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Preface

Welcome to the pragmatic software development world, where engineers are not
afraid of ambitious performance goals. Where the change in requirements or unex‐
pected efficiency issues is handled without stress, where code is optimized tactically
and effectively, based on data, yet the codebase is kept simple and easy to read, main‐
tain, and extend. Wait, is this even possible?

Yes, and I will show you how! The good news is that if you bought this book, you are
already halfway there—it means you acknowledge the problem and are open to learn‐
ing more! The bad news is that, while I tried to distill the knowledge to only what’s
necessary, there are still 11 chapters to go through. I think Efficient Go is unique in
this regard as it is not a quick tutorial. Instead, it is a complete guide to writing effi‐
cient yet pragmatic software that goes through all aspects I wish I had known when I
started my career.

In this book, you will undoubtedly learn a lot about my favorite programming lan‐
guage, Go, and how to optimize it. But don’t let the title of this book fool you. While I
use Go as the example language to show the optimization mindset and observability
patterns, 8 out of 11 chapters of this book are language agnostic. You can use the
same techniques to improve software written in any other language like Java, C#,
Scala, Python, C++, Rust, or Haskell.

Finally, if you expected a full list of low-level optimization tricks, this is not the right
book. Firstly, optimizations do not generalize well. The fact that someone unrolled
the loop or used a pointer in their struct field and achieved better efficiency does not
mean it will be helpful if we do the same! We will go through some optimization
tricks, but I emphasize complete knowledge about efficiency in pragmatic software
development instead.

Secondly, “low-level” dangerous tricks are often not needed. In most cases, an aware‐
ness of simple points where your program wastes time and resources is enough to
fulfill your efficiency and scalability goals cheaply and effectively. Furthermore, you

ix



will learn that in most cases, there is no need to rewrite your program to C++, Rust,
or Assembly to have an efficient solution!

Before we start, let’s go through the main goals behind this book and why I found it
necessary to focus my time on the subject of efficiency. You will also learn how to get
the most out of this book and effectively use it in your software development tasks.

Why I Wrote This Book
I spent around 1,200 hours writing Efficient Go, so the choice to deliver such a book
was not spur-of-the-moment. In the era of social media, YouTube, and TikTok, book
writing and reading might feel outdated, but in my experience, modern media tend to
oversimplify topics. You have to condense those to an absolute minimum not to lose
viewers and monetization. It leads to the wrong incentives, which generally collide
with what I wanted to achieve with this book.

My mission here is straightforward: I want the software I use or depend on to be bet‐
ter! I want software project contributors and maintainers to understand their code’s
efficiency and how to assess it. I want them to reliably review my or others’ pull
requests with efficiency improvements. I want people around me to know how to
handle performance issues professionally instead of building a stressful atmosphere. I
want users and stakeholders to be cautious with the benchmarks and cheap market‐
ing we see in the industry. Finally, I want leaders, directors, and product managers to
approach software efficiency topics maturely with the awareness of how to form
pragmatic efficiency requirements that help engineers to deliver excellent products.

I also consider this book a small contribution toward more sustainable software.
Every wasted CPU time and memory wastes a significant amount of your business’s
money. However, it also wastes energy and hardware, which has a serious environ‐
mental effect. So saving money and the planet at the same time while enabling better
value for your business is not a bad outcome of the skills you will learn here.

I figured out that writing a book is the best way to achieve this goal. It’s easier than
continuously explaining the same nuances, tooling, and techniques in my daily work,
open source, and conferences!

How I Gathered This Knowledge
I built my experience toward efficiency topics and high-quality software development
through a lot of practice, mistakes, experiments, implicit mentors, and research.

I was 29 years old when I started writing this book. That might not feel like
much experience, but I started a full-time, professional software development career
when I was 19. I did full-time computer science studies in parallel to work at Intel
around software-defined infrastructure (SDI). I initially coded in Python around the
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1 If you are new to software development or open source, talk to us, start contributing, and apply for two
months paid mentorship. Let me know if you would like to have fun while mentoring others! We need good
mentors too—it’s important to teach another generation of open source maintainers.

OpenStack project, then in C++ including contributions to the popular-back-then
Mesos project under the supervision of amazing engineers from Mesosphere and
Twitter. Finally, I moved to develop Go around Kubernetes and fell in love with this
language.

I spent a nontrivial amount of time at Intel on node oversubscription feature with
noisy neighbor mitigations. Generally, oversubscription allows running more pro‐
grams on a single machine than would be otherwise possible. This can work since
statistically, all programs rarely use all of their reserved resources simultaneously.
Looking at this now from a later perspective, it is usually easier and more effective to
save money by starting with software optimization than by using complex algorithms
like this.

In 2016, I moved to London to work for a gaming start-up. I worked with past
employees of Google, Amazon, Microsoft, and Facebook to develop and operate a
global gaming platform. We were developing microservices, mostly in Go running on
dozens of Kubernetes clusters worldwide. This is where I learned a lot about dis‐
tributed systems, site reliability engineering, and monitoring. Perhaps this was when
I got addicted to amazing tooling around observability, which is key to achieving
pragmatic efficiency and explained in Chapter 6.

My passion for good visibility of the running software translated to becoming an
expert in using and developing a popular, open source, time-series database for mon‐
itoring purposes called Prometheus. Eventually, I became an official maintainer and
started multiple other Go open source projects and libraries. Finally, I had an oppor‐
tunity to cocreate with Fabian Reinartz a large distributed time-series database in the
open source called Thanos. I would not be surprised if some of my code runs in your
company infrastructure!

In 2019, I moved to Red Hat, where I work full-time on observability systems in open
source. This is when I also dived more into continuous profiling solutions, which you
will learn in this book too.

I am also active in the Cloud Native Computing Foundation (CNCF) as the ambassa‐
dor and observability Technical Advisory Group (TAG) tech lead. In addition, I co-
organize conferences and meetups. Finally, with the Prometheus and Thanos
projects, with the team, we mentor multiple engineers every year via the CNCF men‐
toring initiatives.1
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I wrote or reviewed thousands of code lines for various software that had to run on
production, be reliable, and scale. I have taught and mentored over two dozen engi‐
neers so far. However, perhaps the most insightful was the open source work. You
interact with diverse people, from different companies and places worldwide, with
different backgrounds, goals, and needs.

Overall, I believe we achieved amazing things with the fantastic people I had a chance
to work with. I was lucky to work in environments where high-quality code was more
important than decreasing code review delays or reducing time spent addressing style
issues. We thrived on good system design, code maintainability, and readability. We
tried to bring those values to open source, and I think we did a good job there. How‐
ever, there is one important thing I would improve if I had a chance to write, for
instance, the Thanos project again: I would try to focus more on the pragmatic effi‐
ciency of my code and the algorithms we chose. I would focus on having clearer effi‐
ciency requirements from the start and invest more in benchmarking and profiling.

And don’t get me wrong, the Thanos system nowadays is faster and uses much fewer
resources than some competitors, but it took a lot of time, and there is still a massive
amount of hardware resources we could use less. We still have many bottlenecks that
await community attention. However, if I applied the knowledge, techniques, and
suggestions that you will learn in this book, I believe we could have cut the develop‐
ment cost in half, if not more, to have Thanos in the state we have today (I hope my
ex-boss who paid for this work won’t read that!).

My journey showed me how much a book like this was needed. With more people
programming overall, often without a computer science background, there are plenty
of mistakes and misconceptions, especially regarding software efficiency. Not much
literature was available to give us practical answers to our efficiency or scaling ques‐
tions, especially for Go. Hopefully, this book fills that literature gap.

Who This Book Is For
Efficient Go focuses on giving the tools and knowledge necessary to answer when and
how to apply efficiency optimization, depending strongly on circumstances and your
organization’s goals. As a result, the primary audience for this book is software devel‐
opers designing, creating, or changing programs written in Go and any other modern
language. It should be a software engineer’s job to be an expert on ensuring the soft‐
ware they create works within both functional and efficiency requirements. Ideally,
you have some basic programming skills when starting this book.
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2 I’ve already gotten feedback from some experienced people that they did not know you could use metrics to
work on efficiency and performance improvements! It’s possible, and you will learn how here.

I believe this book is also useful to those who primarily operate software somebody
else writes, e.g., DevOps engineers, SRE, sysadmins, and platform teams. There are
many optimization design levels (as discussed in “Optimization Design Levels” on
page 98). Sometimes it makes sense to invest in software optimizations, and some‐
times we might need to address it on other levels! Moreover, to achieve reliable effi‐
ciency, software engineers have to benchmark and experiment a lot with production-
like environments (as explained in Chapter 6), which usually means close
collaboration with platform teams. Finally, the observability practices explained in
Chapter 6 are state-of-the-art tools recommended for modern platform engineering.
I am a strong proponent of avoiding differentiating between application performance
monitoring (APM) and observability for SRE. If you hear that differentiation, it’s
mostly coming from vendors who want you to pay more or feel like they have more
features. As I will explain, we can reuse the same tools, instrumentations, and signals
across all software observations.2 Generally, we are on the same team—we want to
build better products!

Finally, I would like to recommend this book to managers, product managers, and
leaders who want to stay technical and understand how to ensure you are not wasting
millions of dollars on easy-to-fix efficiency issues within your team!

How This Book Is Organized
This book is organized into 11 chapters. In Chapter 1, we discuss efficiency and why
it matters. Then, in Chapter 2, I briefly introduce Go with efficiency in mind. Then,
in Chapter 3, we will talk about optimizations and how to think about them and
approach those. Efficiency improvements can take enormous amounts of your time,
but systematic approaches help you save a lot of time and effort.

In Chapters 4 and 5, I will explain all you need to know about latency, CPU, and
memory resources, as well as how OS and Go abstract them.

Then we will move on to what it means to perform data-driven decisions around
software efficiency. We will start with Chapter 6. Then we will discuss the reliability
of experiments and complexity analysis in Chapter 7. Finally, I will explain bench‐
marking and profiling techniques in Chapters 8 and 9.

Last but not least, I will show you various examples of different optimization situa‐
tions in Chapter 10. Finally, in Chapter 11, we will take a few learnings and summa‐
rize various efficiency patterns and tricks we see in the Go community.
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Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
This book contains code examples that should help you understand the tools, techni‐
ques, and good practices. All of them are in the Go programming language and work
with Go version 1.18 and above.

You can find all the examples from this book in the executable and tested open
source GitHub repository efficientgo/examples. You are welcome to fork it, use it,
and play with the examples I share in this book. Everybody learns differently. For
some people, it is helpful to import some examples into their favorite IDE and play
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with it by modifying it, running, testing, or debugging. Find the way that works for
you and feel free to ask questions or propose improvements through GitHub issues
or pull requests!

Note that the code examples in this book are simplified for a clear view and smaller
size. Particularly, the following rules apply:

• If the Go package is not specified, assume package main.
• If the filename or extension of the example is not specified, assume the file has

a .go extension. If it’s a functional test or microbenchmark, the file name has to
end with _test.go.

• import statements are not always provided. In such cases, assume standard
library or previously introduced packages are imported.

• Sometimes, I don’t provide imports in the import statement but in a comment
(// import <URL>). This is when I want to explain a single nontrivial import out
of many needed in this code example.

• A comment with three dots (// ...) specifies that some unrelated content was
removed. This highlights that some logic is there for a function to make sense.

• A comment with the handle error statement (// handle error) indicates that
error handling was removed for readability. Always handle errors in your code!

This book is here to help you get your job done. In general, if this book offers an
example code, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing examples from O’Reilly books
does require permission. Answering a question by citing this book and quoting
example code does not require permission. However, incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate but generally do not require attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example, "Efficient Go by Bartło‐
miej Płotka (O’Reilly). Copyright 2023 Alloc Limited, 978-1-098-10571-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.
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CHAPTER 1

Software Efficiency Matters

The primary task of software engineers is the cost-effective development of
maintainable and useful software.

—Jon Louis Bentley, Writing Efficient Programs (Prentice Hall, 1982)

Even after 40 years, Jon’s definition of development is fairly accurate. The ultimate
goal for any engineer is to create a useful product that can sustain user needs for the
product lifetime. Unfortunately, nowadays not every developer realizes the signifi‐
cance of the software cost. The truth can be brutal; stating that the development pro‐
cess can be expensive might be an underestimation. For instance, it took 5 years and
250 engineers for Rockstar to develop the popular Grand Theft Auto 5 video game,
which was estimated to cost $137.5 million. On the other hand, to create a usable,
commercialized operating system, Apple had to spend way over $500 million before
the first release of macOS in 2001.

Because of the high cost of producing software, it’s crucial to focus our efforts on
things that matter the most. Ideally, we don’t want to waste engineering time and
energy on unnecessary actions, for example, spending weeks on code refactoring that
doesn’t objectively reduce code complexity, or deep micro-optimizations of a func‐
tion that rarely runs. Therefore, the industry continually invents new patterns to pur‐
sue an efficient development process. Agile Kanban methods that allow us to adapt to
ever-changing requirements, specialized programming languages for mobile plat‐
forms like Kotlin, or frameworks for building websites like React are only some
examples. Engineers innovate in these fields because every inefficiency increases the
cost.

What makes it even more difficult is that when developing software now, we should
also be aware of the future costs. Some sources even estimate that running and main‐
tenance costs can be higher than the initial development costs. Code changes to stay
competitive, bug fixing, incidents, installations, and finally, compute cost (including
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electricity consumed) are only a few examples of the total software cost of ownership
(TCO) we have to take into account. Agile methodologies help reveal this cost early
by releasing software often and getting feedback sooner.

However, is that TCO higher if we descope efficiency and speed optimizations from
our software development process? In many cases, waiting a few more seconds for
our application execution should not be a problem. On top of that, the hardware is
getting cheaper and faster every month. In 2022, buying a smartphone with a dozen
GBs of RAM was not difficult. Finger-sized, 2 TB SSD disks capable of 7 GBps read
and write throughput are available. Even home PC workstations are hitting never-
before-seen performance scores. With 8 CPUs or more that can perform billions of
cycles per second each, and with 2 TB of RAM, we can compute things fast. Plus, we
can always add optimizations later, right?

Machines have become increasingly cheap compared to people; any discussion of com‐
puter efficiency that fails to take this into account is short-sighted. “Efficiency”
involves the reduction of overall cost—not just machine time over the life of the pro‐
gram, but also time spent by the programmer and by the users of the program.

—Brian W. Kernighan and P. J. Plauger, The Elements of Programming Style
(McGraw-Hill, 1978)

After all, improving the runtime or space complexity of the software is a complicated
topic. Especially when you are new, it’s common to lose time optimizing without sig‐
nificant program speedups. And even if we start caring about the latency introduced
by our code, things like Java Virtual Machine or Go compiler will apply their opti‐
mizations anyway. Spending more time on something tricky, like efficiency on
modern hardware that can also sacrifice our code’s reliability and maintainability,
may sound like a bad idea. These are only a few reasons why engineers typically put
performance optimizations at the lowest position of the development priority list.

Unfortunately, as with every extreme simplification, there is some risk in such perfor‐
mance de-prioritization. Don’t be worried, though! In this book, I will not try to con‐
vince you that you should now measure the number of nanoseconds each code line
introduces or every bit it allocates in memory before adding it to your software. You
should not. I am far from trying to motivate you to put performance at the top of
your development priority list.

However, there is a difference between consciously postponing optimizations and
making silly mistakes, causing inefficiencies and slowdowns. As the common saying
goes, “Perfect is the enemy of good”, but we have to find that balanced good first. So I
want to propose a subtle but essential change to how we, as software engineers,
should think about application performance. It will allow you to bring small but
effective habits to your programming and development management cycle. Based on
data and as early as possible in the development cycle, you will learn how to tell when
you can safely ignore or postpone program inefficiencies. Finally, when you can’t
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1 I even did a small experiment on Twitter, proving this point.

afford to skip performance optimizations, where and how to apply them effectively,
and when to stop.

In “Behind Performance” on page 3, we will unpack the word performance and learn
how it is related to efficiency in this book’s title. Then in “Common Efficiency Mis‐
conceptions” on page 7, we will challenge five serious misconceptions around effi‐
ciency and performance, often descoping such work from developer minds. You will
learn that thinking about efficiency is not reserved only for “high-performance”
software.

Some of the chapters, like this one, Chapter 3, and parts of other
chapters, are fully language agnostic, so they should be practical for
non-Go developers too!

Finally, in “The Key to Pragmatic Code Performance” on page 32, I will teach you
why focusing on efficiency will allow us to think about performance optimizations
effectively without sacrificing time and other software qualities. This chapter might
feel theoretical, but trust me, the insights will train your essential programming judg‐
ment on how and if to adopt particular efficiency optimizations, algorithms, and
code improvements presented in other parts of this book. Perhaps it will also help
you motivate your product manager or stakeholder to see that more efficient aware‐
ness of your project can be beneficial.

Let’s start by unpacking the definition of efficiency.

Behind Performance
Before discussing why software efficiency or optimizations matter, we must first
demystify the overused word performance. In engineering, this word is used in many
contexts and can mean different things, so let’s unpack it to avoid confusion.

When people say, “This application is performing poorly,” they usually mean that
this particular program is executing slowly.1 However, if the same people say, “Bartek
is not performing well at work,” they probably don’t mean that Bartek is walking too
slowly from the computer to the meeting room. In my experience, a significant num‐
ber of people in software development consider the word performance a synonym of
speed. For others, it means the overall quality of execution, which is the original
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2 The UK Cambridge Dictionary defines the noun performance as “How well a person, machine, etc. does a
piece of work or an activity.”

3 I would even recommend, with your changelog, sticking to common standard formats like you can see here.
This material also contains valuable tips on clean release notes.

definition of this word.2 This phenomenon is sometimes called a “semantic diffu‐
sion”, which occurs when a word starts to be used by larger groups with a different
meaning than it originally had.

The word performance in computer performance means the same thing that perfor‐
mance means in other contexts, that is, it means “How well is the computer doing the
work it is supposed to do?”

— Arnold O. Allen, Introduction to Computer Performance Analysis with
Mathematica (Morgan Kaufmann, 1994)

I think Arnold’s definition describes the word performance as accurately as possible,
so it might be the first actionable item you can take from this book. Be specific.

Clarify When Someone Uses the Word “Performance”

When reading the documentation, code, bug trackers, or attending
conference talks, be careful when you hear that word, performance.
Ask follow-up questions and ensure what the author means.

In practice, performance, as the quality of overall execution, might contain much
more than we typically think. It might feel picky, but if we want to improve software
development’s cost-effectiveness, we must communicate clearly, efficiently, and
effectively!

I suggest avoiding the performance word unless we can specify its meaning. Imagine
you are reporting a bug in a bug tracker like GitHub Issues. Especially there, don’t
just mention “bad performance,” but specify exactly the unexpected behavior of the
application you described. Similarly, when describing improvements for a software
release in the changelog,3 don’t just mention that a change “improved performance.”
Describe what, exactly, was enhanced. Maybe part of the system is now less prone to
user input errors, uses less RAM (if yes, how much less, in what circumstances?), or
executes something faster (how many seconds faster, for what kinds of workloads?).
Being explicit will save time for you and your users.

I will be explicit in my book about this word. So whenever you see the word perfor‐
mance describing the software, remind yourself about this visualization in Figure 1-1.
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Figure 1-1. Performance definition

In principle, software performance means “how well software runs” and consists of
three core execution elements you can improve (or sacrifice):

Accuracy
The number of errors you make while doing the work to accomplish the task.
This can be measured for software by the number of wrong results your applica‐
tion produces. For example, how many requests finished with non-200 HTTP
status codes in a web system.

Speed
How fast you do the work needed to accomplish the task—the timeliness of exe‐
cution. This can be observed by operation latency or throughput. For example,
we can estimate that typical compression of 1 GB of data in memory typically
takes around 10 s (latency), allowing approximately 100 MBps throughput.

Efficiency
The ratio of the useful energy delivered by a dynamic system to the energy sup‐
plied to it. More simply, this is the indicator of how many extra resources,
energy, or work were used to accomplish the task. In other words, how much
effort we wasted. For instance, if our operation of fetching 64 bytes of valuable
data from disk allocates 420 bytes on RAM, our memory efficiency would equal
15.23%.

This does not mean our operation is 15.23% efficient in absolute measure. We
did not calculate energy, CPU time, heat, and other efficiencies. For practical
purposes, we tend to specify what efficiency we have in mind. In our example,
that was memory space.
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4 Can we say “less performant” in this sentence? We can’t, because the word performant does not exist in
English vocabulary. Perhaps it indicates that our software can’t be “performant”—there is always room to
improve things. In a practical sense, there are limits to how fast our software can be. H. J. Bremermann in
1962 suggested there is a computational physical limit that depends on the mass of the system. We can esti‐
mate that 1 kg of the ultimate laptop can process ~1050 bits per second, while the computer with the mass of
the planet Earth can process at a maximum of 1075 bits per second. While those numbers feel enormous, even
such a large computer would take ages to force all chess movements estimated to 10120 complexity. Those
numbers have practical use in cryptography to assess the difficulty of cracking certain encryption algorithms.

To sum up, performance is a combination of at least those three elements:

performance = (accuracy * efficiency * speed)

Improving any of those enhances the performance of the running application or sys‐
tem. It can help with reliability, availability, resiliency, overall latency, and more.
Similarly, ignoring any of those can make our software less useful.4 The question is, at
what point should we say “stop” and claim it is good enough? Those three elements
might also feel disjointed, but in fact, they are connected. For instance, notice that we
can still achieve better reliability and availability without changing accuracy (not
reducing the number of bugs). For example, with efficiency, reducing memory con‐
sumption decreases the chances of running out of memory and crashing the applica‐
tion or host operating system. This book focuses on knowledge, techniques, and
methods, allowing you to increase the efficiency and speed of your running code
without degrading accuracy.

It’s No Mistake That the Title of My Book Is “Efficient Go”

My goal is to teach you pragmatic skills, allowing you to produce
high-quality, accurate, efficient, and fast code with minimum
effort. For this purpose, when I mention the overall efficiency of
the code (without saying a particular resource), I mean both speed
and efficiency, as shown in Figure 1-1. Trust me, this will help us to
get through the subject effectively. You will learn more about why
in “The Key to Pragmatic Code Performance” on page 32.

Misleading use of the performance word might be the tip of the misconceptions ice‐
berg in the efficiency subject. We will now walk through many more serious stereo‐
types and tendencies that are causing the development of our software to worsen.
Best case, it results in more expensive to run or less valuable programs. Worse case, it
causes severe social and financial organizational problems.
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Common Efficiency Misconceptions
The number of times when I was asked, in code reviews or sprint plannings, to ignore
the efficiency of the software “for now” is staggering. And you have probably heard
that too! I also rejected someone else’s change set for the same reasons numerous
times. Perhaps our changes were dismissed at that time for good reasons, especially if
they were micro-optimizations that added unnecessary complexity.

On the other hand, there were also cases where the reasons for rejection were based
on common, factual misconceptions. Let’s try to unpack some of the most damaging
misunderstandings. Be cautious when you hear some of these generalized statements.
Demystifying them might help you save enormous development costs long-term.

Optimized Code Is Not Readable
Undoubtedly, one of the most critical qualities of software code is its readability.

It is more important to make the purpose of the code unmistakable than to display vir‐
tuosity.... The problem with obscure code is that debugging and modification become
much more difficult, and these are already the hardest aspects of computer program‐
ming. Besides, there is the added danger that a too clever program may not say what
you thought it said.

—Brian W. Kernighan and P. J. Plauger, The Elements of Programming Style
(McGraw-Hill, 1978)

When we think about ultrafast code, the first thing that sometimes comes to mind is
those clever, low-level implementations with a bunch of byte shifts, magic byte pad‐
dings, and unrolled loops. Or worse, pure assembly code linked to your application.

Yes, low-level optimizations like that can make our code significantly less readable,
but as you will learn in this book, such extreme changes are rare in practice. Code
optimizations might produce extra complexity, increase cognitive load, and make our
code harder to maintain. The problem is that engineers tend to associate optimiza‐
tion with complexity to the extreme and avoid efficiency optimization like fire. In
their minds, it translates to an immediate negative readability impact. The point of
this section is to show you that there are ways to make efficiency-optimized code
clear. Efficiency and readability can coexist.

Similarly, the same risk exists if we add any other functionality or change the code
for different reasons. For example, refusing to write more efficient code because of a
fear of decreasing readability is like refusing to add vital functionality to avoid com‐
plexity. So, again, this is a fair question, and we can consider descoping the feature,
but we should evaluate the consequences first. The same should be applied to effi‐
ciency changes.
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5 It’s worth mentioning that hiding features or optimization can sometimes lead to lower readability. Some‐
times explicitness is much better and avoids surprises.

For example, when you want to add extra validation to the input, you can naively
paste a complex 50-line code waterfall of if statements directly into the handling
function. This might make the next reader of your code cry (or yourself when you
revisit this code months later). Alternatively, you can encapsulate everything to a
single func validate(input string) error function, adding only slight complex‐
ity. Furthermore, to avoid modifying the handling block of code, you can design the
code to validate it on the caller side or in the middleware. We can also rethink our
system design and move validation complexity to another system or component, thus
not implementing this feature. There are many ways to compose a particular feature
without sacrificing our goals.

How are performance improvements in our code different from extra features? I
would argue they are not. You can design efficiency optimizations with readability in
mind as you do with features. Both can be entirely transparent to the readers if hid‐
den under abstractions.5

Yet we tend to mark optimizations as the primary source of readability problems.
The foremost damaging consequence of this and other misconceptions in this chap‐
ter is that it’s often used as an excuse to ignore performance improvements com‐
pletely. This often leads to something called premature pessimization, the act of
making the program less efficient, the opposite of optimization.

Easy on yourself, easy on the code: All other things being equal, notably code complex‐
ity and readability, certain efficient design patterns and coding idioms should just flow
naturally from your fingertips and are no harder to write than the pessimized alterna‐
tives. This is not premature optimization; it is avoiding gratuitous [unnecessary]
pessimization.

—H. Sutter and A. Alexandrescu, C++ Coding Standards: 101 Rules, Guidelines,
and Best Practices (Addison-Wesley, 2004)

Readability is essential. I would even argue that unreadable code is rarely efficient
over the long haul. When software evolves, it’s easy to break previously made, too-
clever optimization because we misinterpret or misunderstand it. Similar to bugs and
mistakes, it’s easier to cause performance issues in tricky code. In Chapter 10, you
will see examples of deliberate efficiency changes, with a focus on maintainability and
readability.
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Readability Is Important!

It’s easier to optimize readable code than make heavily optimized
code readable. This is true for both humans and compilers that
might attempt to optimize your code!

Optimization often results in less readable code because we don’t design good effi‐
ciency into our software from the beginning. If you refuse to think about efficiency
now, it might be too late to optimize the code later without impacting readability. It’s
much easier to find a way to introduce a simpler and more efficient way of doing
things in the fresh modules where we just started to design APIs and abstractions. As
you will learn in Chapter 3, we can do performance optimizations on many different
levels, not only via nitpicking and code tuning. Perhaps we can choose a more effi‐
cient algorithm, faster data structure, or a different system trade-off. These will likely
result in much cleaner, maintainable code and better performance than improving
efficiency after releasing the software. Under many constraints, like backward com‐
patibility, integrations, or strict interfaces, our only way to improve performance
would be to introduce additional, often significant, complexity to the code or system.

Code after optimization can be more readable
Surprisingly, code after optimization can be more readable! Let’s look at a few Go
code examples. Example 1-1 is a naive use of a getter pattern that I have personally
seen hundreds of times when reviewing student or junior developer Go code.

Example 1-1. Simple calculation for the ratio of reported errors

type ReportGetter interface {
   Get() []Report
}

func FailureRatio(reports ReportGetter) float64 { 
   if len(reports.Get()) == 0 { 
      return 0
   }

   var sum float64
   for _, report := range reports.Get() { 
      if report.Error() != nil {
         sum++
      }
   }
   return sum / float64(len(reports.Get())) 
}

This is a simplified example, but there is quite a popular pattern of passing a
function or interface to get the elements needed for operation instead of passing
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them directly. It is useful when elements are dynamically added, cached, or
fetched from remote databases.

Notice we execute Get to retrieve reports three times.

I think you would agree that code from Example 1-1 would work for most cases. It is
simple and quite readable. Yet, I would most likely not accept such code because of
potential efficiency and accuracy issues. I would suggest simple modification as in
Example 1-2 instead.

Example 1-2. Simple, more efficient calculation for the ratio of reported errors

func FailureRatio(reports ReportGetter) float64 {
   got := reports.Get() 
   if len(got) == 0 {
      return 0
   }

   var sum float64
   for _, report := range got {
      if report.Error() != nil {
         sum++
      }
   }
   return sum / float64(len(got))
}

In comparison with Example 1-1, instead of calling Get in three places, I do it
once and reuse the result via the got variable.

Some developers could argue that the FailureRatio function is potentially used very
rarely; it’s not on a critical path, and the current ReportGetter implementation is
very cheap and fast. They could argue that without measuring or benchmarking we
can’t decide what’s more efficient (which is mostly true!). They could call my sugges‐
tion a “premature optimization.”

However, I deem it a very popular case of premature pessimization. It is a silly case of
rejecting more efficient code that doesn’t speed up things a lot right now but doesn’t
harm either. On the contrary, I would argue that Example 1-2 is superior in many
aspects:

Without measurements, the Example 1-2 code is more efficient.
Interfaces allow us to replace the implementation. They represent a certain con‐
tract between users and implementations. From the point of view of the
FailureRatio function, we cannot assume anything beyond that contract. Most
likely, we cannot assume that the ReportGetter.Get code will always be fast and
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6 As the part of the interface “contract,” there might be a comment stating that implementations should cache
the result. Hence, the caller should be safe to call it many times. Still, I would argue that it’s better to avoid
relying on something not assured by a type system to prevent surprises.

7 All three examples of Get implementations could be considered costly to invoke. Input-output (I/O) opera‐
tions against the filesystem are significantly slower than reading or writing something from memory. Some‐
thing that involves mutexes means you potentially have to wait on other threads before accessing it. Call to
database usually involves all of them, plus potentially communication over the network.

cheap.6 Tomorrow, someone might swap the Get code with the expensive I/O
operation against a filesystem, implementation with mutexes, or call to the
remote database.7

We, of course, can iterate and optimize it later with a proper efficiency flow that
we will discuss in “Efficiency-Aware Development Flow” on page 102, but if it’s a
reasonable change that actually improves other things too, there is no harm in
doing it now.

Example 1-2 code is safer.
It is potentially not visible in plain sight, but the code from Example 1-1 has a
considerable risk of introducing race conditions. We may hit a problem if the
ReportGetter implementation is synchronized with other threads that dynami‐
cally change the Get() result over time. It’s better to avoid races and ensure con‐
sistency within a function body. Race errors are the hardest to debug and detect,
so it’s better to be safe than sorry.

Example 1-2 code is more readable.
We might be adding one more line and an extra variable, but at the end, the code
in Example 1-2 is explicitly telling us that we want to use the same result across
three usages. By replacing three instances of the Get() call with a simple variable,
we also minimize the potential side effects, making our FailureRatio purely
functional (except the first line). By all means, Example 1-2 is thus more readable
than Example 1-1.

Such a statement might be accurate, but evil is in the “premature”
part. Not every performance optimization is premature. Further‐
more, such a rule is not a license for rejecting or forgetting about
more efficient solutions with comparable complexity.

Another example of optimized code yielding clarity is visualized by the code in
Examples 1-3 and 1-4.
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Example 1-3. Simple loop without optimization

func createSlice(n int) (slice []string) { 
   for i := 0; i < n; i++ {
      slice = append(slice, "I", "am", "going", "to", "take", "some", "space") 
   }
   return slice
}

Returning named parameter called slice will create a variable holding an empty
string slice at the start of the function call.

We append seven string items to the slice and repeat that n times.

Example 1-3 shows how we usually fill slices in Go, and you might say nothing is
wrong here. It just works. However, I would argue that this is not how we should
append in the loop if we know exactly how many elements we will append to the slice
up front. Instead, in my opinion, we should always write it as in Example 1-4.

Example 1-4. Simple loop with pre-allocation optimization. Is this less readable?

func createSlice(n int) []string {
   slice := make([]string, 0, n*7) 
   for i := 0; i < n; i++ {
      slice = append(slice, "I", "am", "going", "to", "take", "some", "space") 
   }
   return slice
}

We are creating a variable holding the string slice. We are also allocating space
(capacity) for n * 7 strings for this slice.

We append seven string items to the slice and repeat that n times.

We will talk about efficiency optimizations like those in Examples 1-2 and 1-4 in
“Pre-Allocate If You Can” on page 440, with the more profound Go runtime
knowledge from Chapter 4. In principle, both allow our program to do less work. In
Example 1-4, thanks to initial pre-allocation, the internal append implementation
does not need to extend slice size in memory progressively. We do it once at the start.
Now, I would like you to focus on the following question: is this code more or less
readable?

Readability can often be subjective, but I would argue the more efficient code from
Example 1-4 is more understandable. It adds one more line, so we could say the code
is a bit more complex, but at the same time, it is explicit and clear in the message. Not
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8 This famous quote is used to stop someone from spending time on optimization effort. Generally overused, it
comes from Donald Knuth’s “Structured Programming with goto statements” (1974).

9 This type of style is usually referred to as Hungarian notation, which is used extensively in Microsoft. There
are two types of this notation too: App and Systems. Literature indicates that Apps Hungarian can still give
many benefits.

only does it help Go runtime perform less work, but it also hints to the reader about
the purpose of this loop and how many iterations we expect exactly.

If you have never seen raw usage of the built-in make function in Go, you probably
would say that this code is less readable. That is fair. However, once you realize the
benefit and start using this pattern consistently across the code, it becomes a good
habit. Even more, thanks to that, any slice creation without such pre-allocation tells
you something too. For instance, it could say that the number of iterations is unpre‐
dictable, so you know to be more careful. You know one thing before you even
looked at the loop’s content! To make such a habit consistent across the Prometheus
and Thanos codebase, we even added a related entry to the Thanos Go coding style
guide.

Readability Is Not Written in Stone; It Is Dynamic

The ability to understand certain software code can change over
time, even if the code never changes. Conventions come and go as
the language community tries new things. With strict consistency,
you can help the reader understand even more complex pieces of
your program by introducing a new, clear convention.

Readability now versus past
Generally, developers often apply Knuth’s “premature optimization is the root of all
evil” quote8 to reduce readability problems with optimizations. However, this quote
was made a long time ago. While we can learn a lot about general programming from
the past, there are many things we have improved enormously from 1974. For exam‐
ple, back then it was popular to add information about the type of the variable to its
name, as showcased in Example 1-5.9

Example 1-5. Example of Systems Hungarian notation applied to Go code

type structSystem struct {
   sliceU32Numbers []uint32
   bCharacter      byte
   f64Ratio        float64
}
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10 It is worth highlighting that these days, it is recommended to write code in a way that is easily compatible
with IDE functionalities; e.g., your code structure should be a “connected” graph. This means that you con‐
nect functions in a way that IDE can assist. Any dynamic dispatching, code injection, and lazy loading disa‐
bles those functionalities and should be avoided unless strictly necessary.

11 Cognitive load is the amount of “brain processing and memory” a person must use to understand a piece of
code or function.

Hungarian notation was useful because compilers and Integrated Development Envi‐
ronments (IDEs) were not very mature at that point. But nowadays, on our IDEs or
even repository websites like GitHub, we can hover over the variable to immediately
know its type. We can go to the variable definition in milliseconds, read the commen‐
tary, and find all invocations and mutations. With smart code suggestions, advanced
highlighting, and dominance of object-oriented programming developed in the
mid-1990s, we have tools in our hands that allow us to add features and efficiency
optimizations (complexity) without significantly impacting the practical readability.10

Furthermore, the accessibility and capabilities of the observability and debugging
tools have grown enormously, which we will explore in Chapter 6. It still does not
permit clever code but allows us to more quickly understand bigger codebases.

To sum up, performance optimization is like another feature in our software, and we
should treat it accordingly. It can add complexity, but there are ways to minimize the
cognitive load required to understand our code.11

How to Make Efficient Code More Readable

• Remove or avoid unnecessary optimization.
• Encapsulate complex code behind clear abstraction (e.g.,

interface).
• Keep the “hot” code (the critical part that requires better effi‐

ciency) separate from the “cold” code (rarely executed).

As we learned in this chapter, there are even cases when a more efficient program is
often a side effect of the simple, explicit, and understandable code.

You Aren’t Going to Need It
You Aren’t Going to Need It (YAGNI) is a powerful and popular rule that I use often
while writing or reviewing any software.

One of the most widely publicized principles of XP [Extreme Programming] is the You
Aren’t Going to Need It (YAGNI) principle. The YAGNI principle highlights the value
of delaying an investment decision in the face of uncertainty about the return on the
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investment. In the context of XP, this implies delaying the implementation of fuzzy
features until uncertainty about their value is resolved.

—Hakan Erdogmu and John Favaro, “Keep Your Options Open: Extreme Pro‐
gramming and the Economics of Flexibility”

In principle, it means avoiding doing the extra work that is not strictly needed for the
current requirements. It relies on the fact that requirements constantly change, and
we have to embrace iterating rapidly on our software.

Let’s imagine a potential situation where Katie, a senior software engineer, is assigned
the task of creating a simple web server. Nothing fancy, just an HTTP server that
exposes some REST endpoint. Katie is an experienced developer who has created
probably a hundred similar endpoints in the past. She goes ahead, programs func‐
tionality, and tests the server in no time. With some time left, she decides to add extra
functionality: a simple bearer token authorization layer. Katie knows that such
change is outside the current requirements, but she has written hundreds of REST
endpoints, and each had a similar authorization. Experience tells her it’s highly likely
such requirements will come soon, too, so she will be prepared. Do you think such a
change would make sense and should be accepted?

While Katie has shown good intention and solid experience, we should refrain from
merging such change to preserve the quality of the web server code and overall devel‐
opment cost-effectiveness. In other words, we should apply the YAGNI rule. Why? In
most cases, we cannot predict a feature. Sticking to requirements allows us to save
time and complexity. There is a risk that the project will never need an authorization
layer, for example, if the server is running behind a dedicated authorization proxy. In
such a case, the extra code Katie wrote can bring a high cost even if not used. It is
additional code to read, which adds to the cognitive load. Furthermore, it will be
harder to change or refactor such code when needed.

Now, let’s step into a grayer area. We explained to Katie why we needed to reject the
authorization code. She agreed, and instead, she decided to add some critical moni‐
toring to the server by instrumenting it with a few vital metrics. Does this change vio‐
late the YAGNI rule too?

If monitoring is part of the requirements, it does not violate the YAGNI rule and
should be accepted. If it’s not, without knowing the full context, it’s hard to say. Criti‐
cal monitoring should be explicitly mentioned in the requirements. Still, even if it is
not, web server observability is the first thing that will be needed when we run such
code anywhere. Otherwise, how will we know that it is even running? In this case,
Katie is technically doing something important that is immediately useful. In the end,
we should apply common sense and judgment, and add or explicitly remove moni‐
toring from the software requirements before merging this change.
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12 Cachability is often defined as the ability to be cached. It is possible to cache (save) any information to
retrieve it later, faster. However, the data might be valid only for a short time or only for a tiny amount of
requests. If the data depends on external factors (e.g., user or input) and changes frequently, it’s not well
cachable.

Later, in her free time, Katie decided to add a simple cache to the necessary computa‐
tion that enhances the performance of the separate endpoint reads. She even wrote
and performed a quick benchmark to verify the endpoint’s latency and resource con‐
sumption improvements. Does that violate the YAGNI rule?

The sad truth about software development is that performance efficiency and
response time are often missing from stakeholders’ requirements. The target perfor‐
mance goal for an application is to “just work” and be “fast enough,” without details
on what that means. We will discuss how to define practical software efficiency
requirements in “Resource-Aware Efficiency Requirements” on page 86. For this
example, let’s assume the worst. There was nothing in the requirements list about
performance. Should we then apply the YAGNI rule and reject Katie’s change?

Again, it is hard to tell without full context. Implementing a robust and usable cache
is not trivial, so how complex is the new code? Is the data we are working on easily
“cachable”?12 Do we know how often such an endpoint will be used (is it a critical
path)? How far should it scale? On the other hand, computing the same result for a
heavily used endpoint is highly inefficient, so cache is a good pattern.

I would suggest Katie take a similar approach as she did with monitoring change:
consider discussing it with the team to clarify the performance guarantees that the
web service should offer. That will tell us if the cache is required now or is violating
the YAGNI rule.

As a last change, Katie went ahead and applied a reasonable efficiency optimization,
like the slice pre-allocation improvement you learned in Example 1-4. Should we
accept such a change?

I would be strict here and say yes. My suggestion is to always pre-allocate, as in
Example 1-4 when you know the number of elements up front. Isn’t that violating the
core statement behind the YAGNI rule? Even if something is generally applicable,
you shouldn’t do it before you are sure you are going to need it?

I would argue that small efficiency habits that do not reduce code readability (some
even improve it) should generally be an essential part of the developer’s job, even if
not explicitly mentioned in the requirements. We will cover them as “Reasonable
Optimizations” on page 74. Similarly, no project requirements state basic best practi‐
ces like code versioning, having small interfaces, or avoiding big dependencies.
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The main takeaway here is that using the YAGNI rule helps, but it is not permission
for developers to completely ignore performance efficiency. Thousands of small
things usually make up excessive resource usage and latency of an application, not
just a single thing we can fix later. Ideally, well-defined requirements help clarify your
software’s efficiency needs, but they will never cover all the details and best practices
we should try to apply.

Hardware Is Getting Faster and Cheaper
When I started programming we not only had slow processors, we also had very limi‐
ted memory—sometimes measured in kilobytes. So we had to think about memory
and optimize memory consumption wisely.

—Valentin Simonov, “Optimize for Readability First”

Undoubtedly, hardware is more powerful and less expensive than ever before. We see
technological advancement on almost every front every year or month. From single-
core Pentium CPUs with a 200-MHz clock rate in 1995, to smaller, energy-efficient
CPUs capable of 3- to 4-GHz speeds. RAM sizes increased from dozens of MB in
2000 to 64 GB in personal computers 20 years later, with faster access patterns. In the
past, small capacity hard disks moved to SSD, then 7 GBps fast NVME SSD disks
with a few TB of space. Network interfaces have achieved 100 gigabits throughput. In
terms of remote storage, I remember floppy disks with 1.44 MB of space, then read-
only CD-ROMs with a capacity of up to 553 MB; next we had Blu-Ray, read-write
capability DVDs, and now it’s easy to get SD cards with TB sizes.

Now let’s add to the preceding facts the popular opinion that the amortized hourly
value of typical hardware is cheaper than the developer hour. With all of this, one
would say that it does not matter if a single function in code takes 1 MB more or does
excessive disk reads. Why should we delay features, and educate or invest in
performance-aware engineers if we can buy bigger servers and pay less overall?

As you can probably imagine, it’s not that simple. Let’s unpack this quite harmful
argument descoping efficiency from the software development to-do list.

First of all, stating that spending more money on hardware is cheaper than investing
expensive developer time into efficiency topics is very shortsighted. It is like claiming
that we should buy a new car and sell an old one every time something breaks,
because repairing is nontrivial and costs a lot. Sometimes that might work, but in
most cases it’s not very efficient or sustainable.

Let’s assume a software developer’s annual salary oscillates around $100,000. With
other employment costs, let’s say the company has to pay $120,000 yearly, so $10,000
monthly. For $10,000 in 2021, you could buy a server with 1 TB of DDR4 memory,
two high-end CPUs, 1-gigabit network card, and 10 TB of hard disk space. Let’s
ignore for now the energy consumption cost. Such a deal means that our software can
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overallocate terabytes of memory every month, and we would still be better off than
hiring an engineer to optimize this, right? Unfortunately, it doesn’t work like this.

It turns out that terabytes of allocation are more common than you think, and you
don’t need to wait a whole month! Figure 1-2 shows a screenshot of the heap memory
profile of a single replica (of six total) of a single Thanos service (of dozens) running
in a single cluster for five days. We will discuss how to read and use profiles in Chap‐
ter 9, but Figure 1-2 shows the total memory allocated by some Series function since
the last restart of the process five days before.

Figure 1-2. Snippet of memory profile showing all memory allocations within five days
made by high-traffic service
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13 That is a simplification, of course. The process might have used more memory. Profiles do not show memory
used by memory maps, stacks, and many other caches required for modern applications to work. We will
learn more about this in Chapter 4.

14 Cyril Northcote Parkinson was a British historian who articulated the management phenomenon that is now
known as Parkinson’s Law. Stated as “Work expands to fill the time available for its completion,” it was ini‐
tially referred to as the government office efficiency that highly correlates to the official’s number in the
decision-making body.

Most of that memory was already released, but notice that this software from the
Thanos project used 17.61 TB in total for only five days of running.13 If you write
desktop applications or tools instead, you will hit a similar scale issue sooner or later.
Taking the previous example, if one function is overallocating 1 MB, that is enough
to run it 100 times for critical operation in our application with only 100 desktop
users to get to 10 TB wasted in total. Not in a month, but on a single run done by 100
users. As a result, slight inefficiency can quickly create overabundant hardware
resources.

There is more. To afford an overallocation of 10 TB, it is not enough to buy a server
with that much memory and pay for energy consumption. The amortized cost,
among other things, has to include writing, buying, or at least maintaining firmware,
drivers, operating systems, and software to monitor, update, and operate the server.
Since for extra hardware we need additional software, by definition, this requires
spending money on engineers, so we are back where we were. We might have saved
engineering costs by avoiding focusing on performance optimizations. In return, we
would spend more on other engineers required to maintain overused resources, or
pay a cloud provider that already calculated such extra cost, plus a profit, into the
cloud usage bill.

On the other hand, today 10 TB of memory costs a lot, but tomorrow it might be a
marginal cost due to technological advancements. What if we ignore performance
problems and wait until server costs decrease or more users replace their laptops or
phones with faster ones? Waiting is easier than debugging tricky performance issues!

Unfortunately, we cannot skip software development efficiency and expect hardware
advancements to mitigate needs and performance mistakes. Hardware is getting
faster and more powerful, yes. But, unfortunately, not fast enough. Let’s go through
three main reasons behind this nonintuitive effect.

Software expands to fill the available memory
This effect is known as Parkinson’s Law.14 It states that no matter how many
resources we have, the demands tend to match the supply. For example, Parkinson’s
Law is heavily visible in universities. No matter how much time the professor gives
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15 At least that’s what my studying looked like. This phenomenon is also known as the “student syndrome”.

16 PB means petabyte. One petabyte is 1,000 TB. If we assume an average two-hour-long 4K movie takes 100
GB, this means with 1 PB, we could store 10,000 movies, translating to roughly two to three years of constant
watching.

for assignments or exam preparations, students will always use all of it and probably
do most of it last-minute.15 We can see similar behavior in software development too.

Software gets slower more rapidly than hardware becomes faster
Niklaus Wirth mentions a “fat software” term that explains why there will always be
more demand for more hardware.

Increased hardware power has undoubtedly been the primary incentive for vendors to
tackle more complex problems.... But it is not the inherent complexity that should con‐
cern us; it is the self-inflicted complexity. There are many problems that were solved
long ago, but for the same problems, we are now offered solutions wrapped in much
bulkier software.

—Niklaus Wirth, “A Plea for Lean Software”

Software is getting slower faster than hardware is getting more powerful because
products have to invest in a better user experience to get profitable. These include
prettier operating systems, glowing icons, complex animations, high-definition vid‐
eos on websites, or fancy emojis that mimic your facial expression, thanks to facial
recognition techniques. It’s a never-ending battle for clients, which brings more com‐
plexity, and thus increased computational demands.

On top of that, rapid democratization of software occurs thanks to better access to
computers, servers, mobile phones, IoT devices, and any other kind of electronics. As 
Marc Andreessen said, “Software is eating the world”. The COVID-19 pandemic that
started in late 2019 accelerated digitalization even more as remote, internet-based
services became the critical backbone of modern society. We might have more com‐
putation power available every day, but more functionalities and user interactions
consume all of it and demand even more. In the end, I would argue that our overused
1 MB in the aforementioned single function might become a critical bottleneck on
such a scale pretty quickly.

If that still feels very hypothetical, just look at the software around you. We use social
media, where Facebook alone generates 4 PB16 of data per day. We search online,
causing Google to process 20 PB of data per day. However, one would say those are
rare, planet-scale systems with billions of users. Typical developers don’t have such
problems, right? When I looked at most of the software co-created or used, they hit
some performance issues related to significant data usage sooner or later. For
example:
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17 1 zettabyte is 1 million PB, one billion of TB. I won’t even try to visualize this amount of data. :)

• A Prometheus UI page, written in React, was performing a search on millions of
metric names or tried to fetch hundreds of megabytes of compressed samples,
causing browser latencies and explosive memory usage.

• With low usage, a single Kubernetes cluster at our infrastructure generated 0.5
TB of logs daily (most of them never used).

• The excellent grammar checking tool I used to write this book was making too
many network calls when the text had more than 20,000 words, slowing my
browser considerably.

• Our simple script for formatting our documentation in Markdown and link
checking took minutes to process all elements.

• Our Go static analysis job and linting exceeded 4 GB of memory and crashed our
CI jobs.

• My IDE used to take 20 minutes to index all code from our mono-repo, despite
doing it on a top-shelf laptop.

• I still haven’t edited my 4K ultrawide videos from GoPro because the software is
too laggy.

I could go on forever with examples, but the point is that we live in a really “big data”
world. As a result, we have to optimize memory and other resources wisely.

It will be much worse in the future. Our software and hardware have to handle the
data growing at extreme rates, faster than any hardware development. We are just on
the edge of introducing 5G networks capable of transfers up to 20 gigabits per sec‐
ond. We introduce mini-computers in almost every item we buy, like TVs, bikes,
washing machines, freezers, desk lamps, or even deodorants! We call this movement
the “Internet of Things” (IoT). Data from these devices is estimated to grow from
18.3 ZB in 2019 to 73.1 ZB by 2025.17 The industry can produce 8K TVs, rendering
resolutions of 7,680 × 4,320, so approximately 33 million pixels. If you have written
computer games, you probably understand this problem well—it will take a lot of
efficient effort to render so many pixels in highly realistic games with immersive,
highly destructive environments at 60+ frames per second. Modern cryptocurrencies
and blockchain algorithms also pose challenges in computational energy efficiencies;
e.g., Bitcoin energy consumption during the value peak was using roughly 130
Terawatt-hours of energy (0.6% of global electricity consumption).
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18 Robert H. Dennard et al., “Design of Ion-Implanted MOSFET’s with Very Small Physical Dimension”, IEEE
Journal of Solid-State Circuits 9, no. 5 (October 1974): 256–268.

19 MOSFET stands for “metal–oxide–semiconductor field-effect transistor,” which is, simply speaking, an insu‐
lated gate allowing to switch electronic signals. This particular technology is behind most memory chips and
microprocessors produced between 1960 and now. It has proven to be highly scalable and capable of minia‐
turization. It is the most frequently manufactured device in history, with 13 sextillion pieces produced
between 1960 and 2018.

Technological limits
The last reason, but not least, behind not fast enough hardware progression is that
hardware advancement has stalled on some fronts like CPU speed (clock rate) or
memory access speeds. We will cover some challenges of that situation in Chapter 4,
but I believe every developer should be aware of the fundamental technological limits
we are hitting right now.

It would be odd to read a modern book about efficiency that doesn’t mention
Moore’s Law, right? You’ve probably heard of it somewhere before. It was first stated
in 1965 by former CEO and cofounder of Intel, Gordon Moore.

The complexity for minimum component costs [the number of transistors, with mini‐
mal manufacturing cost per chip] has increased at a rate of roughly a factor of two per
year. ... Over the longer term, the rate of increase is a bit more uncertain, although
there is no reason to believe it will not remain nearly constant for at least 10 years.
That means by 1975, the number of components per integrated circuit for minimum
cost will be 65,000.

—Gordon E. Moore, “Cramming More Components onto Integrated Circuits”,
Electronics 38 (1965)

Moore’s observation had a big impact on the semiconductor industry. But decreasing
the transistors’ size would not have been that beneficial if not for Robert H. Dennard
and his team. In 1974, their experiment revealed that power use stays proportional to
the transistor dimension (constant power density).18 This means that smaller transis‐
tors were more power efficient. In the end, both laws promised exponential perfor‐
mance per watt growth of transistors. It motivated investors to continuously research
and develop ways to decrease the size of MOSFET19 transistors. We can also fit more
of them on even smaller, more dense microchips, which reduced manufacturing
costs. The industry continuously decreased the amount of space needed to fit the
same amount of computing power, enhancing any chip, from CPU through RAM
and flash memory, to GPS receivers and high-definition camera sensors.

In practice, Moore’s prediction lasted not 10 years as he thought, but nearly 60 so
far, and it still holds. We continue to invent tinier, microscopic transistors, currently
oscillating around ~70 nm. Probably we can make them even smaller. Unfortunately,
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20 Funnily enough, marketing reasons led companies to hide the inability to reduce the size of transistors effec‐
tively by switching the CPU generation naming convention from transistor gate length to the size of the pro‐
cess. 14 nm generation CPUs still have 70 nm transistors, similar to 10, 7, and 5 nm processes.

21 I am not joking. Microsoft has proven that running servers 40 meters underwater is a great idea that improves
energy efficiency.

as we can see on Figure 1-3, we reached the physical limit of Dennard’s scaling
around 2006.20

Figure 1-3. Image inspired by “Performance Matters” by Emery Berger: Moore’s Law
versus Dennard’s Rule

While technically, power usage of the higher density of tiny transistors remains con‐
stant, such dense chips heat up quickly. Beyond 3–4 GHz of clock speed, it takes sig‐
nificantly more power and other costs to cool the transistors to keep them running.
As a result, unless you plan to run software on the bottom of the ocean,21 you are not
getting CPUs with faster instruction execution anytime soon. We only can have more
cores.

Faster execution is more energy efficient
So, what we have learned so far? Hardware speed is getting capped, the software is
getting bulkier, and we have to handle continuous growth in data and users. Unfortu‐
nately, that’s not the end. There is a vital resource we tend to forget about while
developing the software: power. Every computation of our process takes electricity,
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22 The M1 chip is a great example of an interesting trade-off: choosing speed and both energy and performance
efficiency over the flexibility of hardware scaling.

23 RISC-V is an open standard for the instruction set architecture, allowing easier manufacturing of compatible
“reduced instruction set computer” chips. Such a set is much simpler and allows more optimized and special‐
ized hardware than general-usage CPUs.

24 To ensure developers understand and empathize with users who have a slower connection, Facebook intro‐
duced “2G Tuesdays” that turn on the simulated 2G network mode on the Facebook application.

which is heavily constrained on many platforms like mobile phones, smartwatches,
IoT devices, or laptops. Nonintuitively there is a strong correlation between energy
efficiency and software speed and efficiency. I love the Chandler Carruth presenta‐
tion, which explained this surprising relation well:

If you ever read about “power-efficient instructions” or “optimizing for power usage,”
you should become very suspicious. ... This is mostly total junk science. Here is the
number one leading theory about how to save battery life: Finish running the program.
Seriously, race to sleep. The faster your software runs, the less power it consumes. ...
Every single general-usage microprocessor you can get today, the way it conserves
power is by turning itself off. As rapidly and as frequently as possible.

—Chandler Carruth, “Efficiency with Algorithms, Performance with Data
Structures”, CppCon 2014

To sum up, avoid the common trap of thinking about hardware as a continuously
faster and cheaper resource that will save us from optimizing our code. It’s a trap.
Such a broken loop makes engineers gradually lower their coding standards in per‐
formance, and demand more and faster hardware. Cheaper and more accessible
hardware then creates even more mental room to skip efficiency and so on. There are
amazing innovations like Apple’s M1 silicons,22 RISC-V standard,23 and more practi‐
cal Quantum computing appliances, which promise a lot. Unfortunately, as of 2022,
hardware is growing slower than software efficiency needs.

