", [3, false]]
];

trios.forEach(trio => logTrio(...trio)); // Ok

trios.forEach(logTrio);
//            ~~~~~~~
// Argument of type '(name: string, value: [number, boolean]) => void'
// is not assignable to parameter of type
// '(value: [string, [number, boolean]], ...) => void'.
//   Types of parameters 'name' and 'value' are incompatible.
//     Type '[string, [number, boolean]]' is not assignable to type 'string'.

Tuple Inferences
TypeScript generally treats created arrays as variable length arrays, not tuples. If
it sees an array being used as a variable’s initial value or the returned value for a
function, then it will assume a flexible size array rather than a fixed size tuple.

The following firstCharAndSize function is inferred as returning (string |

number)[], not [string, number], because that’s the type inferred for its returned
array literal:

// Return type: (string | number)[]
function firstCharAndSize(input: string) {
  return [input[0], input.length];
}

// firstChar type: string | number
// size type: string | number
const [firstChar, size] = firstCharAndSize("Gudit");

There are two common ways in TypeScript to indicate that a value should be a more
specific tuple type instead of a general array type: explicit tuple types and const
assertions.

Explicit tuple types
Tuple types may be used in type annotations, such as the return type annotation
for a function. If the function is declared as returning a tuple type and returns an
array literal, that array literal will be inferred to be a tuple instead of a more general
variable-length array.

Tuples | 83



This firstCharAndSizeExplicit function version explicitly states that it returns a
tuple of a string and number:

// Return type: [string, number]
function firstCharAndSizeExplicit(input: string): [string, number] {
  return [input[0], input.length];
}

// firstChar type: string
// size type: number
const [firstChar, size] = firstCharAndSizeExplicit("Cathay Williams");

Const asserted tuples
Typing out tuple types in explicit type annotations can be a pain for the same reasons
as typing out any explicit type annotations. It’s extra syntax for you to write and
update as code changes.

As an alternative, TypeScript provides an as const operator known as a const asser‐
tion that can be placed after a value. Const assertions tell TypeScript to use the most
literal, read-only possible form of the value when inferring its type. If one is placed
after an array literal, it will indicate that the array should be treated as a tuple:

// Type: (string | number)[]
const unionArray = [1157, "Tomoe"];

// Type: readonly [1157, "Tomoe"]
const readonlyTuple = [1157, "Tomoe"] as const;

Note that as const assertions go beyond switching from flexible sized arrays to fixed
size tuples: they also indicate to TypeScript that the tuple is read-only and cannot be
used in a place that expects it should be allowed to modify the value.

In this example, pairMutable is allowed to be modified because it has a traditional
explicit tuple type. However, the as const makes the value not assignable to the
mutable pairAlsoMutable, and members of the constant pairConst are not allowed
to be modified:

const pairMutable: [number, string] = [1157, "Tomoe"];
pairMutable[0] = 1247; // Ok

const pairAlsoMutable: [number, string] = [1157, "Tomoe"] as const;
//    ~~~~~~~~~~~~~~~
// Error: The type 'readonly [1157, "Tomoe"]' is 'readonly'
// and cannot be assigned to the mutable type '[number, string]'.

const pairConst = [1157, "Tomoe"] as const;
pairConst[0] = 1247;
//        ~
// Error: Cannot assign to '0' because it is a read-only property.

84 | Chapter 6: Arrays



In practice, read-only tuples are convenient for function returns. Returned values
from functions that return a tuple are often destructured immediately anyway, so the
tuple being read-only does not get in the way of using the function.

This firstCharAndSizeAsConst returns a readonly [string, number], but the
consuming code only cares about retrieving the values from that tuple:

// Return type: readonly [string, number]
function firstCharAndSizeAsConst(input: string) {
  return [input[0], input.length] as const;
}

// firstChar type: string
// size type: number
const [firstChar, size] = firstCharAndSizeAsConst("Ching Shih");

Read-only objects and as const assertions are covered more
deeply in Chapter 9, “Type Modifiers”.

Summary
In this chapter, you worked with declaring arrays and retrieving their members:

• Declaring array types with []•
• Using parentheses to declare arrays of functions or union types•
• How TypeScript understands array elements as the type of the array•
• Working with ... spreads and rests•
• Declaring tuple types to represent fixed-size arrays•
• Using type annotations or as const assertions to create tuples•

Now that you’ve finished reading this chapter, practice what you’ve
learned on https://learningtypescript.com/arrays.

What’s a pirate’s favorite data structure?

Arrrrr-ays!

Summary | 85

https://learningtypescript.com/arrays




CHAPTER 7

Interfaces

I mentioned back in Chapter 4, “Objects” that although type aliases for { ... }
object types are a way to describe object shapes, TypeScript also includes an “inter‐
face” feature many developers prefer. Interfaces are another way to declare an object
shape with an associated name. Interfaces are in many ways similar to aliased object
types but are generally preferred for their more readable error messages, speedier
compiler performance, and better interoperability with classes.

Type Aliases Versus Interfaces
Here is a quick recap of the syntax for how an aliased object type would describe an
object with a born: number and name: string:

type Poet = {
  born: number;
  name: string;
};

Here is the equivalent syntax for an interface:

interface Poet {
  born: number;
  name: string;
}

The two syntaxes are almost identical.

TypeScript developers who prefer semicolons generally put them
after type aliases and not after interfaces. This preference mirrors
the difference between declaring a variable with a ; versus declar‐
ing a class or function without.

87

Why only use the
Boring built-in type shapes when

We can make our own!



TypeScript’s assignability checking and error messages for interfaces also work and
look just about the same as they do for object types. The following assignability errors
for assigning to the valueLater variable would be roughly the same if Poet was an
interface or type alias:

let valueLater: Poet;

// Ok
valueLater = {
  born: 1935,
  name: 'Sara Teasdale',
};

valueLater = "Emily Dickinson";
// Error: Type 'string' is not assignable to 'Poet'.

valueLater = {
  born: true,
  // Error: Type 'boolean' is not assignable to type 'number'.
  name: 'Sappho'
};

However, there are a few key differences between interfaces and type aliases:

• As you’ll see later in this chapter, interfaces can “merge” together to be augmen‐•
ted—a feature particularly useful when working with third-party code such as
built-in globals or npm packages.

• As you’ll see in the next chapter, Chapter 8, “Classes”, interfaces can be used to•
type check the structure of class declarations while type aliases cannot.

• Interfaces are generally speedier for the TypeScript type checker to work with:•
they declare a named type that can be cached more easily internally, rather than a
dynamic copy-and-paste of a new object literal the way type aliases do.

• Because interfaces are considered named objects rather than an alias for an•
unnamed object literal, their error messages are more likely to be readable in
hard edge cases.

For the latter two reasons and to maintain consistency, the rest of this book and its
associated projects default to using interfaces over aliased object shapes. I generally
recommend using interfaces whenever possible (i.e., until you need features such as
union types from type aliases).

88 | Chapter 7: Interfaces



Types of Properties
JavaScript objects can be wild and wacky in real-world usage, including getters and
setters, properties that only sometimes exist, or accepting any arbitrary property
names. TypeScript provides a set of type system tools for interfaces to help us model
that wackiness.

Because interfaces and type aliases behave so similarly, the follow‐
ing types of properties introduced in this chapter are all also usable
with aliased object types.

Optional Properties
As with object types, interface properties don’t all have to be required in the object.
You can indicate an interface’s property is optional by including a ? before the : in its
type annotation.

This Book interface requires only a required property and optionally allows an
optional. Objects adhering to it may provide optional or leave it out as long as they
provide required:

interface Book {
  author?: string;
  pages: number;
};

// Ok
const ok: Book = {
    author: "Rita Dove",
    pages: 80,
};

const missing: Book = {
    pages: 80
};
// Error: Property 'author' is missing in type
// '{ pages: number; }' but required in type 'Book'.

The same caveats around the difference between optional properties and properties
whose type happens to include undefined in a type union apply to interfaces as
well as object types. Chapter 13, “Configuration Options” will describe TypeScript’s
strictness settings around optional properties.

Types of Properties | 89



Read-Only Properties
You may sometimes wish to block users of your interface from reassigning properties
of objects adhering to an interface. TypeScript allows you to add a readonly modifier
before a property name to indicate that once set, that property should not be set
to a different value. These readonly properties can be read from normally, but not
reassigned to anything new.

For example, the text property in the below Page interface gives back a string when
accessed, but causes a type error if assigned a new value:

interface Page {
    readonly text: string;
}

function read(page: Page) {
    // Ok: reading the text property doesn't attempt to modify it
    console.log(page.text);

    page.text += "!";
    //   ~~~~
    // Error: Cannot assign to 'text'
    // because it is a read-only property.
}

Note that readonly modifiers exist only in the type system, and only apply to the
usage of that interface. It won’t apply to an object unless that object is used in a
location that declares it to be of that interface.

In this continuation of the exclaim example, the text property is allowed to be
modified outside of the function because its parent object isn’t explicitly used as a
Text until inside the function. pageIsh is allowed to be used as a Page because a
writable property is assignable to a readonly property (mutable properties can be
read from, which is all a readonly property needs):

const pageIsh = {
  text: "Hello, world!",
};

// Ok: messengerIsh is an inferred object type with text, not a Page
page.text += "!";

// Ok: read takes in Page, which happens to
// be a more specific version of pageIsh's type
read(messengerIsh);

Declaring the variable pageIsh with the explicit type annotation : Page would
have indicated to TypeScript that its text property was readonly. Its inferred type,
however, was not readonly.

90 | Chapter 7: Interfaces



Read-only interface members are a handy way to make sure areas of code don’t
unexpectedly modify objects they’re not meant to. However, remember that they’re
a type system construct only and don’t exist in the compiled JavaScript output code.
They only protect from modification during development with the TypeScript type
checker.

Functions and Methods
It’s very common in JavaScript for object members to be functions. TypeScript
therefore allows declaring interface members as being the function types previously
covered in Chapter 5, “Functions”.

TypeScript provides two ways of declaring interface members as functions:

• Method syntax: declaring that a member of the interface is a function intended to•
be called as a member of the object, like member(): void

• Property syntax: declaring that a member of the interface is equal to a standalone•
function, like member: () => void

The two declaration forms are an analog for the two ways you can declare a JavaScript
object as having a function.

Both method and property members shown here are functions that may be called
with no parameters and return a string:

interface HasBothFunctionTypes {
  property: () => string;
  method(): string;
}

const hasBoth: HasBothFunctionTypes = {
  property: () => "",
  method() {
    return "";
  }
};

hasBoth.property(); // Ok
hasBoth.method(); // Ok

Both forms can receive the ? optional modifier to indicate they don’t need to be
provided:

interface OptionalReadonlyFunctions {
  optionalProperty?: () => string;
  optionalMethod?(): string;
}

Types of Properties | 91



Method and property declarations can mostly be used interchangeably. The main
differences between them that I’ll cover in this book are:

• Methods cannot be declared as readonly; properties can.•
• Interface merging (covered later in this chapter) treats them differently.•
• Some of the operations performed on types covered in Chapter 15, “Type Opera‐•

tions” treat them differently.

Future versions of TypeScript may add the option to be more strict about the differ‐
ences between methods and property functions.

For now, the general style guide I recommend is:

• Use a method function if you know the underlying function may refer to this,•
most commonly for instances of classes (covered in Chapter 8, “Classes”).

• Use a property function otherwise.•

Don’t sweat it if you mix up these two, or don’t understand the difference. It’ll rarely
impact your code unless you’re being intentional about this scoping and which form
you choose.

Call Signatures
Interfaces and object types can declare call signatures, which is a type system descrip‐
tion of how a value may be called like a function. Only values that may be called
in the way the call signature declares will be assignable to the interface—i.e., a
function with assignable parameters and return type. A call signature looks similar to
a function type, but with a : colon instead of an => arrow.

The following FunctionAlias and CallSignature types both describe the same
function parameters and return type:

type FunctionAlias = (input: string) => number;

interface CallSignature {
  (input: string): number;
}

// Type: (input: string) => number
const typedFunctionAlias: FunctionAlias = (input) => input.length; // Ok

// Type: (input: string) => number
const typedCallSignature: CallSignature = (input) => input.length; // Ok

92 | Chapter 7: Interfaces



Call signatures can be used to describe functions that additionally have some user-
defined property on them. TypeScript will recognize a property added to a function
declaration as adding to that function declaration’s type.

The following keepsTrackOfCalls function declaration is given a count property
of type number, making it assignable to the FunctionWithCount interface. It can
therefore be assigned to the hasCallCount argument of type FunctionWithCount.
The function at the end of the snippet was not given a count:

interface FunctionWithCount {
  count: number;
  (): void;
}

let hasCallCount: FunctionWithCount;

function keepsTrackOfCalls() {
  keepsTrackOfCalls.count += 1;
  console.log(`I've been called ${keepsTrackOfCalls.count} times!`);
}

keepsTrackOfCalls.count = 0;

hasCallCount = keepsTrackOfCalls; // Ok

function doesNotHaveCount() {
  console.log("No idea!");
}

hasCallCount = doesNotHaveCount;
// Error: Property 'count' is missing in type
// '() => void' but required in type 'FunctionWithCalls'

Index Signatures
Some JavaScript projects create objects meant to store values under any arbitrary
string key. For these “container” objects, declaring an interface with a field for every
possible key would be impractical or impossible.

TypeScript provides a syntax called an index signature to indicate that an interface’s
objects are allowed to take in any key and give back a certain type under that key.
They’re most commonly used with string keys because JavaScript object property
lookups convert keys to strings implicitly. An index signature looks like a regular
property definition but with a type after the key, and array brackets surrounding
them, like { [i: string]: ... }.

This WordCounts interface is declared as allowing any string key with a number
value. Objects of that type aren’t bound to receiving any particular key—as long as the
value is a number:

Types of Properties | 93



interface WordCounts {
  [i: string]: number;
}

const counts: WordCounts = {};

counts.apple = 0; // Ok
counts.banana = 1; // Ok

counts.cherry = false;
// Error: Type 'boolean' is not assignable to type 'number'.

Index signatures are convenient for assigning values to an object but aren’t com‐
pletely type safe. They indicate that an object should give back a value no matter what
property is being accessed.

This publishDates value safely gives back Frankenstein as a Date but tricks Type‐
Script into thinking its Beloved is defined even though it’s undefined:

interface DatesByName {
  [i: string]: Date;
}

const publishDates: DatesByName = {
  Frankenstein: new Date("1 January 1818"),
};

publishDates.Frankenstein; // Type: Date
console.log(publishDates.Frankenstein.toString()); // Ok

publishDates.Beloved; // Type: Date, but runtime value of undefined!
console.log(publishDates.Beloved.toString()); // Ok in the type system, but...
// Runtime error: Cannot read property 'toString'
// of undefined (reading publishDates.Beloved)

When possible, if you’re looking to store key-value pairs and the keys aren’t known
ahead of time, it is generally safer to use a Map. Its .get method always returns a
type with | undefined to indicate that the key might not exist. Chapter 9, “Type
Modifiers” will discuss working with generic container classes such as Map and Set.

Mixing properties and index signatures

Interfaces are able to include explicitly named properties and catchall string index
signatures, with one catch: each named property’s type must be assignable to its
catchall index signature’s type. You can think of mixing them as telling TypeScript
that named properties give a more specific type, and any other property falls back to
the index signature’s type.

Here, HistoricalNovels declares that all properties are type number, and additionally
the Oroonoko property must exist to begin with:

94 | Chapter 7: Interfaces



interface HistoricalNovels {
  Oroonoko: number;
  [i: string]: number;
}

// Ok
const novels: HistoricalNovels = {
  Outlander: 1991,
  Oroonoko: 1688,
};

const missingOroonoko: HistoricalNovels = {
  Outlander: 1991,
};
// Error: Property 'Oroonoko' is missing in type
// '{ Outlander: number; }' but required in type 'HistoricalNovels'.

One common type system trick with mixed properties and index signatures is to
use a more specific property type literal for the named property than an index
signature’s primitive. As long as the named property’s type is assignable to the index
signature’s—which is true for a literal and a primitive, respectively—TypeScript will
allow it.

Here, ChapterStarts declares that a property under preface must be 0 and all
other properties have the more general number. That means any object adhering to
ChapterStarts must have a preface property equal to 0:

interface ChapterStarts {
  preface: 0;
  [i: string]: number;
}

const correctPreface: ChapterStarts = {
  preface: 0,
  night: 1,
  shopping: 5
};

const wrongPreface: ChapterStarts = {
  preface: 1,
  // Error: Type '1' is not assignable to type '0'.
};

Numeric index signatures
Although JavaScript implicitly converts object property lookup keys to strings, it is
sometimes desirable to only allow numbers as keys for an object. TypeScript index
signatures can use a number type instead of string but with the same catch as named
properties that their types must be assignable to the catchall string index signature’s.

Types of Properties | 95



The following MoreNarrowNumbers interface would be allowed because string is
assignable to string | undefined, but MoreNarrowStrings would not because
string | undefined is not assignable to string:

// Ok
interface MoreNarrowNumbers {
  [i: number]: string;
  [i: string]: string | undefined;
}

// Ok
const mixesNumbersAndStrings: MoreNarrowNumbers = {
  0: '',
  key1: '',
  key2: undefined,
}

interface MoreNarrowStrings {
  [i: number]: string | undefined;
  // Error: 'number' index type 'string | undefined'
  // is not assignable to 'string' index type 'string'.
  [i: string]: string;
}

Nested Interfaces
Just like object types can be nested as properties of other object types, interface types
can also have properties that are themselves interface types (or object types).

This Novel interface contains an author property that must satisfy an inline object
type and a setting property that must satisfy the Setting interface:

interface Novel {
    author: {
        name: string;
    };
    setting: Setting;
}

interface Setting {
    place: string;
    year: number;
}

let myNovel: Novel;

// Ok
myNovel = {
    author: {
        name: 'Jane Austen',
    },

96 | Chapter 7: Interfaces



    setting: {
        place: 'England',
        year: 1812,
    }
};

myNovel = {
    author: {
        name: 'Emily Brontë',
    },
    setting: {
        place: 'West Yorkshire',
    },
    // Error: Property 'year' is missing in type
    // '{ place: string; }' but required in type 'Setting'.
};

Interface Extensions
Sometimes you may end up with multiple interfaces that look similar to each other.
One interface may contain all the same members of another interface, with a few
extras added on.

TypeScript allows an interface to extend another interface, which declares it as copy‐
ing all the members of another. An interface may be marked as extending another
interface by adding the extends keyword after its name (the “derived” interface),
followed by the name of the interface to extend (the “base” interface). Doing so
indicates to TypeScript that all objects adhering to the derived interface must also
have all the members of the base interface.

In the following example, the Novella interface extends from Writing and thus
requires objects to have at least both Novella’s pages and Writing’s title members:

interface Writing {
    title: string;
}

interface Novella extends Writing {
    pages: number;
}

// Ok
let myNovella: Novella = {
    pages: 195,
    title: "Ethan Frome",
};

let missingPages: Novella = {
 // ~~~~~~~~~~~~
 // Error: Property 'pages' is missing in type

Interface Extensions | 97



 // '{ title: string; }' but required in type 'Novella'.
    title: "The Awakening",
}

let extraProperty: Novella = {
 // ~~~~~~~~~~~~~
 // Error: Type '{ genre: string; name: string; strategy: string; }'
 // is not assignable to type 'Novella'.
 //   Object literal may only specify known properties,
 //   and 'genre' does not exist in type 'Novella'.
    pages: 300,
    strategy: "baseline",
    style: "Naturalism"
};

Interface extensions are a nifty way to represent that one type of entity in your project
is a superset (it includes all the members of) another entity. They allow you to avoid
having to type out the same code repeatedly across multiple interfaces to represent
that relationship.

Overridden Properties
Derived interfaces may override, or replace, properties from their base interface by
declaring the property again with a different type. TypeScript’s type checker will
enforce that an overridden property must be assignable to its base property. It does
so to ensure that instances of the derived interface type stay assignable to the base
interface type.

Most derived interfaces that redeclare properties do so either to make those proper‐
ties a more specific subset of a type union or to make the properties a type that
extends from the base interface’s type.

For example, this WithNullableName type is properly made non-nullable in
WithNonNullableName. WithNumericName, however, is not allowed as number |

string and is not assignable to string | null:

interface WithNullableName {
    name: string | null;
}

interface WithNonNullableName extends WithNullableName {
    name: string;
}

interface WithNumericName extends WithNullableName {
    name: number | string;
}
// Error: Interface 'WithNumericName' incorrectly
// extends interface 'WithNullableName'.
//   Types of property 'name' are incompatible.

98 | Chapter 7: Interfaces



//     Type 'string | number' is not assignable to type 'string | null'.
//       Type 'number' is not assignable to type 'string'.

Extending Multiple Interfaces
Interfaces in TypeScript are allowed to be declared as extending multiple other
interfaces. Any number of interface names separated by commas may be used after
the extends keyword following the derived interface’s name. The derived interface
will receive all members from all base interfaces.

Here, the GivesBothAndEither has three methods: one on its own, one from
GivesNumber, and one from GivesString:

interface GivesNumber {
  giveNumber(): number;
}

interface GivesString {
  giveString(): string;
}

interface GivesBothAndEither extends GivesNumber, GivesString {
  giveEither(): number | string;
}

function useGivesBoth(instance: GivesBothAndEither) {
  instance.giveEither(); // Type: number | string
  instance.giveNumber(); // Type: number
  instance.giveString(); // Type: string
}

By marking an interface as extending multiple other interfaces, you can both reduce
code duplication and make it easier for object shapes to be reused across different
areas of code.

Interface Merging
One of the important features of interfaces is their ability to merge with each other.
Interface merging means if two interfaces are declared in the same scope with the
same name, they’ll join into one bigger interface under that name with all declared
fields.

This snippet declares a Merged interface with two properties: fromFirst and
fromSecond:

interface Merged {
  fromFirst: string;
}

interface Merged {

Interface Merging | 99



  fromSecond: number;
}

// Equivalent to:
// interface Merged {
//   fromFirst: string;
//   fromSecond: number;
// }

Interface merging isn’t a feature used very often in day-to-day TypeScript develop‐
ment. I would recommend avoiding it when possible, as it can be difficult to under‐
stand code where an interface is declared in multiple places.

However, interface merging is particularly useful for augmenting interfaces from
external packages or built-in global interfaces such as Window. For example, when
using the default TypeScript compiler options, declaring a Window interface in a file
with a myEnvironmentVariable property makes a window.myEnvironmentVariable
available:

interface Window {
  myEnvironmentVariable: string;
}

window.myEnvironmentVariable; // Type: string

I’ll cover type definitions more deeply in Chapter 11, “Declaration Files” and Type‐
Script global type options in Chapter 13, “Configuration Options”.

Member Naming Conflicts
Note that merged interfaces may not declare the same name of a property multiple
times with different types. If a property is already declared in an interface, a later
merged interface must use the same type.

In this MergedProperties interface, the same property is allowed because it is the
same in both declarations, but different is an error for being a different type:

interface MergedProperties {
  same: (input: boolean) => string;
  different: (input: string) => string;
}

interface MergedProperties {
  same: (input: boolean) => string; // Ok

  different: (input: number) => string;
  // Error: Subsequent property declarations must have the same type.
  // Property 'different' must be of type '(input: string) => string',
  // but here has type '(input: number) => string'.
}

100 | Chapter 7: Interfaces



Merged interfaces may, however, define a method with the same name and a different
signature. Doing so creates a function overload for the method.

This MergedMethods interface creates a different method that has two overloads:

interface MergedMethods {
  different(input: string): string;
}

interface MergedMethods {
  different(input: number): string; // Ok
}

Summary
This chapter introduced how object types may be described by interfaces:

• Using interfaces instead of type aliases to declare object types•
• Various interface property types: optional, read-only, function, and method•
• Using index signatures for catchall object properties•
• Reusing interfaces using nested interfaces and extends inheritance•
• How interfaces with the same name can merge together•

Next up will be a native JavaScript syntax for setting up multiple objects to have the
same properties: classes.

Now that you’ve finished reading this chapter, practice what you’ve
learned on https://learningtypescript.com/interfaces.

Why are interfaces good drivers?

They’re great at merging.

Summary | 101

https://learningtypescript.com/interfaces




CHAPTER 8

Classes

The world of JavaScript during TypeScript’s creation and release in the early 2010s
was quite different from today. Features such as arrow functions and let/const
variables that would later be standardized in ES2015 were still distant hopes on the
horizon. Babel was a few years away from its first commit; its predecessor tools
such as Traceur that converted newer JavaScript syntax to old hadn’t achieved full
mainstream adoption.

TypeScript’s early marketing and feature set were tailored to that world. In addition to
its type checking, its transpiler was emphasized—with classes as a frequent example.
Nowadays TypeScript’s class support is just one feature among many to support all
JavaScript language features. TypeScript neither encourages nor discourages class use
or any other popular JavaScript pattern.

Class Methods
TypeScript generally understands methods the same way it understands standalone
functions. Parameter types default to any unless given a type or default value; calling
the method requires an acceptable number of arguments; return types can generally
be inferred if the function is not recursive.

This code snippet defines a Greeter class with a greet class method that takes in a
single required parameter of type number:

class Greeter {
    greet(name: string) {
        console.log(`${name}, do your stuff!`);
    }
}

new Greeter().greet("Miss Frizzle"); // Ok

103

Some functional devs
Try to never use classes

Too intense for me



new Greeter().greet();
//            ~~~~~
// Error: Expected 1 arguments, but got 0.

Class constructors are treated like typical class methods with regards to their param‐
eters. TypeScript will perform type checking to make sure a correct number of
arguments with correct types are provided to method calls.

This Greeted constructor also expects its message: string parameter to be
provided:

class Greeted {
    constructor(message: string) {
        console.log(`As I always say: ${message}!`);
    }
}

new Greeted("take chances, make mistakes, get messy");

new Greeted();
// Error: Expected 1 arguments, but got 0.

I’ll cover constructors in the context of subclasses later in this chapter.

Class Properties
To read from or write to a property on a class in TypeScript, it must be explicitly
declared in the class. Class properties are declared using the same syntax as interfaces:
their name followed optionally by a type annotation.

TypeScript will not attempt to deduce what members may exist on a class from their
assignments in a constructor.

In this example, destination is allowed to be assigned to and accessed on instan‐
ces of the FieldTrip class because it is explicitly declared as a string. The
this.nonexistent assignment in the constructor is not allowed because the class
does not declare a nonexistent property:

class FieldTrip {
    destination: string;

    constructor(destination: string) {
        this.destination = destination; // Ok
        console.log(`We're going to ${this.destination}!`);

        this.nonexistent = destination;
        //   ~~~~~~~~~~~
        // Error: Property 'nonexistent' does not exist on type 'FieldTrip'.
    }
}

104 | Chapter 8: Classes



Explicitly declaring class properties allows TypeScript to quickly understand what is
or is not allowed to exist on instances of classes. Later, when class instances are in
use, TypeScript uses that understanding to give a type error if code attempts to access
a member of a class instance not known to exist, such as with this continuation’s
trip.nonexistent:

const trip = new FieldTrip("planetarium");

trip.destination; // Ok

trip.nonexistent;
//   ~~~~~~~~~~~
// Error: Property 'nonexistent' does not exist on type 'FieldTrip'.

Function Properties
Let’s recap some JavaScript method scoping and syntax fundamentals for a bit, as they
can be surprising if you’re not accustomed to them. JavaScript contains two syntaxes
for declaring a member on a class to be a callable function: method and property.

I’ve already shown the method approach of putting parentheses after the member
name, like myFunction() {}. The method approach assigns a function to the class
prototype, so all class instances use the same function definition.

This WithMethod class declares a myMethod method that all instances are able to refer
to:

class WithMethod {
    myMethod() {}
}

new WithMethod().myMethod === new WithMethod().myMethod; // true

The other syntax is to declare a property whose value happens to be a function. This
creates a new function per instance of the class, which can be useful with () => arrow
functions whose this scope should always point to the class instance (at the time and
memory cost of creating a new function per class instance).

This WithProperty class contains a single property of name myProperty and type ()
=> void that will be re-created for each class instance:

class WithProperty {
    myProperty: () => {}
}

new WithMethod().myProperty === new WithMethod().myProperty; // false

Class Properties | 105



Function properties can be given parameters and return types using the same syntax
as class methods and standalone functions. After all, they’re a value assigned to a class
member and the value happens to be a function.

This WithPropertyParameters class has a takesParameters property of type
(input: string) => number:

class WithPropertyParameters {
    takesParameters = (input: boolean) => input ? "Yes" : "No";
}

const instance = new WithPropertyParameters();

instance.takesParameters(true); // Ok

instance.takesParameters(123);
//                       ~~~
// Error: Argument of type 'number' is not
// assignable to parameter of type 'boolean'.

Initialization Checking
With strict compiler settings enabled, TypeScript will check that each property
declared whose type does not include undefined is assigned a value in the construc‐
tor. This strict initialization checking is useful because it prevents code from acciden‐
tally forgetting to assign a value to a class property.

The following WithValue class does not assign a value to its unused property, which
TypeScript recognizes as a type error:

class WithValue {
    immediate = 0; // Ok
    later: number; // Ok (set in the constructor)
    mayBeUndefined: number | undefined; // Ok (allowed to be undefined)

    unused: number;
    // Error: Property 'unused' has no initializer
    // and is not definitely assigned in the constructor.

    constructor() {
        this.later = 1;
    }
}

Without strict initialization checking, a class instance could be allowed to access a
value that might be undefined even though the type system says it can’t be.

This example would compile happily if strict initialization checking didn’t happen,
but the resultant JavaScript would crash at runtime:

106 | Chapter 8: Classes



class MissingInitializer {
    property: string;
}

new MissingInitializer().property.length;
// TypeError: Cannot read property 'length' of undefined

The billion-dollar mistake strikes again!

Configuring strict property initialization checking with TypeScript’s
strictPropertyInitialization compiler option is covered in Chapter 12, “Using
IDE Features”.

Definitely assigned properties
Although strict initialization checking is useful most of the time, you may come
across some cases where a class property is intentionally able to be unassigned after
the class constructor. If you are absolutely sure a property should not have strict
initialization checking applied to it, you can add a ! after its name to disable the
check. Doing so asserts to TypeScript that the property will be assigned a value other
than undefined before its first usage.

This ActivitiesQueue class is meant to be re-initialized any number of times sepa‐
rately from its constructor, so its pending property must be asserted with a !:

class ActivitiesQueue {
    pending!: string[]; // Ok

    initialize(pending: string[]) {
        this.pending = pending;
    }

    next() {
        return this.pending.pop();
    }
}

const activities = new ActivitiesQueue();

activities.initialize(['eat', 'sleep', 'learn'])
activities.next();

Needing to disable strict initialization checking on a class property
is often a sign of code being set up in a way that doesn’t lend itself
well to type checking. Instead of adding a ! assertion and reducing
type safety for the property, consider refactoring the class to no
longer need the assertion.

Class Properties | 107



Optional Properties
Much like interfaces, classes in TypeScript may declare a property as optional by
adding a ? after its declaration name. Optional properties behave roughly the same
as properties whose types happen to be a union that includes | undefined. Strict
initialization checking won’t mind if they’re not explicitly set in their constructor.

This OptionalProperty class marks its property as optional, so it’s allowed to not be
assigned in the class constructor regardless of strict property initialization checking:

class MissingInitializer {
    property?: string;
}

new MissingInitializer().property?.length; // Ok

new MissingInitializer().property.length;
// Error: Object is possibly 'undefined'.

Read-Only Properties
Again much like interfaces, classes in TypeScript may declare a property as read-only
by adding the readonly keyword before its declaration name. The readonly keyword
exists purely within the type system and is removed when compiling to JavaScript.

Properties declared as readonly may only be assigned initial values where they are
declared or in a constructor. Any other location—including methods on the class
itself—may only read from the properties, not write to them.

In this example, the text property on the Quote class is given a value in the construc‐
tor, but the other uses cause type errors:

class Quote {
    readonly text: string;

    constructor(text: string) {
        this.text = ;
    }

    emphasize() {
        this.text += "!";
        //   ~~~~
        // Error: Cannot assign to 'text' because it is a read-only property.
    }
}

const quote = new Quote(
    "There is a brilliant child locked inside every student."
);

108 | Chapter 8: Classes



Quote.text = "Ha!";
// Error: Cannot assign to 'text' because it is a read-only property.

External users of your code, such as consumers of any npm pack‐
ages you published, might not respect readonly modifiers—espe‐
cially if they’re writing JavaScript and don’t have type checking. If
you need true read-only protection, consider using # private fields
and/or get() function properties.

Properties declared as readonly with an initial value of a primitive have a slight quirk
compared to other properties: they are inferred to be their value’s narrowed literal
type if possible, rather than the wider primitive. TypeScript feels comfortable with a
more aggressive initial type narrowing because it knows the value won’t be changed
later; it is similar to const variables taking on narrower types than let variables.

In this example, the class properties are both initially declared as a string literal, so in
order to widen one of them to string, a type annotation is needed:

class RandomQuote {
    readonly explicit: string = "Home is the nicest word there is.";
    readonly implicit = "Home is the nicest word there is.";

    constructor() {
        if (Math.random () > 0.5) {
            this.explicit = "We start learning the minute we're born." // Ok;

            this.implicit = "We start learning the minute we're born.";
            // Error: Type '"We start learning the minute we're born."' is
            // not assignable to type '"Home is the nicest word there is."'.
        }
    }
}

const quote = new RandomQuote();

quote.explicit; // Type: string
quote.implicit; // Type: "Home is the nicest word there is."

Widening a property’s type explicitly is not necessary very often. Still, it can some‐
times be useful in the case of conditional logic in constructors like the one in
RandomQuote.

Classes as Types
Classes are relatively unique in the type system in that a class declaration creates
both a runtime value—the class itself—as well as a type that can be used in type
annotations.

Classes as Types | 109



The name of this Teacher class is used to annotate a teacher variable, telling Type‐
Script that it should be assigned only values that are assignable to the Teacher class—
such as instances of the Teacher class itself:

class Teacher {
    sayHello() {
        console.log("Take chances, make mistakes, get messy!");
    }
}

let teacher: Teacher;

teacher = new Teacher(); // Ok

teacher = "Wahoo!";
// Error: Type 'string' is not assignable to type 'Teacher'.

Interestingly, TypeScript will consider any object type that happens to include all the
same members of a class to be assignable to the class. This is because TypeScript’s
structural typing cares only about the shape of objects, not how they’re declared.

Here, withSchoolBus takes in a parameter of type SchoolBus. That can be satisfied by
any object that happens to have a getAbilities property of type () => string[],
such as an instance of the SchoolBus class:

class SchoolBus {
    getAbilities() {
        return ["magic", "shapeshifting"];
    }
}

function withSchoolBus(bus: SchoolBus) {
    console.log(bus.getAbilities());
}

withSchoolBus(new SchoolBus()); // Ok

// Ok
withSchoolBus({
    getAbilities: () => ["transmogrification"],
});

withSchoolBus({
    getAbilities: () => 123,
    //                  ~~~
    // Error: Type 'number' is not assignable to type 'string[]'.
});

110 | Chapter 8: Classes



In most real-world code, developers don’t pass object values in
places that ask for class types. This structural checking behavior
may seem unexpected but doesn’t come up very often.

Classes and Interfaces
Back in Chapter 7, “Interfaces”, I showed you how interfaces allow TypeScript devel‐
opers to set up expectations for object shapes in code. TypeScript allows a class to
declare its instances as adhering to an interface by adding the implements keyword
after the class name, followed by the name of an interface. Doing so indicates to
TypeScript that instances of the class should be assignable to each of those interfaces.
Any mismatches would be called out as type errors by the type checker.