Efficiency Improves Accessibility and Inclusiveness

Software developers are often “spoiled” and detached from typical
human reality in terms of the machines we use. It’s often the case
that engineers create and test software on premium, high-end lap‐
top or mobile devices. We need to realize that many people and
organizations are utilizing older hardware or worse internet con‐
nections.24 People might have to run your applications on slower
computers. It might be worth considering efficiency in our devel‐
opment process to improve overall software accessibility and
inclusiveness.
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We Can Scale Horizontally Instead
As we learned in the previous sections, we expect our software to handle more data
sooner or later. But it’s unlikely your project will have billions of users from day one.
We can avoid enormous software complexity and development cost by pragmatically
choosing a much lower target number of users, operations, or data sizes to aim for at
the beginning of our development cycle. For example, we usually simplify the initial
programming cycle by assuming a low number of notes in the mobile note-taking
app, fewer requests per second in the proxy being built, or smaller files in the data
converter tool the team is working on. It’s OK to simplify things. It’s also important
to roughly predict performance requirements in the early design phase.

Similarly, finding the expected load and usage in the mid to long term of software
deployment is essential. The software design that guarantees similar performance lev‐
els, even with increased traffic, is scalable. Generally, scalability is very difficult and
expensive to achieve in practice.

Even if a system is working reliably today, that doesn’t mean it will necessarily work
reliably in the future. One common reason for degradation is increased load: perhaps
the system has grown from 10,000 concurrent users to 100,000 concurrent users, or
from 1 million to 10 million. Perhaps it is processing much larger volumes of data than
it did before. Scalability is the term we use to describe a system’s ability to cope with
increased load.

—Martin Kleppmann, Designing Data-Intensive Applications (O’Reilly, 2017)

Inevitably, while talking about efficiency, we might touch on some scalability topics
in this book. However, for this chapter’s purpose, we can distinguish the scalability of
our software into two types, presented in Figure 1-4.

Figure 1-4. Vertical versus horizontal scalability
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25 That option is not as expensive as we might think. Instance type x1e.32xlarge costs $26.60 per hour, so “only”
$19,418 per month.

26 Even hardware management has to be different for machines with extremely large hardware. That’s why
Linux kernels have the special hugemem type of kernels that can manage up to four times more memory and
~eight times more logical cores for x86 systems.

Vertical scalability
The first and sometimes simplest way of scaling our application is by running the
software on hardware with more resources—“vertical” scalability. For example,
we could introduce parallelism for software to use not one but three CPU cores.
If the load increases, we provide more CPU cores. Similarly, if our process is
memory intensive, we might bump up running requirements and ask for bigger
RAM space. The same with any other resource, like disk, network, or power.
Obviously, that does not come without consequences. In the best case, you have
that room in the target machine. Potentially, you can make that room by
rescheduling other processes to different machines (e.g., when running in the
cloud) or closing them temporarily (useful when running on a laptop or smart‐
phone). Worst case, you may need to buy a bigger computer, or a more capable
smartphone or laptop. The latter option is usually very limited, especially if you
provide software for customers to run on their noncloud premises. In the end,
the usability of resource-hungry applications or websites that scale only vertically
is much lower.

The situation is slightly better if you or your customers run your software in the
cloud. You can “just” buy a bigger server. As of 2022, you can scale up your soft‐
ware on the AWS platform to 128 CPU cores, almost 4 TB of RAM, and 14 GBps
of bandwidth.25 In extreme cases, you can also buy an IBM mainframe with 190
cores and 40 TB of memory, which requires different programming paradigms.

Unfortunately, vertical scalability has its limits on many fronts. Even in the cloud
or datacenters, we simply cannot infinitely scale up the hardware. First of all,
giant machines are rare and expensive. Secondly, as we will learn in Chapter 4,
bigger machines run into complex issues caused by many hidden single points of
failures. Pieces like memory bus, network interfaces, NUMA nodes, and the
operating system itself can be overloaded and too slow.26

Horizontal scalability
Instead of a bigger machine, we might try to offload and share the computation
across multiple remote, smaller, less complex, and much cheaper devices. For
example:

• To search for messages with the word “home” in a mobile messaging app, we
could fetch millions of past messages (or store them locally in the first place)
and run regex matching on each. Instead, we can design an API and
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remotely call a backend system that splits the search into 100 jobs matching
1/100 of the dataset.

• Instead of building “monolith” software, we could distribute different func‐
tionalities to separate components and move to a “microservice” design.

• Instead of running a game that requires expensive CPUs and GPUs on a per‐
sonal computer or gaming console, we could run it in a cloud and stream the
input and output in high resolution.

Horizontal scalability is easier to use as it has fewer limitations, and usually allows
great dynamics. For instance, if the software is used only in a certain company, you
might have almost no users at night, and large traffic during the day. With horizontal
scalability it’s easy to implement autoscaling that scales out and back in seconds
based on demand.

On the other hand, horizontal scalability is much harder to implement on the soft‐
ware side. Distributed systems, network impacts, and hard problems that cannot be
sharded are some of the many complications in the development of such systems.
That’s why it’s often better to stick to vertical scalability in some cases.

With horizontal and vertical scalability in mind, let’s look at a specific scenario from
the past. Many modern databases rely on compaction to efficiently store and look up
data. We can reuse many indices during this process, deduplicate the same data, and
gather fragmented pieces into the sequential data stream for faster reads. At the
beginning of the Thanos project, we decided to reuse a very naive compaction algo‐
rithm for simplicity. We calculated that, in theory, we don’t need to make the com‐
paction process parallel within a single block of data. Given a steady stream of 100
GB (or more) of eventually compacted data from a single source, we could rely on a
single CPU, a minimal amount of memory, and some disk space. The implementa‐
tion was initially very naive and unoptimized, following the YAGNI rule and avoid‐
ing premature optimization patterns. We wanted to avoid the complexity and effort
of optimizing the project’s reliability and functionality features. As a result, users who
deployed our project quickly hit compaction problems: too slow to cope with incom‐
ing data or to consume hundreds of GB of memory per operation. The cost was the
first problem, but not the most urgent. The bigger issue was that many Thanos users
did not have bigger machines in their datacenters to scale the memory vertically.

At first glance, the compaction problem looked like a scalability problem. The com‐
paction process depended on resources that we could not just add up infinitely. As
users wanted a solution fast, together with the community, we started brainstorming
potential horizontal scalability techniques. We talked about introducing a compactor
scheduler service that would assign compaction jobs to different machines, or intelli‐
gent peer networks using a gossip protocol. Without going into details, both
solutions would add enormous complexity, probably doubling or tripling the
complication of developing and running the whole system. Luckily, it took a few days
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27 CAP is a core system design principle. Its acronym comes from Consistency, Availability, and Partition toler‐
ance. It defines a simple rule that only two of the three can be achieved.

of brave and experienced developer time to redesign the code for efficiency and per‐
formance. It allowed the newer version of Thanos to make compactions twice as fast,
and stream data directly from the disk, allowing minimal peak memory consump‐
tion. A few years later, the Thanos project still doesn’t have any complex horizontal
scalability for compaction, besides simple sharding, even with thousands of success‐
ful users running it with billions of metrics.

It might feel funny now, but in some ways, this story is quite scary. We were so close
to bringing enormous, distributed system-level complexity, based on social and cus‐
tomer pressure. It would be fun to develop, but it could also risk collapsing the
project’s adoption. We might add it someday, but first we will make sure there is no
other efficiency optimization to compaction. A similar situation has been repeated in
my career in both open and closed sources for smaller and bigger projects.

Premature Scalability Is Worse than Premature Efficiency
Optimizations!

Make sure you consider improving the efficiency on the algorithm
and code level before introducing complex scalable patterns.

As presented by the “lucky” Thanos compaction situation, if we don’t focus on the
efficiency of our software, we can quickly be forced to introduce premature horizon‐
tal scalability. It is a massive trap because, with some optimization effort, we might
completely avoid jumping into scalability method complications. In other words,
avoiding complexity can bring even bigger complexity. This appears to me as an
unnoticed but critical problem in the industry. It is also one of the main reasons why
I wrote this book.

The complications come from the fact that complexity has to live somewhere. We
don’t want to complicate code, so we have to complicate the system, which, if built
from inefficient components, wastes resources and an enormous amount of devel‐
oper or operator time. Horizontal scalability is especially complex. By design, it
involves network operations. As we might know from the CAP Theorem,27 we inevi‐
tably hit either availability or consistency issues as soon as we start distributing our
process. Trust me, mitigating these elemental constraints, dealing with race condi‐
tions, and understanding the world of network latencies and unpredictability is a
hundred times more difficult than adding small efficiency optimization, e.g., hidden
behind the io.Reader interface.
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28 Denial of Service is a state of the system that makes the system unresponsive, usually due to malicious attack.
It can also be trigged “accidentally” by an unexpectedly large load.

29 Around 2015, it was the fastest supercomputer in Poland, offering 1.41 PFlop/s and over 1,600 nodes, most of
them with dedicated GPUs.

30 InfiniBand is a high-performance network communication standard, especially popular before fiber optic was
invented.

It might seem to you that this section touches only on infrastructure systems. That’s
not true. It applies to all software. For example, if you write a frontend software or
dynamic website, you might be tempted to move small client computations to the
backend. We should probably only do that if the computation depends on the load
and grows out of user space hardware capabilities. Moving it to the server prema‐
turely might cost you the complexity caused by extra network calls, more error cases
to handle, and server saturations causing Denial of Service (DoS).28

Another example comes from my experience. My master’s thesis was about a “Parti‐
cle Engine Using Computing Cluster.” In principle, the goal was to add a particle
engine to a 3D game in a Unity engine. The trick was that the particle engine was not
supposed to operate on client machines, instead offloading “expensive” computation
to a nearby supercomputer in my university called “Tryton.”29 Guess what? Despite
the ultrafast InfiniBand network,30 all particles I tried to simulate (realistic rain and
crowd) were much slower and less reliable when offloaded to our supercomputer. It
was not only less complex but also much faster to compute all on client machines.

Summing up, when someone says, “Don’t optimize, we can just scale horizontally,”
be very suspicious. Generally, it is simpler and cheaper to start from efficiency
improvements before we escalate to a scalability level. On the other hand, a judgment
should tell you when optimizations are becoming too complex and scalability might
be a better option. You will learn more about that in Chapter 3.

Time to Market Is More Important
Time is expensive. One aspect of this is that software developer time and expertise
cost a lot. The more features you want your application or system to have, the more
time is needed to design, implement, test, secure, and optimize the solution’s perfor‐
mance. The second aspect is that the more time a company or individual spends to
deliver the product or service, the longer their “time to market” is, which can hurt the
financial results.
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31 Funny enough, Mark Zuckerberg at an F8 conference in 2014 announced a change of the famous motto to
“Move fast with stable infra”.

Once time was money. Now it is more valuable than money. A McKinsey study reports
that, on average, companies lose 33% of after-tax profit when they ship products six
months late, as compared with losses of 3.5% when they overspend 50% on product
development.

—Charles H. House and Raymond L. Price, “The Return Map: Tracking Product
Teams”

It’s hard to measure such impact, but your product might no longer be pioneering
when you are “late” to market. You might miss valuable opportunities or respond too
late to a competitor’s new product. That’s why companies mitigate this risk by adopt‐
ing Agile methodologies or proof of concept (POC) and minimal viable product
(MVP) patterns.

Agile and smaller iterations help, but in the end, to achieve faster development cycles,
companies try other things too: scale their teams (hire more people, redesign teams),
simplify the product, do more automation, or do partnerships. Sometimes they try to
reduce the product quality. As Facebook’s proud initial motto was “Move fast and
break things,”31 it’s very common for companies to descope software quality in areas
like code maintainability, reliability, and efficiency to “beat” the market.

This is what our last misconception is all about. Descoping your software’s efficiency
to get to the market faster is not always the best idea. It’s good to know the conse‐
quences of such a decision. Know the risk first.

Optimization is a difficult and expensive process. Many engineers argue that this pro‐
cess delays entry into the marketplace and reduces profit. This may be true, but it
ignores the cost associated with poor-performing products (particularly when there is
competition in the marketplace).

—Randall Hyde, “The Fallacy of Premature Optimization”

Bugs, security issues, and poor performance happen, but they might damage the
company. Without looking too far, let’s look at a game released in late 2020 by the
biggest Polish game publisher, CD Projekt. Cyberpunk 2077 was known to be a very
ambitious, open world, massive, and high-quality production. Well marketed, from a
publisher with a good reputation, despite the delays, excited players around the world
bought eight million preorders. Unfortunately, when released in December 2020, the
otherwise excellent game had massive performance issues. It had bugs, crashes, and a
low frame rate on all consoles and most PC setups. On some older consoles like PS4
or Xbox One, the game was claimed to be unplayable. There were, of course, updates
with plenty of fixes and drastic improvements over the following months and years.
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32 One example I see often in the cloud-native world is moving logging stack from Elasticsearch to simpler solu‐
tions like Loki. Despite the lack of configurable indexing, the Loki project can offer better logging read perfor‐
mance with a smaller amount of resources.

Unfortunately, it was too late. The damage was done. The issues, which for me felt
somewhat minor, were enough to shake CD Projekt’s financial perspectives. Five
days after launch, the company lost one-third of its stock value, costing the founders
more than $1 billion. Millions of players asked for game refunds. Investors sued CD
Projekt over game issues, and famous lead developers left the company. Perhaps the
publisher will survive and recover. Still, one can only imagine the implications of a
broken reputation impacting future productions.

More experienced and mature organizations know well the critical value of software
performance, especially the client-facing ones. Amazon found that if its website
loaded one second slower, it would lose $1.6 billion annually. Amazon also reported
that 100 ms of latency costs 1% of profit. Google realized that slowing down their web
search from 400 ms to 900 ms caused a 20% drop in traffic. For some businesses, it’s
even worse. It was estimated that if a broker’s electronic trading platform is 5 milli‐
seconds slower than the competition, it could lose 1% of its cash flow, if not more. If
10 milliseconds slower, this number grows to a 10% drop in revenue.

Realistically speaking, it’s true that millisecond-level slowness might not matter in
most software cases. For example, let’s say we want to implement a file converter
from PDF to DOCX. Does it matter if the whole experience lasts 4 seconds or 100
milliseconds? In many cases, it does not. However, when someone puts that as a mar‐
ket value and a competitor’s product has a latency of 200 milliseconds, code effi‐
ciency and speed suddenly become a matter of winning or losing customers. And if
it’s physically possible to have such fast file conversion, competitors will try to ach‐
ieve it sooner or later. This is also why so many projects, even open source, are very
loud about their performance results. While sometimes it feels like a cheap marketing
trick, this works because if you have two similar solutions with similar feature sets
and other characteristics, you will pick the fastest one. It’s not all about the speed,
though—resource consumption matters as well.

Efficiency Is Often More Important in Market than Features!

During my experience as a consultant for infrastructure systems, I
saw many cases where customers migrated away from solutions
requiring a larger amount of RAM or disk storage, even if that
meant some loss in functionalities.32

To me, the verdict is simple. If you want to win the market, skipping efficiency in
your software might not be the best idea. Don’t wait with optimization until the last
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moment. On the other hand, time to market is critical, so balancing a good enough
amount of efficiency work into your software development process is crucial. One
way of doing this is to set the nonfunctional goals early (discussed in “Resource-
Aware Efficiency Requirements” on page 86). In this book, we will focus a lot on find‐
ing that healthy balance and reducing the effort (thus the time) required to improve
the efficiency of your software. Let’s now look at what is the pragmatic way to think
about the performance of our software.

The Key to Pragmatic Code Performance
In “Behind Performance” on page 3, we learned that performance splits into accu‐
racy, speed, and efficiency. I mentioned that in this book when I use the word effi‐
ciency, it naturally means efficient resource consumption, but also our code’s speed
(latency). A practical suggestion is hidden in that decision regarding how we should
think about our code performing in production.

The secret here is to stop focusing strictly on the speed and latency of our code. Gen‐
erally, for nonspecialized software, speed matters only marginally; the waste and
unnecessary consumption of resources are what introduce slowdowns. And achieving
high speed with bad efficiency will always introduce more problems than benefits. As
a result, we should generally focus on efficiency. Sadly, it is often overlooked.

Let’s say you want to travel from city A to city B across the river. You can grab a fast
car and drive over a nearby bridge to get to city B quickly. But if you jump into the
water and slowly swim across the river, you will get to city B much faster. Slower
actions can still be faster when done efficiently, for example, by picking a shorter
route. One could say that to improve travel performance and beat the swimmer, we
could get a faster car, improve the road surface to reduce drag, or even add a rocket
engine. We could potentially beat the swimmer, yes, but those drastic changes might
be more expensive than simply doing less work and renting a boat instead.

Similar patterns exist in software. Let’s say our algorithm does search functionality on
certain words stored on disk and performs slowly. Given that we operate on persis‐
tent data, the slowest operation is usually the data access, especially if our algorithm
does this extensively. It’s very tempting to not think about efficiency and instead find
a way to convince users to use SSD instead of HDD storage. This way, we could
potentially reduce latency up to 10 times. That would improve performance by
increasing the speed element of the equation. On the contrary, if we could find a way
to enhance the current algorithm to read data only a few times instead of a million,
we could achieve even lower latencies. That would mean we can have the same or
even better effect by keeping the cost low.
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33 There is also another reason. The “Efficient Go” name is very close to one of the best documentation pieces
you might find about the Go programming language: “Effective Go”! It might also be one of the first pieces of
information I have read about Go. It’s specific, actionable, and I recommend reading it if you haven’t.

I want to propose focusing our efforts on efficiency instead of mere execution speed.
That is also why this book’s title is Efficient Go, not something more general and cat‐
chy33 like Ultra Performance Go or Fastest Go Implementations.

It’s not that speed is less relevant. It is important, and as you will learn in Chapter 3,
you can have more efficient code that is much slower and vice versa. Sometimes it’s a
trade-off you will need to make. Both speed and efficiency are essential. Both can
impact each other. In practice, when the program is doing less work on the critical
path, it will most likely have lower latency. In the HDD versus SDD example, changing
to a faster disk might allow you to remove some caching logic, which results in better
efficiency: less memory and CPU time used. The other way around works sometimes
too—as we learned in “Hardware Is Getting Faster and Cheaper” on page 17, the faster
your process is, the less energy it consumes, improving battery efficiency.

I would argue that we generally should focus on improving efficiency before speed as
the first step when improving performance. As you will see in “Optimizing Latency”
on page 383, only by changing efficiency was I able to reduce latency seven times, with
just one CPU core. You might be surprised that sometimes after improving effi‐
ciency, you have achieved desired latency! Let’s go through some further reasons why
efficiency might be superior:

It is much harder to make efficient software slow.
This is similar to the fact that readable code is easier to optimize. However, as I
mentioned before, efficient code usually performs better simply because less
work has to be done. In practice, this also translates to the fact that slow software
is often inefficient.

Speed is more fragile.
As you will learn in “Reliability of Experiments” on page 256, the latency of the
software process depends on a huge amount of external factors. One can opti‐
mize the code for fast execution in a dedicated and isolated environment, but it
can be much slower when left running for a longer time. At some point, CPUs
might be throttled due to thermal issues with the server. Other processes (e.g.,
periodic backup) might surprisingly slow your main software. The network
might be throttled. There are tons of hidden unknowns to consider when we pro‐
gram for mere execution speed. This is why efficiency is usually what we, as pro‐
grammers, can control the most.
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Speed is less portable.
If we optimize only for speed, we cannot assume it will work the same when
moving our application from the developer machine to a server or between vari‐
ous client devices. Different hardware, environments, and operating systems can
diametrically change the latency of our application. That’s why it’s critical to
design software for efficiency. First of all, there are fewer things that can be affec‐
ted. Secondly, if you make two calls to the database on your developer machine,
chances are that you will do the same number of calls, no matter if you deploy it
to an IoT device in the space station or an ARM-based mainframe.

Generally, efficiency is something we should do right after or together with readabil‐
ity. We should start thinking about it from the very beginning of the software design.
A healthy efficiency awareness, when not taken to the extreme, results in robust
development hygiene. It allows us to avoid silly performance mistakes that are hard
to improve on in later development stages. Doing less work also often reduces the
overall complexity of the code, and improves code maintainability and extensibility.

Summary
I think it’s very common for developers to start their development process with com‐
promises in mind. We often sit down with the attitude that we must compromise cer‐
tain software qualities from the beginning. We are often taught to sacrifice qualities
of our software, like efficiency, readability, testability, etc., to accomplish our goals.

In this chapter, I wanted to encourage you to be a bit more ambitious and greedy for
software quality. Hold out and try not to sacrifice any quality until you have to—until
it is demonstrated that there is no reasonable way you can achieve all of your goals.
Don’t start your negotiations with default compromises in mind. Some problems are
hard without simplifications and compromises, but many have solutions with some
effort and appropriate tools.

Hopefully, at this point, you are aware that we have to think about efficiency, ideally
from the early development stages. We learned what performance consists of. In
addition, we learned that many misconceptions are worth challenging when appro‐
priate. We need to be aware of the risk of premature pessimization and premature
scalability as much as we need to consider avoiding premature optimizations.

Finally, we learned that efficiency in the performance equation might give us an
advantage. It is easier to improve performance by improving efficiency first. It helped
my students and me many times to effectively approach the subject of performance
optimizations.

In the next chapter, we will walk through a quick introduction to Go. Knowledge is
key to better efficiency, but it’s extra hard if we are not proficient with the basics of
the programming language we use.
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1 New frameworks on tools for writing Go on small devices are emerging, e.g., GoBot and TinyGo.

2 It’s a controversial topic. There is quite a battle in the infrastructure industry for the superior language for
configuration as code. For example, among HCL, Terraform, Go templates (Helm), Jsonnet, Starlark, and
Cue. In 2018, we even open sourced a tool for writing configuration in Go, called “mimic”. Arguably, the
loudest arguments against writing configuration in Go are that it feels too much like “programming” and
requires programming skills from system administrators.

CHAPTER 2

Efficient Introduction to Go

Go is efficient, scalable, and productive. Some programmers find it fun to work in;
others find it unimaginative, even boring. ... Those are not contradictory positions. Go
was designed to address the problems faced in software development at Google, which
led to a language that is not a breakthrough research language but is nonetheless an
excellent tool for engineering large software projects.

—Rob Pike, “Go at Google: Language Design in the Service of Software
Engineering”

I am a huge fan of the Go programming language. The number of things developers
around the world have been able to achieve with Go is impressive. For a few years in
a row, Go has been on the list of top five languages people love or want to learn. It is
used in many businesses, including bigger tech companies like Apple, American
Express, Cloudflare, Dell, Google, Netflix, Red Hat, Twitch, and others. Of course, as
with everything, nothing is perfect. I would probably change, remove, or add a few
things to Go, but if you would wake me in the middle of the night and ask me to
quickly write reliable backend code, I would write it in Go. CLI? In Go. Quick, relia‐
ble script? In Go as well. The first language to learn as a junior programmer? Go.
Code for IoT, robots, and microprocessors? The answer is also Go.1 Infrastructure
configuration? As of 2022, I don’t think there is a better tool for robust templating
than Go.2
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3 WebAssembly is meant to change this, though, but not soon.

Don’t get me wrong, there are languages with specialized capabilities or ecosystems
that are superior to Go. For example, think about graphical user interfaces (GUIs),
advanced rendering parts of the game industry, or code running in browsers.3 How‐
ever, once you realize the many advantages of the Go language, it is pretty painful to
jump back to others.

In Chapter 1, we spent some time establishing an efficiency awareness for our soft‐
ware. As a result, we learned that our goal is to write efficient code with the least
development effort and cost. This chapter will explain why the Go programming lan‐
guage can be a solid option to achieve this balance between performance and other
software qualities.

We will start with “Basics You Should Know About Go” on page 36, then continue
with “Advanced Language Elements” on page 55. Both sections list the short but
essential facts everyone should know about Go, something I wish I had known when
I started my journey with Go in 2014. These sections will cover much more than just
basic information about efficiency and can be used as an introduction to Go. How‐
ever, if you are entirely new to the language, I would still recommend reading those
sections, then checking other resources mentioned in the summary, perhaps writing
your first program in Go, and then getting back to this book. On the other hand, if
you consider yourself a more advanced user or expert, I suggest not skipping this
chapter. I explain a few lesser-known facts about Go that you might find interesting
or controversial (it’s OK, everyone can have their own opinions!).

Last but not least, we will finish by answering the tricky question about the overall Go
efficiency capabilities in “Is Go ‘Fast’?” on page 67, as compared to other languages.

Basics You Should Know About Go
Go is an open source project maintained by Google within a distributed team called
the “Go team.” The project consists of the programming language specification, com‐
pilator, tooling, documentation, and standard libraries.

Let’s go through some facts and best practices to understand Go basics and its char‐
acteristics in fast-forward mode. While some advice here might feel opinionated, this
is based on my experience working with Go since 2014—a background full of inci‐
dents, past mistakes, and lessons learned the hard way. I’m sharing them here so you
don’t need to make those errors.
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Imperative, Compiled, and Statically Typed Language
The central part of the Go project is the general-purpose language with the same
name, primarily designed for systems programming. As you will notice in
Example 2-1, Go is an imperative language, so we have (some) control over how
things are executed. In addition, it’s statically typed and compiled, which means that
the compiler can perform many optimizations and checks before the program runs.
These characteristics alone are an excellent start to make Go suitable for reliable and
efficient programs.

Example 2-1. Simple program printing “Hello World” and exiting

package main

import "fmt"

func main() {
   fmt.Println("Hello World!")
}

Both project and language are called “Go,” yet sometimes you can refer to them as
“Golang.”

Go Versus Golang

As a rule of thumb, we should always use the “Go” name every‐
where, unless it’s clashing with the English word go or an ancient
game called “Go.” “Golang” came from the domain choice (https://
golang.org) since “go” was unavailable to its authors. So use
“Golang” when searching for resources about this programming
language on the web.

Go also has its mascot, called the “Go gopher”. We see this cute gopher in various
forms, situations, and combinations, such as conference talks, blog posts, or project
logos. Sometimes Go developers are called “gophers” too!

Designed to Improve Serious Codebases
It all started when three experienced programmers from Google sketched the idea of
the Go language around 2007:

Rob Pike
Cocreator of UTF-8 and the Plan 9 operating system. Coauthor of many pro‐
gramming languages before Go, such as Limbo for writing distributed systems
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4 CSP is a formal language that allows describing interactions in concurrent systems. Introduced by C.A.R.
Hoare in Communications of the ACM (1978), it was an inspiration for the Go language concurrency system.

5 Similar frustrations triggered another part of Google to create yet another language—Carbon in 2022. Carbon
looks very promising, but it has different goals than Go. It is, by design, more efficiency aware and focused on
familiarity with C++ concepts and interoperability. So let’s see how adoption will catch up for Carbon!

and Newsqueak for writing concurrent applications in graphical user interfaces.
Both were inspired by Hoare’s Communicating Sequential Processes (CSP).4

Robert Griesemer
Among other work, Griesemer developed the Sawzall language and did a doctor‐
ate with Niklaus Wirth. The same Niklaus wrote “A Plea for Lean Software”
quoted in “Software gets slower more rapidly than hardware becomes faster” on
page 20.

Ken Thompson
One of the original authors of the first Unix system. Sole creator of the grep
command-line utility. Ken cocreated UTF-8 and Plan 9 with Rob Pike. He wrote
a couple of languages, too, e.g., the Bon and B programming languages.

These three aimed to create a new programming language that was meant to improve
mainstream programming, led by C++, Java, and Python at that point. After a year, it
became a full-time project, with Ian Taylor and Russ Cox joining in 2008 what was
later referenced as the Go team. The Go team announced the public Go project in
2009, with version 1.0 released in March 2012.

The main frustrations5 related to C++ mentioned in the design of Go were:

• Complexity, many ways of doing the same thing, too many features
• Ultralong compilation times, especially for bigger codebases
• Cost of updates and refactors in large projects
• Not easy to use and memory model prone to errors

These elements are why Go was born, from the frustration of existing solutions and
the ambition to allow more by doing less. The guiding principles were to make a lan‐
guage that does not trade safety for less repetition, yet allows simpler code. It does
not sacrifice execution efficiency for faster compilation or interpreting, yet ensures
that build times are quick enough. Go tries to compile as fast as possible, e.g., thanks
to explicit imports. Especially with caching enabled by default, only changed code is
compiled, so build times are rarely longer than a minute.
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6 One notable example is the controversy behind dependency management work.

You Can Treat Go Code as Script!

While technically Go is a compiled language, you can run it like
you would run JavaScript, Shell, or Python. It’s as simple as invok‐
ing go run <executable package> <flags>. It works great
because the compilation is ultrafast. You can treat it like a scripting
language while maintaining the advantages of compilation.

In terms of syntax, Go was meant to be simple, light on keywords, and familiar. Syn‐
tax is based on C with type derivation (automatic type detection, like auto in C++),
and no forward declarations, no header files. Concepts are kept orthogonal, which
allows easier combination and reasoning about them. Orthogonality for elements
means that, for example, we can add methods to any type or data definition (adding
methods is separate from creating types). Interfaces are orthogonal to types too.

Governed by Google, Yet Open Source
Since announcing Go, all development has been done in open source, with public
mailing lists and bug trackers. Changes go to the public, authoritative source code,
held under the BSD style license. The Go team reviews all contributions. The process
is the same if the change or idea is coming from Google or not. The project road
maps and proposals are developed in public too.

Unfortunately, the sad truth is that there are many open source projects, but some
projects are less open than others. Google is still the only company stewarding Go
and has the last decisive control over it. Even if anyone can modify, use, and contrib‐
ute, projects coordinated by a single vendor risk selfish and damaging decisions like
relicensing or blocking certain features. While there were some controversial cases
where the Go team decision surprised the community,6 overall the project is very rea‐
sonably well governed. Countless changes came from outside of Google, and the Go
2.0 draft proposal process has been well respected and community driven. In the end,
I believe consistent decision-making and stewarding from the Go team bring many
benefits too. Conflicts and different views are inevitable, and having one consistent
overview, even if not perfect, might be better than no decision or many ways of doing
the same thing.
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7 Of course, there are some inconsistencies here and there; that’s why the community created more strict for‐
matters, linters, or style guides. Yet the standard tools are good enough to feel comfortable in every Go
codebase.

So far, this project setup has proven to work well for adoption and language stability.
For our software efficiency goals, such alignment couldn’t be better too. We have a
big company invested in ensuring each release doesn’t bring any performance regres‐
sions. Some internal Google software depends on Go, e.g., Google Cloud Platform.
And many people rely on the Google Cloud Platform to be reliable. On the other
hand, we have a vast Go community that gives feedback, finds bugs, and contributes
ideas and optimizations. And if that’s not enough, we have open source code, allow‐
ing us, mere mortal developers, to dive into the actual Go libraries, runtime (see “Go
Runtime” on page 58), etc., to understand the performance characteristics of the par‐
ticular code.

Simplicity, Safety, and Readability Are Paramount
Robert Griesemer mentioned in GopherCon 2015 that first of all, they knew when
they first started building Go what things NOT to do. The main guiding principle
was simplicity, safety, and readability. In other words, Go follows the pattern of “less
is more.” This is a potent idiom that spans many areas. In Go, there is only one
idiomatic coding style,7 and a tool called gofmt ensures most of it. In particular, code
formatting (next to naming) is an element that is rarely settled among programmers.
We spend time arguing about it and tuning it to our specific needs and beliefs.
Thanks to a single style enforced by tooling, we save enormous time. As one of the
Go proverbs goes, “Gofmt’s style is no one’s favorite, yet gofmt is everyone’s favor‐
ite.” Overall, the Go authors planned the language to be minimal so that there is
essentially one way to write a particular construct. This takes away a lot of decision-
making when you are writing a program. There is one way of handling errors, one
way of writing objects, one way of running things concurrently, etc.

A huge number of features might be “missing” from Go, yet one could say it is more
expressive than C or C++. Such minimalism allows for maintaining the simplicity
and readability of the Go code, which improves software reliability, safety, and over‐
all higher velocity toward application goals.
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8 There is one exception: unit test files that have to end with _test.go. These files can have either the same pack‐
age name or the <package_name>_test name allowing to mimic external users of the package.

Is My Code Idiomatic?

The word idiomatic is heavily overused in the Go community.
Usually, it means Go patterns that are “often” used. Since Go adop‐
tion has grown a lot, people have improved the initial “idiomatic”
style in many creative ways. Nowadays, it’s not always clear what’s
idiomatic and what’s not.
It’s like the “This is the way” saying from the Mandalorian series. It
makes us feel more confident when we say, “This code is
idiomatic.” So the conclusion is to use this word with care and
avoid it unless you can elaborate the reasoning why some pattern is
better.

Interestingly, the “less is more” idiom can help our efficiency efforts for this book’s
purpose. As we learned in Chapter 1, if you do less work at runtime, it usually means
faster, lean execution and less complex code. In this book, we will try to maintain this
aspect while improving our code performance.

Packaging and Modules
The Go source code is organized into directories representing either packages or
modules. A package is a collection of source files (with the .go suffix) in the same
directory. The package name is specified with the package statement at the top of
each source file, as seen in Example 2-1. All files in the same directory must the same
package name8 (the package name can be different from the directory name). Multi‐
ple packages can be part of a single Go module. A module is a directory with a
go.mod file that states all dependent modules with their versions required to build the
Go application. This file is then used by the dependency management tool Go Mod‐
ules. Each source file in a module can import packages from the same or external
modules. Some packages can also be “executable.” For example, if a package is called
main and has func main() in some file, we can execute it. Sometimes such a package
is placed in the cmd directory for easier discovery. Note that you cannot import the
executable package. You can only build or run it.

Within the package, you can decide what functions, types, interfaces, and methods
are exported to package users and which are accessible only in the package scope.
This is important because exporting the minimal amount of API possible for read‐
ability, reusability, and reliability is better. Go does not have any private or public
keywords for this. Instead, it takes a slightly new approach. As Example 2-2 shows, if
the construct name starts with an uppercase letter, any code outside the package can
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use it. If the element name begins with a lowercase letter, it’s private. It’s worth not‐
ing that this pattern works for all constructs equally, e.g., functions, types, interfaces,
variables, etc. (orthogonality).

Example 2-2. Construct accessibility control using naming case

package main

const privateConst = 1
const PublicConst = 2

var privateVar int
var PublicVar int

func privateFunc() {}
func PublicFunc()  {}

type privateStruct struct {
   privateField int
   PublicField  int 
}

func (privateStruct) privateMethod() {}
func (privateStruct) PublicMethod()  {} 

type PublicStruct struct {
   privateField int
   PublicField  int
}

func (PublicStruct) privateMethod() {}
func (PublicStruct) PublicMethod()  {}

type privateInterface interface {
   privateMethod()
   PublicMethod() 
}

type PublicInterface interface {
   privateMethod()
   PublicMethod()
}

Careful readers might notice tricky cases of exported fields or methods on private
type or interface. Can someone outside the package use them if the struct or
interface is private? This is quite rarely used, but the answer is yes, you can
return a private interface or type in a public function, e.g., func New()

privateStruct { return privateStruct{}}. Despite the privateStruct being
private, all its public fields and methods are accessible to package users.
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9 In practice, you can quickly obtain the C++ or Go code (even when obfuscated) from the compiled binary
anyway, especially if you don’t strip the binary from the debugging symbols.

Internal Packages

You can name and structure your code directories as you want to
form packages, but one directory name is reserved for special
meaning. If you want to ensure that only the given package can
import other packages, you can create a package subdirectory
named internal. Any package under the internal directory can’t be
imported by any package other than the ancestor (and other pack‐
ages in internal).

Dependencies Transparency by Default
In my experience, it is common to import precompiled libraries, such as in C++, C#,
or Java, and use exported functions and classes defined in some header files. How‐
ever, importing compiled code has some benefits:

• It relieves engineers from making an effort to compile particular code, i.e., find
and download correct versions of dependencies, special compilation tooling, or
extra resources.

• It might be easier to sell such a prebuilt library without exposing the source code
and worrying about the client copying the business value-providing code.9

In principle, this is meant to work well. Developers of the library maintain specific
programmatic contracts (APIs), and users of such libraries do not need to worry
about implementation complexities.

Unfortunately, in practice, this is rarely that perfect. Implementation can be broken
or inefficient, the interfaces can mislead, and documentation can be missing. In such
cases, access to the source code is invaluable, allowing us to more deeply understand
implementation. We can find issues based on specific source code, not by guessing.
We can even propose a fix to the library or fork the package and use it immediately.
We can extract the required pieces and use them to build something else.

Go assumes this imperfection by requiring each library’s parts (in Go: module’s pack‐
ages) to be explicitly imported using a package URI called “import path.” Such
import is also strictly controlled, i.e., unused imports or cyclic dependencies cause a
compilation error. Let’s see different ways to declare these imports in Example 2-3.
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10 Standard library means packages that are shipped together with the Go language tooling and runtime code.
Usually, only mature and core functionalities are provided, as Go has strong compatibility guarantees. Go
also maintains an experimental golang.org/x/exp module that contains useful code that must be proven to
graduate to the standard library.

Example 2-3. Portion of import statements from github.com/prometheus/
prometheus module, main.go file

import (
   "context" 
   "net/http"
   _ "net/http/pprof" 

   "github.com/oklog/run" 
   "github.com/prometheus/common/version"
   "go.uber.org/atomic"

   "github.com/prometheus/prometheus/config" 
   promruntime "github.com/prometheus/prometheus/pkg/runtime"
   "github.com/prometheus/prometheus/scrape"
   "github.com/prometheus/prometheus/storage"
   "github.com/prometheus/prometheus/storage/remote"
   "github.com/prometheus/prometheus/tsdb"
   "github.com/prometheus/prometheus/util/strutil"
   "github.com/prometheus/prometheus/web"
)

If the import declaration does not have a domain with a path structure, it means
the package from the “standard”10 library is imported. This particular import
allows us to use code from the $(go env GOROOT)/src/context/ directory with
context reference, e.g., context.Background().

The package can be imported explicitly without any identifier. We don’t want to
reference any construct from this package, but we want to have some global vari‐
ables initialized. In this case, the pprof package will add debugging endpoints to
the global HTTP server router. While allowed, in practice we should avoid reus‐
ing global, modifiable variables.

Nonstandard packages can be imported using an import path in the form of an
internet domain name and an optional path to the package in a certain module.
For example, the Go tooling integrates well with https://github.com, so if you
host your Go code in a Git repository, it will find a specified package. In this case,
it’s the https://github.com/oklog/run Git repository with the run package in
the github.com/oklog/run module.
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If the package is taken from the current module (in this case, our module is
github.com/prometheus/prometheus), packages will be resolved from your local
directory. In our example, <module root>/config.

This model focuses on open and clearly defined dependencies. It works exceptionally
well with the open source distribution model, where the community can collaborate
on robust packages in the public Git repositories. Of course, a module or package can
also be hidden using standard version control authentication protocols. Furthermore,
the official tooling does not support distributing packages in binary form, so the
dependency source is highly encouraged to be present for compilation purposes.

The challenges of software dependency are not easy to solve. Go learned from the
mistakes of C++ and others, and takes a careful approach to avoid long compilation
times, and an effect commonly called “dependency hell.”

Through the design of the standard library, great effort was spent on controlling
dependencies. It can be better to copy a little code than to pull in a big library for one
function. (A test in the system build complains if new core dependencies arise.)
Dependency hygiene trumps code reuse. One example of this in practice is that the
(low-level) net package has its own integer-to-decimal conversion routine to avoid
depending on the bigger and dependency-heavy formatted I/O package. Another is
that the string conversion package strconv has a private implementation of the defini‐
tion of “printable” characters rather than pull in the large Unicode character class
tables; that strconv honors the Unicode standard is verified by the package’s tests.

—Rob Pike, “Go at Google: Language Design in the Service of Software
Engineering”

Again, with efficiency in mind, potential minimalism in dependencies and transpar‐
ency brings enormous value. Fewer unknowns means we can quickly detect main
bottlenecks and focus on the most significant value optimizations first. We don’t
need to work around it if we notice potential room for optimization in our depend‐
ency. Instead, we are usually welcome to contribute the fix directly to the upstream,
which helps both sides!

Consistent Tooling
From the beginning, Go had a powerful and consistent set of tools as part of its
command-line interface tool, called go. Let’s enumerate a few utilities:

• go bug opens a new browser tab with the correct place where you can file an offi‐
cial bug report (Go repository on GitHub).

• go build -o <output path> <packages> builds given Go packages.
• go env shows all Go-related environment variables currently set in your terminal

session.
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11 While Go is improving every day, sometimes you can add more advanced tools like goimports or bingo to
improve the development experience further. In some areas, Go can’t be opinionated and is limited by stabil‐
ity guarantees.

• go fmt <file, packages or directories> formats given artifacts to the
desired style, cleans whitespaces, fixes wrong indentations, etc. Note that the
source code does not need to be even valid and compilable Go code. You can also
install an extended official formatter.

• goimports also cleans and formats your import statements.

For the best experience, set your programming IDE to run
goimports -w $FILE on every file to not worry about the manual
indentation anymore!

• go get <package@version> allows you to install the desired dependency with
the expected version. Use the @latest suffix to get the latest version of @none to
uninstall the dependency.

• go help <command/topic> prints documentation about the command or given
topic. For example, go help environment tells you all about the possible envi‐
ronment variables Go uses.

• go install <package> is similar to go get and installs the binary if the given
package is “executable.”

• go list lists Go packages and modules. It allows flexible output formatting
using Go templates (explained later), e.g., go list -mod=readonly -m -f

'{{ if and (not .Indirect) (not .Main)}}{{.Path}}{{end}}' all lists all
direct nonexecutable dependent modules.

• go mod allows managing dependent modules.
• go test allows running unit tests, fuzz tests, and benchmarks. We will discuss

the latter in detail in Chapter 8.
• go tool hosts a dozen more advanced CLI tools. We will especially take a close

look at go tool pprof in “pprof Format” on page 332 for performance
optimizations.

• go vet runs basic static analysis checks.

In most cases, the Go CLI is all you need for effective Go programming.11
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12 The CAP Theorem mentions an excellent example of treating failures seriously. It states that you can only
choose two from three system characteristics: consistency, availability, and partition. As soon as you distrib‐
ute your system, you must deal with network partition (communication failure). As an error-handling mech‐
anism, you can either design your system to wait (lose availability) or operate on partial data (lose
consistency).

13 bash has many methods for error handling, but the default one is implicit. The programmer can optionally
print or check ${?} that holds the exit code of the last command executed before any given line. An exit code
of 0 means the command is executed without any issues.

14 In principle, a monad is an object that holds some value optionally, for example, some object Option<Type>
with methods Get() and IsEmpty(). Furthermore, an “error monad” is an Option object that holds an error if
the value is not set (sometimes referred to as Result<Type>).

Single Way of Handling Errors
Errors are an inevitable part of every running software. Especially in distributed sys‐
tems, they are expected by design, with advanced research and algorithms for han‐
dling different types of failures.12 Despite the need for errors, most programming
languages do not recommend or enforce a particular way of failure handling. For
example, in C++ you see programmers using all means possible to return an error
from a function:

• Exceptions
• Integer return codes (if the returned value is nonzero, it means error)
• Implicit status codes13

• Other sentinel values (if the returned value is null, then it’s an error)
• Returning potential error by argument
• Custom error classes
• Monads14

Each option has its pros and cons, but just the fact that there are so many ways of
handling errors can cause severe issues. It causes surprises by potentially hiding that
some statements can return an error, introduces complexity and, as a result, makes
our software unreliable.

Undoubtedly, the intention for so many options was good. It gives a developer
choices. Maybe the software you create is noncritical, or is the first iteration, so you
want to make a “happy path” crystal clear. In such cases, masking some “bad paths”
sounds like a good short-term idea, right? Unfortunately, as with many shortcuts, it
poses numerous dangers. Software complexity and demand for functionalities cause
the code to never go out of the “first iteration,” and noncritical code quickly becomes
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a dependency for something critical. This is one of the most important causes of
unreliability or hard-to-debug software.

Go takes a unique path by treating the error as a first-citizen language feature. It
assumes we want to write reliable software, making error handling explicit, easy, and
uniform across libraries and interfaces. Let’s see some examples in Example 2-4.

Example 2-4. Multiple function signatures with different return arguments

func noErrCanHappen() int { 
   // ...
   return 204
}

func doOrErr() error { 
   // ...
   if shouldFail() {
      return errors.New("ups, XYZ failed")
   }
   return nil
}

func intOrErr() (int, error) { 
   // ...
   if shouldFail() {
      return 0, errors.New("ups, XYZ2 failed")
   }
   return noErrCanHappen(), nil
}

The critical aspect here is that functions and methods define the error flow as
part of their signature. In this case, the noErrCanHappen function states that there
is no way any error can happen during its invocation.

By looking at the doOrErr function signature, we know some errors can happen.
We don’t know what type of error yet; we only know it is implementing a built-in
error interface. We also know that there was no error if the error is nil.

The fact that Go functions can return multiple arguments is leveraged when cal‐
culating some result in a “happy path.” If the error can happen, it should be the
last return argument (always). From the caller side, we should only touch the
result if the error is nil.

It’s worth noting that Go has an exception mechanism called panics, which are
recoverable using the recover() built-in function. While useful or necessary for cer‐
tain cases (e.g., initialization), you should never use panics for conventional error
handling in your production code in practice. They are less efficient, hide failures,
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and overall surprise the programmers. Having errors as part of invocation allows the
compilator and programmer to be prepared for error cases in the normal execution
path. Example 2-5 shows how we can handle errors if they occur in our function exe‐
cution path.

Example 2-5. Checking and handling errors

import "github.com/efficientgo/core/errors" 

func main() {
   ret := noErrCanHappen()
   if err := nestedDoOrErr(); err != nil { 
      // handle error
   }
   ret2, err := intOrErr()
   if err != nil {
      // handle error
   }
   // ...
}

func nestedDoOrErr() error {
   // ...
   if err := doOrErr(); err != nil {
      return errors.Wrap(err, "do") 
   }
   return nil
}

Notice that we did not import the built-in errors package, but instead used the
open source drop-in replacement github.com/efficientgo/core/errors. core
module. This is my recommended replacement for the errors package and the
popular, but archived, github.com/pkg/errors. It allows a bit more advanced
logic, like wrapping errors you will see in step three.

To tell if an error happened, we need to check if the err variable is nil or not.
Then, if an error occurs, we can follow with error handling. Usually, it means
logging it, exiting the program, incrementing metrics, or even explicitly ignoring
it.

Sometimes, it’s appropriate to delegate error handling to the caller. For example,
if the function can fail from many errors, consider wrapping it with a
errors.Wrap function to add a short context of what is wrong. For example, with
github.com/efficientgo/core/errors, we will have context and stack trace,
which will be rendered if %+v is used later.
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How to Wrap Errors?

Notice that I recommended errors.Wrap (or errors.Wrapf)
instead of the built-in way of wrapping errors. Go defines the %w
identifier for the fmt.Errors type of function that allows passing
an error. Currently, I would not recommend %w because it’s not
type safe and as explicit as Wrap, causing nontrivial bugs in the past.

The one way of defining errors and handling them is one of Go’s best features. Inter‐
estingly, it is one of the language disadvantages due to verbosity and certain boiler‐
plate involved. It sometimes might feel repetitive, but tools allow you to mitigate the
boilerplate.

Some Go IDEs define code templates. For example, in JetBrain’s
GoLand product, typing err and pressing the Tab key will generate
a valid if err != nil statement. You can also collapse or expand
error handling blocks for readability.

Another common complaint is that writing Go can feel very “pessimistic,” because
the errors that may never occur are visible in plain sight. The programmer has to
decide what to do with them at every step, which takes mental energy and time. Yet,
in my experience it’s worth the work and makes programs much more predictable
and easier to debug.

Never Ignore Errors!

Due to the verbosity of error handling, it’s tempting to skip
err != nil checks. Consider not doing it unless you know a func‐
tion will never return an error (and in future versions!). If you
don’t know what to do with the error, consider passing it to the
caller by default. If you must ignore the error, consider doing it
explicitly with the _ = syntax. Also, always use linters, which will
warn you about some portion of unchecked errors.

Are there any implications of the error handling for general Go code runtime effi‐
ciency? Yes! Unfortunately, it’s much more significant than developers usually antici‐
pate. In my experience, error paths are frequently an order of magnitude slower and
more expensive to execute than happy paths. One of the reasons is we tend not to
ignore error flows during our monitoring or benchmarking steps (mentioned in
“Efficiency-Aware Development Flow” on page 102).

Another common reason is that the construction of errors often involves heavy string
manipulation for creating human-readable messages. As a result, it can be costly,
especially with lengthy debugging tags, which are touched on later in this book.
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15 Such code is not recommended for production, but the only things that would need to change are avoiding
using global variables and checking all errors.

Understanding these implications and ensuring consistent and efficient error han‐
dling are essential in any software, and we will take a detailed look at that in the fol‐
lowing chapters.

Strong Ecosystem
A commonly stated strong point of Go is that its ecosystem is exceptionally mature
for such a “young” language. While items listed in this section are not mandatory for
solid programming dialects, they improve the whole development experience. This is
also why the Go community is so large and still growing.

First, Go allows the programmer to focus on business logic without necessarily reim‐
plementing or importing third-party libraries for basic functionalities like YAML
decoding or cryptographic hashing algorithms. Go standard libraries are high quality,
robust, ultra-backward compatible, and rich in features. They are well benchmarked,
have solid APIs, and have good documentation. As a result, you can achieve most
things without importing external packages. For example, running an HTTP server is
dead simple, as visualized in Example 2-6.

Example 2-6. Minimal code for serving HTTP requests15

package main

import  "net/http"

func handle(w http.ResponseWriter, _ *http.Request) {
   w.Write([]byte("It kind of works!"))
}

func main() {
   http.ListenAndServe(":8080", http.HandlerFunc(handle))
}

In most cases, the efficiency of standard libraries is good enough or even better than
third-party alternatives. For example, especially lower-level elements of packages,
net/http for HTTP client and server code, or crypto, math, and sort parts (and
more!), have a good amount of optimizations to serve most of the use cases. This
allows developers to build more complex code on top while not worrying about the
basics like sorting performance. Yet that’s not always the case. Some libraries are
meant for specific usage, and misusing them may result in significant resource waste.
We will look at all the things you need to be aware of in Chapter 11.
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Another highlight of the mature ecosystem is a basic, official in-browser Go editor
called Go Playground. It’s a fantastic tool if you want to test something out quickly or
share an interactive code example. It’s also straightforward to extend, so the commu‐
nity often publishes variations of the Go Playground to try and share previously
experimental language features like generics (which are now part of the primary lan‐
guage and explained in “Generics” on page 63).

Last but not least, the Go project defines its templating language, called Go templates.
In some way, it’s similar to Python’s Jinja2 language. While it sounds like a side fea‐
ture of Go, it’s beneficial in any dynamic text or HTML generation. It is also often
used in popular tools like Helm or Hugo.

Unused Import or Variable Causes Build Error
The compilation will fail if you define a variable in Go but never read any value from
it or don’t pass it to another function. Similarly, it will fail if you added a package to
the import statement but don’t use that package in your file.

I see that Go developers have gotten used to this feature and love it, but it is surpris‐
ing for newcomers. Failing on unused constructs can be frustrating if you want to
play with the language quickly, e.g., create some variable without using it for debug‐
ging purposes.

There are, however, ways to handle these cases explicitly! You can see a few examples
of dealing with these usage checks in Example 2-7.

Example 2-7. Various examples of unused and used variables

package main

func use(_ int) {}

func main() {
   var a int // error: a declared but not used 

   b := 1 // error: b declared but not used 

   var c int
   d := c // error: d declared but not used 

   e := 1
   use(e) 

   f := 1
   _ = f 
}

Variables a, b, and c are not used, so they cause a compilation error.
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Variable e is used.

Variable f is technically used for an explicit no identifier (_). Such an approach is
useful if you explicitly want to tell the reader (and compiler) that you want to
ignore the value.

Similarly, unused imports will fail the compilation process, so tools like goimports
(mentioned in “Consistent Tooling” on page 45) automatically remove unused ones.
Failing on unused variables and imports effectively ensures that code stays clear and
relevant. Note that only internal function variables are checked. Elements like unused
struct fields, methods, or types are not checked.

Unit Testing and Table Tests
Tests are a mandatory part of every application, small or big. In Go, tests are a natural
part of the development process—easy to write, and focused on simplicity and read‐
ability. If we want to talk about efficient code, we need to have solid testing in place,
allowing us to iterate over the program without worrying about regressions. Add a
file with the _test.go suffix to introduce a unit test to your code within a package. You
can write any Go code within that file, which won’t be reachable from the production
code. There are, however, four types of functions you can add that will be invoked for
different testing parts. A certain signature distinguishes these types, notably function
name prefixes: Test, Fuzz, Example, or Benchmark, and specific arguments.

Let’s walk through the unit test type in Example 2-8. To make it more interesting, it’s
a table test. Examples and benchmarks are explained in “Code Documentation as a
First Citizen” on page 55 and “Microbenchmarks” on page 275.

Example 2-8. Example unit table test

package max

import (
   "math"
   "testing"

   "github.com/efficientgo/core/testutil"
)

func TestMax(t *testing.T) { 
   for _, tcase := range []struct { 
      a, b     int
      expected int
   }{
      {a: 0, b: 0, expected: 0},
      {a: -1, b: 0, expected: 0},
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16 This assertion pattern is also typical in other third-party libraries like the popular testify package. However,
I am not a fan of the testify package, because there are too many ways of doing the same thing.

      {a: 1, b: 0, expected: 1},
      {a: 0, b: -1, expected: 0},
      {a: 0, b: 1, expected: 1},
      {a: math.MinInt64, b: math.MaxInt64, expected: math.MaxInt64},
   } {
      t.Run("", func(t *testing.T) { 
         testutil.Equals(t, tcase.expected, max(tcase.a, tcase.b)) 
      })
   }
}

If the function inside the _test.go file is named with the Test word and takes
exactly t *testing.T, it is considered a “unit test.” You can run them through
the go test command.

Usually, we want to test a specific function using multiple test cases (often edge
cases) that define different input and expected output. This is where I would sug‐
gest using table tests. First, define your input and output, then run the same
function in an easy-to-read loop.

Optionally, you can invoke t.Run, which allows you to specify a subtest. Defining
those on dynamic test cases like table tests is a good practice. It will enable you to
navigate to the failing case quickly.

The Go testing.T type gives useful methods like Fail or Fatal to abort and fail
the unit test, or Error to continue running and check other potential errors. In
our example, I propose using a simple helper called testutil.Equals from our
open source core library, giving you a nice diff.16

Write tests often. It might surprise you, but writing unit tests for critical parts up
front will help you implement desired features much faster. This is why I recommend
following some reasonable form of test-driven development, covered in “Efficiency-
Aware Development Flow” on page 102.

This information should give you a good overview of the language goals, strengths,
and features before moving to more advanced features.
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Advanced Language Elements
Let’s now discuss the more advanced features of Go. Similar to the basics mentioned
in the previous section, it’s crucial to overview core language capabilities before dis‐
cussing efficiency improvements.

Code Documentation as a First Citizen
Every project, at some point, needs solid API documentation. For library-type
projects, the programmatic APIs are the main entry point. Robust interfaces with
good descriptions allow developers to hide complexity, bring value, and avoid sur‐
prises. A code interface overview is essential for applications, too, allowing anyone to
understand the codebase quickly. Reusing an application’s Go packages in other
projects is also not uncommon.

Instead of relying on the community to create many potentially fragmented and
incompatible solutions, the Go project developed a tool called godoc from the start. It
behaves similarly to Python’s Docstring and Java’s Javadoc. godoc generates a consis‐
tent documentation HTML website directly from the code and its comments.

The amazing part is that you don’t have many special conventions that would directly
make the code comments less readable from the source code. To use this tool effec‐
tively, you need to remember five things. Let’s go through them using Examples 2-9
and 2-10. The resulting HTML page, when godoc is invoked, can be seen in
Figure 2-1.

Example 2-9. Example snippet of block.go file with godoc compatible documentation

// Package block contains common functionality for interacting with TSDB blocks
// in the context of Thanos.
package block 

import ...

const (
   // MetaFilename is the known JSON filename for meta information.  
   MetaFilename = "meta.json"
)

// Download the downloads directory...  
// BUG(bwplotka): No known bugs, but if there was one, it would be outlined here. 
func Download(ctx context.Context, id ulid.ULID, dst string) error {
// ...

// cleanUp cleans the partially uploaded files. 
func cleanUp(ctx context.Context, id ulid.ULID) error {
// ...
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Rule 1: The optional package-level description must be placed on top of the pack
age entry with no intervening blank line and start with the Package <name> pre‐
fix. If any source files have these entries, godoc will collect them all. If you have
many files, the convention is to have the doc.go file with just the package-level
documentation, package statement, and no other code.

Rule 2: Any public construct should have a full sentence commentary, starting
with the name of the construct (it’s important!), right before its definition.

Rule 3: Known bugs can be mentioned with // BUG(who) statements.

Private constructs can have comments, but they will never be exposed in the doc‐
umentation since they are private. Be consistent and start them with a construct
name, too, for readability.

Example 2-10. Example snippet of block_test.go file with godoc compatible
documentation

package block_test

import ...

func ExampleDownload() { 
    // ...

    // Output: ... 
}

Rule 4: If you write a function named Example<ConstructName> in the test file,
e.g., block_test.go, the godoc will generate an interactive code block with the
desired examples. Note that the package name must have a _test suffix, too, rep‐
resenting a local testing package that tests the package without access to private
fields. Since examples are part of the unit test, they will be actively run and
compiled.

Rule 5: If the example has the last comment starting with // Output:, the string
after it will be asserted with the standard output after the example, allowing the
example to stay reliable.
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Figure 2-1. godoc output of Examples 2-9 and 2-10

I highly recommend sticking to those five simple rules. Not only because you can
manually run godoc and generate your documentation web page, but the additional
benefit is that these rules make your Go code comments structured and consistent.
Everyone knows how to read them and where to find them.

I recommend using complete English sentences in all comments,
even if the will not appear in godoc. It will help you keep your code
commentary self-explanatory and explicit. After all, comments are
for humans to read.
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Furthermore, the Go team maintains a public documentation website that scrapes all
requested public repositories for free. Thus, if your public code repository is compati‐
ble with godoc, it will be rendered correctly, and users can read the autogenerated
documentation for every module or package version.

Backward Compatibility and Portability
Go has a strong take on backward compatibility guarantees. This means that core
APIs, libraries, and language specifications should never break old code created for
Go 1.0. This was proven to be well executed. There is a lot of trust in upgrading Go to
the latest minor or patch versions. Upgrades are, in most cases, smooth and without
significant bugs and surprises.

Regarding efficiency compatibility, it’s hard to discuss any guarantees. There is (usu‐
ally) no guarantee that the function that does two memory allocations now will not
use hundreds in the next version of the Go project and any library. There have been
surprises between versions in efficiency and speed characteristics. The community is
working hard on improving the compilation and language runtime (more in “Go
Runtime” on page 58 and Chapter 4). Since the hardware and operating systems are
also developed, the Go team is experimenting with different optimizations and fea‐
tures to allow everyone to execute more efficiently. Of course, we don’t speak about
major performance regression here, as that is usually noticed and fixed in the release
candidate period. Yet if we want our software to be deliberately fast and efficient, we
need to be more vigilant and aware of the changes Go introduces.

Source code is compiled into binary code that is targeted to each platform. Yet Go
tooling allows cross-platform compilation, so you can build binaries to almost all
architectures and operating systems.

When you execute the Go binary, which was compiled for a differ‐
ent operating system (OS) or architecture, it can return cryptic
error messages. For example, a common error is an Exec format
error when you try running binary for Darwin (macOS) on Linux.
You must recompile the code source for the correct architecture
and OS if you see this.

Regarding portability, we can’t skip mentioning the Go runtime and its
characteristics.

Go Runtime
Many languages decided to solve portability across different hardware and operating
systems by using virtual machines. Typical examples are Java Virtual Machine (JVM)
for Java bytecode compatible languages (e.g., Java or Scala), and Common Language
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17 Since programs, e.g., in Java, compile to Java bytecode, many things happen before the code is translated to
actual machine-understandable code. The complexity of this process is too great to be understood by a mere
mortal, so machine learning “AI” tools were created to auto-tune JVM.

18 A survey in 2020 shows that among the top 10 used programming languages, 2 mandates object-oriented pro‐
gramming (Java, C#), 6 encourage it, and 2 do not implement OOP. I personally almost always favor object-
oriented programming for algorithms that have to hold some context larger than three variables between data
structures or functions.

Runtime (CLR) for .NET code, e.g., C#. Such a virtual machine allows for building
languages without worrying about complex memory management logic (allocation
and releasing), differences between hardware and operating systems, etc. JVM or
CLR interprets the intermediate bytecode and transfers program instructions to the
host. Unfortunately, while making it easier to create a programming language, they
also introduce some overhead and many unknowns.17 To mitigate the overhead, vir‐
tual machines often use complex optimizations like just-in-time (JIT) compilation to
process chunks of specific virtual machine bytecode to machine code on the fly.

Go does not need any “virtual machine.” Our code and used libraries compile fully to
machine code during compilation time. Thanks to standard library support of large
operating systems and hardware, our code, if compiled against particular architec‐
ture, will run there with no issues.

Yet something is running in the background (concurrently) when our program starts.
It’s the Go runtime logic that, among other minor features of Go, is responsible for
memory and concurrency management.

Object-Oriented Programming
Undoubtedly, object-oriented programming (OOP) got enormous traction over the
last decades. It was invented around 1967 by Alan Kay, and it’s still the most popular
paradigm in programming.18 OOP allows us to leverage advanced concepts like
encapsulation, abstraction, polymorphisms, and inheritance. In principle, it allows us
to think about code as some objects with attributes (in Go fields) and behaviors
(methods) telling each other what to do. Most OOP examples talk about high-level
abstractions like an animal that exposes the Walk() method or a car that allows to
Ride(), but in practice, objects are usually less abstract yet still helpful, encapsulated,
and described by a class. There are no classes in Go, but there are struct types equiv‐
alents. Example 2-11 shows how we can write OOP code in Go to compact multiple
block objects into one.

Example 2-11. Example of the OOP in Go with Group that can behave like Block

type Block struct { 
    id         uuid.UUID
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    start, end time.Time
    // ...
}

func (b Block) Duration() time.Duration { 
    return b.end.Sub(b.start)
}

type Group struct {
    Block 

    children []uuid.UUID
}

func (g *Group) Merge(b Block) { 
    if g.end.IsZero() || g.end.Before(b.end) {
        g.end = b.end
    }
    if g.start.IsZero() || g.start.After(b.start) {
        g.start = b.start
    }
    g.children = append(g.children, b.id)
}

func Compact(blocks ...Block) Block {
    sort.Sort(sortable(blocks)) 

    g := &Group{}
    g.id = uuid.New()
    for _, b := range blocks {
        g.Merge(b)
    }
    return g.Block 
}

In Go, there is no separation between structures and classes, like in C++. In Go,
on top of basic types like integer, string, etc., there is a struct type that can
have methods (behaviors) and fields (attributes). We can use structures as a
class equivalent to encapsulate more complex logic under a more straightfor‐
ward interface. For example, the Duration() method on Block tells us the dura‐
tion of the time range covered by the block.

If we add some struct, e.g., Block, into another struct, e.g., Group, without any
name, such a Block struct is considered embedded instead of being a field. 
Embedding allows Go developers to get the most valuable part of inheritance,
borrowing the embedded structure fields and methods. In this case, Group will
have Block’s fields and Duration method. This way, we can reuse a significant
amount of code in our production codebases.
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There are two types of methods you can define in Go: using the “value receiver”
(e.g., as in the Duration() method) or using the “pointer receiver” (with *). The
so-called receiver is the variable after func, which represents the type we are
adding a method to, in our case Group. We will mention this in “Values, Pointers,
and Memory Blocks” on page 176, but the rule regarding which one to use is
straightforward:

• Use the value receiver (no func (g Group) SomeMethod()) if your method
does not modify the Group state. For the value receiver, every time we invoke
it, the g will create a local copy of the Group object. It is equivalent to func
SomeMethod(g Group).

• Use the pointer receiver (e.g., func (g *Group) SomeMethod()) if your
method is meant to modify the local receiver state or if any other method
does that. It is equivalent to func SomeMethod(g *Group). In our example, if
the Group.Merge() method would be a value receiver, we will not persist
g.childen changes or potentially inject g.start and g.end values. Addition‐
ally, for consistency, it’s always recommended to have a type with all pointer
receiver methods if at least one requires a pointer.

To compact multiple blocks together, our algorithm requires a sorted list of
blocks. We can use the standard library sort.Sort, which expects the
sort.Interface interface. The []Block slice does not implement this interface,
so we convert it to our temporary sortable type, explained in Example 2-13.

This is the only missing element for true inheritance. Go does not allow casting
specific types into another type unless it’s an alias or strict single-struct embed‐
ding (shown in Example 2-13). After that, you can only cast the interface into
some type. That’s why we need to specify embedded struct and Block explicitly.
As a result, Go is often considered a language that does not support full
inheritance.

What does Example 2-11 give us? First, the Group type can reuse Block functionality,
and if done correctly, we can use Group as any other Block.

Embedding Multiple Types

You can embed as many unique structures as you want within one
struct.
There is no priority for these—the compilation will fail if the com‐
pilator can’t tell which method to use because two embedded types
have the same SomeMethod() method. In such cases, use the type
name to explicitly tell the compilator what should be used.
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As mentioned in Example 2-11, Go also allows defining interfaces that tell what
methods struct has to implement to match it. Note that there is no need to mark a
specific struct explicitly that implements a particular interface, as in other languages
like Java. It’s enough just to implement the required methods. Let’s see an example of
sorting interface exposed by the standard library in Example 2-12.

Example 2-12. Sorting interface from the standard sort Go library

// A type, typically a collection, that satisfies sort.Interface can be
// sorted by the routines in this package. The methods require that the
// elements of the collection be enumerated by an integer index.
type Interface interface {
    // Len is the number of elements in the collection.
    Len() int
    // Less reports whether the element with
    // index i should sort before the element with index j.
    Less(i, j int) bool
    // Swap swaps the elements with indexes i and j.
    Swap(i, j int)
}

To use our type in the sort.Sort function, it has to implement all sort.Interface
methods. Example 2-13 shows how sortable type does it.

Example 2-13. Example of the type that can be sorted using sort.Slice

type sortable []Block 

func (s sortable) Len() int           { return len(s) }
func (s sortable) Less(i, j int) bool { return s[i].start.Before(s[j].start) } 
func (s sortable) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }

var _ sort.Interface = sortable{} 

We can embed another type (e.g., a slice of Block elements) as the only thing in
our sortable struct. This allows easy (but explicit) casting between []Block and
sortable, as we used in the Compact method in Example 2-11.

We can sort by increasing the start time using the time.Time.Before(...)
method.

We can assert our sortable type implements sort.Interface using this single-
line statement, which fails compilation otherwise. I recommend using such state‐
ments whenever you want to ensure your type stays compatible with a particular
interface in the future!
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To sum up, struct methods, fields, and interfaces are an excellent yet simple way of
writing both procedural composable and object-oriented code. In my experience,
eventually it satisfies both low-level and high-level programming needs during our
software development. While Go does not support all inheritance aspects (type to
type casting), it provides enough to satisfy almost all OOP cases.

Generics
Since version 1.18, Go supports generics, one of the community’s most desired fea‐
tures. Generics, also called parametric polymorphism, allow type-safe implementa‐
tions of the functionalities we want to reuse across different types.

The demand for generics in Go started quite big discussions in the Go team and com‐
munity because of two main problems:

Two ways of doing the same thing
From the beginning, Go already supported type-safe reusable code via interfaces.
You could see that in the preceding OOP example—the sort.Sort can be reusa‐
ble by all types that implement a sort.Interface presented in Example 2-12.
We can sort our custom Block type by implementing those methods in
Example 2-13. Adding generics means we have two ways of doing a thing in
many cases.

However, interfaces can be more troublesome for users of our code and slow at
times due to some runtime overhead.

Overhead
Implementing generics can have many negative consequences for the language.
Depending on the implementation, it can impact different things. For example:

• We can just skip implementing them like in C, which slows programmers.
• We can use monomorphization, which essentially copies the code for each

type that will be used. This impacts compile time and binary size.
• We can use boxing like in Java, which is quite similar to the Go interface

implementation. In this case, we impact execution time or memory usage.

The generic dilemma is this: do you want slow programmers, slow compilers and bloa‐
ted binaries, or slow execution times?

—Russ Cox, “The Generic Dilemma”

After many proposals and debates, the final (extremely detailed!) design was
accepted. Initially, I was very skeptical, but the accepted generic use turned out to be
clear and reasonable. So far, the community also didn’t jump ahead and abuse these
mechanics as was feared. We tend to see generics used very rarely—only when
needed, as it makes the code more complex to maintain.
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For example, we could write a generic sort for all basic types like int, float64, or
even strings, as presented in Example 2-14.

Example 2-14. Example implementation of the generic sort for basic types

// import "golang.org/x/exp/constraints" 

type genericSortableBasic[T constraints.Ordered] []T 

func (s genericSortableBasic[T]) Len() int           { return len(s) }
func (s genericSortableBasic[T]) Less(i, j int) bool { return s[i] < s[j] } 
func (s genericSortableBasic[T]) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }

func genericSortBasic[T constraints.Ordered](slice []T) { 
    sort.Sort(genericSortableBasic[T](slice))
}

func Example() {
    toSort := []int{-20, 1, 10, 20}
   sort.Ints(toSort) 

   toSort2 := []int{-20, 1, 10, 20}
   genericSortBasic[int](toSort2) 
    // ...
}

Thanks to generics (also called type parameters), we can implement a single type
that will implement sort.Interface (see Example 2-13) for all basic types. We
can provide custom constraints that look mostly like interfaces to limit the types
that can be used as a type parameter. Here we use a type that represents Integer
| Float | ~string constraints, so any type that supports comparison operators.
We can put any other interface, like any to match all types. We can also use a
special comparable keyword that will allow us to use the object of T comparable
as a map key.

Any element of s slice is now expected to be of type T with Ordered constraints,
so the compiler will allow us to compare them for Less functionality.

We can now implement a sort function for any basic type that will leverage
sort.Sort implementation.

We don’t need to implement type-specific functions like sort.Ints. We can do
genericSortBasic[<type>]([]<type>) as long as the slice is of the types that
can be ordered!
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19 I prefer functions to methods, as they’re easier to use in most cases.

This is great, but it only works for basic types. Unfortunately, we cannot override
operators like < in Go (yet), so to implement generic sort for more complex types, we
have to do a bit more work. For example, we could design our sort to expect each
type to implement the func <typeA> Compare(<typeA>) int method.19 If we add
this method to the Block in Example 2-11, we can sort it easily, as presented in
Example 2-15.

Example 2-15. Example implementation of the generic sort for certain types of objects

type Comparable[T any] interface { 
    Compare(T) int
}

type genericSortable[T Comparable[T]] []T 

func (s genericSortable[T]) Len() int           { return len(s) }
func (s genericSortable[T]) Less(i, j int) bool { return s[i].Compare(s[j]) > 0 } 
func (s genericSortable[T]) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }

func genericSort[T Comparable[T]](slice []T) {
    sort.Sort(genericSortable[T](slice))
}

func (b Block) Compare(other Block) int { 
    // ...
}

func Example() {
    toSort := []Block{ /* ... */ }
    sort.Sort(sortable(toSort)) 

    toSort2 := []Block{ /* ... */ }
    genericSort[Block](toSort2) 
}

Let’s design our constraint. We expect every type to have a Compare method that
accepts the same type. Because constraints and interfaces can also have type
parameters, we can implement such requirements.

We can now provide a type that implements a sort.Interface interface for such
kinds of objects. Notice the nested T in Comparable[T], as our interface also is
generic!

Now we can implement Compare for our Block type.
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20 The summary was well explained on the PlanetScale blog post.

Thanks to this, we don’t need to implement a sortable type for every custom
type we want to sort. As long as the type has the Compare method, we can use
genericSort!

The accepted design shows advantages in cases where the user interface alone would
be cumbersome. But what about the generics dilemma problem? The design allows
any implementation, so what trade-off was chosen at the end? We won’t go into the
details in this book, but Go uses the dictionaries and stenciling algorithm, which is
between monomorphization and boxing.20

Generic Code Will Be Faster?

The specific implementation of generics in Go (which can change
over time) means that the generic implementation, in theory,
should be faster than interfaces but slower than implementing cer‐
tain functionality for a specific type by hand. In practice, however,
the potential difference is, in most cases, negligible, so use the most
readable and easy-to-maintain option first.
In my experience, the difference might matter in the efficiency-
critical code, but the results do not always follow the theory. For
example, sometimes generic implementation is faster, and some‐
times using interfaces might be more efficient. Conclusion? Always
perform benchmarks (Chapter 8) to be sure!

To sum up, these facts are what I found crucial when teaching others programming
in Go, based on my own experience with the language. Moreover, it will be helpful
when diving deeper into the runtime performance of Go later in this book.

However, if you have never programmed in Go before, it’s worth going through other
materials like the tour of Go before jumping to the subsequent sections and chapters
of this book. Make sure you try writing your own basic Go program, write a unit test,
and use loops, switches, and concurrency mechanisms like channels and routines.
Learn common types and standard library abstraction. As a person coming to a new
language, you need to produce a program returning valid results before ensuring that
it executes quickly and efficiently.

We learned about some basic and advanced characteristics of Go, so it’s time to
unwrap the efficiency aspects of the language. How easy is it to write good enough or
high-performance code in Go?
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21 To name a few public changes, we’ve seen the Salesforce case, AppsFlyer, and Stream.

22 For example, when we look at some benchmarks, we see Go as sometimes faster, sometimes slower than Java. Yet if
we look at CPU loads, every time Go or Java is faster, it’s simply faster because, for example, the implementation
allowed fewer CPU cycles to be wasted on memory access. You can achieve that in any programming language. The
question is, how hard was it to achieve this? We don’t usually measure how much time we spend to optimize code in
each particular language, how easy it is to read or extend such code after optimizations, etc. Only those metrics might
tell us which programming language is “faster.”

Is Go “Fast”?
Recently, many companies have rewritten their products (e.g., from Ruby, Python, and
Java) to Go.21 Two repeatedly stated reasons for moving to Go or starting a new project
in Go were readability and excellent performance. Readability comes from simplicity
and consistency (e.g., single way of error handling as you remember from “Single Way
of Handling Errors” on page 47), and it’s where Go excels, but what about perfor‐
mance? Is Go fast compared to other languages like Python, Java, or C++?

In my opinion, this question is badly formed. Given time and room for complexities, any
language can be as fast as your machine and operating system allow. That’s because, in
the end, the code we write is compiled into machine code that uses the exact CPU
instructions. Also, most languages allow delegating execution to other processes, e.g.,
written in optimized Assembly. Unfortunately, sometimes all we use to decide if a lan‐
guage is “fast” are raw, semi-optimized short program benchmarks that compare execu‐
tion time and memory usage across languages. While it tells us something, it effectively
does not show practical aspects, e.g., how complex the programming for efficiency was.22

Instead, we should look at a programming language in terms of how hard and practi‐
cal it is to write efficient code (not just fast), and how much readability and reliability
such a process sacrifices. I believe the Go language has a superior balance between
those elements while keeping it fast and trivial to write basic, functional code.

One of the reasons for being able to write efficient code more easily is the hermetic
compilation stage, the relatively small amount of unknowns in the Go runtime (see
“Go Runtime” on page 58), the easy-to-use concurrency framework, and the maturity
of the debugging, benchmarking, and profiling tools (discussed in Chapters 8 and 9).
Those Go characteristics did not appear from thin air. Not many know, but Go was
designed on the shoulders of giants: C, Pascal, and CSP.

In 1960, language experts from America and Europe teamed up to create Algol 60. In
1970, the Algol tree split into the C and the Pascal branch. ~40 years later, the two
branches join again in Go.

—Robert Griesemer, “The Evolution of Go”

As we can see in Figure 2-2, many of the names mentioned in Chapter 1 are grandfa‐
thers of Go. The great concurrency language CSP created by Sir Hoare, Pascal decla‐
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rations and packages created by Wirth, and C basic syntax all contributed to how Go
looks today.

Figure 2-2. Go genealogy

But not everything can be perfect. In terms of efficiency, Go has its own Achilles’
heel. As you will learn in “Go Memory Management” on page 172, memory usage can
sometimes be hard to control. Allocations in our program can be surprising (espe‐
cially for new users), and the garbage collections automatic memory release process
has some overhead and eventual behavior. Especially for data-intensive applications,
it takes effort to ensure memory or CPU efficiency, similar to machines with strictly
limited RAM capacities (e.g., IoT).

Yet the decision to automate this process is highly beneficial, allowing the program‐
mer to not worry about memory cleanup, which has proven to be even worse and
sometimes catastrophic (e.g., deallocating memory twice). An excellent example of
alternative mechanisms that other languages use is Rust. It implements a unique
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memory ownership model that replaces automatic global garbage collection.
Unfortunately, while more efficient, it turns out that writing code in Rust is much
more complicated than in Go. That’s why we see higher adoption of Go. This reflects
the Go team’s ease-of-use trade-off in this element.

Fortunately, there are ways to mitigate the negative performance consequences of the
garbage collection mechanism in Go and keep our software lean and efficient. We
will go through those in the following chapters.

Summary
In my opinion, Go is an incredibly elegant and consistent language. Moreover, it
offers many modern and innovative features that make programming more effective
and reliable. Plus, the code is readable and maintainable by design.

This is a critical foundation for the efficiency improvements we will discuss later in
this book. Like any other feature, optimizations always add complexity, so it’s easier
to modify simple code than to complicate already complex code. Simplicity, safety,
and readability are paramount, even for efficient code. Make sure you know how to
achieve that without thinking about efficiency first!

Many resources go into more details for elements I could spend only a subchapter on.
If you are interested to learn more, there is nothing better than practice. If you need
more experience with Go before we jump into optimizations, here is a short list of
excellent resources:

• “Effective Go”
• “How to Write Go Code”
• “A Tour of Go”
• “Practical Go Lessons” by Maximilien Andile, available for free in the digital

version
• Contributing to any open source project in Go, for example, through the CNCF

mentoring initiatives we offer four or more times a year

The true power of the Go optimizations, benchmarking, and efficiency practices comes
when used in practice, in everyday programming. Therefore, I want to empower you to
marry efficiency with other good techniques around reliability or abstractions for prac‐
tical use. While fully tailored logic sometimes has to be built for a critical path (as you
will see in Chapter 10), the basic, often good enough, efficiency comes from under‐
standing simple rules and language capabilities. That’s why I focused on giving you a
better overview of Go and its features in this chapter. With this knowledge, we can now
move to Chapter 3, where we will learn how to start the journey to improve the effi‐
ciency and overall performance of our program’s execution when we need to.
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CHAPTER 3

Conquering Efficiency

It’s action time! In Chapter 1, we learned that software efficiency matters. In Chap‐
ter 2, we studied the Go programming language—its basics and advanced features.
Next, we discussed Go’s capabilities of being easy to read and write. Finally, we men‐
tioned that it could also be an effective language for writing efficient code.

Undoubtedly, achieving better efficiency in your program does not come without
work. In some cases, the functionality you try to improve is already well optimized,
so further optimization without system redesign might take a lot of time and only
make a marginal difference. However, there might be other cases where the current
implementation is heavily inefficient. Removing instances of wasted work can
improve the program’s efficiency in only a few hours of developer time. The true skill
here as an engineer is to know, ideally after a short amount of research, which situa‐
tion you are currently in:

• Do you need to improve anything on the performance side?
• If yes, is there a potential for the removal of wasted cycles?
• How much work is needed to reduce the latency of function X?
• Are there any suspicious overallocations?
• Should you stop overusing network bandwidth and sacrifice memory space

instead?

This chapter will teach you the tools and methodologies to help you answer these
questions effectively.

If you are struggling with these skills, don’t worry! It’s normal. The efficiency topic is
not trivial. Despite the demand, this space is still not mastered by many, and even
major software players sometimes make poor decisions. It’s surprising how often
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what looks like high-quality software is shipped with fairly apparent inefficiencies.
For instance, at the beginning of 2021, one user optimized the loading time of the
popular game Grand Theft Auto Online from six minutes to two minutes without
access to the source code! As mentioned in Chapter 1, this game cost a staggering ~
$140 million and a few years to make. Yet, it had an obvious efficiency bottleneck
with a naive JSON parsing algorithm and deduplication logic that took most of the
game loading time and worsened the game experience. This person’s work is out‐
standing, but they used the same techniques you are about to learn. The only differ‐
ence is that our job might be a bit easier—hopefully, you don’t need to reverse
engineer the binary written in C++ code on the way!

In the preceding example, the company behind the game missed the apparent waste
of computation impacting the game’s loading performance. It’s unlikely that the
company didn’t have the resources to get an expert to optimize this part. Instead, it’s
a decision based on specific trade-offs, where the optimization wasn’t worth the
investment since there might have been higher-priority development tasks. In the
end, one would say that an inefficiency like this didn’t stop the success of the game. It
did the job, yes, but for example, my friends and I were never fans of the game
because of the loading time. I would argue that without this silly “waste,” success
might have been even bigger.

Laziness or Deliberate Efficiency Descoping?

There are other amusing examples of situations where a certain
aspect of software efficiency could be descoped given certain cir‐
cumstances. For instance, there is the amusing story about missile
software developers who decided to accept certain memory leaks
since the missile would be destroyed at the end of the application
run. Similarly, we hear the story about “deliberate” memory leaks
in low-latency trading software that is expected to run only for very
short durations.

You could say that the examples where the efficiency work was avoided and nothing
tragically bad happened were pragmatic approaches. In the end, extra knowledge and
work needed to fix leaks or slowdowns were avoided. Potentially yes, but what if
these decisions were not data driven? We don’t know, but these decisions might have
been made out of laziness and ignorance without any valid data points that the fix
would indeed take too much effort. What if developers in each example didn’t fully
understand the small effort needed? What if they didn’t know how to optimize the
problematic parts of the software? Would they make better decisions otherwise? Take
less risk? I would argue yes.

In this chapter, I will introduce the topic of optimizations, starting with explaining
the definition and initial approach in “Beyond Waste, Optimization Is a Zero-Sum
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Game”. In the next section, “Optimization Challenges” on page 79, we will summarize
the challenges we have to overcome while attempting to improve the efficiency of our
software.

In “Understand Your Goals” on page 80, we will try to tame our software’s tendency
and temptation to maximize optimization effort by setting clear efficiency goals. We
need only to be fast or efficient “enough.” This is why setting the correct performance
requirements from the start is so important. Next, in “Resource-Aware Efficiency
Requirements” on page 86, I will propose a template and pragmatic process anyone
can follow. Finally, those efficiency requirements will be useful in “Got an Efficiency
Problem? Keep Calm!” on page 94, where I will teach you a professional flow for han‐
dling performance issues you or someone else has reported. You will learn that the
optimization process could be your last resort.

In “Optimization Design Levels” on page 98, I will explain how to divide and isolate
your optimization effort for easier conquering. Finally, in “Efficiency-Aware Devel‐
opment Flow” on page 102, we will combine all the pieces into a unified optimization
process I always use and want to recommend to you: reliable flow, which applies to
any software or design level.

There is a lot of learning ahead of us, so let’s start understanding what optimization
means.

Beyond Waste, Optimization Is a Zero-Sum Game
It is not a secret that one of many weapons in our arsenal to overcome efficiency
issues is an effort called “optimization.” But what does optimization mean, exactly?
What’s the best way to think about it and master it?

Optimization is not exclusively reserved for software efficiency topics. We also tend
to optimize many things in our life, sometimes unconsciously. For example, if we
cook a lot, we probably have salt in a well-accessible place. If our goal is to gain
weight, we eat more calories. If we travel in the early morning, we pack and prepare
the day before. If we commute, we tend to use that time by listening to audiobooks. If
our commute to the office is painful, we consider moving closer to a better transpor‐
tation system. All of these are optimization techniques that are meant to improve our
life toward a specific goal. Sometimes we need a significant change. On the other
hand, minor incremental improvements are often enough as they are magnified
through repetition for a more substantial impact.

In engineering, the word “optimization” has its roots in mathematics, which means
finding the best solution from all possible solutions for a problem constrained by a
set of rules. Typically in computer science, however, we use the word “optimization”
to describe an act of improving the system or program execution for a specific aspect.
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1 There might be exceptions. There might be domains where it’s acceptable to approximate results. Sometimes
we can (and should) also drop nice-to-have features if they block the critical efficiency characteristics we
want.

For instance, we can optimize our program to load a file faster or decrease peak
memory utilization while serving a request on a web server.

We Can Optimize for Anything

Generally, optimization does not necessarily need to improve our
program’s efficiency characteristics if that is not our goal. For
example, if we aim to improve security, maintainability, or code
size, we can optimize for that too. Yet, in this book, when we talk
about optimizations, they will be on an efficiency background
(improving resource consumption or speed).

The goal of efficiency optimization should be to modify code (generally without
changing its functionality1) so that its execution is either overall more efficient or at
least more efficient in the categories we care about (and worse in others).

The important part is that, from a high-level view, we can perform the optimization
by doing either of two things (or both):

• We can eliminate “wasted” resource consumption.
• We can trade one resource consumption for another or deliberately sacrifice

other software qualities (so-called trade-off).

Let me explain the difference between these two by describing the first type of
change—reducing so-called waste.

Reasonable Optimizations
Our program consists of a code—a set of instructions that operates on some data and
uses various resources on our machines (CPU, memory, disk, power, etc.). We write
this code so our program can perform the requested functionality. But everything
involved in the process is rarely perfect (or integrated perfectly): our programmed
code, compiler, operating systems, and even hardware. As a result, we sometimes
introduce “waste.” Wasted resource consumption represents a relatively unnecessary
operation in our programs that takes precious time, memory, or CPU time, etc. Such
waste might have been introduced as a deliberate simplification, by accident, tech
debt, oversight, or just unawareness of better approaches. For example:
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2 Situations where resources are not cleaned after each periodic functionality due to leftover concurrent routine
are often referred to as memory leaks.

• We might have accidentally left some debugging code that introduces massive
latency in the heavily used function (e.g., fmt.Println statements).

• We performed an unnecessary, expensive check because the caller has already
verified the input.

• We forgot to stop certain goroutines (a concurrency paradigm we will explain in
detail in “Go Runtime Scheduler” on page 138), which are no longer required, yet
still running, which wastes our memory and CPU time.2

• We used a nonoptimized function from a third-party library, when an optimized
one exists in a different, well-maintained library that does the same thing faster.

• We saved the same piece of data a couple of times on disk, while it could be just
reused and stored once.

• Our algorithm might have performed checks too many times when it could have
done less for free (e.g., naive search versus binary search on sorted data).

The operation performed by our program or consumption of specific resources is a
“waste” if, by eliminating it, we don’t sacrifice anything else. And “anything” here
means anything we particularly care for, such as extra CPU time, other resource con‐
sumption, or nonefficiency-related qualities like readability, flexibility, or portability.
Such elimination makes our software, overall, more efficient. Looking closer, you
might be surprised at how much waste every program has. It just waits for us to
notice it and take it back!

Our program’s optimization by reducing “waste” is a simple yet effective technique.
In this book, we will call it a reasonable optimization, and I suggest doing it every
time you notice such waste, even if you don’t have time to benchmark it afterward.
Yes. You heard me right. It should be part of coding hygiene. Note that to treat it as
“reasonable” optimization, it has to be obvious. As the developer, you need to be sure
that:

• Such optimization eliminates some additional work of the program.
• It does not sacrifice any other meaningful software quality or functionality, espe‐

cially readability.

Look for the things that might be “obviously” unnecessary. Eliminating such unnec‐
essary work is easily obtainable and does no harm (otherwise, it’s not waste).
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Be Mindful of Readability

The first thing that usually gets impacted by any code modification
is readability. If reducing some obvious waste meaningfully
reduces readability, or you need to spend a few hours experiment‐
ing on readable abstractions for it, it is not a reasonable
optimization.
That’s fine. We can deal with that later, and we will talk about it in
“Deliberate Optimizations” on page 77. If it impacts readability, we
need data to prove it’s worth it.

Cutting “waste” is also an effective mental model. Like humans who are rewarded for
being intelligently lazy, we also want to maximize the value our program brings with
minimum runtime work.

One would say that reasonable optimization is an example of the anti-pattern often
called “premature optimization” that many have been warned against. And I cannot
agree more that reducing obvious waste like this is a premature optimization since we
don’t assess and measure its impact. But I would argue that if we are sure that such
premature optimization deals no harm, other than a little extra work, let’s acknowl‐
edge that it is premature optimization but is reasonable, still do it, and move on.

If we go back to our commute to work example, if we notice we have a few stones in
our shoes, of course we pick them out so we can walk without pain. We don’t need to
assess, measure, or compare if removing the stones improved our commute time or
not. Getting rid of stones will help us somehow, and it’s not harmful to do so (we
don’t need to take stones with us every time we go)! :)

If you are dealing with something which is the noise, you don’t deal with that right
away because the payoff of investing time and energy is very small. But if you are walk‐
ing through your codebase and you notice an opportunity for notable improvement
(say 10% or 12%), of course, you reach down and pick it up.

—Scott Meyers, “Things That Matter”

Initially, when you are new to programming or a particular language, you might not
know which operations are unnecessary waste or if eliminating the potential waste
will harm your program. That’s fine. The “obviousness” comes from practice, so
don’t guess here. If you are guessing, it means the optimization is not obvious. You
will learn what’s reasonable with experience, and we will practice this together in
Chapters 10 and 11.

Reasonable optimizations yield consistent performance improvements and often
simplify or make our code more readable. However, we might want to take a more
deliberate approach for bigger efficiency impacts, where the result might be less obvi‐
ous, as explained in the next section.
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3 Zero-sum game comes from game and economic theory. It describes a situation where one player can only
win X if other players in total lost exactly X.

4 I got inspired for dividing optimizations on reasonable and deliberate by the community-driven go-perfbook
led by Damian Gryski. In his book, he also mentioned the “dangerous” optimization category. I don’t see a
value in splitting classes further since there is a fuzzy borderline between deliberate and dangerous that
depends on the situation and personal taste.

Deliberate Optimizations
Beyond waste, we have operations that are critically important for our functionality.
In this case, we can say we have a zero-sum game.3 This means we have a situation
where we cannot eliminate a certain operation that uses resource A (e.g., memory)
without using more resource B (e.g., CPU time) or other quality (e.g., readability,
portability, or correctness).

The optimizations that are not obvious or require us to make a certain trade-off can
be called deliberate4 since we have to spend a little bit more time on them. We can
understand the trade-off, measure or assess it, and decide to keep it or throw it away.

Deliberate optimizations are not worse in any way. On the contrary, they often signif‐
icantly impact the latency or resource consumption you want to cut. For example, if
our request is too slow on a web server, we can consider optimizing latency by intro‐
ducing a cache. Caching will allow us to save the result from expensive computation
for requests asking for the same data. In addition, it saves CPU time and the need to
introduce complex parallelization logic. Yet we will sacrifice memory or disk usage
during the server’s lifetime and potentially introduce some code complexity. As a
result, deliberate optimization might not improve the program’s overall efficiency,
but it can improve the efficiency of a particular resource usage that we care about at
the moment. Depending on the situation, the sacrifice might be worth it.

However, the implication of having certain sacrifices means we have to perform such
optimization in a separate development phase isolated from the functionality one, as
explained in “Efficiency-Aware Development Flow” on page 102. The reason for this is
simple. First, we have to be sure that we understand what we sacrifice and whether
the impact is not too big. Unfortunately, humans are quite bad at estimating such
impacts.

For example, a common way to reduce network bandwidth and disk usage is to com‐
press the data before sending it or storing it. However, simultaneously it requires us
to decompress (decode) when receiving or reading the data. The potential balance of
the resources used by our software before and after introducing compression can be
seen in Figure 3-1.
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Figure 3-1. Potential impact on latency and resource usage if we compress the data
before sending it over the network and saving it on disk

The exact numbers will vary, but the CPU resource will potentially be used more
after compression addition. Instead of a simple data write operation, we must go
through all bytes and compress them. It takes some time, even for the best lossless
compression algorithms (e.g., snappy or gzip). Still, a smaller amount of messages to
send over the network and disk writes might improve the total latency of such an
operation. All of the compression algorithms require some extra buffers, so addi‐
tional memory usage is also expected.

To sum up, there are strong implications for categorizing optimization reasonably
and deliberately. If we see a potential efficiency improvement, we must be aware of its
unintended consequences. There might be cases where it’s reasonable and easy to
obtain optimization. For example, we might have peeled some unnecessary opera‐
tions from our program for free. But more often than not, making our software effi‐
cient in every aspect is impossible, or we impact other software qualities. This is when
we get into a zero-sum game, and we must take a deliberate look at these problems.
In this book and practice, you will learn what situations you are in and how to predict
these consequences.

Before we bring the two types of optimizations into our development flow, let’s dis‐
cuss the efficiency optimization challenges we must be aware of. We will go through
the most important ones in the next section.
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Optimization Challenges
I wouldn’t need to write this book if optimizing our software was easy. It’s not. The
process can be time-consuming and prone to mistakes. This is why many developers
tend to ignore this topic or learn it later in their careers. But don’t feel demotivated!
Everyone can be an effective and pragmatic efficiency-aware developer after some
practice. Knowing about the optimization obstacles should give us a good indication
of what we should focus on to improve. Let’s go through some fundamental
problems:

Programmers are bad at estimating what part is responsible for the performance
problem.

We are really bad at guessing which part of the program consumes the most
resources and how much. However, it’s essential to find these problems because,
generally, the Pareto Principle applies. It states that 80% of the time or resources
consumed by our program come only from 20% of the operations it performs.
Since any optimization is time-consuming, we want to focus on that critical 20%
of operations, not some noise. Fortunately, there are tools and methods for esti‐
mating this, which we will touch on in Chapter 9.

Programmers are notoriously bad at estimating exact resource consumption.
Similarly, we often make wrong assumptions on whether certain optimizations
should help. Our guesses get better with experience (and hopefully after reading
this book). Yet, it’s best to never trust your judgment, and always measure and
verify all numbers after deliberate optimizations (discussed in depth in Chap‐
ter 7). There are just too many layers in software executions with many
unknowns and variables.

Maintaining efficiency over time is hard.
The complex software execution layers mentioned previously are constantly
changing (new versions of operating systems, hardware, firmware, etc.), not to
mention the program’s evolution and future developers who might touch your
code. We might have spent weeks optimizing one part, but it could be irrelevant
if we don’t guard against regressions. There are ways to automate or at least
structure the benchmarking and verification process for the efficiency of our pro‐
gram, because things change every day, as discussed in Chapter 6.

Reliable verification of current performance is very difficult.
As we will learn in “Efficiency-Aware Development Flow” on page 102, the
solution to the aforementioned challenges is to benchmark, measure, and vali‐
date the efficiency. Unfortunately, these are difficult to perform and prone to
errors. There are many reasons: inability to simulate the production environ‐
ment closely enough, external factors like noisy neighbors, lack of warm-up
phase, wrong data sets, or microbenchmark accidental compiler optimizations.
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This is why we will spend some time on this topic in “Reliability of Experiments”
on page 256.

Optimizing can easily impact other software qualities.
Solid software is great at many qualities: functionality, compatibility, usability,
reliability, security, maintainability, portability, and efficiency. Each of these
characteristics is nontrivial to get right, so they cause some cost to the develop‐
ment process. The importance of each can differ depending on your use cases.
However, there are safe minimums of each software quality to be maintained for
your program to be useful. This might be challenging when you add more fea‐
tures and optimization.

Specifically, in Go we don’t have strict control over memory management.
As we learned in “Go Runtime” on page 58, Go is garbage-collected language.
While it’s lifesaving for the simplicity of our code, memory safety, and developer
velocity, it has downsides that can be seen when we want to be memory efficient.
There are ways to improve our Go code to use less memory, but things can get
tricky since the memory release model is eventual. Usually, the solution is simply
to allocate less. We will go through memory management in “Do We Have a
Memory Problem?” on page 152.

When is our program efficient “enough”?
In the end, all optimizations are never fully free. They require a bigger or smaller
effort from the developer. Both reasonable and deliberate optimizations require
prior knowledge and time spent on implementation, experimentations, testing,
and benchmarking. Given that, we need to find justification for this effort.
Otherwise, we can spend this time somewhere else. Should we optimize away this
waste? Should we trade the consumption of resource X for resource Y? Is such
conversion useful for us? The answer might be “no.” And if “yes,” how much
efficiency improvement is enough?

Regarding the last point, this is why it’s extremely important to know your goals.
What things, resources, and qualities do you (or your boss) care about during the
development? It can vary depending on what you build. In the next section, I
will propose a pragmatic way of stating performance requirements for a piece of
software.

Understand Your Goals
Before you proceed toward such lofty goals [program efficiency optimization], you
should examine your reasons for doing so. Optimization is one of many desirable goals
in software engineering and is often antagonistic to other important goals such as sta‐
bility, maintainability, and portability. At its most cursory level (efficient implementa‐
tion, clean non-redundant interfaces), optimization is beneficial and should always be
applied. But at its most intrusive (inline assembly, pre-compiled/self-modified code,
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5 No one said challenging ourselves is bad in certain situations. If you have time, playing with initiatives like
Advent of Code is a great way to learn or even compete! This is, however, different than the situation where
we are paid to develop functional software effectively.

6 I experienced this a lot while maintaining the Prometheus project, where we were constantly facing situations
where users tried to ingest unique events into Prometheus. The problem is that we designed Prometheus as
an efficient metric monitoring solution with a bespoke time-series database that assumed storing aggregated
samples over time. If the ingested series were labeled with unique values, Prometheus slowly but surely began
to use many resources (we call it a high-cardinality situation).

loop unrolling, bit-fielding, superscalar and vectorizing) it can be an unending source
of time-consuming implementation and bug hunting. Be cautious and wary of the cost
of optimizing your code.

—Paul Hsieh, “Programming Optimization”

By our definition, efficiency optimization improves our program resource consump‐
tion or latency. It’s highly addictive to challenge ourselves and explore how fast our
program can be.5 First, however, we need to understand that optimization aims to not
make our program perfectly efficient or “optimal” (as that might be simply impossi‐
ble or feasible) but rather suboptimal enough. But what does “enough” mean for us?
When do you stop? What if there isn’t a need to even start optimizing?

One answer is to optimize when stakeholders (or users) ask for better efficiency in
the software we develop until they are happy. But unfortunately, this is usually very
difficult for a few reasons:

XY problem.
Stakeholders often ask for better efficiency, whereas a better solution is else‐
where. For example, many people complain about the heavy memory usage of
the metric system if they try to monitor unique events. Instead, the potential sol‐
ution might be to use logging or tracing systems for such data instead of making
the metric system faster.6 As a result, we can’t always trust the initial user
requests, especially around efficiency.

Efficiency is not a zero-sum game.
Ideally, we need to see the big picture of all efficiency goals. As we learned in
“Deliberate Optimizations” on page 77, one optimization for latency might cause
more memory usage or impact other resources, so we can’t react to every user
complaint about efficiency without thinking. Of course, it helps when software is
generally lean and efficient, but most likely we can’t produce a single software
that satisfies both the user who needs a latency-sensitive real-time event-
capturing solution and the user who needs ultra-low memory used during such
an operation.
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7 Just imagine, with all the resources in the world, we could try optimizing the software execution to the limits
of physics. And once we are there, we could spend decades on research that pushes boundaries with things
beyond the current physics we know. But, practically speaking, we might never find the “true” limit in our
lifetime.

Stakeholders might not understand the optimization cost.
Everything costs, especially optimization effort and maintaining highly opti‐
mized code. Technically speaking, only physics laws limit us on how optimized
software can be.7 At some point, however, the benefit we gain from optimization
versus the cost of finding and developing such optimization is impractical. Let’s
expand on the last point.

Figure 3-2 shows a typical correlation between the efficiency of the software and dif‐
ferent costs.

Figure 3-2. Beyond the “sweet spot,” the cost of gaining higher efficiency might be
extremely high

Figure 3-2 explains why at some “sweet spot” point, it might not be feasible to invest
more time and resources in our software efficiency. Beyond some point, the cost of
optimizing and developing optimized code can quickly surpass the benefits we get
from leaner software, like computational cost and opportunities. We might need to
spend exponentially more of the expensive developer time, and need to introduce
clever, nonportable tricks, dedicated machine code, dedicated operating systems, or
even specialized hardware.

In many cases, optimizations beyond the sweet spot aren’t worth it, and it might be
better to design a different system or use other flows to avoid such work. Unfortu‐
nately, there is also no single answer to where the sweet spot is. Typically, the longer
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the lifetime planned for the software, the larger its deployment is, and the more
investment is worth putting into it. On the other hand, if you plan to use your pro‐
gram only a few short times, your sweet spot might be at the beginning of this dia‐
gram, with very poor efficiency.

The problem is that users and stakeholders will not be aware of this. While ideally,
product owners help us find that out, it’s often the developer’s role to advise the level
of those different costs, using tools we will learn in Chapters 6 and 7.

However, whatever numbers we agree on, the best idea to solve the “when is enough”
problem and have clear efficiency requirements is to write them down. In the next
section, I will explain why. In “Resource-Aware Efficiency Requirements” on page 86,
I will introduce the lightweight formula for them. Then in “Acquiring and Assessing
Efficiency Goals” on page 89, we will discuss how to acquire and assess those
efficiency requirements.

Efficiency Requirements Should Be Formalized
As you probably already know, every software development starts with the functional
requirements gathering stage (FR stage). An architect, product manager, or yourself
has to go through potential stakeholders, interview them, gather use cases and, ide‐
ally, write them down in some functional requirements document. The development
team and stakeholders then review and negotiate functionality details in this docu‐
ment. The FR document describes what input your program should accept, and what
behavior and output a user expects. It also mentions prerequisites, like what operat‐
ing systems the application is meant to be running on. Ideally, you get formal appro‐
val on the FR document, and it becomes your “contract” between both parties.
Having this is extremely important, especially when you are compensated for build‐
ing the software:

• FR tells developers what they should focus on. It tells you what inputs should be
valid and what things a user can configure. It dictates what you should focus on.
Are you spending your time on something stakeholders paid for?

• It’s easier to integrate with software with a clear FR. For example, stakeholders
might want to design or order further system pieces that will be compatible with
your software. They can start doing this before your software is even finished!

• FR enforces clear communication. Ideally, the FR is written and formal. This is
helpful, as people tend to forget things, and it’s easy to miscommunicate. That’s
why you write it all down and ask stakeholders for review. Maybe you misheard
something?

You do formal functional requirements for bigger systems and features. For a smaller
piece of software, you tend to write them up for some issue in your backlog, e.g.,
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8 I was never explicitly asked to create a nonfunctional specification, and the same with people around me.

GitHub or GitLab issues, and then document them. Even for tiny scripts or little pro‐
grams, set some goals and prerequisites—maybe a specific environment (e.g., Python
version) and some dependencies (GPU on the machine). When you want others to
use it effectively, you have to mention your software’s functional requirements and
goals.

Defining and agreeing on functional requirements is well adopted in the software
industry. Even if a bit bureaucratic, developers tend to like those specifications
because it makes their life easier—requirements are then more stable and specific.

Probably you know where I am going with this. Surprisingly, we often neglect to
define similar requirements focused on the more nonfunctional aspects of the soft‐
ware we are expected to build, for example, describing a required efficiency and
speed of the desired functionality.8

Such efficiency requirements are typically part of the nonfunctional requirement
(NFR) documentation or specification. Its gathering process ideally should be similar
to the FR process, but for all other qualities requested, software should have: portabil‐
ity, maintainability, extensibility, accessibility, operability, fault tolerance and reliabil‐
ity, compliance, documentation, execution efficiency, and so on. The list is long.

The NFR name can be in some way misleading since many quali‐
ties, including efficiency, massively impact our software functional‐
ity. As we learned in Chapter 1, efficiency and speed are critical for
user experience.

In reality, NFRs are not very popular to use during software development, based on
my experience and research. I found multiple reasons:

• Conventional NFR specification is considered bureaucratic and full of boiler‐
plate. Especially if the mentioned qualities are not quantifiable and not specific,
NFR for every software will look obvious and more or less similar. Of course, all
software should be readable, maintainable, as fast as possible using minimum
resources, and usable. This is not helpful.

• There are no easy-to-use, open, and accessible standards for this process. The
most popular ISO/IEC 25010:2011 standard costs around $200 to read. It has a
staggering 34 pages, and hasn’t been changed since the last revision in 2017.

• NFRs are usually too complex to be applicable in practice. For example, the
ISO/IEC 25010 standard previously mentioned specifies 13 product characteris‐
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tics with 42 subcharacteristics in total. It is hard to understand and takes too
much time to gather and walk through.

• As we will learn in “Optimization Design Levels” on page 98, our software’s speed
and execution efficiency depend on more factors than our code. The typical
developer usually can impact the efficiency by optimizing algorithms, code, and
compiler. It’s then up to the operator or admin to install that software, fit it into a
bigger system, configure it, and provide the operating system and hardware for
that workload. When developers are not in the domain of running their software
on “production,” it’s hard for them to talk about runtime efficiency.

The SRE Domain

Site Reliability Engineering (SRE) introduced by Google is a
role focused on marrying these two domains: software devel‐
opment and operators/administrators. Such engineers have
experience running and building their software on a large
scale. With more hands-on experience, it’s easier to talk about
efficiency requirements.

• Last but not least, we are humans and full of emotions. Because it’s hard to esti‐
mate the efficiency of our software, especially in advance, it’s not uncommon to
feel humiliated when setting efficiency or speed goals. This is why we sometimes
unconsciously refrain from agreeing to quantifiable performance goals. It can be
uncomfortable, and that’s normal.

OK, scratch that, we aren’t going there. We need something more pragmatic and eas‐
ier to work with. Something that will state our rough goals for efficiency and speed of
the requested software and will be a starting point for some contracts between con‐
sumers and the development team. Having such efficiency requirements on top of
functional ones up front is enormously helpful because:

We know exactly how fast or resource efficient our software has to be.
For instance, let’s say we agree that a certain operation should use 1 GB of mem‐
ory, 2 CPU seconds, and take 2 minutes at maximum. If our tests show that it
takes 2 GB of memory and 1 CPU second for 1 minute, then there is no point in
optimizing latency.

We know if we have room for a trade-off or not.
In the preceding example, we can precalculate or compress things to improve
memory efficiency. We still have 1 CPU second to spare, and we can be slower
for 1 minute.
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9 Funnily enough, with enough program users, even with a formal performance and reliability contract, all
your system’s observable behaviors will depend on somebody. This is known as Hyrum’s Law.

Without official requirements, users will implicitly assume some efficiency expectations.
For example, maybe our program was accidentally very fast for a certain
input. Users can assume this is by design, and they will depend on the fact in the
future, or for other parts of the systems. This can lead to poor user experience
and surprises.9

It’s easier to use your software in a bigger system.
More often than not, your software will be a dependency on another piece of
software and form a bigger system. Even a basic efficiency requirements docu‐
ment can tell system architects what to expect from the component. It can help
enormously with further system performance assessments and capacity planning
tasks.

It’s easier to provide operational support.
When users do not know what performance to expect from your software, you
will have difficulty supporting it over time. There will be many back-and-forths
with the user on what is acceptable efficiency and what’s not. Instead, with clear
efficiency requirements, it is easier to tell if your software was underutilized or
not, and as a result, the issue might be on the user side.

Let’s summarize our situation. We know efficiency requirements can be enormously
useful. On the other hand, we also know they can be tedious and full of boilerplate.
So let’s explore some options and see if we can find some balance between the
requirement gathering effort and the value it brings.

Resource-Aware Efficiency Requirements
No one has defined a good standard process for creating efficiency requirements, so
let’s try to define one! Of course, we want it to be as lightweight a process as possible,
but let’s start with the ideal situation. What is the perfect set of information someone
could put into some Resource-Aware Efficiency Requirements (RAER) document?
Something that will be more specific and actionable than “I want this program to run
adequately snappy.”

In Example 3-1, you can see an example of a data-driven, minimal RAER for a single
operation in some software.

86 | Chapter 3: Conquering Efficiency

https://oreil.ly/UcrQo
https://oreil.ly/DCzpu


Example 3-1. The example RAER entry

Program: "The Ruler"
Operation: "Fetching alerting rules for one tenant from the storage using HTTP."
Dataset: "100 tenants having 1000 alerting rules each."

Maximum Latency: "2s  for 90th percentile"
CPU Cores Limit: "2"
Memory Limit: "500 MB"
Disk Space Limit: "1 GB"
...

Ideally, this RAER is a set of records with efficiency requirements for certain opera‐
tions. In principle, a single record should have information like:

• The operation, API, method, or function it relates to.
• The size and shape dataset we operate on, e.g., input or data stored (if any).
• Maximum latency of the operation.
• The resource consumption budget for this operation on that dataset, e.g., mem‐

ory, disk, network bandwidth, etc.

Now, there is bad news and good news. The bad news is that, strictly speaking, such
records are unrealistic to gather for all small operations. This is because:

• There are potentially hundreds of different operations that run during the soft‐
ware execution.

• There is an almost infinite number of dataset shapes and sizes (e.g., imagine an
SQL query being an input, and stored SQL data being a dataset: we have a near-
infinite amount of option permutations).

• Modern hardware with an operating system has thousands of elements that can
be “consumed” when we execute our software. Overall, CPU seconds and mem‐
ory are common, but what about the space and bandwidth of individual CPU
caches, memory bus bandwidth, number of TCP sockets taken, file descriptors
used, and thousands of other elements? Do we have to specify all that can be
used?

The good news is that we don’t need to provide all the small details. This is similar to
how we deal with functional requirements. Do we focus on all possible user stories
and details? No, just the most important ones. Do we define all possible permutations
of valid inputs and expected outputs? No, we only define a couple of basic character‐
istics around boundaries (e.g., information has to be a positive integer). Let’s look at
how we can simplify the level of details of the RAER entry:
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• Focus on the most utilized and expensive operations our software does first.
These will impact the software resource usage the most. We will discuss bench‐
marking and profiling that will help you with this later in this book.

• We don’t need to outline requirements for all tiny resources that might be con‐
sumed. Start with those that have the highest impact and matter the most. Usu‐
ally, it means specific requirements toward CPU time, memory space, and
storage (e.g., disk space). From there, we can iterate and add other resources that
will matter in the future. Maybe our software needs some unique, expensive, and
hard-to-find resources that are worth mentioning (e.g., GPU). Maybe a certain
consumption poses a limit to overall scalability, e.g., we could fit more processes
on a single machine if our operation would use fewer TCP sockets or disk IOPS.
Add them only if they matter.

• Similar to what we do in unit tests when validating functionality, we can focus
only on important categories of inputs and datasets. If we pick edge cases, we
have a high chance of providing resource requirements for the worst- and best-
case datasets. That is an enormous win already.

• Alternatively, there is a way to define the relation of input (or dataset) to the
allowed resource consumption. We can then describe this relation in the form of
mathematical functions, which we usually call complexity (discussed in “Asymp‐
totic Complexity with Big O Notation” on page 243). Even with some approxima‐
tion, it’s quite an effective method. Our RAER for the operation /rules in
Example 3-1 could then be described, as seen in Example 3-2.

Example 3-2. The example RAER entry with complexities or throughput instead of
absolute numbers

Program: "The Ruler"
Operation: "Fetching alerting rules for one tenant from the storage using HTTP."
Dataset: "X tenants having Y alerting rules each."

Maximum Latency: "2*Y ms for 90th percentile"
CPU Cores Limit: "2"
Memory Limit: "X + 0.4 * Y MB"
Disk Space Limit: "0.1 * X GB"
...

Overall, I would even propose to include the RAER in the functional requirement
(FR) document mentioned previously. Put it in another section called “Efficiency
Requirements.” After all, without rational speed and efficiency, our software can’t be
called fully functional, can it?
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To sum up, in this section we defined the Resource-Aware Efficiency Requirements
specification that gives us approximations of the needs and expected performance
toward our software efficiency. It will be extremely helpful for the further develop‐
ment and optimization techniques we learn in this book. Therefore, I want to encour‐
age you to understand the performance you aim for, ideally before you start
developing your software and optimizing or adding more features to it.