In this example, the Student class correctly implements the Learner interface by
including its property name and method study, but Slacker is missing a study and
thus results in a type error:

interface Learner {
    name: string;
    study(hours: number): void;
}

class Student implements Learner {
    name: string;

    constructor(name: string) {
        this.name = name;
    }

    study(hours: number) {
        for (let i = 0; i < hours; i+= 1) {
            console.log("...studying...");
        }
    }
}

class Slacker implements Learner {
   // ~~~~~~~
   // Error: Class 'Slacker' incorrectly implements interface 'Learner'.
   //  Property 'study' is missing in type 'Slacker'
   //  but required in type 'Learner'.
    name = "Rocky";
}

Classes and Interfaces | 111



Interfaces meant to be implemented by classes are a typical reason
to use the method syntax for declaring an interface member as a
function—as used by the Learner interface.

Marking a class as implementing an interface doesn’t change anything about how the
class is used. If the class already happened to match up to the interface, TypeScript’s
type checker would have allowed its instances to be used in places where an instance
of the interface is required anyway. TypeScript won’t even infer the types of methods
or properties on the class from the interface: if we had added a study(hours) {}
method to the Slacker example, TypeScript would consider the hours parameter an
implicit any unless we gave it a type annotation.

This version of the Student class causes implicit any type errors because it doesn’t
provide type annotations on its members:

class Student implements Learner {
    name;
    // Error: Member 'name' implicitly has an 'any' type.

    study(hours) {
        // Error: Parameter 'hours' implicitly has an 'any' type.
    }
}

Implementing an interface is purely a safety check. It does not copy any interface
members onto the class definition for you. Rather, implementing an interface signals
your intention to the type checker and surfaces type errors in the class definition,
rather than later on where class instances are used. It’s similar in purpose to adding a
type annotation to a variable even though it has an initial value.

Implementing Multiple Interfaces
Classes in TypeScript are allowed to be declared as implementing multiple interfaces.
The list of implemented interfaces for a class may be any number of interface names
with commas in-between.

In this example, both classes are required to have at least a grades property to
implement Graded and a report property to implement Reporter. The Empty class
has two type errors for failing to implement either of the interfaces properly:

interface Graded {
    grades: number[];
}

interface Reporter {
    report: () => string;
}

112 | Chapter 8: Classes



class ReportCard implements Graded, Reporter {
    grades: number[];

    constructor(grades: number[]) {
        this.grades = grades;
    }

    report() {
        return this.grades.join(", ");
    }
}

class Empty implements Graded, Reporter { }
   // ~~~~~
   // Error: Class 'Empty' incorrectly implements interface 'Graded'.
   //   Property 'grades' is missing in type 'Empty'
   //   but required in type 'Graded'.
   // ~~~~~
   // Error: Class 'Empty' incorrectly implements interface 'Reporter'.
   //   Property 'report' is missing in type 'Empty'
   //   but required in type 'Reporter'.

In practice, there may be some interfaces whose definitions make it impossible
to have a class implement both. Attempting to declare a class implementing two
conflicting interfaces will result in at least one type error on the class.

The following AgeIsANumber and AgeIsNotANumber interfaces declare very different
types for an age property. Neither the AsNumber class nor NotAsNumber class properly
implement both:

interface AgeIsANumber {
    age: number;
}

interface AgeIsNotANumber {
    age: () => string;
}

class AsNumber implements AgeIsANumber, AgeIsNotANumber {
    age = 0;
 // ~~~
 // Error: Property 'age' in type 'AsNumber' is not assignable
 // to the same property in base type 'AgeIsNotANumber'.
 //   Type 'number' is not assignable to type '() => string'.
}

Classes and Interfaces | 113



class NotAsNumber implements AgeIsANumber, AgeIsNotANumber {
    age() { return ""; }
 // ~~~
 // Error: Property 'age' in type 'NotAsNumber' is not assignable
 // to the same property in base type 'AgeIsANumber'.
 //   Type '() => string' is not assignable to type 'number'.
}

Cases where two interfaces describe very different object shapes generally indicate
you shouldn’t try to implement them with the same class.

Extending a Class
TypeScript adds type checking onto the JavaScript concept of a class extending, or
subclassing, another class. To start, any method or property declared on a base class
will be available on the subclass, also known as the derived class.

In this example, Teacher declares a teach method that may be used by instances of
the StudentTeacher subclass:

class Teacher {
    teach() {
        console.log("The surest test of discipline is its absence.");
    }
}

class StudentTeacher extends Teacher {
    learn() {
        console.log("I cannot afford the luxury of a closed mind.");
    }
}

const teacher = new StudentTeacher();
teacher.teach(); // Ok (defined on base)
teacher.learn(); // Ok (defined on subclass)

teacher.other();
 //     ~~~~~
 // Error: Property 'other' does not exist on type 'StudentTeacher'.

Extension Assignability
Subclasses inherit members from their base class much like derived interfaces extend
base interfaces. Instances of subclasses have all the members of their base class and
thus may be used wherever an instance of the base is required. If a base class doesn’t
have all the members a subclass does, then it can’t be used when the more specific
subclass is required.

114 | Chapter 8: Classes



Instances of the following Lesson class may not be used where instances of its derived
OnlineLesson are required, but derived instances may be used to satisfy either the
base or subclass:

class Lesson {
    subject: string;

    constructor(subject: string) {
        this.subject = subject;
    }
}

class OnlineLesson extends Lesson {
    url: string;

    constructor(subject: string, url: string) {
        super(subject);
        this.url = url;
    }
}

let lesson: Lesson;
lesson = new Lesson("coding"); // Ok
lesson = new OnlineLesson("coding", "oreilly.com"); // Ok

let online: OnlineLesson;
online = new OnlineLesson("coding", "oreilly.com"); // Ok

online = new Lesson("coding");
// Error: Property 'url' is missing in type
// 'Lesson' but required in type 'OnlineLesson'.

Per TypeScript’s structural typing, if all the members on a subclass already exist on its
base class with the same type, then instances of the base class are still allowed to be
used in place of the subclass.

In this example, LabeledPastGrades only adds an optional property to PastGrades,
so instances of the base class may be used in place of the subclass:

class PastGrades {
    grades: number[] = [];
}

class LabeledPastGrades extends PastGrades {
    label?: string;
}

let subClass: LabeledPastGrades;

subClass = new LabeledPastGrades(); // Ok
subClass = new PastGrades(); // Ok

Extending a Class | 115



In most real-world code, subclasses generally add new required
type information on top of their base class. This structural check‐
ing behavior may seem unexpected but doesn’t come up very often.

Overridden Constructors
As with vanilla JavaScript, subclasses are not required by TypeScript to define their
own constructor. Subclasses without their own constructor implicitly use the con‐
structor from their base class.

In JavaScript, if a subclass does declare its own constructor, then it must call its
base class constructor via the super keyword. Subclass constructors may declare any
parameters regardless of what their base class requires. TypeScript’s type checker will
make sure that the call to the base class constructor uses the correct parameters.

In this example, PassingAnnouncer’s constructor correctly calls the base constructor
with a number argument, while FailingAnnouncer gets a type error for forgetting to
make that call:

class GradeAnnouncer {
    message: string;

    constructor(grade: number) {
        this.message = grade >= 65 ? "Maybe next time..." : "You pass!";
    }
}

class PassingAnnouncer extends GradeAnnouncer {
    constructor() {
        super(100);
    }
}

class FailingAnnouncer extends GradeAnnouncer {
    constructor() { }
 // ~~~~~~~~~~~~~~~~~
 // Error: Constructors for subclasses must contain a 'super' call.
}

As per JavaScript rules, the constructor of a subclass must call the base constructor
before accessing this or super. TypeScript will report a type error if it sees a this or
super being accessed before super().

The following ContinuedGradesTally class erroneously refers to this.grades in its
constructor before calling to super():

116 | Chapter 8: Classes



class GradesTally {
    grades: number[] = [];

    addGrades(...grades: number[]) {
        this.grades.push(...grades);
        return this.grades.length;
    }
}

class ContinuedGradesTally extends GradesTally {
    constructor(previousGrades: number[]) {
        this.grades = [...previousGrades];
        // Error: 'super' must be called before accessing
        // 'this' in the constructor of a subclass.

        super();

        console.log("Starting with length", this.grades.length); // Ok
    }
}

Overridden Methods
Subclasses may redeclare new methods with the same names as the base class, as long
as the method on the subclass method is assignable to the method on the base class.
Remember, since subclasses can be used wherever the original class is used, the types
of the new methods must be usable in place of the original methods.

In this example, FailureCounter’s countGrades method is permitted because it has
the same first parameter and return type as the base GradeCounter’s countGrades
method. AnyFailureChecker’s countGrades causes a type error for having the wrong
return type:

class GradeCounter {
    countGrades(grades: string[], letter: string) {
        return grades.filter(grade => grade === letter).length;
    }
}

class FailureCounter extends GradeCounter {
    countGrades(grades: string[]) {
        return super.countGrades(grades, "F");
    }
}

class AnyFailureChecker extends GradeCounter {
    countGrades(grades: string[]) {
        // Property 'countGrades' in type 'AnyFailureChecker' is not
        // assignable to the same property in base type 'GradeCounter'.
        //   Type '(grades: string[]) => boolean' is not assignable
        //   to type '(grades: string[], letter: string) => number'.

Extending a Class | 117



        //      Type 'boolean' is not assignable to type 'number'.
        return super.countGrades(grades, "F") !== 0;
    }
}

const counter: GradeCounter = new AnyFailureChecker();

// Expected type: number
// Actual type: boolean
const count = counter.countGrades(["A", "C", "F"]);

Overridden Properties
Subclasses may also explicitly redeclare properties of their base class with the same
name, as long as the new type is assignable to the type on the base class. As with
overridden methods, subclasses must structurally match up with base classes.

Most subclasses that redeclare properties do so either to make those properties a
more specific subset of a type union or to make the properties a type that extends
from the base class property’s type.

In this example, the base class Assignment declares its grade to be number |

undefined, while the subclass GradedAssignment declares it as a number that must
always exist:

class Assignment {
    grade?: number;
}

class GradedAssignment extends Assignment {
    grade: number;

    constructor(grade: number) {
        super();
        this.grade = grade;
    }
}

Expanding the allowed set of values of a property’s union type is not allowed, as
doing so would make the subclass property no longer assignable to the base class
property’s type.

In this example, VagueGrade’s value tries to add | string on top of the base class
NumericGrade’s number type, causing a type error:

class NumericGrade {
    value = 0;
}

class VagueGrade extends NumericGrade {
    value = Math.random() > 0.5 ? 1 : "...";

118 | Chapter 8: Classes



    // Error: Property 'value' in type 'NumberOrString' is not
    // assignable to the same property in base type 'JustNumber'.
    //   Type 'string | number' is not assignable to type 'number'.
    //     Type 'string' is not assignable to type 'number'.
}

const instance: NumericGrade = new VagueGrade();

// Expected type: number
// Actual type: number | string
instance.value;

Abstract Classes
It can sometimes be useful to create a base class that doesn’t itself declare the imple‐
mentation of some methods, but instead expects a subclass to provide them. Marking
a class as abstract is done by adding TypeScript’s abstract keyword in front of
the class name and in front of any method intended to be abstract. Those abstract
method declarations skip providing a body in the abstract base class; instead, they are
declared the same way an interface would be.

In this example, the School class and its getStudentTypes method are marked as
abstract. Its subclasses—Preschool and Absence—are therefore expected to imple‐
ment getStudentTypes:

abstract class School {
    readonly name: string;

    constructor(name: string) {
        this.name = name;
    }

    abstract getStudentTypes(): string[];
}

class Preschool extends School {
    getStudentTypes() {
        return ["preschooler"];
    }
}

class Absence extends School { }
   // ~~~~~~~
   // Error: Nonabstract class 'Absence' does not implement
   // inherited abstract member 'getStudentTypes' from class 'School'.

An abstract class cannot be instantiated directly, as it doesn’t have definitions for
some methods that its implementation may assume do exist. Only nonabstract (“con‐
crete”) classes can be instantiated.

Abstract Classes | 119



Continuing the School example, attempting to call new School would result in a
TypeScript type error:

let school: School;

school = new Preschool("Sunnyside Daycare"); // Ok

school = new School("somewhere else");
// Error: Cannot create an instance of an abstract class.

Abstract classes are often used in frameworks where consumers are expected to
fill out details of a class. The class may be used as a type annotation to indicate
values must adhere to the class—as with the earlier example of school: School—but
creating new instances must be done with subclasses.

Member Visibility
JavaScript includes the ability to start the name of a class member with # to mark it as
a “private” class member. Private class members may only be accessed by instances of
that class. JavaScript runtimes enforce that privacy by throwing an error if an area of
code outside the class tries to access the private method or property.

TypeScript’s class support predates JavaScript’s true # privacy, and while TypeScript
supports private class members, it also allows a slightly more nuanced set of privacy
definitions on class methods and properties that exist solely in the type system. Type‐
Script’s member visibilities are achieved by adding one of the following keywords
before the declaration name of a class member:

public (default)
Allowed to be accessed by anybody, anywhere

protected

Allowed to be accessed only by the class itself and its subclasses

private

Allowed to be accessed only by the class itself

These keywords exist purely within the type system. They’re removed along with all
other type system syntax when the code is compiled to JavaScript.

Here, Base declares two public members, one protected, one private, and one true
private with #truePrivate. Subclass is allowed to access the public and protected
members but not private or #truePrivate:

120 | Chapter 8: Classes



class Base {
    isPublicImplicit = 0;
    public isPublicExplicit = 1;
    protected isProtected = 2;
    private isPrivate = 3;
    #truePrivate = 4;
}

class Subclass extends Base {
    examples() {
        this.isPublicImplicit; // Ok
        this.isPublicExplicit; // Ok
        this.isProtected; // Ok

        this.isPrivate;
        // Error: Property 'isPrivate' is private
        // and only accessible within class 'Base'.

        this.#truePrivate;
        // Property '#truePrivate' is not accessible outside
        // class 'Base' because it has a private identifier.
    }
}

new Subclass().isPublicImplicit; // Ok
new Subclass().isPublicExplicit; // Ok

new Subclass().isProtected;
//             ~~~~~~~~~~~
// Error: Property 'isProtected' is protected
// and only accessible within class 'Base' and its subclasses.

new Subclass().isPrivate;
//             ~~~~~~~~~~~
// Error: Property 'isPrivate' is private
// and only accessible within class 'Base'.

The key difference between TypeScript’s member visibilities and JavaScript’s true
private declarations is that TypeScript’s exist only in the type system, while JavaS‐
cript’s also exist at runtime. A TypeScript class member declared as protected or
private will compile to the same JavaScript code as if they were declared public
explicitly or implicitly. As with interfaces and type annotations, visibility keywords
are erased when outputting JavaScript. Only # private fields are truly private in
runtime JavaScript.

Member Visibility | 121



Visibility modifiers may be marked along with readonly. To declare a member both
as readonly and with an explicit visibility, the visibility comes first.

This TwoKeywords class declares its name member as both private and readonly:

class TwoKeywords {
    private readonly name: string;

    constructor() {
        this.name = "Anne Sullivan"; // Ok
    }

    log() {
        console.log(this.name); // Ok
    }
}

const two = new TwoKeywords();

two.name = "Savitribai Phule";
 // ~~~~
 // Error: Property 'name' is private and
 // only accessible within class 'TwoKeywords'.
 // ~~~~
 // Error: Cannot assign to 'name'
 // because it is a read-only property.

Note that it is not permitted to mix TypeScript’s old member visibility keyword with
JavaScript’s new # private fields. Private fields are always private by default, so there’s
no need to additionally mark them with the private keyword.

Static Field Modifiers
JavaScript allows declaring members on a class itself—rather than its instances—
using the static keyword. TypeScript supports using the static keyword on its own
and/or with readonly and/or with one of the visibility keywords. When combined,
the visibility keyword comes first, then static, then readonly.

This HasStatic class puts them all together to make its static prompt and answer
properties both readonly and protected:

class Question {
    protected static readonly answer: "bash";
    protected static readonly prompt =
        "What's an ogre's favorite programming language?";

    guess(getAnswer: (prompt: string) => string) {
        const answer = getAnswer(Question.prompt);

        // Ok
        if (answer === Question.answer) {

122 | Chapter 8: Classes



            console.log("You got it!");
        } else {
            console.log("Try again...")
        }
    }
}

Question.answer;
//       ~~~~~~
// Error: Property 'answer' is protected and only
// accessible within class 'HasStatic' and its subclasses.

Using read-only and/or visibility modifiers to static class fields is useful for restricting
those fields from being accessed or modified outside their class.

Summary
This chapter introduced a plethora of type system features and syntaxes around
classes:

• Declaring and using class methods and properties•
• Marking properties readonly and/or optional•
• Using class names as types in type annotations•
• Implementing interfaces to enforce class instance shapes•
• Extending classes, along with assignability and override rules for subclasses•
• Marking classes and methods as abstract•
• Adding type system modifiers to class fields•

Now that you’ve finished reading this chapter, practice what you’ve
learned on https://learningtypescript.com/classes.

Why do object-oriented programming developers always wear suits?

Because they’ve got class.

Summary | 123

https://learningtypescript.com/classes




CHAPTER 9

Type Modifiers

By now you’ve read all about how the TypeScript type system works with existing
JavaScript constructs such as arrays, classes, and objects. For this chapter and Chap‐
ter 10, “Generics”, I’m going to take a step further into the type system itself and show
features that focus on writing more precise types, as well as types based on other
types.

Top Types
I mentioned the concept of a bottom type back in Chapter 4, “Objects” to describe a
type that can have no possible values and can’t be reached. It stands to reason that the
opposite might also exist in type theory. It does!

A top type, or universal type, is a type that can represent any possible value in a
system. Values of all other types can be provided to a location whose type is a top
type. In other words, all types are assignable to a top type.

any, Again
The any type can act as a top type, in that any type can be provided to a location of
type any. any is generally used when a location is allowed to accept data of any type,
such as the parameters to console.log:

let anyValue: any;
anyValue = "Lucille Ball"; // Ok
anyValue = 123; // Ok

console.log(anyValue); // Ok

The problem with any is that it explicitly tells TypeScript not to perform type check‐
ing on that value’s assignability or members. That lack of safety is useful if you’d

125

Types of types from types.
“It’s turtles all the way down,”

Anders likes to say.



like to quickly bypass TypeScript’s type checker, but the disabling of type checking
reduces TypeScript’s usefulness for that value.

For example, the name.toUpperCase() call below definitely will crash, but because
name is declared as any, TypeScript does not report a type complaint:

function greetComedian(name: any) {
    // No type error...
    console.log(`Announcing ${name.toUpperCase()}!`);
}

greetComedian({ name: "Bea Arthur" });
    // Runtime error: name.toUpperCase is not a function

If you want to indicate that a value can be anything, the unknown type is much safer.

unknown
The unknown type in TypeScript is its true top type. unknown is similar to any in
that all objects may be passed to locations of type unknown. The key difference with
unknown is that TypeScript is much more restrictive about values of type unknown:

• TypeScript does not allow directly accessing properties of unknown typed values.•
• unknown is not assignable to types that are not a top type (any or unknown).•

Attempting to access a property of an unknown typed value, as in the following
snippet, will cause TypeScript to report a type error:

function greetComedian(name: unknown) {
    console.log(`Announcing ${name.toUpperCase()}!`);
    //                        ~~~~
    // Error: Object is of type 'unknown'.
}

The only way TypeScript will allow code to access members on a name of type
unknown is if the value’s type is narrowed, such as using instanceof or typeof, or
with a type assertion.

This code snippet uses typeof to narrow name from unknown to string:

function greetComedianSafety(name: unknown) {
    if (typeof value === "string") {
        console.log(`Announcing ${name.toUpperCase()}!`); // Ok
    } else {
        console.log("Well, I'm off.");
    }
}

greetComedianSafety("Betty White"); // Logs: 4
greetComedianSafety({}); // Does not log

126 | Chapter 9: Type Modifiers



Those two restrictions make unknown a much safer type to use than any. You should
generally prefer using unknown instead of any when possible.

Type Predicates
I’ve previously shown you how JavaScript constructs such as instanceof and typeof
can be used to narrow types. That’s all fine and good for directly using that limited set
of checks, but it gets lost if you wrap the logic with a function.

For example, this isNumberOrString function takes in a value and returns a boolean
indicating whether the value is a number or string. We as humans can infer that
the value inside the if statement must therefore be one of those two types since
isNumberOrString(value) returned true, but TypeScript does not. All it knows is
that isNumberOrString returns a boolean—not that it’s meant to narrow the type of
an argument:

function isNumberOrString(value: unknown) {
    return ['number', 'string'].includes(typeof value);
}

function logValueIfExists(value: number | string | null | undefined) {
    if (isNumberOrString(value)) {
        // Type of value: number | string | null | undefined
        value.toString();
        // Error: Object is possibly undefined.
    } else {
        console.log("Value does not exist:", value);
    }
}

TypeScript has a special syntax for functions that return a boolean meant to indicate
whether an argument is a particular type. This is referred to as a type predicate, also
sometimes called a “user-defined type guard”: you the developer are creating your
own type guard akin to instanceof or typeof. Type predicates are commonly used to
indicate whether an argument passed in as a parameter is a more specific type than
the parameter’s.

Type predicate’s return types can be declared as the name of a parameter, the is
keyword, and some type:

function typePredicate(input: WideType): input is NarrowType;

We can change the previous example’s helper function to have an explicit return type
that explicitly states value is number | string. TypeScript will then be able to infer
that blocks of code only reachable if value is number | string is true must have a
value of type number | string. Additionally, blocks of code only reachable if value
is number | string is false must have a value of type null | undefined:

Type Predicates | 127



function isNumberOrString(value: unknown): value is number | string {
    return ['number', 'string'].includes(typeof value);
}

function logValueIfExists(value: number | string | null | undefined) {
    if (isNumberOrString(value)) {
        // Type of value: number | string
        value.toString(); // Ok
    } else {
        // Type of value: null | undefined
        console.log("value does not exist:", value);
    }
}

You can think of a type predicate as returning not just a boolean, but also an
indication that the argument was that more specific type.

Type predicates are often used to check whether an object already known to be an
instance of one interface is an instance of a more specific interface.

Here, the StandupComedian interface contains additional information on top of
Comedian. The isStandupComedian type guard can be used to check whether a
general Comedian is specifically a StandupComedian:

interface Comedian {
    funny: boolean;
}

interface StandupComedian extends Comedian {
    routine: string;
}

function isStandupComedian(value: Comedian): value is StandupComedian {
    return 'routine' in value;
}

function workWithComedian(value: Comedian) {
    if (isStandupComedian(value)) {
        // Type of value: StandupComedian
        console.log(value.routine); // Ok
    }

    // Type of value: Comedian
    console.log(value.routine);
    //                ~~~~~~~
    // Error: Property 'routine' does not exist on type 'Comedian'.
}

Be warned: because type predicates also narrow types in the false case, you might get
surprising results if a type predicate checks more than just the type of its input.

128 | Chapter 9: Type Modifiers



This isLongString type predicate returns false if its input parameter is undefined
or a string with a length less than 7. As a result, the else statement (its false case) is
narrowed to thinking text must be type undefined:

function isLongString(input: string | undefined): input is string {
    return !!(input && input.length >= 7);
}

function workWithText(text: string | undefined) {
    if (isLongString(text)) {
        // Type of text: string
        console.log("Long text:", text.length);
    } else {
        // Type of text: undefined
        console.log("Short text:", text?.length);
        //                               ~~~~~~
        // Error: Property 'length' does not exist on type 'never'.
    }
}

Type predicates that do more than verify the type of a property or value are easy to
misuse. I generally recommend avoiding them when possible. Simpler type predicates
are sufficient for most cases.

Type Operators
Not all types can be represented using only a keyword or a name of an existing type.
It can sometimes be necessary to create a new type that combines both, performing
some transformation on the properties of an existing type.

keyof
JavaScript objects can have members retrieved using dynamic values, which are
commonly (but not necessarily) string typed. Representing these keys in the type
system can be tricky. Using a catchall primitive such as string would allow invalid
keys for the container value.

That’s why TypeScript when using stricter configuration settings—covered in Chap‐
ter 13, “Configuration Options”—would report an error on the ratings[key] as
seen in the next example. Type string allows values not allowed as properties on
the Ratings interface, and Ratings doesn’t declare an index signature to allow any
string keys:

interface Ratings {
    audience: number;
    critics: number;
}

Type Operators | 129



function getRating(ratings: Ratings, key: string): number {
    return ratings[key];
    //     ~~~~~~~~~~~
    // Error: Element implicitly has an 'any' type because expression
    // of type 'string' can't be used to index type 'Ratings'.
    //   No index signature with a parameter of
    //   type 'string' was found on type 'Ratings'.
}

const ratings: Ratings = { audience: 66, critic: 84 };

getRating(ratings, 'audience'); // Ok

getRating(ratings, 'not valid'); // Ok, but shouldn't be

Another option would be to use a type union of literals for the allowed keys. That
would be more accurate in properly restricting to only the keys that exist on the
container value:

function getRating(ratings: Ratings, key: 'audience' | 'critic'): number {
    return ratings[key]; // Ok
}

const ratings: Ratings = { audience: 66, critic: 84 };

getRating(ratings, 'audience'); // Ok

getRating(ratings, 'not valid');
//                       ~~~~~~~~~~~
// Error: Argument of type '"not valid"' is not
// assignable to parameter of type '"audience" | "critic"'.

However, what if the interface has dozens or more members? You would have to type
out each of those members’ keys into the union type and keep them up-to-date. What
a pain.

TypeScript instead provides a keyof operator that takes in an existing type and gives
back a union of all the keys allowed on that type. Place it in front of the name of a
type wherever you might use a type, such as a type annotation.

Here, keyof Ratings is equivalent to 'audience' | 'critic' but is much quicker
to write out and won’t need to be manually updated if the Ratings interface ever
changes:

function getCountKeyof(ratings: Ratings, key: keyof Ratings): number {
    return ratings[key]; // Ok
}

const ratings: Ratings = { audience: 66, critic: 84 };

getCountKeyof(ratings, 'audience'); // Ok

130 | Chapter 9: Type Modifiers



getCountKeyof(ratings, 'not valid');
//                     ~~~~~~~~~~~
// Error: Argument of type '"not valid"' is not
// assignable to parameter of type 'keyof Ratings'.

keyof is a great feature for creating union types based on the keys of existing types.
It also combines well with other type operators in TypeScript, allowing for some very
nifty patterns you’ll see later in this chapter and Chapter 15, “Type Operations”.

typeof
Another type operator provided by TypeScript is typeof. It gives back the type of a
provided value. This can be useful if the value’s type would be annoyingly complex to
write manually.

Here, the adaptation variable is declared as being the same type as original:

const original = {
    medium: "movie",
    title: "Mean Girls",
};

let adaptation: typeof original;

if (Math.random() > 0.5) {
    adaptation = { ...original, medium: "play" }; // Ok
} else {
    adaptation = { ...original, medium: 2 };
    //                          ~~~~~~
    // Error: Type 'number' is not assignable to type 'string'.
}

Although the typeof type operator visually looks like the runtime typeof operator
used to return a string description of a value’s type, the two are different. They only
coincidentally use the same word. Remember: the JavaScript operator is a runtime
operator that returns the string name of a type. The TypeScript version, because it’s a
type operator, can only be used in types and won’t appear in compiled code.

keyof typeof

typeof retrieves the type of a value, and keyof retrieves the allowed keys on a type.
TypeScript allows the two keywords to be chained together to succinctly retrieve
the allowed keys on a value’s type. Putting them together, the typeof type operator
becomes wonderfully useful for working with keyof type operations.

In this example, the logRating function is meant to take in one of the keys of
the ratings value. Instead of creating an interface, the code uses keyof typeof to
indicate key must be one of the keys on the type of the ratings value:

Type Operators | 131



const ratings = {
    imdb: 8.4,
    metacritic: 82,
};

function logRating(key: keyof typeof ratings) {
    console.log(ratings[key]);
}

logRating("imdb"); // Ok

logRating("invalid");
//        ~~~~~~~~~
// Error: Argument of type '"missing"' is not assignable
// to parameter of type '"imdb" | "metacritic"'.

By combining keyof and typeof, we get to save ourselves the pain of writing out—
and having to update—types representing the allowed keys on objects that don’t have
an explicit interface type.

Type Assertions
TypeScript works best when your code is “strongly typed”: all the values in your
code have precisely known types. Features such as top types and type guards provide
ways to wrangle complex code into being understood by TypeScript’s type checker.
However, sometimes it’s not reasonably possible to be 100% accurate in telling the
type system how your code is meant to work.

For example, JSON.parse intentionally returns the top type any. There’s no way to
safely inform the type system that a particular string value given to JSON.parse
should return any particular value type. (As we will see in Chapter 10, “Generics”,
adding a generic type to parse that is only used once for a return type would violate a
best practice known as The Golden Rule of Generics.)

TypeScript provides a syntax for overriding the type system’s understanding of a
value’s type: a “type assertion,” also known as a “type cast.” On a value that is meant to
be a different type, you can place the as keyword followed by a type. TypeScript will
defer to your assertion and treat the value as that type.

In this snippet, it is possible that the returned result from JSON.parse is meant to be
a type such as string[], [string, string], or ["grace", "frankie"]. The snippet
uses type assertions for three of the lines of code to switch the type from any to one of
those:

const rawData = `["grace", "frankie"]`;

// Type: any
JSON.parse(rawData);

132 | Chapter 9: Type Modifiers



// Type: string[]
JSON.parse(rawData) as string[];

// Type: [string, string]
JSON.parse(rawData) as [string, string];

// Type: ["grace", "frankie"]
JSON.parse(rawData) as ["grace", "frankie"];

Type assertions exist only in the TypeScript type system. They’re removed along with
all other pieces of type system syntax when compiled to JavaScript. The previous code
would look like this when compiled to JavaScript:

const rawData = `["grace", "frankie"]`;

// Type: any
JSON.parse(rawData);

// Type: string[]
JSON.parse(rawData);

// Type: [string, string]
JSON.parse(rawData);

// Type: ["grace", "frankie"]
JSON.parse(rawData);

If you’re working with older libraries or code, you may see a dif‐
ferent casting syntax that looks like <type>item instead of item
as type. Because this syntax is incompatible with JSX syntax and
therefore does not work in .tsx files, it is discouraged.

TypeScript best practice is generally to avoid using type assertions when possible. It’s
best for your code to be fully typed and to not need to interfere with TypeScript’s
understanding of its types using assertions. But occasionally there will be cases where
type assertions are useful, even necessary.

Asserting Caught Error Types
Error handling is another place where type assertions may come in handy. It is
generally impossible to know what type a caught error in a catch block will be
because the code in the try block may unexpectedly throw any object different from
what you expect. Furthermore, although JavaScript best practice is to always throw
an instance of the Error class, some projects instead throw string literals or other
surprising values.

Type Assertions | 133



If you are absolutely confident that an area of code will only throw an instance of the
Error class, you can use a type assertion to treat a caught assertion as an Error. This
snippet accesses the message property of a caught error that it assumes is an instance
of the Error class:

try {
    // (code that may throw an error)
} catch (error) {
    console.warn("Oh no!", (error as Error).message);
}

It is generally safer to use a form of type narrowing such as an instanceof check to
ensure the thrown error is the expected error type. This snippet checks whether the
thrown error is an instance of the Error class to know whether to log that message or
the error itself:

try {
    // (code that may throw an error)
} catch (error) {
    console.warn("Oh no!", error instanceof Error ? error.message : error);
}

Non-Null Assertions
Another common use case for type assertions is to remove null and/or defined from
a variable that only theoretically, not practically, might include them. That situation is
so common that TypeScript includes a shorthand for it. Instead of writing out as and
the full type of whatever a value is excluding null and undefined, you can use a ! to
signify the same thing. In other words, the ! non-null assertion asserts that the type is
not null or undefined.

The following two type assertions are identical in that they both result in Date and
not Date | undefined:

// Inferred type: Date | undefined
let maybeDate = Math.random() > 0.5
    ? undefined
    : new Date();

// Asserted type: Date
maybeDate as Date;

// Asserted type: Date
maybeDate!;

Non-null assertions are particularly useful with APIs such as Map.get that return a
value or undefined if it doesn’t exist.

134 | Chapter 9: Type Modifiers



Here, seasonCounts is a general Map<string, number>. We know that it contains an
"I Love Lucy" key so the knownValue variable can use a ! to remove | undefined
from its type:

const seasonCounts = new Map([
    ["I Love Lucy", 6],
    ["The Golden Girls", 7],
]);

// Type: string | undefined
const maybeValue = seasonCounts.get("I Love Lucy");

console.log(maybeValue.toUpperCase());
//          ~~~~~~~~~~
// Error: Object is possibly 'undefined'.

// Type: string
const knownValue = seasonCounts.get("I Love Lucy")!;

console.log(knownValue.toUpperCase()); // Ok

Type Assertion Caveats
Type assertions, like the any type, are a necessary escape hatch for TypeScript’s
type system. Therefore, also like the any type, they should be avoided whenever
reasonably possible. It is often better to have more accurate types representing your
code than it is to make it easier to assert on a value’s type. Those assertions are often
wrong—either already so at the time of writing, or they become wrong later on as the
codebase changes.

For example, suppose the seasonCounts example were to change over time to have
different values in the map. Its non-null assertion might still make the code pass
TypeScript type checking, but there might be a runtime error:

const seasonCounts = new Map([
    ["Broad City", 5],
    ["Community", 6],
]);

// Type: string
const knownValue = seasonCounts.get("I Love Lucy")!;

console.log(knownValue.toUpperCase()); // No type error, but...
// Runtime TypeError: Cannot read property 'toUpperCase' of undefined.

Type assertions should generally be used sparingly, and only when you’re absolutely
certain it is safe to do so.

Type Assertions | 135



Assertions versus declarations
There is a difference between using a type annotation to declare a variable’s type
versus using a type assertion to change the type of a variable with an initial value.
TypeScript’s type checker performs assignability checking on a variable’s initial value
against the variable’s type annotation when both exist. A type assertion, however,
explicitly tells TypeScript to skip some of its type checking.

The following code creates two objects of type Entertainer with the same flaw: a
missing acts member. TypeScript is able to catch the error in the declared variable
because of its : Entertainer type annotation. It is not able to catch the error on the
asserted variable because of the type assertion:

interface Entertainer {
    acts: string[];
    name: string;
}

const declared: Entertainer = {
    name: "Moms Mabley",
};
// Error: Property 'acts' is missing in type
// '{ one: number; }' but required in type 'Entertainer'.

const asserted = {
    name: "Moms Mabley",
} as Entertainer; // Ok, but...

// Both of these statements would fail at runtime with:
// Runtime TypeError: Cannot read properties of undefined (reading 'toPrecision')
console.log(declared.acts.join(", "));
console.log(asserted.acts.join(", "));

It is therefore strongly preferable to either use a type annotation or allow TypeScript
to infer a variable’s type from its initial value.

Assertion assignability
Type assertions are meant to be only a small escape hatch, for situations where some
value’s type is slightly incorrect. TypeScript will only allow type assertions between
two types if one of the types is assignable to the other. If the type assertion is between
two completely unrelated types, then TypeScript will notice and report a type error.