Let’s explain how we can possess or create such RAERs ourselves for the system,
application, or function we aim to provide.

Acquiring and Assessing Efficiency Goals
Ideally, when you come to work on any software project, you have something like a
RAER already specified. In bigger organizations, you might have dedicated people
like project or product managers who will gather such efficiency requirements on top
of functional requirements. They should also make sure the requirements are possi‐
ble to fulfill. If they don’t gather the RAER, don’t hesitate to ask them to provide such
information. It’s often their job to give it.

Unfortunately, in most cases, there are no specific efficiency requirements, especially
in smaller companies, community-driven projects, or, obviously, your personal
projects. In those cases, we need to acquire the efficiency goals ourselves. How do we
start?

This task is, again, similar to functional goals. We need to bring value to users, so
ideally, we need to ask them what they need in terms of speed and running costs. So
we go to the stakeholders or customers and ask what they need in terms of efficiency
and speed, what they are willing to pay for, and what the constraints are on their side
(e.g., the cluster has only four servers or the GPU has only 512 MB of internal mem‐
ory). Similarly, with features, good product managers and developers will try to
translate user performance needs into efficiency goals, which is not trivial if the
stakeholders are not from the engineering space. For example, the “I want this appli‐
cation to run fast” statement has to be translated into specifics.

If the stakeholder can’t give the latency numbers they might expect
from your software, just pick a number. It can be high for a start,
which is great for you, but it will make your life easier later. Per‐
haps this will trigger discussions on the stakeholder side on the
implications of that number.
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Very often, there are multiple personas of the system users too. For example, let’s
imagine our company will run our software as a service for the customer, and the ser‐
vice has already defined a price. In this case, the user cares about the speed and cor‐
rectness, and our company will care about the efficiency of the software, as this
translates to how much net profit the running service will have (or loss if the
computation cost of running our software is too large). In this typical software as a
service (SaaS) example, we have not one but two sources of input for our RAER.

Dogfooding

Very often, for smaller coding libraries, tools, and our infrastruc‐
ture software, we are both developers and users. In this case, setting
RAERs from the user’s perspective is much easier. That is only one
of the reasons why using the software you create is a good practice.
This approach is often called “eating your own dog food” (dog‐
fooding).

Unfortunately, even if a user is willing to define the RAER, the reality is not so per‐
fect. Here comes the difficult part. Are we sure that what was proposed from the user
perspective is doable within the expected amount of time? We know the demand, but
we must validate it with the supply we can provide regarding our team skill set, tech‐
nological possibilities, and time needed. Usually, even if some RAER is given, we
need to perform our own diligence and define or assess the RAER from an achieva‐
bility perspective. This book will teach you all that is required to accomplish this task.

In the meantime, let’s go through one example of the RAER definition process.

Example of Defining RAER
Defining and assessing complex RAERs can get complicated. However, starting with
potentially trivial yet clear requirements is reasonable if you have to do it from
scratch.

Setting these requirements boils down to the user perspective. We need to find the
minimum requirements that make your software valuable in its context. For example,
let’s say we need to create software that applies image enhancements on top of a set of
images in JPEG format. In RAER, we can now treat such image transforming as an
operation, and the set of image files and chosen enhancement as our input.

The second item in our RAER is the latency of our operation. It is better to have it as
fast as possible from a user perspective. Yet our experience should tell us that there
are limits on how quickly we can apply the enhancement to images (especially if large
and many). But how can we find a reasonable latency number requirement that
would work for potential users and make it possible for our software?
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It’s not easy to agree on a single number, especially when we are new to the efficient
world. For example, we could potentially guess that 2 hours for a single image process
might be too long, and 20 nanoseconds is not achievable, but it’s hard to find the
middle ground here. Yet as mentioned in “Efficiency Requirements Should Be For‐
malized” on page 83, I would encourage you to try defining one number, as it would
make your software much easier to assess!

Defining Efficiency Requirements Is Like Negotiating Salary

Agreeing to someone’s compensation for their work is similar to
finding the requirement sweet spot for our program’s latency or
resource usage. The candidate wants the salary to be the highest
possible. As an employer, you don’t want to overpay. It’s also hard
to assess the value the person will be providing and how to set
meaningful goals for such work. What works in salary negotiating
works when defining RAER: don’t set too high expectations, look
at other competitors, negotiate, and have trial periods!

One way to define RAER details like latency or resource consumption is to check the
competition. Competitors are already stuck in some kind of limits and framework for
stating their efficiency guarantees. You don’t need to set those as your numbers, but
they can give you some clue of what’s possible or what customers want.

While useful, checking competition is often not enough. Eventually, we have to esti‐
mate what’s roughly possible with the system and algorithm we have in mind and the
modern hardware. We can start by defining the initial naive algorithm. We can
assume our first algorithm won’t be the most efficient, but it will give us a good start
on what’s achievable with little effort. For example, let’s assume for our problem that
we want to read an image in JPEG format from disk (SSD), decode it to memory,
apply enhancement, encode it back, and write it to disk.

With the algorithm, we can start discussing its potential efficiency. However, as
you will learn in “Optimization Design Levels” on page 98 and “Reliability of Experi‐
ments” on page 256, efficiency depends on many factors! It’s tough to measure it on
an existing system, not to mention forecasting it just from the unimplemented
algorithm.

This is where the complexity analysis with napkin math comes into play!
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10 We use napkin math more often in this book and during optimizations, so I prepared a small cheat sheet for
latency assumptions in Appendix A.

Napkin Math

Sometimes referred to as back-of-the-envelope calculation, napkin
math is a technique of making rough calculations and estimations
based on simple, theoretical assumptions. For example, we could
assume latency for certain operations in computers, e.g., a sequen‐
tial read of 8 KB from SSD is taking approximately 10 μs while
writing 1 ms.10 With that, we could calculate how long it takes to
read and write 4 MB of sequential data. Then we can go from there
and calculate overall latency if we make a few reads in our system,
etc.
Napkin math is only an estimate, so we need to treat it with a grain
of salt. Sometimes it can be intimidating to do since it all feels
abstract. Yet such quick calculation is always a fantastic test on
whether our guesses and initial system ideas are correct. It gives
early feedback worth our time, especially around common effi‐
ciency requirements like latency, memory, or CPU usage.

We will discuss both complexity analysis and napkin math in detail in “Complexity
Analysis” on page 240, but let’s quickly define the initial RAER for our example JPEG
enhancement problem space.

Complexity allows us to represent efficiency as the function of the latency (or
resource usage) to the input. What’s our input for the RAER discussion? Assume the
worst case first. Find the slowest part of your system and what input can trigger that.
In our example, we can imagine that the largest image we allow in our input (e.g., 8K
resolution) is the slowest to process. The requirement of processing a set of images
makes things a bit tricky. For now, we can assume the worst case and start negotiat‐
ing with that. The worst case is that images are different, and we don’t use concur‐
rency. This means our latency will potentially be a function of x * N, where x is the
latency of the biggest image, and N is the number of images in the set.

Given the worst-case input of an 8K image in JPEG format, we can try to estimate the
complexities. The size of the input depends on the number of unique colors, but most
of the images I found were around 4 MB, so let’s have this number represent our
average input size. Using data from Appendix A, we can calculate that such input will
take at least 5 ms to read and 0.5 s to save on a disk. Similarly, encoding and decoding
from JPEG format likely means at least looping through and allocating up to 7680 ×
4320 pixels (around 33 million) in memory. Looking at the image/jpeg standard Go
library, each pixel is represented by three uint8 numbers to represent color in YCbCr
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11 We will discuss benchmarks in detail in Chapter 7.

format. That means approx 100 million unsigned 8-byte integers. We can then find
out both the potential runtime and space complexities:

Runtime
We need to fetch each element from memory (~5 ns for a sequential read from
RAM) twice (one for decode, one for encode), which means 2 * 100 million * 5
ns, so 1 second. As a result of this quick math, we now know that without apply‐
ing any enhancements or more tricky algorithms, such an operation for the sin‐
gle image will be no faster than 1s + 0.5s, so 1.5 seconds.

Since napkin math is only an estimate, plus we did not account for the actual
enhancing operation, it would be safe to assume we are wrong up to three times.
This means we could use 5 seconds as the initial latency requirement for a single
image to be safe, so 5 * N seconds for N images.

Space
For the naive algorithm that reads the whole image to memory, storing that
image will probably be the operation that allocates the most memory. With the
mentioned three uint8 numbers per pixel, we have 33 million * 3 * 8 bytes, so a
maximum of 755 MB of memory usage.

We assumed typical cases and unoptimized algorithms, so we expect to be able to
improve those initial numbers. But it might as well be fine for the user to wait 50 sec‐
onds for 10 images and use 1 GB of memory on each image. Knowing those numbers
allows descoping efficiency work when possible!

To be more confident of the calculations we did, or if you are stuck in napkin math
calculations, we could perform a quick benchmark11 for the critical, slowest operation
in our system. So I wrote a single benchmark for reading, decoding, encoding, and
saving 8K images using the standard Go jpeg library. Example 3-3 shows the sum‐
marization of the benchmark results.

Example 3-3. Go microbenchmark results of reading, decoding, encoding, and saving
an 8K JPEG file

name       time/op
DecEnc-12  1.56s ±2%
name       alloc/op
DecEnc-12  226MB ± 0%
name       allocs/op
DecEnc-12   18.8 ±3%
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It turns out that our runtime calculations were quite accurate. It takes 1.56 seconds
on average to perform a basic operation on an 8K image! However, the allocated
memory is over three times better than we thought. Closer inspection of the YCbCr
struct's comment reveals that this type stores on Y sample per pixel, but each Cb and
Cr sample can span over one or more pixels, which might explain the difference.

Acquiring and assessing RAERs seems complex, but I recommend doing the exercise
and getting those numbers before any serious development. Then, with benchmark‐
ing and napkin math, we can quickly understand if the RAERs are achievable with
the rough algorithm we have in mind. The same process can also be used to tell if
there is room for more easy-to-achieve optimization, as described in “Optimization
Design Levels” on page 98.

With the ability to obtain, define, and assess your RAER, we can finally attempt to
conquer some efficiency issues! In the next section, we will discuss steps I would rec‐
ommend to handle such sometimes stressful situations professionally.

Got an Efficiency Problem? Keep Calm!
First of all, don’t panic! We all have been there. We wrote a piece of code and tested it
on our machine, which worked great. Then, proud of it, we released it to others, and
immediately someone reported performance issues. Maybe it can’t run fast enough
on other people’s machines. Perhaps it uses an unexpected amount of RAM with
other users’ datasets.

When facing efficiency issues in the program we build, manage, or are responsible
for, we have several choices. But before you make any decisions, there is one critical
thing you have to do. When issues happen, clear your mind from negative emotions
about yourself or the team you worked with. It’s very common to blame yourself or
others for mistakes. It is only natural to feel an uncomfortable sense of guilt when
someone complains about your work. However, everyone (including us) must under‐
stand that the topic of efficiency is challenging. On top of that, inefficient or buggy
code happens every day, even for the most experienced developers. Therefore, there
should be no shame in making mistakes.

Why do I write about emotions in a programming book? Because psychological
safety is an important reason why developers take the wrong approach toward code
efficiency. Procrastinating, feeling stuck, and being afraid to try new things or scratch
bad ideas are only some of the negative consequences. From my own experience, if
we start blaming ourselves or others, we won’t solve any problems. Instead, we kill
innovation and productivity, and introduce anxiety, toxicity, and stress. Those feel‐
ings can further prevent you from making a professional, reasonable decision on how
to proceed with the reported efficiency issues or any other problems.
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Blameless Culture Matters

Highlighting a blameless attitude is especially important during the
“postmortem” process, which the Site Reliability Engineers per‐
form after incidents. For example, sometimes costly mistakes are
triggered by a single person. While we don’t want to discourage
this person or punish them, it is crucial to understand the cause of
the incident to prevent it. Furthermore, the blameless approach
enables us to be honest about facts while respecting others, so
everyone feels safe to escalate issues without fear.

We should stop worrying too much, and with a clear mind, we should follow a sys‐
tematic, almost robotic process (yes, ideally all of this is automated someday!). Let’s
face it, practically speaking, not every performance issue has to be followed by opti‐
mization. The potential flow for the developer I propose is presented in Figure 3-3.
Note that the optimization step is not on the list yet!

Figure 3-3. Recommended flow for efficiency issue triaging
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12 For example, see the instance of the XY problem mentioned in “Understand Your Goals” on page 80.

13 The reporter of the issue can obviously negotiate a change in the specification with the product owner if they
think it’s important enough or they want to pay additionally, etc.

Here, we outline six steps to do when an efficiency issue is reported:

Step 1: An efficiency issue was reported on our bug tracker.
The whole process starts when someone reports an efficiency issue for the soft‐
ware we are responsible for. If more than one issue was reported, always begin
the process shown in Figure 3-3 for every single issue (divide and conquer).

Note that going through this process and putting things through a bug tracker
should be your habit, even for small personal projects. How else would you
remember in detail all the things you want to improve?

Step 2: Check for duplicates.
This might be trivial, but try to be organized. Combine multiple issues for a sin‐
gle, focused conversation. Save time. Unfortunately, we are not yet at the stage
where automation (e.g., artificial intelligence) can reliably find duplicates for us.

Step 3: Validate the circumstances against functional requirements.
In this step, we have to ensure that the efficiency issue reporter used supported
functionality. We design software for specific use cases defined in functional
requirements. Due to the high demand for solving various unique yet sometimes
similar use cases, users often try to “abuse” our software to do something it was
never meant to do. Sometimes they are lucky, and things work. Sometimes it
ends with crashes, unexpected resource usage, or slowdowns.12

Similarly, we should do the same if the agreed prerequisites are not matched. For
example, the unsupported, malformed request was sent, or the software was
deployed on a machine without the required GPU resource.

Step 4: Validate the situation against RAERs.
Some expectations toward speed and efficiency cannot or do not need to be satis‐
fied. This is where the formal efficiency requirements specification discussed in
“Resource-Aware Efficiency Requirements” on page 86 is invaluable. If the
reported observation (e.g., response latency for the valid request) is still within
the agreed-on software performance numbers, we should communicate that fact
and move on.13

Similarly, when the issue author deployed our software with an HDD disk where
SSD was required, or the program was running on a machine with lower CPU
cores than stated in the formal agreement, we should politely close such a bug
report.
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Functional or Efficiency Requirements Can Change!

There might also be cases where the functional or efficiency
specification did not predict certain corner cases. As a result,
the specification might need to be revised to match reality.
Requirements and demands evolve, and so should perfor‐
mance specifications and expectations.

Step 5: Acknowledge the issue, note it for prioritization, and move on.
Yes, you read it right. After you check the impact and all the previous steps, it’s
often acceptable (and even recommended!) to do almost nothing about the
reported problem at the current moment. There might be more important things
that need our attention—maybe an important, overdue feature or another effi‐
ciency issue in a different part of the code.

The world is not perfect. We can’t solve everything. Exercise your assertiveness.
Notice that this is not the same as ignoring the problem. We still have to
acknowledge that there is an issue and ask follow-up questions that will help find
the bottleneck and optimize it at a later date. Make sure to ask for the exact soft‐
ware version they are running. Try to provide a workaround or hints on what’s
happening so the user can help you find the root cause. Discuss ideas of what
could be wrong. Write it all down in the issue. This will help you or another
developer have a great starting point later. Communicate clearly that you will
prioritize this issue with the team in the next prioritization session for the poten‐
tial optimization effort.

Step 6: Done, issue was triaged.
Congratulations, the issue is handled. It’s either closed or open. If it’s open after
all those steps, we can now consider its urgency and discuss the next steps with
the team. Once we plan to tackle a specific issue, the efficiency flow in
“Efficiency-Aware Development Flow” on page 102 will tell you how to do it effec‐
tively. Fear not. It might be easier than you think!

This Flow Is Applicable for Both SaaS and Externally Installed Software

The same flow is applicable for the software that is installed and
executed by the user on their laptop, smartphone, or servers
(sometimes called “on-premise” installation), as well as when it’s
managed by our company “as a service” (software as a service—
SaaS). We developers should still try to triage all issues
systematically.

We divided optimizations into reasonable and deliberate. Let’s not hesitate and
make the next division. To simplify and isolate the problem of software efficiency
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optimizations, we can divide it into levels, which we can then design and optimize in
isolation. We will discuss those in the next section.

Optimization Design Levels
Let’s take our previous real-life example of the long commute to work every day (we
will use this example a couple of times in this chapter!). If such a commute makes
you unhappy because it takes a considerable effort and is too long, it might make
sense to optimize it. There are, however, so many levels we can do this on:

• We can start small, by buying more comfortable shoes for walking distances.
• We could buy an electric scooter or a car if that helps.
• We could plan the journey so it takes less time or distance to travel.
• We could buy an ebook reader and invest in a book-reading hobby to not waste

time.
• Finally, we could move closer to the workplace or even change jobs.

We could do one such optimization in those separate “levels” or all, but each optimi‐
zation takes some investment, trade-off (buying a car costs money), and effort. Ide‐
ally, we want to minimize the effort while maximizing value and making a difference.

There is another crucial aspect of those levels: optimizations from one level can be
impacted or devalued if we do optimization on a higher level. For instance, let’s say
we did many optimizations to our commute on one level. We bought a better car,
organized car sharing to save money on fuel, changed our work time to avoid traffic,
etc. Imagine we would now decide to optimize on a higher level: move to an apart‐
ment within walking distance of our workplace. In such a case, any effort and invest‐
ment in previous optimizations are now less valuable (if not fully wasted). This is the
same in the engineering field. We should be aware of where we spend our optimiza‐
tion effort and when.

When studying computer science, one of the students’ first encounters with optimi‐
zation is learning theory about algorithms and data structures. They explore how to
optimize programs using different algorithms with better time or space complexities
(explained in “Asymptotic Complexity with Big O Notation” on page 243). While
changing the algorithm we use in our code is an important optimization technique,
we have many more areas and variables we can optimize to improve our software
efficiency. To appropriately talk about the performance, there are more levels that
software depends on.

98 | Chapter 3: Conquering Efficiency



14 Jon Louis Bentley, Writing Efficient Programs (Prentice Hall, 1982).

Figure 3-4 presents the levels that take a significant part in software execution. This
list of levels is inspired by Jon Louis Bentley’s list made in 1982,14 and it’s still very
accurate.

Figure 3-4. Levels that take part in software execution. We can provide optimization in
each of these in isolation.

This book outlines five optimization design levels, each with its optimization
approaches and verification strategies. So let’s dig into them, from the highest to the
lowest:

System level
In most cases, our software is part of some bigger system. Maybe it’s one of many
distributed processes or a thread in the bigger monolith application. In all cases,
the system is structured around multiple modules. A module is a small software
component that encapsulates certain functionality behind the method, interface,
or other APIs (e.g., network API or file format) to be interchanged and modified
more easily.

Each Go application, even the smallest, is an executable module that imports the
code from other modules. As a result, your software depends on other compo‐
nents. Optimizing at the system level means changing what modules are used,
how they are linked together, who calls which component, and how often. We
could say we are designing algorithms that work across modules and APIs, which
are our data structures.
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It is nontrivial work that requires multiple-team efforts and good architecture
design up front. But, on the other hand, it often brings enormous efficiency
improvements.

Intramodule algorithm and data structure level
Given a problem to solve, its input data, and expected output, the module devel‐
oper usually starts by designing two main elements of the procedure. First is the
algorithm, a finite number of computer instructions that operate on data and can
solve our problem (e.g., produce correct output). You have probably heard about
many popular ones: binary search, quicksort, merge sort, map-reduce, and oth‐
ers, but any custom set of steps your program does can be called an algorithm.

The second element is data structures, often implied by a chosen algorithm. They
allow us to store data on our computer, e.g., input, output, or intermittent data.
There are unlimited options here, too: arrays, hash maps, linked lists, stacks,
queues, others, mixes, or custom ones. A solid choice of the algorithms within
your module is extremely important. They have to be revised for your specific
goals (e.g., request latency) and the input characteristics.

Implementation (code) level
Algorithms in the module do not exist until they are written in code, compilable
to machine code. Developers have huge control here. We can have an inefficient
algorithm implemented efficiently, which fulfils our RAERs. On the other hand,
we can have an amazing, efficient algorithm implemented poorly that causes
unintended system slowdowns. Optimizing at the code level means taking a pro‐
gram written in a higher-level language (e.g., Go) that implements a specific
algorithm, and producing a more efficient program in any aspect we want (e.g.,
latency) that uses the same algorithm and yields the same, correct output.

Typically, we optimize on both algorithm and code levels together. In other
cases, settling on one algorithm and focusing only on code optimizations is eas‐
ier. You will see both approaches in Chapters 10 and 11.

Some previous materials consider the compilation step as an
individual level. I would argue that code-level optimization
techniques have to embody compiler-level ones. There is a
deep synergy between your implementation and how the com‐
piler will translate it to machine code. As developers, we
have to understand this relationship. We will explore Go com‐
piler implications more in “Understanding Go Compiler” on
page 118.

Operating system level
These days, our software is never executed directly on the machine hardware and
never runs alone. Instead, we run operating systems that split each software
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15 Raj Reddy and Allen Newell’s “Multiplicative Speedup of Systems” (in Perspectives on Computer Science, A.K.
Jones, ed., Academic Press) elaborates on potential speedups of a factor of about 10 for each software design
level. What’s even more exciting is the fact that for hierarchical systems, the speedups from different levels
multiplies, which offers massive potential for performance boost when optimizing.

16 This is a quite powerful thought. For example, imagine you have your application returning a result in 10 m.
Reducing it to 1 m by optimizing on one level (e.g., an algorithm) is a game changer.

execution into processes (then threads), schedule them on CPU cores, and pro‐
vide other essential services, like memory and IO management, device access,
and more. On top of that, we have additional virtualization layers (virtual
machines, containers) that we can put in the operating system bucket, especially
in cloud-native environments.

All those layers pose some overhead that can be optimized by those who control
the operating system development and configuration. In this book, I assume that
Go developers can rarely impact this level. Yet, we can gain a lot by understand‐
ing the challenges and usage patterns that will help us achieve efficiency on
other, higher levels. We will go through them in Chapter 4, mainly focusing on
Unix operating systems and popular virtualization techniques. I assume in this
book that device drivers and firmware also fit into this category.

Hardware level
Finally, at some point, a set of instructions translated from our code is executed
by the computer CPU units, with internal caches that are connected to other
essential parts in the motherboard: RAM, local disks, network interfaces, input
and output devices, and more. Usually, as developers or operators, we can
abstract away from this complexity (which also varies across hardware products)
thanks to the operating system level mentioned before. Yet the performance of
our applications is limited by hardware constraints. Some of them might be sur‐
prising. For example, were you aware of the existence of NUMA nodes for multi‐
core machines and how they can affect our performance? Did you know that
memory buses between CPU and memory nodes have limited bandwidth? It’s an
extensive topic that may impact our software efficiency optimization processes.
We will explore this topic briefly in Chapters 4 and 5, together with the mecha‐
nisms Go employs to tackle these issues.

What are the practical benefits of dividing our problem space into levels? First of all,
studies15 show that when it comes to application speed, it is often possible to achieve
speedups with factors of 10 to 20 at any of the mentioned levels, if not more. This is
also similar to my experience.

The good news is that this implies the possibility of focusing our optimizations on
just one level to gain the desired system efficiency.16 However, suppose you optimized
your implementation 10 to 20 times on one level. In that case, it might be hard to
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optimize this level further without significant sacrifices in development time, read‐
ability, and maintainability (our sweet spot from Figure 3-2). So you might have to
look at another level to gain more.

The bad news is that you might be unable to change certain levels. For example, as
programmers, we generally don’t have the power to easily change the compiler, oper‐
ating system, or hardware. Similarly, system administrators won’t be able to change
the algorithm the software is using. Instead, they can replace systems and configure
or tune them.

Beware of the Optimization Biases!

It is sometimes funny (and scary!) how different engineering
groups within a single company come up with highly distinct solu‐
tions to the same efficiency problems.
If the group has more system administrators or DevOps engineers,
the solution is often to switch to another system, software, or oper‐
ating system or try to “tune” them. In contrast, the software engi‐
neering group will mostly iterate on the same codebase, optimizing
system, algorithm, or code levels.
This bias comes from the experience of changing each level, but it
can have negative impacts. For example, switching the whole sys‐
tem, e.g., from RabbitMQ to Kafka, is a considerable effort. If you
are doing this only because RabbitMQ “feels slow” without trying
to contribute, perhaps a simple code-level optimization might be
excessive. Or another way around, trying to optimize the efficiency
of the system designed for different purposes on the code level
might not be sufficient.

We discussed what optimization is, and we mentioned how to set performance goals,
handle efficiency issues, and the design levels we operate in. Now it’s time to hook
everything together and combine this knowledge into the complete development
cycle.

Efficiency-Aware Development Flow
The primary concerns of the programmer during the early part of a program’s life
should be the overall organization of the programming project and producing correct
and maintainable code. Furthermore, in many contexts, the cleanly designed program
is often efficient enough for the application at hand.

—Jon Louis Bentley, Writing Efficient Programs

Hopefully, at this point, you are aware that we have to think about performance, ide‐
ally from the early development stages. But there are risks—we don’t develop code
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for it to be just efficient. We write programs for specific functionality that match the
functional requirements we set or get from stakeholders. Our job is to get this work
done effectively, so a pragmatic approach is necessary. How might developing a
working but efficient code look from a high-level point of view?

We can simplify the development process into nine steps, as presented in Figure 3-5.
For lack of a better term, let’s call it the TFBO flow—test, fix, benchmark, and
optimize.

Figure 3-5. Efficiency-aware development flow

The process is systematic and highly iterative. Requirements, dependencies, and envi‐
ronments are changing, so we have to work in smaller chunks too. The TFBO process
can feel a little strict, but trust me, mindful and effective software development
requires some discipline. It applies to cases when you create new software from
scratch, add a feature, or change the code. TFBO should work for software written in
any language, not only Go. It is also applicable for all levels mentioned in “Optimiza‐
tion Design Levels” on page 98. Let’s go through the nine TFBO steps.

Efficiency-Aware Development Flow | 103



Functionality Phase
It is far, far easier to make a correct program fast than it is to make a fast program
correct.

—H. Sutter and A. Alexandrescu, C++ Coding Standards: 101 Rules, Guidelines,
and Best Practices (Addison-Wesley, 2004)

Always start with functionality first. Whether we aim to start a new program, add
new functionality, or just optimize an existing program, we should always begin with
the design or implementation of the functionality. Make it work, make it simple,
readable, maintainable, secure, etc., according to goals we have set, ideally in written
form. Especially when you are starting your journey as a software engineer, focus on
one thing at a time. With practice, we can add more reasonable optimizations
early on.

1. Test functionality first
It might feel counterintuitive for some, but you should almost always start with a ver‐
ification framework for the expected functionality. The more automated it is, the bet‐
ter. This also applies when you have a blank page and start developing a new
program. This development paradigm is called test-driven development (TDD). It is
mainly focused on code reliability and feature delivery velocity efficiency. In a strict
form, on the code level, it mandates a specific flow:

1. Write a test (or extend an existing one) that expects the feature to be
implemented.

2. Make sure to run all tests and see the new tests failing for expected reasons. If
you don’t see the failure or other failures, fix those tests first.

3. Iterate with the smallest possible changes until all tests pass and the code is clean.

TDD eliminates many unknowns. Imagine if we would not follow TDD. For exam‐
ple, we add a feature, and we write a test. It’s easy to make a mistake that always
passes the test even without our feature. Similarly, let’s say we add the test after
implementation, which passes, but other previously added tests fail. Most likely, we
did not run a test before the implementation, so we don’t know if everything worked
before. TDD ensures you don’t run into those questions at the end of your work,
enormously improving reliability. It also reduces implementation time, allowing safe
code modifications and giving you feedback early.

Furthermore, what if the functionality we wanted to implement is already done and
we didn’t notice? Writing a test first would reveal that quickly, saving us time. Spoiler
alert: we will use the same principles for benchmark-driven optimization in step 4
later!
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The TDD can be easily understood as a code-level practice, but what if you design or
optimize algorithms and systems? The answer is that the flow remains the same, but
our testing strategy must be applied on a different level, e.g., validating system design.

Let’s say we implemented a test or performed an assessment on what is currently
designed or implemented. What’s next?

2. Do we pass the functional tests?
With the results from step 1, our work is much easier—we can perform data-driven
decisions on what to do next! First, we should compare tests or assessment results
with our agreed functional requirements. Is the current implementation or design
fulfilling the specification? Great, we can jump to step 4. However, if tests fail or the
functionality assessment shows some functionality gap, it’s time to go to step 3 and
fix this situation.

The problem is when you don’t have those functional requirements stated anywhere.
As discussed in “Efficiency Requirements Should Be Formalized” on page 83, this is
why asking for functional requirements or defining them on your own is so impor‐
tant. Even the simplest bullet-point list of goals, written in the project README, is
better than nothing.

Now, let’s explore what to do if the current state of our software doesn’t pass func‐
tional verification.

3. If the tests fail, we have to fix, implement, or design the missing parts
Depending on the design level we are at, in this step, we should design, implement, or
fix the functional parts to close the gap between the current state and the functional
expectation. As we discussed in “Reasonable Optimizations” on page 74, no opti‐
mizations other than the obvious, reasonable optimizations are allowed here. Focus
on readability, design of modules, and simplicity. For example, don’t bother thinking
if it’s more optimal to pass an argument by pointer or value or if parsing integers here
will be too slow unless it’s obvious. Just do whatever makes sense from a functional
and readability standpoint. We don’t validate efficiency yet, so let’s forget about
deliberate optimizations for now.

As you might have noticed in Figure 3-5, steps 1, 2, and 3 compose a small loop. This
gives us an early feedback loop whenever we change things in our code or design.
Step 3 is like us steering the direction of our boat called “software” when sailing over
the ocean. We know where we want to go and understand how to look at the sun or
stars in the right direction. Yet without precise feedback tools like GPS, we can end
up sailing to the wrong place and only realizing it after weeks have gone by. This is
why it’s beneficial to validate our sailing position in short intervals for early feedback!
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17 Ideally, we would have functionality checks for every code stroke or event of the saved code file. The earlier
the feedback loop, the better. The main blocker for this is the time required to perform all tests and their
reliability.

This is the same for our code. We don’t want to work for months only to learn that
we didn’t get closer to what we expected from the software. Leverage the functionality
phase loop by making a small iteration of code or design change, going to step 1 (run
tests), step 2, and going back to step 3 to do another little correction.17 This is the
most effective development cycle engineers have found over the years. All modern
methodologies like extreme programming, Scrum, Kanban, and other Agile techni‐
ques are built on a small iterations premise.

After potentially hundreds of iterations, we might have software or design that ful‐
fills, in step 2, the functional requirements we have set for ourselves for this develop‐
ment session. Finally, it’s time to ensure our software is fast and efficient enough!
Let’s look at that in the next section.

Efficiency Phase
Once we are happy with the functional aspects of our software, it’s time to ensure it
matches the expected resource consumption and speed.

Splitting phases and isolating them from each other seems like a burden at first
glance, but it will organize your developer workflow better. It gives us deep focus, rul‐
ing our early unknowns and mistakes, and helps us avoid expensive focus context
switches.

Let’s start our efficiency phase by performing the initial (baseline) efficiency valida‐
tion in step 4. Then, who knows, maybe our software is efficient enough without any
changes!

4. Efficiency assessment
Here we employ a similar strategy to step 1 of the functionality phase, but toward
efficiency space. We can define an equivalent of the TDD method explained in step 1.
Let’s call it benchmark-driven optimization (BDO). In practice, step 4 looks like this
process at the code level:

1. Write benchmarks (or extend existing ones) for all the operations from the effi‐
ciency requirements we want to compare against. Do it even if you know that the
current implementation is not efficient yet. We will need that work later. It is not
trivial, and we will discuss this aspect in detail in Chapter 8.

2. Ideally, run all the benchmarks to ensure your changes did not impact unrelated
operations. In practice, this takes too much time, so focus on one part of the
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program (e.g., one operation) you want to check and run benchmarks only for
that. Save the results for later. This will be our baseline.

Similar to step 1, the higher-level assessment might require different tools. Equipped
with results from benchmarks or assessments, let’s go to step 5.

5. Are we within RAERs?
In this step, we must compare the results from step 4 with the RAERs we gathered.
For example, is our latency within the acceptable norm for the current implementa‐
tion? Is the amount of resources our operation consumes within what we agreed? If
yes, then no optimization is needed!

Again, similar to step 2, we have to establish requirements or rough goals for effi‐
ciency. Otherwise, we have zero ideas if the numbers we see are acceptable or not.
Again, refer to “Acquiring and Assessing Efficiency Goals” on page 89 on how to
define RAERs.

With this comparison, we should have a clear answer. Are we within acceptable
thresholds? If yes, we can jump straight to the release process in step 9. If not, there is
exciting optimization logic ahead of us in steps 6, 7, and 8. Let’s walk through those
now.

6. Find the main bottleneck
Here we must address the first challenge mentioned in “Optimization Challenges” on
page 79. We are typically bad at guessing which part of the operation causes the big‐
gest bottleneck; unfortunately, that’s where our optimization should focus first.

The word bottleneck describes a place where most consumption of specific resources
or software comes from. It might be a significant number of disk reads, deadlock,
memory leak, or a function executed millions of times during a single operation. A
single program usually has only a few of these bottlenecks. To perform effective opti‐
mization, we must first understand the bottleneck’s consequences.

As part of this process, we need first to understand the underlying root cause of the
problem we found in step 5. We will discuss the best tools for this job in Chapter 9.

Let’s say we found the set of functions executed the most or another part of a pro‐
gram that consumes the most resources. What’s next?
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7. Choice of level
In step 7, we must choose how we want to tackle the optimization. Should we make
the code more efficient? Perhaps we could improve the algorithm? Or maybe opti‐
mize on the system level? In extreme cases, we might also want to optimize the oper‐
ating system or hardware!

The choice depends on what’s more pragmatic at the moment and where we are in
our efficiency spectrum in Figure 3-1. The important part is to stick to single-level
optimization at one optimization iteration. Similar to the functionality phase, make
short iterations and small corrections.

Once we know the level we want to make more efficient or faster, we are ready to
perform optimization!

8. Optimize!
This is what everyone was waiting for. Finally, after all that effort, we know:

• What place in the code or design to optimize for the most impact.
• What to optimize for—what resource consumption is too large.
• How much sacrifice we can make on other resources because we have RAER.

There will be trade-offs.
• On what level we are optimizing.

These elements make the optimization process much easier and often even make it
possible to begin with. Now we focus on the mental model we introduced in “Beyond
Waste, Optimization Is a Zero-Sum Game” on page 73. We are looking for waste. We
are looking for places where we can do less work. There are always things that can be
eliminated, either for free or by doing other work using another resource. I will intro‐
duce some patterns in Chapter 11 and show examples in Chapter 10.

Let’s say we found some ideas for improvement. This is when you should implement
it or design it (depending on the level). But what’s next? We cannot just release our
optimization like this simply because:

• We don’t know that we did not introduce functional issues (bugs).
• We don’t know if we improved any performance.

This is why we have to perform the full cycle now (no exceptions!). It’s critical to go
to step 1 and test the optimized code or design. If there are problems, we must fix
them or revert optimization (steps 2 and 3).
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It is tempting to ignore the functional testing phase when iterating
on optimizations. For example, what can go wrong if you only
reduce one allocation by reusing some memory?
I often caught myself doing this, and it was a painful mistake.
Unfortunately, when you find that your code cannot pass tests after
a few iterations of optimizations, it is hard to find what caused it.
Usually, you have to revert all and start from scratch. Therefore, I
encourage you to run a scoped unit test every time after the opti‐
mization attempt.

Once we gain confidence that our optimization did not break any basic functionality,
it’s crucial to check if our optimization improved the situation we want to improve.
It’s important to run the same benchmark, ensuring that nothing changes except the
optimization you did (step 4). This allows us to reduce unknowns and iterate on our
optimization in small parts.

With the results from this recent step 4, compare it with the baseline made in the ini‐
tial visit to step 4. This crucial step will tell us if we optimized anything or introduced
performance regression. Again, don’t assume anything. Let the data speak for itself!
Go has amazing tools for that, which we will discuss in Chapter 8.

If the new optimization doesn’t have a better efficiency result, we simply try different
ideas again until it works out. If the optimization has better results, we save our work
and go to step 5 to check if it’s enough. If not, we have to make another iteration. It’s
often useful to build another optimization on what we already did. Maybe there is
something more to improve!

We repeat this cycle, and after a few (or hundreds), we hopefully have acceptable
results in step 5. In this case, we can move to step 9 and enjoy our work!

9. Release and enjoy!
Great job! You went through the full iteration of the efficiency-aware development
flow. Your software is now fairly safe to be released and deployed in the wild. The
process might feel bureaucratic, but it’s easy to build an instinct for it and follow it
naturally. Of course, you might already be using this flow without noticing!

Summary
As we learned in this chapter, conquering efficiency is not trivial. However, certain
patterns exist that help to navigate this process systematically and effectively. For
example, the TFBO flow was immensely helpful for me to keep my efficiency-aware
development pragmatic and effective.
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Some of the frameworks incorporated in the TFBO, like test-driven development and
benchmark-driven optimizations, might seem tedious initially. However, similar to
the saying, “Give me six hours to chop a tree, I will spend four hours sharpening an
axe”, you will notice that spending time on a proper test and benchmark will save you
tons of effort in the long term!

The main takeaways are that we can divide optimizations into reasonable and delib‐
erate ones. Then, to be mindful of the trade-offs and our effort, we discussed defining
RAER so we can assess our software toward a formal goal everyone understands.
Next, we mentioned what to do when an efficiency problem occurs and what opti‐
mizations levels there are. Finally, we discussed TFBO flow, which guides us through
the practical development process.

To sum up, finding optimization can be considered a problem-solving skill. Noticing
waste is not easy, and it comes with a lot of practice. This is somewhat similar to
being good at programming interviews. In the end, what helps is the experience of
seeing past patterns that were not efficient enough and how they were improved.
Through this book, we will exercise those skills and uncover many tools that can help
us in this journey.

Yet before that, there are important things to learn about modern computer architec‐
ture. We can learn typical optimization patterns by examples, but the optimizations
do not generalize very well. We won’t be able to find them effectively and apply them
in unique contexts without understanding the mechanisms that make those opti‐
mizations effective. In the next chapter, we will discuss how Go interacts with the key
resources in typical computer architecture.
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CHAPTER 4

How Go Uses the CPU Resource (or Two)

One of the most useful abstractions we can make is to treat properties of our hardware
and infrastructure systems as resources. CPU, memory, data storage, and the network
are similar to resources in the natural world: they are finite, they are physical objects in
the real world, and they must be distributed and shared between various key players in
the ecosystem.

—Susan J. Fowler, Production-Ready Microservices (O’Reilly, 2016)

As you learned in “Behind Performance” on page 3, software efficiency depends on
how our program uses the hardware resources. If the same functionality uses fewer
resources, our efficiency increases and the requirements and net cost of running such
a program decrease. For example, if we use less CPU time (CPU “resource”) or fewer
resources with slower access time (e.g., disk), we usually reduce the latency of our
software.

This might sound simple, but in modern computers, these resources interact with
each other in a complex, nontrivial way. Furthermore, more than one process is using
these resources, so our program does not use them directly. Instead, these resources
are managed for us by an operating system. If that wasn’t complex enough, especially
in cloud environments, we often “virtualize” the hardware further so it can be shared
across many individual systems in an isolated way. That means there are methods for
“hosts” to give access to part of a single CPU or disk to a “guest” operating system
that thinks it’s all the hardware that exists. In the end, operating systems and virtuali‐
zation mechanisms create layers between our program and the actual physical devices
that store or compute our data.

To understand how to write efficient code or improve our program’s efficiency effec‐
tively, we have to learn the characteristics, purpose, and limits of the typical com‐
puter resources like CPU, different types of storage, and network. There is no
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shortcut here. Furthermore, we can’t ignore understanding how these physical com‐
ponents are managed by the operating system and typical virtualization layers.

In this chapter, we will examine our program execution from the point of view of the
CPU. We will discuss how Go uses CPUs for single and multiple core tasking.

We won’t discuss all types of computer architectures with all
mechanisms of all existing operating systems, as this would be
impossible to fit in one book, never mind one chapter. So instead,
this chapter will focus on a typical x86-64 CPU architecture with
Intel or AMD, ARM CPUs, and the modern Linux operating sys‐
tem. This should get you started and give you a jumping-off point
if you ever run your program on other, unique types of hardware
or operating systems.

We will start with exploring CPU in a modern computer architecture to understand
how modern computers are designed, mainly focusing on the CPU, or processor.
Then I will introduce the Assembly language, which will help us understand how the
CPU core executes instructions. After that, we will dig into the Go compiler to build
awareness of what happens when we do a go build. Furthermore, we will jump into
the CPU and memory wall problem, showing you why modern CPU hardware is
complex. This problem directly impacts writing efficient code on these ultracritical
paths. Finally, we will enter the realm of multitasking by explaining how the operat‐
ing system scheduler tries to distribute thousands of executing programs on outnum‐
bered CPU cores and how the Go runtime scheduler leverages that to implement an
efficient concurrency framework for us to use. We will finish with the summary on
when to use concurrency.

Mechanical Sympathy

Initially, this chapter might get overwhelming, especially if you are
new to low-level programming. Yet, awareness of what is happen‐
ing will help us understand the optimizations, so focus on under‐
standing high-level patterns and characteristics of each resource
(e.g., how the Go scheduler works). We don’t need to know how to
write machine code manually or how to, blindfolded, manufacture
the computer.
Instead, let’s treat this with curiosity about how things work under
the computer case in general. In other words, we need to have
mechanical sympathy.

To understand how the CPU architecture works, we need to explain how modern
computers operate. So let’s dive into that in the next section.
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1 To be technically strict, modern computers nowadays have distinct caches for program instructions and data,
while both are stored the same on the main memory. This is the so-called modified Harvard architecture. At
the optimization levels we aim for in this book, we can safely skip this level of detail.

CPU in a Modern Computer Architecture
All we do while programming in Go is construct a set of statements that tells the
computer what to do, step-by-step. Given predefined language constructs like vari‐
ables, loops, control mechanisms, arithmetic, and I/O operations, we can implement
any algorithms that interact with data stored in different mediums. This is why Go,
like many other popular programming languages, can be called imperative—as devel‐
opers, we have to describe how the program will operate. This is also how hardware is
designed nowadays—it is imperative too. It waits for program instructions, optional
input data, and the desired place for output.

Programming wasn’t always so simple. Before general-purpose machines, engineers
had to design fixed program hardware to achieve requested functionality, e.g., a desk
calculator. Adding a feature, fixing a bug, or optimizing required changing the
circuits and manufacturing new devices. Probably not the easiest time to be a
“programmer”!

Fortunately, around the 1950s, a few inventors worldwide figured out the opportu‐
nity for the universal machine that could be programmed using a set of predefined
instructions stored in memory. One of the first people to document this idea was a
great mathematician, John von Neumann, and his team.

It is evident that the machine must be capable of storing in some manner not only the
digital information needed in a given computation ..., the intermediate results of the
computation (which may be wanted for varying lengths of time), but also the instruc‐
tions which govern the actual routine to be performed on the numerical data. ... For an
all-purpose machine, it must be possible to instruct the device to carry out whatsoever
computation that can be formulated in numerical terms.

—Arthur W. Burks, Herman H. Goldstine, and John von Neumann, Preliminary
Discussion of the Logical Design of an Electronic Computing Instrument (Institute
for Advanced Study, 1946)

What’s noteworthy is that most modern general-purpose computers (e.g., PCs, lap‐
tops, and servers) are based on John von Neumann’s design. This assumes that pro‐
gram instructions can be stored and fetched similar to storing and reading program
data (instruction input and output). We fetch both the instruction to be performed
(e.g., add) and data (e.g., addition operands) by reading bytes from a certain memory
address in the main memory (or caches). While it doesn’t sound like a novel idea
now, it established how general-purpose machines work. We call this Von Neumann
computer architecture, and you can see its modern, evolved variation in Figure 4-1.1
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Figure 4-1. High-level computer architecture with a single multicore CPU and uniform
memory access (UMA)

At the heart of modern architecture, we see a CPU consisting of multiple cores (four
to six physical cores are the norm in the 2020s PCs). Each core can execute desired
instructions with certain data saved in random-access memory (RAM) or any other
memory layers like registers or L-caches (discussed later).

The RAM explained in Chapter 5 performs the duty of the main, fast, volatile mem‐
ory that can store our data and program code as long as the computer is powered. In
addition, the memory controller makes sure RAM is supplied with a constant power
flow to keep the information on RAM chips. Last, the CPU can interact with various
external or internal input/output (I/O) devices. From a high-level view, an I/O device
means anything that accepts sending or receiving a stream of bytes, for example,
mouse, keyboard, speaker, monitor, HDD or SSD disk, network interface, GPU, and
thousands more.

Roughly speaking, CPU, RAM, and popular I/O devices like disks and network inter‐
faces are the essential parts of computer architecture. This is what we use as
“resources” in our RAERs mentioned in “Efficiency Requirements Should Be Formal‐
ized” on page 83 and what we are usually optimizing for in our software
development.

In this chapter, we will focus on the brain of our general-purpose machines—the
CPU. When should we care about CPU resources? Typically, from an efficiency
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standpoint, we should start looking at our Go process CPU resource usage when
either of the following occurs:

• Our machine can’t do other tasks because our process uses all the available CPU
resource computing capacity.

• Our process runs unexpectedly slow, while we see higher CPU consumption.

There are many techniques to troubleshoot these symptoms, but we must first under‐
stand the CPU’s internal working and program execution basics. This is the key to
efficient Go programming. Furthermore, it explains the numerous optimization tech‐
niques that might surprise us initially. For example, do you know why in Go (and
other languages), we should avoid using linked lists like structures if we plan to iter‐
ate over them a lot, despite their theoretical advantages like quick insertion and
deletion?

Before we learn why, we must understand how the CPU core executes our programs.
Surprisingly, I found that the best way to explain this is by learning how the Assem‐
bly language works. Trust me on this; it might be easier than you think!

Assembly
The CPU core, indirectly, can execute programs we write. For example, consider the
simple Go code in Example 4-1.

Example 4-1. Simple function that reads numbers from a file and returns the total sum

func Sum(fileName string) (ret int64, _ error) {
   b, err := os.ReadFile(fileName)
   if err != nil {
      return 0, err
   }

   for _, line := range bytes.Split(b, []byte("\n")) {
      num, err := strconv.ParseInt(string(line), 10, 64)
      if err != nil {
         return 0, err
      }

      ret += num 
   }

   return ret, nil
}

The main arithmetic operation in this function adds a parsed number from the
file into a ret integer variable representing the total sum.
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2 For scripted (interpreted) languages, there is no complete code compilation. Instead, there is an interpreter
that compiles the code statement by statement. Another unique type of language is represented by a family of
languages that use Java Virtual Machine (JVM). Such a machine can dynamically switch from interpreting to
just-in-time (JIT) compilation for runtime optimizations.

While such language is far from, let’s say, spoken English, unfortunately, it is still too
complex and incomprehensible for the CPU. It is not “machine-readable” code.
Thankfully every programming language has a dedicated tool called a compiler2 that
(among other things discussed in “Understanding Go Compiler” on page 118) trans‐
lates our higher-level code to machine code. You might be familiar with a go build
command that invokes a default Go compiler.

The machine code is a sequence of instructions written in binary format (famous
zeros and ones). In principle, each instruction is represented by a number (opcode)
followed by optional operands in the form of a constant value or address in the main
memory. We can also refer to a few CPU core registers, which are tiny “slots” directly
on the CPU chip that can be used to store intermediate results. For example, on
AMD64 CPU, we have sixteen 64-bit general-purpose registers referred to as RAX,
RBX, RDX, RBP, RSI, RDI, RSP, and R8-R15.

While translating to machine code, the compiler often adds additional code like extra
memory safety bound checks. It automatically changes our code for known efficiency
patterns for a given architecture. Sometimes this might not be what we expect. This is
why inspecting the resulting machine code when troubleshooting some efficiency
problems is sometimes useful. Another advanced example of humans needing to read
machine code is when we need to reverse engineer programs without source code.

Unfortunately, machine code is impossible to read for humans unless you are a gen‐
ius. However, there is a great tool we can use in such situations. We can compile
Example 4-1 code to Assembly language instead of machine code. We can also disas‐
semble the compiled machine code to Assembly. The Assembly language represents
the lowest code level that can be practically read and (in theory) written by human
developers. It also represents well what will be interpreted by the CPU when con‐
verted to machine code.

It is worth mentioning that we can disassemble compiled code into various Assembly
dialects. For example:

• To Intel syntax using the standard Linux tool objdump -d -M intel <binary>
• To AT&T syntax using the similar command objdump -d -M att <binary>
• To Go “pseudo” assembly language using Go tooling go tool objdump -s
<binary>
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3 Similar output to Example 4-2 can be obtained by compiling the source code to Assembly using go build
-gcflags -S <source>.

4 Note that in the Go Assembly register, names are abstracted for portability. Since we will compile to 64-bit
architecture, SP and SI will mean RSP and RSI registers.

All three of these dialects are used in the various tools, and their syntax varies. To have
an easier time, always ensure what syntax your disassembly tool uses. The Go Assembly
is a dialect that tries to be as portable as possible, so it might not exactly represent the
machine code. Yet it is usually consistent and close enough for our purposes. It can
show all compilation optimization discussed in “Understanding Go Compiler” on page
118. This is why Go Assembly is what we will use throughout this book.

Do I Need to Understand Assembly?

You don’t need to know how to program in Assembly to write effi‐
cient Go code. Yet a rough understanding of Assembly and the
decompilation process are essential tools that can often reveal hid‐
den, lower-level computation waste. Practically speaking, it’s useful
primarily for advanced optimizations when we have already
applied all of the more straightforward optimizations. Assembly is
also beneficial for understanding the changes the compiler applies
to our code when translating to machine code. Sometimes these
might surprise us! Finally, it also tells us how the CPU works.

In Example 4-2 we can see a tiny, disassembled part of the compiled Example 4-1
(using go tool objsdump -s) that represents ret += num statement.3

Example 4-2. Addition part of code in Go Assembly language decompiled from the
compiled Example 4-1

// go tool objdump -s sum.test
ret += num
0x4f9b6d      488b742450    MOVQ 0x50(SP), SI  
0x4f9b72      4801c6       ADDQ AX, SI  

The first line represents a quadword (64 bit) MOV instruction that tells the CPU
to copy the 64-bit value from memory under the address stored in register SP
plus 80 bytes and put that into the SI register.4 The compiler decided that SI will
store the initial value of the return argument in our function, so the ret integer
variable for the ret+=num operation.

As a second instruction, we tell the CPU to add a quadword value from the AX
register to the SI register. The compiler used the AX register to store the num inte‐
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5 There can be incompatibilities, but mostly with special-purpose instructions like cryptographic or SIMD
instructions, which can be checked at runtime if they are available before execution.

ger variable, which we parsed from the string in previous instructions (outside
of this snippet).

The preceding example shows MOVQ and ADDQ instructions. To make things more
complex, each distinct CPU implementation allows a different set of instructions,
with different memory addressing, etc. The industry created the Instruction Set
Architecture (ISA) to specify a strict, portable interface between software and hard‐
ware. Thanks to the ISA, we can compile our program, for example, to machine code
compatible with the ISA for x86 architecture and run it on any x86 CPU.5 The ISA
defines data types, registers, main memory management, fixed set of instructions,
unique identification, input/output model, etc. There are various ISAs for different
types of CPUs. For example, both 32-bit and 64-bit Intel and AMD processors use
x86 ISA, and ARM uses its ARM ISA (for example, new Apple M chips use
ARMv8.6-A).

As far as Go developers are concerned, the ISA defines a set of instructions and regis‐
ters our compiled machine code can use. To produce a portable program, a compiler
can transform our Go code into machine code compatible with a specific ISA (archi‐
tecture) and the type of the desired operating system. In the next section, let’s look at
how the default Go compiler works. On the way, we will uncover mechanisms to help
the Go compiler produce efficient and fast machine code.

Understanding Go Compiler
The topic of building effective compilers can fill a few books. In this book, however,
we will try to understand the Go compiler basics that we, as Go developers interested
in efficient code, have to be aware of. Generally, many things are involved in execut‐
ing the Go code we write on the typical operating system, not only compilation. First,
we need to compile it using a compiler, and then we have to use a linker to link dif‐
ferent object files together, including potentially shared libraries. These compile and
link procedures, often called building, produce the executable (“binary”) that the
operating system can execute. During the initial start, called loading, other shared
libraries can be dynamically loaded too (e.g., Go plug-ins).

There are many code-building methods for Go code, designed for different target
environments. For example, Tiny Go is optimized to produce binaries for microcon‐
trollers, gopherjs produces JavaScript for in-browser execution, and android pro‐
duces programs executable on Android operating systems. However, this book will
focus on the default and most popular Go compiler and linking mechanism available
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in the go build command. The compiler itself is written in Go (initially in C). The
rough documentation and source code can be found here.

The go build can build our code into many different outputs. We can build executa‐
bles that require system libraries to be dynamically linked on startup. We can build
shared libraries or even C-compatible shared libraries. Yet the most common and
recommended way of using Go is to build executables with all dependencies statically
linked in. It offers a much better experience where invocation of our binary does not
need any system dependency of a specific version in a certain directory. It is a default
build mode for code with a starting main function that can also be explicitly invoked
using go build -buildmode=exe.

The go build command invokes both compilation and linking. While the linking
phase also performs certain optimizations and checks, the compiler probably per‐
forms the most complex duty. The Go compiler focuses on a single package at once.
It compiles package source code into the native code that the target architecture and
operating systems support. On top of that, it validates, optimizes that code, and pre‐
pares important metadata for debugging purposes. We need to “collaborate” with the
compiler (and operating system and hardware) to write efficient Go and not work
against it.

I tell everyone, if you’re not sure how to do something, ask the question around what is
the most idiomatic way to do this in Go. Because many of those answers are already
tuned to being sympathetic with the operating system of the hardware.

—Bill Kennedy, “Bill Kennedy on Mechanical Sympathy”

To make things more interesting, go build also offers a special cross-compilation
mode if you want to compile a mix of Go code that uses functions implemented in C,
C++, or even Fortran! This is possible if you enable a mode called cgo, which uses a
mix of C (or C++) compiler and Go compiler. Unfortunately, cgo is not recom‐
mended, and it should be avoided if possible. It makes the build process slow, the
performance of passing data between C and Go is questionable, and non-cgo compi‐
lation is already powerful enough to cross-compile binaries for different architectures
and operating systems. Luckily, most of the libraries are either pure Go or are using
pieces of Assembly that can be included in the Go binary without cgo.

To understand the impact of the compiler on our code, see the stages the Go com‐
piler performs in Figure 4-2. While go build includes such compilation, we can trig‐
ger just the compilation (without linking) alone using go tool compile.
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Figure 4-2. Stages performed by the Go compiler on each Go package

As mentioned previously, the whole process resides around the packages you use in
your Go program. Each package is compiled in separation, allowing parallel compila‐
tion and separation of concerns. The compilation flow presented in Figure 4-2 works
as follows:

1. The Go source code is first tokenized and parsed. The syntax is checked. The
syntax tree references files and file positions to produce meaningful error and
debugging information.

2. An abstract syntax tree (AST) is built. Such a tree notion is a common abstrac‐
tion that allows developers to create algorithms that easily transform or check
parsed statements. While in AST form, code is initially type-checked. Declared
but not used items are detected.

3. The first pass of optimization is performed. For example, the initial dead code is
eliminated, so the binary size can be smaller and less code needs to be compiled.
Then, escape analysis (mentioned in “Go Memory Management” on page 172) is
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6 Note that the structure methods, from a compiler perspective, are just functions, with the first argument
being that structure, so the same inlining technique applies here.

7 A function call needs more CPU instructions since the program has to pass argument variables and return
parameters through the stack, keep the current function’s state, rewind the stack after the function call, add
the new frame stack, etc.

performed to decide which variables can be placed on the stack and which have
to be allocated on the heap. On top of that, in this stage, function inlining occurs
for simple and small functions.

Function Inlining

Functions6 in programming language allow us to create
abstractions, hide complexities, and reduce repeated code. Yet
the cost of calling execution is nonzero. For example, a func‐
tion with a single argument call needs ~10 extra CPU instruc‐
tions.7 So, while the cost is fixed and typically at the level of
nanoseconds, it can matter if we have thousands of these calls
in the hot path and the function body is small enough that this
execution call matters.
There are also other benefits of inlining. For example, the
compiler can apply other optimizations more effectively in
code with fewer functions and does not need to use heap or
large stack memory (with copy) to pass arguments between
function scopes. Heap and stack are explained in “Go Memory
Management” on page 172.

The compiler automatically substitutes some function calls with the exact copy of
its body. This is called inlining or inline expansion. The logic is quite smart. For
instance, from Go 1.9, the compiler can inline both leaf and mid-stack functions.

Manual Inlining Is Rarely Needed

It is tempting for beginner engineers to micro-optimize by
manually inlining some of their functions. However, while
developers had to do it in the early days of programming, this
functionality is a fundamental duty of the compiler, which
usually knows better when and how to inline a function. Use
that fact by focusing on your code readability and maintaina‐
bility first regarding the choice of functions. Inline manually
only as a last resort, and always measure.
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8 Go tooling allows us to check the state of our program through each optimization in the SSA form thanks to
the GOSSAFUNC environment variable. It’s as easy as building our program with GOSSAFUNC=<function to
see> go build and opening the resulting ssa.html file. You can read more about it here.

9 You can unpack it with the tar <archive> or go tool pack e <archive> command. Go archive typically
contains the object file and package metadata in the __.PKGDEF file.

4. After early optimizations on the AST, the tree is converted to the Static Single
Assignment (SSA) form. This low-level, more explicit representation makes it
easier to perform further optimization passes using a set of rules. For example,
with the help of the SSA, the compiler can easily find places of unnecessary vari‐
able assignments.8

5. The compiler applies further machine-independent optimization rules. So, for
example, statements like y := 0*x will be simplified to y :=0. The complete
list of rules is enormous and only confirms how complex this space is. Further‐
more, some code pieces can be replaced by an intrinsic function—heavily opti‐
mized equivalent code (e.g., in raw Assembly).

6. Based on GOARCH and GOOS environment variables, the compiler invokes the
genssa function that converts SSA to the machine code for the desired architec‐
ture (ISA) and operating system.

7. Further ISA- and operating system–specific optimizations are applied.
8. Package machine code that is not dead is built into a single object file (with the .o

suffix) and debug information.

The final “object file” is compressed into a tar file called a Go archive, usually with .a
file suffix.9 Such archive files for each package can be used by Go linker (or other
linkers) to combine all into a single executable, commonly called a binary file.
Depending on the operating system, such a file follows a certain format, telling the
system how to execute and use it. Typically for Linux, it will be an Executable and
Linkable Format (ELF). On Windows, it might be Portable Executable (PE).

The machine code is not the only part of such a binary file. It also carries the pro‐
gram’s static data, like global variables and constants. The executable file also con‐
tains a lot of debugging information that can take a considerable amount of binary
size, like a simple symbols table, basic type information (for reflection), and PC-to-
line mapping (address of the instruction to the line in the source code where the
command was). That extra information enables valuable debugging tools to link
machine code to the source code. Many debugging tools use it, for example, “Profil‐
ing in Go” on page 331 and the aforementioned objdump tool. For compatibility with
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10 However, there are discussions to remove it from the default building process.

11 Bound check elimination is not explained in this book, as it’s a rare optimization idea.

debugging software like Delve or GDB, the DWARF table is also attached to the
binary file.10

On top of the already long list of responsibilities, the Go compiler must perform extra
steps to ensure Go memory safety. For instance, the compiler can often tell during
compile time that some commands will use a memory space that is safe to use (con‐
tains an expected data structure and is reserved for our program). However, there are
cases when this cannot be determined during compilation, so additional checks have
to be done at runtime, e.g., extra bound checks or nil checks.

We will discuss this in more detail in “Go Memory Management” on page 172, but
for our conversation about CPU, we need to acknowledge that such checks can take
our valuable CPU time. While the Go compiler tries to eliminate these checks when
unnecessary (e.g., in the bound check elimination stage during SSA optimizations),
there might be cases where we need to write code in a way that helps the compiler
eliminate some checks.11

There are many different configuration options for the Go build process. The first
large batch of options can be passed through go build -ldflags="<flags>", which
represents linker command options (the ld prefix traditionally stands for Linux
linker). For example:

• We can omit the DWARF table, thus reducing the binary size using
-ldflags="-w" (recommended for production build if you don’t use debuggers
there).

• We can further reduce the size with -ldflags= "-s -w", removing the DWARF
and symbols tables with other debug information. I would not recommend the
latter option, as non-DWARF elements allow important runtime routines, like
gathering profiles.

Similarly, go build -gcflags="<flags>" represents Go compiler options (gc stands
for Go Compiler; don’t confuse it with GC, which means garbage collection, as
explained in “Garbage Collection” on page 185). For example:

• -gcflags="-S" prints Go Assembly from the source code.
• -gcflags="-N" disables all compiler optimizations.
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• -gcflags="-m=<number> builds the code while printing the main optimization
decisions, where the number represents the level of detail. See Example 4-3 for
the automatic compiler optimizations made on our Sum function in Example 4-1.

Example 4-3. Output of go build -gcflags="-m=1" sum.go on Example 4-1 code

# command-line-arguments
./sum.go:10:27: inlining call to os.ReadFile 
./sum.go:15:34: inlining call to bytes.Split 
./sum.go:9:10: leaking param: fileName 
./sum.go:15:44: ([]byte)("\n") does not escape 
./sum.go:16:38: string(line) escapes to heap 

os.ReadFile and bytes.Split are short enough, so the compiler can copy the
whole body of the Sum function.

The fileName argument is “leaking,” meaning this function keeps its parameter
alive after it returns (it can still be on stack, though).

Memory for []byte("\n") will be allocated on the stack. Messages like this help
debug escape analysis. Learn more about it here.

Memory for string(line) will be allocated in a more expensive heap.

The compiler will print more details with an increased -m number. For example, -m=3
will explain why certain decisions were made. This option is handy when we expect
certain optimization (inlining or keeping variables on the stack) to occur, but we still
see an overhead while benchmarking in our TFBO cycle (“Efficiency-Aware Develop‐
ment Flow” on page 102).

The Go compiler implementation is highly tested and mature, but there are limitless
ways of writing the same functionality. There might be edge cases when our imple‐
mentation confuses the compiler, so it does not apply certain naive implementations.
Benchmarking if there is a problem, profiling the code, and confirming with the -m
option help. More detailed optimizations can also be printed using further options.
For example, -gcflags="-d=ssa/check_bce/debug=1" prints all bound check elimi‐
nation optimizations.
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12 This is very often used in standard libraries for critical code.

The Simpler the Code, the More Effective Compiler Optimizations
Will Be

Too-clever code is hard to read and makes it difficult to maintain
programmed functionality. But it also can confuse the compiler
that tries to match patterns with their optimized equivalents. Using
idiomatic code, keeping your functions and loops straightforward,
increases the chances that the compiler applies the optimizations
so you don’t need to!

Knowing compiler internals helps, especially when it comes to more advanced opti‐
mizations tricks, which among other things, help compilers optimize our code.
Unfortunately, it also means our optimizations might be a bit fragile regarding porta‐
bility between different compiler versions. The Go team reserves rights to change
compiler implementation and flags since they are not part of any specification. This
might mean that the way you wrote a function that allows automatic inline by the
compiler might not trigger inline in the next version of the Go compiler. This is why
it’s even more important to benchmark and closely observe the efficiency of your
program when you switch to a different Go version.

To sum up, the compilation process has a crucial role in offloading programmers
from pretty tedious work. Without compiler optimizations, we would need to write
more code to get to the same efficiency level while sacrificing readability and porta‐
bility. Instead, if you focus on making your code simple, you can trust that the Go
compiler will do a good enough job. If you need to increase efficiency for a particular
hot path, it might be beneficial to double-check if the compiler did what you
expected. For example, it might be that the compiler did not match our code with
common optimization; there is some extra memory safety check that the compiler
could further eliminate or function that could be inlined but was not. In very extreme
cases, there might be even a value to write a dedicated assembly code and import it
from the Go code.12

The Go building process constructs fully executable machine code from our Go
source code. The operating system loads machine code to memory and writes the
first instruction address to the program counter (PC) register when it needs to be
executed. From there, the CPU core can compute each instruction one by one. At
first glance, it might mean that the CPU has a relatively simple job to do. But
unfortunately, a memory wall problem causes CPU makers to continuously work on
additional hardware optimizations that change how these instructions are executed.
Understanding these mechanisms will allow us to control the efficiency and speed of
our Go programs even better. Let’s uncover this problem in the next section.
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13 On top of SISD and SIMD, Flynn’s taxonomy also specifies MISD, which describes performing multiple
instructions on the same data, and MIMD, which describes full parallelism. MISD is rare and only happens
when reliability is important. For example, four flight control computers perform exactly the same computa‐
tions for quadruple error checks in every NASA space shuttle. MIMD, on the other hand, is more common
thanks to multicore or even multi-CPU designs.

CPU and Memory Wall Problem
To understand the memory wall and its consequences, let’s dive briefly into CPU
core internals. The details and implementation of the CPU core change over time for
better efficiency (usually getting more complex), but the fundamentals stay the same.
In principle, a Control Unit, shown in Figure 4-1, manages reads from memory
through various L-caches (from smallest and fastest), decodes program instructions,
coordinates their execution in the Arithmetic Logic Unit (ALU), and handles
interruptions.

An important fact is that the CPU works in cycles. Most CPUs in one cycle can per‐
form one instruction on one set of tiny data. This pattern is called the Single Instruc‐
tion Single Data (SISD) in characteristics mentioned in Flynn’s taxonomy, and it’s
the key aspect of the von Neumann architecture. Some CPUs also allow Single
Instruction Multiple Data (SIMD)13 processing with special instructions like SSE,
which allows the same arithmetic operation on four floating numbers in one cycle.
Unfortunately, these instructions are not straightforward to use in Go and are there‐
fore quite rarely seen.

Meanwhile, registers are the fastest local storage available to the CPU core. Because
they are small circuits wired directly into the ALU, it takes only one CPU cycle to
read their data. Unfortunately, there are also only a few of them (depending on the
CPU, typically 16 for general use), and their size is usually not larger than 64 bits.
This means they are used as short-time variables in our program lifetime. Some of the
registers can be used for our machine code. Others are reserved for CPU use. For
example, the PC register holds the address of the next instruction that the CPU
should fetch, decode, and execute.

Computation is all about the data. As we learned in Chapter 1, there is lots of data
nowadays, scattered around different storage mediums—uncomparably more than
what’s available to store in a single CPU register. Moreover, a single CPU cycle is
faster than accessing data from the main memory (RAM)—on average, one hundred
times faster, as we read from our rough napkin math of latencies in Appendix A that
we will use throughout this book. As discussed in the misconception “Hardware Is
Getting Faster and Cheaper” on page 17, technology allows us to create CPU cores
with dynamic clock speed, yet the maximum is always around 4 GHz. Funny enough,
the fact we can’t make faster CPU cores is not the most important problem since our
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14 This is why we see specialized chips (called Neural Processing Units, or NPUs) appearing in the commodity
devices—for example, Tensor Processing Unit (TPU) in Google phones, A14 Bionic chip in iPhones, and
dedicated NPU in the M1 chip in Apple laptops.

CPU cores are already… too fast! It’s a fact we cannot make faster memory, which
causes the main efficiency issues in CPUs nowadays.

We can execute something in the ballpark of 36 billion instructions every second.
Unfortunately, most of that time is spent waiting for data. About 50% of the time in
almost every application. In some applications upwards of 75% of the time is spent
waiting for data rather than executing instructions. If this horrifies you, good. It
should.

— Chandler Carruth, “Efficiency with Algorithms, Performance with Data
Structures”

The aforementioned problem is often referred to as a “memory wall” problem. As a
result of this problem, we risk wasting dozens, if not hundreds, of CPU cycles per sin‐
gle instruction, since fetching that instruction and data (and then saving the results)
takes ages.

This problem is so prominent that it has triggered recent discussions about revisiting
von Neumann’s architecture as machine learning (ML) workloads (e.g., neural net‐
works) for artificial intelligence (AI) use become more popular. These workloads are
especially affected by the memory wall problem because most of the time is spent
performing complex matrix math calculations, which require traversing large
amounts of memory.14

The memory wall problem effectively limits how fast our programs do their job. It
also impacts the overall energy efficiency that matters for mobile applications. Never‐
theless, it is the best common general-purpose hardware nowadays. Industry mitiga‐
ted many of these problems by developing a few main CPU optimizations we will
discuss below: the hierarchical cache system, pipelining, out-of-order execution, and
hyperthreading. These directly impact our low-level Go code efficiency, especially in
terms of how fast our program will be executed.

Hierachical Cache System
All modern CPUs include local, fast, small caches for often-used data. L1, L2, L3 (and
sometimes L4) caches are on-chip static random-access memory (SRAM) circuits.
SRAM uses different technology for storing data faster than our main memory RAM
but is much more expensive to use and produce in large capacities (main memory is
explained in “Physical Memory” on page 153). Therefore, L-caches are touched first
when the CPU needs to fetch instruction or data for an instruction from the main
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15 Sizes of caches can vary. Example sizes are taken from my laptop. You can check the sizes of your CPU caches
in Linux by using the sudo dmidecode -t cache command.

memory (RAM). The way the CPU is using L-caches is presented in Figure 4-3.15 In
the example, we will use a simple CPU instruction MOVQ, explained in Example 4-2.

Figure 4-3. The “look up” cache method performed by the CPU to read bytes from the
main memory through L-caches

To copy 64 bits (MOVQ command) from a specific memory address to register SI, we
must access the data that normally resides in the main memory. Since reading from
RAM is slow, it uses L-caches to check for data first. The CPU will ask the L1 cache
for these bytes on the first try. If the data is not there (cache miss), it visits a larger L2
cache, then the largest cache L3, then eventually main memory (RAM). In any of
these misses, the CPU will try to fetch the complete “cache line” (typically 64 bytes, so
eight times the size of the register), save it in all caches, and only use these specific
bytes.
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16 If a CPU can in total perform up to one instruction per cycle (IPC ⇐ 1), we call it a scalar CPU. Most modern
CPU cores have IPC ⇐ 1, but one CPU has more than one core, which makes IPC > 1. This makes these
CPUs superscalar. IPC has quickly become a performance metric for CPUs.

Reading more bytes at once (cache line) is useful as it takes the same latency as read‐
ing a single byte (explained in “Physical Memory” on page 153). Statistically, it is also
likely that the next operation needs bytes next to the previously accessed area.
L-caches partially mitigate the memory latency problem and reduce the overall
amount of data to be transferred, preserving memory bandwidth.

The first direct consequence of having L-caches in our CPUs is that the smaller and
more aligned the data structure we define, the better the efficiency. Such a structure
will have more chances to fit fully in lower-level caches and avoid expensive cache
misses. The second result is that instructions on sequential data will be faster since
cache lines typically contain multiple items stored next to each other.

Pipelining and Out-of-Order Execution
If the data were magically accessible in zero time, we would have a perfect situation
where every CPU core cycle performs a meaningful instruction, executing instruc‐
tions as fast as CPU core speed allows. Since this is not the case, modern CPUs try to
keep every part of the CPU core busy using cascading pipelining. In principle, the
CPU core can perform many stages required for instruction execution at once in one
cycle. This means we can exploit Instruction-Level Parallelism (ILP) to execute, for
example, five independent instructions in five CPU cycles, giving us that sweet aver‐
age of one instruction per cycle (IPC).16 For example, in an initial 5-stage pipeline
system (modern CPUs have 14–24 stages!), a single CPU core computes 5 instruc‐
tions at the same time within a cycle, as presented in Figure 4-4.

Figure 4-4. Example five-stage pipeline
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17 Huge cost is not an overstatement. Latency of context switch depends on many factors, but it was measured
that in the best case, direct latency (including operating system switch latency) is around 1,350
nanoseconds—2,200 nanoseconds if it has to migrate to a different core. This is only a direct latency, from the
end of one thread to the start of another. The total latency that would include the indirect cost in the form of
cache and pipeline warm-up could be as high as 10,000 nanoseconds (and this is what we see in Table A-1).
During this time, we could compute something like 40,000 instructions.

The classic five-stage pipeline consists of five operations:

IF

Fetch the instruction to execute.

ID

Decode the instruction.

EX

Start the execution of the instruction.

MEM

Fetch the operands for the execution.

WB

Write back the result of the operation (if any).

To make it even more complex, as we discussed in the L-caches section, it is rarely
the case that even the fetch of the data (e.g., the MEM stage) takes only one cycle. To
mitigate this, the CPU core also employs a technique called out-of-order execution.
In this method, the CPU attempts to schedule instructions in an order governed by
the availability of the input data and execution unit (if possible) rather than by their
original order in the program. For our purposes, it is enough to think about it as a
complex, more dynamic pipeline that utilizes internal queues for more efficient CPU
execution.

The resulting pipelined and out-of-order CPU execution is complex, but the preced‐
ing simplified explanation should be all we need to understand two critical conse‐
quences for us as developers. The first, trivial one is that every switch of the
instruction stream has a huge cost (e.g., in latency),17 because the pipeline has to reset
and start from scratch, on top of the obvious cache trashing. We haven’t yet men‐
tioned the operating system overhead that must be added on top. We often call this a
context switch, which is inevitable in modern computers since the typical operating
systems use preemptive task scheduling. In these systems, the execution flow of the
single CPU core can be preempted many times a second, which might matter in
extreme cases. We will discuss how to influence such behavior in “Operating System
Scheduler” on page 134.
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The second consequence is that the more predictive our code is, the better. This is
because pipelining requires the CPU cores to perform complex branch predictions to
find instructions that will be executed after the current one. If our code is full of
branches like if statements, switch cases, or jump statements like continue, finding
even two instructions to execute simultaneously might be impossible, simply because
one instruction might decide on what instruction will be done next. This is called
data dependency. Modern CPU core implementation goes even further by perform‐
ing speculative execution. Since it does not know which instruction is next, it picks
the most likely one and assumes that such a branch will be chosen. Unnecessary exe‐
cutions on the wrong branches are better than wasted CPU cycles doing nothing.
Therefore, many branchless coding techniques have emerged, which help the CPU
predict branches and might result in faster code. Some methods are applied automat‐
ically by the Go compiler, but sometimes, manual improvements have to be added.

Generally speaking, the simpler the code, with fewer nested conditionals and loops,
the better for the branch predictor. This is why we often hear that the code that “leans
to the left” is faster.

In my experience [I saw] repeatedly that code that wants to be fast, go to the left of the
page. So if you [write] like a loop and the if, and the for and a switch, it’s not going to
be fast. By the way, the Linux kernel, do you know what the coding standard is? Eight
characters tab, 80 characters line width. You can’t write bad code in the Linux kernel.
You can’t write slow code there. ... The moment you have too many ifs and decision
points ... in your code, the efficiency is out of the window.

—Andrei Alexandrescu, “Speed Is Found in the Minds of People”

The existence of branch predictors and speculative approaches in the CPU has
another consequence. It causes contiguous memory data structures to perform much
better in pipelined CPU architecture with L-caches.

Contiguous Memory Structure Matters

Practically speaking, on modern CPUs, developers in most cases
should prefer contiguous memory data structures like arrays
instead of linked lists in their programs. This is because a typical
linked-like list implementation (e.g., a tree) uses memory pointers
to the next, past, child, or parent elements. This means that when
iterating over such a structure, the CPU core can’t tell what data
and what instruction we will do next until we visit the node and
check that pointer. This effectively limits the speculation capabili‐
ties, causing inefficient CPU usage.
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18 In some sources, this technique is also called CPU threading (aka hardware threads). I will avoid this termi‐
nology in this book due to possible confusion with operating system threads.

19 Do not confuse Hyper-Threading logical cores with virtual CPUs (vCPUs) referenced when we use virtualiza‐
tions like virtual machines. Guest operating systems use the machine’s physical or logical CPUs depending on
host choice, but in both cases, they are called vCPUs.

Hyper-Threading
Hyper-Threading is Intel’s proprietary name for the CPU optimization technique
called simultaneous multithreading (SMT).18 Other CPU makers implement SMT too.
This method allows a single CPU core to operate in a mode visible to programs and
operating systems as two logical CPU cores.19 SMT prompts the operating system to
schedule two threads onto the same physical CPU core. While a single physical core
will never execute more than one instruction at a time, more instructions in the
queue help make the CPU core busy during idle times. Given the memory access wait
times, this can utilize a single CPU core more without impacting the latency of the
process execution. In addition, extra registers in SMT enable CPUs to allow for faster
context switches between multiple threads running on a single physical core.

SMT has to be supported and integrated with the operating system. You should see
twice as many cores as physical ones in your machine when enabled. To understand
if your CPU supports Hyper-Threading, check the “thread(s) per core” information
in the specifications. For example, using the lscpu Linux command in Example 4-4,
my CPU has two threads, meaning Hyper-Threading is available.

Example 4-4. Output of the lscpu command on my Linux laptop

Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   39 bits physical, 48 bits virtual
CPU(s):                          12
On-line CPU(s) list:             0-11
Thread(s) per core:              2 
Core(s) per socket:              6
Socket(s):                       1
NUMA node(s):                    1
Vendor ID:                       GenuineIntel
CPU family:                      6
Model:                           158
Model name:                      Intel(R) Core(TM) i7-9850H CPU @ 2.60GHz
CPU MHz:                         2600.000
CPU max MHz:                     4600.0000
CPU min MHz:                     800.0000

My CPU supports SMT, and it’s enabled on my Linux installation.
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The SMT is usually enabled by default but can be turned to on demand on newer ker‐
nels. This poses one consequence when running our Go programs. We can usually
choose if we should enable or disable this mechanism for our processes. But should
we? In most cases, it is better to keep it enabled for our Go programs as it allows us to
fully utilize physical cores when running multiple different tasks on a single com‐
puter. Yet, in some extreme cases, it might be worth dedicating full physical core to a
single process to ensure the highest quality of service. Generally, a benchmark on
each specific hardware should tell us.

To sum up, all the aforementioned CPU optimizations and the corresponding pro‐
gramming techniques utilizing that knowledge tend to be used only at the very end of
the optimization cycle and only when we want to squeeze out the last dozen nanosec‐
onds on the critical path.

Three Principles of Writing CPU-Efficient Code on Critical Path

The three basic rules that will yield CPU-friendly code are as
follows:

• Use algorithms that do less work.
• Focus on writing low-complexity code that will be easier to

optimize for the compiler and CPU branch predictors. Ideally,
separate “hot” from “cold” code.

• Favor contiguous memory data structures when you plan to
iterate or traverse over them a lot.

With this brief understanding of CPU hardware dynamics, let’s dive deeper into the
essential software types that allow us to run thousands of programs simultaneously
on shared hardware—schedulers.

Schedulers
Scheduling generally means allocating necessary, usually limited, resources for a cer‐
tain process to finish. For example, assembling car parts must be tightly scheduled in
a certain place at a certain time in a car factory to avoid downtime. We might also
need to schedule a meeting among certain attendees with only certain time slots of
the day free.

In modern computers or clusters of servers, we have thousands of programs that have
to be running on shared resources like CPU, memory, network, disks, etc. That’s why
the industry developed many types of scheduling software (commonly called schedu‐
lers) focused on allocating these programs to free resources on many levels.
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In this section, we will discuss CPU scheduling. Starting from the bottom level, we
have an operating system that schedules arbitrary programs on a limited number of
physical CPUs. Operating system mechanisms should tell us how multiple programs
running simultaneously can impact our CPU resources and, in effect, our own Go
program execution latency. It will also help us understand how a developer can uti‐
lize multiple CPU cores simultaneously, in parallel or concurrently, to achieve faster
execution.

Operating System Scheduler
As with compilers, there are many different operating systems (OSes), each with dif‐
ferent task scheduling and resource management logic. While most of the systems
operate on similar abstractions (e.g., threads, processes with priorities), we will focus
on the Linux operating system in this book. Its core, called the kernel, has many
important functionalities, like managing memory, devices, network access, security,
and more. It also ensures program execution using a configurable component called a
scheduler.

As a central part of resource management, the OS thread scheduler must maintain the
following, simple, invariant: make sure that ready threads are scheduled on available
cores.

—J.P. Lozi et al., “The Linux Scheduler: A Decade of Wasted Cores”

The smallest scheduling unit for the Linux scheduler is called an OS thread. The
thread (sometimes also referred to as a task or lightweight process) contains an inde‐
pendent set of machine code in the form of CPU instructions designed to run
sequentially. While threads can maintain their execution state, stack, and register set,
they cannot run out of context.

Each thread runs as a part of the process. The process represents a program in execu‐
tion and can be identified by its Process Identification Number (PID). When we tell
Linux OS to execute our compiled program, a new process is created (for example,
when a fork system call is used).

The process creation includes the assignment of a new PID, the creation of the initial
thread with its machine code (our func main() in the Go code) and stack, files for
standard outputs and input, and tons of other data (e.g., list of open file descriptors,
statistics, limits, attributes, mounted items, groups, etc.). On top of that, a new mem‐
ory address space is created, which has to be protected from other processes. All of
that information is maintained under the dedicated directory /proc/<PID> for the
duration of the program execution.

Threads can create new threads (e.g., using the clone syscall) that will have inde‐
pendent machine code sequences but will share the same memory address space.
Threads can also create new processes (e.g., using fork) that will run in isolation and
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execute the desired program. Threads maintain their execution state: Running,
Ready, and Blocked. Possible transformations of these states are presented in
Figure 4-5.

Thread state tells the scheduler what the thread is doing at the moment:

Running
Thread is assigned to the CPU core and is doing its job.

Blocked
Thread is waiting on some event that potentially takes longer than a context
switch. For example, a thread reads from a network connection and is waiting for
a packet or its turn on the mutex lock. This is an opportunity for the scheduler to
step in and allow other threads to run.

Ready
Thread is ready for execution but is waiting for its turn.

Figure 4-5. Thread states as seen by the Linux OS scheduler

As you might already notice, the Linux scheduler does a preemptive type of thread
scheduling. Preemptive means the scheduler can freeze a thread execution at any
time. In modern OS, we always have more threads to be executed than available CPU
cores, so the scheduler must run multiple “ready” threads on a single CPU core. The
thread is preempted every time it waits for an I/O request or other events. The thread
can also tell the operating system to yield itself (e.g., using the sched_yield syscall).
When preempted, it enters a “blocked” state, and another thread can take its place in
the meantime.

The naive scheduling algorithm could wait for the thread to preempt itself. This
would work great for I/O bound threads, which are often in the “Blocked” state—for
example, interactive systems with graphical interfaces or lightweight web servers
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working with network calls. But what if the thread is CPU bound, which means it
spends most of its time using only CPU and memory—for example, doing some
computation-heavy jobs like linear search, multiplying matrixes, or brute-forcing a
hashed password? In such cases, the CPU core could be busy on one task for minutes,
which will starve all other threads in the system. For example, imagine not being able
to type in your browser or resize a window for a minute—it would look like a long
system freeze!

This primary Linux scheduler implementation addresses that problem. It is called a
Completely Fair Scheduler (CFS), and it assigns threads in short turns. Each thread is
given a certain slice of the CPU time, typically something between 1 ms and 20 ms,
which creates the illusion that threads are running simultaneously. It especially helps
desktop systems, which must be responsive to human interactions. There are a few
other important consequences of that design:

• The more threads that want to be executed, the less time they will have in each
turn. However, this can result in lower productive utilization of the CPU core,
which starts to spend more time on expensive context switches.

• On the overloaded machine, each thread has shorter turns on the CPU core and
can also end up having fewer turns per second. While none of the threads is
completely starved (blocked), their execution can significantly slow down.

CPU Overloading

Writing CPU-efficient code means our program wastes signif‐
icantly fewer CPU cycles. Of course, this is always great, but
the efficient implementation might be still doing its job very
slowly if the CPU is overloaded.
An overloaded CPU or system means too many threads are
competing for the available CPU cores. As a result, the
machine might be overscheduled, or a process or two spawns
too many threads to perform some heavy task (we call this sit‐
uation a noisy neighbor). If an overloaded CPU situation
occurs, checking the machine CPU utilization metric should
show us CPU cores running at 100% capacity. Every thread
will be executed slower in such a case, resulting in a frozen
system, timeouts, and lack of responsiveness.

• It is hard to rely on pure program execution latency (sometimes referred to as
wall time or wall-clock time) to estimate our program CPU efficiency. This is
because modern OS schedulers are preemptive, and the program often waits for
other I/O or synchronizations. As a result, it’s pretty hard to reliably check if,
after a fix, our program utilizes the CPU better than the previous implementa‐
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20 There are lots of good materials about tuning up the operating system. Many virtualization mechanisms, like
containers with orchestrating systems like Kubernetes, also have their notion of priorities and affinities (pin‐
ning processes to specific cores or machines). In this book, we focus on writing efficient code, but we must be
aware that execution environment tuning has an important role in ensuring quick and reliable program
executions.

tion. This is why the industry defined an important metric to gather how long
our program’s process (all its threads) spent in the “Running” state on all
CPU cores. We usually call it CPU time and we will discuss it in “CPU Usage” on
page 229.

CPU Time on an Overloaded Machine

Measuring CPU time is a great way to check our program’s
CPU efficiency. However, be careful when looking at the CPU
time from some narrow window of process execution time.
For example, lower CPU time might mean our process was
not using much CPU during that moment, but it might also
represent an overloaded CPU.

Overall, sharing processes on the same system has its problems. That’s why in
virtualized environments, we tend to reserve these resources. For example, we
can limit CPU use of one process to 200 milliseconds of CPU time per second, so
20% of one CPU core.

• The final consequence of the CFS design is that it is too fair to ensure dedicated
CPU time for a single thread. The Linux scheduler has priorities, a user-
configurable “niceness” flag, and different scheduling policies. Modern Linux OS
even has a scheduling policy that uses a special real-time scheduler in place of
CFS for threads that need to be executed in the first order.20

Unfortunately, even with a real-time scheduler, a Linux system cannot ensure
that higher-priority threads will have all the CPU time they need, as it will still
try to ensure that low-priority threads are not starved. Furthermore, because
both CFS and real-time counterparts are preemptive, they are not deterministic
and predictive. As a result, any task with hard real-time requirements (e.g., milli‐
second trading or airplane software) can’t be guaranteed enough execution time
before its deadline. This is why some companies develop their own schedulers or
systems for strict real-time programs like Zephyr OS.

Despite the somewhat complex characteristics of the CFS scheduler, it remains the
most popular thread orchestration system available in modern Linux systems. In
2016 the CFS was also overhauled for multicore machines and NUMA architectures,
based on findings from a famous research paper. As a result, threads are now smartly
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21 Details around Go runtime implementing Go scheduling are pretty impressive. Essentially, Go does every‐
thing to keep the OS thread busy (spinning the OS thread) so it’s not moving to a blocking state as long as
possible. If needed, it can steal goroutines from other threads, poll networks, etc., to ensure we keep the CPU
busy so the OS does not preempt the Go process.

distributed across idle cores while ensuring migrations are not done too often and
not among threads sharing the same resources.

With a basic understanding of the OS scheduler, let’s dive into why the Go scheduler
exists and how it enables developers to program multiple tasks to run concurrently
on single or multiple CPU cores.

Go Runtime Scheduler
The Go concurrency framework is built on the premise that it’s hard for a single flow
of CPU instructions (e.g., function) to utilize all CPU cycles due to the I/O-bound
nature of the typical workflow. While OS thread abstraction mitigates this by multi‐
plexing threads into a set of CPU cores, the Go language brings another layer—a
goroutine—that multiplexes functions on top of a set of threads. The idea for gorou‐
tines is similar to coroutines, but since it is not the same (goroutines can be preemp‐
ted) and since it’s in Go language, it has the go prefix. Similar to the OS thread, when
the goroutine is blocked on a system call or I/O, the Go scheduler (not OS!) can
quickly switch to a different goroutine, which will resume on the same thread (or a
different one if needed).

Essentially, Go has turned I/O-bound work [on the application level] into CPU-bound
work at the OS level. Since all the context switching is happening at the application
level, we don’t lose the same 12K instructions (on average) per context switch that we
were losing when using threads. In Go, those same context switches are costing you
200 nanoseconds or 2.4K instructions. The scheduler is also helping with gains on
cache-line efficiencies and NUMA. This is why we don’t need more threads than we
have virtual cores.

—William Kennedy, “Scheduling in Go: Part II—Go Scheduler”

As a result, we have in Go very cheap execution “threads” in the user space (a new
goroutine only allocates a few kilobytes for the initial, local stack), which reduce the
number of competing threads in our machine and allow hundreds of goroutines in
our program without extensive overhead. Just one OS thread per CPU core should be
enough to get all the work in our goroutines done.21 This enables many readability
patterns—like event loops, map-reduce, pipes, iterators, and more—without involv‐
ing more expensive kernel multithreading.
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22 In practice, there are ways to get this information using debug tracing. However, we should not rely on the
program knowing which goroutine is a parent goroutine for normal execution flow.

Using Go concurrency in the form of goroutines is an excellent
way to:

• Represent complex asynchronous abstractions (e.g., events)
• Utilize our CPU to the fullest for I/O-bound tasks
• Create a multithreaded application that can utilize multiple

CPUs to execute faster

Starting another goroutine is very easy in Go. It is built in the language via a go
<func>() syntax. Example 4-5 shows a function that starts two goroutines and fin‐
ishes its work.

Example 4-5. A function that starts two goroutines

func anotherFunction(arg1 string) { /*...*/ }

func function() {
   // ... 

   go func() {
      // ... 
   }()

   go anotherFunction("argument1") 

   return 
}

The scope of the current goroutine.

The scope of a new goroutine that will run concurrently any moment now.

anotherFunction will start running concurrently any moment now.

When function terminates, the two goroutines we started can still run.

It’s important to remember that all goroutines have a flat hierarchy between each
other. Technically, there is no difference when goroutine A started B or B started A.
In both cases, both A and B goroutines are equal, and they don’t know about each
other.22 They also cannot stop each other unless we implement explicit communica‐
tion or synchronization and “ask” the goroutine to shut down. The only exception is
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the main goroutine that starts with the main() function. If the main goroutine fin‐
ishes, the whole program terminates, killing all other goroutines forcefully.

Regarding communication, goroutines, similarly to OS threads, have access to the
same memory space within the process. This means that we can pass data between
goroutines using shared memory. However, this is not so trivial because almost no
operation in Go is atomic. Concurrent writing (or writing and reading) from the
same memory can cause data races, leading to nondeterministic behavior or even
data corruption. To solve this, we need to use synchronization techniques like explicit
atomic function (as presented in Example 4-6) or mutex (as shown in Example 4-7),
so in other words, a lock.

Example 4-6. Safe multigoroutine communication through dedicated atomic addition

func sharingWithAtomic() (sum int64) {
   var wg sync.WaitGroup 

   concurrentFn := func() {
      atomic.AddInt64(&sum, randInt64())
      wg.Done()
   }
   wg.Add(3)
   go concurrentFn()
   go concurrentFn()
   go concurrentFn()

   wg.Wait()
   return sum
}

Notice that while we use atomic to synchronize additions between concurrentFn
goroutines, we use additional sync.WaitGroup (another form of locking) to wait
for all these goroutines to finish. We do the same in Example 4-7.

Example 4-7. Safe multigoroutine communication through mutex (lock)

func sharingWithMutex() (sum int64) {
   var wg sync.WaitGroup
   var mu sync.Mutex

   concurrentFn := func() {
      mu.Lock()
      sum += randInt64()
      mu.Unlock()
      wg.Done()
   }
   wg.Add(3)
   go concurrentFn()
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23 Funny enough, even atomic operations on CPU require some kind of locking. The difference is that instead of
specialized locking mechanisms like spinlock, atomic instruction can use faster memory bus lock.

24 Assuming the programmer keeps to that rule. There is a way to send a pointer variable (e.g., *string) that
points to shared memory, which violates the rule of sharing information through communicating.

   go concurrentFn()
   go concurrentFn()

   wg.Wait()
   return sum
}

The choice between atomic and lock depends on readability, efficiency requirements,
and what operation you want to synchronize. For example, if you want to concur‐
rently perform a simple operation on a number like value write or read, addition,
substitution, or compare and swap, you can consider the atomic package. Atomic is
often more efficient than mutexes (lock) since the compiler will translate them into
special atomic CPU operations that can change data under a single memory address
in a thread-safe way.23

If, however, using atomic impacts the readability of our code, the code is not on a criti‐
cal path, or we have a more complex operation to synchronize, we can use a lock. Go
offers sync.Mutex, which allows simple locking, and sync.RWMutex, which allows lock‐
ing for reads (RLock()) and writes (Lock()). If you have many goroutines that do not
modify shared memory, lock them with RLock() so there is no lock contention between
them, since concurrent read of shared memory is safe. Only when a goroutine wants to
modify that memory can it acquire a full lock using Lock() that will block all readers.

On the other hand, lock and atomic are not the only choices. The Go language has
another ace in its hand on this subject. On top of the coroutine concept, Go also uti‐
lizes C. A. R. Hoare’s Communicating Sequential Processes (CSP) paradigm, which
can also be seen as a type-safe generalization of Unix pipes.

Do not communicate by sharing memory; instead, share memory by communicating.
—“Effective Go”

This model encourages sharing data by implementing a communication pipeline
between goroutines using a channel concept. Sharing the same memory address to
pass some data requires extra synchronization. However, suppose one goroutine
sends that data to some channel, and another receives it. In that case, the whole flow
naturally synchronizes itself, and shared data is never accessed by two goroutines
simultaneously, ensuring thread safety.24 Example channel communication is presen‐
ted in Example 4-8.
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Example 4-8. An example of memory-safe multigoroutine communication through the
channel

func sharingWithChannel() (sum int64) {
   result := make(chan int64) 

   concurrentFn := func() {
      // ...
      result <- randInt64() 
   }
   go concurrentFn()
   go concurrentFn()
   go concurrentFn()

   for i := 0; i < 3; i++ { 
      sum += <-result 
   }
   close(result) 
   return sum
}

Channel can be created in Go with the ch := make(chan <type>, <buffer
size>) syntax.

We can send values of a given type to our channel.

Notice that in this example, we don’t need sync.WaitGroup since we abuse the
knowledge of how many exact messages we expect to receive. If we did not have
that information, we would need a waiting group or another mechanism.

We can read values of a given type from our channel.

Channels should also be closed if we don’t plan to send anything through them
anymore. This releases resources and unblocks certain receiving and sending
flows (more on that later).

The important aspect of channels is that they can be buffered. In such a case, it behaves
like a queue. If we create a channel with, e.g., a buffer of three elements, a sending
goroutine can send exactly three elements before it gets blocked until someone reads
from this channel. If we send three elements and close the channel, the receiving
goroutine can still read three elements before noticing the channel was closed. A chan‐
nel can be in three states. It’s important to remember how the goroutine sending or
receiving from this channel behaves when switching between these states:

Allocated, open channel
If we create a channel using make(chan <type>), it’s allocated and open from the
start. Assuming no buffer, such a channel will block an attempt to send a value
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25 I omitted two additional mechanisms on purpose. First of all, runtime.Gosched() exists, which allows yield‐
ing the current goroutine so others can do some work in the meantime. This command is less useful nowa‐
days since the current Go scheduler is preemptive, and manual yielding has become impractical. The second
interesting operation, runtime.LockOSThread(), sounds useful, but it’s not designed for efficiency; rather, it
pins the goroutine to the OS thread so we can read certain OS thread states from it.

until another goroutine receives it or when we use the select statement with
multiple cases. Similarly, the channel receive will block until someone sends to
that channel unless we receive in a select statement with multiple cases or the
channel was closed.

Closed channel
If we close(ch) the allocated channel, a send to that channel will cause panic
and receives will return zero values immediately. This is why it is recommended
to keep responsibility for the closing channel in the goroutine that sends the data
(sender).

Nil channel
If you define channel type (var ch chan <type>) without allocating it using
make(chan <type>), our channel is nil. We can also “nil” an allocated channel by
assigning nil (ch = nil). In this state, sending and receiving will block forever.
Practically speaking, it’s rarely useful to nil channels.

Go channels is an amazing and elegant paradigm that allows for building very reada‐
ble, event-based concurrency patterns. However, in terms of CPU efficiency, they
might be the least efficient compared to the atomic package and mutexes. Don’t let
that discourage you! For most practical applications (if not overused!), channels can
structure our application into robust and efficient concurrent implementation. We
will explore some practical patterns of using channels in “Optimizing Latency Using
Concurrency” on page 402.

Before we finish this section, it’s important to understand how we can tune concur‐
rency efficiency in the Go program. Concurrency logic is implemented by the Go
scheduler in the Go runtime package, which is also responsible for other things like
garbage collection (see “Garbage Collection” on page 185), profiles, or stack framing.
The Go scheduler is pretty automatic. There aren’t many configuration flags. As it
stands at the current moment, there are two practical ways developers can control
concurrency in their code:25

A number of goroutines
As developers, we usually control how many goroutines we create in our pro‐
gram. Spawning them for every small workpiece is usually not the best idea, so
don’t overuse them. It’s also worth noting that many abstractions from standard
or third-party libraries can spawn goroutines, especially those that require Close
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26 I recommend watching Chris Hines’s talk from GopherCon 2019 to learn the low-level details around the Go
scheduler.

or cancellation. Notably, common operations like http.Do, context.WithCan
cel, and time.After create goroutines. If used incorrectly, the goroutines can be
easily leaked (leaving orphan goroutines), which typically wastes memory and
CPU effort. We will explore ways to debug numbers and snapshots of goroutines
in “Goroutine” on page 365.

First Rule of Efficient Code

Always close or release the resources you use. Sometimes simple
structures can cause colossal and unbounded waste of memory and
goroutines if we forget to close them. We will explore common
examples in “Don’t Leak Resources” on page 426.

GOMAXPROCS

This important environmental variable can be set to control the number of vir‐
tual CPUs you want to leverage in your Go program. The same configuration
value can be applied via the runtime.GOMAXPROCS(n) function. The underlying
logic on how the Go scheduler uses this variable is fairly complex,26 but it gener‐
ally controls how many parallel OS thread executions Go can expect (internally
called a “proc” number). The Go scheduler will then maintain GOMAXPROCS/proc
number of queues and try to distribute goroutines among them. The default
value of GOMAXPROCS is always the number of virtual CPU cores your OS exposes,
and that is typically what will give you the best performance. Trim the GOMAX
PROCS value down if you want your Go program to use fewer CPU cores (less
parallelism) in exchange for potentially higher latency.

Recommended GOMAXPROCS Configuration

Set GOMAXPROCS to the number of virtual cores you want your Go
program to utilize at once. Typically, we want to use the whole
machine; thus, the default value should work.
For virtualized environments, especially using lightweight virtuali‐
zation mechanisms like containers, use Uber’s automaxprocs

library, which will adjust GOMAXPROCS based on the Linux CPU lim‐
its the container is allowed to use, which is often what we want.

Multitasking is always a tricky concept to introduce into a language. I believe the
goroutines with channels in Go are quite an elegant solution to this problem, which
allows many readable programming patterns without sacrificing efficiency. We will
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explore practical concurrency patterns in “Optimizing Latency Using Concurrency”
on page 402, by improving the latency of Example 4-1 presented in this chapter.

Let’s now look into when concurrency might be useful in our Go programs.

When to Use Concurrency
As with any efficiency optimization, the same classic rules apply when transforming a
single goroutine code to a concurrent one. No exceptions here. We have to focus on
the goal, apply the TFBO loop, benchmark early, and look for the biggest bottleneck.
As with everything, adding concurrency has trade-offs, and there are cases where we
should avoid it. Let’s summarize the practical benefits and disadvantages of concur‐
rent code versus sequential:

Advantages
• Concurrency allows us to speed up the work by splitting it into pieces and exe‐

cuting each part concurrently. As long as the synchronization and shared
resources are not a significant bottleneck, we should expect an improved latency.

• Because the Go scheduler implements an efficient preemptive mechanism, con‐
currency improves CPU core utilization for I/O-bound tasks, which should
translate into lower latency, even with a GOMAXPROCS=1 (a single CPU core).

• Especially in virtual environments, we often reserve a certain CPU time for our
programs. Concurrency allows us to distribute work across available CPU time
in a more even way.

• For some cases, like asynchronous programming and event handling, concur‐
rency represents a problem domain well, resulting in improved readability
despite some complexities. Another example is the HTTP server. Treating each
HTTP incoming request as a separate goroutine not only allows efficient CPU
core utilization but also naturally fits into how code should be read and
understood.

Disadvantages
• Concurrency adds significant complexity to the code, especially when we trans‐

form existing code into concurrency (instead of building API around channels
from day one). This hits readability since it almost always obfuscates execution
flow, but even worse, it limits the developer’s ability to predict all edge cases and
potential bugs. This is one of the main reasons why I recommend postponing
adding concurrency as long as possible. And once you have to introduce concur‐
rency, use as few channels as possible for the given problem.

• With concurrency, there is a risk of saturating resources due to unbounded con‐
currency (uncontrolled amount of goroutines in a single moment) or leaking
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goroutines (orphan goroutines). This is something we also need to care about
and test against (more on this in “Don’t Leak Resources” on page 426).

• Despite Go’s very efficient concurrency framework, goroutines and channels are
not free of overhead. If used wrongly, it can impact our code efficiency. Focus on
providing enough work to each goroutine that will justify its cost. Benchmarks
are a must-have.

• When using concurrency, we suddenly add three more nontrivial tuning param‐
eters into our program. We have a GOMAXPROCS setting, and depending on how
we implement things, we can control the number of goroutines we spawn and
how large a buffer of the channel we should have. Finding correct numbers
requires hours of benchmarking and is still prone to errors.

• Concurrent code is hard to benchmark because it depends even more on the
environment, possible noisy neighbors, multicore settings, OS version, and so
on. On the other hand, sequential, single-core code has much more deterministic
and portable performance, which is easier to prove and compare against.

As we can see, using concurrency is not the cure for all performance problems. It’s
just another tool in our hands that we can use to fulfill our efficiency goals.

Adding Concurrency Should Be One of Our Last Deliberate Optimizations
to Try

As per our TFBO cycle, if you are still not meeting your RAERs,
e.g., in terms of speed, make sure you try more straightforward
optimization techniques before adding concurrency. The rule of
thumb is to think about concurrency when our CPU profiler
(explained in Chapter 9) shows that our program spends CPU time
only on things that are crucial to our functionality. Ideally, before
we hit our readability limit, is the most efficient way we know.
The mentioned list of disadvantages is one reason, but the second
is that our program’s characteristics might differ after basic
(without concurrency) optimizations. For example, we thought our
task was CPU bound, but after improvements, we may find most of
the time is now spent waiting on I/O. Or we might realize we did
not need the heavy concurrency changes after all.

Summary
The modern CPU hardware is a nontrivial component that allows us to run our soft‐
ware efficiently. With ongoing operating systems, Go language development, and
advancements in hardware, only more optimization techniques and complexities will
arise to decrease running costs and increase processing power.
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In this chapter, I hopefully gave you basics that will help you optimize your usage of
CPU resources and, generally, your software execution speed. First, we discussed the
Assembly language and how it can be useful during Go development. Then, we
explored Go compiler functionalities, optimizations, and ways to debug its execution.

Later, we jumped into the main challenge for CPU execution: memory access latency
in modern systems. Finally, we discussed the various low-level optimizations like L-
caches, pipelining, CPU branch prediction, and Hyper-Threading.

Last, we explored the practical problems of executing our programs in production
systems. Unfortunately, our machine’s program is rarely the only process, so efficient
execution matters. Finally, we summarized Go’s concurrency framework’s benefits
and disadvantages.

In practice, CPU resource is essential to optimize in modern infrastructure to achieve
faster execution and the ability to pay less for our workloads. Unfortunately, CPU
resource is only one aspect. For example, our choice optimization might prefer using
more memory to reduce CPU usage or vice versa.

As a result, our programs typically use a lot of memory resources (plus I/O traffic
through disk or network). While execution is tied to CPU resources like memory and
I/O, it might be the first on our list of optimizations depending on what we want
(e.g., cheaper execution, faster execution, or both). Let’s discuss the memory resource
in the next chapter.
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CHAPTER 5

How Go Uses Memory Resource

In Chapter 4, we started looking under the hood of the modern computer. We dis‐
cussed the efficiency aspects of using the CPU resource. Efficient execution of
instructions in the CPU is important, but the sole purpose of performing those
instructions is to modify the data. Unfortunately, the path of changing data is not
always trivial. For example, in Chapter 4 we learned that in the von Neumann archi‐
tecture (presented in Figure 4-1), we experience the CPU and memory wall problem
when accessing data from the main memory (RAM).

The industry invented numerous technologies and optimization layers to overcome
challenges like that, including memory safety and ensuring large memory capacities.
As a result of those inventions, accessing eight bytes from RAM to the CPU register
might be represented as a simple MOVQ <destination register> <address XYZ>
instruction. However, the actual process done by the CPU to get that information
from the physical chip storing those bytes is very complex. We discussed mechanisms
like the hierarchical cache system, but there is much more.

In some ways, those mechanisms are abstracted from programmers as much as possi‐
ble. So, for example, when we define a variable in Go code, we don’t need to think
about how much memory has to be reserved, where, and in how many L-caches it has
to fit. This is great for development speed, but sometimes it might surprise us when
we need to process a lot of data. In those cases, we need to revive our mechanical
sympathy toward memory resource, optimizing TFBO flow (“Efficiency-Aware
Development Flow” on page 102), and good tooling.

This chapter will focus on understanding the RAM resource. We will start by explor‐
ing overall memory relevance. Then we will set the context in “Do We Have a Mem‐
ory Problem?” on page 152. Next, we will explain the patterns and consequences of
each element involved in the memory access from bottom to top. The data journey
for memory starts in “Physical Memory” on page 153, the hardware memory chips.

149

https://oreil.ly/Co2IM
https://oreil.ly/Co2IM


1 In this book when I say “memory,” I mean RAM and vice versa. Other mediums offer “memorizing” data in
computer architecture (e.g., L-caches), but we tend to treat RAM as the “main” memory resource.

Then we will move to operating system (OS) memory management techniques that
allow managing limited physical memory space in multiprocess systems: “Virtual
Memory” on page 158 and “OS Memory Mapping” on page 168, with a more detailed
explanation of the “mmap Syscall” on page 162.

With the lower layers of memory access explained, we can move to the key knowl‐
edge for Go programmers looking to optimize memory efficiency—the explanation
of “Go Memory Management” on page 172. This includes the necessary elements like
memory layout, what “Values, Pointers, and Memory Blocks” on page 176 mean, and
the basics of the “Go Allocator” on page 181 with its measurable consequences.
Finally, we will explore “Garbage Collection” on page 185.

We will go into many details about memory in this chapter, but the key aim is to
build an instinct toward the patterns and behavior of Go programs when it comes to
memory usage. For example, what problems can occur while accessing memory?
How do we measure memory usage? What does it mean to allocate memory? How
can we release it? We will explore answers to those questions in this chapter. But let’s
start this chapter by clarifying why RAM is relevant to our program execution. What
makes it so important?

Memory Relevance
All Linux programs require more resources than just the CPU to perform their pro‐
grammed functionalities. For example, let’s take a web server like NGINX (written in
C) or Caddy (written in Go). Those programs allow serving static content from disk
or proxy HTTP requests, among other functionalities. They use the CPU to execute
written code. However, a web server like this also interacts with other resources, for
example:

• With RAM to cache basic HTTP responses
• With a disk to load configuration, static content, or write log lines for observabil‐

ity needs
• With a network to serve HTTP requests from remote clients

As a result, the CPU resource is only one part of the equation. This is the same for
most programs—they are created to save, read, manage, operate, and transform data
from different mediums.

One would argue that the “memory” resource, often called RAM,1 sits at the core of
those interactions. The RAM is the backbone of the computer because every external
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2 Not only because of physical limitations like not enough chip pins, space, and energy for transistors, but also
because managing large memory poses huge overhead as we will learn in “OS Memory Management” on page
156.

3 In some way, RAM volatility can sometimes be treated as a feature, not a bug! Have you ever wondered why
restarting a computer or process often fixes your problem? The memory volatility forces programmers to
implement robust initialization techniques that rebuild the state from backup mediums, enhancing reliability
and mitigating potential program bugs. In extreme cases, crash-only software with the restart is the primary
way of failure handling.

piece of data (bytes from disk, network, or another device) has to be buffered in
memory to be accessible to the CPU. So, for example, the first thing the OS does to
start a new process is load part of the program’s machine code and initial data to
memory for the CPU to execute it.

Unfortunately, we must be aware of three main caveats when using memory in our
programs:

• RAM access is significantly slower than CPU operational speed.
• There is always a finite amount of RAM in our machines (typically from

a few GB to hundreds of GB per machine), which forces us to care about space
efficiency.2

• Unless the persistent type of memory will be commoditized with RAM-like
speeds, pricing, and robustness, our main memory is strictly volatile. When the
computer power goes down, all information is completely lost.3

The ephemeral characteristics of memory and its finite size are why we are forced to
add an auxiliary, persistent I/O resource to our computer, i.e., a disk. These days we
have relatively fast solid state drive (SSD) disks (yet still around 10x slower than
RAM) with a limited lifetime (~five years). On the other hand, we have a slower and
cheaper hard disk drive (HDD). While cheaper than RAM, the disk resource is also a
scarce resource.

Last but not least, for scalability and reliability reasons, our computers rely on data
from remote locations. Industry invented different networks and protocols that allow
us to communicate with remote software (e.g., databases) or even remote hardware
(via iSCSI or NFS protocols). We typically abstract this type of I/O as a network
resource usage. Unfortunately, the network is one of the most challenging resources
to work with because of its unpredictable nature, limited bandwidth, and bigger
latencies.

While using any of those resources, we use it through the memory resource. As a
result, it is essential to understand its mechanics. There are many things a program‐
mer can do to impact the application’s memory usage. But unfortunately, without
proper education, our implementations tend to be prone to inefficiencies and unnec‐
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4 We can resolve that problem by simply adding more memory to the system or switching to the server (or
virtual machine) with more memory resource. That might be a solid solution if we are willing to pay addi‐
tionally if it’s not a memory leak and if such a resource can be increased (e.g., the cloud has virtual machines
with more memory). Yet I suggest investigating your program memory usage, especially if you continuously
have to expand the system memory. Then there might be easy wins, thanks to trivially wasted space we could
optimize.

essary waste of computer resources or execution time. This problem is amplified by
the vast amount of data our programs have to process these days. This is why we
often say that efficient programming is all about the data.

Memory Inefficiency Is Usually the Most Common Problem in
Go Programs

Go is a garbage collected language, which allows Go to be an
extremely productive language. However, the garbage collector
(GC) sacrifices some visibility and control over memory manage‐
ment (more on that in “Garbage Collection” on page 185).
But even when we forget about GC overhead, for cases where we
need to process a significant amount of data or are under some
resource constraints, we have to take more care with how our pro‐
gram uses memory. Therefore, I recommend reading this chapter
with extra care since most first-level optimizations are usually
around memory resources.

When should we start the memory optimization process? A few common symptoms
might reveal that we might have a memory efficiency issue.