For example, switching from one primitive to another is not allowed, as primitives
have nothing to do with each other:

136 | Chapter 9: Type Modifiers



let myValue = "Stella!" as number;
//            ~~~~~~~~~~~~~~~~~~~
// Error: Conversion of type 'string' to type 'number'
// may be a mistake because neither type sufficiently
// overlaps with the other. If this was intentional,
// convert the expression to 'unknown' first.

If you absolutely must switch a value from one type to a totally unrelated type, you
can use a double type assertion. First cast the value to a top type—any or unknown—
and then cast that result to the unrelated type:

let myValueDouble = "1337" as unknown as number; // Ok, but... eww.

as unknown as... double type assertions are dangerous and almost always a sign of
something incorrect in the types of the surrounding code. Using them as an escape
hatch from the type system means the type system may not be able to save you when
changes to surrounding code would cause an issue with previously working code.
I teach double type assertions only as a precautionary tale to help explain the type
system, not to encourage their use.

Const Assertions
Back in Chapter 6, “Arrays”, I introduced an as const syntax for changing a mutable
array type to a read-only tuple type and promised to use it more later in the book.
That time is now!

Const assertions can generally be used to indicate that any value—array, primitive,
value, you name it—should be treated as the constant, immutable version of itself.
Specifically, as const applies the following three rules to whatever type it receives:

• Arrays are treated as readonly tuples, not mutable arrays.•
• Literals are treated as literals, not their general primitive equivalents.•
• Properties on objects are considered readonly.•

You’ve already seen arrays become tuples, as with this array being asserted as a tuple:

// Type: (number | string)[]
[0, ''];

// Type: readonly [0, '']
[0, ''] as const;

Let’s dig into the other two changes as const produces.

Literals to Primitives
It can be useful for the type system to understand a literal value to be that specific
literal, rather than widening it to its general primitive.

Const Assertions | 137



For example, similar to functions that return tuples, it might be useful for a function
to be known to produce a specific literal instead of a general primitive. These func‐
tions also return values that can be made more specific—here, getNameConst’s return
type is the more specific "Maria Bamford" instead of the general string:

// Type: () => string
const getName = () => "Maria Bamford";

// Type: () => "Maria Bamford"
const getNameConst = () => "Maria Bamford" as const;

It may also be useful to have specific fields on a value be more specific literals. Many
popular libraries ask that a discriminant field on a value be a specific literal so the
types of their code can more specifically make inferences on the value. Here, the
narrowJoke variable has a style of type "one-liner" instead of string, so it can be
provided in a location that needs type Joke:

interface Joke {
    quote: string;
    style: "story" | "one-liner";
}

function tellJoke(joke: Joke) {
    if (joke.style === "one-liner") {
        console.log(joke.quote);
    } else {
        console.log(joke.quote.split("\n"));
    }
}

// Type: { quote: string; style: "one-liner" }
const narrowJoke = {
    quote: "If you stay alive for no other reason do it for spite.",
    style: "one-liner" as const,
};

tellJoke(narrowJoke); // Ok

// Type: { quote: string; style: string }
const wideObject = {
    quote: "Time flies when you are anxious!",
    style: "one-liner",
};

tellJoke(wideObject);
// Error: Argument of type '{ quote: string; style: string; }'
// is not assignable to parameter of type 'LogAction'.
//   Types of property 'style' are incompatible.
//     Type 'string' is not assignable to type '"story" | "one-liner"'.

138 | Chapter 9: Type Modifiers



Read-Only Objects
Object literals such as those used as the initial value of a variable generally widen
the types of properties the same way the initial values of let variables widen. String
values such as 'apple' become primitives such as string, arrays are typed as arrays
instead of tuples, and so on. This can be inconvenient when some or all of those
values are meant to later be used in a place that requires their specific literal type.

Asserting a value literal with as const, however, switches the inferred type to be as
specific as possible. All member properties become readonly, literals are considered
their own literal type instead of their general primitive type, arrays become read-only
tuples, and so on. In other words, applying a const assertion to a value literal makes
that value literal immutable and recursively applies the same const assertion logic to
all its members.

As an example, the preferencesMutable value that follows is declared without an as
const, so its names are the primitive type string and it’s allowed to be modified.
favoritesConst, however, is declared with an as const, so its member values are
literals and not allowed to be modified:

function describePreference(preference: "maybe" | "no" | "yes") {
    switch (preference) {
        case "maybe":
            return "I suppose...";
        case "no":
            return "No thanks.";
        case "yes":
            return "Yes please!";
    }
}

// Type: { movie: string, standup: string }
const preferencesMutable = {
    movie: "maybe"
    standup: "yes",
};

describePreference(preferencesMutable.movie);
//                 ~~~~~~~~~~~~~~~~~~~~~~~~
// Error: Argument of type 'string' is not assignable
// to parameter of type '"maybe" | "no" | "yes"'.

preferencesMutable.movie = "no"; // Ok

// Type: readonly { readonly movie: "maybe", readonly standup: "yes" }
const preferencesReadonly = {
    movie: "maybe"
    standup: "yes",
} as const;

Const Assertions | 139



describePreference(preferencesReadonly.movie); // Ok

preferencesReadonly.movie = "no";
//                  ~~~~~
// Error: Cannot assign to 'movie' because it is a read-only property.

Summary
In this chapter, you used type modifiers to take existing objects and/or types and turn
them into new types:

• Top types: the highly permissive any and the highly restrictive unknown•
• Type operators: using keyof to grab the keys of a type and/or typeof to grab the•

type of a value
• Using—and when not to use—type assertions to sneakily change the type of a•

value
• Narrowing types using as const assertions•

Now that you’ve finished reading this chapter, practice what you’ve
learned on https://learningtypescript.com/type-modifiers.

Why was the literal type being stubborn?

It had a narrow mind.

140 | Chapter 9: Type Modifiers

https://learningtypescript.com/type-modifiers


CHAPTER 10

Generics

All the type syntaxes you’ve learned about so far are meant to be used with types
that are completely known when they’re being written. Sometimes, however, a piece
of code may be intended to work with various different types depending on how it’s
called.

Take this identity function in JavaScript meant to receive an input of any possible
type and return that same input as output. How would you describe its parameter
type and return type?

function identity(input) {
    return input;
}

identity("abc");
identity(123);
identity({ quote: "I think your self emerges more clearly over time." });

We could declare input as any, but then the return type of the function would also be
any:

function identity(input: any) {
    return input;
}

let value = identity(42); // Type of value: any

Given that input is allowed to be any input, we need a way to say that there is a
relationship between the input type and the type the function returns. TypeScript
captures relationships between types using generics.

141

Variables you
declare in the type system?

A whole new (typed) world!



In TypeScript, constructs such as functions may declare any number of generic type
parameters: types that are determined for each usage of the generic construct. These
type parameters are used as types in the construct to represent some type that can
be different in each instance of the construct. Type parameters may be provided with
different types, referred to as type arguments, for each instance of the construct but
will remain consistent within that instance.

Type parameters typically have single-letter names like T and U or PascalCase names
like Key and Value. In all of the constructs covered in this chapter, generics may be
declared using < and > brackets, like someFunction<T> or SomeInterface<T>.

Generic Functions
A function may be made generic by placing an alias for a type parameter, wrapped in
angle brackets, immediately before the parameters parentheses. That type parameter
will then be available for usage in parameter type annotations, return type annota‐
tions, and type annotations inside the function’s body.

The following version of identity declares a type parameter T for its input param‐
eter, which allows TypeScript to infer that the return type of the function is T.
TypeScript can then infer a different type for T every time identity is called:

function identity<T>(input: T) {
    return input;
}

const numeric = identity("me"); // Type: "me"
const stringy = identity(123); // Type: 123

Arrow functions can be generic too. Their generic declarations are also placed imme‐
diately before the ( before their list of parameters.

The following arrow function is functionally the same as the previous declaration:

const identity = <T>(input: T) => input;

identity(123); // Type: 123

The syntax for generic arrow functions has some restrictions in .tsx
files, as it conflicts with JSX syntax. See Chapter 13, “Configuration
Options” for workarounds as well as configuring JSX and React
support.

Adding type parameters to functions in this way allows them to be reused with
different inputs while still maintaining type safety and avoiding any types.

142 | Chapter 10: Generics



Explicit Generic Call Types
Most of the time when calling generic functions, TypeScript will be able to infer type
arguments based on how the function is being called. For example, in the previous
examples’ identity functions, TypeScript’s type checker used an argument provided
to identity to infer the corresponding function parameter’s type argument.

Unfortunately, as with class members and variable types, sometimes there isn’t
enough information from a function’s call to inform TypeScript what its type argu‐
ment should resolve to. This will commonly happen if a generic construct is provided
another generic construct whose type arguments aren’t known.

TypeScript will default to assuming the unknown type for any type argument it cannot
infer.

For example, the following logWrapper function takes in a callback with a parameter
type set to logWrapper’s type parameter Input. TypeScript can infer the type argu‐
ment if logWrapper is called with a callback that explicitly declares its parameter type.
If the parameter type is implicit, however, TypeScript has no way of knowing what
Input should be:

function logWrapper<Input>(callback: (input: Input) => void) {
    return (input: Input) => {
        console.log("Input:", input);
        callback(input);
    };
}

// Type: (input: string) => void
logWrapper((input: string) => {
    console.log(input.length);
});

// Type: (input: unknown) => void
logWrapper((input) => {
    console.log(input.length);
    //                ~~~~~~
    // Error: Property 'length' does not exist on type 'unknown'.
});

To avoid defaulting to unknown, functions may be called with an explicit generic type
argument that explicitly tells TypeScript what that type argument should be instead.
TypeScript will perform type checking on the generic call to make sure the parameter
being requested matches up to what’s provided as a type argument.

Here, the logWrapper seen previously is provided with an explicit string for its
Input generic. TypeScript can then infer that the callback’s input parameter of
generic type Input resolves to type string:

Generic Functions | 143



// Type: (input: string) => void
logWrapper<string>((input) => {
    console.log(input.length);
});

logWrapper<string>((input: boolean) => {
    //             ~~~~~~~~~~~~~~~~~~~~~~~
    // Argument of type '(input: boolean) => void' is not
    // assignable to parameter of type '(input: string) => void'.
    //   Types of parameters 'input' and 'input' are incompatible.
    //     Type 'string' is not assignable to type 'boolean'.
});

Much like explicit type annotations on variables, explicit type arguments may always
be specified on a generic function but often aren’t necessary. Many TypeScript devel‐
opers generally only specify them when needed.

The following logWrapper usage explicitly specifies string both as a type argument
and as a function parameter type. Either could be removed:

// Type: (input: string) => void
logWrapper<string>((input: string) => { /* ... */ });

The Name<Type> syntax for specifying a type argument will be the same for other
generic constructs throughout this chapter.

Multiple Function Type Parameters
Functions may define any number of type parameters, separated by commas. Each
call of the generic function may resolve its own set of values for each of the type
parameters.

In this example, makeTuple declares two type parameters and returns a value typed as
a read-only tuple with one, then the other:

function makeTuple<First, Second>(first: First, second: Second) {
    return [first, second] as const;
}

let tuple = makeTuple(true, "abc"); // Type of value: readonly [boolean, string]

Note that if a function declares multiple type parameters, calls to that function must
explicitly declare either none of the generic types or all of them. TypeScript does not
yet support inferring only some of the types of a generic call.

Here, makePair also takes in two type parameters, so either neither of them or both of
them must be explicitly specified:

144 | Chapter 10: Generics



function makePair<Key, Value>(key: Key, value: Value) {
    return { key, value };
}

// Ok: neither type argument provided
makePair("abc", 123); // Type: { key: string; value: number }

// Ok: both type arguments provided
makePair<string, number>("abc", 123); // Type: { key: string; value: number }
makePair<"abc", 123>("abc", 123); // Type: { key: "abc"; value: 123 }

makePair<string>("abc", 123);
//       ~~~~~~
// Error: Expected 2 type arguments, but got 1.

Try not to use more than one or two type parameters in any
generic construct. As with runtime function parameters, the more
you use, the harder it is to read and understand the code.

Generic Interfaces
Interfaces may be declared as generic as well. They follow similar generic rules to
functions: they may have any number of type parameters declared between a < and >
after their name. That generic type may later be used elsewhere in their declaration,
such as on member types.

The following Box declaration has a T type parameter for a property. Creating an
object declared to be a Box with a type argument enforces that the inside: T

property matches that type argument:

interface Box<T> {
    inside: T;
}

let stringyBox: Box<string> = {
    inside: "abc",
};

let numberBox: Box<number> = {
    inside: 123,
}

let incorrectBox: Box<number> = {
    inside: false,
    // Error: Type 'boolean' is not assignable to type 'number'.
}

Generic Interfaces | 145



Fun fact: the built-in Array methods are defined in TypeScript as a generic interface!
Array uses a type parameter T to represent the type of data stored within an array. Its
pop and push methods look roughly like so:

interface Array<T> {
    // ...

    /**
     * Removes the last element from an array and returns it.
     * If the array is empty, undefined is returned and the array is not modified.
     */
    pop(): T | undefined;

    /**
     * Appends new elements to the end of an array,
     * and returns the new length of the array.
     * @param items new elements to add to the array.
     */
    push(...items: T[]): number;

    // ...
}

Inferred Generic Interface Types
As with generic functions, generic interface type arguments may be inferred from
usage. TypeScript will do its best to infer type arguments from the types of values
provided to a location declared as taking in a generic type.

This getLast function declares a type parameter Value that is then used for its node
parameter. TypeScript can then infer Value based on the type of whatever value is
passed in as an argument. It can even report a type error when an inferred type
argument doesn’t match the type of a value. Providing getLast with an object that
doesn’t include next, or whose inferred Value type argument is the same type, is
allowed. Mismatching the provided object’s value and next.value, though, is a type
error:

interface LinkedNode<Value> {
    next?: LinkedNode<Value>;
    value: Value;
}

function getLast<Value>(node: LinkedNode<Value>): Value {
    return node.next ? getLast(node.next) : node.value;
}

// Inferred Value type argument: Date
let lastDate = getLast({
    value: new Date("09-13-1993"),
});

146 | Chapter 10: Generics



// Inferred Value type argument: string
let lastFruit = getLast({
    next: {
        value: "banana",
    },
    value: "apple",
});

// Inferred Value type argument: number
let lastMismatch = getLast({
    next: {
        value: 123
    },
    value: false,
//  ~~~~~
// Error: type 'boolean' is not assignable to type 'number'.
});

Note that if an interface declares type parameters, any type annotations referring
to that interface must provide corresponding type arguments. Here, the usage of
CrateLike is incorrect for not including a type argument:

interface CrateLike<T> {
    contents: T;
}

let missingGeneric: CrateLike = {
    //              ~~~~~~~~~
    // Error: Generic type 'Crate<T>' requires 1 type argument(s).
    inside: "??"
};

Later in this chapter, I’ll show how to provide default values for type parameters to
get around this requirement.

Generic Classes
Classes, like interfaces, can also declare any number of type parameters to be later
used on members. Each instance of the class may have a different set of type argu‐
ments for its type parameters.

This Secret class declares Key and Value type parameters, then uses them for mem‐
ber properties, constructor parameter types, and a method’s parameter and return
types:

class Secret<Key, Value> {
    key: Key;
    value: Value;

    constructor(key: Key, value: Value) {

Generic Classes | 147



        this.key = key;
        this.value = value;
    }

    getValue(key: Key): Value | undefined {
        return this.key === key
            ? this.value
            : undefined;
    }
}

const storage = new Secret(12345, "luggage"); // Type: Secret<number, string>

storage.getValue(1987); // Type: string | undefined

As with generic interfaces, type annotations using a class must indicate to TypeScript
what any generic types on that class are. Later in this chapter, I’ll show how to provide
default values for type parameters to get around this requirement for classes too.

Explicit Generic Class Types
Instantiating generic classes goes by the same type arguments inference rules as
calling generic functions. If the type argument can be inferred from the type of
a parameter to the class constructor, such as the new Secret(12345, "luggage")
earlier, TypeScript will use the inferred type. Otherwise, if a class type argument can’t
be inferred from the arguments passed to its constructor, the type argument will
default to unknown.

This CurriedCallback class declares a constructor that takes in a generic function.
If the generic function has a known type—such as from an explicit type argument
type annotation—then the class instance’s Input type argument can be informed by it.
Otherwise, the class instance’s Input type argument will default to unknown:

class CurriedCallback<Input> {
    #callback: (input: Input) => void;

    constructor(callback: (input: Input) => void) {
        this.#callback = (input: Input) => {
            console.log("Input:", input);
            callback(input);
        };
    }

    call(input: Input) {
        this.#callback(input);
    }
}

// Type: CurriedCallback<string>
new CurriedCallback((input: string) => {

148 | Chapter 10: Generics



    console.log(input.length);
});

// Type: CurriedCallback<unknown>
new CurriedCallback((input) => {
    console.log(input.length);
    //                ~~~~~~
    // Error: Property 'length' does not exist on type 'unknown'.
});

Class instances may also avoid defaulting to unknown by providing explicit type
argument(s) the same way other generic function calls do.

Here, CurriedCallback from before is now being provided with an explicit string
for its Input type argument, so TypeScript can infer that the callback’s Input type
parameter resolves to string:

// Type: CurriedCallback<string>
new CurriedCallback<string>((input) => {
    console.log(input.length);
});

new CurriedCallback<string>((input: boolean) => {
    //                       ~~~~~~~~~~~~~~~~~~~~~~
    // Argument of type '(input: boolean) => void' is not
    // assignable to parameter of type '(input: string) => void'.
    //   Types of parameters 'input' and 'input' are incompatible.
    //     Type 'string' is not assignable to type 'boolean'.
});

Extending Generic Classes
Generic classes can be used as the base class following an extends keyword. Type‐
Script will not attempt to infer type arguments for the base class from usage. Any
type arguments without defaults will need to be specified using an explicit type
annotation.

The following SpokenQuote class provides string as the T type argument for its base
class Quote<T>:

class Quote<T> {
    lines: T;

    constructor(lines: T) {
        this.lines = lines;
    }
}

class SpokenQuote extends Quote<string[]> {
    speak() {
        console.log(this.lines.join("\n"));

Generic Classes | 149



    }
}

new Quote("The only real failure is the failure to try.").lines; // Type: string
new Quote([4, 8, 15, 16, 23, 42]).lines; // Type: number[]

new SpokenQuote([
    "Greed is so destructive.",
    "It destroys everything",
]).lines; // Type: string[]

new SpokenQuote([4, 8, 15, 16, 23, 42]);
//              ~~~~~~~~~~~~~~~~~~~~~~
// Error: Argument of type 'number' is not
// assignable to parameter of type 'string'.

Generic derived classes can alternately pass their own type argument through to their
base class. The type names don’t have to match; just for fun, this AttributedQuote
passes a differently named Value type argument to the base class Quote<T>:

class AttributedQuote<Value> extends Quote<Value> {
    speaker: string

    constructor(value: Value, speaker: string) {
        super(value);
        this.speaker = speaker;
    }
}

// Type: AttributedQuote<string>
// (extending Quote<string>)
new AttributedQuote(
    "The road to success is always under construction.",
    "Lily Tomlin",
);

Implementing Generic Interfaces
Generic classes may also implement generic interfaces by providing them any neces‐
sary type parameters. This works similarly to extending a generic base class: any type
parameters on the base interface must be declared by the class.

Here, the MoviePart class specifies the ActingCredit interface’s Role type argument
as string. The IncorrectExtension class causes a type complaint because its role is
type boolean despite it providing string[] as a type argument to ActingCredit:

interface ActingCredit<Role> {
    role: Role;
}

class MoviePart implements ActingCredit<string> {

150 | Chapter 10: Generics



    role: string;
    speaking: boolean;

    constructor(role: string, speaking: boolean) {
        this.role = role;
        this.speaking = speaking;
    }
}

const part = new MoviePart("Miranda Priestly", true);

part.role; // Type: string

class IncorrectExtension implements ActingCredit<string> {
    role: boolean;
    //    ~~~~~~~
    // Error: Property 'role' in type 'IncorrectExtension' is not
    // assignable to the same property in base type 'ActingCredit<string>'.
    //   Type 'boolean' is not assignable to type 'string'.
}

Method Generics
Class methods may declare their own generic types separate from their class instance.
Each call to a generic class method may have a different type argument for each of its
type parameters.

This generic CreatePairFactory class declares a Key type and includes a createPair
method that also declares a separate Value generic type. The return type for create
Pair is then inferred to be { key: Key, value: Value }:

class CreatePairFactory<Key> {
    key: Key;

    constructor(key: Key) {
        this.key = key;
    }

    createPair<Value>(value: Value) {
        return { key: this.key, value };
    }
}

// Type: CreatePairFactory<string>
const factory = new CreatePairFactory("role");

// Type: { key: string, value: number }
const numberPair = factory.createPair(10);

// Type: { key: string, value: string }
const stringPair = factory.createPair("Sophie");

Generic Classes | 151



Static Class Generics
Static members of a class are separate from instance members and aren’t associated
with any particular instance of the class. They don’t have access to any class instances
or type information specific to any class instances. As a result, while static class
methods can declare their own type parameters, they can’t access any type parameters
declared on a class.

Here, a BothLogger class declares an OnInstance type parameter for its instanceLog
method and a separate OnStatic type parameter for its static staticLog method. The
static method is not able to access the instance OnInstance because OnInstance is
declared for class instances:

class BothLogger<OnInstance> {
    instanceLog(value: OnInstance) {
        console.log(value);
        return value;
    }

    static staticLog<OnStatic>(value: OnStatic) {
        let fromInstance: OnInstance;
        //                ~~~~~~~~~~
        // Error: Static members cannot reference class type arguments.

        console.log(value);
        return value;
    }
}

const logger = new BothLogger<number[]>;
logger.instanceLog([1, 2, 3]); // Type: number[]

// Inferred OnStatic type argument: boolean[]
BothLogger.staticLog([false, true]);

// Explicit OnStatic type argument: string
BothLogger.staticLog<string>("You can't change the music of your soul.");

Generic Type Aliases
One last construct in TypeScript that can be made generic with type arguments is
type aliases. Each type alias may be given any number of type parameters, such as this
Nullish type receiving a T:

type Nullish<T> = T | null | undefined;

Generic type aliases are commonly used with functions to describe the type of a
generic function:

152 | Chapter 10: Generics



type CreatesValue<Input, Output> = (input: Input) => Output;

// Type: (input: string) => number
let creator: CreatesValue<string, number>;

creator = text => text.length; // Ok

creator = text => text.toUpperCase();
//                ~~~~~~~~~~~~~~~~~~
// Error: Type 'string' is not assignable to type 'number'.

Generic Discriminated Unions
I mentioned back in Chapter 4, “Objects” that discriminated unions are my favorite
feature in all of TypeScript because they beautifully combine a common elegant Java‐
Script pattern with TypeScript’s type narrowing. My favorite use for discriminated
unions is to add a type argument to create a generic “result” type that represents
either a successful result with data or a failure with an error.

This Result generic type features a succeeded discriminant that must be used to
narrow a result to whether it’s a success or failure. This means any operation that
returns a Result can indicate an error or data result, and be assured that consumers
will need to check whether the result succeeded:

type Result<Data> = FailureResult | SuccessfulResult<Data>;

interface FailureResult {
    error: Error;
    succeeded: false;
}

interface SuccessfulResult<Data> {
    data: Data;
    succeeded: true;
}

function handleResult(result: Result<string>) {
    if (result.succeeded) {
        // Type of result: SuccessfulResult<string>
        console.log(`We did it! ${result.data}`);
    } else {
        // Type of result: FailureResult
        console.error(`Awww... ${result.error}`);
    }

    result.data;
    //     ~~~~
    // Error: Property 'data' does not exist on type 'Result<string>'.
    //   Property 'data' does not exist on type 'FailureResult'.
}

Generic Type Aliases | 153



Put together, generic types and discriminated types provide a wonderful way to
model reusable types like Result.

Generic Modifiers
TypeScript includes syntax that allows you to modify the behavior of generic type
parameters.

Generic Defaults
I have stated so far that if a generic type is used in a type annotation or as the base
of a class extends or implements, it must provide a type argument for each type
parameter. You can get around explicitly providing type arguments by placing an =
sign followed by a default type after the type parameter’s declaration. The default will
be used in any subsequent type where the type argument isn’t explicitly declared and
can’t be inferred.

Here, the Quote interface takes in a T type parameter that defaults to string if
not provided. The explicit variable explicitly sets T to number while implicit and
mismatch both resolve to string:

interface Quote<T = string> {
    value: T;
}

let explicit: Quote<number> = { value: 123 };

let implicit: Quote = { value: "Be yourself. The world worships the original." };

let mismatch: Quote = { value: 123 };
//                                     ~~~
// Error: Type 'number' is not assignable to type 'string'.

Type parameters can default to earlier type parameters in the same declaration too.
Since each type parameter introduces a new type for the declaration, they are avail‐
able as defaults for later type parameters in that declaration.

This KeyValuePair type can have different types for its Key and Value generics but
defaults to keeping them the same—though because Key doesn’t have a default, it does
still need to be inferrable or provided:

interface KeyValuePair<Key, Value = Key> {
    key: Key;
    value: Value;
}

// Type: KeyValuePair<string, number>
let allExplicit: KeyValuePair<string, number> = {
    key: "rating",

154 | Chapter 10: Generics



    value: 10,
};

// Type: KeyValuePair<string>
let oneDefaulting: KeyValuePair<string> = {
    key: "rating",
    value: "ten",
};

let firstMissing: KeyValuePair = {
    //            ~~~~~~~~~~~~
    // Error: Generic type 'KeyValuePair<Key, Value>'
    // requires between 1 and 2 type arguments.
    key: "rating",
    value: 10,
};

Keep in mind that all default type parameters must come last in their declaration
list, similar to default function parameters. Generic types without a default may not
follow generic types with a default.

Here, inTheEnd is allowed because all generic types without defaults come before
generic types with defaults. inTheMiddle is a problem because a generic type without
a default follows types with defaults:

function inTheEnd<First, Second, Third = number, Fourth = string>() {} // Ok

function inTheMiddle<First, Second = boolean, Third = number, Fourth>() {}
//                                                         // ~~~~~~
// Error: Required type parameters may not follow optional type parameters.

Constrained Generic Types
Generic types by default can be given any type in the world: classes, interfaces,
primitives, unions, you name it. However, some functions are only meant to work
with a limited set of types.

TypeScript allows for a type parameter to declare itself as needing to extend a type:
meaning it’s only allowed to alias types that are assignable to that type. The syntax to
constrain a type parameter is to place the extends keyword after the type parameter’s
name, followed by a type to constrain it to.

For example, by creating a WithLength interface to describe anything that has a
length: number, we can then allow our generic function to take in any type that has
a length for its T generic. Strings, arrays, and now even objects that just so happen
to have a length: number are allowed, while type shapes such as Date missing that
numeric length result in a type error:

Constrained Generic Types | 155



interface WithLength {
    length: number;
}

function logWithLength<T extends WithLength>(input: T) {
    console.log(`Length: ${input.length}`);
    return input;
}

logWithLength("No one can figure out your worth but you."); // Type: string
logWithLength([false, true]); // Type: boolean[]
logWithLength({ length: 123 }); // Type: { length: number }

logWithLength(new Date());
//            ~~~~~~~~~~
// Error: Argument of type 'Date' is not
// assignable to parameter of type 'WithLength'.
//   Property 'length' is missing in type
//   'Date' but required in type 'WithLength'.

I’ll cover more type operations you can perform with generics in Chapter 15, “Type
Operations”.

keyof and Constrained Type Parameters
The keyof operator introduced in Chapter 9, “Type Modifiers” also works well
with constrained type parameters. Using extends and keyof together allows a type
parameter to be constrained to the keys of a previous type parameter. It is also the
only way to specify the key of a generic type.

Take this simplified version of the get method from the popular library Lodash. It
takes in a container value, typed as T, and a key name of one of the keys of T to
retrieve from container. Because the Key type parameter is constrained to be a keyof
T, TypeScript knows this function is allowed to return T[Key]:

function get<T, Key extends keyof T>(container: T, key: Key) {
    return container[key];
}

const roles = {
    favorite: "Fargo",
    others: ["Almost Famous", "Burn After Reading", "Nomadland"],
};

const favorite = get(roles, "favorite"); // Type: string
const others = get(roles, "others"); // Type: string[]

const missing = get(roles, "extras");
//                         ~~~~~~~~
// Error: Argument of type '"extras"' is not assignable
// to parameter of type '"favorite" | "others"'.

156 | Chapter 10: Generics



Without keyof, there would have been no way to correctly type the generic key
parameter.

Note the importance of the Key type parameter in the previous example. If only T is
provided as a type parameter, and the key parameter is allowed to be any keyof T,
then the return type will be the union type of all property values in Container. This
less-specific function declaration doesn’t indicate to TypeScript that each call can have
a specific key via a type argument:

function get<T>(container: T, key: keyof T) {
    return container[key];
}

const roles = {
    favorite: "Fargo",
    others: ["Almost Famous", "Burn After Reading", "Nomadland"],
};

const found = get(roles, "favorite"); // Type: string | string[]

Be sure when writing generic functions to know when a parameter’s type depends on
a previous parameter’s type. You’ll often need to use constrained type parameters for
correct parameter types in those cases.

Promises
Now that you’ve seen how generics work, it’s finally time to talk about a core feature
of modern JavaScript that relies on their concepts: Promises! To recap, a Promise
in JavaScript represents something that might still be pending, such as a network
request. Each Promise provides methods to register callbacks in case the pending
action “resolves” (completes successfully) or “rejects” (throws an error).

A Promise’s ability to represent similar actions on any arbitrary value types is a
natural fit for TypeScript’s generics. Promises are represented in the TypeScript type
system as a Promise class with a single type parameter representing the eventual
resolved value.

Creating Promises
The Promise constructor is typed in TypeScript as taking in a single parameter. That
parameter’s type relies on a type parameter declared on the generic Promise class. A
reduced form would look roughly like this:

class PromiseLike<Value> {
    constructor(
        executor: (
            resolve: (value: Value) => void,
            reject: (reason: unknown) => void,

Promises | 157



        ) => void,
    ) { /* ... */ }
}

Creating a Promise intended to eventually resolve with a value generally necessitates
explicitly declaring the type argument of the Promise. TypeScript would default to
assuming the parameter type is unknown without that explicit generic type argument.
Explicitly providing a type argument to the Promise constructor would allow Type‐
Script to understand the resultant Promise instance’s resolved type:

// Type: Promise<unknown>
const resolvesUnknown = new Promise((resolve) => {
    setTimeout(() => resolve("Done!"), 1000);
});

// Type: Promise<string>
const resolvesString = new Promise<string>((resolve) => {
    setTimeout(() => resolve("Done!"), 1000);
});

A Promise’s generic .then method introduces a new type parameter representing the
resolved value of the Promise it returns.

For example, the following code creates a textEventually Promise that resolves with
a string value after a second, as well as a lengthEventually that waits an additional
second to resolve with a number:

// Type: Promise<string>
const textEventually = new Promise<string>((resolve) => {
    setTimeout(() => resolve("Done!"), 1000);
});

// Type: Promise<number>
const lengthEventually = textEventually.then((text) => text.length)

Async Functions
Any function declared in JavaScript with the async keyword returns a Promise. If a
value returned by an async function in JavaScript isn’t a Thenable (an object with
a .then() method; in practice almost always a Promise), it will be wrapped in a
Promise as if Promise.resolve was called on it. TypeScript recognizes this and will
infer the return type of an async function to always be a Promise for whatever value
is returned.

Here, lengthAfterSecond returns a Promise<number> directly, while
lengthImmediately is inferred to return a Promise<number> because it is async and
directly returns a number:

// Type: (text: string) => Promise<number>
async function lengthAfterSecond(text: string) {

158 | Chapter 10: Generics



    await new Promise((resolve) => setTimeout(resolve, 1000))
    return text.length;
}

// Type: (text: string) => Promise<number>
async function lengthImmediately(text: string) {
    return text.length;
}

Any manually declared return type on an async function therefore must always
be a Promise type, even if the function doesn’t explicitly mention Promises in its
implementation:

// Ok
async function givesPromiseForString(): Promise<string> {
    return "Done!";
}

async function givesString(): string {
    //                        ~~~~~~
    // Error: The return type of an async function
    // or method must be the global Promise<T> type.
    return "Done!";
}

Using Generics Right
As in the Promise<Value> implementations earlier in this chapter, although generics
can give us a lot of flexibility in describing types in code, they can become rather
complex quite quickly. Programmers new to TypeScript often go through a phase
of overusing generics to the point of making code confusing to read and overly
complex to work with. TypeScript best practice is generally to use generics only when
necessary, and to be clear about what they’re used for when they are.

Most code you write in TypeScript should not heavily use generics
to the point of confusion. However, types for utility libraries, par‐
ticularly general-use modules, may sometimes need to heavily use
them. Understanding generics is particularly useful to be able to
work effectively with those utility types.

The Golden Rule of Generics
One quick test that can help show whether a type parameter is necessary for a
function is it should be used at least twice. Generics describe relationships between
types, so if a generic type parameter only appears in one place, it can’t possibly be
defining a relationship between multiple types.

Using Generics Right | 159



Each function type parameter should be used for a parameter and then also for at
least one other parameter and/or the return type of the function.

For example, this logInput function uses its Input type parameter exactly once, to
declare its input parameter:

function logInput<Input extends string>(input: Input) {
    console.log("Hi!", input);
}

Unlike the identify functions earlier in the chapter, logInput doesn’t do anything
with its type parameter such as returning or declaring more parameters. There is
therefore not much use to declaring that Input type parameter. We can rewrite
logInput without it:

function logInput(input: string) {
    console.log("Hi!", input);
}

Effective TypeScript by Dan Vanderkam (O’Reilly, 2019) contains several excellent
tips for how to work with generics, including a section titled “The Golden Rule of
Generics.” I highly recommend reading Effective TypeScript and that section especially
if you’re finding yourself spending a lot of time wrestling with generics in your code.

Generic Naming Conventions
The standard naming convention for type parameters in many languages, TypeScript
included, is to default to calling a first type argument “T” (for “type” or “template”)
and if subsequent type parameters exist, calling them “U,” “V,” and so on.

If some contextual information is known about how the type argument is supposed
to be used, the convention sometimes extends to using the first letter of the term for
that usage: for example, state management libraries might refer to a generic state as
“S.” “K” and “V” often refer to keys and values in data structures.

Unfortunately, naming a type argument with one letter can be just as confusing as
naming a function or variable with just one character:

// What on earth are L and V?!
function labelBox<L, V>(l: L, v: V) { /* ... */ }

When the intent of a generic isn’t clear from a single-letter T, it’s best to use descrip‐
tive generic type names that indicate what the type is used for:

// Much more clear.
function labelBox<Label, Value>(label: Label, value: Value) { /* ... */ }

Whenever a construct has multiple type parameters, or the purpose of a single type
argument isn’t immediately clear, consider using fully written names for readability
instead of single-letter abbreviations.

160 | Chapter 10: Generics



Summary
In this chapter, you made classes, functions, interfaces, and type aliases “generic” by
allowing them to work with type parameters:

• Using type parameters to represent types different between uses of a construct•
• Providing explicit or implicit type arguments when calling generic functions•
• Using generic interfaces to represent generic object types•
• Adding type parameters to classes, and how that impacts their types•
• Adding type parameters to type aliases, in particular with discriminated type•

unions
• Modifying generic type parameters with defaults (=) and constraints (extends)•
• How Promises and async functions use generics to represent asynchronous data•

flow
• Best practices with generics, including their Golden Rule and naming•

conventions

Thus concludes the Features section of this book. Congratulations: you now know all
the most important syntax and type-checking features in the TypeScript type system
for most projects!