Do We Have a Memory Problem?
It’s useful to understand how Go uses the computer’s main memory and its efficiency
consequences, but we must also follow the pragmatic approach. As with any opti‐
mizations, we should refrain from optimizing memory until we know there is a prob‐
lem. We can define a set of situations that should trigger our interest in Go memory
usage and potential optimizations in this area:

• Our physical computer, virtual machine, container, or process crashed because
of an out-of-memory (OOM) signal, or our process is about to hit that memory
limit.4

• Our Go program is executing slower than usual, while the memory usage is
higher than average. Spoiler: our system might be under memory pressure caus‐
ing trashing or swapping, as explained in “OS Memory Mapping” on page 168.
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• Our Go program is executing slower than usual, with high spikes of CPU utiliza‐
tion. Spoiler: allocation or releasing memory slows our programs if an excessive
number of short-lived objects is created.

If you encounter any of those situations, it might be time to debug and optimize the
memory usage of your Go program. As I will teach you in “Complexity Analysis” on
page 240, if you know what you are looking for, a set of early warning signals can indi‐
cate huge memory problems that could be avoided easily. Moreover, building such a
proactive instinct can make you a valuable team asset!

But we can’t build anything without good foundations. As with the CPU resource,
you won’t be able to apply optimizations without actually understanding them! We
have to understand the reasons behind those optimizations. For example,
Example 4-1 allocates 30.5 MB of memory for 1 million integers in the input. But
what does it mean? Where was that space reserved? Does it mean we used exactly
30.5 MB of physical memory, or more? Was this memory released at some point?
This chapter aims to give you awareness, allowing you to answer all of these ques‐
tions. We will learn why memory is often the issue and what we can do about it.

Let’s start with the basics of memory management from the point of view of hard‐
ware (HW), operating system (OS), and the Go runtime. Let’s start with essential
details about physical memory directly impacting our program execution. On top of
that, this knowledge might help you better understand the specifications and docu‐
mentation of modern physical memory!

Physical Memory
We store information digitally in the form of bits, the basic computer storage unit. A
bit can have one of two values, 0 or 1. With enough bits, we can represent any infor‐
mation: integer, floating value, letters, messages, sounds, images, videos, programs,
metaverses, etc.

The main physical memory that we use when we execute our programs (RAM) is
based on dynamic random-access memory (DRAM). These chips are soldered into
modules, often referred to as RAM “sticks.” When connected to the motherboard,
these chips allow us to store and read data bits as long as the DRAM is continuously
powered.

DRAM contains billions of memory cells (as many cells as the number of bits DRAM
can store). Each memory cell comprises one access transistor acting as a switch and
one storage capacitor. The transistor guards the access to the capacitor, which is
charged to the store 1 or drained to keep the 0 value. This allows each memory cell to
store a single bit of information. This architecture is much simpler and cheaper to
produce and use than Static RAM (SRAM), which is generally faster and used for
smaller types of memory like registers and hierarchical caches in the CPU.
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5 Nowadays, popular encodings like UTF-8 can dynamically use from one up to four bytes of memory per sin‐
gle character.

6 By just doubling the “pointer” size, we moved the limit to how many elements we can address to extreme
sizes. We could even estimate that 64-bit is enough to address all grains of sand from all beaches on Earth!

At the time of this writing, the most popular memory used for RAM is the simpler,
synchronous (clock) version in the DRAM family—SDRAM. Particularly, the fifth
generation of SDRAM called DDR4.

Eight bits form a “byte.” That number came from the fact that in the past, the small‐
est number of bits that could hold a text character was eight.5 The industry standard‐
ized a “byte” as the smallest meaningful unit of information.

As a result, most hardware is byte addressable. This means that, from a software pro‐
grammer’s point of view, there are instructions to access data through individual
bytes. If you want to access a single bit, you need to access the whole byte and use
bitmasks to get or write the bit you want.

The byte addressability makes developer life easier when working with data from dif‐
ferent mediums like memory, disk, network, etc. Unfortunately, that creates a certain
illusion that the data is always accessible with byte granularity. Don’t let that mislead
you. More often than not, the underlying hardware has to transfer a much larger
chunk of data to give you the desired byte.

For example, in “Hierachical Cache System” on page 127, we learned that CPU regis‐
ters are typically 64 bits (8 bytes), and the cache line is even bigger (64 bytes). Yet we
have CPU instructions that can copy a single byte from memory to the CPU register.
However, an experienced developer will notice that to copy that single byte, in many
cases, the CPU will fetch not 1 byte but at least a complete cache line (64 bytes) from
physical memory.

From a high-level point of view, physical memory (RAM) can also be seen as byte
addressable, as presented in Figure 5-1.

Memory space can be seen as a contiguous set of one-byte slots with a unique
address. Each address is a number from zero to the total memory capacity in the sys‐
tem in bytes. For this reason, 32-bit systems that use only 32-bit integers for memory
addresses typically could not handle RAM with more capacity than 4 GB—the largest
number we can represent with 32 bits is 232. This limitation was removed with the
introduction of the 64-bit operating systems that use 64-bit (8-byte)6 integers for
memory addressing.
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Figure 5-1. Physical memory addresses space

We discussed in “CPU and Memory Wall Problem” on page 126 that memory access
is not that fast compared to, for example, CPU speed. But there is more. Addressabil‐
ity, in theory, should allow fast, random access to bytes from the main memory. After
all, this is why that main memory is called “random-access memory.” Unfortunately,
if we look at our napkin math in Appendix A, sequential memory access can be 10
times (or more) faster than random access!

But there is more—we don’t expect any improvements in this area in the future.
Within the last few decades, we only improved the speed (bandwidth) of the sequen‐
tial read. We did not improve random access latency at all! The lack of improvement
on the latency side is not a mistake. It is a strategic choice—the internal designs of the
modern RAM modules have to work against various requirements and limitations,
for example:

Capacity
There is a strong demand for bigger capacities of RAM, e.g., to compute more
data or run more realistic games.

Bandwidth and latency
We want to wait less time to access memory while writing or reading large
chunks of data since memory access is the major slowdown for CPU operations.
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7 I introduced the process and thread terms in “Operating System Scheduler” on page 134.

Voltage
There is a demand for a lower voltage requirement for each memory chip, which
would allow for running more of them while maintaining low power consump‐
tion and manageable thermal characteristics (more time on battery for our lap‐
tops and smartphones!).

Cost
RAM is a fundamental piece of the computer required in large quantities; thus,
production and usage costs must be kept low.

Slower random access has many implications for the layers of many managers we will
learn about in this chapter. For example, this is why the CPU with L-caches fetches
and caches bigger chunks of memory up front, even if only one byte is needed for
computation.

Let’s summarize a few things worth remembering about modern generations of hard‐
ware for RAM like DDR4 SDRAM:

• Random access of the memory is relatively slow, and generally, there aren’t many
good ideas to improve that soon. If anything, lower power consumption, larger
capacity, and bandwidth only increase that delay.

• Industry is improving overall memory bandwidth by allowing us to transfer big‐
ger chunks of adjacent (sequential) memory. This means that efforts to align Go
data structures and knowing how they are stored in memory matter—ensuring
we can access them faster.

Whether sequentially or randomly, our programs never directly access physical
memory—the OS manages the RAM space. This is great for developers, as we don’t
need to understand low-level memory access details. But there are more important
reasons why there has to be an OS between our programs and hardware. So let’s dis‐
cuss why and what it means for our Go programs.

OS Memory Management
What are the operating system’s goals for memory management? Hiding complexi‐
ties of physical memory access is only one thing. The other, more important, goal is
to allow using the same physical memory simultaneously and securely across thou‐
sands of processes and their OS threads.7 The problem of multiprocess execution on
common memory space is nontrivial for multiple reasons:
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8 Many Common Vulnerabilities and Exposures (CVE) issues exist due to various bugs that allow out-of-
bounds memory access.

9 It might be less intuitive, but the malicious process can perform a DoS if access to another process memory is
not restricted. For example, by setting counters to incorrect values or breaking loop invariants, the victim
program might error out or exhaust machine resources.

Dedicated memory space for each process
Programs are compiled assuming nearly full and continuous access to the RAM.
As a result, the OS must track which slots from the physical memory from our
address space (shown in Figure 5-1) belong to which process. Then we need to
find a way to coordinate those “reservations” to the processes so only allocated
addresses are accessed.

Avoiding external fragmentation
Having thousands of processes with dynamic memory usage poses a great risk of
waste in memory due to inefficient packing. We call this problem the external
fragmentation of memory.

Memory isolation
We have to ensure that no process touches the physical memory address reserved
for other processes running on the same machine (e.g., operating system pro‐
cesses!). This is because any accidental write or read from outside of process
memory (out-of-bounds memory access) can crash other processes, malform
data on persistent mediums (e.g., disk), or crash the whole machine (e.g., if you
corrupt the memory used by the OS).

Memory safety
Operating systems are usually multiuser systems, which means processes can
have different permissions to different resources (e.g., files on disk or other pro‐
cess memory space). This is why the mentioned out-of-bounds memory accesses
have serious security risks.8 Imagine a malicious process with no permissions
reading credentials from other process memory, or causing a Denial-of-Service
(DoS) attack.9 This is especially important for virtualized environments, where a
single memory unit can be shared across different operating systems and even
more users.

Efficient memory usage
Programs never use all the memory they asked for at the same time. For example,
instruction code and statically allocated data (e.g., constant variables) can be as
large as dozens of megabytes. But for single-threaded applications, a maximum
of a few kilobytes of data is used in a given second. Instructions for error han‐
dling are rarely used. Arrays are often oversized for worst-case scenarios.
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10 In the past, segmentation was used to implement virtual memory. This has proven to have less versatility,
especially the inability to move this space around for defragmentation (better packing of memory). Still, even
with paging, segmentation is applied to virtual memory by the process itself (with underlying paging). Plus,
the kernel sometimes still uses nonpaged segmentation for its part of critical kernel memory.

11 You can check the current page size on the Linux system using the getconf PAGESIZE command.

12 For example, typically, Intel CPUs are capable of hardware-supported 4 KB, 2 MB, or 1 GB pages.

To solve all those challenges, modern OS manages memory using three fundamental
mechanisms we will learn about in this section: paged virtual memory, memory map‐
ping, and hardware address translation. Let’s start by explaining virtual memory.

Virtual Memory
The key idea behind virtual memory is that every process is given its own logical,
simplified view of the RAM. As a result, programming language designers and devel‐
opers can effectively manage process memory space as if they had an entire memory
space for themselves. Even more, with virtual memory, the process can use a full
range of addresses from 0 to 264 - 1 for its data, even if the physical memory has, for
example, the capacity to accommodate only 235 addresses (32 GB of memory). This
frees the process from coordinating the memory among other processes, bin packing
challenges, and other important tasks (e.g., physical memory defragmentation, secu‐
rity, limits, and swap). Instead, all of these complex and error-prone memory man‐
agement tasks can be delegated to the kernel (a core part of the Linux operating
system).

There are a few ways of implementing virtual memory, but the most popular techni‐
que is called paging.10 The OS divides physical and virtual memory into fixed-size
chunks of memory. The virtual memory chunks are called pages, whereas physical
memory chunks are called frames. Both pages and frames can be then individually
managed. The default page size is usually 4 KB,11 but it can be changed to larger page
sizes with respect to specific CPU capabilities.12 It is also possible to use 4 KB pages
for normal workloads and dedicated (sometimes transparent to processes!) huge
pages from 2 MB to 1 GB.
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13 Even naive and conservative calculations indicate around 24% of total memory is wasted for 2 MB pages.

14 We won’t discuss the implementation of page tables since it’s pretty complex and not something Go develop‐
ers have to worry about. Yet this topic is quite interesting as the trivial implementation of paging would have
a massive overhead in memory usage (what’s the point of memory management that would take the majority
of memory space it manages?). You can learn more here.

The Importance of Page Size

The 4 KB number was chosen in the 1980s, and many say that it’s
time to bump this number up, given modern hardware and
cheaper RAM (in terms of dollars per byte).
Yet the choice of page size is a game of trade-offs. Larger pages
inevitably waste more memory space,13 which is often referred to as
the internal memory fragmentation. On the other hand, keeping a
4 KB page size or making it smaller makes memory access slower
and memory management more expensive, eventually blocking the
ability to use larger RAM modules in our computers.

The OS can dynamically map pages in virtual memory to specific physical memory
frames (or other mediums like chunks of disk space), mostly transparently to the pro‐
cesses. The mapping, state, permissions, and additional metadata of the page are
stored in the page entry in the many hierarchical page tables maintained by the OS.14

To achieve an easy-to-use and dynamic virtual memory, we need to have a versatile
address translation mechanism. The problem is that only the OS knows about the
current memory space mapping between virtual and physical space (or lack of it).
Our running program’s process only knows about virtual memory addresses, so all
CPU instructions in machine code use virtual addresses. Our programs will be even
slower if we try to consult the OS for every memory access to translate each address,
so the industry figured out dedicated hardware support for translating memory
pages.

From the 1980s, almost every CPU architecture started to include the Memory Man‐
agement Unit (MMU) used for every memory access. MMU translates each memory
address referenced by CPU instructions to a physical address based on the OS page
table entries. To avoid accessing RAM to search for the relevant page tables, engi‐
neers added the Translation Lookaside Buffer (TLB). TLB is a small cache that can
cache a few thousand page table entries (typically 4 KB of entries). The overall flow
looks like Figure 5-2.

OS Memory Management | 159

https://oreil.ly/iklRd
https://oreil.ly/jU9Is
https://oreil.ly/PnOuT


Figure 5-2. Address translation mechanism done by MMU and TLB in CPU. OS has to
inject the relevant page tables so MMU knows what virtual addresses correspond to
physical addresses.

TLB is very fast, but it has limited capacity. If MMU cannot find the accessed virtual
address in the TLB, we have a TLB miss. This means that either the CPU (hardware
TLB management) or OS (software-managed TLB) has to walk through page tables in
RAM, which causes significant latency (around one hundred CPU clock cycles)!

It is essential to mention that not every “allocated” virtual memory page will have a
reserved physical memory page behind it. In fact, most of the virtual memory is not
backed up by RAM at all. As a result, we can almost always see large amounts of vir‐
tual memory used by the process (called VSS or VSZ in various Linux tools like ps).
Still, the actual physical memory (often called RSS or RES from “resident memory”)
reserved for this process might be tiny. There are often cases where a single process
allocates more virtual memory than is available to the whole machine! See an exam‐
ple situation like this on my machine in Figure 5-3.

Figure 5-3. First few lines of htop output, showing the current usage of a few Chrome
browser processes, sorted by virtual memory size
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15 There is also an option to disable an overcommitment mechanism on Linux. When disabled, the virtual
memory size (VSS) is not allowed to be bigger than the physical memory used by the process (RSS). You
might want to do this so the process will have generally faster memory accesses, but the waste of memory is
enormous. As a result, I have never seen such an option used in practice.

As we can see in Figure 5-3, my machine has 32 GB of physical memory, with 16.2
GB currently used. Yet we see Chrome processes using 45.7 GB of virtual memory
each! However, if you look at the RES column, it has only 507 MB resident, with 126
MB of it shared with other processes. So how this is possible? How can the process
think that it has 45.7 GB of RAM available, given the machine has only 32 GB and the
system actually allocated just a few hundred MBs in RAM?

We can call such a situation a memory overcommitment, and it exists because of the
very same reasons airlines often overbook seats for their flights. On average, many
travelers cancel their trips at the last minute or do not show up for their flight. As a
result, to maximize the plane’s used capacity, it is more profitable for airlines to sell
more tickets than seats in the airplane and handle the rare “out of seats” situations
“gracefully” (e.g., by moving the unlucky customer to another flight). This means that
the true “allocation” of seats happens when travelers actually “access” them during
the flight onboarding process.

The OS performs the same overcommitment strategy by default15 for processes trying
to allocate physical memory. The physical memory is only allocated when our pro‐
gram accesses it, not when it “creates” a big object, for example, make([]byte, 1024)
(you will see a practical example of this in “Go Allocator” on page 181).

Overcommitment is implemented with the pages and memory mapping techniques.
Typically, memory mapping refers to a low-level memory management capability
offered with the mmap system call on Linux (and the similar MapViewOfFile function
in Windows).

Developers Can Utilize mmap Explicitly in Programs for
Specific Use Cases

The mmap call is used extensively in almost every database software,
e.g., in MySQL and PostgreSQL as well as those written in Go, like
Prometheus, Thanos, and M3db projects. The mmap (among other
memory allocation techniques) is also what Go runtime and other
programming languages use under the hood to allocate memory
from OS, e.g., for the heap (discussed in “Go Memory Manage‐
ment” on page 172).
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Using explicit mmap for most Go applications is not recommended. Instead, we should
stick to the Go runtime’s standard allocation mechanisms, which we will learn in “Go
Memory Management” on page 172. As our “Efficiency-Aware Development Flow” on
page 102 said, only if we see indications through benchmarking that this is not
enough, might we consider moving to more advanced methods like mmap. This is why
mmap is not even on my Chapter 11 list!

However, there is a reason why I explain mmap at the start of our journey with the
memory resource. Even if we don’t use it explicitly, the OS uses the same memory
mapping mechanism to manage all allocated pages in our system. The data structures
we use in our Go programs are indirectly saved to certain virtual memory pages,
which are then mmap-like managed by the OS or Go runtime. As a result, understand‐
ing the explicit mmap syscall will conveniently explain the on-demand paging and
mapping techniques Linux OS uses to manage virtual memory.

Let’s focus on the Linux mmap syscall next.

mmap Syscall
To learn about OS memory mapping patterns, let’s discuss the mmap syscall.
Example 5-1 shows a simplified abstraction, using mmap OS syscall, that allows allo‐
cating a byte slice in our process virtual memory without Go memory management
coordination.

Example 5-1. The adapted snippet of Linux-specific Prometheus mmap abstraction that
allows creating and maintaining read-only memory-mapped byte arrays

import (
    "os"

    "github.com/efficientgo/core/errors"
    "github.com/efficientgo/core/merrors"
    "golang.org/x/sys/unix"
)

type MemoryMap struct {
    f *os.File // nil if anonymous.
    b []byte
}

func OpenFileBacked(path string, size int) (mf *MemoryMap, _ error) { 
    f, err := os.Open(path)
    if err != nil {
        return nil, err
    }

    b, err := unix.Mmap(int(f.Fd()), 0, size, unix.PROT_READ, unix.MAP_SHARED) 
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16 MAP_SHARED means that any other process can reuse the same physical memory page if it accesses the same
file. This is harmless if the mapped file does not change over time, but it has more complex nuances for map‐
ping modifiable content.

17 A full list of options can be found in the mmap documentation.

18 SIGSEV means a segmentation fault. This tells us that the process wants to access an invalid memory address.

    if err != nil {
        return nil, merrors.New(f.Close(), err).Err() 
    }

    return &MemoryMap{f: f, b: b}, nil
}

func (f *MemoryMap) Close() error {
    errs := merrors.New()
    errs.Add(unix.Munmap(f.b)) 
    errs.Add(f.f.Close())
    return errs.Err()
}

func (f *MemoryMappedFile) Bytes() []byte { return f.b }

OpenFileBacked creates explicit memory mapped backed up by the file from the
provided path.

unix.Mmap is a Unix-specific Go helper that uses the mmap syscall to create a
direct mapping between bytes from the file on disk (between 0 and the size
address) and virtual memory allocated by the returned []byte array in the b vari‐
able. We also pass the read-only flag (PROT_READ) and shared flag (MAP_SHARED).16

We can also skip the passing file descriptor, and pass 0 as the first argument and
MAP_ANON as the last argument to create anonymous mapping (more on that
later).17

We use the merrors package to ensure the we capture both errors if Close also
returns an error.

unix.Munmap is one of the few ways to remove mapping and de-allocate mmap-ed
bytes from virtual memory.

The returned byte slice from the open-ed MemoryMap.Bytes structure can be read as a
regular byte slice acquired in typical ways, e.g., make([]byte, size). However, since
we marked this memory-mapped location as read-only (unix.PROT_READ), writing to
such a slice will cause the OS to terminate the Go process with the SIGSEGV reason.18
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Furthermore, a segmentation fault will also happen if we read from this slice after
doing Close (Unmap) on it.

At first glance, the mmap-ed byte array looks like a regular byte slice with extra steps
and constraints. So what’s unique about it? It’s best to explain that using an example!
Imagine that we want to buffer a 600 MB file in the []byte slice so we can quickly
access a couple of bytes on demand from random offsets of that file. The 600 MB
might sound excessive, but such a requirement is commonly seen in databases or
caches where reading from a disk on demand might be too slow.

The naive solution without an explicit mmap could look like Example 5-2. Every few
instructions, we will look at what the OS memory statistics told us about the allocated
pages on physical RAM.

Example 5-2. Buffering 600 MB from a file to access three bytes from three different
locations

f, err := os.Open("test686mbfile.out") 
if err != nil {
   return err
}

b := make([]byte, 600*1024*1024)
if _, err := f.Read(b); err != nil { 
   return err
}

fmt.Println("Reading the 5000th byte", b[5000]) 
fmt.Println("Reading the 100 000th byte", b[100000]) 
fmt.Println("Reading the 104 000th byte", b[104000]) 

if err := f.Close(); err != nil {
   return err
}

We open the 600+ MB file. At this point, if you ran the ls -l /proc/$PID/fd
(where $PID is the process ID of this executed program) command on a Linux
machine, you would see file descriptors telling you that this process has used
these files. One of the descriptors is a symbolic link to our test686mbfile.out
file we just opened. The process will hold that file descriptor until the file is
closed.
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19 On Linux, you can find this information by doing ps -ax --format=pid,rss,vsz | grep $PID, where $PID
is process ID.

We read 600 MB into a pre-allocated []byte slice. After the f.Read method exe‐
cution, the RSS of the process shows 621 MB.19 This means that we need over 600
MB of free physical RAM to run this program. The virtual memory size (VSZ)
increased too, hitting 1.3 GB.

No matter what bytes we access from our buffer, our program will not allocate
any more bytes on RSS for our buffer (however, it might need extra bytes for the
Println logic).

Generally, Example 5-2 proves that without an explicit mmap, we would need to
reserve at least 600 MB of memory (~150,000 pages) on physical RAM from the very
beginning. We also keep all of them reserved for our process until it is collected by
the garbage collection process.

What would the same functionality look like with the explicit mmap? Let’s do some‐
thing similar in Example 5-3 using the Example 5-1 abstraction.

Example 5-3. Memory mapping 600 MB from file to access three bytes from three
different locations, using Example 5-1

f, err := mmap.OpenFileBacked("test686mbfile.out," 600*1024*1024) 
if err != nil {
   return err
}
b := f.Bytes() 

fmt.Println("Reading the 5000th byte", b[5000]) 
fmt.Println("Reading the 100 000th byte", b[100000]) 
fmt.Println("Reading the 104 000th byte", b[104000]) 

if err := f.Close(); err != nil { 
   return err
}

We open our test file and memory map 600 MB of its content into the []byte
slice. At this point, similar to Example 5-2, we see a related file descriptor for our
test686mbfile.out file in the fd directory. More importantly, however, if you
executed the ls -l /proc/$PID>/map_files (again, $PID is the process ID)
command, you would also have another symbolic link to the test686mbfile.out
file we just referenced. This represents a file-backed memory map.
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20 How do I know? We can have exact statistics for each memory mapping process we use on Linux thanks to
the /proc/<PID>/smaps file.

21 There are many reasons why accessing nearby bytes might not need allocating more pages on RAM in the
memory-mapped situation. For example, the cache hierarchy (discussed in “Hierachical Cache System” on
page 127), the OS, and compiler deciding to pull more at once, or such a page being already a shared or pri‐
vate page because of previous accesses.

22 Note that physical frames for this file can still be allocated on physical memory by the OS (just not accounted
for our process). This is called page cache and can be useful if any process tries to memorize the same file.
Page cache is stored as best effort in the memory that would otherwise not be used. It can be released when
the system is under high memory pressure or manually by the administrator, e.g., with sysctl -w
vm.drop_caches=1.

After this statement, we have the byte buffer b with the file content. However, if
we check the memory statistics for this process, the OS did not allocate any page
in physical memory for our slice elements.20 So the total RSS is as small as 1.6
MB, despite having 600 MB of content accessible in b! The VSZ, on the other
hand, is around 1.3 GB, which indicates the OS is telling the Go program that it
can access this space.

After accessing a single byte from our slice, we see an increase in RSS, around
48–70 KB worth of RAM pages for this mapping. This means that the OS only
allocated a few (10 or so) pages on RAM when our code wanted to access a sin‐
gle, concrete byte from b.

Accessing a different byte far away from already allocated pages triggers the allo‐
cation of extra pages. RSS reading would show 100–128 KB.

If we access a single byte 4,000 bytes away from the previous read, OS does not
allocate any additional pages. This might be for a few reasons.21 For instance,
when our program read the file’s contents at offset 100,000, the OS already allo‐
cated a 4 KB page with the byte we accessed here. Thus RSS reading would still
show 100–128 KB.

If we remove the memory mapping, all our related pages will eventually be
unmapped from RAM. This means our process total RSS number should be
smaller.22
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An Underrated Way to Learn More About Your Process and
OS Resource Behavior

Linux provides amazing statistics and debugging information for
the current process or thread state. Everything is accessible as spe‐
cial files inside /proc/<PID>. The ability to debug each detailed sta‐
tistic (e.g., every little memory mapping status) and configuration
was eye-opening for me. Learn more about what you can do by
reading the proc (process pseudofilesystem) documentation.
I recommend getting familiar with the Linux pseudofilesystem or
the tools using it if you plan to work more on low-level Linux
software.

One of the main behaviors highlighted when we used explicit mmap in Example 5-3 is
called on-demand paging. When the process asks the OS for any virtual memory
using mmap, the OS will not allocate any page on RAM, no matter how large. Instead,
the OS will only give the process the virtual address range. Further along, when
the CPU performs the first instruction that accesses memory from that virtual
address range (e.g., our fmt.Println("Reading the 5000th byte," b[5000]) in
Example 5-3), the MMU will generate a page fault. Page fault is a hardware interrupt
that is handled by the OS kernel. The OS can then respond in various ways:

Allocate more RAM frames
If we have free frames (physical memory pages) in RAM, the OS can mark some
of them as used and map them to the process that triggered the page fault. This is
the only moment when the OS actually “allocates” RAM (and increases the RSS
metric).

De-allocate unused RAM frames and reuse them
If no free frame exists (high memory usage on the machine), the OS can remove
a couple of frames that belong to file-backed mappings for any process as long as
the frames are not currently accessed. As a result, many pages can be unmapped
from physical frames before OS has to resort to more brutal methods. Still, this
will potentially cause other processes to generate another page fault. If this situa‐
tion happens very often, our whole OS with all processes will be seriously slowed
down (memory trashing situation).

Triggering out-of-memory (OOM) situation
If the situation worsens and all unused file-backed memory-mapped pages are
freed, and we still have no free pages, the OS is essentially out of memory. Han‐
dling that situation can be configured in the OS, but generally, there are three
options:

• The OS can start unmapping pages from physical memory for memory map‐
pings backed by anonymous files. To avoid data loss, a swap disk partition
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23 Swapping is usually turned off by default on most machines.

24 “Teaching the OOM killer” explains some problems in choosing what process to kill first. The lesson here is
that the global OOM killer is often hard to predict.

25 Exact implementation of memory controller can be found here.

can be configured (the swapon --show command will show you the existence
and usage of swap partitions in your Linux system). This disk space is then
used to back up virtual memory pages from the anonymous file memory
map. As you can imagine, this can cause a similar (if not worse) memory
trashing situation and overall system slowdown.23

• A second option for the OS is to simply reboot the system, generally known
as the system-level OOM crash.

• The last option is to recover from the OOM situation by immediately termi‐
nating a few lower-priority processes (e.g., from the user space). This is typi‐
cally done by the OS sending the SIGKILL signal. The detection of what
processes to kill varies,24 but if we want more determinisms, the system
administrator can configure specific memory limits per process or group of
processes using, for example, cgroups25 or ulimit.

On top of the on-demand paging strategy, it’s worth mentioning that the OS never
releases any frame pages from RAM at the moment of process termination or when it
explicitly releases some virtual memory. Only virtual mapping is updated at that
point. Instead, physical memory is mainly reclaimed lazily (on demand) with the help
of a page frame reclaiming algorithm (PFRA) that we won’t discuss in this book.

Generally, the mmap syscall might seem complex to use and understand. Yet, it
explains what it means when our program allocates some RAM by asking the OS.
Let’s now compose what we learned into the big picture of how the OS manages the
RAM and talk about the consequences we developers might observe when dealing
with a memory resource.

OS Memory Mapping
The explicit memory mapping presented in Example 5-3 is just one example of the pos‐
sible OS memory mapping techniques. Besides, rare file-backed mapping and advanced
off-heap solutions, there is almost no need to explicitly use such mmap syscalls in our Go
programs. However, to manage virtual memory efficiently, the OS is transparently
using the same technique of page memory mapping for nearly all the RAM! The exam‐
ple memory mappings situation is presented in Figure 5-4, which pulls into one graphic
a few common page mapping situations we could have in our machine.

168 | Chapter 5: How Go Uses Memory Resource

https://oreil.ly/AFDh0
https://oreil.ly/4rPzk
https://oreil.ly/Ken3G
https://oreil.ly/BboW0
https://oreil.ly/SLWOv
https://oreil.ly/E72wh
https://oreil.ly/fF12F
https://oreil.ly/ruKUM


Figure 5-4. Example MMU translation of a few memory pages from the virtual memory
of two processes

The situation in Figure 5-4 might look complicated, but we have already discussed
some of those cases. Let’s enumerate them from the perspective of Process 1 or 2:

Page A
Represents the simplest case of anonymous file mapping that has already mapped
the frame on RAM. So, for example, if Process 1 writes or reads a byte from an
address between 0x2000 and 0x2FFF in its virtual space, the MMU will translate
the address to RAM physical address 0x9000, plus the required offset. As a result,
the CPU will be able to fetch or write it as a cache line to its L-caches and
desired register.

Page B
Represents a file-based memory page mapped to a physical frame like we created
in Example 5-3. This frame is also shared with another process since there is no
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need to keep two copies of the same data as both mappings map to the same file
on a disk. This is only allowed if the mapping is not set as MAP_PRIVATE.

Page C
This is an anonymous file mapping that wasn’t yet accessed. For example, if Pro‐
cess 1 writes a byte to an address between 0x0 and 0xFFF, a page fault hardware
interrupt is generated by the CPU, and the OS will need to find a free frame.

Page D
This is an anonymous page like C, but some data was already written on it. Yet
the OS seems to have swap enabled and unmaps it from RAM because this page
was not used for a long time by Process 2, or the system is under memory pres‐
sure. The OS backed the data to swap files in the swap partition to avoid data
loss. Process 2 accessing any byte from a virtual address between 0x1000 and
0x1FFF would result in a page fault, which will tell the OS to find a free frame on
RAM and read page D content from the swap file. Only then can data be available
to Process 2. Note that such swap logic for anonymous pages is disabled by
default on most operating systems.

You should now have a clearer view of OS memory management basics and virtual
memory patterns. So let’s now go through a list of important consequences those
pose on Go (and any other programming language):

Practically speaking, observing the size of virtual memory is never useful.
On-demand paging is why we always see larger virtual memory usage (repre‐
sented by virtual set size, or VSS) than resident memory usage (RSS) for a pro‐
cess (e.g., the browser memory usage in Figure 5-3). While the process thinks
that all pages it sees on the virtual address space are in RAM, most of them might
be currently unmapped and stored on disk (mapped file or swap partition). In
most cases, you can ignore the VSS metric when assessing the amount of mem‐
ory your Go program uses.

It is impossible to tell precisely how much memory a process (or system) has used in a
given time.

What metric can we use if the VSS metric does not help assess process memory
usage? For Go developers interested in the memory efficiency of their programs,
knowing the current and past memory usage is essential information. It tells how
efficient our code is and if our optimizations work as expected.

Unfortunately, because of the on-demand paging and memory mapping behav‐
ior we learned in this section, this is currently very hard—we can only roughly
estimate. We will discuss the best available metrics in “Memory Usage” on page
234, but don’t be surprised if the RSS metric shows a few kilobytes or even mega‐
bytes more or less than you expected.
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OS memory usage expands to all available RAM.
Due to lazy release and page caches, even if our Go process released all memory,
sometimes the RSS will still look very high if there’s generally low memory pressure
on the system. This means that there’s enough physical RAM to satisfy the rest of
the processes, so the OS doesn’t bother to release our pages. This is often why the
RSS metric is not very reliable, as discussed in “Memory Usage” on page 234.

Tail latency of our Go program memory access is much slower than just physical DRAM
access latency.

There is a high price to pay for using OS with virtual memory. In the worst cases,
already slow memory access caused by DRAM design (mentioned in “Physical
Memory” on page 153) is even slower. If we stack up things that can happen, like
TLB miss, page fault, looking for a free page, or on-demand memory loading from
disk, we have extreme latency, which can waste thousands of CPU cycles. The OS
does as much as possible to ensure those bad cases rarely happen, so the amortized
(average) access latency is as low as possible.

As Go developers, we have some control to reduce the risk of those extra latencies
happening more often. For example, we can use less memory in our programs or
prefer sequential memory access (more on that later).

High usage of RAM might cause slow program execution.
When our system executes many processes that want to access large quantities of
pages close to RAM capacity, memory access latencies and OS cleanup routines
can take most of the CPU cycles. Furthermore, as we discussed, things like memory
trashing, constant memory swaps, and page reclaim mechanisms will slow the
whole system. As a result, if your program latency is high, it is not necessarily
doing too much work on the CPU or executing slow operations (e.g., I/O), it might
just use a lot of the memory!

Hopefully, you understand the impact of OS memory management on how we
should think about the memory resource. As in “Physical Memory” on page 153, I
only explained the basics of memory management. This is because the kernel algo‐
rithms evolve, and different OSes manage memory differently. The information I
provided should give you a rough understanding of the standard techniques and their
consequences. Such a foundation should also give you a kick-start toward learning
more from materials like Understanding the Linux Kernel by Daniel P. Bovet and
Marco Cesati (O’Reilly) or LWN.net.

With that knowledge, let’s discuss how Go has chosen to leverage the memory func‐
tionalities the OS and hardware offer. It should help us find the right optimizations to
try in our TFBO flow if we have to focus on the memory efficiency of our Go program.
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26 Remember, whatever type or amount of virtual memory the OS is giving to the process, it uses the memory
mapping technique. sbrk allows simpler resizing of the virtual memory section typically covered by the heap.
However, it behaves like any other mmap using anonymous pages.

Go Memory Management
The programming language task here is to ensure that developers who write pro‐
grams can create variables, abstractions, and operations that use memory safely, effi‐
ciently, and (ideally) without fuss! So let’s dig into how the Go language enables that.

Go uses a relatively standard internal process memory management pattern that
other languages (e.g., C/C++) share, with some unique elements. As we learned in
“Operating System Scheduler” on page 134, when a new process starts, the operating
system creates various metadata about the process, including a new dedicated virtual
address space. The OS also creates initial memory mappings for a few starting seg‐
ments based on information stored in the program binary. Once the process starts, it
uses mmap or brk/sbrk26 to dynamically allocate more pages on virtual memory when
needed. An example organization of the virtual memory in Go is presented in
Figure 5-5.

Figure 5-5. Memory layout of an executed Go program in virtual address space
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27 Of course no one blocks anyone from implementing external garbage collection on top of those mechanisms
in C and C++.

We can enumerate a couple of common sections:

.text, .data, and shared libraries
Program code and all global data like global variables are automatically memory
mapped by the OS when the process starts (whether it takes 1 MB or 100 GB of
virtual memory). This data is read-only, backed up by the binary file. Addition‐
ally, only a small contiguous part of the program is executed at a time by the
CPU so that the OS can keep a minimal amount of pages with code and data in
the physical memory. Those pages are also heavily shared (more processes are
started using the same binary, plus some dynamically linked shared libraries).

Block starting symbol (.bss)
When OS starts a process, it also allocates anonymous pages for uninitialized
data (.bss). The amount of space used by .bss is known in advance—for exam‐
ple, the http package defines the DefaultTransport global variable. While we
don’t know the value of this variable, we know it will be a pointer, so we need to
prepare eight bytes of memory for it. This type of memory allocation is called
static allocation. This space is allocated once, backed by anonymous pages, and is
never freed (from virtual memory at least; if swapping is enabled, it can be
unmapped from RAM).

Heap
The first (and probably the most important) dynamic segment in Figure 5-5 is
the memory reserved for dynamic allocations, typically called the heap (do not
confuse it with the data structure with the same name). Dynamic allocations are
required for program data (e.g., variables) that have to be available outside a sin‐
gle function scope. As a result, such allocations are unknown in advance and
must be stored in memory for an unpredictable time. When the process starts,
the OS prepares the initial number of anonymous pages for the heap. After that,
the OS gives the process some control over that space. It can then increase or
decrease its size using the sbrk syscall or by preparing or removing extra virtual
memory using the mmap and unmmap syscalls. It’s up to the process to organize
and manage the heap in the best possible way, and different languages do that
differently:

• C forces the programmer to manually allocate and free memory for variables
(using malloc and free functions).

• C++ adds smart pointers like std::unique_ptr and std::shared_ptr,
which offer simple counting mechanisms to track the object lifecycle (refer‐
ence counting).27
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28 It’s hard that the ownership model in Rust requires the programmer to be hyperaware of every memory allo‐
cation and what part owns it. Despite that, I am a huge fan of the Rust ownership model if we could scope this
memory management only to a certain part of our code. I believe it would be beneficial to bring some owner‐
ship pattern to Go, where a small amount of code could use that, whereas the rest would use GC. Wish list for
someday? :)

• Rust has a powerful memory ownership mechanism, but it makes program‐
ming much more difficult for nonmemory critical code areas.28

• Finally, languages like Python, C#, Java, and others implement advanced
heap allocators and garbage collector mechanisms. Garbage collectors peri‐
odically check if any memory is unused and can be released.
In this sense, Go is closer to Java with memory management than C. Go
implicitly (transparently to the programmer) allocates memory that requires
dynamic allocation on the heap. For that purpose, Go has its unique compo‐
nents (implemented in Go and Assembly); see “Go Allocator” on page 181
and “Garbage Collection” on page 185.

Most of the Time, It’s Enough to Optimize the Heap Usage

Heap is the memory that usually stores the largest amounts of data
in physical memory pages. It is so significant that it’s enough to
look at the heap size to assess the Go process memory usage in
most cases. On top of that, the overhead of heap management with
runtime garbage collection is significant too. Both make the heap
our first choice to analyze when optimizing memory use.

Manual process mappings
Both Go runtime and the developer writing Go code can manually allocate addi‐
tional memory-mapped regions (e.g., using our Example 5-1 abstraction). Of
course, it’s up to the process what kind of memory mapping to use (private or
shared, read or write, anonymous or file backed), but all of them have a dedica‐
ted space in the process’s virtual memory, presented in Figure 5-5.

Stack
The last section of the Go memory layout is reserved for function stacks. The
stack is a simple yet fast structure allowing accessing values in last in, first out
(LIFO) order. Programming languages use them to store all the elements (e.g.,
variables) that can use automatic allocation. As opposed to dynamic allocations
fulfilled by the heap, automatic allocations work well for local data like local vari‐
ables, function input, or return arguments. Allocations of those elements can be
“automatic” because the compiler can deduce their lifespan before the program
starts.
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Some programming languages might have a single stack or a stack per thread. Go
is a bit unique here. As we learned in “Go Runtime Scheduler” on page 138, the
Go execution flow is designed around goroutines. Thus Go maintains a single
dynamically sized stack per Go routine. This might even mean hundreds of thou‐
sands of stacks. Whenever the goroutine invokes another function, we can push
its local variables and arguments to stack in a stack frame. We can pop those ele‐
ments (de-allocate the stack frame) from the stack when we leave the function. If
stack structures require more space than what’s reserved in virtual memory, Go
will ask the OS for more memory attributed to the stack segment, e.g., via the
mmap syscall.

Stacks are incredibly fast as there is no extra overhead to figure out when mem‐
ory used by certain elements must be removed (no usage tracking). Thus ideally,
we write our algorithms so that they allocate primarily on the stack instead of the
heap. Unfortunately, this is impossible in many cases due to stack limitations (we
can’t allocate too-large objects) or when the variable has to live longer than the
function’s scope. Therefore, the compiler decides which data can be allocated
automatically (on the stack) and which must be allocated dynamically (on the
heap). This process is called escape analysis, which you saw in Example 4-3.

All the mechanisms discussed (except manual mappings) are helping Go developers.
We don’t need to care where and how we should allocate memory for our variables.
That is a huge win—for example, when we want to make some HTTP calls, we
simply create an HTTP client using a standard library, e.g., with the client :=
http.Client{} code statement. As a result of Go’s memory design, we can immedi‐
ately start using client, focusing on our code’s functionality, readability, and relia‐
bility. In particular:

• We don’t need to ensure that the OS has a free virtual memory page to hold the
client variable. Likewise, we don’t need to find a valid segment and virtual
address for it. Both will be done automatically by the compiler (if the variable can
be stored on the stack) or runtime allocator (dynamic allocation on the heap).

• We don’t need to remember to release memory kept by the client variable when
we stop using it. Instead, suppose the client would go beyond code reach (noth‐
ing references it). In that case, the data in Go will be released—immediately when
stored on the stack or in the next garbage collection execution cycle if stored on
the heap (more on that in “Garbage Collection” on page 185).
Such automation is much less error-prone to potential memory leaks (“I forgot
to release memory for client”) or dangling pointers (“I released memory for
client, but actually some code still uses it”).

Generally, we don’t need to care what segment is used for our objects for everyday
use of the Go language.
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How do I know whether a variable is allocated on the heap or the stack? From a cor‐
rectness standpoint, you don’t need to know. Each variable in Go exists as long as
there are references to it. The storage location chosen by the implementation is irrele‐
vant to the semantics of the language.
The storage location does have an effect on writing efficient programs.

—The Go Team, “Go: Frequently Asked Questions (FAQ)”

However, since allocations are so effortless, there is a risk of not noticing the memory
waste.

Transparent Allocations Mean There Is a Risk of Overdoing Them

Allocations are implicit in Go, making coding much easier, but
there are trade-offs. One is around memory efficiency: if we don’t
see explicit memory allocations and releases, it’s easier to miss
apparent high memory usage in our code.
It’s similar to going shopping with cash versus a credit card. You
will likely overspend with a credit card than with cash since you
don’t see that money flowing. With a credit card, money spent is
almost transparent to us—it is the same with allocations in Go.

To sum up, Go is a very productive language because, when programming, we don’t
need to worry about where and how the data held by our variables and abstractions is
stored. Yet sometimes when our measurements indicate efficiency problems, it’s use‐
ful to have a basic awareness of the parts of our program that might allocate some
memory, how this occurs, and how the memory is released. So let’s uncover that.

Values, Pointers, and Memory Blocks
Let’s get this straight before we start—you don’t need to know what type of state‐
ments trigger memory allocation, where (on a stack or heap), and how much mem‐
ory was allocated. But, as you will learn in Chapters 7 and 9, many robust tools can
tell us all that accurately and quickly. In most cases, we can find what code line and
roughly how much was allocated within seconds. Thus, there is generally a common
theme: we should not guess that information (since humans tend to guess wrong)
because there are tools for that.

This is generally true, but there is no harm in building some basic allocation aware‐
ness. On the contrary, it might make us more effective while using those tools to ana‐
lyze memory usage. The aim is to build a healthy instinct for what pieces of code can
potentially allocate the suspicious amount of memory and where we need to be
careful.
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Many books try to teach this by listing examples of common statements that allocate.
This is great, but it’s a bit like giving someone a fish instead of a fishing rod. So again,
it’s helpful, but only for “common” statements. Ideally, I want you to understand the
underlying rules for why something allocates.

Let’s dive into how we reference objects in Go to start noticing that allocation more
quickly. Our code can perform certain operations on objects stored in some memory.
Therefore, we must link those objects to operations, and we typically do that via vari‐
ables. We describe those variables using Go’s type system to make it even easier for
the compiler and developers.

However, Go is value oriented rather than reference oriented (like many managed
runtime languages). This means that Go variables never reference objects. Instead,
the variables always store the whole value of the object. There is no exception to this
rule!

To understand this better, the memory representation of three variables is shown in
Figure 5-6.

Figure 5-6. Representation of three variables allocated on the process’s virtual memory
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29 You can reveal the box size with the unsafe.Sizeof function.

30 See the handy reflect.SliceHeader struct that represents a slice.

Think About Variables as Boxes Holding Values

Whenever the compiler sees a definition of the var variable or
function arguments (including parameters) in the invocation
scope, it allocates a contiguous “memory block” for a box. The box
is big enough to contain the whole value of the given type. For
example, var var1 int and var var2 int will need a box for
eight bytes.29

Thanks to our available space in “boxes,” we can copy some values. In Figure 5-6, we
can copy an integer 1 to var1. Now, Go does not have reference variables, so even if
we assign the var1 value to another box named var2, this is yet another box with
unique space. We can confirm that by printing &var1 and &var2. It should print
0xA040 and 0xA038, respectively. As a result, a simple assignment is always a copy,
which adds latency proportional to the value’s size.

Unlike C++, each variable defined in a Go program occupies a unique memory loca‐
tion. It is not possible to create a Go program where two variables share the same stor‐
age location in memory. It is possible to create two variables whose contents point to
the same storage location, but that is not the same thing.

—Dave Cheney, “There Is No Pass-By-Reference in Go”

The var3 box is a pointer to the integer type. A “pointer” variable is a box that stores
the value representing the memory address. The type of memory address is just
uintptr or unsafe.Pointer, so simply a 64-bit unsigned integer that allows pointing
to another value in memory. As a result, any pointer variable needs a box for eight
bytes.

The pointer can also be nil (Go’s NULL value), a special value indicating that the
pointer does not point to anything. In Figure 5-6, we can see that the var3 box con‐
tains a value too—a memory address of the var1 box.

This is also consistent with more complex types. For example, both var var4 and var
var5 require boxes for only 24 bytes. This is because the slice struct value has three
integers.

Memory Structure for Go Slice

Slice allows easy dynamic behavior of the underlying array of a
given type. A slice data structure requires a memory block that can
hold length, capacity, and pointer to the desired array.30
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31 Technically speaking, the type map variable is a pointer to the hashmap. However, to avoid always typing
*map, the Go team decided to hide that detail.

32 We won’t cover struct padding in this edition. There is also an amazing utility that helps you to notice the
waste introduced by struct misalignment.

Generally, the slice is just a more complex struct. You can think about a struct as a
cabinet—it is full of drawers (struct fields) that are simply boxes that share a memory
block with other drawers in the same cabinet. So, for example, the slice type has
three drawers. One of them is of pointer type.

There are two special behaviors of slice and a few other special types:

• You can use the make built-in function that only works for map, chan, and slice
types. It returns the type’s value31 and allocates underlying structures, like an
array for slices, a buffer for channels, and a hashmap for maps.

• We can put nil into boxes of types, like func, map, chan, or slice, although they
are not strictly pointers, e.g., []byte(nil).

One drawer of the var4 and var5 cabinets is a type of pointer that holds the memory
address. Thanks to make([]byte, 5000) in var5, it points to another memory block
containing a 5,000-element byte array.

Structure Padding

The slice structure with three 64-bit fields requires a 24-byte long
memory block. But the memory block size for a structure type is
not always the sum of the size of its fields!
Smart compilers like in Go might attempt to align type sizes to the
typical cache lines or the OS or internal Go allocator page sizes. For
this reason, Go compilers sometimes add padding between fields.32

To reinforce that knowledge, let’s ask a common question when designing a new
function or method: should my arguments be pointers of values? Of course, the first
thing we should answer is obviously, if we want the caller to see the modifications of
that value. But there is an efficiency aspect as well. Let’s discuss the difference in
Example 5-4, assuming we don’t need to see modifications of those arguments from
outside.
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Example 5-4. Different arguments highlight the differences using values, pointers, and
special types like slice

func myFunction(
    arg1 int, arg2 *int, 
    arg3 biggie, arg4 *biggie, 
    arg5 []byte, arg6 *[]byte, 
    arg7 chan byte, arg8 map[string]int, arg9 func(), 
) {
   // ...
}

type biggie struct { 
    huge [1e8]byte
    other *biggie
}

Function arguments are like any newly declared variable: boxes. So for arg1, it
will create an eight-byte box (most likely allocate it on the stack) and copy the
passed integer during the myFunction invocation. For arg2, it will create a simi‐
lar eight-byte box that will copy the pointer instead.

For such simple types, avoiding the pointer makes more sense if you don’t need
to modify the value. You use the same amount of memory and the same copying
overhead. The only difference is that the value pointed to by arg2 has to live on
the heap, which is more expensive and, in many cases, can be avoided.

The rule is the same for custom struct arguments, but the size and copying
overhead might matter more. For example, arg3 is of biggie struct, which is of
extraordinary size. Because of the static array with 100 million elements, the type
requires a ~100 MB memory block.

For bigger types like this, we should consider using a pointer when passing
through functions. This is because every myFunction invocation will allocate 100
MB on the heap for the arg3 box (it’s too large to be on the stack)! On top of
that, it will spend CPU time copying large objects between boxes. So, arg4 will
allocate eight bytes on the stack (and copy only that) and point to memory on the
heap with the biggie object, which can be reused across function calls.

Note that despite biggie being copied in arg3, the copy is shallow, i.e.,
arg3.other will share a memory with the previous box!

The slice type behaves like the biggie type. We must remember the underlying
struct type of the slice.

As a result, arg5 will allocate a 24-byte box and copy three integers. In contrast,
arg6 will allocate an eight-byte box and copy only one integer (pointer). From
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the efficiency point of view, it does not matter. It only matters if we want to
expose modifications of the underlying array (both arg5 and arg6 allow that) or
if we want to also expose changes to the pointer, len, and cap fields as arg6
allows.

Special types like chan, map, and func() can be treated similarly to pointers. They
share memory through the heap, and the only cost is to allocate and copy the
pointer value into arg7, arg8, or arg9 boxes.

The same decision flow can be applied to decide about pointer versus value types for:

• Return arguments
• The struct fields
• Elements of map, slice, or channels
• The method receiver (e.g., func (receiver) Method())

Hopefully, the preceding information will give you an understanding of which Go
code statements allocate memory and roughly how much. Generally:

• Every variable declaration (including function arguments, return arguments, and
method receiver) allocates the whole type or just a pointer to it.

• make allocates special types and their underlying (pointed) structures.
• new(<type>) is the same as &<type>, so it allocates a pointer box and the type on

the heap in the separate memory block.

Most program memory allocations are only known in runtime; thus, dynamic alloca‐
tion (in a heap) is needed. Therefore, when we optimize memory in Go programs,
99% of the time we just focus on the heap. Go comes with two important runtime
components: Allocator and GC, responsible for heap management. Those compo‐
nents are nontrivial pieces of software that often introduce certain waste in terms of
extra CPU cycles by the program runtime and some memory waste. Given its nonde‐
terministic and nonimmediate memory release nature, it’s worth discussing this in
detail. Let’s do that in the next two sections.

Go Allocator
It’s far from easy to manage the heap, as it poses similar challenges as the OS has
toward physical memory. For example, the Go program runs multiple goroutines,
and each wants a few (dynamically sized!) segments of the heap memory for a differ‐
ent amount of time.
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33 This is one of the reasons why in Go, every new structure has defined zero value or nil at the start, instead of
random value.

The Go Allocator is a piece of internal runtime Go code maintained by the Go team.
As the name suggests, it can dynamically (in runtime) allocate the memory blocks
required to operate on objects. In addition, it is optimized to avoid locking and frag‐
mentation, and to mitigate slow syscalls to the OS.

During compilation, the Go compiler performs a complex stack escape analysis to
detect if the memory for objects can be automatically allocated (mentioned in
Example 4-3). If yes, it adds appropriate CPU instructions that store related memory
blocks in the stack segment of the memory layout. However, in most cases the com‐
piler can’t avoid putting most of our memory on the heap. In these cases, it generates
different CPU instructions invoking the Go Allocator code.

The Go Allocator is responsible for bin packing the memory blocks in the virtual
memory space. It also asks for more space from the OS if needed using mmap with pri‐
vate, anonymous pages, which are initialized by zero.33 As we learned in “OS Memory
Mapping” on page 168, those pages are also allocated on the physical RAM only
when accessed.

Generally, the Go developer can live without learning details about Go Allocator
internals. However, it’s enough to remember that:

• It is based on a custom Google C++ malloc implementation called TCMalloc.
• It is OS virtual memory page aware, but it operates with 8 KB pages.
• It mitigates fragmentation by allocating memory blocks to certain spans that

hold one or multiple 8 KB pages. Each span is created for class memory block
sizes. For example, in Go 1.18, there are 67 different size classes (size buckets),
the largest being 32 KB.

• Memory blocks for objects that do not contain a pointer are marked with the
noscan type, making it easier to track nested objects in the garbage collection
phase.

• Objects with over 32 KB memory block (e.g., 600 MB byte array) are treated spe‐
cially (allocated directly without span).

• If runtime needs more virtual space from OS for the heap, it allocates a bigger
chunk of memory at once (at least 1 MB), which amortizes the latency of the
syscall.

All of the preceding points are constantly changing, with the open source community
and Go team adding various small optimizations and features.
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34 We know that because go build -gcflags="-m=1" slice.go outputs the ./slice.go:11:11:
make([]byte, size) escapes to heap line.

They say one code snippet is worth a thousand words, so let’s visualize and explain
some of these allocation characteristics caused by a mix of Go, OS, and hardware
using an example. Example 5-5 shows the same functionality as Example 5-3, but
instead of explicit mmap, we will rely on Go memory management and no underlying
file.

Example 5-5. Allocation of a large []byte slice followed by different access patterns

b := make([]byte, 600*1024*1024) 
b[5000] = 1
b[100000] = 1
b[104000] = 1 
for i := range b { 
   b[i] = 1
}

The b variable is declared as a []byte slice. The following make statement is
tasked to create a byte array with 600 MB of data (~600 million elements in the
array). This memory block is allocated on the heap.34

If we would analyze this situation closely, the Go Allocator seemed to create
three contiguous anonymous mappings for that slice with different (virtual)
memory sizes: 2 MB, 598 MB, and 4 MB. (The total size is usually bigger than the
requested 600 MB because of the Go Allocator internal bucketed algorithm.)
Let’s summarize the interesting statistics:

• The RSS for three memory mappings used by our slice: 548 KB, 0 KB, and
120 KB (much lower than VSS numbers).

• Total RSS of the whole process shows 21 MB. Profiling shows that most of
this comes from outside the heap.

• Go reports 600.15 MB of the heap size (despite RSS being significantly
lower).

Only after we start accessing the slice elements (either by writing or reading) will
the OS start reserving actual physical memory surrounding those elements. Our
statistics:

• The RSS for three memory mappings: 556 KB, (still) 0 KB, and 180 KB (only
a few KB more than before accessing).

• Total RSS still shows 21 MB.
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35 This behavior was often leveraged by more advanced memory ballasting, which generally is less needed after
Go 1.19 introduced the memory soft limit discussed in “Garbage Collection” on page 185.

• Go reports 600.16 MB of the heap size (actually a few KB more, probably due
to background goroutines).

After we loop over all elements to access it, we will see that the OS mapped on
demand all pages for our b slice in physical memory. Our statistics prove this:

• The RSS for three memory mappings: 1.5 MB, (fully mapped) 598 MB, and
1.2 MB.

• Total RSS of the whole process shows 621.7 MB (finally, same as heap size).
• Go reports the same 600.16 MB of the heap size.

This example might feel similar to Examples 5-2 and 5-3, but it’s a bit different.
Notice that in Example 5-5, there is no (explicit) file involved that could store some
data if the page is not mapped. We also utilize the Go Allocator to organize
and manage different anonymous page mappings most efficiently, whereas in
Example 5-3, the Go Allocator is unaware of that memory usage.

Internal Go Runtime Knowledge Versus OS Knowledge

The Go Allocator tracks certain information we can collect
through different observability mechanisms discussed in
Chapter 6.
Be mindful when using those. In the preceding example, we saw
that the heap size tracked by the Go Allocator was significantly
larger than the actual amount of memory used on physical RAM
(RSS)!35 Similarly, the memory used by explicit mmap, as in
Example 5-3, is not reflected in any Go runtime metrics. This is
why it’s good to rely on more than one metric on our TFBO jour‐
ney, as discussed in “Memory Usage” on page 234.