The next section, Usage, covers how to configure TypeScript to run on your project,
interact with external dependencies, and tweak its type checking and emitted Java‐
Script. Those are important features for using TypeScript on your own projects.

There are some other miscellaneous type operations available in TypeScript syntax.
You don’t need to fully understand them to work in most TypeScript projects—but
they are interesting and useful to know. I’ve thrown them in Part IV, “Extra Credit”
after Part III, “Usage” as a fun little treat if you have the time.

Now that you’ve finished reading this chapter, practice what you’ve
learned on https://learningtypescript.com/generics.

Why do generics anger developers?

They’re always typing arguments.

Summary | 161

https://learningtypescript.com/generics




PART III

Usage





CHAPTER 11

Declaration Files

Even though writing code in TypeScript is great and that’s all you want to do, you’ll
need to be able to work with raw JavaScript files in your TypeScript projects. Many
packages are written directly in JavaScript, not TypeScript. Even packages that are
written in TypeScript are distributed as JavaScript files.

Moreover, TypeScript projects need a way to be told the type shapes of environment-
specific features such as global variables and APIs. A project running in, say, Node.js
might have access to built-in Node modules not available in browsers—and vice
versa.

TypeScript allows declaring type shapes separately from their implementation. Type
declarations are typically written in files whose names end with the .d.ts extension,
known as declaration files. Declaration files are generally either written within a
project, built and distributed with a project’s compiled npm package, or shared as a
standalone “typings” package.

Declaration Files
A .d.ts declaration file generally works similarly to a .ts file, except with the notable
constraint of not being allowed to include runtime code. .d.ts files contain only
descriptions of available runtime values, interfaces, modules, and general types. They
cannot contain any runtime code that could be compiled down to JavaScript.

Declaration files can be imported just like any other source TypeScript file.

165

Declaration files
Have purely type system code

No runtime constructs



This types.d.ts file exports a Character interface used by an index.ts file:

// types.d.ts
export interface Character {
    catchphrase?: string;
    name: string;
}

// index.ts
import { Character } from "./types";

export const character: Character = {
    catchphrase: "Yee-haw!",
    name: "Sandy Cheeks",
};

Declaration files create what’s known as an ambient context, mean‐
ing an area of code where you can only declare types, not values.

This chapter is largely dedicated to declaration files and the most common forms of
type declarations used within them.

Declaring Runtime Values
Although definition files may not create runtime values such as functions or vari‐
ables, they are able to declare that those constructs exist with the declare keyword.
Doing so tells the type system that some external influence—such as a <script> tag
in a web page—has created the value under that name with a particular type.

Declaring a variable with declare uses the same syntax as a normal variable declara‐
tion, except an initial value is not allowed.

This snippet successfully declares a declared variable but receives a type error for
trying to give a value to an initializer variable:

// types.d.ts
declare let declared: string; // Ok

declare let initializer: string = "Wanda";
//                                ~~~~~~~
// Error: Initializers are not allowed in ambient contexts.

Functions and classes are also declared similarly to their normal forms, but without
the bodies of functions or methods.

166 | Chapter 11: Declaration Files



The following canGrantWish function and method are properly declared without
a body, but the grantWish function and method are syntax errors for improperly
attempting to set up a body:

// fairies.d.ts
declare function canGrantWish(wish: string): boolean; // Ok

declare function grantWish(wish: string) { return true; }
//                                       ~
// Error: An implementation cannot be declared in ambient contexts.

class Fairy {
    canGrantWish(wish: string): boolean; // Ok

    grantWish(wish: string) {
        //                  ~
        // Error: An implementation cannot be declared in ambient contexts.
        return true;
    }
}

TypeScript’s implicit any rules work the same for functions and
variables declared in ambient contexts as they do in normal source
code. Because ambient contexts may not provide function bod‐
ies or initial variable values, explicit type annotations—including
explicit return type annotations—are generally the only way to stop
them from implicitly being type any.

Although type declarations using the declare keyword are most common in .d.ts
definition files, the declare keyword can be used outside of declaration files as well.
A module or script file can use declare as well. This can be useful when a globally
available variable is only meant to be used in that file.

Here, a myGlobalValue variable is defined in an index.ts file, so it’s allowed to be used
in that file:

// index.ts
declare const myGlobalValue: string;

console.log(myGlobalValue); // Ok

Note that while type shapes such as interfaces are allowed with or without a declare
in .d.ts definition files, runtime constructs such as functions or variables will trigger a
type complaint without a declare:

// index.d.ts
interface Writer {} // Ok
declare interface Writer {} // Ok

Declaring Runtime Values | 167



declare const fullName: string; // Ok: type is the primitive string
declare const firstName: "Liz"; // Ok: type is the literal "value"

const lastName = "Lemon";
// Error: Top-level declarations in .d.ts files must
// start with either a 'declare' or 'export' modifier.

Global Values
Because TypeScript files that have no import or export statements are treated as
scripts rather than modules, constructs—including types—declared in them are avail‐
able globally. Definition files without any imports or exports can take advantage of
that behavior to declare types globally. Global definition files are particularly useful
for declaring global types or variables available across all files in an application.

Here, a globals.d.ts file declares that a const version: string exists globally. A
version.ts file is then able to refer to a global version variable despite not importing
from globals.d.ts:

// globals.d.ts
declare const version: string;

// version.ts
export function logVersion() {
    console.log(`Version: ${version}`); // Ok
}

Globally declared values are most often used in browser applications that use global
variables. Although most modern web frameworks generally use newer techniques
such as ECMAScript modules, it can still be useful—especially in smaller projects—to
be able to store variables globally.

If you find that you can’t automatically access global types declared
in a .d.ts file, double-check that the .d.ts file isn’t importing and
exporting anything. Even a single export will cause the whole file to
no longer be available globally!

Global Interface Merging
Variables aren’t the only globals floating around in a TypeScript project’s type system.
Many type declarations exist globally for global APIs and values. Because interfaces
merge with other interfaces of the same name, declaring an interface in a global script
context—such as a .d.ts declaration file without any import or export statements—
augments that interface globally.

168 | Chapter 11: Declaration Files



For example, a web application that relies on a global variable set by the server might
want to declare that as existing on the global Window interface. Interface merging
would allow a file such as types/window.d.ts to declare a variable that exists on the
global window variable of type Window:

<script type="text/javascript">
window.myVersion = "3.1.1";
</script>

// types/window.d.ts
interface Window {
    myVersion: string;
}

// index.ts
export function logWindowVersion() {
    console.log(`Window version is: ${window.myVersion}`);
    window.alert("Built-in window types still work! Hooray!")
}

Global Augmentations
It’s not always feasible to refrain from import or export statements in a .d.ts file that
needs to also augment the global scope, such as when your global definitions are
simplified greatly by importing a type defined elsewhere. Sometimes types declared in
a module file are meant to be consumed globally.

For those cases, TypeScript allows a syntax to declare global a block of code. Doing
so marks the contents of that block as being in a global context even though their
surroundings are not:

// types.d.ts
// (module context)

declare global {
    // (global context)
}

// (module context)

Here, a types/data.d.ts file exports a Data interface, which will later be imported by
both types/globals.d.ts and the runtime index.ts:

// types/data.d.ts
export interface Data {
    version: string;
}

Additionally, types/globals.d.ts declares a variable of type Data globally inside a
declare global block as well as a variable available only in that file:

Declaring Runtime Values | 169



// types/globals.d.ts
import { Data } from "./data";

declare global {
    const globallyDeclared: Data;
}

declare const locallyDeclared: Data;

index.ts then has access to the globallyDeclared variable without an import, and
still needs to import Data:

// index.ts
import { Data } from "./types/data";

function logData(data: Data) { // Ok
    console.log(`Data version is: ${data.version}`);
}

logData(globallyDeclared); // Ok

logData(locallyDeclared);
//      ~~~~~~~~~~~~~~~
// Error: Cannot find name 'locallyDeclared'.

Wrangling global and module declarations to play well together can be tricky. Proper
usage of TypeScript’s declare and global keywords can describe which type defini‐
tions are meant to be available globally in projects.

Built-In Declarations
Now that you’ve seen how declarations work, it’s time to unveil their hidden use in
TypeScript: they’ve been powering its type checking the whole time! Global objects
such as Array, Function, Map, and Set are examples of constructs that the type system
needs to know about but aren’t declared in your code. They’re provided by whatever
runtime(s) your code is meant to run in: Deno, Node, a web browser, etc.

Library Declarations
Built-in global objects such as Array and Function that exist in all JavaScript run‐
times are declared in files with names like lib.[target].d.ts. target is the minimum
support version of JavaScript targeted by your project, such as ES5, ES2020, or
ESNext.

The built-in library definition files, or “lib files,” are fairly large because they repre‐
sent the entirety of JavaScript’s built-in APIs. For example, members on the built-in
Array type are represented by a global Array interface that starts like this:

170 | Chapter 11: Declaration Files



// lib.es5.d.ts

interface Array<T> {
    /**
     * Gets or sets the length of the array.
     * This is a number one higher than the highest index in the array.
     */
    length: number;

    // ...
}

Lib files are distributed as part of the TypeScript npm package. You can find them
inside the package at paths like node_modules/typescript/lib/lib.es5.d.ts. For IDEs such
as VS Code that use their own packaged TypeScript versions to type check code,
you can find the lib file being used by right-clicking on a built-in method such
as an array’s forEach in your code and selecting an option like Go to Definition
(Figure 11-1).

Figure 11-1. Left: going to definition on a forEach; right: the resultant opened
lib.es5.d.ts file

Library targets

TypeScript by default will include the appropriate lib file based on the target setting
provided to the tsc CLI and/or in your project’s tsconfig.json (by default, "es5").
Successive lib files for newer versions of JavaScript build on each other using interface
merging.

For example, static Number members such as EPSILON and isFinite added in ES2015
are listed in lib.es2015.d.ts:

Built-In Declarations | 171



// lib.es2015.d.ts

interface NumberConstructor {
    /**
     * The value of Number.EPSILON is the difference between 1 and the
     * smallest value greater than 1 that is representable as a Number
     * value, which is approximately:
     * 2.2204460492503130808472633361816 x 10−16.
     */
    readonly EPSILON: number;

    /**
     * Returns true if passed value is finite.
     * Unlike the global isFinite, Number.isFinite doesn't forcibly
     * convert the parameter to a number. Only finite values of the
     * type number result in true.
     * @param number A numeric value.
     */
    isFinite(number: unknown): boolean;

    // ...
}

TypeScript projects will include the lib files for all version targets of JavaScript up
through their minimum target. For example, a project with a target of "es2016"
would include lib.es5.d.ts, lib.es2015.d.ts, and lib.es2016.d.ts.

Language features available only in newer versions of JavaScript
than your target will not be available in the type system. For exam‐
ple, if your target is "es5", language features from ES2015 or later
such as String.prototype.startsWith will not be recognized.

Compiler options such as target are covered in more detail in Chapter 13, “Configu‐
ration Options”.

DOM Declarations
Outside of the JavaScript language itself, the most commonly referenced area of type
declarations is for web browsers. Web browser types, generally referred to as “DOM”
types, cover APIs such as localStorage and type shapes such as HTMLElement avail‐
able primarily in web browsers. DOM types are stored in a lib.dom.d.ts file alongside
the other lib.*.d.ts declaration files.

Global DOM types, like many built-in globals, are often described with global inter‐
faces. For example, the Storage interface used for localStorage and sessionStor
age and starts roughly like this:

172 | Chapter 11: Declaration Files



// lib.dom.d.ts

interface Storage {
    /**
     * Returns the number of key/value pairs.
     */
    readonly length: number;

    /**
     * Removes all key/value pairs, if there are any.
     */
    clear(): void;

    /**
     * Returns the current value associated with the given key,
     * or null if the given key does not exist.
     */
    getItem(key: string): string | null;

    // ...
}

TypeScript includes DOM types by default in projects that don’t override the
lib compiler option. That can sometimes be confusing for developers working
on projects meant to be run in nonbrowser environments such as Node, as they
shouldn’t be able to access the global APIs such as document and localStorage that
the type system would then claim to exist. Compiler options such as lib are covered
in more detail in Chapter 13, “Configuration Options”.

Module Declarations
One more important feature of declaration files is their ability to describe the shapes
of modules. The declare keyword can be used before a string name of a module to
inform the type system of the contents of that module.

Here, the "my-example-lib" module is declared as being in existence in a
modules.d.ts declaration script file, then used in an index.ts file:

// modules.d.ts
declare module "my-example-lib" {
    export const value: string;
}

// index.ts
import { value } from "my-example-lib";

console.log(value); // Ok

You shouldn’t have to use declare module often, if ever, in your own code. It’s mostly
used with the following section’s wildcard module declarations and with package

Module Declarations | 173



types covered later in this chapter. Additionally, see Chapter 13, “Configuration
Options” for information on resolveJsonModule, a compiler option that allows
TypeScript to natively recognize imports from .json files.

Wildcard Module Declarations
A common use of module declarations is to tell web applications that a particular
non-JavaScript/TypeScript file extension is available to import into code. Module
declarations may contain a single * wildcard to indicate that any module matching
that pattern looks the same.

For example, many web projects such as those preconfigured in popular React start‐
ers such as create-react-app and create-next-app support CSS modules to import
styles from CSS files as objects that can be used at runtime. They would define
modules with a pattern such as "*.module.css" that default exports an object of type
{ [i: string]: string }:

// styles.d.ts
declare module "*.module.css" {
    const styles: { [i: string]: string };
    export default styles;
}

// component.ts
import styles from "./styles.module.css";

styles.anyClassName; // Type: string

Using wildcard modules to represent local files isn’t completely
type safe. TypeScript does not provide a mechanism to ensure the
imported module path matches a local file. Some projects use a
build system such as Webpack and/or generate .d.ts files from local
files to make sure imports match up.

Package Types
Now that you’ve seen how to declare typings within a project, it’s time to cover
consuming types between packages. Projects written in TypeScript still generally
distribute packages containing compiled .js outputs. They typically use .d.ts files to
declare the backing TypeScript type system shapes behind those JavaScript files.

declaration
TypeScript provides a declaration option to create .d.ts outputs for input files
alongside JavaScript outputs.

174 | Chapter 11: Declaration Files



For example, given the following index.ts source file:

// index.ts
export const greet = (text: string) => {
    console.log(`Hello, ${text}!`);
};

Using declaration, a module of "es2015", and a target of "es2015", the following
outputs would be generated:

// index.d.ts
export declare const greet: (text: string) => void;

// index.js
export const greet = (text) => {
    console.log(`Hello, ${text}!`);
};

Auto-generated .d.ts files are the best way for a project to create type definitions to
be used by consumers. It’s generally recommended that most packages written in
TypeScript that produce .js file outputs should also bundle .d.ts alongside those files.

Compiler options such as declaration are covered in more detail in Chapter 13,
“Configuration Options”.

Dependency Package Types
TypeScript is able to detect and utilize .d.ts files bundled inside a project’s
node_modules dependencies. Those files will inform the type system about the type
shapes exported by that package as if they were written inside the same project or
declared with a declare module block.

A typical npm module that comes with its own .d.ts declaration files might have a file
structure something like:

lib/
    index.js
    index.d.ts
package.json

As an example, the ever-popular test runner Jest is written in TypeScript and provides
its own bundled .d.ts files in its jest package. It has a dependency on the @jest/
globals package that provides functions such as describe and it, which jest then
makes available globally:

// package.json
{
    "devDependencies": {
        "jest": "^32.1.0"
    }
}

Package Types | 175



// using-globals.d.ts
describe("MyAPI", () => {
    it("works", () => { /* ... */ });
});

// using-imported.d.ts
import { describe, it } from "@jest/globals";

describe("MyAPI", () => {
    it("works", () => { /* ... */ });
});

If we were to re-create a very limited subset of the Jest typings packages from scratch,
they might look some something like these files. The @jest/globals package exports
the describe and it functions. Then, the jest package imports those functions and
augments the global scope with describe and it variables of their corresponding
function’s type:

// node_modules/@jest/globals/index.d.ts
export function describe(name: string, test: () => void): void;
export function it(name: string, test: () => void): void;

// node_modules/jest/index.d.ts
import * as globals from "@jest/globals";

declare global {
    const describe: typeof globals.describe;
    const it: typeof globals.it;
}

This structure allows projects that use Jest to refer to global versions of describe
and it. Projects can alternatively choose to import those functions from the @jest/
globals package.

Exposing Package Types
If your project is meant to be distributed on npm and provide types for consumers,
add a "types" field in the package’s package.json file to point to the root declaration
file. The types field works similarly to the main field—and often will look the same
but with the .d.ts extension instead of .js.

For example, in this fictional package file, the ./lib/index.js main runtime file is
paralleled by the ./lib/index.d.ts types file:

{
  "author": "Pendant Publishing",
  "main": "./lib/index.js",
  "name": "coffeetable",
  "types": "./lib/index.d.ts",
  "version": "0.5.22",
}

176 | Chapter 11: Declaration Files



TypeScript would then use the contents of the ./lib/index.d.ts as what should be
provided for consuming files that import from the utilitarian package.

If the types field does not exist in a package’s package.json, Type‐
Script will assume a default value of ./index.d.ts. This mirrors the
default npm behavior of assuming an ./index.js file as the main
entry point for a package if not specified.

Most packages use TypeScript’s declaration compiler option to create .d.ts files
alongside .js outputs from source files. Compiler options are covered in Chapter 13,
“Configuration Options”.

DefinitelyTyped
Sadly, not all projects are written in TypeScript. Some unfortunate developers are still
writing their projects in plain old JavaScript without a type checker to aide them.
Horrifying.

Our TypeScript projects still need to be informed of the type shapes of the modules
from those packages. The TypeScript team and community created a giant repository
called DefinitelyTyped to house community-authored definitions for packages. Defi‐
nitelyTyped, or DT for short, is one of the most active repositories on GitHub. It
contains thousands of packages of .d.ts definitions, along with automation around
reviewing change proposals and publishing updates.

DT packages are published on npm under the @types scope with the same name as
the package they provide types for. For example, as of 2022, @types/react provides
type definitions for the react package.

@types are generally installed as either dependencies or devDepen
dencies, though the distinction between those two has become
blurred in recent years. In general, if your project is meant to
be distributed as an npm package, it should use dependencies so
consumers of the package also bring in the type definitions used
within. If your project is a standalone application such as one built
and run on a server, it should use devDependencies to convey that
the types are just a development-time tool.

For example, for a utility package that relies on lodash—which as of 2022 has a
separate @types/lodash package—the package.json would contain lines similar to:

DefinitelyTyped | 177

https://github.com/DefinitelyTyped/DefinitelyTyped


// package.json
{
    "dependencies": {
        "@types/lodash": "^4.14.182",
        "lodash": "^4.17.21",
    }
}

The package.json for a standalone app built on React might contain lines similar to:

// package.json
{
    "dependencies": {
        "react": "^18.1.0"
    },
    "devDependencies": {
        "@types/react": "^18.0.9"
    },
}

Note that semantic versioning (“semver”) numbers do not necessarily match between
@types/ packages and the packages they represent. You may often find some that are
off by a patch version as with React earlier, a minor version as with Lodash earlier, or
even major versions.

As these files are authored by the community, they may lag behind
the parent project or have small inaccuracies. If your project com‐
piles successfully yet you get runtime errors when calling libraries,
investigate if the signatures of the APIs you are accessing have
changed. This is less common, but still not unheard of, for mature
projects with stable API surfaces.

Type Availability
Most popular JavaScript packages either ship with their own typings or have typings
available via DefinitelyTyped.

If you’d like to get types for a package that doesn’t yet have types available, your three
most common options would be:

• Send a pull request to DefinitelyTyped to create its @types/ package.•
• Use the declare module syntax introduced earlier to write the types within your•

project.
• Disable noImplicitAny as covered—and strongly warned against—in Chap‐•

ter 13, “Configuration Options”.

178 | Chapter 11: Declaration Files



I’d recommend contributing types to DefinitelyTyped if you have the time. Doing so
helps out other TypeScript developers who may also want to use that package.

See aka.ms/types to display whether a package has types bundled or
via a separate @types/ package.

Summary
In this chapter, you used declaration files and value declarations to inform TypeScript
about modules and values not declared in your source code:

• Creating declaration files with .d.ts•
• Declaring types and values with the declare keyword•
• Changing global types using global values, global interface merges, and global•

augmentations
• Configuring and using TypeScript’s built-in target, library, and DOM•

declarations
• Declaring types of modules, including wildcard modules•
• How TypeScript picks up types from packages•
• Using DefinitelyTyped to acquire types for packages that don’t include their own•

Now that you’ve finished reading this chapter, practice what you’ve
learned on https://learningtypescript.com/declaration-files.

What do TypeScript types say in the American South?

“Why, I do declare!”

Summary | 179

https://aka.ms/types
https://learningtypescript.com/declaration-files




CHAPTER 12

Using IDE Features

No popular programming language would be complete without syntax highlighting
and other IDE features to help developing in it. One of TypeScript’s greatest strengths
is that its language service provides a suite of powerful development helpers for
JavaScript and TypeScript code. This chapter will cover some of the most useful
items.

I highly recommend you try these IDE features out on the TypeScript projects you’ve
built alongside this book. Although all the examples and screenshots in this chapter
are of VS Code, my favorite editor, any IDE with TypeScript support will support
most or all of this chapter. As of 2022 that includes the native support or TypeScript
plugins for at least all of: Atom, Emacs, Vim, Visual Studio, and WebStorm.

This chapter is a nonexhaustive list of some of the more commonly
useful TypeScript IDE features, along with any default shortcuts
for them in VS Code. You’ll likely find more as you keep writing
TypeScript code.

Many IDE features are generally made available in the context menu surfaced by
right-clicking on a name in code. IDEs such as VS Code generally show keyboard
shortcuts in the context menu too. Getting comfortable with your IDE’s keyboard
shortcuts can help you write code and execute refactors much more quickly.

This screenshot shows the list of commands and their shortcuts in VS Code for a
variable in TypeScript (Figure 12-1).

181

Programming with an
IDE the first time feels

like superpowers.



Figure 12-1. VS Code showing a list of commands in the right-click context menu for a
variable

In VS Code, as with most applications, up and down arrows select
drop-down options, and Enter activates one.

Navigating Code
Developers generally spend much more time reading code rather than actively writ‐
ing it. Tools that assist in navigating code are supremely useful for speeding that
time up. Many of the features provided by the TypeScript language service are geared
toward learning about code: in particular, jumping between type definitions or values
in code and where they’re used.

I’ll now go through commonly used navigation options from the context menu along
with their VS Code shortcuts.

182 | Chapter 12: Using IDE Features



Finding Definitions
TypeScript can start from a reference to a type definition or value and navigate you
back to its original location in code. VS Code also provides a couple of ways to
backtrace in that way:

• Go to Definition (F12) navigates directly to where a requested name was origi‐•
nally defined.

• Cmd (Mac) / Ctrl (Windows) + clicking a name triggers going to definition as•
well.

• Peek > Peek Definition (Option (Mac) / Alt (Windows) + F12) brings up a Peek•
box showing the definition instead.

Go to Type Definition is a specialized version of Go to Definition that goes to the
definition of whatever type a value is. For an instance of a class or interface, it will
reveal the class or interface itself instead of where the instance is defined.

These screenshots show finding the definition of a data variable imported into a file
with Go to Definition (Figure 12-2).

Figure 12-2. Left: going to definition on a variable name; right: the resultant opened
data.ts file

Navigating Code | 183



When the definition is declared in your own code, such as a relative file, the editor
will bring you to that file. Modules outside your code such as npm packages will
commonly use .d.ts declaration files instead.

Finding References
Given a type definition or value, TypeScript can show you a list of all the references to
it, or places it’s used in the project. VS Code provides a couple ways to visualize that
list.

Go to References (Shift + F12) shows a list of references to that type definition or
value—starting with itself—in an expandable Peek box just below the right-clicked
name.

For example, here’s a Go to References of a data variable’s declaration in one
file, data.ts, that shows both the declaration and its usage in another file, index.ts
(Figure 12-3).

Figure 12-3. Peek menu showing references to a variable

That Peek box contains a file view of the referencing file. You can use that file—type,
run editor commands, and so on—as if it were a regularly opened file. You can also
double-click in the Peek box’s view of a file to open that file.

Clicking through the list of file names on the right of the Peek box will switch the
Peek box’s file view to the clicked file. Double-clicking a line of a file from the list will
open the file and select its matched reference.

Here, VS Code is showing the same data variable’s declaration and usage, but expan‐
ded in the sidebar view on the right (Figure 12-4).

184 | Chapter 12: Using IDE Features



Figure 12-4. Peek menu showing an opened reference to a variable

Find All References (Option (Mac) / Alt (Windows) + Shift + F12) also shows a list of
references, but in a sidebar view that stays visible after code navigation. This can be
useful for opening or performing actions on more than just one reference at a time
(Figure 12-5).

Figure 12-5. Find All References menu for a variable

Finding Implementations
Go to Implementations (Cmd (Mac) / Ctrl (Windows) + F12) and Find All Imple‐
mentations are specialized versions of Go To / Find All References made for inter‐
faces and abstract class methods. They find all implementations of an interface or
abstract method in code (Figure 12-6).

Navigating Code | 185



Figure 12-6. Find All Implementations menu for an AI interface

These are particularly helpful when you’re specifically searching for how values typed
as a type such as class or interface are used. Find All References might be too noisy, as
it will also show definitions of and other type references to the class or interface.

Writing Code
IDE language services such as VS Code’s TypeScript service run in the background
of your editor and react to actions taken in files. They see edits to files as you type
them—even before changes are saved to files. Doing so enables a slew of features that
help automate common tasks when writing TypeScript code.

Completing Names
TypeScript’s APIs can be used by editors to fill in names that exist in the same file as
well. When you start typing a name, such as when providing a previously declared
variable as a function argument, editors using TypeScript will often suggest autocom‐
pletions with a list of variables with matching names. Clicking the name in the list
with your mouse or hitting the Enter key will complete the name (Figure 12-7).

Figure 12-7. Left: autocompletions on a variable typed as dat; right: the result of
autocompleting to an imported data

186 | Chapter 12: Using IDE Features



Automatic import additions will be offered for package dependencies as well. These
screenshots show a TypeScript file’s imports and module code before and after sortBy
is imported from the "lodash" package (Figure 12-8).

Figure 12-8. Left: autocompletions on a variable typed as sortBy; right: the result of
autocompleting to an imported sortBy from lodash

Automatic imports are one of my favorite features of the TypeScript experience. They
greatly expedite the often laborious processes of figuring out where imports come
from and then explicitly typing them out.

Similarly, if you start typing the name of a property from a typed value, editors
powered by TypeScript will offer to autocomplete to known properties of the value’s
type (Figure 12-9).

Figure 12-9. Left: autocompletions on a property typed as forE; right: the result of
autocompleting to .forEach

Automatic Import Updates
If you rename a file or move it from one folder to another, you may need to update
potentially many import statements for the file. Updates may need to be made both in
that file itself and in any other file that imports from it.

If you drag and drop a file or rename it to a nested folder path using the VS Code file
explorer, VS Code will offer to use TypeScript to update file paths for you.

These screenshots show a src/logging.ts file being renamed to a src/shared/logging.ts
location, and file imports getting updated in a corresponding manner (Figure 12-10).

Writing Code | 187



Figure 12-10. Left: a src/index.ts file importing from "./logging"; middle: renaming
src/logging.ts to src/shared/logging.ts; right: src/index.ts with an updated import path

Multifile edits may leave changes to files unsaved. Remember to
save any changed files after running edits on them.

Code Actions
Many of TypeScript’s IDE utilities are provided as actions you can trigger. While
some of these modify only the current file being edited, some can modify many files
at once. Using these code actions is a great way to direct TypeScript to do many
of your manual code writing tasks such as calculating import paths and common
refactors for you.

Code actions are generally represented with some kind of icon in editors when
available. VS Code, for example, shows a clickable light bulb next to your text cursor
when at least one code action is available (Figure 12-11).

Figure 12-11. Code actions lightbulb next to a name causing a type error

188 | Chapter 12: Using IDE Features



Editors generally expose keyboard shortcuts to operate their code
actions menu or equivalent, allowing you to trigger any action in
this chapter without using a mouse. VS Code’s default shortcut to
open a code actions menu is Cmd + . on Mac and Ctrl + . on
Linux/Windows. Up and down arrows select drop-down options,
and Enter activates one.

These code actions—in particular renames and refactors—are especially powerful by
virtue of being informed by TypeScript’s type system. When applying an action to a
type, TypeScript will understand which values across all files are of that type, and can
then apply any needed changes to those values.

Renaming
Changing a name that already exists, such as that of a function, interface, or variable
can be cumbersome to perform manually. TypeScript can perform a renaming for a
name that also updates all references to the name.

The Rename Symbol (F2) context menu option creates a text box where you can
type in a new name. Triggering a rename on a function’s name, for example, would
provide a text box to rename that function and all calls to it. Hit Enter to apply that
name (Figure 12-12).

Figure 12-12. Box for renaming a log function, with logData inserted

If you’d like to see what would happen before you apply the new name, press
Shift + Enter to open a Refactor Preview pane that lists all the text changes that
would happen (Figure 12-13).

Writing Code | 189



Figure 12-13. Refactor preview for renaming a log function, with logData previewed
across two files

Removing unused code
Many IDEs subtly change the visual appearance of code that is unused, such as
imported values and variables that are never referenced. VS Code, for example,
reduces their opacity by about a third.

TypeScript provides code actions to delete unused code. (Figure 12-14) shows the
result of asking TypeScript to remove an unused import statement.

Figure 12-14. Left: selecting an unused import and opening the refactors menu; right: the
file after TypeScript deletes it

190 | Chapter 12: Using IDE Features



Other quick fixes
Many TypeScript error messages are for code problems that can be quickly rectified,
such as minor typos in keywords or variable names. Other commonly useful Type‐
Script quick fixes include:

• Declaring a missing property on a class or interface•
• Correcting a mistyped field name•
• Filling in missing properties of a variable declared as a type•

I recommend checking the list of quick fixes whenever you spot an error message
you haven’t seen before. You never know what useful utilities TypeScript has made
available to resolve it!

Refactoring
The TypeScript language service provides a plethora of handy code changes for
different structures of code. Some are as simple as moving lines of code around, while
others are as complex as creating new functions for you.

When you’ve selected an area of code, VS Code will display a lightbulb icon next to
your selection. Click it to see the list of refactors available.

Here’s a developer extracting an inline array literal to a const variable (Figure 12-15).

Figure 12-15. Left: selecting an array literal and opening the refactors menu; right:
extracting to a constant variable

Working Effectively with Errors
Reading and taking action on error messages is a fact of life for working in any pro‐
gramming language. Every developer, regardless of proficiency with the TypeScript
language, will trigger a plethora of TypeScript compiler errors each time they write
TypeScript code. Using IDE features to enhance your ability to work effectively
with TypeScript compiler errors will help you become much more productive in the
language.

Working Effectively with Errors | 191



Language Service Errors
Editors generally surface any errors reported by the TypeScript language service as
red squigglies underneath the troublesome code. Hovering your mouse over under‐
lined characters will show a hover box next to them with the text of the error
(Figure 12-16).

Figure 12-16. Hover information on a variable that does not exist

VS Code also shows errors for any open files in a Problems tab in its Panels section.
The bottom left View Problem link in the mouse hover box for an error will open
an inline display of the message inserted after the problem’s line and before any
subsequent lines (Figure 12-17).

Figure 12-17. View Problem inline display for a variable that does not exist

When multiple problems exist in the same source file, their displays will include
up and down arrows that you can use to switch between them. F8 and Shift + F8
will work as shortcuts to go forward and backward through that list of problems,
respectively (Figure 12-18).

192 | Chapter 12: Using IDE Features



Figure 12-18. One of two View Problem inline displays for variables that do not exist

Problems tab
VS Code includes a Problems tab in its panel that, as its name suggests, surfaces
any problems in your workspace. That includes errors reported by the TypeScript
language service.

This screenshot shows a Problems tab showing two problems in a TypeScript file
(Figure 12-19).

Figure 12-19. Problems tab showing two errors in a file

Clicking any error within the Problems tab will bring your text cursor to the offend‐
ing line and column in its file.

Note that VS Code will only list problems for files that are currently open. If you want
a real-time updated list of all TypeScript compiler problems, you’ll need to run the
TypeScript compiler in a terminal.

Working Effectively with Errors | 193



Running a terminal compiler
I recommending running the TypeScript compiler in watch mode (covered in Chap‐
ter 13, “Configuration Options”) in a terminal while working in a TypeScript project.
Doing so will give you a real-time updated list of all problems—not just those in files.

To do this in VS Code, open the Terminal panel and run tsc -w (or tsc -b -w if
using project references, also covered in Chapter 13, “Configuration Options”). You
should now see a terminal display showing all TypeScript issues in your project, as in
this screenshot (Figure 12-20).

Figure 12-20. Running tsc -w in a terminal to report a problem in a file

Cmd (Mac) / Ctrl (Windows) + clicking a file name will bring your text cursor to the
offending line and column in its file as well.

Some projects use VS Code launch.json configurations to start a
terminal with TypeScript compiler in watch mode for you. See
code.visualstudio.com/docs/editor/tasks for a full reference on VS
Code tasks.

Understanding types
You will sometimes find that you need to learn the type of something that’s set up in
a way that the type isn’t apparent. For any value, you can hover your mouse over its
name to see a hover box showing its type.

This screenshot shows the hover box for a variable (Figure 12-21).

194 | Chapter 12: Using IDE Features

https://code.visualstudio.com/docs/editor/tasks


Figure 12-21. Hover information on a variable

Hold Ctrl while hovering to also show where the name is declared.

This screenshot shows the Ctrl hover box for the same variable as before
(Figure 12-22).

Figure 12-22. Expanded hover information on a variable

Hover info boxes are also available on types, such as type aliases. This screenshot
shows hovering over a keyof typeof type to see its equivalent union of string literals
(Figure 12-23).

Working Effectively with Errors | 195



Figure 12-23. Expanded hover information on a type

One strategy I’ve found to be helpful when trying to understand components of
complex types is to create a type alias that represents just one component of the type.
You will then be able to hover your mouse over that type alias to see what its type
result is.

For the FruitsType type from before as an example, its typeof fruits portion could
be extracted into a separate intermediary type with a refactor. That intermediary type
can then be hovered to see type information (Figure 12-24).

Figure 12-24. Left: extracting part of the FruitsType type; right: hovering over that
extracted type

The intermediary type alias strategy is particularly useful for debugging the type
operations covered in Chapter 15, “Type Operations”.

196 | Chapter 12: Using IDE Features



Summary
In this chapter, you explored using TypeScript’s IDE integrations to level up your
ability to write TypeScript code:

• Opening context menus on types and values to list their available commands•
• Navigating code by finding definitions, references, and implementations•
• Automating writing code with name completions and automatic imports•
• More code actions including renames and refactors•
• Strategies for viewing and understanding language service errors•
• Strategies for understanding types•

Now that you’ve finished reading this chapter, practice what you’ve
learned on https://learningtypescript.com/using-ide-features.

What do IDEs in love say to each other?

“You complete me!”

Summary | 197

https://learningtypescript.com/using-ide-features




CHAPTER 13

Configuration Options

TypeScript is highly configurable and made to adapt to all common JavaScript usage
patterns. It can work for projects ranging from legacy browser code to the most
modern server environments.

Much of TypeScript’s configurability comes from its cornucopia of over 100 configu‐
ration options that can be provided via either:

• Command-line (CLI) flags passed to tsc•
• “TSConfig” TypeScript configuration files•

This chapter is not intended as a full reference for all TypeScript configuration
options. Instead, I’d suggest treating this chapter as a tour of the most common
options you’ll find yourself using. I’ve included just the ones that tend to be more
useful and widely used for most TypeScript project setups. See aka.ms/tsc for a full
reference on each of these options and more.

tsc Options
Back in Chapter 1, “From JavaScript to TypeScript”, you used tsc index.ts to com‐
pile an index.ts file. The tsc command can take in most of TypeScript’s configuration
options as -- flags.

For example, to run tsc on an index.ts file and skip emitting an index.js file (so, only
run type checking), pass the --noEmit flag:

tsc index.ts --noEmit

You can run tsc --help to get a list of commonly used CLI flags. The full list of tsc
configuration options from aka.ms/tsc is viewable with tsc --all.

199

Compiler options:
Types and modules and oh my!

tsc your way.

https://aka.ms/tsc
https://aka.ms/tsc


Pretty Mode
The tsc CLI has the ability to output in a “pretty” mode: stylized with colors and
spacing to make them easier to read. It defaults to pretty mode if it detects that the
output terminal supports colorful text.

Here’s an example of what tsc looks like printing two type errors from a file
(Figure 13-1).

Figure 13-1. tsc reporting two errors with blue file names, yellow line and column
numbers, and red squigglies

If you’d prefer CLI output that is more condensed and/or doesn’t have different
colors, you can explicitly provide --pretty false to tell TypeScript to use a more
terse, uncolored format (Figure 13-2).

Figure 13-2. tsc reporting two errors in plain text

Watch Mode
My favorite way to use the tsc CLI is with its -w/--watch mode. Instead of exiting
once completed, watch mode will keep TypeScript running indefinitely and continu‐
ously updates your terminal with a real-time list of all the errors it sees.

Running in watch mode on a file that contains two errors is shown in Figure 13-3.

200 | Chapter 13: Configuration Options



Figure 13-3. tsc reporting two errors in watch mode

Figure 13-4 shows tsc updating console output to indicate that the file was changed
in a way to fix all errors.

Figure 13-4. tsc reporting no errors in watch mode

Watch mode is particularly useful when you’re working on large changes such as
refactors across many files. You can use TypeScript’s type errors as a checklist of sorts
to see what still needs to be cleaned up.

TSConfig Files
Instead of always providing all file names and configuration options to tsc, most
configuration options may be specified in a tsconfig.json (“TSConfig”) file in a
directory.

The existence of a tsconfig.json indicates that the directory is the root of a TypeScript
project. Running tsc in a directory will read in any configuration options in that
tsconfig.json file.

You can also pass -p/--project to tsc with a path to a directory containing a
tsconfig.json or any file to have tsc use that instead:

tsc -p path/to/tsconfig.json

TSConfig files are generally strongly recommended to be used for TypeScript projects
whenever possible. IDEs such as VS Code will respect their configuration when
giving you IntelliSense features.

TSConfig Files | 201



See aka.ms/tsconfig.json for the full list of configuration options available in TSCon‐
fig files.

If you don’t set an option in your tsconfig.json, don’t worry that
TypeScript’s default setting for it may change and interfere with
your project’s compilation settings. This almost never happens and
if it did, it would require a major version update to TypeScript and
be called out in the release notes.

tsc --init
The tsc command line includes an --init command to create a new tsconfig.json
file. That newly created TSConfig file will contain a link to the configuration docs as
well as most of the allowed TypeScript configuration options with one-line comments
briefly describing their use.

Running this command:

tsc --init

will generate a fully commented tsconfig.json file:

{
  "compilerOptions": {
    /* Visit https://aka.ms/tsconfig.json to read more about this file */
    // ...
  }
}

I recommend using tsc --init to create your configuration file on your first few
TypeScript projects. Its default values are applicable to most projects, and its docu‐
mentation comments are helpful in understanding them.

CLI Versus Configuration
Looking through the TSConfig file created by tsc --init, you may notice that con‐
figuration options in that file are within a "compilerOptions" object. Most options
available in both the CLI and in TSConfig files fall into one of two categories:

Compiler
How each included file is compiled and/or type checked by TypeScript

File
Which files will or will not have TypeScript run on them

Other settings that we’ll talk about after those two categories, such as project refer‐
ences, generally are only available in TSConfig files.

202 | Chapter 13: Configuration Options

https://aka.ms/tsconfig.json


If a setting is provided to the tsc CLI, such as a one-off change
for a CI or production build, it will generally override any value
specified in a TSConfig file. Because IDEs generally read from
the tsconfig.json in a directory for TypeScript settings, it’s recom‐
mended to put most configuration options in a tsconfig.json file.

File Inclusions
By default, tsc will run on all nonhidden .ts files (those whose names do not start
with a .) in the current directory and any child directories, ignoring hidden directo‐
ries and directories named node_modules. TypeScript configurations can change that
list of files to run on.

include
The most common way to include files is with a top-level "include" property in a
tsconfig.json. It allows an array of strings that describes what directories and/or files to
include in TypeScript compilation.

For example, this configuration file recursively includes all TypeScript source files in
a src/ directory relative to the tsconfig.json:

{
  "include": ["src"]
}

Glob wildcards are allowed in include strings for more fine-grained control of files
to include:

• * matches zero or more characters (excluding directory separators).•
• ? matches any one character (excluding directory separators).•
• **/ matches any directory nested to any levels.•

This configuration file allows only .d.ts files nested in a typings/ directory and src/
files with at least two characters in their name before an extension:

{
  "include": [
    "typings/**/*.d.ts",
    "src/**/*??.*"
  ]
}

For most projects, a simple include compiler option such as ["src"] is generally
sufficient.

File Inclusions | 203



exclude
The include list of files for a project sometimes includes files not meant for compila‐
tion by TypeScript. TypeScript allows a TSConfig file to omit paths from include by
specifying them in a top-level "exclude" property. Similar to include, it allows an
array of strings that describes what directories and/or files to exclude from TypeScript
compilation.

The following configuration includes all files in src/ except for those within any
nested external/ directory and a node_modules directory:

{
  "exclude": ["**/external", "node_modules"],
  "include": ["src"]
}

By default, exclude contains ["node_modules", "bower_components", "jspm_pack
ages"] to avoid running the TypeScript compiler on compiled third-party library
files.

If you’re writing your own exclude list, you typically won’t need to
re-add "bower_components" or "jspm_packages". Most JavaScript
projects that install node modules to a folder within the project
only install to "node_modules".

Keep in mind, exclude only acts to remove files from the starting list in include.
TypeScript will run on any file imported by any included file, even if the imported file
is explicitly listed in exclude.

Alternative Extensions
TypeScript is by default able to read in any file whose extension is .ts. However, some
projects require being able to read in files with different extensions, such as JSON
modules or JSX syntax for UI libraries such as React.

JSX Syntax
JSX syntax like <Component /> is often used in UI libraries such as Preact and React.
JSX syntax is not technically JavaScript. Like TypeScript’s type definitions, it’s an
extension to JavaScript syntax that compiles down to regular JavaScript:

const MyComponent = () => {
  // Equivalent to:
  //   return React.createElement("div", null, "Hello, world!");
  return <div>Hello, world!</div>;
};

204 | Chapter 13: Configuration Options



In order to use JSX syntax in a file, you must do two things:

• Enable the "jsx" compiler option in your configuration options•
• Name that file with a .tsx extension•

jsx

The value used for the "jsx" compiler option determines how TypeScript emits Java‐
Script code for .tsx files. Projects generally use one of these three values (Table 13-1).

Table 13-1. JSX compiler option inputs and outputs

Value Input code Output code Output file extension
“preserve” <div /> <div /> .jsx

“react” <div /> React.createElement("div") .js

“react-native” <div /> <div /> .js

Values for jsx may be provided to the tsc CLI and/or in a TSConfig file.

tsc --jsx preserve

{
  "compilerOptions": {
    "jsx": "preserve"
  }
}

If you’re not directly using TypeScript’s built-in transpiler, which is the case when
you’re transpiling code with a separate tool such as Babel, you most likely can use any
of the allowed values for "jsx". Most web apps built on modern frameworks such
as Next.js or Remix handle React configuration and compiling syntax. If you’re using
one of those frameworks you probably won’t have to directly configure TypeScript’s
built-in transpiler.

Generic arrow functions in .tsx files
Chapter 10, “Generics” mentioned that the syntax for generic arrow functions con‐
flicts with JSX syntax. Attempting to write a type argument <T> for an arrow function
in a .tsx file will give a syntax error for there not being a closing tag for that opening T
element:

const identity = <T>(input: T) => input;
//               ~~~
// Error: JSX element 'T' has no corresponding closing tag.

Alternative Extensions | 205



To work around this syntax ambiguity, you can add an = unknown constraint to the
type argument. Type arguments default to the unknown type so this doesn’t change
code behavior at all. It just indicates to TypeScript to read a type argument, not a JSX
element:

const identity = <T = unknown>(input: T) => input; // Ok

resolveJsonModule
TypeScript will allow reading in .json files if the resolveJsonModule compiler option
is set to true. When it is, .json files may be imported from as if they were .ts files
exporting an object. TypeScript will infer the type of that object as if it were a const
variable.

For JSON files that contain an object, destructuring imports may be used. This pair
of files defines an "activist" string in an activist.json file and imports it into a
usesActivist.ts file:

// activist.json
{
  "activist": "Mary Astell"
}

// usesActivist.ts
import { activist } from "./activist.json";

// Logs: "Mary Astell"
console.log(activist);

Default imports may be used as well if the esModuleInterop compiler option—cov‐
ered later in this chapter—is enabled:

// useActivist.ts
import data from "./activist.json";

For JSON files that contain other literal types, such as arrays or numbers, you’ll have
to use the * as import syntax. This pair of files defines an array of strings in an
activists.json file that is then imported into a useActivists.ts file:

// activists.json
[
   "Ida B. Wells",
   "Sojourner Truth",
   "Tawakkul Karmān"
]

// useActivists.ts
import * as activists from "./activists.json";

// Logs: "3 activists"
console.log(`${activists.length} activists`);

206 | Chapter 13: Configuration Options



Emit
Although the rise of dedicated compiler tools such as Babel has reduced TypeScript’s
role in some projects to solely type checking, many other projects still rely on
TypeScript for compiling TypeScript syntax to JavaScript. It’s quite useful for projects
to be able to take in a single dependency on typescript and use its tsc command to
output the equivalent JavaScript.

outDir
By default, TypeScript places output files alongside their corresponding source
files. For example, running tsc on a directory containing fruits/apple.ts and
vegetables/zucchini.ts would result with output files fruits/apple.js and
vegetables/zucchini.js:

fruits/
  apple.js
  apple.ts
vegetables/
  zucchini.js
  zucchini.ts

Sometimes it may be preferable to place output files in a different folder. Many Node
projects, for example, put transformed outputs in a dist or lib directory.

TypeScript’s outDir compiler option allows specifying a different root directory for
outputs. Output files are kept in the same relative directory structure as input files.

For example, running tsc --outDir dist on the previous directory would place
outputs within a dist/ folder:

dist/
  fruits/
    apple.js
  vegetables/
    zucchini.js
fruits/
  apple.ts
vegetables/
  zucchini.ts

TypeScript calculates the root directory to place output files into by finding the
longest common subpath of all input files (excluding .d.ts declaration files). That
means that projects that place all input source files in a single directory will have that
directory treated as the root.

Emit | 207



For example, if the above example put all inputs in a src/ directory and compiled with
--outDir lib, lib/fruits/apple.js would be created instead of lib/src/fruits/apple.js:

lib/
  fruits/
    apple.js
  vegetables/
    zucchini.js
src/
  fruits/
    apple.ts
  vegetables/
    zucchini.ts

A rootDir compiler option does exist to explicitly specify that root directory, but it’s
rarely necessary or used with values other than . or src.

target
TypeScript is able to produce output JavaScript that can run in environments as old as
ES3 (circa 1999!). Most environments are able to support syntax features from much
newer versions of JavaScript.

TypeScript includes a target compiler option to specify how far back in syntax
support JavaScript code needs to be transpiled. Although target defaults to "es3"
for backward compatibility reasons when not specified and tsc --init defaults
to specifying "es2016", it’s generally advisable to use the newest JavaScript syntax
possible per your target platform(s). Supporting newer JavaScript features in older
environments necessitates creating more JavaScript code, which causes slightly larger
file sizes and slightly worse runtime performance.

As of 2022, all releases within the last year of browsers serving >
0.1% of worldwide users support at least all of ECMAScript 2019
and nearly all of ECMAScript 2020–2021, while the LTS-supported
versions of Node.js support all of ECMAScript 2021. There’s very
little reason not to have a target at least as high as "es2019".

For example, take this TypeScript source containing ES2015 consts and ES2020 ??
nullish coalescing:

function defaultNameAndLog(nameMaybe: string | undefined) {
  const name = nameMaybe ?? "anonymous";
  console.log("From", nameMaybe, "to", name);
  return name;
}

208 | Chapter 13: Configuration Options



With tsc --target es2020 or newer, both const and ?? are supported syntax
features, so TypeScript would only need to remove the : string | undefined from
that snippet:

function defaultNameAndLog(nameMaybe) {
  const name = nameMaybe ?? "anonymous";
  console.log("From", nameMaybe, "to", name);
  return name;
}

With tsc --target es2015 through es2019, the ?? syntax sugar would be compiled
down to its equivalent in older versions of JavaScript:

function defaultNameAndLog(nameMaybe) {
    const name = nameMaybe !== null && nameMaybe !== void 0
      ? nameMaybe
      : "anonymous";
    console.log("From", nameMaybe, "to", name);
    return name;
}

With tsc --target es3 or es5, the const would additionally need to be converted
to its equivalent var:

function defaultNameAndLog(nameMaybe) {
    var name = nameMaybe !== null && nameMaybe !== void 0
      ? nameMaybe
      : "anonymous";
    console.log("From", nameMaybe, "to", name);
    return name;
}

Specifying the target compiler option to a value that matches the oldest environ‐
ment your code runs will ensure code is emitted as modern, terse syntax that can still
run without syntax errors.

Emitting Declarations
Chapter 11, “Declaration Files” covered how .d.ts declaration files may be distributed
in a package to indicate code types to consumers. Most packages use TypeScript’s
declaration compiler option to emit .d.ts output files from source files:

tsc --declaration

{
  "compilerOptions": {
    "declaration": true
  }
}

.d.ts output files are emitted under the same output rules as .js files, including
respecting outDir.

Emit | 209



For example, running tsc --declaration on a directory containing fruits/apple.ts
and vegetables/zucchini.ts would result in output declaration files fruits/apple.d.ts and
vegetables/zucchini.d.ts alongside output .js files:

fruits/
  apple.d.ts
  apple.js
  apple.ts
vegetables/
  zucchini.d.ts
  zucchini.js
  zucchini.ts

emitDeclarationOnly

An emitDeclarationOnly compiler option exists, as a specialized addition to the
declaration compiler option, that directs TypeScript to only emit declaration files:
no .js/.jsx files at all. This is useful for projects that use an external tool to generate
output JavaScript but still want to use TypeScript to generate output definition files:

tsc --emitDeclarationOnly

{
  "compilerOptions": {
    "emitDeclarationOnly": true
  }
}

If emitDeclarationOnly is enabled, either declaration or the composite compiler
option covered later in this chapter must be enabled.

For example, running tsc --declaration --emitDeclarationOnly on a directory
containing fruits/apple.ts and vegetables/zucchini.ts would result with output declara‐
tion files fruits/apple.d.ts and vegetables/zucchini.d.ts without any output .js files:

fruits/
  apple.d.ts
  apple.ts
vegetables/
  zucchini.d.ts
  zucchini.ts

Source Maps
Source maps are descriptions of how the contents of output files match up to original
source files. They allow developer tools such as debuggers to display original source
code when navigating through the output file. They’re particularly useful for visual
debuggers such as those used in browser developer tools and IDEs to let you see orig‐
inal source file contents while debugging. TypeScript includes the ability to output
source maps alongside output files.

210 | Chapter 13: Configuration Options



sourceMap

TypeScript’s sourceMap compiler option enables outputting .js.map or .jsx.map
sourcemaps alongside .js or .jsx output files. Sourcemap files are otherwise given
the same name as their corresponding output JavaScript file and placed in the same
directory.

For example, running tsc --sourceMap on a directory containing fruits/apple.ts and
vegetables/zucchini.ts would result with output sourcemap files fruits/apple.js.map and
vegetables/zucchini.js.map alongside output .js files:

fruits/
  apple.js
  apple.js.map
  apple.ts
vegetables/
  zucchini.js
  zucchini.js.map
  zucchini.ts

declarationMap
TypeScript is also able to generate source maps for .d.ts declaration files. Its
declarationMap compiler option directs it to generate a .d.ts.map source map for
each .d.ts that maps back to the original source file. Declaration maps enable IDEs
such as VS Code to go to the original source file when using editor features such as
Go to Definition.

declarationMap is particularly useful when working with project
references, covered toward the end of this chapter.

For example, running tsc --declaration --declarationMap on a directory con‐
taining fruits/apple.ts and vegetables/zucchini.ts would result in output declaration
sourcemap files fruits/apple.d.ts.map and vegetables/zucchini.d.ts.map alongside out‐
put .d.ts and .js files:

fruits/
  apple.d.ts
  apple.d.ts.map
  apple.js
  apple.ts
vegetables/
  zucchini.d.ts
  zucchini.d.ts.map
  zucchini.js
  zucchini.ts

Emit | 211



noEmit
For projects that completely rely on other tools to compile source files to output
JavaScript, TypeScript can be told to skip emitting files altogether. Enabling the
noEmit compiler option directs TypeScript to act purely as a type checker.

Running tsc --noEmit on any of the previous examples would result in no new files
created. TypeScript would only report any syntax or type errors it finds.

Type Checking
Most of TypeScript’s configuration options control its type checker. You can configure
it to be gentle and forgiving, only emitting type-checking complaints when it’s com‐
pletely certain of an error, or harsh and strict, requiring nearly all code be well typed.

lib
To start, which global APIs TypeScript assumes to be present in the runtime environ‐
ment is configurable with the lib compiler option. It takes in an array of strings that
defaults to your target compiler option, as well as dom to indicate including browser
types.

Most of the time, the only reason to customize lib would be to remove the dom
inclusion for a project that doesn’t run in the browser:

tsc --lib es2020

{
  "compilerOptions": {
    "lib": ["es2020"]
  }
}

Alternately, for a project that uses polyfills to support newer JavaScript APIs, lib can
include dom and any ECMAScript version:

tsc --lib dom,es2021

{
  "compilerOptions": {
    "lib": ["dom", "es2021"]
  }
}

Be wary of modifying lib without providing all the right runtime polyfills. A project
with a lib set to "es2021" running on a platform that only supports up through
ES2020 might have no type-checking errors but still experience runtime errors
attempting to use APIs defined in ES2021 or later, such as String.replaceAll:

212 | Chapter 13: Configuration Options



const value = "a b c";

value.replaceAll(" ", ", ");
// Uncaught TypeError: value.replaceAll is not a function

Think of the lib compiler option as indicating what built-in lan‐
guage APIs are available, whereas the target compiler option indi‐
cates what syntax features exist.

skipLibCheck
TypeScript provides a skipLibCheck compiler option that indicates to skip type
checking in declaration files not explicitly included in your source code. This can be
useful for applications that rely on many dependencies that may rely on different,
conflicting definitions of shared libraries:

tsc --skipLibCheck

{
  "compilerOptions": {
    "skipLibCheck": true
  }
}

skipLibCheck speeds up TypeScript performance by allowing it to skip some type
checking. For this reason, it is generally a good idea to enable it on most projects.

Strict Mode
Most of TypeScript’s type-checking compiler options are grouped into what Type‐
Script refers to as strict mode. Each strictness compiler option defaults to false, and
when enabled, directs the type checker to turn on some additional checks.

I’ll cover the most commonly used strict options in alphabetical order later in this
chapter. From those options, noImplicitAny and strictNullChecks are particularly
useful and impactful in enforcing type-safe code.

You can enable all strict mode checks by enabling the strict compiler option:

tsc --strict

{
  "compilerOptions": {
    "strict": true
  }
}

Type Checking | 213



If you want to enable all strict mode checks except for certain ones, you can both
enable strict and explicitly disable certain checks. For example, this configuration
enables all strict modes except for noImplicitAny:

tsc --strict --noImplicitAny false

{
  "compilerOptions": {
    "noImplicitAny": false,
    "strict": true
  }
}

Future versions of TypeScript may introduce new strict type-
checking compiler options under strict. Using strict may
therefore cause new type-checking complaints when you update
TypeScript versions. You can always opt out of specific settings in
your TSConfig.

noImplicitAny
If TypeScript cannot infer the type of a parameter or property, then it will fall back
to assuming the any type. It is generally best practice to not allow these implicit any
types in code as the any type is allowed to bypass much of TypeScript’s type checking.

The noImplicitAny compiler option directs TypeScript to issue a type-checking
complaint when it has to fall back to an implicit any.

For example, writing the following function parameter without a type declaration
would cause a type error under noImplicitAny:

const logMessage = (message) => {
  //                ~~~~~~~
  // Error: Parameter 'message' implicitly has an 'any' type.
  console.log(`Message: ${message}!`);
};

Most of the time, a noImplicitAny complaint can be resolved either by adding a type
annotation on the complaining location:

const logMessage = (message: string) => { // Ok
  console.log(`Message: ${message}!`);
}

Or, in the case of function parameters, putting the parent function in a location that
indicates the type of the function:

214 | Chapter 13: Configuration Options



type LogsMessage = (message: string) => void;

const logMessage: LogsMessage = (message) => { // Ok
  console.log(`Message: ${message}!`);
}

noImplicitAny is an excellent flag for ensuring type safety across
a project. I highly recommend striving to turn it on in projects
written completely in TypeScript. However, if a project is still tran‐
sitioning from JavaScript to TypeScript, it may be easier to finish
converting all files to TypeScript first.

strictBindCallApply
When TypeScript was first released, it didn’t have rich enough type system features to
be able to represent the built-in Function.apply, Function.bind, or Function.call
function utilities. Those functions by default had to take in any for their list of
arguments. That’s not very type safe!

As an example, without strictBindCallApply, the following variations on get
Length all include any in their types:

function getLength(text: string, trim?: boolean) {
  return trim ? text.trim().length : text.length;
}

// Function type: (thisArg: Function, argArray?: any) => any
getLength.apply;

// Returned type: any
getLength.bind(undefined, "abc123");

// Returned type: any
getLength.call(undefined, "abc123", true);

Now that TypeScript’s type system features are powerful enough to represent those
functions’ generic rest arguments, TypeScript allows opting in to using more restric‐
tive types for the functions.

Enabling strictBindCallApply enables much more precise types for the getLength
variations:

function getLength(text: string, trim?: boolean) {
  return trim ? text.trim().length : text;
}

// Function type:
// (thisArg: typeof getLength, args: [text: string, trim?: boolean]) => number;
getLength.apply;

Type Checking | 215



// Returned type: (trim?: boolean) => number
getLength.bind(undefined, "abc123");

// Returned type: number
getLength.call(undefined, "abc123", true);

TypeScript best practice is to enable strictBindCallApply. Its improved type check‐
ing for built-in function utilities helps improve type safety for projects that utilize
them.

strictFunctionTypes

The strictFunctionTypes compiler option causes function parameter types to be
checked slightly more strictly. A function type is no longer considered assignable to
another function type if its parameters are subtypes of that other type’s parameters.

As a concrete example, the checkOnNumber function here takes in a function
that should be able to receive a number | string, but is provided with a
stringContainsA function that expects to take in a parameter only of type string.
TypeScript’s default type checking would allow it—and the program would crash
from trying to call .match() on a number:

function checkOnNumber(containsA: (input: number | string) => boolean) {
  return containsA(1337);
}

function stringContainsA(input: string) {
  return !!input.match(/a/i);
}

checkOnNumber(stringContainsA);

Under strictFunctionTypes, checkOnNumber(stringContainsA) would cause a
type-checking error:

// Argument of type '(input: string) => boolean' is not assignable
// to parameter of type '(input: string | number) => boolean'.
//   Types of parameters 'input' and 'input' are incompatible.
//     Type 'string | number' is not assignable to type 'string'.
//       Type 'number' is not assignable to type 'string'.
checkOnNumber(stringContainsA);

In technical terms, function parameters switch from being bivar‐
iant to contravariant. You can read more about the difference in the
TypeScript 2.6 release notes.

216 | Chapter 13: Configuration Options

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-6.html


strictNullChecks
Back in Chapter 3, “Unions and Literals”, I discussed the billion-dollar mistake of
languages: allowing empty types such as null and undefined to be assignable to
nonempty types. Disabling TypeScript’s strictNullChecks flag roughly adds null |
undefined to every type in your code, thereby allowing any variable to receive null
or undefined.

This code snippet would cause a type error for assigning null to a string typed value
only when strictNullChecks is enabled:

let value: string;

value = "abc123"; // Always ok

value = null;
// With strictNullChecks enabled:
// Error: Type 'null' is not assignable to type 'string'.

TypeScript best practice is to enable strictNullChecks. Doing so helps prevent
crashes and eliminates the billion-dollar mistake.

Refer to Chapter 3, “Unions and Literals” for more details.

strictPropertyInitialization
Back in Chapter 8, “Classes”, I discussed strict initialization checking in classes: mak‐
ing sure that each property on a class is definitely assigned in the class constructor.
TypeScript’s strictPropertyInitialization flag causes a type error to be issued
on class properties that have no initializer and are not definitely assigned in the
constructor.

TypeScript best practice is generally to enable strictPropertyInitialization.
Doing so helps prevent crashes from mistakes in class initialization logic.

Refer to Chapter 8, “Classes” for more details.

useUnknownInCatchVariables
Error handling in any language is an inherently unsafe concept. Any function can in
theory throw any number of errors from edge cases such as reading properties on
undefined or user-written throw statements. In fact, there’s no guarantee a thrown
error is even an instance of the Error class: code can always throw "something-
else".

As a result, TypeScript’s default behavior for errors is to give them type any, as they
could be anything. That allows flexibility in error handling at the cost of relying on
the not-very-type-safe any by default.

Type Checking | 217



The following snippet’s error is typed any because there’s no way for TypeScript to
know what all the possible errors thrown by someExternalFunction() could be:

try {
  someExternalFunction();
} catch (error) {
  error; // Default type: any
}

As with most any uses, it would be more technically sound—at the cost of often
necessitating explicit type assertions or narrowing—to treat errors as unknown
instead. Catch clause errors are allowed to be annotated as the any or unknown types.

This snippet correction adds an explicit : unknown to error to switch it to the
unknown type:

try {
  someExternalFunction();
} catch (error: unknown) {
  error; // Type: unknown
}

The strict area flag useUnknownInCatchVariables changes TypeScript’s default catch
clause error type to unknown. With useUnknownInCatchVariables enabled, both snip‐
pets would have type of error set to be unknown.

TypeScript best practice is generally to enable useUnknownInCatchVariables, as it’s
not always safe to assume errors will be any particular type.

Modules
JavaScript’s various systems for exporting and importing module contents—AMD,
CommonJS, ECMAScript, and so on—are one of the most convoluted module sys‐
tems in any modern programming language. JavaScript is relatively unusual in that
the way files import each other’s contents is often driven by user-written frameworks
such as Webpack. TypeScript does its best to provide configuration options that
represent most reasonable user-land module configurations.

Most new TypeScript projects are written with the standardized ECMAScript mod‐
ules syntax. To recap, here is how ECMAScript modules import a value (value) from
another module ("my-example-lib") and export their own value (logValue):

import { value } from "my-example-lib";

export const logValue = () => console.log(value);

218 | Chapter 13: Configuration Options



module
TypeScript provides a module compiler option to direct which module system tran‐
spiled code will use. When writing source code with ECMAScript modules, Type‐
Script may transpile the export and import statements to a different module system
based on the module value.

For example, directing that a project written in ECMAScript be output as CommonJS
modules in either the command line:

tsc --module commonjs

or in a TSConfig:

{
  "compilerOptions": {
    "module": "commonjs"
  }
}

The previous code snippet would roughly be output as:

const my_example_lib = require("my-example-lib");
exports.logValue = () => console.log(my_example_lib.value);

If your target compiler option is "es3" or "es5", module’s default value will
be "commonjs". Otherwise, module will default to "es2015" to specify outputting
ECMAScript modules.

moduleResolution
Module resolution is the process by which the imported path in an import is mapped
to a module. TypeScript provides a moduleResolution option that you can use to
specify the logic for that process. You’ll typically want to provide it one of two logic
strategies:

• node: The behavior used by CommonJS resolvers such as traditional Node.js•
• nodenext: Aligning to the behavior specified for ECMAScript modules•

The two strategies are similar. Most projects could use either of them and not notice
a difference. You can read more on the intricacies behind the scenes of module
resolution on https://www.typescriptlang.org/docs/handbook/module-resolution.html.

moduleResolution does not change how TypeScript emits code at
all. It’s only used to describe the runtime environment your code is
meant to be run in.

Modules | 219

https://www.typescriptlang.org/docs/handbook/module-resolution.html


Both the following CLI snippet and JSON file snippet would work to specify the
moduleResolution compiler option:

tsc --moduleResolution nodenext

{
  "compilerOptions": {
    "moduleResolution": "nodenext"
  }
}

For backward compatibility reasons, TypeScript keeps the default
moduleResolution value to a classic value that was used for
projects years ago. You almost certainly do not want the classic
strategy in any modern project.

Interoperability with CommonJS
When working with JavaScript modules, there is a difference between the “default”
export of a module and its “namespace” output. The default export of a module is
the .default property on its exported object. The namespace export of a module is
the exported object itself.

Table 13-2 recaps the differences between default and namespace exports and
imports.

Table 13-2. CommonJS and ECMAScript module export and import forms

Area of syntax CommonJS ECMAScript modules
Default export module.exports.default = value; export default value;

Default import const { default: value } = 
require("...");

import value from "...";

Namespace export module.exports = value; Not supported

Namespace import const value = require("..."); import * as value from 
"...";

TypeScript’s type system builds its understanding of file imports and exports in terms
of ECMAScript modules. If your project depends on npm packages as most do,
however, it’s likely some of those dependencies are still published as CommonJS
modules. Furthermore, although some packages that comply with ECMAScript mod‐
ules rules avoid including a default export, many developers prefer the more succinct
default-style imports over namespace-style imports. TypeScript includes a few com‐
piler options that improve interoperability between module formats.

220 | Chapter 13: Configuration Options



esModuleInterop

The esModuleInterop configuration option adds a small amount of logic to Java‐
Script code emitted by TypeScript when module is not an ECMAScript module
format such as "es2015" or "esnext". That logic allows ECMAScript modules to
import from modules even if they don’t happen to adhere to ECMAScript modules’
rules around default or namespace imports.

One common reason to enable esModuleInterop is for packages such as "react" that
do not ship a default export. If a module attempts to use a default-style import from
the "react" package, TypeScript would report a type error without esModuleInterop
enabled:

import React from "react";
//     ~~~~~
// Module '"file:///node_modules/@types/react/index"' can
// only be default-imported using the 'esModuleInterop' flag.

Note that esModuleInterop only directly changes how emitted JavaScript code works
with imports. The following allowSyntheticDefaultImports configuration option is
what informs the type system about import interoperability.

allowSyntheticDefaultImports

The allowSyntheticDefaultImports compiler option informs the type system that
ECMAScript modules may default import from files that are otherwise incompatible
CommonJS namespace exports.

It defaults to true only if either of the following is true:

• module is "system" (an older, rarely used module format not covered in this•
book).

• esModuleInterop is true and module is not an ECMAScript modules format•
such as "es2015" or "esnext".

In other words, if esModuleInterop is true but module is "esnext", TypeScript will
assume output compiled JavaScript code is not using import interoperability helpers.
It would report a type error for a default import from packages such as "react":

import React from "react";
// Module '"file:///node_modules/@types/react/index"' can only be
// default-imported using the 'allowSyntheticDefaultImports' flag`.

isolatedModules
External transpilers such as Babel that only operate on one file at a time cannot use
type system information to emit JavaScript. As a result, TypeScript syntax features

Modules | 221



that rely on type information to emit JavaScript aren’t generally supported in those
transpilers. Enabling the isolatedModules compiler tells TypeScript to report an
error on any instance of a syntax that is likely to cause issues in those transpilers:

• Const enums, covered in Chapter 14, “Syntax Extensions”•
• Script (nonmodule) files•
• Standalone type exports, covered in Chapter 14, “Syntax Extensions”•

I generally recommend enabling isolatedModules if your project uses a tool other
than TypeScript to transpile to JavaScript.

JavaScript
While TypeScript is lovely and I hope you want to always write code in it, you don’t
have to write all your source files in TypeScript. Although TypeScript by default
ignores files with a .js or .jsx extension, using its allowJs and/or checkJs compiler
options will allow it to read from, compile, and even—in a limited capacity—type
check JavaScript files.

A common strategy for converting an existing JavaScript project to
TypeScript is to start off with only a few files initially converted to
TypeScript. More files may be added over time until there are no
more JavaScript files left. You don’t have to go all-in on TypeScript
until you’re ready to!

allowJs
The allowJs compiler option allows constructs declared in JavaScript files to fac‐
tor into type checking TypeScript files When combined with the jsx compiler
option, .jsx files are also allowed.

For example, take this index.ts importing a value declared in a values.js file:

// index.ts
import { value } from "./values";

console.log(`Quote: '${value.toUpperCase()}'`);

// values.js
export const value = "We cannot succeed when half of us are held back.";

Without allowJs enabled, the import statement would not have a known type. It
would be implicitly any by default or trigger a type error like “Could not find a
declaration file for module "./values".”

222 | Chapter 13: Configuration Options



allowJs also adds JavaScript files to the list of files compiled to the ECMAScript
target and emitted as JavaScript. Source maps and declaration files will be produced
as well if the options to do so are enabled:

tsc --allowJs

{
  "compilerOptions": {
    "allowJs": true
  }
}

With allowJs enabled, the imported value would be type string. No type errors
would be reported.

checkJs
TypeScript can do more than just factor JavaScript files into type checking TypeScript
files: it can type check JavaScript files too. The checkJs compiler option serves two
purposes:

• Defaulting allowJs to true if it wasn’t already•
• Enabling the type checker on .js and .jsx files•

Enabling checkJs will make TypeScript treat JavaScript files as if they were Type‐
Script files that don’t have any TypeScript-specific syntax. Type mismatches, misspel‐
led variable names, and so on will all cause type errors as they normally would in a
TypeScript file:

tsc --checkJs

{
  "compilerOptions": {
    "checkJs": true
  }
}

With checkJs enabled, this JavaScript file would cause a type-checking complaint for
an incorrect variable name:

// index.js
let myQuote = "Each person must live their life as a model for others.";

console.log(quote);
//          ~~~~~
// Error: Cannot find name 'quote'. Did you mean 'myQuote'?

Without checkJs enabled, TypeScript would not have reported a type error for that
likely bug.