The behavior of Go heap management backed up by on-demand paging tends to be
indeterministic and fuzzy. We cannot control it directly either. For instance, if you
tried to reproduce Example 5-5 on your machine, you would most likely observe
slightly different mappings, more or less different RSS numbers (with a tolerance of
few MBs), and different heap sizes. It all depends on the Go version you build a pro‐
gram with, the kernel version, the RAM capacity and model, and the load on your
system. This poses important challenges to the assessment step of our TFBO process,
which we will discuss in “Reliability of Experiments” on page 256.
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Don’t Be Bothered by a Small Memory Increase

Don’t try to understand where every hundred bytes or kilobytes of
your process RSS memory came from. In most cases, it is impossi‐
ble to tell or control at that low level. Heap management overhead,
speculative page allocations by both the OS and the Go Allocator,
dynamic OS mapping behavior, and eventual memory collection
(we will learn about that in the next section) make things indeter‐
ministic on such a “micro” kilobyte level.
Even if you spot some pattern in one environment, it will be differ‐
ent in others unless we talk about bigger numbers like hundreds of
megabytes or more!

The lesson here is that we have to adjust our mindsets. There will always be a few
unknowns. What matters is to understand bigger unknowns that contribute the most
to the potentially too-high memory usage situation. Together with this allocator
awareness, you will learn how to do that in Chapters 6 and 9.

So far, we have discussed how to efficiently reserve memory for our memory blocks
through the Go Allocator and how to access it. However, we can’t just reserve more
memory indefinitely if there is no logic for removing the memory blocks our code
doesn’t need anymore. That’s why it’s critical to understand the second part of heap
management responsible for releasing unused objects from the heap—garbage collec‐
tion. Let’s explore that in the next section.

Garbage Collection
You pay for memory allocation more than once. The first is obviously when you allo‐
cate it. But you also pay every time the garbage collection runs.

—Damian Gryski, “go-perfbook”

The second part of heap management is similar to vacuuming your house. It is
related to a process that removes the proverbial garbage—unused objects from the
program’s heap. Generally speaking, the garbage collector (GC) is an additional back‐
ground routine that executes “collection” at certain moments. The cadence of collec‐
tions is critical:

• If the GC runs less often, we risk allocating a significant amount of new RAM
space without the ability to reuse the memory pages currently allocated by
garbage (unused objects).

• If the GC runs too often, we risk spending most of the program time and CPU
on GC work instead of moving our functionality forward. As we will learn later,
the GC is relatively fast but can directly or indirectly impact the execution of
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other goroutines in the system, especially if we have many objects in a heap (if we
allocate a lot).

The interval of the GC runs is not based on time. Instead, two configuration variables
(working independently) define the pace: GOGC and, from Go 1.19, GOMEMLIMIT. To
learn more about them, read an official detailed guide about GC tuning. For this
book, let’s explain both very briefly:

The GOGC option represents the “GC percentage.”
GOGC is enabled by default with a 100 value. It means that the next GC collection
will be done when the heap size expands to 100% of the size it has at the end of
the last GC cycle. GC’s pacing algorithm estimates when that goal will be reached
based on current heap growth. It can also be set programmatically with the
debug.SetGCPercent function.

The GOMEMLIMIT option controls the soft memory limit.
The GOMEMLIMIT option was introduced in Go 1.19. It is disabled by default (set
to math.MaxInt64), and offers running GC more often when we are close (or
above) the set memory limit. It can be used with GOGC=off (disabled) or together
with GOGC. This option can also be set programmatically with the debug.Set
MemoryLimit function.

GOMEMLIMIT Does Not Prevent Your Program from Allocating
More than the Set Value!

The GC’s soft memory limit configuration is called “soft” for a
reason. It tells the GC how much memory overhead space
there is for the GC “laziness” to save the CPU.
However, when your program allocates and uses more mem‐
ory than the desired limit, with the GOMEMLIMIT option set, it
will only make things worse. This is because the GC will run
nearly continuously, taking up 25% of the precious CPU time
from other functionalities.
We still have to optimize the memory efficiency of our
programs!

Manual trigger.
Programmers can also trigger another GC collection on demand by invoking run
time.GC(). It is mostly used in testing or benchmarking code, as it can block the
entire program. Other pacing configurations like GOGC and GOMEMLIMIT might
run in between.

The Go GC implementation can be described as the concurrent, nongenerational, tri‐
color mark and sweep collector implementation. Whether invoked by the program‐
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36 It’s also possible to change Go memory release strategy by changing the GODEBUG environment variable. For
example, we can set GODEBUG=madvdontneed=0, so MADV_FREE will be used instead to notify the OS about
unneeded memory space. The difference between MADV_DONTNEED and MADV_FREE is precisely around the
point mentioned in the Linux Community quote. For MADV_FREE, memory release is even faster for Go pro‐
grams, but the resident set size (RSS) metric of the calling process might not be immediately reduced until the
OS reclaims that space. This has proven to cause a massive problem on some systems (e.g., lightly virtualized
systems like Kubernetes) that rely on RSS to manage the processes. This happened in 2019 when Go defaulted
to MADV_FREE for a couple of versions. More on that is explained in my blog post.

mer or by the runtime-based GOGC or GOMEMLIMIT option, the runtime.GC()
implementation comprises a few phases. The first one is a mark phase that has to:

1. Perform a “stop the world” (STW) event to inject an essential write barrier (a
lock on writing data) into all goroutines. Even though STW is relatively fast (10–
30 microseconds on average), it is pretty impactful—it suspends the execution of
all goroutines in our process for that time.

2. Try to use 25% of the CPU capacity given to the process to concurrently mark all
objects in the heap that are still in use.

3. Terminate marking by removing the write barrier from the goroutines. This
requires another STW event.

After the mark phase, the GC function is generally complete. As interesting as it
sounds, the GC doesn’t release any memory! Instead, the sweeping phase releases
objects that were not marked as in use. It is done lazily: every time a goroutine wants
to allocate memory through the Go Allocator, it must perform a sweeping work first,
then allocate. This is counted as an allocation latency, even though it is technically
a garbage collection functionality—worth noting!

Generally speaking, the Go Allocator and GC compose a sophisticated implementa‐
tion of bucketed object pooling, where each pool of slots of different sizes are pre‐
pared for incoming allocations. When an allocation is not needed anymore, it is
eventually released. The memory space for this allocation is not immediately released
to the OS since it can be assigned to another incoming allocation soon (this is similar
to the pooling pattern using sync.Pool we will discuss in “Memory Reuse and Pool‐
ing” on page 449). When the number of free buckets is big enough, Go releases memory
to the OS. But even then, it does not necessarily mean that runtime deletes mapped
regions straight away. For example, on Linux, Go runtime typically “releases” mem‐
ory through the madvise syscall with the MADV_DONTNEED argument by default.36 This
is because our mapped region might be needed again pretty soon, so it’s faster to keep
them just in case and ask the OS to take them back only if other processes require this
physical memory.

Go Memory Management | 187

https://oreil.ly/ynNXr
https://oreil.ly/UYXJy
https://oreil.ly/Sl9PI
https://oreil.ly/r1K18
https://oreil.ly/pxXum


Note that, when applied to shared mappings, MADV_DONTNEED might not lead to imme‐
diate freeing of the pages in the range. The kernel is free to delay freeing the pages until
an appropriate moment. The resident set size (RSS) of the calling process will be
immediately reduced, however.

— Linux Community, "madvise(2), Linux Manual Page”

With the theory behind the GC algorithm, it will be easier for us to understand in
Example 5-6 what happens if we try to clean the memory used for the large, 600 MB
byte slice we created in Example 5-5.

Example 5-6. Memory release (de-allocation) of large slice created in Example 5-5

b := make([]byte, 600*1024*1024)
for i := range b { 
   b[i] = 1
}

b[5000] = 1 
b = nil 
runtime.GC() 

// Let's allocate another one, this time 300 MB!
b = make([]byte, 300*1024*1024)
for i := range b { 
   b[i] = 2
}

As we discussed in Example 5-5, the statistics after allocating a large slice and
accessing all elements might look as follows:

• Slice is allocated in three memory mappings with the corresponding virtual
memory size (VSS) numbers: 2 MB, 598 MB, and 4 MB.

• The RSS for three memory mappings: 1.5 MB, 598 MB, and 1.2 MB.
• Total RSS of the whole process shows 621.7 MB.
• Go reports 600.16 MB of the heap size.

After the last statement where data from b is accessed, even before b = nil, the
Mark phase of GC would consider b as a “garbage” to clean. Yet, the GC has its
own pace; thus, immediately after this statement, no memory will be released—
memory statistics will be the same.

In typical cases when you no longer use the b value and the function scope ends,
or you will replace b content with a pointer to a different object, there is no need
for an explicit b = nil statement. The GC will know that the array pointed to by
b is garbage. Yet sometimes, especially on long-living functions (e.g., a goroutine
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that performs background job items delivered by the Go channel), it is useful to
set the variable to nil to make sure the next GC run will mark it for cleaning
earlier.

In our tests, let’s invoke the GC manually to see what happens. After this state‐
ment, the statistics will look as follows:

• All three memory mappings still exist, with the same VSS values. This proves
what we mentioned about the Go Allocator only advising on memory map‐
pings, not removing those straightaway!

• The RSS for three memory mappings: 1.5 MB, 0 (RSS released), and 60 KB.
• Total RSS of the whole process shows 21 MB (back to the initial number).
• Go reports 159 KB of the heap size.

Let’s allocate another twice smaller slice. The following memory statistics prove
the theory that Go will try to reuse previous memory mappings!

• Same three memory mappings still exist, with the same VSS values.
• The RSS for three memory mappings: 1.5 MB, 300 MB, and 60 KB.
• Total RSS of the whole process shows 321 MB.
• Go reports 300.1 KB of the heap size.

As we mentioned earlier, the beauty of GC is that it simplifies programmer life
thanks to carefree allocations, memory safety, and solid efficiency for most applica‐
tions. Unfortunately, it also makes our life a bit harder when our program violates
our efficiency expectations, and the reason is not what you might think. The main
problem with the Go Allocator and GC pair is that they hide the root cause of our
memory efficiency problems—in almost all cases, our code allocates too much
memory!

Think of a garbage collector like a Roomba: Just because you have one does not mean
you tell your children not to drop arbitrary pieces of garbage onto the floor.

—Halvar Flake, Twitter

Let’s explore the potential symptoms we might notice in Go when we are not careful
with the number and type of the allocations:
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37 To be strict, Go ensures that a maximum of 25% of the total CPU assigned for the process is used for the GC.
This is, however, not a silver-bullet solution. By reducing the maximum CPU time used, we simply use the
same amount, just over longer periods.

CPU overhead
First and foremost, the GC must go through all the objects stored on the heap to
tell which ones are in use. This can use a significant portion of the CPU resource,
especially if there are many objects in heap.37

This is especially visible if the objects stored on the heap are rich in pointer types,
which forces the GC to traverse them to check if they don’t point to an object
that was not yet marked as “in use.” Given the limited CPU resources in our
computers, the more work we have to do for the GC, the less work we can per‐
form toward the core program functionality, which translates to higher program
latency.

In platforms with garbage collection, memory pressure naturally translates into
increased CPU consumption.

—Google Teams, Site Reliability Engineering

Additional increase in program latency
CPU time spent on GC is one thing, but there is more. First, the STW event per‐
formed twice slows down all goroutines. This is because the GC must stop all
goroutines and inject (and then remove) a write barrier. It also prevents some
goroutines that have to store some data in memory from doing any further work
for the moment of GC marking.

There is also a second, often missed effect. The GC collection runs are destruc‐
tive to the hierarchical cache system efficiency.

For your program to be fast, you want everything you’re doing to be in the
cache. ... There are technical and physical reasons in the silicon why allocating
memory, throwing it away and GC cleaning that for you, is going to not only slow
your program down, because GC is doing its work, but it slows the rest of your
program down, because it kicked everything out of [the CPU] cache.

—Bryan Boreham, “Make Your Go Go Faster!”

Memory overhead
Since Go 1.19, there has been a way to set a soft memory limit for the GC. This
still means that we have to often implement on our side checks against unboun‐
ded allocations (e.g., rejecting reading too-large HTTP body requests), but at
least the GC is more prompt if you need to avoid that overhead.

Still, the collection phase is eventual. This means we might be unable to release
some memory blocks before new allocations come in. Changing the GOGC option
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to run GC less often only amplifies the problem but might be a good trade-off if
you optimize for the CPU resource and have spare RAM on your machines.

Additionally, in extreme cases, our program might even leak memory if the GC is
not fast enough to deal with all new allocations!

The GC can sometimes have surprising effects on our program efficiency. Hopefully,
after this section, you will be able to notice when you are affected. You will also be
able to notice the GC bottlenecks with the observability tools explained in Chapter 9.

The Solution to Most Memory Efficiency Issues

Produce less garbage!
It’s easy to overallocate memory in Go. This is why the best way to
solve GC bottleneck or other memory efficiency issues is to allocate
less. I will introduce “The Three Rs Optimization Method” on page
421, which goes through different optimizations that help with those
efficiency problems.

Summary
It was a long chapter, but you made it! Unfortunately, memory resource is one of the
hardest to explain and master. Probably that’s why there are so many opportunities
to reduce the size or number of our Go program’s allocations.

You learned the long, multilayer path between our code that needs to allocate bits on
memory and bits landing on the DRAM chip. You learned about many memory
trade-offs, behaviors, and consequences on the OS level. Finally, you now know how
Go uses those mechanisms and why memory allocations in Go are so transparent.

Perhaps you can already figure out the root causes of why Example 4-1 was using
30.5 MB of the heap for every single operation when the input file was 3 MB large. In
“Optimizing Memory Usage” on page 395, I will propose the algorithm and code
improvements to Example 4-1 that allow it to use memory in numbers that are a frac‐
tion of the input file size, while also improving the latency.

It is important to note that this space is evolving. Go compiler, Go garbage collector,
and Go Allocator are constantly being improved, changed, and scaled for the needs of
Go users. Yet most of the incoming changes will likely be only iterations of what we
have now in Go.

Ahead of us are Chapters 6 and 7, which I consider two of the most crucial chapters
in the book. I have already mentioned many tools I used to explain the main concepts
in past chapters: metrics, benchmarking, and profiling. It’s time to learn them in
detail!
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CHAPTER 6

Efficiency Observability

In “Efficiency-Aware Development Flow” on page 102, you learned to follow the
TFBO (test, fix, benchmark, and optimize) flow to validate and achieve the required
efficiency results with the least effort. Around the elements of the efficiency phase,
observability takes one of the key roles, especially in Chapters 7 and 9. We focus on
that phase in Figure 6-1.

Figure 6-1. An excerpt from Figure 3-5 focusing on the part that requires good
observability
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In this chapter, I will explain the required observability and monitoring tools for this
part of the flow. First, we will learn what observability is and what problems it solves.
Then, we will discuss different observability signals, typically divided into logs, trac‐
ing, metrics, and, recently, profiles. Next, we will explain the first three signals in
“Example: Instrumenting for Latency” on page 199, which takes latency as an example
of the efficiency information we might want to measure (profiling is explained in
Chapter 9). Last but not least, we will go through the specific semantics and sources
of metrics related to our program efficiency in “Efficiency Metrics Semantics” on
page 220.

You Can’t Improve What You Don’t Measure!

This quote, often attributed to Peter Drucker, is a key to improving
anything: business revenues, car efficiency, family budget, body fat,
or even happiness.
Especially when it comes to invisible waste that our inefficient soft‐
ware is producing, we can say that it’s impossible to optimize soft‐
ware without assessing and measuring before and after the change.
Every decision must be data driven, as our guesses in this virtual
space are often wrong.

With no further ado, let’s learn how to measure the efficiency of our software in the
easiest possible way—with the concept the industry calls observability.

Observability
To control software efficiency, we first need to find a structured and reliable way to
measure the latency and resource usage of our Go applications. The key is to count
these as accurately as possible and present them at the end as easy to understand
numeric values. This is why for consumption measurements, we sometimes (not
always!) use a “metric signal,” which is a pillar of the essential software (or system)
characteristics called observability.
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1 Some of you might ask why I am sticking to the word observability and don’t mention monitoring. In my
eyes, I have to agree with my friend Björn Rabenstein that the difference between monitoring and observabil‐
ity tends to be driven by marketing needs too much. One might say that observability has become meaning‐
less these days. In theory, monitoring means answering known unknown problems (known questions),
whereas observability allows learning about unknown unknowns (any question you might have in the future).
In my eyes, monitoring is a subset of observability. In this book, we will stay pragmatic. Let’s focus on how we
can leverage observability practically, not using theoretical concepts.

2 The fourth signal, profiling, just started to be considered by some as an observability signal. This is because
only recently did the industry see a value and need for gathering profiling continuously.

Observability

In the cloud-native infrastructure world, we often talk about the
observability of our applications. Unfortunately, observability is a
very overloaded word.1 It can be summarized as follows: an ability
to deduce the state of a system inferred from external signals.
The external signals the industry uses nowadays can be generally
categorized into four types: metrics, logs, traces, and profiling.2

Observability is a huge topic nowadays as it can help us in many situations while
developing and operating our software. Observability patterns allow us to debug fail‐
ures or unexpected behaviors of our programs, find root causes of incidents, monitor
healthiness, alert on unforeseen situations, perform billing, measure SLIs (service
level indicators), run analytics, and much more. Naturally, we will focus only on the
parts of observability that will help us ensure that our software efficiency matches our
requirements (the RAERs mentioned in “Efficiency Requirements Should Be Formal‐
ized” on page 83). So what is an observability signal?

• Metrics are a numeric representation of data measured over intervals of
time. Metrics can harness the power of mathematical modeling and pre‐
diction to derive knowledge of the behavior of a system over intervals of
time in the present and future.

• An event log is an immutable, timestamped record of discrete events
that happened over time. Event logs in general come in three forms but
are fundamentally the same: a timestamp and a payload of some context.

• A trace is a representation of a series of causally related distributed events
that encode the end-to-end request flow through a distributed system.
Traces are a representation of logs; the data structure of traces looks
almost like that of an event log. A single trace can provide visibility into
both the path traversed by a request as well as the structure of a request.

—Cindy Sridharan, Distributed Systems Observability (O’Reilly, 2018)
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Generally, all those signals can be used to observe our Go applications’ latency and
resource consumption for optimization purposes. For example, we can measure the
latency of a specific operation and expose it as a metric. We can send that value enco‐
ded into a log line or trace annotations (e.g., “baggage” items). We can calculate
latency by subtracting the timestamps of two log lines—when the operation started
and when it finished. We can use trace spans, which track the latency of a span (indi‐
vidual unit of work done) by design.

However, whatever we use to deliver that information to us (via metric-specific tools,
logs, traces, or profiles), in the end, it has to have metric semantics. We need to
derive information to a numeric value so we can gather it over time; subtract; find
max, min, or average; and aggregate over dimensions. We need the information to
visualize and analyze. We need it to allow tools to reactively alert us when required,
potentially build further automation that will consume it, and compare other metrics.
This is why an efficiency discussion will mostly navigate through metric aggregations:
the tail latency of our application, maximum memory usage over time, etc.

As we discussed, to optimize anything, you have to start measuring it, so the
industry has developed many metrics and instruments to capture the usage of
various resources. The process of observing or measuring always starts with the
instrumentation.

Instrumentation

Instrumentation is a process of adding or enabling instruments for
our code that will expose the observability signals we need.

Instrumentation can have many forms:

Manual instrumentation
We can add a few statements to our code that import a Go module that generates
an observability signal (for example, Prometheus client for metrics, go-kit logger,
or a tracing library) and hook it to the operations we do. Of course, this requires
modifying our Go code, but it usually leads to more personalized and rich signals
with more context. Usually, it represents open box information because we can
collect information tailored to the program functionality.

Autoinstrumentation
Sometimes instrumentation means installing (and configuring) a tool that
can derive useful information by looking at outside effects. For example, a
service mesh gathers observability by looking at HTTP requests and responses,
or a tool hooks to the operating system and gathers information through cgroups
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3 As a recent example, we can give this repository that gathers information through eBPF probes and tries to
search popular functions or libraries.

 or eBPF.3 Autoinstrumentation does not require changing and rebuilding code
and usually represents closed box information.

On top of that, it’s helpful to categorize instrumentation based on the granularity of
the information:

Capturing raw events
Instrumentation in this category will try to deliver a separate piece of informa‐
tion for each event in our process. For example, suppose we would like to know
how many and what errors are happening in all HTTP requests served by our
process. In that case, we could have instrumentation that delivers a separate piece
of information about each request (e.g., as a log line). Furthermore, this informa‐
tion usually has some metadata about its context, like the status code, user IP,
timestamp, and the process and code statement in which it happened (target
metadata).

Once ingested to some observability backend, such raw data is very rich in con‐
text and, in theory, allows any ad hoc analysis. For example, we can scan through
all events to find an average number of errors or the percentile distributions
(more on that in “Latency” on page 221). We can navigate to every individual error
representing a single event to inspect it in detail. Unfortunately, this kind of data
is generally the most expensive to use, ingest, and store. We often risk an inac‐
curacy here since it’s likely we’ll miss an individual event or two. In extreme
cases, it requires complex skills and automation for big data and data mining
explorations to find the information you want.

Capturing aggregated information
We can capture pre-aggregated data instead of raw events. Every piece of infor‐
mation delivered by such instrumentation represents certain information about a
group of events. In our HTTP server example, we could count successful and
failed requests, and periodically deliver that information. Before forwarding this
information, we could go even further and pre-calculate the error ratio inside our
code. It’s worth mentioning that this kind of information also requires metadata,
so we can summarize, aggregate further, compare, and analyze those aggregated
pieces of information.

Pre-aggregated instrumentation forces Go processes or autoinstrumentation
tools to do more work, but the results are generally easier to use. On top of
this, because of the smaller amount of data, the complexity of the instrumenta‐
tion, signal delivery, and backend is lower, thereby increasing reliability and
decreasing cost significantly. There are trade-offs here as well. We lose some
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4 In some way, I am trying in this book to establish helpful processes around optimizations and efficiency,
which by design yield standard questions we know up front. This aggregated information is usually enough
for us here.

information (commonly called the cardinality). The decision of what informa‐
tion to prebuild is made up front, and is coded into instrumentation. If you sud‐
denly have different questions to be answered (e.g., how many errors an
individual user had across your processes) and your instrumentation was not set
to pre-aggregate that information, you have to change it, which takes time and
resources. Yet if you roughly know what you will be asking for ahead of time,
aggregated type of information is an amazing win and a more pragmatic
approach.4

Last but not least, generally speaking we can design our observability flows into push-
and-pull collection models:

Push
A system where a centralized remote process collects observability signals from
your applications (including your Go programs).

Pull
A system where application processes push the signal to a remote centralized
observability system.

Push Versus Pull

Each of the conventions has its pros and cons. You can push your
metrics, logs, and traces, but you can also pull all of them from
your process. We can also use a mixed approach, different for each
observability signal.
Push versus pull method is sometimes a controversial topic. The
industry is polarized as to what is generally better, not only in
observability but also for any other architectures. We will discuss
the pros and cons in “Metrics” on page 211, but the difficult truth is
that both ways can scale equally well, just with different solutions,
tools, and best practices.

After learning about those three categories, we should be ready to dive further into
observability signals. To measure and deliver observability information for efficiency
optimizations, we can’t avoid learning more about instrumenting the three common
observability signals: logging, tracing, and metrics. In the next section, let’s do that
while keeping a practical goal in mind—measuring latency.
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Example: Instrumenting for Latency
All three signals you will learn in this section can be used to build observability that
will fit in any of the three categorizations we discussed. Each signal can:

• Be manually or autoinstrumented
• Give aggregated information or raw events
• Be pulled (collected, tailed, or scraped) from the process or pushed (uploaded)

Yet every signal—logging, tracing, or metric—might be better or worse fitted in any
of those jobs. In this section, we will discuss these predispositions.

The best way to learn how to use observability signals and their trade-offs is to focus
on the practical goal. Let’s imagine we want to measure the latency of a specific oper‐
ation in our code. As mentioned in the introduction, we need to start measuring the
latency to assess it and decide if our code needs more optimizations during every
optimization iteration. As you will learn in this section, we can get latency results
using any of those observability signals. The details around how information is pre‐
sented, how complex instrumentation is, and so on will help you understand what to
choose in your journey. Let’s dive in!

Logging
Logging might be the clearest signal to understand an instrument. So let’s explore the
most basic instrumentation that we might categorize as logging to collect latency
measurements. Taking basic latency measurements for a single operation in Go code
is straightforward, thanks to the standard time package. Whether you do it by hand
or use standard or third-party libraries to obtain latencies, if they are written in Go,
they use the pattern presented in Example 6-1 using the time package.

Example 6-1. Manual and simplest latency measurement of a single operation in Go

import (
    "fmt"
    "time"
)

func ExampleLatencySimplest() {
    for i := 0; i < xTimes; i++ {
        start := time.Now() 
        err := doOperation()
        elapsed := time.Since(start) 

        fmt.Printf("%v ns\n", elapsed.Nanoseconds()) 

        // ...

Example: Instrumenting for Latency | 199

https://oreil.ly/t9FDr


    }
}

time.Now() captures the current wall time (clock time) from our operating sys‐
tem clock in the form time.Time. Note the xTime, example variable that specifies
the desired number of runs.

After our cooperation functions finish, we can capture the time between
start and current time using time.Since(start), which returns the handy
time.Duration.

We can leverage such an instrument to deliver our metric sample. For example,
we can print the duration in nanoseconds to the standard output using the .Nano
seconds() method.

Arguably, Example 6-1 represents the simplest form of instrumentation and observa‐
bility. We take a latency measurement and deliver it by printing the result into stan‐
dard output. Given that every operation will output a new line, Example 6-1
represents manual instrumentation of raw event information.

Unfortunately, this is a little naive. First of all, as we will learn in “Reliability of
Experiments” on page 256, a single measurement of anything can be misleading. We
have to capture more of those—ideally hundreds or thousands for statistical pur‐
poses. When we have one process, and only one functionality we want to test or
benchmark, Example 6-1 will print hundreds of results that we can later analyze.
However, to simplify the analysis, we could try to pre-aggregate some results. Instead
of logging raw events, we could pre-aggregate using a mathematical average function
and output that. Example 6-2 presents a modification of Example 6-1 that aggregates
events into an easier-to-consume result.

Example 6-2. Instrumenting Go to log the average latency of an operation in Go

func ExampleLatencyAggregated() {
    var count, sum int64
    for i := 0; i < xTimes; i++ {
        start := time.Now()
        err := doOperation()
        elapsed := time.Since(start)

        sum += elapsed.Nanoseconds() 
        count++

        // ...
    }
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    fmt.Printf("%v ns/op\n", sum/count) 
}

Instead of printing raw latency, we can gather a sum and number of operations
in the sum.

Those two pieces of information can be used to calculate the accurate average
and present that for a group of events instead of the unique latency. For example,
one run printed the 188324467 ns/op string on my machine.

Given that we stop presenting latency for raw events, Example 6-2 represents a man‐
ual, aggregated information observability. This method allows us to quickly get the
information we need without complex (and time-consuming) tools analyzing our
logging outputs.

This example is how the Go benchmarking tool will do the average latency calcula‐
tions. We can achieve exactly the same logic as in Example 6-2 using the snippet in
Example 6-3 in a file with the _test.go suffix.

Example 6-3. Simplest Go benchmark that will measure average latency per operation

func BenchmarkExampleLatency(b *testing.B) {
    for i := 0; i < b.N; i++ { 
        _ = doOperation()
    }
}

The for loop with the N variable is essential in the benchmarking framework. It
allows the Go framework to try different N values to perform enough test runs to
fulfill the configured number of runs or test duration. For example, by default,
the Go benchmark runs to fit one second, which is often too short for meaning‐
ful output reliability.

Once we run Example 6-3 using go test (explained in detail in “Go Benchmarks” on
page 277), it will print certain output. One part of the information is a result line with
a number of runs and average nanoseconds per operation. One of the runs on my
machine gave an output latency of 197999371 ns/op, which generally matches the
result from Example 6-2. We can say that the Go benchmark is an autoinstrumenta‐
tion with aggregated information using logging signals for things like latency.

On top of collecting latency about the whole operation, we can gain a lot of insight
from having different granularity of those measurements. For example, we might
wish to capture the latency of a few suboperations inside our single operation.
Finally, for more complex deployments, when our Go program is part of a
distributed system, as discussed in “Macrobenchmarks” on page 306, we have poten‐
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5 Given Go compatibility guarantees, even if the community agrees to improve it, we cannot change it until
Go 2.0.

6 A nonexecutable module or package intended to be imported by others.

tially many processes we have to measure across. For those cases, we have to use
more sophisticated logging that will give us more metadata and ways to deliver a log‐
ging signal, not only by simply printing to a file, but by other means too.

The amount of information we have to attach to our logging signal results in the pat‐
tern called a logger in Go (and other programming languages). A logger is a structure
that allows us to manually instrument our Go application with logs in the easiest and
most readable way. A logger hides complexities like:

• Formatting of the log lines.
• Deciding if we should log or not based on the logging level (e.g., debug, warning,

error, or more).
• Delivering the log line to a configured place, such as the output file. Optionally,

more complex, push-based logging delivery is possible to remote backends,
which must support back-off retries, authorization, service discovery, etc.

• Adding context-based metadata and timestamps.

The Go standard library is very rich with many useful utilities, including logging. For
example, the log package contains a simple logger. It can work well for many appli‐
cations, but it is prone to some usage pitfalls.5

Be Mindful While Using the Go Standard Library Logger

There are a few things to remember if you want to use the standard
Go logger from the log package:

• Don’t use the global log.Default() logger, so log.Print
functions, and so on. Sooner or later, it will bite you.

• Never store or consume *log.Logger directly in your func‐
tions and structures, especially when you write a library.6 If
you do, users will be forced to use a very limited log logger
instead of their own logging libraries. Use a custom interface
instead (e.g., go-kit logger), so users can adapt their loggers to
what you use in your code.

• Never use the Fatal method outside the main function. It
panics, which should not be your default error handling.
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7 There are many Go libraries for logging. go-kit has a good enough API that allows us to do all kinds of log‐
ging we need in all the Go projects I have helped with so far. This does not mean go-kit is without flaws (e.g.,
it’s easy to forget you have to put an even number of arguments for the key-value–like logic). There is also a
pending proposal from the Go community on structure logging in standard libraries (slog package). Feel free
to use any other libraries, but make sure their API is simple, readable, and useful. Also make sure that the
library of your choice is not introducing efficiency problems.

To not accidentally get hit by these pitfalls, in the projects I worked on, we decided to
use the third-party popular go-kit7 logger. An additional advantage of the go-kit log‐
ger is that it is easy to maintain some structure. Structure logic is essential to have
reliable parsers for automatic log analysis with logging backends like OpenSearch or
Loki. To measure latency, let’s go through an example of logger usage in
Example 6-4. Its output is shown in Example 6-5. We use the go-kit module, but
other libraries follow similar patterns.

Example 6-4. Capturing latency though logging using the go-kit logger

import (
    "fmt"
    "time"

    "github.com/go-kit/log"
    "github.com/go-kit/log/level"
)

func ExampleLatencyLog() {
    logger := log.With( 
        log.NewLogfmtLogger(os.Stderr), "ts", log.DefaultTimestampUTC,
    )

    for i := 0; i < xTimes; i++ {
        now := time.Now()
        err := doOperation()
        elapsed := time.Since(now)

        level.Info(logger).Log( 
            "msg", "finished operation",
            "result", err,
            "elapsed", elapsed.String(),
        )

        // ...
    }
}

We initialize the logger. Libraries usually allow you to output the log lines to a
file (e.g., standard output or error) or directly push it to some collections tool,
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8 It’s a typical pattern allowing processes to print something useful to standard output and keep logs separate in
the stderr Linux file.

e.g., to fluentbit or vector. Here we choose to output all logs to standard error8

with a timestamp attached to each log line. We also choose to format logs in the
human-accessible way with NewLogfmtLogger (still structured so that it can be
parsed by software, with space as the delimiter).

In Example 6-1, we simply printed the latency number. Here we add certain
metadata to it to use that information more easily across processes and different
operations happening in the system. Notice that we maintain a certain structure.
We pass an even number of arguments representing key values. This allows our
log line to be structured for easier use by automation. Additionally, we choose
level.Info, meaning this log line will be not printed if we choose levels like
errors only.

Example 6-5. Example output logs generated by Example 6-4 (wrapped for readability)

level=info ts=2022-05-02T11:30:46.531839841Z msg="finished operation" \
result="error other" elapsed=83.62459ms 
level=info ts=2022-05-02T11:30:46.868633635Z msg="finished operation" \
result="error other" elapsed=336.769413ms
level=info ts=2022-05-02T11:30:47.194901418Z msg="finished operation" \
result="error first" elapsed=326.242636ms
level=info ts=2022-05-02T11:30:47.51101522Z msg="finished operation" \
result=null elapsed=316.088166ms
level=info ts=2022-05-02T11:30:47.803680146Z msg="finished operation" \
result="error first" elapsed=292.639849ms

Thanks to the log structure, it’s both readable to us and automation can clearly
distinguish among different fields like msg, elapsed, info, etc. without expensive
and error-prone fuzzy parsing.

Logging with a logger might still be the simplest way to deliver our latency informa‐
tion manually to us. We can tail the file (or use docker log if our Go process was
running in Docker, or kubectl logs if we deployed it on Kubernetes) to read those
log lines for further analysis. It is also possible to set up an automation that tails those
from files or pushes them directly to the collector, adding further information. Col‐
lectors can be then configured to push those log lines into free and open source log‐
ging backends like OpenSearch, Loki, Elasticsearch, or many of the paid vendors. As
a result, you can keep log lines from many processes in a single place, search, visual‐
ize, analyze them, or build further automation to handle them as you want.
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Is logging a good fit for our efficiency observability? Yes and no. For microbe‐
nchmarks explained in “Microbenchmarks” on page 275, logging is our primary tool
of measurements because of its simplicity. On the other hand, on a macro level, like
“Macrobenchmarks” on page 306, we tend to use logging for a raw event type of observ‐
ability, which on such a scale gets very complex and expensive to analyze and keep
reliable. Still, because logging is so common, we can find efficiency bottlenecks in a
bigger system with logging.

Logging tools are also constantly evolving. For example, many tools allow us to derive
metrics from log lines, like Grafana Loki’s Metric queries inside LogQL. In practice,
however, simplicity has its cost. One of the problems stems from the fact that some‐
times logs are used directly by humans, and sometimes by automation (e.g., deriving
metrics or reacting to situations found in logs). As a result, logs are often unstruc‐
tured. Even with amazing loggers like go-kit in Example 6-4, logs are inconsistently
structured, making it very hard and expensive to parse for automation. For example,
things like inconsistent units (as in Example 6-5 for latency measurements), which
are great for humans, become almost impossible to derive the value as a metric. Solu‐
tions like Google mtail try to approach this with custom parsing language. Still, the
complexity and ever-changing logging structure make it hard to use this signal to
measure our code’s efficiency.

Let’s look at the next observability signal—tracing—to learn in which areas it can
help us with our efficiency goals.

Tracing
Given the lack of consistent structure in logging, tracing signals emerged to tackle
some of the logging problems. In contrast to logging, tracing is a piece of structured
information about your system. The structure is built around the transaction, for
example, requests-response architecture. This means that things like status codes, the
result of the operation, and the latency of operations are natively encoded, thus easier
to use by automation and tools. As a trade-off, you need an additional mechanism
(e.g., a user interface) to expose this information to humans in a readable way.

On top of that, operations, suboperations, and even cross-process calls (e.g., RPCs)
can be linked together, thanks to context propagation mechanisms working well with
standard network protocols like HTTP. This feels like a perfect choice for measuring
latency for our efficiency needs, right? Let’s find out.

As with logging, there are many different manual instrumentation libraries you can
choose from. Popular, open source choices for Go are the OpenTracing library (cur‐
rently deprecated but still viable), OpenTelemetry, or clients from the dedicated trac‐
ing vendor. Unfortunately, at the moment of writing, the OpenTelemetry library has
a too-complex API to explain in this book, plus it’s still changing, so I started a small
project called tracing-go that encapsulates the OpenTelemetry client SDK into mini‐
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mal tracing instrumentation. While tracing-go is my interpretation of the minimal
set of tracing functionalities to use, it should teach you the basics of context propaga‐
tion and span logic. Let’s explore an example manual instrumentation using tracing-
go to measure dummy doOperation function latency (and more!) using tracing in
Example 6-6.

Example 6-6. Capturing latencies of the operation and potential suboperations using
tracing-go

import (
    "fmt"
    "time"

    "github.com/bwplotka/tracing-go/tracing"
    "github.com/bwplotka/tracing-go/tracing/exporters/otlp"
)

func ExampleLatencyTrace() {
    tracer, cleanFn, err := tracing.NewTracer(otlp.Exporter("<endpoint>")) 
    if err != nil { /* Handle error... */ }
    defer cleanFn()

    for i := 0; i < xTimes; i++ {
        ctx, span := tracer.StartSpan("doOperation") 
        err := doOperationWithCtx(ctx)
        span.End(err) 

        // ...
    }
}

func doOperationWithCtx(ctx context.Context) error {
    _, span := tracing.StartSpan(ctx, "first operation") 
    // ...
    span.End(nil)

    // ...
}

As with everything, we have to initialize our library. In our example, usually, it
means creating an instance of Tracer that is capable of sending the spans that
will form traces. We push spans to some collector and eventually to the tracing
backend. This is why we have to specify some address to send to. In this example,
you could specify a gRPC host:port address of the collector (e.g., OpenTeleme‐
try Collector) endpoint that supports the gRPC OTLP trace protocol.

With the tracer, we can create an initial root span. The root means the span that
spans the whole transaction. A traceID is created during creation, identifying all

206 | Chapter 6: Efficiency Observability

https://oreil.ly/1027d
https://oreil.ly/z0Pjt
https://oreil.ly/z0Pjt
https://oreil.ly/4IaBd


spans in the trace. Span represents individual work done. For example, we can
add a different name or even baggage items like logs or events. We also get a
context.Context instance as part of creation. This Go native context interface
can be used to create subspans if our doOperation function will do any subwork
pieces worth instrumenting.

In the manual instrumentation, we have to tell the tracing provider when the
work was done and with what result. In the tracing-go library, we can use
end.Stop(<error or nil>) for that. Once you stop the span, it will record the
span’s latency from its start, the potential error, and mark itself as ready to be
sent asynchronously by Tracer. Tracer exporter implementations usually won’t
send spans straightaway but buffer them for batch pushes. Tracer will also check
if a trace containing some spans can be sent to the endpoint based on the chosen
sampling strategy (more on that later).

Once you have context with the injected span creator, we can add subspans to it.
It’s useful when you want to debug different parts and sequences involved in
doing one piece of work.

One of the most valuable parts of tracing is context propagation. This is what sepa‐
rates distributed tracing from nondistributed signals. I did not reflect this in our
examples, but imagine if our operation makes a network call to other microservices.
Distributed tracing allows passing various tracing information like traceID, or sam‐
pling via a propagation API (e.g., certain encoding using HTTP headers). See a
related blog post about context propagation. For that to work in Go, you have to add
a special middleware or HTTP client with propagation support, e.g., OpenTelemetry
HTTP transport.

Because of the complex structure, raw traces and spans are not readable by humans.
This is why many projects and vendors help users by providing solutions to use trac‐
ing effectively. Open source solutions like Grafana Tempo with Grafana UI and
Jaeger exist, which offer nice user interfaces and trace collection so you can observe
your traces. Let’s look at how our spans from Example 6-6 look in the latter project.
Figure 6-2 shows a multitrace search view, and Figure 6-3 shows what our individual
doOperation trace looks like.
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Figure 6-2. View of one hundred operations presented as one hundred traces with their
latency results

Figure 6-3. Click one trace to inspect all of its spans and associated data
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Tools and user interfaces can vary, but generally they follow the same semantics I
explain in this section. The view in Figure 6-2 allows us to search through traces
based on their timestamp, durations, service involved, etc. The current search
matches our one hundred operations, which are then listed on the screen. A conve‐
nient, interactive graph of its latencies is placed, so we can navigate to the operation
we want. Once clicked, the view in Figure 6-3 is presented. In this view, we can see a
distribution of spans for this operation. If the operation spans multiple processes and
we used network context propagation, all linked spans will be listed here. For
example, from Figure 6-3 we can immediately tell that the first operation was respon‐
sible for most of the latency, and the last operation introduced the error.

All the benefits of tracing make it an excellent tool for learning the system interac‐
tions, debugging, or finding fundamental efficiency bottlenecks. It can also be used
for ad hoc verification of system latency measurements (e.g., in our TFBO flow to
assess latency). But unfortunately, there are a few downsides of tracing that you have
to be aware of when planning to use it in practice for efficiency or other needs:

Readability and maintainability
The advantage of tracing is that you can put a huge amount of useful context into
your code. In extreme cases, you could potentially be able to rewrite the whole
program or even system just by looking at all traces and their emitted spans. But
there is a catch. All this manual instrumentation requires code lines. More code
lines connected to our existing code increases the complexity of our code, which
in turn decreases readability. We also need to ensure that our instrumentation
stays updated with ever-changing code.

In practice, the tracing industry tends to prefer autoinstrumentation, which in
theory can add, maintain, and hide such instrumentation automatically. Proxies
like Envoy (especially with service mesh technologies) are great examples of suc‐
cessful (yet simpler) autoinstrumentation tools for tracing that record the inter-
process HTTP calls. But unfortunately, more involved auto-instrumentation is
not so easy. The main problem is that the automation has to hook on to some
generic path like common database or library operations, HTTP requests, or sys‐
calls (e.g., through eBPF probes in Linux). Moreover, it is often hard for those
tools to understand what more you would like to capture in your application
(e.g., the ID of the client in a specific code variable). On top of that, tools like
eBPF are pretty unstable and dependent on the kernel version.
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9 Tail sampling is a logic that defers the decision if the trace should be excluded or sampled at the end of the
transaction, for example, only after we know its status code. The problem with tail sampling is that your
instrumentation might have already assumed that all spans will be sampled.

Hiding Instrumentation Under Abstractions

There is a middle ground between manual and fully autono‐
mous instrumentation. We can manually instrument only a
few common Go functions and libraries, so all code that uses
them will be traced consistently implicitly (automatically!).
For example, we could add a trace for every HTTP or gRPC
request to our process. There are already HTTP middlewares
and gRPC interceptors for that purpose.

Cost and reliability
Traces by design fall into the raw event category of observability. This means that
tracing is typically more expensive than pre-aggregated equivalents. The reason
is the sheer amount of data we send using tracing. Even if we are very moderate
with this instrumentation for a single operation, we ideally have dozens of trac‐
ing spans. These days, systems have to sustain many QPS (queries per second).
In our example, even for 100 QPS, we would generate over 1,000 spans. Each
span must be delivered to some backend to be used effectively, with replication
on both the ingestion and storage sides. Then you need a lot of computation
power to analyze this data to find, for example, average latency across traces or
spans. This can easily surpass your price for running the systems without
observability!

The industry is aware of this, and this is why we have tracing sampling, so some
decision-making configuration or code decides what data to pass forward and
what to ignore. For example, you might want to only collect traces for failed
operations or operations that took more than 120 seconds.

Unfortunately, sampling comes with its downsides. For example, it’s challenging
to perform tail sampling.9 Last but not least, sampling makes us miss some data
(similar to profiling). In our latency example, this might mean that the latency
we measure represents only part of all operations that happened. Sometimes it
might be enough, but it’s easy to get wrong conclusions with sampling, which
might lead to wrong optimization decisions.

Short duration
We will discuss this in detail in “Latency” on page 221, but tracing won’t tell us
much when we try to improve very fast functions that last only a few milli‐
seconds or less. Similar to the time package, the span itself introduces some
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10 I maintain this library together with the Prometheus team. The client_golang is also the most used metric
client SDK for Go when writing this book, with over 53,000 open source projects using it. It is free and open
source.

latency. On top of that, adding span for many small operations can add a huge
cost to the overall ingestion, storage, and querying of traces.

This is especially visible in streamed algorithms like chunked encodings, com‐
pressions, or iterators. If we perform partial operations, we are still often interes‐
ted in the latency of the sum of all iterations for certain logic. We can’t use
tracing for that, as we would need to create tiny spans for every iteration. For
those algorithms, “Profiling in Go” on page 331 yields the best observability.

Despite some downsides, tracing becomes very powerful and even replaces the log‐
ging signal in many cases. Vendors and projects add more features, for example,
Tempo project’s metric generator that allows recording metrics from traces (e.g.,
average or tail latency for our efficiency needs). Undoubtedly, tracing would not
grow so quickly without the push from the OpenTelemetry community. Amazing
things will come from this community if you are into tracing.

The downsides of one framework are often strengths of other frameworks that
choose different trade-offs. For example, many tracing problems come from the fact
that it naturally represents raw events happening in the system (that might trigger
other events). Let’s now discuss a signal on the opposite spectrum—designed to cap‐
ture aggregations changing over time.

Metrics
Metrics is the observability signal that was designed to observe aggregated informa‐
tion. Such aggregation-oriented metric instrumentations might be the most prag‐
matic way of solving our efficiency goals. Metrics are also what I used the most in my
day-to-day job as a developer and SRE to observe and debug production workloads.
In addition, metrics are the main signal used for monitoring at Google.

Example 6-7 shows pre-aggregated instrumentation that can be used to measure
latency. This example uses Prometheus client_golang.10

Example 6-7. Measuring doOperation latency using the histogram metric with
Prometheus client_golang

import (
    "fmt"
    "time"

    "github.com/prometheus/client_golang/prometheus"
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11 It’s tempting to use global prometheus.DefaultRegistry. Don’t do this. We try to get away from this pattern
that can cause many problems and side effects.

    "github.com/prometheus/client_golang/prometheus/promauto"
    "github.com/prometheus/client_golang/prometheus/promhttp"
)

func ExampleLatencyMetric() {
    reg := prometheus.NewRegistry() 
    latencySeconds := promauto.With(reg).

NewHistogramVec(prometheus.HistogramOpts{ 
        Name:    "operation_duration_seconds",
        Help:    "Tracks the latency of operations in seconds.",
        Buckets: []float64{0.001, 0.01, 0.1, 1, 10, 100},
    }, []string{"error_type"}) 

    go func() {
        for i := 0; i < xTimes; i++ {
             now := time.Now()
             err := doOperation()
             elapsed := time.Since(now)

             latencySeconds.WithLabelValues(errorType(err)).
                 Observe(elapsed.Seconds()) 

             // ...
        }
    }()

    err := http.ListenAndServe(
        ":8080",
        promhttp.HandlerFor(reg, promhttp.HandlerOpts{})
    ) 
    // ...
}

Using the Prometheus library always starts with creating a new metric registry.11

The next step is to populate the registry with the metric definitions you want.
Prometheus allows a few types of metrics, yet the typical latency measurements
for efficiency are best done as histograms. So on top of type, help and histogram
buckets are required. We will talk more about buckets and the choice of histo‐
grams later.

As the last parameter, we define the dynamic dimension of this metric. Here I
propose to measure latency for different types of errors (or no error). This is use‐
ful as, very often, failures have other timing characteristics.
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12 Always check errors and perform graceful termination on process teardown. See production-grade usage in
the Thanos project that leverages the run goroutine helper.

We observe the exact latency with a floating number of seconds. We run all oper‐
ations in a simplified goroutine, so we can expose metrics while the functionality
is performing. The Observe method will add such latency into the histogram of
buckets. Notice that we observe this latency for certain errors. We also don’t take
an arbitrary error string—we sanitize it to a type using some custom errorType
function. This is important because the controlled number of values in the
dimension keeps our metric valuable and cheap.

The default way to consume those metrics is by allowing other processes (e.g.,
Prometheus server) to pull the current state of the metrics. For example, in this
simplified12 code we serve those metrics from our registry through an HTTP end‐
point on the 8080 port.

The Prometheus data model supports four metric types, which are well described in
the Prometheus documentation: counters, gauges, histograms, and summaries. There
is a reason why I chose a more complex histogram for observing latency instead of a
counter or a gauge metric. I explain why in “Latency” on page 221. For now, it’s enough
to say that histograms allow us to capture distributions of the latencies, which is typi‐
cally what we need when observing production systems for efficiency and reliability.
Such metrics, defined and instrumented in Example 6-7, will be represented on an
HTTP endpoint, as shown in Example 6-8.

Example 6-8. Sample of the metric output from Example 6-7 when consumed from the
OpenMetrics compatible HTTP endpoint

# HELP operation_duration_seconds Tracks the latency of operations in seconds.
# TYPE operation_duration_seconds histogram
operation_duration_seconds_bucket{error_type="",le="0.001"} 0 
operation_duration_seconds_bucket{error_type="",le="0.01"} 0
operation_duration_seconds_bucket{error_type="",le="0.1"} 1
operation_duration_seconds_bucket{error_type="",le="1"} 2
operation_duration_seconds_bucket{error_type="",le="10"} 2
operation_duration_seconds_bucket{error_type="",le="100"} 2
operation_duration_seconds_bucket{error_type="",le="+Inf"} 2
operation_duration_seconds_sum{error_type=""} 0.278675917 
operation_duration_seconds_count{error_type=""} 2

Each bucket represents a number (counters) of operations that had latency less
than or equal to the value specified in le. For example, we can immediately see
that we saw two successful operations from the process start. The first was faster

Example: Instrumenting for Latency | 213

https://oreil.ly/yvvTM
https://oreil.ly/sDIwW
https://oreil.ly/2Sa3P
https://oreil.ly/mamdO
https://oreil.ly/aZ6GT


than 0.1 seconds; and the second was faster than 1 second, but slower than 0.1
seconds.

Every histogram also captures a number of observed operations and summarized
value (sum of observed latencies, in this case).

As mentioned in “Observability” on page 194, every signal can be pulled or pushed.
However, the Prometheus ecosystem defaults to the pull method for metrics. Not
the naive pull, though. In the Prometheus ecosystem, we don’t pull a backlog of
events or samples like we would when pulling (tailing) traces of logs from, for
example, a file. Instead, applications serve HTTP payload in the OpenMetrics format
(like in Example 6-8), which is then periodically collected (scraped) by Prometheus
servers or Prometheus compatible systems (e.g., Grafana Agent or OpenTelemetry
collector). With the Prometheus data model, we scrape the latest information about
the process.

To use Prometheus with our Go program instrumented in Example 6-7, we have to
start the Prometheus server and configure the scrape job that targets the Go process
server. For example, assuming we have the code in Example 6-7 running, we could
use the set of commands shown in Example 6-9 to start metric collection.

Example 6-9. The simplest set of commands to run Prometheus from the terminal to
start collecting metrics from Example 6-7

cat << EOF > ./prom.yaml
scrape_configs:
- job_name: "local"
  scrape_interval: "15s" 
  static_configs:
  - targets: [ "localhost:8080" ] 
EOF
prometheus --config.file=./prom.yaml 

For my demo purposes, I can limit the Prometheus configuration to a single
scrape job. One of the first decisions is to specify the scrape interval. Typically,
it’s around 15–30 seconds for continuous, efficient metric collection.

I also provide a target that points to our tiny instrumented Go program in
Example 6-7.

Prometheus is just a single binary written in Go. We install it in many ways. In
the simplest configuration, we can point it to a created configuration. When
started, the UI will be available on the localhost:9090.
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With the preceding setup, we can start analyzing the data using Prometheus APIs.
The simplest way is to use the Prometheus query language (PromQL) documented
here and here. With Prometheus server started as in Example 6-9, we can use the
Prometheus UI and query the data we collected.

For example, Figure 6-4 shows the result of the simple query fetching the latest
latency histogram numbers over time (from the moment of the process start) for our
operation_duration_seconds metric name that represents successful operations.
This generally matches the format we see in Example 6-8.

Figure 6-4. PromQL query results for simple query for all operation_duration_
seconds_bucket metrics graphed in the Prometheus UI
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13 Note that doing rate on the gauges type of metric will yield incorrect results.

To obtain the average latency of a single operation, we can use certain mathematical
operations to divide the rates of operation_duration_seconds_sum by
operation_duration_seconds_count. We use the rate function to ensure accurate
results across many processes and their restart. rate transforms Prometheus counters
into a rate per second.13 Then we can use / to divide the rates of those metrics. The
result of such an average query is presented in Figure 6-5.

Figure 6-5. PromQL query results representing average latency captured by the
Example 6-7 instrumentation graphed in the Prometheus UI

With another query, we can check total operations or, even better, check the rate
per minute of those using the increase function on our operation_duration_
seconds_count counter, as presented in Figure 6-6.
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Figure 6-6. PromQL query results representing a rate of operations per minute in our
system graphed in the Prometheus UI

There are many other functions, aggregations, and ways of using metric data in the
Prometheus ecosystem. We will unpack some of it in later sections.

The amazing part about Prometheus with such a specific scrape technique is that
pulling metrics allows our Go client to be ultrathin and efficient. As a result, the Go
process does not need to:

• Buffer data samples, spans, or logs in memory or on disk
• Maintain information (and automatically update it!) on where to send potential

data
• Implement complex buffering and persisting logic if the metric backend is down

temporarily
• Ensure a consistent sample push interval
• Know about any authentication, authorization, or TLS for metric payload
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14 On the contrary, for the push-based system, if you don’t see expected data, it’s hard to tell if it’s because the
sender is down or the pipeline to send is down.

15 See our talk from KubeCon EU 2022 about such cases.

On top of that, the observability experience is better when you pull the data in such a
way that:

• Metric users can easily control the scrape interval, targets, metadata, and record‐
ings from a central place. This makes the metric usage simpler, more pragmatic,
and generally cheaper.

• It is easier to predict the load of such a system, which makes it easier to scale it
and react to the situations that require scaling the collection pipeline.

• Last but not least, pulling metrics allows you to reliably tell your application’s
health (if we can’t scrape metrics from it, it is most likely unhealthy or down).
We also typically know what sample is the last one for a metric (staleness).14

As with everything, there are some trade-offs. Each pulled, tailed, or scraped signal
has its downsides. Typical problems of an observability pull-based system include:

• It is generally harder to pull data from short-lived processes (e.g., CLI and batch
jobs).15

• Not every system architecture allows ingress traffic.
• It is generally harder to ensure that all the pieces of information will land safely

in a remote place (e.g., this pulling is not suitable for auditing).

The Prometheus metrics are designed to mitigate downsides and leverage the
strength of the pull model. Most of the metrics we use are counters, which means
they only increase. This allows Prometheus to skip a few scrapes from the process but
still, in the end, have a perfectly accurate number for each metric within larger time
windows, like minutes.

As mentioned before, in the end, metrics (as numeric values) are what we need when
it comes to assessing efficiency. It’s all about comparing and analyzing numbers. This
is why a metric observability signal is a great way to gather required information
pragmatically. We will use this signal extensively for “Macrobenchmarks” on page 306
and “Root Cause Analysis, but for Efficiency” on page 330. It’s simple, pragmatic, the
ecosystem is huge (you can find metric exporters for almost all kinds of software and
hardware), it’s generally cheap, and it works great with both human users and auto‐
mation (e.g., alerting).
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Metric observability signals, especially with the Prometheus data model, fit into
aggregated information instrumentation. We discussed the benefits, but some limits
and downsides are important to understand. All downsides come from the fact that
we generally cannot narrow pre-aggregated data down to a state before aggregation,
for example, a single event. We might know with metrics how many requests failed,
but we don’t know the exact stack trace, error message, and so on for a singular error
that happened. The most granular information we typically have is a type of error
(e.g., status code). This makes the surface of possible questions we can ask a metric
system smaller than if we would capture all raw events. Another essential characteris‐
tic that might be considered a downside is the cardinality of the metrics and the fact
that it has to be kept low.