JavaScript | 223



@ts-check

Alternately, checkJs can be enabled on a file-by-file basis by including
a // @ts-check comment on top of the file. Doing so enables the checkJs option for
just that JavaScript file:

// index.js
// @ts-check
let myQuote = "Each person must live their life as a model for others.";

console.log(quote);
//          ~~~~~~~
// Error: Cannot find name 'quote'. Did you mean 'myQuote'?

JSDoc Support
Because JavaScript doesn’t have TypeScript’s rich type syntax, the types of values
declared in JavaScript files are often not as precise as those declared in TypeScript
files. For example, while TypeScript can infer the value of an object declared as a
variable in a JavaScript file, there’s no native JavaScript way to declare in that file that
the value adheres to any particular interface.

I mentioned back in Chapter 1, “From JavaScript to TypeScript” that the JSDoc
community standard provides some ways to describe types using comments. When
allowJs and/or checkJs are enabled, TypeScript will recognize any JSDoc definitions
in code.

For example, this snippet declares in JSDoc that the sentenceCase function takes in
a string. TypeScript can then infer that it returns a string. With checkJs enabled,
TypeScript would know to report a type error for passing it a string[] later:

// index.js

/**
 * @param {string} text
 */
function sentenceCase(text) {
    return `${text[0].toUpperCase()} ${text.slice(1)}.`;
}

sentenceCase("hello world");// Ok

sentenceCase(["hello", "world"]);
//           ~~~~~~~~~~~~~~~~~~
// Error: Argument of type 'string[]' is not
// assignable to parameter of type 'string'.

TypeScript’s JSDoc support is useful for incrementally adding type checking for
projects that don’t have the time or developer familiarity to convert to TypeScript.

224 | Chapter 13: Configuration Options



The full list of supported JSDoc syntax is available on https://
www.typescriptlang.org/docs/handbook/jsdoc-supported-types.html.

Configuration Extensions
As you write more and more TypeScript projects, you may find yourself writing
the same project settings repeatedly. Although TypeScript doesn’t allow configuration
files to be written in JavaScript and use import or require, it does offer a mechanism
for a TSConfig file to opt into “extending,” or copying in configuration values, from
another configuration file.

extends
A TSConfig may extend from another TSConfig with the extends configuration
option. extends takes in a path to another TSConfig file and indicates that all settings
from that file should be copied over. It behaves similarly to the extends keyword on
classes: any option declared on the derived, or child, configuration will override any
option of the same name on the base, or parent, configuration.

For example, many repositories that have multiple TSConfigs, such as monorepos
containing multiple packages/* directories, by convention create a tsconfig.base.json
file for tsconfig.json files to extend from:

// tsconfig.base.json
{
  "compilerOptions": {
    "strict": true
  }
}

// packages/core/tsconfig.json
{
  "extends": "../../tsconfig.base.json",
  "includes": ["src"]
}

Note that compilerOptions are factored in recursively. Each compiler option from
a base TSConfig will copy over to a derived TSConfig unless the derived TSConfig
overrides that specific option.

If the previous example were to add a TSConfig that adds the allowJs option, that
new derived TSConfig would still have compilerOptions.strict set to true:

// packages/js/tsconfig.json
{
  "extends": "../../tsconfig.base.json",

Configuration Extensions | 225

https://www.typescriptlang.org/docs/handbook/jsdoc-supported-types.html
https://www.typescriptlang.org/docs/handbook/jsdoc-supported-types.html


  "compilerOptions": {
    "allowJs": true
  },
  "includes": ["src"]
}

Extending modules

The extends property may point to either kind of JavaScript import:

Absolute
Starting with @ or an alphabetical letter

Relative
A local file path starting with .

When an extends value is an absolute path, it indicates to extend the TSConfig from
an npm module. TypeScript will use the normal Node module resolution system
to find a package matching the name. If that package’s package.json contains a
"tsconfig" field containing a relative path string, the TSConfig file at that path will
be used. Otherwise, the package’s tsconfig.json file will be used.

Many organizations use npm packages to standardize TypeScript compiler options
across repositories and/or within monorepos. The following TSConfig files are what
you might set up for a monorepo in a @my-org organization. packages/js needs
to specify the allowJs compiler option, while packages/ts does not change any
compiler options:

// packages/tsconfig.json
{
  "compilerOptions": {
    "strict": true
  }
}

// packages/js/tsconfig.json
{
  "extends": "@my-org/tsconfig",
  "compilerOptions": {
    "allowJs": true
  },
  "includes": ["src"]
}

// packages/ts/tsconfig.json
{
  "extends": "@my-org/tsconfig",
  "includes": ["src"]
}

226 | Chapter 13: Configuration Options



Configuration Bases
Instead of creating your own configuration from scratch or the --init suggestions,
you can start with a premade “base” TSConfig file tailored to a particular runtime
environment. These premade configuration bases are available on the npm package
registry under @tsconfig/, such as @tsconfig/recommended or @tsconfig/node16.

For example, to install the recommended TSConfig base for deno:

npm install --save-dev @tsconfig/deno
# or
yarn add --dev @tsconfig/deno

Once a configuration base package is installed, it can be referenced like any other
npm package configuration extension:

{
    "extends": "@tsconfig/deno/tsconfig.json"
}

The full list of TSConfig bases is documented on https://github.com/tsconfig/bases.

It is generally a good idea to know what TypeScript configura‐
tion options your file is using, even if you aren’t changing them
yourself.

Project References
Each of the TypeScript configuration files I’ve shown so far have assumed they
manage all the source files of a project. It can be useful in larger projects to use
different configuration files for different areas of a project. TypeScript allows defining
a system of “project references” where multiple projects can be built together. Setting
up project references is a little more work than using a single TSConfig file but comes
with several key benefits:

• You can specify different compiler options for certain areas of code.•
• TypeScript will be able to cache build outputs for individual projects, often•

resulting in significantly faster build times for large projects.
• Project references enforce a “dependency tree” (only allowing certain projects to•

import files from certain other projects), which can help structure discrete areas
of code.

Project References | 227

https://github.com/tsconfig/bases


Project references are generally used in larger projects that have
multiple distinct areas of code, such as monorepos and modular
component systems. You probably don’t want to use them for small
projects that don’t have dozens or more files.

The following three sections show how to build up project settings to enable project
references:

• composite mode on a TSConfig enforces that it works in ways suitable for•
multi-TSConfig build modes.

• references in a TSConfig indicate which composite TSConfigs it relies on.•
• Build mode uses composite TSConfig references to orchestrate building their•

files.

composite
TypeScript allows a project to opt into the composite configuration option to indicate
that its file system inputs and outputs obey constraints that make it easier for build
tools to determine whether its build outputs are up-to-date compared to its build
inputs. When composite is true:

• The rootDir setting, if not already explicitly set, defaults to the directory contain‐•
ing the TSConfig file.

• All implementation files must be matched by an include pattern or listed in the•
files array.

• declaration must be turned on.•

This configuration snippet matches all conditions for enabling composite mode in a
core/ directory:

// core/tsconfig.json
{
  "compilerOptions": {
    "declaration": true
  },
  "composite": true
}

These changes help TypeScript enforce that all input files to the project create a
matching .d.ts file. composite is generally most useful in combination with the
following references configuration option.

228 | Chapter 13: Configuration Options



references
A TypeScript project can indicate it relies on the outputs generated by a composite
TypeScript project with a references setting in its TSConfig. Importing modules
from a referenced project will be seen in the type system as importing from its
output .d.ts declaration file(s).

This configuration snippet sets up a shell/ directory to reference a core/ directory as
its inputs:

// shell/tsconfig.json
{
  "references": [
    { "path": "../core" }
  ]
}

The references configuration option will not be copied from base
TSConfigs to derived TSConfigs via extends.

references is generally most useful in combination with the following build mode.

Build Mode
Once an area of code has been set up to use project references, it will be possible to
use tsc in its alternate “build” mode via the -b/--b CLI flag. Build mode enhances
tsc into something of a project build coordinator. It lets tsc rebuild only the projects
that have been changed since the last build, based on when their contents and their
file outputs were last generated.

More precisely, TypeScript’s build mode will do the following when given a TSConfig:

1. Find that TSConfig’s referenced projects.1.
2. Detect if they are up-to-date.2.
3. Build out-of-date projects in the correct order.3.
4. Build the provided TSConfig if it or any of its dependencies have changed.4.

The ability of TypeScript’s build mode to skip rebuilding up-to-date projects can
significantly improve build performance.

Project References | 229



Coordinator configurations
A common handy pattern for setting up TypeScript project references in a repository
is to set up a root-level tsconfig.json with an empty files array and references
to all the project references in the repository. That root TSConfig won’t direct Type‐
Script to build any files itself. Instead it will act purely to tell TypeScript to build
referenced projects as needed.

This tsconfig.json indicates to build the packages/core and packages/shell
projects in a repository:

// tsconfig.json
{
  "files": [],
  "references": [
    { "path": "./packages/core" },
    { "path": "./packages/shell" }
  ]
}

I personally like to standardize having a script in my package.json named build or
compile that calls to tsc -b as a shortcut:

// package.json
{
  "scripts": {
    "build": "tsc -b"
  }
}

Build-mode options
Build mode supports a few build-specific CLI options:

• --clean: deletes the outputs of the specified projects (may be combined with•
--dry)

• --dry: shows what would be done but doesn’t actually build anything•
• --force: acts as if all projects are out of date•
• -w/--watch: similar to the typical TypeScript watch mode•

Because build mode supports watch mode, running a command like tsc -b -w can
be a fast way to get an up-to-date listing of all compiler errors in a large project.

230 | Chapter 13: Configuration Options



Summary
In this chapter, you went over many of the important configuration options provided
by TypeScript:

• Using tsc, including its pretty and watch modes•
• Using TSConfig files, including creating one with tsc --init•
• Changing which files will be included by the TypeScript compiler•
• Allowing JSX syntax in .tsx files and/or JSON syntax in .json files•
• Changing the directory, ECMAScript version target, declaration file, and/or•

source map outputs with files
• Changing the built-in library types used in compilation•
• Strict mode and useful strict flags such as noImplicitAny and strictNullChecks•
• Supporting different module systems and changing module resolution•
• Allowing including JavaScript files, and opting into type checking those files•
• Using extends to share configuration options between files•
• Using project references and build mode to orchestrate multi-TSConfig builds•

Now that you’ve finished reading this chapter, practice what you’ve
learned on https://learningtypescript.com/configuration-options.

What is a disciplinarian’s favorite TypeScript compiler option?

strict.

Summary | 231

https://learningtypescript.com/configuration-options




PART IV

Extra Credit

JavaScript has been around for a few decades at this point, and people have done
quite a lot of odd things with it. TypeScript’s syntax and type system need to be able
to represent all those odd things to enable any JavaScript developer to work with
TypeScript. As a result, there are some corners of the TypeScript language not seen
in most day-to-day code but that are relevant, even necessary, for working with some
kinds of projects.

I think of these parts of the language as “extra credit” in that you could avoid them
entirely and still be a productive TypeScript developer. In fact, for the logical types
introduced toward the end of the section, I would hope you wouldn’t need to use
them very often—if at all.





CHAPTER 14

Syntax Extensions

When TypeScript was first released in 2012, web applications were growing in com‐
plexity faster than plain JavaScript was adding features that supported the deep com‐
plexity. The most popular JavaScript language flavor at the time, CoffeeScript, had
made its mark diverging from JavaScript by introducing new and exciting syntactic
constructs.

Nowadays, extending JavaScript syntax with new runtime features specific to a super‐
set language such as TypeScript is considered bad practice for several reasons:

• Most importantly, runtime syntax extensions might conflict with new syntax in•
newer versions of JavaScript.

• They make it more difficult for programmers new to the language to understand•
where JavaScript ends and other languages begin.

• They increase complexity of transpilers that take superset language code and•
emit JavaScript.

Thus, it is with a heavy heart and deep regret that I must inform you that the
early TypeScript designers introduced three syntax extensions to JavaScript in the
TypeScript language:

• Classes, which aligned with JavaScript classes as the spec was ratified•
• Enums, a straightforward syntactic sugar akin to a plain object of keys and values•
• Namespaces, a solution predating modern modules to structure and arrange code•

235

“TypeScript does not add
to the JavaScript runtime.”

…was that all a lie?!



TypeScript’s “original sin” of runtime syntax extensions to Java‐
Script is fortunately not a design decision the language has made
since its early years. TypeScript does not add new runtime syntax
constructs until they have made significant progress through the
ratification process to be added to JavaScript itself.

TypeScript classes ended up looking and behaving almost identical to JavaScript
classes (phew!) with the exception of useDefineForClassFields behavior (a config‐
uration option not covered in this book) and parameter properties (covered here).
Enums are still used in some projects because they are occasionally useful. Virtually
no new projects use namespaces anymore.

TypeScript also adopted an experimental proposal for JavaScript “decorators” that I’ll
cover as well.

Class Parameter Properties
I recommend avoiding using class parameter properties unless
you’re working in a project that heavily uses classes or a framework
that would benefit from them.

It is common in JavaScript classes to want to take in a parameter in a constructor and
immediately assign it to a class property.

This Engineer class takes in a single area parameter of type string and assigns it to
an area property of type string:

class Engineer {
    readonly area: string;

    constructor(area: string) {
        this.area = area;
        console.log(`I work in the ${area} area.`);
    }
}

// Type: string
new Engineer("mechanical").area;

TypeScript includes a shorthand syntax for declaring these kinds of “parameter prop‐
erties”: properties that are assigned to a member property of the same type at the
beginning of a class constructor. Placing readonly and/or one of the privacy modi‐
fiers—public, protected, or private—in front of the parameter to a constructor
indicates to TypeScript to also declare a property of that same name and type.

236 | Chapter 14: Syntax Extensions



The previous Engineer example could be rewritten in TypeScript using a parameter
property for area:

class Engineer {
    constructor(readonly area: string) {
        console.log(`I work in the ${area} area.`);
    }
}

// Type: string
new Engineer("mechanical").area;

Parameter properties are assigned at the very beginning of the class constructor (or
after the super() call if the class is derived from a base class). They can be intermixed
with other parameters and/or properties on a class.

The following NamedEngineer class declares a regular property fullName, a regular
parameter name, and a parameter property area:

class NamedEngineer {
    fullName: string;

    constructor(
        name: string,
        public area: string,
    ) {
        this.fullName = `${name}, ${area} engineer`;
    }
}

Its equivalent TypeScript without parameter properties looks similar, but with a
couple more lines of code to explicitly assign area:

class NamedEngineer {
    fullName: string;
    area: string;

    constructor(
        name: string,
        area: string,
    ) {
        this.area = area;
        this.fullName = `${name}, ${area} engineer`;
    }
}

Parameter properties are a sometimes-debated issue in the TypeScript community.
Most projects prefer to avoid them categorically, as they’re a runtime syntax extension
and therefore suffer from the same drawbacks I mentioned earlier. They also can’t be
used with the newer # class private fields syntax.

Class Parameter Properties | 237



On the other hand, they’re quite nice when used in projects that heavily favor creating
classes. Parameter properties solve a convenience issue of needing to declare the
parameter property name and type twice, which is inherent to TypeScript and not
JavaScript.

Experimental Decorators
I recommend avoiding decorators if at all possible until a version
of ECMAScript is ratified with decorator syntax. If you’re working
in a version of a framework such as Angular or NestJS that rec‐
ommends using TypeScript decorators, the framework’s documen‐
tation will guide how to use them.

Many other languages that contain classes allow annotating, or decorating, those
classes and/or their members with some kind of runtime logic to modify them.
Decorator functions are a proposal for JavaScript to allow annotating classes and
members by placing a @ and the name of a function first.

For example, the following code snippet shows just the syntax for using a decorator
on a class MyClass:

@myDecorator
class MyClass { /* ... */ }

Decorators have not yet been ratified in ECMAScript, so TypeScript does not support
them by default as of version 4.7.2. However, TypeScript does include an experimen
talDecorators compiler option that allows for an old experimental version of them
to be used in code. It can be enabled via the tsc CLI or in a TSConfig file, shown
here, like other compiler options:

{
    "compilerOptions": {
        "experimentalDecorators": true
    }
}

Each usage of a decorator will execute once, as soon as the entity it’s decorating is
created. Each kind of decorator—accessor, class, method, parameter, and property—
receives a different set of arguments describing the entity it’s decorating.

For example, this logOnCall decorator used on a Greeter class method receives
the Greeter class itself, the key of the property ("log"), and a descriptor object
describing the property. Modifying descriptor.value to log before calling the origi‐
nal greet method on the Greeter class “decorates” the greet method:

238 | Chapter 14: Syntax Extensions



function logOnCall(target: any, key: string, descriptor: PropertyDescriptor) {
    const original = descriptor.value;
    console.log("[logOnCall] I am decorating", target.constructor.name);

    descriptor.value = function (...args: unknown[]) {
        console.log(`[descriptor.value] Calling '${key}' with:`, ...args);
        return original.call(this, ...args);
    }
}

class Greeter {
    @logOnCall
    greet(message: string) {
        console.log(`[greet] Hello, ${message}!`);
    }
}

new Greeter().greet("you");
// Output log:
// "[logOnCall] I am decorating", "Greeter"
// "[descriptor.value] Calling 'greet' with:", "you"
// "[greet] Hello, you!"

I won’t delve into the nuances and specifics of how the old experimentalDecora
tors works for each of the possible decorator types. TypeScript’s decorator sup‐
port is experimental and does not align with the latest drafts of the ECMAScript
proposal. Writing your own decorators in particular is rarely justified in any Type‐
Script project.

Enums
I recommend not to use enums unless you have a set of literals that
are repeated often, can all be described by a common name, and
whose code would be much easier to read if switched to an enum.

Most programming languages contain the concept of an “enum,” or enumerated type,
to represent a set of related values. Enums can be thought of as a set of literal values
stored in an object with a friendly name for each value.

JavaScript does not include an enum syntax because traditional objects can be used
in place of them. For example, while HTTP status codes can be stored and used as
numbers, many developers find it more readable to store them in an object that keys
them by their friendly name:

Enums | 239



const StatusCodes = {
    InternalServerError: 500,
    NotFound: 404,
    Ok: 200,
    // ...
} as const;

StatusCodes.InternalServerError; // 500

The tricky thing with enum-like objects in TypeScript is that there isn’t a great type
system way to represent that a value must be one of their values. One common
method is to use the keyof and typeof type modifiers from Chapter 9, “Type Modi‐
fiers” to hack one together, but that’s a fair amount of syntax to type out.

The following StatusCodeValue type uses the previous StatusCodes value to create a
type union of its possible status code number values:

// Type: 200 | 404 | 500
type StatusCodeValue = (typeof StatusCodes)[keyof typeof StatusCodes];

let statusCodeValue: StatusCodeValue;

statusCodeValue = 200; // Ok

statusCodeValue = -1;
// Error: Type '-1' is not assignable to type 'StatusCodeValue'.

TypeScript provides an enum syntax for creating an object with literal values of type
number or string. Start with the enum keyword, then a name of an object—conven‐
tionally in PascalCase—then an {} object containing comma-separated keys in the
enum. Each key can optionally use = before an initial value.

The previous StatusCodes object would look like this StatusCode enum:

enum StatusCode {
    InternalServerError = 500,
    NotFound = 404,
    Ok = 200,
}

StatusCode.InternalServerError; // 500

As with class names, an enum name such as StatusCode can be used as the type name
in a type annotation. Here, the statusCode variable of type StatusCode may be given
StatusCode.Ok or a number value:

let statusCode: StatusCode;

statusCode = StatusCode.Ok; // Ok
statusCode = 200; // Ok

240 | Chapter 14: Syntax Extensions



TypeScript allows any number to be assigned to a numeric
enum value as a convenience at the cost of a little type safety.
statusCode = -1 would have also been allowed in the previous
code snippet.

Enums compile down to an equivalent object in output compiled JavaScript. Each
of their members becomes an object member key with the corresponding value, and
vice versa.

The previous enum StatusCode would create roughly the following JavaScript:

var StatusCode;
(function (StatusCode) {
    StatusCode[StatusCode["InternalServerError"] = 500] = "InternalServerError";
    StatusCode[StatusCode["NotFound"] = 404] = "NotFound";
    StatusCode[StatusCode["Ok"] = 200] = "Ok";
})(StatusCode || (StatusCode = {}));

Enums are a mildly contentious topic in the TypeScript community. On the one
hand, they violate TypeScript’s general mantra of never adding new runtime syntax
constructs to JavaScript. They present a new non-JavaScript syntax for developers to
learn and have a few quirks around options such as preserveConstEnums, covered
later in this chapter.

On the other hand, they’re quite useful for explicitly declaring known sets of values.
Enums are used extensively in both the TypeScript and VS Code source repositories!

Automatic Numeric Values
Enum members don’t need to have an explicit initial value. When values are omitted,
TypeScript will start the first value off with 0 and increment each subsequent value
by 1. Allowing TypeScript to choose the values for enum members is a good option
when the value doesn’t matter beyond being unique and associated with the key
name.

This VisualTheme enum allows TypeScript to choose the values entirely, resulting in
three integers:

enum VisualTheme {
    Dark, // 0
    Light, // 1
    System, // 2
}

Enums | 241



The emitted JavaScript looks the same as if the values had been set explicitly:

var VisualTheme;
(function (VisualTheme) {
    VisualTheme[VisualTheme["Dark"] = 0] = "Dark";
    VisualTheme[VisualTheme["Light"] = 1] = "Light";
    VisualTheme[VisualTheme["System"] = 2] = "System";
})(VisualTheme || (VisualTheme = {}));

In enums with numeric values, any members missing an explicit value will be 1
greater than the previous value.

As an example, a Direction enum might only care that its Top member has a value of
1 and the remaining values are also positive integers:

enum Direction {
  Top = 1,
  Right,
  Bottom,
  Left,
}

Its output JavaScript would also look the same as if the remaining members had
explicit values 2, 3, and 4:

var Direction;
(function (Direction) {
    Direction[Direction["Top"] = 1] = "Top";
    Direction[Direction["Right"] = 2] = "Right";
    Direction[Direction["Bottom"] = 3] = "Bottom";
    Direction[Direction["Left"] = 4] = "Left";
})(Direction || (Direction = {}));

Modifying the order of an enum will cause the underlying number
to change. If you persist these values somewhere, such as a data‐
base, be careful of changing the enum order or removing an entry.
Your data may suddenly be corrupt because the saved number will
no longer represent what your code expects.

String-Valued Enums
Enums may also use strings for their members instead of numbers.

This LoadStyle enum uses friendly string values for its members:

enum LoadStyle {
    AsNeeded = "as-needed",
    Eager = "eager",
}

Output JavaScript for enums with string member values looks structurally the same
as enums with numeric member values:

242 | Chapter 14: Syntax Extensions



var LoadStyle;
(function (LoadStyle) {
    LoadStyle["AsNeeded"] = "as-needed";
    LoadStyle["Eager"] = "eager";
})(LoadStyle || (LoadStyle = {}));

String valued enums are handy for aliasing shared constants under legible names.
Instead of using a type union of string literals, string valued enums allow for more
powerful editor autocompletions and renames of those properties—as covered in
Chapter 12, “Using IDE Features”.

One downside of string member values is that they cannot be computed automati‐
cally by TypeScript. Only enum members that follow a member with a numeric value
are allowed to be computed automatically.

TypeScript would be able to provide an implicit value of 9001 in this enum’s
ImplicitNumber because the previous member value is the number 9000, but its
NotAllowed member would issue an error because it follows a string member value:

enum Wat {
    FirstString = "first",
    SomeNumber = 9000,
    ImplicitNumber, // Ok (value 9001)
    AnotherString = "another",

    NotAllowed,
    // Error: Enum member must have initializer.
}

In theory, you could make an enum with both numeric and string
member values. In practice, that enum would likely be unnecessa‐
rily confusing, so you probably shouldn’t.

Const Enums
Because enums create a runtime object, using them produces more code than the
common alternative strategy of unions of literal values. TypeScript allows declaring
enums with the const modifier in front of them to tell TypeScript to omit their
objects definition and property lookups from compiled JavaScript code.

This DisplayHint enum is used as a value for a displayHint variable:

const enum DisplayHint {
    Opaque = 0,
    Semitransparent,
    Transparent,
}

Enums | 243



let displayHint = DisplayHint.Transparent;

The output compiled JavaScript code would be missing the enum declaration alto‐
gether and would use a comment for the enum’s value:

let displayHint = 2 /* DisplayHint.Transparent */;

For projects where it’s still desirable to create enum object definitions, a
preserveConstEnums compiler option does exist that would keep the enum declara‐
tion itself in existence. Values would still directly use literals instead of accessing them
on the enum object.

The previous code snippet would still omit the property lookup in its compiled
JavaScript output:

var DisplayHint;
(function (DisplayHint) {
    DisplayHint[DisplayHint["Opaque"] = 0] = "Opaque";
    DisplayHint[DisplayHint["Semitransparent"] = 1] = "Semitransparent";
    DisplayHint[DisplayHint["Transparent"] = 2] = "Transparent";
})(DisplayHint || (DisplayHint = {}));

let displayHint = 2 /* Transparent */;

preserveConstEnums can help reduce the size of emitted JavaScript code, though
not all ways to transpile TypeScript code support it. See Chapter 13, “Configuration
Options” for more information on the isolatedModules compiler option and when
const enums may not be supported.

Namespaces
Unless you are authoring DefinitelyTyped type definitions for an
existing package, do not use namespaces. Namespaces do not
match up to modern JavaScript module semantics. Their automatic
member assignments can make code confusing to read. I only
mention them because you may come across them in .d.ts files.

Back before ECMAScript modules were ratified, it wasn’t uncommon for web appli‐
cations to bundle much of their output code into a single file loaded by the browser.
Those giant single files often created global variables to hold references to important
values across different areas of the project. It was simpler for pages to include that
one file than to set up an old module loader such as RequireJS—and oftentimes
more performant to load, since many servers didn’t yet support HTTP/2 download
streaming. Projects made for a single-file output needed a way to organize sections of
code and those global variables.

244 | Chapter 14: Syntax Extensions



The TypeScript language provided one solution with the concept of “internal mod‐
ules,” now referred to as namespaces. A namespace is a globally available object
with “exported” contents available to call as members of that object. Namespaces are
defined with the namespace keyword followed by a {} block of code. Everything in
that namespace block is evaluated inside a function closure.

This Randomized namespace creates a value variable and uses it internally:

namespace Randomized {
    const value = Math.random();
    console.log(`My value is ${value}`);
}

Its output JavaScript creates a Randomized object and evaluates the contents of the
block inside a function, so the value variable isn’t available outside of the namespace:

var Randomized;
(function (Randomized) {
    const value = Math.random();
    console.log(`My value is ${value}`);
})(Randomized || (Randomized = {}));

Namespaces and the namespace keyword were originally called
“modules” and "module,” respectively, in TypeScript. That was a
regrettable choice in hindsight given the rise of modern module
loaders and ECMAScript modules. The module keyword is still
occasionally found in very old projects, but can—and should—be
safely replaced with namespace.

Namespace Exports
The key feature of namespaces that made them useful was that a namespace could
“export” contents by making them a member of the namespace object. Other areas of
code can then refer to that member by name.

Here, a Settings namespace exports describe, name, and version values used inter‐
nally and externally to the namespace:

namespace Settings {
  export const name = "My Application";
  export const version = "1.2.3";

  export function describe() {
    return `${Settings.name} at version ${Settings.version}`;
  }

  console.log("Initializing", describe());
}

Namespaces | 245



console.log("Initialized", Settings.describe());

The output JavaScript shows that the values are always referenced as members of
Settings (e.g., Settings.name) in both internal and external usage:

var Settings;
(function (Settings) {
    Settings.name = "My Application";
    Settings.version = "1.2.3";
    function describe() {
        return `${Settings.name} at version ${Settings.version}`;
    }
    Settings.describe = describe;
    console.log("Initializing", describe());
})(Settings || (Settings = {}));
console.log("Initialized", Settings.describe());

By using a var for the output object and referencing exported contents as members
of those objects, namespaces by design work well when split across multiple files. The
previous Settings namespace could be rewritten across multiple files:

// settings/constants.ts
namespace Settings {
  export const name = "My Application";
  export const version = "1.2.3";
}

// settings/describe.ts
namespace Settings {
    export function describe() {
        return `${Settings.name} at version ${Settings.version}`;
    }

    console.log("Initializing", describe());
}

// index.ts
console.log("Initialized", Settings.describe());

The output JavaScript, concatenated together, would look roughly like:

// settings/constants.ts
var Settings;
(function (Settings) {
    Settings.name = "My Application";
    Settings.version = "1.2.3";
})(Settings || (Settings = {}));
// settings/describe.ts
(function (Settings) {
    function describe() {
        return `${Settings.name} at version ${Settings.version}`;
    }
    Settings.describe = describe;

246 | Chapter 14: Syntax Extensions



    console.log("Initialized", describe());
})(Settings || (Settings = {}));
console.log("Initialized", Settings.describe());

In both the single-file and multiple-file declaration forms, the output object at run‐
time is one with three keys. Roughly:

const Settings = {
    describe: function describe() {
        return `${Settings.name} at version ${Settings.version}`;
    },
    name: "My Application",
    version: "1.2.3",
};

The key difference with using a namespace is that it can be split across different files
and members can still refer to each other under the namespace’s name.

Nested Namespaces
Namespaces can be “nested” to indefinite levels by either exporting a namespace from
within another namespace or putting one or more . periods inside a name.

The following two namespace declarations would behave identically:

namespace Root.Nested {
    export const value1 = true;
}

namespace Root {
    export namespace Nested {
        export const value2 = true;
    }
}

They both compile to structurally identical code:

(function (Root) {
    let Nested;
    (function (Nested) {
        Nested.value2 = true;
    })(Nested || (Nested = {}));
})(Root || (Root = {}));

Nested namespaces are a handy way to enforce more delineation between sections
within larger projects organized with namespaces. Many developers opted to use a
root namespace by the name of their project—perhaps inside a namespace for their
company and/or organization—and child namespaces for each major area of the
project.

Namespaces | 247



Namespaces in Type Definitions
The only redeeming quality for namespaces today—and the only reason why I opted
to include them in this book—is that they can be useful for DefinitelyTyped type
definitions. Many JavaScript libraries—particularly older web application staples such
as jQuery—are set up to be included in web browsers with a traditional, non-module
<script> tag. Their typings need to indicate that they create a global variable avail‐
able to all code—structure perfectly captured by namespaces.

Additionally, many browser-capable JavaScript libraries are set up both to be impor‐
ted in more modern module systems and also to create a global namespace. Type‐
Script allows a module type definition to include an export as namespace, followed
by a global name, to indicate the module is also available globally under that name.

For example, this declaration file for a module exports a value and is available
globally:

// node_modules/@types/my-example-lib/index.d.ts
export const value: number;
export as namespace libExample;

The type system would know that both import("my-example-lib") and
window.libExample would give back the module, with a value property of type
number:

// src/index.ts
import * as libExample from "my-example-lib"; // Ok
const value = window.libExample.value; // Ok

Prefer Modules Over Namespaces
Instead of using namespaces, the previous examples’ settings/constants.ts file and
settings/describe.ts file could be rewritten for modern standards with ECMAScript
modules:

// settings/constants.ts
export const name = "My Application";
export const version = "1.2.3";

// settings/describe.ts
import { name, version } from "./constants";

export function describe() {
    return `${Settings.name} at version ${Settings.version}`;
}

console.log("Initializing", describe());

// index.ts
import { describe } from "./settings/describe";

248 | Chapter 14: Syntax Extensions



console.log("Initialized", describe());

TypeScript code structured with namespaces can’t be easily tree-shaken (have unused
files removed) in modern builders such as Webpack because namespaces create
implicit, rather than explicitly declared, ties between files the way ECMAScript mod‐
ules do. It is generally strongly preferred to write runtime code using ECMAScript
modules and not TypeScript namespaces.

As of 2022, TypeScript itself is written in namespaces, but the
TypeScript team is working on migrating over to modules. Who
knows, maybe by the time you’re reading this, they’ll have finished
that conversion! Fingers crossed.

Type-Only Imports and Exports
I’d like to end this chapter on a positive note. One last set of syntax extensions,
type-only imports and exports, can be quite useful and don’t add any complexity to
output emitted JavaScript.

TypeScript’s transpiler will remove values used only in the type system from imports
and exports in files because they aren’t used in runtime JavaScript.

For example, the following index.ts file creates an action variable and an
ActivistArea type, then later exports both of them with a standalone export declara‐
tion. When compiling it to index.js, TypeScript’s transpiler would know to remove
ActivistArea from that standalone export declaration:

// index.ts
const action = { area: "people", name: "Bella Abzug", role: "politician" };

type ActivistArea = "nature" | "people";

export { action, ActivistArea };

// index.js
const action = { area: "people", name: "Bella Abzug", role: "politician" };

export { action };

Knowing to remove re-exported types such as that ActivistArea requires knowledge
of the TypeScript type system. Transpilers such as Babel that act on a single file at a
time don’t have access to the TypeScript type system to know whether each name is
only used in the type system. TypeScript’s isolatedModules compiler option, covered
in Chapter 13, “Configuration Options”, helps make sure code will transpile in tools
other than TypeScript.

Type-Only Imports and Exports | 249



TypeScript allows adding the type modifier in front of individual imported names or
the entire {...} object in export and import declarations. Doing so indicates they’re
only meant to be used in the type system. Marking a default import of a package as
type is allowed as well.

In the following snippet, only the value import and export are kept when index.ts is
transpiled to the output index.js:

// index.ts
import { type TypeOne, value } from "my-example-types";
import type { TypeTwo } from "my-example-types";
import type DefaultType from "my-example-types";

export { type TypeOne, value };
export type { DefaultType, TypeTwo };

// index.js
import { value } from "my-example-types";

export { value };

Some TypeScript developers even prefer to opt into using type-only imports to make
it more clear which imports are only used as types. If an import is marked as
type-only, attempting to use it as a runtime value will trigger a TypeScript error.

The following ClassOne is imported normally and can be used at runtime, but
ClassTwo cannot because it is imported as a type:

import { ClassOne, type ClassTwo } from "my-example-types";

new ClassOne(); // Ok

new ClassTwo();
//  ~~~~~~~~
// Error: 'ClassTwo' cannot be used as a value
// because it was imported using 'import type'.

Instead of adding complexity to emitted JavaScript, type-only imports and exports
make it clear to transpilers outside of TypeScript when it’s possible to remove pieces
of code. Most TypeScript developers therefore don’t treat them with the distaste given
to the previous syntax extensions covered in this chapter.

250 | Chapter 14: Syntax Extensions



Summary
In this chapter, you worked with some of the JavaScript syntax extensions included in
TypeScript:

• Declaring class parameter properties in class constructors•
• Using decorators to augment classes and their fields•
• Representing groups of values with enums•
• Using namespaces to create groupings across files or in type definitions•
• Type-only imports and exports•

Now that you’ve finished reading this chapter, practice what you’ve
learned on https://learningtypescript.com/syntax-extensions.

What do you call the cost of supporting legacy JavaScript extensions in TypeScript?

“Sin tax.”

Summary | 251

https://learningtypescript.com/syntax-extensions




CHAPTER 15

Type Operations

TypeScript gives us awesome levels of power to define types in the type system.
Even the logical modifiers from Chapter 10, “Generics” pale in comparison to the
capabilities of the type operations in this chapter. Once you’ve completed this chapter,
you’ll be able to mix, match, and modify types based on other types—giving you
powerful ways to represent types in the type system.

Most of these fancy types are techniques you generally don’t want
to use very frequently. You’ll want to understand them for the cases
where they are useful, but beware: they can be difficult to read
through when overused. Have fun!

Mapped Types
TypeScript provides syntax for creating a new type based on the properties of another
type: in other words, mapping from one type to another. A mapped type in TypeScript
is a type that takes in another type and performs some operation on each property of
that type.

Mapped types create a new type by creating a new property under each key in a set of
keys. They use a syntax similar to index signatures, but instead of using a static key
type with : like [i: string], they use a computed type from the other type with in
like [K in OriginalType]:

type NewType = {
    [K in OriginalType]: NewProperty;
};

One common use case for mapped types is to create an object whose keys are each
of the string literals in an existing union type. This AnimalCounts type creates a new

253

Conditionals, maps
With great power over types

comes great confusion



object type where the keys are each of the values from the Animals union type and
each of the values is number:

type Animals = "alligator" | "baboon" | "cat";

type AnimalCounts = {
    [K in Animals]: number;
};
// Equivalent to:
// {
//   alligator: number;
//   baboon: number;
//   cat: number;
// }

Mapped types based on existing literals of unions are a convenient way to save space
in declaring big interfaces. But mapped types really shine when they can act on other
types and even add or remove modifiers from members.

Mapped Types from Types
Mapped types commonly act on existing types using the keyof operator to grab the
keys of that existing type. By instructing a type to map over the keys of an existing
type, we can map from that existing type to a new one.

This AnimalCounts type ends up being the same as the AnimalCounts type from
before by mapping from the AnimalVariants type to a new equivalent one:

interface AnimalVariants {
    alligator: boolean;
    baboon: number;
    cat: string;
}

type AnimalCounts = {
    [K in keyof AnimalVariants]: number;
};
// Equivalent to:
// {
//   alligator: number;
//   baboon: number;
//   cat: number;
// }

The new type keys mapped over a keyof—named K in the previous snippets—are
known to be keys of the original type. That means each mapped type member value is
allowed to reference the original type’s corresponding member value under the same
key.

254 | Chapter 15: Type Operations



If the original object is SomeName and the mapping is [K in keyof SomeName], then
each member in the mapped type would be able to refer to the equivalent SomeName
member’s value as SomeName[K].

This NullableBirdVariants type takes an original BirdVariants type and adds |
null to each member:

interface BirdVariants {
    dove: string;
    eagle: boolean;
}

type NullableBirdVariants = {
    [K in keyof BirdVariants]: BirdVariants[K] | null,
};
// Equivalent to:
// {
//   dove: string | null;
//   eagle: boolean | null;
// }

Instead of painstakingly copying each field from an original type to any number of
other types, mapped types let you define a set of members once and re-create new
versions of them en masse as many times as you need.

Mapped types and signatures
In Chapter 7, “Interfaces”, I introduced that TypeScript provides two ways of declar‐
ing interface members as functions:

• Method syntax, like member(): void: declaring that a member of the interface is a•
function intended to be called as a member of the object

• Property syntax, like member: () => void: declaring that a member of the•
interface is equal to a standalone function

Mapped types don’t distinguish between method and property syntaxes on object
types. Mapped types treat methods as properties on original types.

This ResearcherProperties type contains both the property and method members
of Researcher:

interface Researcher {
    researchMethod(): void;
    researchProperty: () => string;
}

type JustProperties<T> = {
    [K in keyof T]: T[K];
};

Mapped Types | 255



type ResearcherProperties = JustProperties<Researcher>;
// Equivalent to:
// {
//   researchMethod: () => void;
//   researchProperty: () => string;
// }

The distinction between methods and properties does not show up very often in most
practical TypeScript code. It’s rare to find a practical use of a mapped type that takes
in a class type.

Changing Modifiers
Mapped types can also change the access control modifiers—readonly and ? option‐
ality—on the original type’s members. readonly or ? can be placed on members of
mapped types using the same syntax as typical interfaces.

The following ReadonlyEnvironmentalist type makes a version of the Environmen
talist interface with all members given readonly, while OptionalReadonlyConser
vationist goes one step further and makes another version that adds ? to all the
ReadonlyEnvironmentalist members:

interface Environmentalist {
    area: string;
    name: string;
}

type ReadonlyEnvironmentalist = {
    readonly [K in keyof Environmentalist]: Environmentalist[K];
};
// Equivalent to:
// {
//   readonly area: string;
//   readonly name: string;
// }

type OptionalReadonlyEnvironmentalist = {
    [K in keyof ReadonlyEnvironmentalist]?: ReadonlyEnvironmentalist[K];
};
// Equivalent to:
// {
//   readonly area?: string;
//   readonly name?: string;
// }

256 | Chapter 15: Type Operations



The OptionalReadonlyEnvironmentalist type could alternately
be written with readonly [K in keyof Environmentalist]?:
Environmentalist[K].

Removing modifiers is done by adding a - before the modifier in a new type. Instead
of writing readonly or ?:, you can write -readonly or -?:, respectively.

This Conservationist type contains ? optional and/or readonly members that
are made writable in WritableConservationist and then also required in
RequiredWritableConservationist:

interface Conservationist {
    name: string;
    catchphrase?: string;
    readonly born: number;
    readonly died?: number;
}

type WritableConservationist = {
    -readonly [K in keyof Conservationist]: Conservationist[K];
};
// Equivalent to:
// {
//   name: string;
//   catchphrase?: string;
//   born: number;
//   died?: number;
// }

type RequiredWritableConservationist = {
    [K in keyof WritableConservationist]-?: WritableConservationist[K];
};
// Equivalent to:
// {
//   name: string;
//   catchphrase: string;
//   born: number;
//   died: number;
// }

The RequiredWritableConservationist type could alternately
be written with -readonly [K in keyof Conservationist]-?:
Conservationist[K].

Mapped Types | 257



Generic Mapped Types
The full power of mapped types comes from combining them with generics, allowing
a single kind of mapping to be reused across different types. Mapped types are able
to access the keyof any type name in their scope, including a type parameter on the
mapped type itself.

Generic mapped types are frequently useful for representing how data morphs as it
flows through an application. For example, it may be desirable for an area of the
application to be able to take in values of existing types but not be allowed to modify
the data.

This MakeReadonly generic type takes in any type and creates a new version with the
readonly modifier added to all its members:

type MakeReadonly<T> = {
    readonly [K in keyof T]: T[K];
}

interface Species {
    genus: string;
    name: string;
}

type ReadonlySpecies = MakeReadonly<Species>;
// Equivalent to:
// {
//   readonly genus: string;
//   readonly name: string;
// }

Another transform developers commonly need to represent is a function that takes in
any amount of an interface and returns a fully filled-out instance of that interface.

The following MakeOptional type and createGenusData function allow for providing
any amount of the GenusData interface and getting back an object with the defaults
filled in:

interface GenusData {
    family: string;
    name: string;
}

type MakeOptional<T> = {
    [K in keyof T]?: T[K];
}
// Equivalent to:
// {
//   family?: string;
//   name?: string;
// }

258 | Chapter 15: Type Operations



/**
 * Spreads any {overrides} on top of default values for GenusData.
 */
function createGenusData(overrides?: MakeOptional<GenusData>): GenusData {
    return {
        family: 'unknown',
        name: 'unknown',
        ...overrides,
    }
}

Some operations done by generic mapped types are so useful that TypeScript provides
utility types for them out-of-the-box. Making all properties optional, for example, is
achievable using the built-in Partial<T> type. You can find a list of those built-in
types on https://www.typescriptlang.org/docs/handbook/utility-types.html.

Conditional Types
Mapping existing types to other types is nifty, but we haven’t yet added logical
conditions into the type system. Let’s do that now.

TypeScript’s type system is an example of a logic programming language. It allows
creating new constructs (types) based on logically checking previous types. It does
so with the concept of a conditional type: a type that resolves to one of two possible
types, based on an existing type.

Conditional type syntax looks like ternaries:

LeftType extends RightType ? IfTrue : IfFalse

The logical check in a conditional type is always on whether the left type extends, or is
assignable to, the right type.

The following CheckStringAgainstNumber conditional type checks whether string
extends number—or in other words, whether the string type is assignable to the
number type. It’s not, so the resultant type is the “if false” case: false:

// Type: false
type CheckStringAgainstNumber = string extends number ? true : false;

Much of the rest of this chapter will involve combining other type system features
with conditional types. As the code snippets get more complex, remember: each
conditional type is purely a piece of boolean logic. Each takes in some type and
results in one of two possible results.

Conditional Types | 259

https://www.typescriptlang.org/docs/handbook/utility-types.html


Generic Conditional Types
Conditional types are able to check any type name in their scope, including a type
parameter on the conditional type itself. That means you can write reusable generic
types to create new types based on any other types.

Turning the previous CheckStringAgainstNumber type into a generic CheckAgainst
Number gives a type that is either true or false based on whether the previous type is
assignable to number. string is still not true, while number and 0 | 1 both are:

type CheckAgainstNumber<T> = T extends number ? true : false;

// Type: false
type CheckString = CheckAgainstNumber<'parakeet'>;

// Type: true
type CheckString = CheckAgainstNumber<1891>;

// Type: true
type CheckString = CheckAgainstNumber<number>;

The following CallableSetting type is a little more useful. It takes in a generic T
and checks whether T is a function. If T is, then the resultant type is T—as with
GetNumbersSetting where T is () => number[]. Otherwise, the resultant type is
a function that returns T, as with StringSetting where T is string, and so the
resultant type is () => string:

type CallableSetting<T> =
    T extends () => any
        ? T
        : () => T

// Type: () => number[]
type GetNumbersSetting = CallableSetting<() => number[]>;

// Type: () => string
type StringSetting = CallableSetting<string>;

Conditional types are also able to access members of provided types with the object
member lookup syntax. They can use that information both in their extends clause
and/or in the resultant types.

One pattern used by JavaScript libraries that lends itself well to conditional generic
types is to change the return type of a function based on an options object provided
to the function.

For example, many database functions or equivalents might use a property like
throwIfNotFound to change the function to throw an error instead of returning
undefined if a value isn’t found. The following QueryResult type models that

260 | Chapter 15: Type Operations



behavior by resulting in the more narrow string instead of string | undefined
if the options’ throwIfNotFound is specifically known to be true:

interface QueryOptions {
  throwIfNotFound: boolean;
}

type QueryResult<Options extends QueryOptions> =
  Options["throwIfNotFound"] extends true ? string : string | undefined;

declare function retrieve<Options extends QueryOptions>(
    key: string,
    options?: Options,
): Promise<QueryResult<Options>>;

// Returned type: string | undefined
await retrieve("Biruté Galdikas");

// Returned type: string | undefined
await retrieve("Jane Goodall", { throwIfNotFound: Math.random() > 0.5 });

// Returned type: string
await retrieve("Dian Fossey", { throwIfNotFound: true });

By combining a conditional type with a generic type parameter, that retrieve func‐
tion is more precise in telling the type system how it will change its program’s control
flow.

Type Distributivity
Conditional types distribute over unions, meaning their resultant type will be a union
of applying that conditional type to each of the constituents (types in the union
type). In other words, ConditionalType<T | U> is the same as Conditional<T> |
Conditional<U>.

Type distributivity is a mouthful to explain but is important for how conditional
types behave with unions.

Consider the following ArrayifyUnlessString type that converts its type
parameter T to an array unless T extends string. HalfArrayified is equivalent
to string | number[] because ArrayifyUnlessString<string | number> is the
same as ArrayifyUnlessString<string> | ArrayifyUnlessString<number>:

type ArrayifyUnlessString<T> = T extends string ? T : T[];

// Type: string | number[]
type HalfArrayified = ArrayifyUnlessString<string | number>;

Conditional Types | 261



If TypeScript’s conditional types didn’t distribute across unions, HalfArrayified
would be (string | number)[] because string | number is not assignable to
string. In other words, conditional types apply their logic to each constituent of a
union type, not the whole union type.

Inferred Types
Accessing members of provided types works well for information stored as a member
of a type, but it can’t capture other information such as function parameters or return
types. Conditional types are able to access arbitrary portions of their condition by
using an infer keyword within their extends clause. Placing the infer keyword and
a new name for a type within an extends clause means that new type will be available
inside the conditional type’s true case.

This ArrayItems type takes in a type parameter T and checks whether the T is an
array of some new Item type. If it is, the resultant type is Item; if not, it’s T:

type ArrayItems<T> =
    T extends (infer Item)[]
        ? Item
        : T;

// Type: string
type StringItem = ArrayItems<string>;

// Type: string
type StringArrayItem = ArrayItems<string[]>;

// Type: string[]
type String2DItem = ArrayItems<string[][]>;

Inferred types can work to create recursive conditional types too. The ArrayItems
type seen previously could be extended to retrieve the item type of an array of any
dimensionality recursively:

type ArrayItemsRecursive<T> =
    T extends (infer Item)[]
        ? ArrayItemsRecursive<Item>
        : T;

// Type: string
type StringItem = ArrayItemsRecursive<string>;

// Type: string
type StringArrayItem = ArrayItemsRecursive<string[]>;

// Type: string
type String2DItem = ArrayItemsRecursive<string[][]>;

262 | Chapter 15: Type Operations



Note that while ArrayItems<string[][]> resulted in string[], ArrayItemsRecur
sive<string[][]> resulted in string. That ability for generic types to be recursive
allows them to keep applying modifications—such as retrieving the element type of
an array here.

Mapped Conditional Types
Mapped types apply a change to every member of an existing type. Conditional
types apply a change to a single existing type. Put together, they allow for applying
conditional logic to each member of a generic template type.

This MakeAllMembersFunctions type turns each nonfunction member of a type into a
function:

type MakeAllMembersFunctions<T> = {
    [K in keyof T]: T[K] extends (...args: any[]) => any
        ? T[K]
        : () => T[K]
};

type MemberFunctions = MakeAllMembersFunctions<{
    alreadyFunction: () => string,
    notYetFunction: number,
}>;
// Type:
// {
//   alreadyFunction: () => string,
//   notYetFunction: () => number,
// }

Mapped conditional types are a convenient way to modify all properties of an existing
type using some logical check.

never
In Chapter 4, “Objects”, I introduced the never type, a bottom type, which means it
can have no possible values and can’t be reached. Adding a never type annotation
in the right place can tell TypeScript to be more aggressive about detecting never-hit
code paths in the type system as well as in the previous examples of runtime code.

never and Intersections and Unions
Another way of describing the never bottom type is that it’s a type that can’t exist.
That gives never some interesting behaviors with & intersection and | union types:

• never in an & intersection type reduces the intersection type to just never.•
• never in a | union type is ignored.•

never | 263



These NeverIntersection and NeverUnion types illustrate those behaviors:

type NeverIntersection = never & string; // Type: never
type NeverUnion = never | string; // Type: string

In particular, the behavior of being ignored in union types makes never useful for
filtering out values from conditional and mapped types.

never and Conditional Types
Generic conditional types commonly use never to filter out types from unions.
Because never is ignored in unions, the result of a generic conditional on a union of
types will only be those that are not never.

This OnlyStrings generic conditional type filters out types that aren’t strings, so the
RedOrBlue type filters out 0 and null from the union:

type OnlyStrings<T> = T extends string ? T : never;

type RedOrBlue = OnlyStrings<"red" | "blue" | 0 | false>;
// Equivalent to: "red" | "blue"

never is also commonly combined with inferred conditional types when making type
utilities for generic types. Type inferences with infer have to be in the true case of a
conditional type, so if the false case is never meant to be used, never is a suitable type
to put there.

This FirstParameter type takes in a function type T, checks if it’s a function with an
arg: infer Arg, and returns that Arg if so:

type FirstParameter<T extends (...args: any[]) => any> =
    T extends (arg: infer Arg) => any
        ? Arg
        : never;

type GetsString = FirstParameter<
    (arg0: string) => void
>; // Type: string

Using never in the false case of the conditional type allowed FirstParameter to
extract the type of the function’s first parameter.

never and Mapped Types
The never behavior in unions makes it useful for filtering out members in mapped
types too. It’s possible to filter out keys of an object using the following three type
system features:

264 | Chapter 15: Type Operations



• never is ignored in unions.•
• Mapped types can map members of types.•
• Conditional types can be used to turn types into never if a condition is met.•

Putting the three of those together, we can create a mapped type that changes each
member of the original type either to the original key or to never. Asking for the
members of that type with [keyof T], then, produces a union of all those mapped
type results, filtering out never.

The following OnlyStringProperties type turns each T[K] member into either the K
key if that member is a string, or never if not:

type OnlyStringProperties<T> = {
  [K in keyof T]: T[K] extends string ? K : never;
}[keyof T];

interface AllEventData {
    participants: string[];
    location: string;
    name: string;
    year: number;
}

type OnlyStringEventData = OnlyStringProperties<AllEventData>;
// Equivalent to: "location" | "name"

Another way of reading the OnlyStringProperties<T> type is that it filters out all
non-string properties (switches them to never), then gives back all the remaining
keys ([keyof T]).

Template Literal Types
We’ve covered a lot on conditional and/or mapped types now. Let’s switch to less
logic-intensive types and focus on strings for a while instead. So far I’ve brought up
two strategies for typing string values:

• The primitive string type: for when the value can be any string in the world•
• Literal types such as "" and "abc": for when the value can only be that one type•

(or a union of them)

Sometimes, however, you may want to indicate that a string matches some string
pattern: part of the string is known, but part of it is not. Enter template literal types,
a TypeScript syntax for indicating that a string type adheres to a pattern. They look
like template literal strings—hence their name—but with primitive types or unions of
primitive types interpolated.

Template Literal Types | 265



This template literal type indicates that the string must start with "Hello" but
can end with any string (string). Names that start with "Hello" such as "Hello,
world!" match, but not "World! Hello!" or "hi":

type Greeting = `Hello${string}`;

let matches: Greeting = "Hello, world!"; // Ok

let outOfOrder: Greeting = "World! Hello!";
//  ~~~~~~~~~~
// Error: Type '"World! Hello!"' is not assignable to type '`Hello ${string}`'.

let missingAltogether: Greeting = "hi";
//  ~~~~~~~~~~~~~~~~~
// Error: Type '"hi"' is not assignable to type '`Hello ${string}`'.

String literal types—and unions of them—may be used in the type interpolation
instead of the catchall string primitive to restrict template literal types to more
narrow patterns of strings. Template literal types can be quite useful for describing
strings that must match a restricted set of allowed strings.

Here, BrightnessAndColor matches only strings that start with a Brightness, end
with a Color, and have a - hyphen in-between:

type Brightness = "dark" | "light";
type Color =  "blue" | "red";

type BrightnessAndColor = `${Brightness}-${Color}`;
// Equivalent to: "dark-red" | "light-red" | "dark-blue" | "light-blue"

let colorOk: BrightnessAndColor = "dark-blue"; // Ok

let colorWrongStart: BrightnessAndColor = "medium-blue";
//  ~~~~~~~~~~~~~~~
// Error: Type '"medium-blue"' is not assignable to type
// '"dark-blue" | "dark-red" | "light-blue" | "light-red"'.

let colorWrongEnd: BrightnessAndColor = "light-green";
//  ~~~~~~~~~~~~~
// Error: Type '"light-green"' is not assignable to type
// '"dark-blue" | "dark-red" | "light-blue" | "light-red"'.

Without template literal types, we would have had to laboriously write out all four
combinations of Brightness and Color. That would get cumbersome if we added
more string literals to either of them!

TypeScript allows template literal types to contain any primitives (other than symbol)
or a union thereof: string, number, bigint, boolean, null, or undefined.

266 | Chapter 15: Type Operations



This ExtolNumber type allows any string that starts with "much ", includes a string
that looks like a number, and ends with "wow":

type ExtolNumber = `much ${number} wow`;

function extol(extolee: ExtolNumber) { /* ... */ }

extol('much 0 wow'); // Ok
extol('much -7 wow'); // Ok
extol('much 9.001 wow'); // Ok

extol('much false wow');
//    ~~~~~~~~~~~~~~~~
// Error: Argument of type '"much false wow"' is not
// assignable to parameter of type '`much ${number} wow`'.

Intrinsic String Manipulation Types
To assist in working with string types, TypeScript provides a small set of intrinsic
(meaning: they’re built into TypeScript) generic utility types that take in a string and
apply some operation to the string. As of TypeScript 4.7.2, there are four:

• Uppercase: Converts a string literal type to uppercase.•
• Lowercase: Converts a string literal type to lowercase.•
• Capitalize: Converts a first character of string literal type to uppercase.•
• Uncapitalize: Converts a first character of string literal type to lowercase.•

Each of these can be used as a generic type that takes in a string. For example, using
Capitalize to capitalize the first letter in a string:

type FormalGreeting = Capitalize<"hello.">; // Type: "Hello."

These intrinsic string manipulation types can be quite useful for manipulating prop‐
erty keys on object types.

Template Literal Keys
Template literal types are a half-way point between the primitive string and string
literals, which means they’re still strings. They can be used in any other place where
you’d be able to use string literals.

For example, you can use them as the index signature in a mapped type. This
ExistenceChecks type has a key for every string in DataKey, mapped with
check${Capitalize<DataKey>}:

Template Literal Types | 267



type DataKey = "location" | "name" | "year";

type ExistenceChecks = {
    [K in `check${Capitalize<DataKey>}`]: () => boolean;
};
// Equivalent to:
// {
//   checkLocation: () => boolean;
//   checkName: () => boolean;
//   checkYear: () => boolean;
// }

function checkExistence(checks: ExistenceChecks) {
    checks.checkLocation(); // Type: boolean
    checks.checkName(); // Type: boolean

    checks.checkWrong();
    //     ~~~~~~~~~~
    // Error: Property 'checkWrong' does not exist on type 'ExistenceChecks'.
}

Remapping Mapped Type Keys
TypeScript allows you to create new keys for members of mapped types based on the
original members using template literal types. Placing the as keyword followed by a
template literal type for the index signature in a mapped typed changes the resultant
type’s keys to match the template literal type. Doing so allows the mapped type to
have a different key for each mapped property while still referring to the original
value.

Here, DataEntryGetters is a mapped type whose keys are getLocation, getName,
and getYear. Each key is mapped to a new key with a template literal type. Each
mapped value is a function whose return type is a DataEntry using the original K key
as a type argument:

interface DataEntry<T> {
    key: T;
    value: string;
}

type DataKey = "location" | "name" | "year";

type DataEntryGetters = {
    [K in DataKey as `get${Capitalize<K>}`]: () => DataEntry<K>;
};
// Equivalent to:
// {
//   getLocation: () => DataEntry<"location">;
//   getName: () => DataEntry<"name">;

268 | Chapter 15: Type Operations



//   getYear: () => DataEntry<"year">;
// }

Key remappings can be combined with other type operations to create mapped types
that are based on existing type shapes. One fun combination is using keyof typeof
on an existing object to make a mapped type off that object’s type.

This ConfigGetter type is based on the config type, but each field is a function that
returns the original config, and the keys are modified from the original key:

const config = {
    location: "unknown",
    name: "anonymous",
    year: 0,
};

type LazyValues = {
    [K in keyof typeof config as `${K}Lazy`]: () => Promise<typeof config[K]>;
};
// Equivalent to:
// {
//   location: Promise<string>;
//   name: Promise<string>;
//   year: Promise<number>;
// }

async function withLazyValues(configGetter: LazyValues) {
    await configGetter.locationLazy; // Resultant type: string

    await configGetter.missingLazy();
    //                 ~~~~~~~~~~~
    // Error: Property 'missingLazy' does not exist on type 'LazyValues'.
};

Note that in JavaScript, object keys may be type string or Symbol—and Symbol keys
aren’t usable as template literal types because they’re not primitives. If you try to use a
remapped template literal type key in a generic type, TypeScript will issue a complaint
that symbol can’t be used in a template literal type:

type TurnIntoGettersDirect<T> = {
    [K in keyof T as `get${K}`]: () => T[K]
    //                     ~
    // Error: Type 'keyof T' is not assignable to type
    // 'string | number | bigint | boolean | null | undefined'.
    //   Type 'string | number | symbol' is not assignable to type
    //   'string | number | bigint | boolean | null | undefined'.
    //     Type 'symbol' is not assignable to type
    //     'string | number | bigint | boolean | null | undefined'.
};

Template Literal Types | 269



To get around that restriction, you can use a string & intersection type to enforce
that only types that can be strings are used. Because string & symbol results in
never, the whole template string will reduce to never and TypeScript will ignore it:

const someSymbol = Symbol("");

interface HasStringAndSymbol {
    StringKey: string;
    [someSymbol]: number;
}

type TurnIntoGetters<T> = {
    [K in keyof T as `get${string & K}`]: () => T[K]
};

type GettersJustString = TurnIntoGetters<HasStringAndSymbol>;
// Equivalent to:
// {
//     getStringKey: () => string;
// }

TypeScript’s behavior of filtering out never types from unions is proving itself useful
yet again!

Type Operations and Complexity
Debugging is twice as hard as writing the code in the first place. Therefore, if you write
the code as cleverly as possible, you are, by definition, not smart enough to debug it.

—Brian Kernighan

The type operations described in this chapter are among the most powerful, cutting-
edge type system features in any programming language today. Most developers are
not yet familiar enough with them to be able to debug errors in significantly complex
uses of them. Industry-standard development tools such as IDE features I cover in
Chapter 12, “Using IDE Features” aren’t generally made for visualizing multilayered
type operations used with each other.

If you do find a need to use type operations, please—for the sake of any developer
who has to read your code, including a future you—try to keep them to a minimum
if possible. Use readable names that help readers understand the code as they read
it. Leave descriptive comments for anything you think future readers might struggle
with.

270 | Chapter 15: Type Operations



Summary
In this chapter, you unlocked the true power of TypeScript by operating on types in
its type system:

• Using mapped types to transform existing types into new ones•
• Introducing logic into type operations with conditional types•
• Learning how never interacts with intersections, unions, conditional types, and•

mapped types
• Representing patterns of string types using template literal types•
• Combining template literal types and mapped types to modify type keys•

Now that you’ve finished reading this chapter, practice what you’ve
learned on https://learningtypescript.com/type-operations.

When you’re lost in the type system, what do you use?

A mapped type!

Summary | 271

https://learningtypescript.com/type-operations




Glossary

ambient context
An area in code where you can declare
types but cannot declare implementations.
Generally used in reference to .d.ts decla‐
ration files.

See also declaration file.

any
A type that is allowed to be used anywhere
and can be given anything. any can act
as a top type, in that any type can be
provided to a location of type any. Most
of the time, you probably want to use
unknown for more accurate type safety.

See also unknown, top type

argument
Something being provided as an input,
used to refer to a value being passed to
a function. For functions, an argument is
the value being passed to a call, while a
parameter is the value inside the function.

See also parameter

assertion, type assertion
An assertion to TypeScript that a value is
of a different type than what TypeScript
would otherwise expect.

assignable, assignability
Whether one type is allowed to be used in
place of another.

billion-dollar mistake
The catchy industry term for many type
systems allowing values such as null to
be used in places that require a different
type. Coined by Tony Hoare in reference
to the amount of damage it seems to have
caused.

See also strict null checking

bottom type
A type that has no possible values—the
empty set of types. No type is assignable
to the bottom type. TypeScript provides
the never keyword to indicate a bottom
type.

See also never.

call signature
Type system description of how a function
may be called. Includes a list of parame‐
ters and a return type.

camel case
A naming convention where the first let‐
ter of each compound word after the first
in a name is capitalized, like camelCase.
The convention for names of members
in many TypeScript type system con‐
structs, including members of classes and
interfaces.

273



class
JavaScript syntax sugar around functions
that assign to a prototype. TypeScript
allows working with JavaScript classes.

compile
Turning source code into another format.
TypeScript includes a compiler that, in
addition to type checking, turns Type‐
Script source code into JavaScript and/or
declaration files.

See also transpile

conditional type
A type that resolves to one of two possible
types, based on an existing type.

const assertion
as const type assertion shorthand that
tells TypeScript to use the most literal,
read-only possible form of a value’s type.

constituent, constituent type
One of the types in an intersection or
union type.

declaration file
A file with the .d.ts extension. Declaration
files create an ambient context, meaning
they can only declare types and cannot
declare implementations.

See also ambient context

decorator
An experimental JavaScript proposal to
allow annotating a class or class member
with a function marked by a @. Doing so
would have the function be run on that
class or class member upon creation.

DefinitelyTyped
The massive repository of community-
authored type definitions for packages
(DT for short). It contains thousands
of .d.ts definitions along with automation
around reviewing change proposals and
publishing updates. Those definitions are
published as packages under the @types/
organization on npm, such as @types/
react.

derived interface
An interface that extends at least one
other interface, referred to as a base inter‐
face. Doing so copies all the members
of the base interface into the derived
interface.

discriminant
A member of a discriminated union that
has the same name but different type in
each constituent.

discriminated union, discriminated type union
A union of types where a “discriminant”
member exists with the same name but
different value in each constituent type.
Checking the value of the discriminant
acts as a form of type narrowing.

distributivity
A property of TypeScript’s conditional
types when given union template types:
their resultant type will be a union of
applying that conditional type to each of
the constituents (types in the union type).
ConditionalType<T | U> is the same as
Conditional<T> | Conditional<U>.

duck typed
A common phrase for how JavaScript’s
type system behaves. It comes from the
phrase, “If it looks like a duck and quacks
like a duck, it’s probably a duck.” It means
that JavaScript allows any value to be
passed anywhere; if an object is asked for
a member that doesn’t exist, the result will
be undefined.

See also structurally typed

dynamically typed, dynamic typing
A classification of programming lan‐
guage that does not natively include a
type checker. Examples of dynamically
typed programming languages include
JavaScript and Ruby.

emit, emitted Code
The output from a compiler, such as .js
files often produced by running tsc. The
TypeScript compiler’s JavaScript and/or

274 | Glossary

class



declaration file emits can be controlled by
its compiler options.

enum
A set of literal values stored in an
object with a friendly name for each
value. Enums are a rare example of a
TypeScript-specific syntax extension to
vanilla JavaScript.

evolving any
A special case of implicit any for variables
who don’t have a type annotation or initial
value. Their type will be evolved to what‐
ever they are used with.

See also implicit any

extending an interface
When an interface declares that it extends
another interface. Doing so copies all
members of the original interface into the
new one.

See also interface

function overload, overloaded function
A way to describe a function able to be
called with drastically different sets of
parameters.

generic
Allowing a different type to be substi‐
tuted for a construct each time a new
usage of the construct is created. Classes,
interfaces, and type aliases may be made
generic.

generic type argument, type argument
A type provided as the type parameter to a
generic construct.

generic type parameter, type parameter
A substituted type for a generic. Generic
type parameters may be provided with
different type arguments for each instance
of the construct but will remain consistent
within that instance.

global variable
A variable that exists in the global scope,
such as setTimeout in environments such
as browsers, Deno, and Node.

IDE, Integrated Development Environment
Program that provides developer tooling
on top of a text editor for source code.
IDEs generally come with debuggers, syn‐
tax highlighting, and plugins that surface
complaints from programming languages
such as type errors. This book uses VS
Code for its IDE examples, but others
include Atom, Emacs, Vim, Visual Studio,
and WebStorm.

implementation signature
The final signature declared on an over‐
loaded function, used for its implementa‐
tion’s parameters.

See also function overload

implicit any
When TypeScript cannot immediately
deduce the type of a class property, func‐
tion parameter, or variable, it implicitly
assumes the type to be any. Implicit any
types for class properties and function
parameters may be configured to be type
errors using the noImplicitAny compiler
option.

interface
A named set of properties. TypeScript will
know a value that’s declared to be of a
particular interface’s type will have that
interface’s declared properties.

interface merging
A property of interfaces that when mul‐
tiple interfaces with the same name are
declared in the same scope, they combine
into one interface instead of causing a
type error about conflicting names. This
is most commonly used by definition
authors to augment global interfaces such
as Window.

intersection type
A type that uses the & operator to indi‐
cate it has all the properties of both its
constituents.

JSDoc
A standard for /** ... */ block com‐
ments that describe pieces of code such

Glossary | 275

JSDoc



as classes, functions, and variables. Often
used in JavaScript projects to roughly
describe types.

literal
A value that is known to be a distinct
instance of a primitive.

mapped types
A type that takes in another type and per‐
forms some operation on each member of
that type. In other words, it maps from
members of one type into a new set of
members.

module
A file with a top-level export or import.
These are generally either files in your
source code or files in node_modules/
packages.

See also script.

module resolution
The set of steps used to determine what
file a module import resolves to. The
TypeScript compiler can have this speci‐
fied by its moduleResolution compiler
option.

namespace
An old construct in TypeScript that
creates a globally available object with
“exported” contents available to call as
members of that object. Namespaces are a
rare example of a TypeScript-specific syn‐
tax extension to vanilla JavaScript. These
days, they’re mostly used in .d.ts declara‐
tion files.

never
The TypeScript type representing the bot‐
tom type: a type that can have no possible
values.

See also bottom type.

non-null assertion
A shorthand ! that asserts a type is not
null or undefined.

null
One of the two primitive types in Java‐
Script that represents a lack of value. null
represents an intentional lack of value,
while undefined represents a more gen‐
eral lack of value.

See also undefined.

optional
A function parameter, class property, or
member of an interface or object type
that doesn’t need to be provided. Indi‐
cated by placing a ? after its name, or
for function parameters and class proper‐
ties, alternately indicated by providing a
default value with a =.

overload signature
One of the signatures declared on an
overloaded function to describe a way it
may be called.

See also function overload

override
Redeclaring a property on a subclass-
derived interface object that already exists
on the base.

parameter
A received input, commonly referring to
what a function declares. For functions,
an argument is the value being passed to a
call, while a parameter is the value inside
the function.

See also argument

parameter property
A TypeScript syntax extension for declar‐
ing a property assigned to a member
property of the same type at the beginning
of a class constructor.

276 | Glossary

literal



Pascal case
A naming convention where the first let‐
ter of each compound word in a name
is capitalized, like PascalCase. The con‐
vention for names of many TypeScript
type system constructs, including gener‐
ics, interfaces, and type aliases.

project references
A feature of TypeScript configuration files
where they can reference other configura‐
tion files’ projects as dependencies. This
allows you to use TypeScript as a build
coordinator to enforce a project depend‐
ency tree.

primitive
An immutable data type built into Java‐
Script that is not an object. They are:
null, undefined, boolean, string, num
ber, bigint, and symbol.

privacy, private field
A feature of JavaScript where class mem‐
bers whose names begin with # can only
be accessed inside that same class.

readonly
A TypeScript type system feature where
adding the readonly keyword in front of a
class or object member indicates it can’t be
reassigned.

refactor
A change to code that keeps most or all
of its behaviors the same. The TypeScript
language service is able to perform some
refactors on source code when asked, such
as moving complex lines of code into a
const variable.

return type
The type that must be returned by a func‐
tion. If multiple return statements exist in
the function with different types, it will be
a union of all those possible types. If the
function cannot possibly return, it will be
never.

Rick Roll
An internet meme where users are tricked
into listening to and/or watching a music

video of Rick Astley’s seminal classic
“Never Gonna Give You Up.” I have hid‐
den several in this book.

See also https://oreil.ly/rickroll

script
Any source code file that is not a module.

See also module.

strict mode
A collection of compiler options that
increase the amount of strictness and
number of checks the TypeScript type
checker performs. This can be enabled for
tsc with the --strict flag and in TSCon‐
figuration files with the "strict": true
compilerOption.

strict null checking
A strict mode for TypeScript where null
and undefined are no longer allowed to
be provided to types that don’t explicitly
include them.

See also billion-dollar mistake

structurally typed
A type system where any value that hap‐
pens to satisfy a type is allowed to be used
as an instance of that type.

See also duck typed

subclass
A class that extends another class, referred
to as a base class. Doing so copies mem‐
bers of the base class prototype to the
child class prototype.

target
The TypeScript compiler option to specify
how far back in syntax support JavaScript
code needs to be transpiled, such as "es5
or "es2017". Although target defaults to
"es3" for backward compatibility reasons,
it’s advisable use as new JavaScript syntax
as possible per your target platform(s), as
supporting newer JavaScript features in
older environments necessitates creating
more JavaScript code.

Glossary | 277

target

https://oreil.ly/rickroll


Thenable
A JavaScript object with a .then method
that takes in up to two callback func‐
tions and returns another Thenable. Most
commonly implemented by the built-in
Promise class, but user-defined classes
and objects can work like a Thenable as
well.

top type
A type that can represent any possible
type in a system.

See also any, unknown

transpile
A term for compilation that turns source
code from one human-readable program‐
ming language into another. TypeScript
includes a compiler that turns .ts/.tsx
TypeScript source code into .js files, which
is sometimes referred to as transpilation.

See also compile

TSConfig
A JSON configuration file for TypeScript.
Most commonly named tsconfig.json or
in the pattern tsconfig.*.json. Editors such
as VS Code will read from a tsconfig.json
file in a directory to determine TypeScript
language service configuration options.

tuple
An array of a fixed size where each ele‐
ment is given an explicit type.

For example, [number, string | unde
fined] is a tuple of size two where the
first element is type number and the sec‐
ond element is type string | undefined.

type
An understanding of what members and
capabilities a value has. These can be
primitives such as string, literals such
as 123, or more complex shapes like func‐
tions and objects.

type annotation
An annotation after a name used to indi‐
cate its type. Consists of : and the name of
a type.

type guard
A piece of runtime logic that can be
understood in the type system to only
allow some logic if a value is a particular
type.

type narrowing
When TypeScript can deduce a more spe‐
cific type for a value inside a block of code
that is gated on a type guard.

type predicate
A function with a return type annotated
to act as a type guard. Type predicate
functions return a boolean value that
indicates whether a value is a type.

type system
The set of rules for how a programming
language understands what types the con‐
structs in a program may have.

undefined
One of the two primitive types in Java‐
Script that represents a lack of value. null
represents an intentional lack of value,
while undefined represents a more gen‐
eral lack of value.

See also null.

union
A type describing a value that can be two
or more possible types. Represented by
the | pipe between each possible type.

unknown
The TypeScript concept representing the
top type. unknown does not allow arbitrary
member access without type narrowing.

See also any, top type

278 | Glossary

Thenable



visibility
Specifying whether a class member is
visible to code outside the class. Indica‐
ted before the member’s declaration with
the public, protected, and private key‐
words. Visibility and its keywords predate
JavaScript’s true # member privacy and
exist only in the TypeScript type system.

See also privacy.

void
A type indicating the lack of returned
value from a function, represented by the
void keyword in TypeScript. Functions
are thought of as returning void if they
have no return statements that return a
value.

Glossary | 279

void





Index

Symbols
! (exclamation point)

disabling initialization checking, 107
non-null type assertions, 134

# (pound sign), private class members, 120-122
& (ampersand), intersection types, 54
() (parentheses)

arrays and, 76
in function types, 68

. . . (ellipsis), spread operator, 64
for arrays, 79
tuples as rest parameters, 82

? (question mark)
optional parameters, 63
optional properties, 50-51

@ts-check comment, 224
| (pipe) operator, 30

A
abstract classes

described, 119-120
finding implementations of, 185-186

access control modifiers, changing, 256-257
allowJs compiler option, 222
allowSyntheticDefaultImports compiler option,

221
ambient contexts, 166, 167
ampersand (&), intersection types, 54
any type

ambient contexts, 167
described, 125-126
evolving any, 22, 77
noImplicitAny compiler option, 214

useUnknownInCatchVariables compiler
option, 217-218

arrays
described, 75
joining with spread operator, 79
members, retrieving, 78-79
rest parameters as, 64-65
tuples

assignability, 81
const assertions, 84-85
described, 80
explicit types, 83
inferring, 83
as rest parameters, 82

as types
evolving any arrays, 77
function types and, 76
multidimensional arrays, 78
type annotations for, 76
union types and, 76-77

as const operator, 84-85
as keyword, 132
assertions (see const assertions; type assertions)
assignability

described, 21
errors, 21

for function types, 68
for intersection types, 56

of literals, 35
of subclasses, 114-116
of tuples, 81
of type assertions, 136

assignment narrowing, 31-32
async functions, Promises and, 158

281



autocompletion when writing code, 8-9,
186-187

automatic numeric values with enums, 241-242

B
Babel, 10, 207, 249
bigint primitive, 17
billion-dollar mistake, 36-37
bivariant function parameters, 216
boolean primitive, 17, 34
bottom types, 56
build mode (tsc command), 229-230
built-in declarations

DOM types, 172-173
library files, 170-172
purpose of, 170

C
call signatures in interfaces, 92
checkJs compiler option, 223-224
class generics for arrays, 76
classes

abstract
described, 119-120
finding implementations of, 185-186

constructors
overriding, 116
parameters, 104

extending, 114
assignability, 114-116
constructor overrides, 116
method overrides, 117
property overrides, 118

generics for
declaring, 147-148
explicit types, 148-149
extending, 149-150
implementing interfaces, 150
method generics, 151
static class generics, 152

interfaces and, 111-114
member visibility, 120-122
methods of, 103-104
parameter properties, 236-238
properties

declaring, 104-105
disabling initialization checking, 107
as functions, 105-106
initialization checking, 106-107

optional, 108
read-only, 108-109

strictPropertyInitialization compiler option,
217

as types, 109-111
code actions when writing code

purpose of, 188-189
quick fixes, 191
refactoring with, 191
renaming with, 189

code navigation
implementations, finding, 185-186
references, finding, 184-185
type definitions, finding, 183-184

code style in TypeScript, 12
code writing

autocompletion, 186-187
code actions

purpose of, 188-189
quick fixes, 191
refactoring with, 191
renaming with, 189

import updates, 187-188
combining type aliases, 40
CommonJS interoperability, 220-221
compilers

compiling TypeScript, 10
definition of, 6
error handling, 11, 191-196

composite compiler option, 228
conditional checks, narrowing with, 32
conditional types

distributivity, 261
generic, 260-261
inferred, 262
mapped types and, 263
never type and, 264
purpose of, 259

configuration bases (TSConfig), 227
configuration options

emitting JavaScript, 207
declaration compiler option, 209
emitDeclarationOnly compiler option,

210
noEmit compiler option, 212
outDir compiler option, 207-208
source maps, 210-211
target compiler option, 208-213

file extensions

282 | Index



JSON files, 206
JSX syntax, 204-206

for JavaScript files, 222
allowJs compiler option, 222
checkJs compiler option, 223-224
JSDoc support, 224-225

for module import/export, 218
CommonJS interoperability, 220-221
isolatedModules compiler option, 221
module compiler option, 219
moduleResolution compiler option, 219

project references
build mode, 229-230
composite compiler option, 228
purpose of, 227
references compiler option, 229

tsc command, 199-201
TSConfig files

CLI vs., 202
configuration bases, 227
creating, 202
extends compiler option, 225-226
file inclusions, 203-204
purpose of, 201-202

for type checking
lib compiler option, 212
skipLibCheck compiler option, 213
strict mode, 213-218

const assertions, 84-85
literals as literals, 137
purpose of, 137
read-only objects, 139

const enums, 243-244
const variables, 34
constituents, 30
constrained generics, 155-157
constructors (of classes)

overriding, 116
parameters, 104

context menus in IDEs, 181-182
contravariant function parameters, 216

D
declaration compiler option, 174, 209
declaration files

built-in declarations
DOM types, 172-173
library files, 170-172
purpose of, 170

declarationMap compiler option, 211
emitting, 209-210
for modules, 173-174
package types

declaration compiler option, 174
DefinitelyTyped repository, 177-179
dependency, 175
exposing, 176

purpose of, 165-166
for runtime values

declare keyword, 166-167
global augmentations, 169
global values, 168
interface merging, 168

declarationMap compiler option, 211
declare keyword, 166-167
declaring

classes as generics, 147-148
functions

as generics, 142
in interfaces, 91-92

interfaces as generics, 145
objects, 44
properties of classes, 104-105
runtime values

with declare keyword, 166-167
for global augmentations, 169
as global values, 168
for interface merging, 168

unions, 30
decorators, 238-239
default generics, 154-155
default parameters, 64
DefinitelyTyped repository, 177-179
dependency package types, 175
derived classes (see subclasses)
derived interfaces, overridden properties of, 98
developer tools

IDEs (see IDEs)
for JavaScript, 5
for TypeScript, 8-9

disabling initialization checking, 107
discriminants, 53
discriminated unions

described, 53-54
generics for, 153

distributivity of conditional types, 261
documentation

in JavaScript, 4, 224-225

Index | 283



in TypeScript, 8
DOM declarations, 172-173
double type assertions, 137
duck typing, 46
dynamically typed languages, 4

E
ECMAScript

module import/export, 218-220
new versions, 3

ECMAScript Modules (ESM), 25, 248
editor features (TypeScript), 12
Eich, Brendan, 3
ellipsis (. . .), spread operator, 64

for arrays, 79
tuples as rest parameters, 82

emitDeclarationOnly compiler option, 210
emitting JavaScript, 207

declaration compiler option, 209
emitDeclarationOnly compiler option, 210
noEmit compiler option, 212
outDir compiler option, 207-208
source maps, 210-211
target compiler option, 208-213

enums
automatic numeric values, 241-242
const enums, 243-244
purpose of, 239-241
string values, 242-243

error handling
with IDEs, 191-192

Problems tab, 193
running terminal compiler, 194
type information, 194-196

with type assertions, 133
useUnknownInCatchVariables compiler

option, 217-218
errors

assignability errors, 21
for function types, 68
for intersection types, 56

syntax errors, 20
type errors, 20

ESM (ECMAScript Modules), 25, 248
esModuleInterop compiler option, 221
evolving any type, 22, 77
excess property checking in structural typing,

47-48
exclamation point (!)

disabling initialization checking, 107
non-null type assertions, 134

exclude property, 204
experimentalDecorators compiler option,

238-239
explicit return types, 66
explicit tuple types, 83
explicit type annotations, 167
explicit type arguments

for generic classes, 148-149
for generic functions, 143-144

explicit unions of objects, 52-53
exporting

namespaces and, 245-247
type-only imports and exports, 249-250
via modules, 25-27

configuration options for, 218-222
exposing package types, 176
extending

classes, 114
assignability, 114-116
constructor overrides, 116
method overrides, 117
property overrides, 118

generic classes, 149-150
interfaces

multiple interfaces, 99
overridden properties of, 98
purpose of, 97-98

extends compiler option, 225-226

F
falsiness, 37
file extensions

JSON files, 206
JSX syntax, 204-206

file inclusions, 203-204
finding

implementations in code, 185-186
references in code, 184-185
type definitions in code, 183-184

fixed-size arrays (see tuples)
freedom

in JavaScript, 4
in TypeScript, 7

functions
async, Promises and, 158
of classes, properties as, 105-106
generics for

284 | Index



declaring, 142
explicit type arguments, 143-144
multiple type arguments, 144

in interfaces
declaring, 91-92
overloading, 101

overloading, 72-73
parameters

default, 64
optional, 63-64
required, 62
rest, 64-65
type annotations for, 61-62

return types
described, 65
explicit, 66
never, 72
void, 70-71

strictBindCallApply compiler option,
215-216

strictFunctionTypes compiler option, 216
type predicates, 127-129
as types

array types and, 76
described, 67-68
inferring parameter types, 69
parentheses in, 68
type aliases for, 69-70

G
generic arrow functions in .tsx files, 205
generic conditional types, 260-261
generic mapped types, 258
generics

for classes
declaring, 147-148
explicit types, 148-149
extending, 149-150
implementing interfaces, 150
method generics, 151
static class generics, 152

constrained, 155-157
defaults, 154-155
for discriminated unions, 153
for functions

declaring, 142
explicit type arguments, 143-144
multiple type parameters, 144

for interfaces, 145-147, 150

naming conventions, 160
purpose of, 141
for type aliases, 152
when to use, 159-160

global augmentations, 169
global interface merging, 168
global values, declaring runtime values as, 168

H
Hejlsberg, Anders, 3, 6
history

of JavaScript, 3
of TypeScript, 6

Hoare, Tony, 36
hover boxes (IDEs) for type information,

194-196

I
IDEs (Integrated Development Environments)

code navigation
implementations, finding, 185-186
references, finding, 184-185
type definitions, finding, 183-184

code writing
autocompletion, 186-187
code actions, 188-191
import updates, 187-188

context menus and keyboard shortcuts,
181-182

error handling, 191-192
Problems tab, 193
running terminal compiler, 194
type information, 194-196

if statements, narrowing with, 32
implementations

finding in code, 185-186
signatures, 72-73

import updates when writing code, 187-188
importing

type-only imports and exports, 249-250
via modules, 25-27

configuration options for, 218-222
include property, 203
including files, 203-204
index signatures in interfaces

numeric, 95
properties and, 94-95
purpose of, 93-94

infer, variable types, 17

Index | 285



inferred tuples, 83
inferred types, 262
inferred unions of objects, 51
--init command (tsc command), 202
initial values, lacking, 38
initialization checking of class properties,

106-107
installing TypeScript, 10
Integrated Development Environments (see

IDEs)
interface keyword, 45
interfaces

call signatures, 92
classes and, 111-114
extensions

of multiple interfaces, 99
overridden properties of, 98
purpose of, 97-98

finding implementations of, 185-186
functions in, declaring, 91-92
generics for, 145-147, 150
index signatures

numeric, 95
properties and, 94-95
purpose of, 93-94

merging, 99-101, 168
nested, 96
properties

optional, 89
read-only, 90-91

type aliases vs., 87-88
intersection types

dangers of, 55-57
described, 54
never type and, 263

intrinsic string types, 267
isolatedModules compiler option, 221

J
JavaScript

compiling Typescript into, 10
configuration options for, 222

allowJs compiler option, 222
checkJs compiler option, 223-224
JSDoc support, 224-225

emitting, 207
declaration compiler option, 209
emitDeclarationOnly compiler option,

210

noEmit compiler option, 212
outDir compiler option, 207-208
source maps, 210-211
target compiler option, 208-213

history of, 3
limitations of, 4-5
primitives, 17
relationship with TypeScript, 13
speed compared to TypeScript, 13
syntax extensions

class parameter properties, 236-238
decorators, 238-239
enums, 239-244
limitations of, 235
namespaces, 244-249
type-only imports and exports, 249-250

type aliases and, 39
type annotations, 13
vanilla, 4

joining arrays with spread operator, 79
JSDoc, 4, 224-225
JSON files, 206
jsx compiler option, 205
JSX syntax, 204-206

K
Kernighan, Brian, 270
keyboard shortcuts

in IDEs, 181-182
opening code actions menu, 189

keyof type operator
constrained type parameters, 156
described, 129-130
mapped types, 254-255

keyof typeof type operator, 131

L
language services, definition of, 6
lib compiler option, 212, 213
library declaration files, 170-172
literals

assignability, 35
described, 33-35
as literals, 137

M
mapped types

changing access control modifiers, 256-257

286 | Index



conditional types and, 263
from existing types, 254-255
generic, 258
never type and, 264
purpose of, 253-254
remapping keys, 268-270
signatures and, 255-256

member visibility for classes, 120-122
members of arrays, retrieving, 78-79
merging interfaces, 99-101, 168
methods

of classes
described, 103-104
overriding, 117

generics for, 151
of interfaces

function declarations, 91-92
overloading, 101

mapped types, 255-256
modifiers, changing, 256-257
module compiler option, 219
module resolution, 219
moduleResolution compiler option, 219
modules

configuration options for, 218
CommonJS interoperability, 220-221
isolatedModules compiler option, 221
module compiler option, 219
moduleResolution compiler option, 219

declaration files, 173-174
described, 25-27
extending, 226
namespaces vs., 245, 248

multidimensional arrays, 78
multiple interfaces

extending, 99
implementing in classes, 112-114

multiple type arguments for generic functions,
144

N
namespaces

exports, 245-247
modules vs., 245, 248
nested, 247
purpose of, 244-245
in type definitions, 248

naming conflicts in merged interfaces, 100
naming conventions

for generics, 160
for type parameters, 142

narrowing
with assignment narrowing, 31-32
class properties, 109
with conditional checks, 32
described, 29, 31
objects, 53
with truthiness narrowing, 37
with typeof operator, 33

navigating code
implementations, finding, 185-186
references, finding, 184-185
type definitions, finding, 183-184

nested interfaces, 96
nested namespaces, 247
nested objects, 48-50
never type, 56

conditional types and, 264
as function return type, 72
intersections and unions, 263
mapped types and, 264
purpose of, 263

noEmit compiler option, 212
noImplicitAny compiler option, 214
non-null type assertions, 134-135
null type

as primitive, 17, 34
strictNullChecks compiler option, 217

number primitive, 17, 34
numeric index signatures, 95

O
objects

declaring, 44
described, 43-44
interfaces (see interfaces)
primitives vs., 19
read-only, 139
structural typing

described, 45-46
excess property checking, 47-48
nested objects, 48-50
optional properties, 50-51
usage checking, 46

type aliases for, 45
type shapes, 24-25
unions of

discriminated unions, 53-54

Index | 287



explicit unions, 52-53
inferred unions, 51
narrowing, 53

optional parameters, 63-64
optional properties

of classes, 108
of interfaces, 89
of objects, 50-51

outDir compiler option, 207-208
output (see emitting JavaScript)
overload signatures, 72-73
overloading interface functions, 101
overriding

class constructors, 116
class methods, 117
class properties, 118
interface properties, 98

P
package types

declaration compiler option, 174
DefinitelyTyped repository, 177-179
dependency, 175
exposing, 176

parameters
class constructors, 104
default, 64
inferring types, 69
optional, 63-64
properties, 236-238
required, 62
rest

as arrays, 64-65
tuples as, 82

type annotations for, 61-62
parentheses ()

arrays and, 76
in function types, 68

pipe (|) operator, 30
Playground, 6-10
pound sign (#), private class members, 120-122
pretty mode (tsc command), 200
primitives, 17-18

literals
assignability, 35
described, 33-35
as literals, 137

never type, 56
objects vs., 19

private class members, 120-122
Problems tab (VS Code), 193
programming languages, definition of, 6
project references

build mode, 229-230
composite compiler option, 228
purpose of, 227
references compiler option, 229

Promises
async functions and, 158
creating, 157-158
purpose of, 157

properties
of classes

declaring, 104-105
disabling initialization checking, 107
as functions, 105-106
initialization checking, 106-107
optional, 108
overriding, 118
read-only, 108-109

excess property checking, 47-48
of interfaces

as functions, 91-92
index signatures and, 94-95
naming conflicts, 100
nested, 96
optional, 89
overridden, 98
read-only, 90-91

mapped types, 255-256
of objects, optional, 50-51
of parameters, 236-238
of unions, 30-31

protected class members, 120-122
public class members, 120-122

Q
question mark (?)

optional parameters, 63
optional properties, 50-51

R
read-only objects, 139
read-only properties

of classes, 108-109
of interfaces, 90-91

refactoring with code actions, 191
references compiler option, 229

288 | Index



references, finding in code, 184-185
remapping mapped type keys, 268-270
renaming with code actions, 189
required parameters, 62
resolveJsonModule compiler option, 206
rest parameters

as arrays, 64-65
tuples as, 82

restrictions in TypeScript, 7
retrieving array members, 78-79
return types

described, 65
explicit, 66
never, 72
void, 70-71

running
terminal compiler, 194
TypeScript locally, 11-12

runtime syntax extensions (see syntax exten‐
sions)

runtime values, declaring
with declare keyword, 166-167
for global augmentations, 169
as global values, 168
for interface merging, 168

S
scripts, 25-26
sharing code via modules, 25-27
skipLibCheck compiler option, 213
source maps, 210-211
sourceMap compiler option, 211
spread operator (. . .), 64

for arrays, 79
tuples as rest parameters, 82

static class generics, 152
static keyword, 122
strict compiler option, 213-214
strict mode (type checking), 213-218
strict null checking

billion-dollar mistake, 36-37
with no initial values, 38
with truthiness narrowing, 37

strictBindCallApply compiler option, 215-216
strictFunctionTypes compiler option, 216
strictNullChecks compiler option, 217
strictPropertyInitialization compiler option,

217
string primitive, 17, 34

string-valued enums, 242-243
strings, template literal types

intrinsic types, 267
purpose of, 265-267
remapping mapped type keys, 268-270
template literal keys, 267

structural typing
described, 45-46
excess property checking, 47-48
nested objects, 48-50
optional properties, 50-51
usage checking, 46

subclasses, 114
assignability, 114-116
constructor overrides, 116
method overrides, 117
property overrides, 118

super keyword, 116
symbol primitive, 17
syntax errors, 20
syntax extensions

class parameter properties, 236-238
decorators, 238-239
enums

automatic numeric values, 241-242
const enums, 243-244
purpose of, 239-241
string values, 242-243

limitations of, 235
namespaces

exports, 245-247
modules vs., 245, 248
nested, 247
purpose of, 244-245
in type definitions, 248

type-only imports and exports, 249-250
syntax validity, type errors and, 11

T
target compiler option, 208-213
targets for library declaration files, 171-172
TC39, 3, 13
template literal keys, 267
template literal types

intrinsic types, 267
purpose of, 265-267
remapping mapped type keys, 268-270

terminal compiler, running, 194
ternary statement, narrowing with, 33

Index | 289



Thenable, 158
top types, 125-127
truthiness narrowing, 37
@ts-check comment, 224
tsc command, 10-11

build mode, 229-230
configuration options, 199-201
--init command, 202
pretty mode, 200
TSConfig files vs., 202
watch mode, 200-201

TSConfig files, 11
CLI vs., 202
configuration bases, 227
creating, 202
extends compiler option, 225-226
file inclusions, 203-204
project references

build mode, 229-230
composite compiler option, 228
purpose of, 227
references compiler option, 229

purpose of, 201-202
tsconfig.json file (see TSConfig files)
.tsx files, generic arrow functions in, 205
tuples

assignability, 81
const assertions, 84-85
described, 80
explicit types, 83
inferring, 83
as rest parameters, 82

type aliases
combining, 40
described, 39
for functions, 69-70
generics for, 152
interfaces vs., 87-88
JavaScript and, 39
for objects, 45

type annotations
for arrays, 76
described, 22-24
explicit, 167
for function parameters, 61-62
for function return types, 66
in JavaScript, 13
type assertions vs., 136
for unions, 35

type arguments
for generic discriminated unions, 153
for generic functions

explicit arguments, 143-144
multiple arguments, 144

for generic type aliases, 152
type assertions

assignability, 136
error handling with, 133
non-null, 134-135
purpose of, 132-133
type annotations vs., 136
when to use, 135

type casts (see type assertions)
type checking

configuration options for
lib compiler option, 212
skipLibCheck compiler option, 213
strict mode, 213-218

definition of, 6
in TypeScript, 6-7, 17-19

type definitions
finding in code, 183-184
namespaces in, 248

type errors, 11, 20
type guards, 31
type operations

complexity of, 270
conditional types, 259-263
mapped types, 253-258
never type, 263-265
template literal types, 265-270

type operators
keyof, 129-130
keyof typeof, 131
purpose of, 129
typeof, 131

type parameters
for constrained generics, 155-157
for generic classes

declaring, 147-148
explicit types, 148-149
implementing interfaces, 150
method generics, 151
static class generics, 152

for generic defaults, 154-155
for generic functions, 142
for generic interfaces, 145-147
naming conventions, 142

290 | Index



purpose of, 142-142
type predicates, 127-129
type shapes, 24-25
type systems, 19-19
type-only imports and exports, 249-250
typeof operator

described, 131
narrowing with, 33

types
arrays as

evolving any arrays, 77
function types and, 76
multidimensional arrays, 78
type annotations for, 76
union types and, 76-77

assignability, 21
bottom types, 56
classes as, 109-111
conditional types

distributivity, 261
generic, 260-261
inferred, 262
mapped types and, 263
never type and, 264
purpose of, 259

declaration files (see declaration files)
DefinitelyTyped repository, 177-179
described, 17-19
duck typing, 46
evolving any, 22
function return types

described, 65
explicit, 66
never, 72
void, 70-71

functions as
array types and, 76
described, 67-68
inferring parameter types, 69
parentheses in, 68
type aliases for, 69-70

generics
for classes, 147-152
constrained, 155-157
defaults, 154-155
for discriminated unions, 153
for functions, 142-144
for interfaces, 145-147, 150
naming conventions, 160

for type aliases, 152
when to use, 159-160

information in IDEs, 194-196
intersections

dangers of, 55-57
described, 54

literals
assignability, 35
described, 33-35

mapped types
changing access control modifiers,

256-257
from existing types, 254-255
generic, 258
never type and, 264
purpose of, 253-254
signatures and, 255-256

narrowing
with assignment narrowing, 31-32
with conditional checks, 32
described, 29, 31
with typeof operator, 33

never
conditional types and, 264
intersections and unions, 263
mapped types and, 264
purpose of, 263

objects
declaring, 44
described, 43-44
discriminated unions, 53-54
explicit unions, 52-53
inferred unions, 51
interfaces (see interfaces)
narrowing, 53
type aliases for, 45

primitives and, 17-18
strict null checking

billion-dollar mistake, 36-37
with no initial values, 38
with truthiness narrowing, 37

structural typing
described, 45-46
excess property checking, 47-48
nested objects, 48-50
optional properties, 50-51
usage checking, 46

template literal types
intrinsic types, 267

Index | 291



purpose of, 265-267
remapping mapped type keys, 268-270
template literal keys, 267

top types, 125-127
tuples as

const assertions, 84-85
explicit tuple types, 83

unions
array types and, 76-77
combined with intersections, 55
declaring, 30
described, 29-30
properties, 30-31
type aliases, 39-40
type annotations, 35

TypeScript
compiling syntax, 10
constant changes in, 14
developer tools, 8-9
documentation, 8
editor features, 12
freedom and restrictions, 7
history of, 6
installing, 10
limitations of, 12-14
modules, 25-27
Playground, 6-10
purpose of, 6
running locally, 11-12
speed compared to JavaScript, 13
type checking in, 6-7, 17-19
type system in, 19-19

U
undefined primitive, 17, 34

for default parameters, 64
lacking initial values and, 38
for optional parameters, 63
optional properties vs., 50
void return type vs., 71

unions
array types and, 76-77
combined with intersections, 55
declaring, 30
described, 29-30
discriminated unions, 53-54, 153
distributivity of conditional types, 261
never type and, 263
of objects

explicit unions, 52-53
inferred unions, 51
narrowing, 53

properties, 30-31
type aliases

combining, 40
described, 39
JavaScript and, 39

type annotations, 35
unknown type

described, 126-127
useUnknownInCatchVariables compiler

option, 217-218
unsound array members
updating import statements, 187-188
usage checking in structural typing, 46
useUnknownInCatchVariables compiler

option, 217-218

V
vanilla JavaScript, 4
variables, 17

(see also types)
assignability of types, 21
const, 34
evolving any type, 22
global augmentations, 169
lacking initial values, 38
type annotations, 22-24
type shapes, 24-25

visibility of class members, 120-122
void return type, 70-71
VS Code, 181

(see also IDEs)
opening code actions menu, 189
TypeScript support in, 12

W
watch mode (tsc command), 200-201
widening class properties, 109
wildcard module declarations, 174
writing code

autocompletion, 186-187
code actions

purpose of, 188-189
quick fixes, 191
refactoring with, 191
renaming with, 189

import updates, 187-188

292 | Index



About the Author
Josh Goldberg is a frontend developer from New York with a passion for open
source, static analysis, and the web. He is a full-time open source maintainer who
contributes regularly to TypeScript and open source projects in its ecosystem, such
as typescript-eslint and TypeStat. His past work includes spearheading Codecademy’s
usage of TypeScript, helping create its Learn TypeScript course, and architecting
rich client applications at Microsoft. His projects range from static analysis to meta-
languages to re-creating retro games in the browser. Also cats.

Colophon
The animal on the cover of Learning Typescript is a sun conure (Aratinga solstitialis),
a colorful parrot native to northeastern South America.

Sun conures, also known as sun parakeets, are mostly yellow with green wing tips and
an orange face and chest. They are olive green at birth, with bright colors developing
gradually over time in both males and females. They are monogamous, and females
lay three to four eggs in a clutch with 23 to 27 days of incubation. Their typical diet is
fruits, flowers, seeds, nuts, and insects.

Sun conures are popular as pets because of their beautiful plumage and endearing
personalities. They are curious birds but can also be quite loud.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from George Shaw’s Zoology. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.



Learn from experts.  
Become one yourself.
Books | Live online courses   
Instant Answers | Virtual events 
Videos | Interactive learning

Get started at oreilly.com. 

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k 

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Why I Wrote This Book
	Navigating This Book
	Examples and Projects

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Concepts
	Chapter 1. From JavaScript to TypeScript
	History of JavaScript
	Vanilla JavaScript’s Pitfalls
	Costly Freedom
	Loose Documentation
	Weaker Developer Tooling

	TypeScript!
	Getting Started in the TypeScript Playground
	TypeScript in Action
	Freedom Through Restriction
	Precise Documentation
	Stronger Developer Tooling
	Compiling Syntax

	Getting Started Locally
	Running Locally
	Editor Features

	What TypeScript Is Not
	A Remedy for Bad Code
	Extensions to JavaScript (Mostly)
	Slower Than JavaScript
	Finished Evolving

	Summary

	Chapter 2. The Type System
	What’s in a Type?
	Type Systems
	Kinds of Errors

	Assignability
	Understanding Assignability Errors

	Type Annotations
	Unnecessary Type Annotations

	Type Shapes
	Modules

	Summary

	Chapter 3. Unions and Literals
	Union Types
	Declaring Union Types
	Union Properties

	Narrowing
	Assignment Narrowing
	Conditional Checks
	Typeof Checks

	Literal Types
	Literal Assignability

	Strict Null Checking
	The Billion-Dollar Mistake
	Truthiness Narrowing
	Variables Without Initial Values

	Type Aliases
	Type Aliases Are Not JavaScript
	Combining Type Aliases

	Summary

	Chapter 4. Objects
	Object Types
	Declaring Object Types
	Aliased Object Types

	Structural Typing
	Usage Checking
	Excess Property Checking
	Nested Object Types
	Optional Properties

	Unions of Object Types
	Inferred Object-Type Unions
	Explicit Object-Type Unions
	Narrowing Object Types
	Discriminated Unions

	Intersection Types
	Dangers of Intersection Types

	Summary


	Part II. Features
	Chapter 5. Functions
	Function Parameters
	Required Parameters
	Optional Parameters
	Default Parameters
	Rest Parameters

	Return Types
	Explicit Return Types

	Function Types
	Function Type Parentheses
	Parameter Type Inferences
	Function Type Aliases

	More Return Types
	Void Returns
	Never Returns

	Function Overloads
	Call-Signature Compatibility

	Summary

	Chapter 6. Arrays
	Array Types
	Array and Function Types
	Union-Type Arrays
	Evolving Any Arrays
	Multidimensional Arrays

	Array Members
	Caveat: Unsound Members

	Spreads and Rests
	Spreads
	Spreading Rest Parameters

	Tuples
	Tuple Assignability
	Tuple Inferences

	Summary

	Chapter 7. Interfaces
	Type Aliases Versus Interfaces
	Types of Properties
	Optional Properties
	Read-Only Properties
	Functions and Methods
	Call Signatures
	Index Signatures
	Nested Interfaces

	Interface Extensions
	Overridden Properties
	Extending Multiple Interfaces

	Interface Merging
	Member Naming Conflicts

	Summary

	Chapter 8. Classes
	Class Methods
	Class Properties
	Function Properties
	Initialization Checking
	Optional Properties
	Read-Only Properties

	Classes as Types
	Classes and Interfaces
	Implementing Multiple Interfaces

	Extending a Class
	Extension Assignability
	Overridden Constructors
	Overridden Methods
	Overridden Properties

	Abstract Classes
	Member Visibility
	Static Field Modifiers

	Summary

	Chapter 9. Type Modifiers
	Top Types
	any, Again
	unknown

	Type Predicates
	Type Operators
	keyof
	typeof

	Type Assertions
	Asserting Caught Error Types
	Non-Null Assertions
	Type Assertion Caveats

	Const Assertions
	Literals to Primitives
	Read-Only Objects

	Summary

	Chapter 10. Generics
	Generic Functions
	Explicit Generic Call Types
	Multiple Function Type Parameters

	Generic Interfaces
	Inferred Generic Interface Types

	Generic Classes
	Explicit Generic Class Types
	Extending Generic Classes
	Implementing Generic Interfaces
	Method Generics
	Static Class Generics

	Generic Type Aliases
	Generic Discriminated Unions

	Generic Modifiers
	Generic Defaults

	Constrained Generic Types
	keyof and Constrained Type Parameters

	Promises
	Creating Promises
	Async Functions

	Using Generics Right
	The Golden Rule of Generics
	Generic Naming Conventions

	Summary


	Part III. Usage
	Chapter 11. Declaration Files
	Declaration Files
	Declaring Runtime Values
	Global Values
	Global Interface Merging
	Global Augmentations

	Built-In Declarations
	Library Declarations
	DOM Declarations

	Module Declarations
	Wildcard Module Declarations

	Package Types
	declaration
	Dependency Package Types
	Exposing Package Types

	DefinitelyTyped
	Type Availability

	Summary

	Chapter 12. Using IDE Features
	Navigating Code
	Finding Definitions
	Finding References
	Finding Implementations

	Writing Code
	Completing Names
	Automatic Import Updates
	Code Actions

	Working Effectively with Errors
	Language Service Errors

	Summary

	Chapter 13. Configuration Options
	tsc Options
	Pretty Mode
	Watch Mode

	TSConfig Files
	tsc --init
	CLI Versus Configuration

	File Inclusions
	include
	exclude

	Alternative Extensions
	JSX Syntax
	resolveJsonModule

	Emit
	outDir
	target
	Emitting Declarations
	Source Maps
	noEmit

	Type Checking
	lib
	skipLibCheck
	Strict Mode

	Modules
	module
	moduleResolution
	Interoperability with CommonJS
	isolatedModules

	JavaScript
	allowJs
	checkJs
	JSDoc Support

	Configuration Extensions
	extends
	Configuration Bases

	Project References
	composite
	references
	Build Mode

	Summary


	Part IV. Extra Credit
	Chapter 14. Syntax Extensions
	Class Parameter Properties
	Experimental Decorators
	Enums
	Automatic Numeric Values
	String-Valued Enums
	Const Enums

	Namespaces
	Namespace Exports
	Nested Namespaces
	Namespaces in Type Definitions
	Prefer Modules Over Namespaces

	Type-Only Imports and Exports
	Summary

	Chapter 15. Type Operations
	Mapped Types
	Mapped Types from Types
	Changing Modifiers
	Generic Mapped Types

	Conditional Types
	Generic Conditional Types
	Type Distributivity
	Inferred Types
	Mapped Conditional Types

	never
	never and Intersections and Unions
	never and Conditional Types
	never and Mapped Types

	Template Literal Types
	Intrinsic String Manipulation Types
	Template Literal Keys
	Remapping Mapped Type Keys

	Type Operations and Complexity
	Summary


	Glossary
	Index
	About the Author
	Colophon