High Metric Cardinality

Cardinality means the uniqueness of our metric. For example,
imagine in Example 6-7 we would inject a unique error string
instead of the error_type label. Every new label value creates a
new, possibly short-lived unique metric. A metric with just a single
or a few samples represents more of a raw event, not aggregation
over time. Unfortunately, if users try to push event-like informa‐
tion to a system designed for metrics (like Prometheus), it tends to
be expensive and slow.
It is very tempting to push more cardinal data to a system designed
for metrics. This is because it’s only natural to want to learn more
from such cheap and reliable signal-like metrics. Avoid that and
keep your cardinality low with metric budgets, recording rules, and
allow-list relabeling. Switch to event-based systems like logging
and tracing if you wish to capture unique information like exact
error messages or the latency for a single, specific operation in the
system!

Whether gathered from logs, traces, profiles, or metric signals, we already touched on
some metrics in previous chapters—for example, CPU core used per second, memory
bytes allocated on the heap, or residential memory bytes used per operation. So let’s
go through some of those in detail and talk about their semantics, how we should
interpret them, potential granularity, and example code that illustrates them using
signals you have just learned.
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There Is No Observability Silver Bullet!

Metrics are powerful. Yet as you learned in this chapter, logging
and traces also give enormous opportunities to improve the effi‐
ciency observability experience with dedicated tools that allow us
to derive metrics from them. In this book, you will see me using all
of those tools (together with profiling, which we haven’t covered
yet) to improve the efficiency of Go programs.
The pragmatic system captures enough of each of those observabil‐
ity signals that fit your use cases. It’s unlikely to build metric-only,
trace-only, or profiling-only systems!

Efficiency Metrics Semantics
Observability feels like a vast and deep topic that takes years to grasp and set up. The
industry constantly evolves, and creating new solutions does not help. However, it
will be easier to understand once we start using observability for a specific goal like
the efficiency effort. Let’s talk about exactly which observability bits are essential to
start measuring latency and consumption of the resources we care about, e.g., CPU
and memory.

Metrics As Numeric Value Versus Metric Observability Signal

In “Metrics” on page 211, we discussed the metric observability sig‐
nal. Here we discuss specific metric semantics that are useful to
capture for efficiency efforts. To clarify, we can capture those spe‐
cific metrics in various ways. We can use metric observability sig‐
nals, but we can also derive them from other signals, like logs,
traces, and profiling!

Two things can define every metric:

Semantics
What’s the meaning of that number? What do we measure? With what unit?
How do we call it?

Granularity
How detailed is this information? For example, is it per a unique operation? Is it
per a result type of this operation (success versus error)? Per goroutine? Per
process?

Metric semantics and granularity both heavily depend on the instrumentation. This
section will focus on defining the semantics, granularity, and example instrumenta‐
tion for the typical metrics we can use to track resource consumption and latency of
our software. It is essential to understand the specific measurements we will operate

220 | Chapter 6: Efficiency Observability



16 This is why the Prometheus ecosystem suggests base units.

with to work effectively with the benchmark and profiling tools we will learn
in “Benchmarking Levels” on page 266 and “Profiling in Go” on page 331. While
iterating over those semantics, we will uncover common best practices and pitfalls we
have to be aware of. Let’s go!

Latency
If we want to improve how fast our program performs certain operations, we need to
measure the latency. Latency means the duration of the operation from the start to
either success or failure. Thus, the semantics we need feel pretty simple at first
glance—we generally want the “amount of time” required to complete our software
operation. Our metric will usually have a name containing the words latency, dura‐
tion, or elapsed with the desired unit. But the devil is in the details, and as you will
learn in this section, measuring latency is prone to mistakes.

The preferable unit of the typical latency measurement depends on what kind of
operations we measure. If we measure very short operations like compression latency
or OS context switch latencies, we must focus on granular nanoseconds. Nanosec‐
onds are also the most granular timing we can count on in typical modern comput‐
ers. This is why the Go standard library time.Time and time.Duration structures
measure time in nanoseconds.

Generally speaking, the typical measurements of software operations are almost
always in milliseconds, seconds, minutes, or hours. This is why it’s often enough to
measure latency in seconds, as a floating value, for up to nanoseconds granularity.
Using seconds has another advantage: it is a base unit. Using the base unit is often
what’s natural and consistent across many solutions.16 Consistency is critical here.
You don’t want to measure one part of the system in nanoseconds, another in sec‐
onds, and another in hours if you can avoid it. It’s easy enough to get confused by our
data and have a wrong conclusion without trying to guess a correct unit or writing
transformations between those.

In the code examples in “Example: Instrumenting for Latency” on page 199, we
already mentioned many ways we can instrument latency using various observability
signals. Let’s extend Example 6-1 in Example 6-10 to show important details that
ensure latency is measured as reliably as possible.
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Example 6-10. Manual and simplest latency measurement of a single operation that
can error out and has to prepare and tear down phases

prepare()

for i := 0; i < xTimes; i++ {
    start := time.Now() 
    err := doOperation()
    elapsed := time.Since(start) 

    // Capture 'elapsed' value using log, trace or metric...

    if err != nil { /* Handle error... */ }
}

tearDown()

We capture the start time as close as possible to the start of our doOperation
invocation. This ensures nothing unexpected will get between start and opera‐
tion start that might introduce unrelated latency, which can mislead the conclu‐
sion we might take from this metric further on. This, by design, should exclude
any potential preparation or setup we have to do for an operation we measure.
Let’s measure those explicitly as another operation. This is also why you should
avoid putting any newline (empty line) between start and the invocation of the
operation. As a result, the next programmer (or yourself, after some time) won’t
add anything in between, forgetting about the instrumentation you added.

Similarly, it’s important to capture the finish time using the time.Since helper
as soon as we finish, so no unrelated duration is captured. For example, similar
to excluding prepare() time, we want to exclude any potential close or tear
Down() duration. Moreover, if you are an advanced Go programmer, your intu‐
ition is always to check errors when some functions finish. This is critical, but we
should do that for instrumentation purposes after we capture the latency. Other‐
wise, we might increase the risk that someone will not notice our instrumenta‐
tion and will add unrelated statements between what we measure and
time.Since. On top of that, in most cases, you want to make sure you measure
the latency of both successful and failed operations to understand the complete
picture of what your program is doing.
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17 For example, on my machine time.Now and time.Since take around 50–55 nanoseconds.
18 This is why it’s better to make thousands or even more of the same operation, measure the total latency, and

get the average by dividing it by a number of operations. As a result, this is what Go benchmark is doing, as
we will learn in “Go Benchmarks” on page 277.

19 Did you know this date was picked simply because of Back to the Future Part II?

Shorter Latencies Are Harder to Measure Reliably

The method for measuring operation latency shown in
Example 6-10 won’t work well for operations that finish under,
let’s say, 0.1 microseconds (100 nanoseconds). This is because the
effort of taking the system clock number, allocating variables, and
further computing time.Now() and time.Since functions can take
its time too, which is significant for such short measurements.17

Furthermore, as we will learn in “Reliability of Experiments” on
page 256, every measurement has some variance. The shorter
latency, the more impactful this noise can be.18 This also applies to
tracing spans measuring latency.

One solution for measuring very fast functions is used by the Go benchmark as pre‐
sented by Example 6-3, where we estimate average latency per operation by doing
many of them. More on that in “Microbenchmarks” on page 275.

Time Is Infinite; the Software Structures Measuring that Time Are Not!

When measuring latency, we have to be aware of the limitations of
time or duration measurements in software. Different types can
contain different ranges of numeric values, and not all of them can
contain negative numbers. For example:

• time.Time can only measure time from January 1, 188519 up
until 2157.

• The time.Duration type can measure time (in nanoseconds)
approximately between -290 years before your “starting” point
and up to 290 years after your “starting” point.

If you want to measure things outside of those typical values, you need to extend
those types or use your own. Last but not least, Go is prone to the leap second prob‐
lem and time skews of the operating systems. On some systems, the time.Duration
(monotonic clock) will also stop if the computer goes to sleep (e.g., laptop or virtual
machine suspend), which will lead to wrong measurements, so keep that in mind.
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We discussed some typical latency metric semantics. Now let’s move to the granular‐
ity question. We can decide to measure the latency of operation A or B in our pro‐
cess. We can measure a group of operations (e.g., transaction) or a single
suboperation of it. We can gather this data across many processes or look only at one,
depending on what we want to achieve.

To make it even more complex, even if we choose a single operation as our granular‐
ity to measure latency, that single operation has many stages. In a single process this
can be represented by stack trace, but for multiprocess systems with some network
communication, we might need to establish additional boundaries.

Let’s take some programs as an example, as the Caddy HTTP web server explained in
the previous chapter, with a simple REST HTTP call to retrieve an HTML as our
example operation. What latencies should we measure if we install such a Go pro‐
gram in a cloud on production to serve our REST HTTP call to the client (e.g., some‐
one’s browser)? The example granularities we could measure latency for are
presented in Figure 6-7.

Figure 6-7. Example latency stages we can measure for in our Go web server program
communicating with the user’s web browser

We can outline five example stages:

Absolute (total) client-side latency
The latency measured exactly from the moment the user hits Enter in the URL
input in the browser, up until the whole response is retrieved, content is loaded,
and the browser renders all.

224 | Chapter 6: Efficiency Observability

https://oreil.ly/SHEor


HTTP client-side latency (response time)
The latency captured from the moment the first bytes of the HTTP request on
the client side are being written to a new or reused TCP connection, up until the
client receives all bytes of the response. This excludes everything that happens
before (e.g., DNS lookup) or after (rendering HTML and JavaScript in the
browser) on the client side.

HTTP server-side latency
The latency is measured from the moment the server receives the first bytes of
the HTTP request from the client, up until the server finishes writing all bytes of
the HTTP response. This is typically what we are measuring if we use the HTTP
middlewares pattern in Go.

Server-side latency (service time)
The latency of server-side computation required to answer the HTTP request,
measured without HTTP request parsing and response encoding. Latency is from
the moment of having the HTTP request parsed to the moment when we start
encoding and sending the HTTP response.

Server-side function latency
The latency of a single server-side function computation from the moment of
invocation, up until the function work is finished and return arguments are in
the context of the caller function.

These are just some of the many permutations we can use to measure latency in our
Go programs or systems. Which one should we pick for our optimizations? Which
matters the most? It turns out that all of them have their use case. The priority of
what latency metric granularity we should use and when depends solely on our
goals, the accuracy of measurements as explained in “Reliability of Experiments” on
page 256, and the element we want to focus on as discussed in “Benchmarking Levels”
on page 266. To understand the big picture and find the bottleneck, we have to
measure a few of those different granularities at once. As discussed in “Root Cause
Analysis, but for Efficiency” on page 330, tools like tracing and profiling can help with
that.
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20 The noteworthy example from my experience is measuring server-side latency of REST with a large response
or HTTP/gRPC with a streamed response. The server-side latency does not depend only on the server but
also on how fast the network and client side can consume those bytes (and write back acknowledge packets
within TCP control flow).

Whatever Metric Granularity You Choose, Understand and Document
What You Measure!

We waste a lot of time if we take the wrong conclusions from
measurements. It is easy to forget or misunderstand what parts of
granularity we are measuring. For example, you thought you were
measuring server-side latency, but slow client software is introduc‐
ing latency you felt you didn’t include in your metric. As a result,
you might be trying to find a bottleneck on the server side, whereas
a potential problem might be in a different process.20 Understand,
document, and be explicit with your instrumentation to avoid
those mistakes

In “Example: Instrumenting for Latency” on page 199, we discussed how we could
gather latencies. We mentioned that generally, we use two main measuring methods
for efficiency needs in the Go ecosystem. Those two ways are typically the most relia‐
ble and cheapest (useful when performing load tests and benchmarks):

• Basic logging using “Microbenchmarks” on page 275 for isolated functionality,
single process measurements

• Metrics such as Example 6-7 for macro measurements that involve larger systems
with multiple processes

Especially in the second case, as mentioned previously, we have to measure latency
many times for a single operation to get reliable efficiency conclusions. We don’t
have access to raw latency numbers for each operation with metrics—we have to
choose some aggregation. In Example 6-2, we proposed a simple average aggregation
mechanism inside instrumentation. With metric instrumentation, this would be triv‐
ial to achieve. It’s as easy as creating two counters: one for the sum of latencies and
one for the count of operations. We can evaluate collected data with those two met‐
rics into a mean (arithmetic average).

Unfortunately, the average is too naive an aggregation. We can miss lots of important
information about the characteristics of our latency. In “Microbenchmarks” on page
275, we can do a lot with the mean for basic statistics (this is what the Go
benchmarking tool is using), but in measuring the efficiency of our software in the
bigger system with more unknowns, we have to be mindful. For example, imagine we
want to improve the latency of one operation that used to take around 10 seconds.
We made a potential optimization using our TFBO flow. We want to assess the
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21 Right now, the choice of buckets in a histogram if you want to use Prometheus is manual. However, the
Prometheus community is working on sparse histograms with a dynamic number of buckets that adjust auto‐
matically.

22 More on using histograms can be read here.

efficiency on the macro level. During our tests, the system performed 500 operations
within 5 seconds (faster!), but 50 operations were extremely slow, with a 40-second
latency. Suppose we would stick to the average (8.1 seconds). In that case, we could
make the wrong conclusion that our optimization was successful, missing the poten‐
tial big problem that our optimization caused, leading to 9% of operations being
extremely slow.

This is why it’s helpful to measure specific metrics (like latency) in percentiles. This is
what Example 6-7 instrumentation is for with the metric histogram type for our
latency measurements.

Most metrics are better thought of as distributions rather than averages. For example,
for a latency SLI [service level indicator], some requests will be serviced quickly, while
others will invariably take longer—sometimes much longer. A simple average can
obscure these tail latencies, as well as changes in them. (...) Using percentiles for indi‐
cators allows you to consider the shape of the distribution and its differing attributes: a
high-order percentile, such as the 99th or 99.9th, shows you a plausible worst-case
value, while using the 50th percentile (also known as the median) emphasizes the typi‐
cal case.

—C. Jones et al., Site Reliability Engineering, “Service Level Objectives” (O’Reilly,
2016)

The histogram metric I mentioned in Example 6-8 is great for latency measurements,
as it counts how many operations fit into a certain latency range. In Example 6-7, I
have chosen21 exponential buckets 0.001, 0.01, 0.1, 1, 10, 100. The largest
bucket should represent the longest operation duration you expect in your system
(e.g., a timeout).22

In “Metrics” on page 211, we discussed how we can use metrics using PromQL. For the
histogram type of metrics and our latency semantics, the best way to understand this
is to use the histogram_quantile function. See the example output in Figure 6-8 for
the median, and Figure 6-9 for the 90th percentile.
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Figure 6-8. Fiftieth percentile (median) of latency across an operation per error type
from our Example 6-7 instrumentation

Figure 6-9. Ninetieth percentile of latency across the operation per error type from our
Example 6-7 instrumentation
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23 It makes sense. I was utilizing my web browser heavily during the test, which confirms the knowledge we will
discuss in “Reliability of Experiments” on page 256.

24 As a reminder, we can improve the latency of our program’s functionality in many ways other than just by
optimizing its CPU usage. We can improve that latency using concurrent execution that often increases total
CPU time.

Both results can lead to interesting conclusions for the program I measured. We can
observe a few things:

• Half of the operations were generally faster than 590 milliseconds, while 90%
were faster than 1 second. So if our RAER (“Resource-Aware Efficiency Require‐
ments” on page 86) states that 90% of operations should be less than 1 second, it
could mean we don’t need to optimize further.

• Operations that failed with error_type=error1 were considerably slower (most
likely some bottleneck exists in that code path).

• Around 17:50 UTC, we can see a slight increase in latencies for all operations.
This might mean some side effect or change in the environment that caused my
laptop’s operating system to give less CPU to my test.23

Such measured and defined latency can help us determine if our latency is good
enough for our requirements and if any optimization we do helps or not. It can also
help us to find parts that cause slowness using different benchmarking and
bottleneck-finding strategies. We will explore those in Chapter 7.

With the typical latency metric definition and example instrumentation, let’s move to
the next resource we might want to measure in our efficiency journey: CPU usage.

CPU Usage
In Chapter 4, you learned how CPU is used when we execute our Go programs. I also
explained that we look at CPU usage to reduce CPU-driven latency24 and cost, and to
enable running more processes on the same machine.

A variety of metrics allow us to measure different parts of our program’s CPU usage.
For example, with Linux tools like the proc filesystem and perf, we can measure our
Go program’s miss and hit rates, CPU branch prediction hit rates, and other low-
level statistics. However, for basic CPU efficiency, we usually focus on the CPU
cycles, instructions, or time used:

CPU cycles
The total number of CPU clock cycles used to execute the program thread
instructions on each CPU core.
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CPU instructions
The total number of CPU instructions of our program’s threads executed in each
CPU core. On some CPUs from the RISC architecture (e.g., ARM processors),
this might be equal to the number of cycles, as one instruction always takes one
cycle (amortized cost). However, on the CISC architecture (e.g., AMD and Intel
x64 processors), different instructions might use additional cycles. Thus, count‐
ing how many instructions our CPU had to do to complete some program’s
functionality might be more stable.

Both cycles and instructions are great for comparing different algorithms with
each other. It is because they are less noisy as:

• They don’t depend on the frequency the CPU core had during the program
run

• Latency of memory fetches, including different caches, misses, and RAM
latency

CPU time
The time (in seconds or nanoseconds) our program thread spends executing on
each CPU core. As you will learn in “Off-CPU Time” on page 369, this time is dif‐
ferent (longer or shorter) from the latency of our program, as CPU time does not
include I/O waiting time and OS scheduling time. Furthermore, our program’s
OS threads might execute simultaneously on multiple CPU cores. Sometimes we
also use CPU time divided by the CPU capacity, often referred to as CPU usage.
For example, 1.5 CPU usage in seconds means our program requires (on aver‐
age) one CPU core for 1 second and a second core for 0.5 seconds.

On Linux, the CPU time is often split into User and System time:

• User time represents the time the program spends executing on the CPU in
the user space.

• System time is the CPU time spent executing certain functions in the kernel
space on behalf of the user, e.g., syscalls like read.

Usually, on higher levels such as containers, we don’t have the luxury of having all
three metrics. We mostly have to rely on CPU time. Fortunately, the CPU time is typ‐
ically a good enough metric to track down the work needed from our CPUs to exe‐
cute our workload. On Linux, the simplest way to retrieve the current CPU time
counted from the start of the process is to go to /proc/<PID>/stat (where PID means
the process ID). We also have similar statistics on the thread level in /proc/<PID>/
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25 Also a useful procfs Go library that allows retrieving stats file data number programmatically.

tasks/<TID>/stat (where TID means the thread ID). This is exactly what utilities like ps
or htop use.25

The ps and htop tools might be indeed the simplest tools to measure the CPU time in
the current moment. However, we usually need to assess the CPU time required for
the full functionality we are optimizing. Unfortunately, “Go Benchmarks” on page 277
is not providing CPU time (only latency and allocations) per operation. You could
perhaps obtain that number from the stat file, e.g., programmatically using the
procfs Go library, but there are two main ways I would suggest instead:

• CPU profiling, explained in “CPU” on page 367.
• Prometheus metric instrumentation. Let’s quickly look at that method next.

In Example 6-7, I showed a Prometheus instrumentation that registers custom
latency metrics. It’s also very easy to add the CPU time metric, but the Prometheus
client library has already built helpers for that. The recommended way is presented in
Example 6-11.

Example 6-11. Registering proc stat instrumentation about your process for
Prometheus use

import (
    "net/http"

    "github.com/prometheus/client_golang/prometheus"
    "github.com/prometheus/client_golang/prometheus/collectors"
    "github.com/prometheus/client_golang/prometheus/promhttp"
)

func ExampleCPUTimeMetric() {
    reg := prometheus.NewRegistry()
    reg.MustRegister(
        collectors.NewProcessCollector(collectors.ProcessCollectorOpts{}),
    ) 

    go func() {
        for i := 0; i < xTimes; i++ {
             err := doOperation()
             // ...
        }
    }()

    err := http.ListenAndServe(
        ":8080",
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        promhttp.HandlerFor(reg, promhttp.HandlerOpts{}),
    )
    // ...
}

The only thing you have to do to have the CPU time metric with Prometheus is
to register the collectors.NewProcessCollector that uses the /proc stat file
mentioned previously.

The collectors.ProcessCollector provides multiple metrics, like process_

open_fds, process_max_fds, process_start_time_seconds, and so on. But the one
we are interested in is process_cpu_seconds_total, which is a counter of CPU time
used from the beginning of our program. What’s special about using Prometheus for
this task is that it collects the values of this metric periodically from our Go program.
This means we can query Prometheus for the process CPU time for a certain time
window and map that to real time. We can do that with the rate function duration
that gives us the per second rate of that CPU time in a given time window. For exam‐
ple, rate(process_cpu_seconds_total{}[5m]) will give us the average CPU per sec‐
ond time that our program had during the last five minutes.

You will find an example CPU time analysis based on this kind of metric in “Under‐
standing Results and Observations” on page 316. However, for now, I would love to
show you one interesting and common case, where process_cpu_seconds_total
helps narrow down a major efficiency problem. Imagine your machine has only two
CPU cores (or we limit our program to use two CPU cores), you run the functionality
you want to assess, and you see the CPU time rate of your Go program looking like
Figure 6-10.

Thanks to this view, we can tell that the labeler process is experiencing a state of
CPU saturation. This means that our Go process requires more CPU time than was
available. Two signals tell us about the CPU saturation:

• The typical “healthy” CPU usage is spikier (e.g., as presented in Figure 8-4 later
in the book). This is because it’s unlikely that typical applications use the same
amount of CPU all the time. However, in Figure 6-10, we see the same CPU
usage for five minutes.

• Because of this, we never want our CPU time to be so close to the CPU limit (two
in our case). In Figure 6-10, we can clearly see a small choppiness around the
CPU limit, which indicates full CPU saturation.
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Figure 6-10. The Prometheus graph view of the CPU time for the labeler Go program
(we will use it in an example in “Macrobenchmarks” on page 306) after a test

Knowing when we are at saturation of our CPU is critical. First of all, it might give
the wrong impression that the current CPU time is the maximum that the process
needs. Moreover, this situation also significantly slows down our program’s execu‐
tion time (increases latency) or even stalls it completely. This is why the Prometheus-
based CPU time metric, as you learned here, has proven to be critical for me in
learning about such saturation cases. It is also one of the first things you must find
out when analyzing your program’s efficiency. When saturation happens, we have to
give more CPU cores to the process, optimize the CPU usage, or decrease the concur‐
rency (e.g., limit the number of HTTP requests it can do concurrently).

On the other hand, CPU time allows us to find out about opposite cases where the
process might be blocked. For example, if you expect CPU-bound functionality to
run with 5 goroutines, and you see the CPU time of 0.5 (50% of one CPU core),
it might mean the goroutines are blocked (more on that in “Off-CPU Time” on page
369) or whole machine and OS are busy.

Let’s now look at memory usage metrics.
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Memory Usage
As we learned in Chapter 5, there are complex layers of different mechanics on how
our Go program uses memory. This is why the actual physical memory (RAM) usage
is one of the most tricky to measure and attribute to our program. On most systems
with an OS memory management mechanism like virtual memory, paging, and
shared pages, every memory usage metric will be only an estimation. While imper‐
fect, this is what we have to work with, so let’s take a short look at what works best for
the Go program.

There are two main sources of memory usage information for our Go process: the Go
runtime heap memory statistics and the information that OS holds about memory
pages. Let’s start with the in-process runtime stats.

runtime heap statistics
As we learned in “Go Memory Management” on page 172, the heap segment of the
Go program virtual memory can be an adequate proxy for memory usage. This is
because most bytes are allocated on the heap for typical Go applications. Moreover,
such memory is also never evicted from the RAM (unless the swap is enabled). As a
result, we can effectively assess our functionality’s memory usage by looking at the
heap size.

We are often most interested in assessing the memory space or the number of mem‐
ory blocks needed to perform a certain operation. To try to estimate this, we usually
use two semantics:

• The total allocations of bytes or objects on the heap allow us to look at memory
allocations without often nondeterministic GC impact.

• The number of currently in-use bytes or objects on the heap.

The preceding statistics are very accurate and quick to access because Go runtime is
responsible for heap management, so it tracks all the information we need. Before Go
1.16, the recommended way to access those statistics programmatically was using the
runtime.ReadMemStats function. It still works for compatibility reasons, but
unfortunately, it requires STW (stop the world) events to gather all memory statistics.
As a result of Go 1.16, we should all use the runtime/metrics package that provides
many cheap-to-collect insights about GC, memory allocations, and so on. The exam‐
ple usage of this package to get memory usage metrics is presented in Example 6-12.
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Example 6-12. The simplest code prints total heap allocated bytes and currently used
ones

import(
    "fmt"
    "runtime"
    "runtime/metrics"
)

var memMetrics = []metrics.Sample{
    {Name: "/gc/heap/allocs:bytes"}, 
    {Name: "/memory/classes/heap/objects:bytes"},
}

func printMemRuntimeMetric() {
    runtime.GC() 
    metrics.Read(memMetrics) 

    fmt.Println("Total bytes allocated:", memMetrics[0].Value.Uint64()) 
    fmt.Println("In-use bytes:", memMetrics[1].Value.Uint64())
}

To read samples from runtime/metrics, we must first define them by referenc‐
ing the desired metric name. The full list of metrics might be different (mostly
added ones) across different Go versions, and you can see the list with descrip‐
tions at pkg.go.dev. For example, we can obtain the number of objects in a heap.

Memory statistics are recorded right after a GC run, so we can trigger GC to have
the latest information about the heap.

metrics.Read populates the value of our samples. You can reuse the same sam‐
ple slice if you only care about the latest values.

Both metrics are of uint64 type, so we use the Uint64() method to retrieve the
value.

Programmatically accessing this information is useful for local debugging purposes,
but it’s not sustainable on every optimization attempt. That’s why in the community,
we typically see other ways to access that data:

• Go benchmarking, explained in “Go Benchmarks” on page 277
• Heap profiling, explained in “Heap” on page 360
• Prometheus metric instrumentation
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To register runtime/metric as Prometheus metrics, we can add a single line to
Example 6-11: reg.MustRegister(collectors.NewGoCollector()). The Go collec‐
tor is a structure that, by default, exposes various memory statistics. For historical
reasons, those map to the MemStats Go structure, so the equivalents to the metrics
defined in Example 6-12 would be go_memstats_ heap_alloc_bytes_total for a
counter, and go_memstats_heap_alloc_bytes for a current usage gauge. We will
show an analysis of Go heap metrics in “Go e2e Framework” on page 310.

Unfortunately, heap statistics are only an estimation. It is likely that the smaller the
heap on our Go program, the better the memory efficiency. However, suppose you
add some deliberate mechanisms like large off-heap memory allocations using
explicit mmap syscall or thousands of goroutines with large stacks. In that case, that
can cause an OOM on your machine, yet it’s not reflected in the heap statistics. Simi‐
larly, in “Go Allocator” on page 181, I explained rare cases where only part of the
heap space is allocated on physical memory.

Still, despite the downsides, heap allocations remain the most effective way to meas‐
ure memory usage in modern Go programs.

OS memory pages statistics
We can check the numbers the Linux OS tracks per thread to learn more realistic yet
more complex memory usage statistics. Similar to “CPU Usage” on page 229, /proc/
<PID>/statm provides the memory usage statistics, measured in pages. Even more
accurate numbers can be retrieved from per memory mapping statistics that we can
see in /proc/<PID>/smaps (“OS Memory Mapping” on page 168).

Each page in this mapping can have a different state. A page might or might not be
allocated on physical memory. Some pages might be shared across processes. Some
pages might be allocated in physical memory and accounted for as memory used, yet
marked by the program as “free” (see the MADV_FREE release method mentioned in
“Garbage Collection” on page 185). Some pages might not even be accounted for in
the smaps file, because for example, it’s part of filesystem Linux cache buffers. For
these reasons, we should be very skeptical about the absolute values observed in the
following metrics. In many cases, OS is lazy in releasing memory; e.g., part of the
memory used by the program is cached in the best way that will be released immedi‐
ately as long as somebody else is needing that.

There are a few typical memory usage metrics we can obtain from the OS about our
process:

VSS
Virtual set size represents the number of pages (or bytes, depending on instru‐
mentation) allocated for the program. Not very useful metrics, as most virtual
pages are never allocated on RAM.
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26 One reason is the issue in cadvisor that includes some still-reclaimable memory in the WSS.

RSS
Residential set size represents the number of pages (or bytes) resident in RAM.
Note that different metrics might account for that differently; e.g., the cgroups
RSS metric does not include file-mapped memory, which is tracked separately.

PSS
Proportional set size represents memory with shared memory pages divided
equally among all users.

WSS
Working set size estimates the number of pages (or bytes) currently used to per‐
form work by our program. It was initially introduced by Brendan Gregg as the
hot, frequently used memory—the minimum memory requirement by the
program.

The idea is that a program might have allocated 500 GB of memory, but within a
couple of minutes, it might use only 50 MB for some localized computation. The
rest of the memory could be, in theory, safely offloaded to disk.

There are many implementations of WSS, but the most common I see is the cad‐
visor interpretation using the cgroup memory controller. It calculates the WSS as
the RSS (including file mapping), plus some part of the cache pages (cache used
for disk reads or writes), minus the inactive_file entry—so file mapping that
were not touched for some time. It does not include inactive anonymous pages
because the typical OS configuration can’t offload anonymous pages to disk
(swap is disabled).

In practice, RSS or WSS is used to determine the memory usage of our Go program.
Which one highly depends on the other workloads on the same machine and follows
the flow of the RAM usage expanding to all available space, as mentioned in “Do We
Have a Memory Problem?” on page 152. The usefulness of each depends on the cur‐
rent Go version and instrumentation that gives you those metrics. In my experience,
with the latest Go version and cgroup metrics, the RSS metric tends to give more reli‐
able results.26 Unfortunately, accurate or not, WSS is used in systems like Kubernetes
to trigger evictions (e.g., OOM), thus we should use it to assess memory efficiency
that might lead to OOMs.

Given my focus on infrastructure Go programs, I heavily lean on a metric exporter
called cadvisor that converts cgroup metrics to Prometheus metrics. I will explain
using it in detail in “Go e2e Framework” on page 310. It allows analyzing metrics
like container_memory_rss + container_memory_mapped_file and container_mem
ory_working_set_bytes, which are commonly used in the community.
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Summary
Modern observability offers a set of techniques essential for our efficiency assess‐
ments and improvements. However, some argue that this kind of observability
designed primarily for DevOps, SREs, and cloud-native solutions can’t work for
developer use cases (in the past known as Application Performance Monitoring
[APM]).

I would argue that the same tools can be used for both developers (for those effi‐
ciency and debugging journeys) and system admins, operators, DevOps, and SREs to
ensure the programs delivered by others are running effectively.

In this chapter, we discussed the three first observability signals: metrics, logs, and
tracing. Then, we went through example instrumentations for those in Go. Finally, I
explained common semantics for the latency, CPU time, and memory usage meas‐
urements we will use in later chapters.

Now it’s time to learn how to use that efficiency observability to make data-driven
decisions in practice. First, we will focus on how to simulate our program to assess
the efficiency on different levels.
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CHAPTER 7

Data-Driven Efficiency Assessment

You learned how to observe our Go program using different observability signals in
the previous chapter. We discussed how to transform those signals to numeric values,
or metrics, to effectively observe and assess the latency and resource consumption of
the program.

Unfortunately, knowing how to measure the current or maximum consumption or
latency for running a program does not guarantee the correct assessment of the over‐
all program efficiency for our application. What we are missing here is the experi‐
ment part, which might be the most challenging part of optimization generally: how
to trigger situations that are worth measuring with the observability tools mentioned
in Chapter 6!

The Definition of Measuring

I find the verb “to measure” very imprecise. I have seen this word
overused to describe two things: the process of performing an
experiment and gathering numeric data from it.
In this book, every time you read about the “measuring” process, I
follow the definition used in metrology (the science of measure‐
ment). I precisely mean the process of using the instruments to
quantify what is happening now (e.g., the latency of the event, or
how much memory it required) or what happened in a given time
window. Everything that leads to this event that we measure (simu‐
lated by us in a benchmark or occurring naturally) is a separate
topic, discussed in this chapter.

In this chapter, I will introduce you to the art of experimentation and measurement
for efficiency purposes. I will mainly focus on data-driven assessment, more com‐
monly known as benchmarking. This chapter will help you understand the best
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practices before we jump to writing benchmarking code in Chapter 8. These practices
will also be invaluable in Chapter 9, which focuses on profiling.

I start with complexity analysis as a less empirical way of assessing the efficiency of
our solutions. Then, I will explain benchmarking in “The Art of Benchmarking” on
page 250. We will compare it to functional testing and clarify the common stereotype
that claims “benchmarks always lie.”

Later in “Reliability of Experiments” on page 256, we will move to the reliability aspect
of our experiments for both benchmarking and profiling purposes. I will provide the
ground rules to avoid wasting time (or money) by gathering bad data and making
wrong conclusions.

Finally, in “Benchmarking Levels” on page 266, I will introduce you to the full land‐
scape of benchmark strategies. In the previous chapters, I already used benchmarks
to provide data that explained the behavior of CPU or memory resources. For exam‐
ple, in “Consistent Tooling” on page 45, I mentioned that the Go tooling provides a
standard benchmarking framework. But the benchmarking skill I want to teach you
in this chapter goes beyond that, and it is just one tool of many discussed in
“Microbenchmarks” on page 275. There are many different ways of assessing the effi‐
ciency of our Go code. Knowing when to use what is key.

Let’s start by introducing the benchmarking tests and what the critical aspects of
those are.

Complexity Analysis
We don’t always have the luxury of having empirical data that guides us through the
efficiency of a certain solution. Your idea of a better system or algorithm might not
be implemented yet and would require a lot of effort to do so before we could bench‐
mark it. Additionally, I mentioned the need for complexity estimation in “Example of
Defining RAER” on page 90.

This might feel contradictory to what we learned in “Optimization Challenges” on
page 79 (“programmers are notoriously bad at estimating exact resource consump‐
tion”), but sometimes engineers rely on theoretical analysis to assess the program.
One example is when we assess optimizations on the algorithm level (from “Optimi‐
zation Design Levels” on page 98). Developers and scientists often use complexity
analysis to compare and decide what algorithm might fit better to solve certain prob‐
lems with certain constraints. More specifically, they use asymptotic notations (com‐
monly known as “Big O” complexities). Most likely, you have heard about them, as
they are commonly asked about during any software engineering interview.

However, to fully understand asymptotic notations, you must know what “estimated”
efficiency complexity means and what it looks like!
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“Estimated” Efficiency Complexity
I mentioned in “Resource-Aware Efficiency Requirements” on page 86 that we can
represent the CPU time or consumption of any resources as a mathematical function
related to specific input parameters. Typically, we talk about runtime complexity,
which tells us about the CPU time required to perform a certain operation using a
particular piece of code and environment. However, we also have space complexity,
which can describe the required memory, disk space, or other space requirements for
that operation.

For example, let’s take our Sum function from Example 4-1. I can prove that such
code has estimated space complexity (representing heap allocations) of the following
function, where N is a number of integers in the input file:

space(N ) = (848 + 3.6 * N ) + (24 + 24 * N ) + (2.8 * N ) bytes = 872 + 30.4 * N bytes

Knowing detailed complexity is great, but typically it’s impossible or hard to find the
true complexity function because there are too many variables. We can, however, try
to estimate those, especially for more deterministic resources like memory allocation,
by simplifying the variables. For example, the preceding equation is only an estima‐
tion with a simplified function that takes only one parameter—the number of inte‐
gers. Of course, this code also depends on the size of integers, but I assumed the
integer is ~3.6 bytes long (statistic from my test input).

“Estimated” Complexity

As I try to teach you in this book—be precise with the wording.
I was so wrong for all those years, thinking that complexity always
means Big O asymptotic complexity. Turns out the complexity
exists too and can be very useful in some cases. At least we should
be aware it exists!
Unfortunately, it’s easy to confuse it with asymptotic complexity,
so I would propose calling the one that cares about constants—the
“estimated” complexity.

How did I find this complexity equation? It wasn’t trivial. I had to analyze the source
code, do some stack escape analysis, run multiple benchmarks, and use profiling (so
all the things you will learn in this and the next two chapters) to discover those
complexities.
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This Is Just an Example!

Don’t worry. To assess or optimize your code, you don’t need to
perform such detailed complexity analysis, especially in such detail.
I did this to show it’s possible and what it gives, but there are more
pragmatic ways to assess efficiency quickly and find out the next
optimizations. You will see example flows in Chapter 10.
Funny enough, at the end of the TFBO flow, when you optimized
one part of your program a lot, you might have a detailed aware‐
ness of the problem space so that you could find such complexity
quickly. However, doing this for every version of your code would
be wasteful.

It might be useful to explain the process of gathering the complexity and mapping it
to the source code, as shown in Example 7-1.

Example 7-1. Complexity analysis of Example 4-1

func Sum(fileName string) (ret int64, _ error) {
   b, err := os.ReadFile(fileName) 
   if err != nil {
      return 0, err
   }

   for _, line := range bytes.Split(b, []byte("\n")) { 
      num, err := strconv.ParseInt(string(line), 10, 64) 
      if err != nil {
         return 0, err
      }

      ret += num
   }

   return ret, nil
}

We can attach the 848 + 3.6 * N part of the complexity equation to the operation
of reading the file content into memory. The test input I used is very stable—the
integers have a different number of digits, but on average they have 2.6 digits.
Adding a new line (\n) character means every line has approximately 3.6 bytes.
Since ReadFile returns a byte array with the content of the input file, we can say
that our program requires exactly 3.6 * N bytes for the byte array pointed to by
the b slice. The constant amount of 848 bytes comes from various objects alloca‐
ted on the heap in the os.ReadFile function—for example, the slice value for b
(24 bytes), which escaped the stack. To discover that constant, it was enough to
benchmark with an empty file and profile it.
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1 This is fixed for this particular ParseInt function in Go 1.20 thanks to an amazing improvement, but you
might be surprised by it in any other function!

2 It only shows up when we do lots of string copies in our programs. Perhaps it comes from some internal byte
pools?

As you will learn in Chapter 10, the bytes.Split is quite expensive when it
comes to both allocations and runtime latency. However, we can attribute most
of the allocations to this part, so to the 24 + 24 * N complexity part. It’s the
“majority” because it’s the largest constant (24) multiplied by the input size. The
reason is the allocation needed to return the [][]byte data structure. While we
don’t copy the underlying byte arrays (we share it with the buffer from os.Read
File), the N allocated empty []byte slices require 24 * N of the heap in total,
plus the 24 for the [][]byte slice header. This is a huge allocation if N is on the
order of billions (22 GB for a billion integers).

Finally, as we learned in “Values, Pointers, and Memory Blocks” on page 176 and
as we will uncover in “Optimizing runtime.slicebytetostring” on page 389, we allo‐
cate on this line a lot too. It’s not visible at first, but the memory required for
string(line) (which is always a copy) is escaping to heap.1 This attributes to the
2.8 * N part of the complexity because we do this conversion N times for 2.6 dig‐
its on average. The source of the remaining 0.2 * N is unknown.2

I hope that with this analysis, you see what complexity means. Perhaps you already
see how useful it is to know. Maybe you already see many optimization opportunities,
which we will try in Chapter 10!

Asymptotic Complexity with Big O Notation
The asymptotic complexity ignores the overheads of the implementation, particularly
hardware or environment. Instead, it focuses on asymptotic mathematical analysis:
how fast runtime or space demands grow in relation to the input size. This allows
algorithm classifications based on their scalability, which usually matters for the
researchers who search for algorithms solving complex problems (which usually
require enormous inputs). For example, in Figure 7-1, we see a small overview of typ‐
ical functions and an opinionated assessment of what’s typically bad and what’s good
complexity for the algorithm. Note that “bad” complexity here doesn’t mean there
are algorithms that do better—there are some problems that can’t be done in a faster
way.
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3 Those “O-notations” are respectively called Big O or Oh, Omega, and Theta. He also defines “o-notations” (o,
ω), which means strict upper or lower bound, so “this function grows slower than f(N), but not exactly f(N).”
In practice, we don’t use o-notations very often.

Figure 7-1. Big O complexity chart from https://www.bigocheatsheet.com. Shading
indicates the opinionated rates of efficiency for usual problems.

We usually use Big O notation to represent asymptotic complexity. To my knowl‐
edge, it was Donald Knuth who attempted to clearly define three notations (O, Ω, Θ)3

in his article from 1976.

Verbally, O(f(n)) can be read as “order at most f(n)”; Ω(f(n)) as “order at least f(n)”;
Θ(f(n)) as “order exactly f(n)”.

—Donald Knuth, “Big Omicron and Big Omega and Big Theta”

The phrase “in order of f(N)” means that we are not interested in the exact complex‐
ity numbers but rather the approximation:

The upper bound (O)
Big Oh means the function can’t be asymptotically worse than f(n). It is also
sometimes used to reflect the worst-case scenario if other input characteristics
matter (e.g., in a sorting problem, we usually talk about a number of elements,
but sometimes it matters if the input is already sorted).
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The tight bound (Θ)
Big Theta represents the exact asymptotic function or, sometimes, the average,
typical case.

The lower bound (Ω)
Big Omega means the function can’t be asymptotically better than f(n). It also
sometimes represents the best case.

For example, the quicksort sorting algorithm has the best and average runtime com‐
plexity (depending on how input is sorted and where we choose the pivot point) of
the N * logN, so Ω(N * logN) and Θ(N * logN), even though the worst case is O(N2).

The Industry Is Not Always Using Big O Notation Properly

Generally, during interviews, discussions, and tutorials, you would
see people using Big Oh (O) where Big Theta (Θ) should be used to
describe a typical case. For example, we often say quicksort is
O(N * logN), which is not true, but in many instances we would
accept that answer. Perhaps people try to make this space more
accessible by simplifying this topic. I will try to be more precise
here, but you can always swap Θ with O (but not in the opposite
direction).

For our algorithm in Example 4-1, the asymptotic space complexity is linear:

space(N ) = 872 + 30.4 * N bytes = Θ(1) + Θ(N ) bytes = Θ(N ) bytes

In asymptotic analysis, constants like 1, 872, and 30.2 do not matter, even though in
practice, it might matter if our code allocates 1 MB (Θ(N)) or 30.4 MB.

Note that we don’t need precise complexity to figure out the asymptotic one. That’s
the point: precise complexity depends on too many variables, especially when it
comes to runtime complexity. Generally, we can learn to find the theoretical asymp‐
totic complexity based on algorithm pseudocode or description. It takes some prac‐
tice, but imagine we don’t have Example 7-1 implemented; instead, we design an
algorithm. For example, the naive algorithm for the sum of all integers in the file can
be described as follows:

1. We read the file’s content into memory, which has Θ(N) of asymptotic space
complexity, where N is the number of integers or lines. As we read N lines, this
also has Θ(N) runtime complexity.

2. We split the content into subslices. If we do it in place, this means Θ(N). Other‐
wise, in theory, it is Θ(1). This is an interesting one, as we saw in precise
complexity that despite doing this in place, the overhead is 24 * N, which sug‐
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4 I would categorize them as “brute force”—they do many benchmarks with different inputs and try to approxi‐
mate the growth function.

5 I wouldn’t be surprised—I had a full-time job in IT from the second year of my computer science studies.

gests Θ(N). In both cases, the runtime complexity is Θ(N), as we have to go
through all lines.

3. For every subslice (space complexity Θ(1) and runtime Θ(N)):
a. We parse the integer. Technically this needs no extra space on the heap,

assuming the integers can be kept on the stack. The runtime of this should
also be Θ(1) if we relate to the number of lines and the number of digits is
limited.

b. We add the parsed value into a temporary variable containing a partial sum:
Θ(1) runtime and Θ(1) space.

With such analysis, we can tell that the space complexity is Θ(N) + Θ(1) + Θ(N) *
Θ(1), so Θ(N). I also mentioned runtime complexity in step 2, which combines into
Θ(N) + Θ(N) + Θ(N) * Θ(1), so also linear Θ(N).

Generally, such a Sum algorithm is fairly easy to assess asymptotically, but this is not
trivial in many cases. It takes some practice and experience. I would love it if some
automatic tools detected such complexity. There were interesting attempts in the
past, but in practice, they are too expensive.4 Perhaps there is a way to implement
some algorithm that assesses pseudocode for its complexity, but it’s our job now!

Practical Applications
Frankly speaking, I was always skeptical about the “complexity” topic. Perhaps I
missed the lectures about it at my university,5 but I was always disappointed when
somebody asked me to determine the complexity of some algorithm. I was convinced
that it is only used to trick candidates during technical interviews and has almost no
use in practical software development.

The first problem was imprecision—when people asked me to determine complexity,
they meant asymptotic complexity in Big O notation. Furthermore, what’s the point
of Big O if, during paid work, I could usually search an element in the array with the
linear algorithm instead of a hashmap, and still the code would be fast enough in
most cases? Moreover, more experienced developers were rejecting my merge
requests because my fancy linked list with better insertion complexity could be just a
simpler array with appends. Finally, I was learning about all those fast algorithms
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6 For example, quicksort has worse complexity than other algorithms, yet on average it is the fastest. Or the
matrix multiplication algorithm like Coppersmith-Winograd has a big constant coefficient hidden by the Big
O notation, which makes it only worth doing for matrices that are too big for our modern computers.

7 Be careful: different tools use different conversions; e.g., pprof uses the 1,024 multiplier, and the benchstat
uses the 1,000 multiplier.

with incredible asymptotic complexity that are not used in practice because of hidden
constant costs or other caveats.6

I think most of my frustration came from misunderstandings and misuses stemming
from the industry’s stereotypes and simplifications. I am especially surprised that not
a few engineers are willing to perform such “estimated” complexity. Perhaps we often
feel demotivated or overwhelmed by how hard it is to estimate beyond asymptotic
complexity. For me, reading old programming books was eye-opening—some of
them use both complexities in most of their optimization examples!

The main for loop of the program is executed N-1 times, and contains an inner loop
that is itself executed N times; the total time required by the program will therefore be
dominated by a term proportional to N^2. The Pascal running time of Fragment A1
was observed to by approximately 47.0N^2 microseconds.

—Jon Louis Bentley, Writing Efficient Programs

When you try to assess or optimize algorithm and code that requires better efficiency,
being aware of its estimated complexity and asymptotic complexity has a real value.
Let’s go through some use cases.

If you know precise complexity, you don’t need to measure to know expected resource
requirements
In practice, we rarely have precise complexity from the start, but imagine someone
giving us such complexity. This gives an enormous win for tasks like capacity plan‐
ning, where you need to find out the cost of running your system under various loads
(e.g., different inputs).

For example, how much memory does the naive implementation of Sum use in
Example 7-1? It turns out that without any benchmark, I could use the space com‐
plexity of 872 + 30.4 * N bytes to tell that for various input sizes, for example:

• For 1 million integers, my code would need 30,400,872 bytes, so 30.4 MB if we
use the 1,000 multiplier, not the 1,024.7

• For 2 million integers, it would need 60.8 MB.
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8 I was very surprised that we can construct such accurate space complexity and have such accurate memory
benchmarking and profiling up to every byte on the heap. Kudos to the Go community and pprof commu‐
nity for that hard work!

9 This does not mean we should immediately fix those! Instead, always optimize if you know the problem will
affect your goals, e.g., user satisfaction or RAER requirements.

This can be confirmed if we would perform a quick microbenchmark (don’t worry, I
will explain how to perform benchmarks here and in Chapter 8). Results are presen‐
ted in Example 7-2.

Example 7-2. Benchmark allocation result for Example 4-1 with one million elements
and two million elements input, respectively

name (alloc/op)    Sum1M        Sum2M
Sum                30.4MB ± 0%  60.8MB ± 0%

name (alloc/op)    Sum1M        Sum2M
Sum                800k ± 0%    1600k ± 0%

Based on just those two results, our space complexity is fairly accurate.8

It’s unlikely you can always find the full, accurate, real complexity.
However, usually it’s enough to have a very high-level estimation
of this complexity, e.g., 30 * N bytes would be detailed enough
space complexity for our Sum function in Example 7-1.

It tells us if there is any easy optimization to our code
Sometimes we don’t need detailed empirical data to know we have efficiency prob‐
lems.9 This is great because such techniques can tell us how easy it is to optimize our
program further. Such a quick efficiency assessment is something I would love you to
know before we move into heavy benchmarking.

For example, when I wrote the naive implementation of the Sum in Example 4-1, I
expected to write an algorithm with Θ(N) space (asymptotic) complexity. However, I
expected it to have around 3.5 * N of the real complexity because I read the whole file
content to memory. Only when I ran benchmarks that gave me output like
Example 7-2 did I realize how poor my naive implementation was, with almost 10
times more memory usage than expected (30.5 MB). This expected estimation of the
real complexity versus the resulting one is typically a good indication that there
might be some trivial optimization if we have to improve the efficiency.

Secondly, if my algorithm space Big O complexity is linear, it is already a bad sign for
such simple functionality. My algorithm will use an extreme amount of memory for
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10 Sometimes, there are relatively easy ways to change our code to stream and use external memory algorithms
that ensure stable memory usage.

huge inputs. Depending on requirements, that might be fine or it might mean real
issues if we want to scale this application.10 If not a problem right now, the maximum
expected input size should be acknowledged and documented as it might be a sur‐
prise to somebody who will be using this function in the future!

Finally, suppose the measurements are totally off the expected complexity of the algo‐
rithm. In that case, it might signal a memory leak, which is often easy to fix if you
have the right tools (as we will discuss in “Don’t Leak Resources” on page 426).

Three Clear Indications We Are Wasting Memory Space

• The difference between the theoretical space complexity
(asymptotic and estimated) and the reality measured with a
benchmark can immediately tell you if something is not as
expected.

• Significant space complexity depending on the user (or caller)
input is a bad sign that might mean future scalability
problems.

• If, with time, the total memory used by the program con‐
stantly grows and never goes down, it most likely indicates a
memory leak.

It helps us assess ideas for a better algorithm as an optimization
Another amazing use case for complexities is quickly assessing algorithmic optimiza‐
tions without implementing them. For our Sum example, we don’t need extreme algo‐
rithmic skills to know that we don’t need to buffer the whole file in memory. If we
want to save memory, we should be able to have a small buffer for parsing purposes.
Let’s describe an improved algorithm:

1. We open the input file without reading anything.
2. We create a 4 KB buffer, so we need at least 4 KB of memory, which is still a con‐

stant amount (Θ(1)).
3. We read the file in 4 KB chunks. For every chunk:

a. We parse the number.
b. We add it to a temporary partial sum.

Such an improved algorithm, in theory, should give us the space complexity of ~4
KB, so O(1). As a result, our Example 4-1 could use 7,800 times less space for 1
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million integers! So we can tell without implementation that such optimization on an
algorithmic level would be very beneficial, and you will see it in action in “Optimiz‐
ing Memory Usage” on page 395.

Doing such complexity analysis can quickly assess your ideas for improvement
without needing the full TFBO loop!

Worse Is Sometimes Better!

If we decide to implement the algorithm with better asymptotic or
theoretical complexity, don’t forget to assess it at the code level
using benchmarks! When designing an algorithm, we often opti‐
mize for asymptotic complexity, but when we write code, we opti‐
mize the constants of that asymptotic complexity.
Without good measurements, you might implement a good algo‐
rithm in terms of Big O complexity, but with the inefficient code,
make efficiency optimizations instead of improvement!

It tells us where the bottleneck is and what part of the algorithm is critical
Finally, a quick look at the detailed space complexity, especially when mapped to the
source code as in Example 7-1, is a great way to determine the efficiency bottleneck.
We can see that the constant 24 is the biggest one, and it comes from the
bytes.Split function that we will optimize first in Chapter 10. In practice, however,
profiling can yield data-driven results much faster, so we will focus on this method in
Chapter 9.

To sum up, the wider knowledge about the complexity and ability to mix basic meas‐
urements with theoretical asymptotic taught me that complexities could be useful. It
can be an excellent tool for more theoretical efficiency assessment if used correctly.
However, as you can see, the real value is when we mix empirical measurements with
theory. With this in mind, let’s learn more about benchmarking!

The Art of Benchmarking
Assessing efficiency is essential in the TFBO flow, represented by step 4 in Figure 3-5.
Such evaluation of our code, algorithm, or system is generally a complex problem,
achievable in many ways. For example, we discussed assessing efficiency on the algo‐
rithm level through research, static analysis, and Big O notations for runtime
complexity.
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11 Unfortunately, we still have to guess a little bit—more on that in “Reliability of Experiments” on page 256.
Nothing will get us 100% assurance. Yet benchmarking is probably the best we have as developers for ensur‐
ing the software we develop is efficient enough.

We can assess a lot by performing a theoretical analysis and estimating code effi‐
ciency. Still, in many cases, the most reliable way is to get our hands dirty, run some
code, and see things in action. As we learned in “Optimization Challenges” on page
79, we are bad at estimating the resource consumption of our code, so empirical
assessments allow us to reduce the number of guesses in our evaluations.11 Ideally, we
assume nothing and verify the efficiency using special testing processes that test effi‐
ciency instead of correctness. We call those tests benchmarks.

Benchmarking Versus Stress and Load Tests

There are many alternative names for benchmarking, such as stress
tests, performance tests, and load tests. However, since they gener‐
ally mean the same, for consistency, I will use benchmarking in this
book.

Generally, benchmarking is an effective efficiency assessment method for our soft‐
ware or systems. In abstract, the process of benchmarking is composed of four core
parts, which we describe logically as a simple function:

Benchmark = N * (Experiment + Measurements) + Comparison

At the core of any benchmarking, we have the experimentations and measurements
cycle:

Experiment
The act of simulating a specific functionality of our software to learn about its
efficiency behavior. We can scope that experiment to a single Go function or Go
structure or even complex, distributed systems. For example, if your team devel‐
ops the web server, it might mean starting a web server and performing a single
HTTP request with realistic data that the user would use.

Measurement
In Chapter 6, we discussed getting accurate measurements for latency and the
consumption of various resources. It’s vital to reliably observe our software dur‐
ing the entire experiment to make meaningful conclusions when it ends. For our
web server example, this might mean measuring the latency of the operations on
various levels (e.g., client and server latencies), as well as the memory consump‐
tion of our web server.
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Now the unique part of our benchmarking process is that the experiment and meas‐
urements cycle has to be performed N times with the comparison phase at the end:

The number of test iterations (N)
N is the number of test iterations we must perform to build enough confidence in
the results. The exact number of runs depends on many factors, which we will
discuss in “Reliability of Experiments” on page 256. Generally, the more iterations
we do, the better. In many cases, we have to balance between higher confidence
and cost or wait time of a too large number of iterations.

Comparison
Finally, in the benchmarking definition, we have the comparison aspect, which
allows us to learn what’s improving the efficiency of our software, what’s hinder‐
ing it, and how far we are from the expectations (RAER).

In many ways, you might notice that benchmarking is similar to the testing we do to
verify correctness (referred to later as functional testing). As a result, many testing
practices apply to benchmarking. Let’s look at that next.

Comparison to Functional Testing
Comparison to something we are familiar with is one of the best ways to learn. So,
let’s compare benchmarking to functional testing. Is there anything we can reuse in
terms of methodology or practices? You will learn in this chapter that we can share
many things between functional tests and benchmarking. For example, there are a
few similar aspects:

• Best practices for forming test cases (e.g., edge cases), table-driven testing, and
regression testing

• Splitting tests into unit, integration, e2e, and testing in production (more on that
in “Benchmarking Levels” on page 266)

• Automation for continuous testing

Unfortunately, we have to also be aware of significant differences. With benchmarks:

We have to have different test cases and test data.
It might be tempting, but we cannot reuse the same test data (input parameters,
potential fake, test data in a database, etc.) as we used for our unit or integrations
tests meant for correctness tests. This is because the goals are different. In cor‐
rectness tests, we tend to focus on different edge cases from a functional perspec‐
tive (e.g., failure modes). Whereas in efficiency tests, the edge cases are usually
focused on triggering different efficiency issues (e.g., big requests versus many
small requests). We will discuss these in “Reproducing Production” on page 258.
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For most systems, though, the programmer should monitor the program on input data
that is typical of the data the program will encounter in production. Note that usual
test data often does not meet this requirement: while test data is chosen to exercise all
parts of the code, profiling [and benchmarking] data should be chosen for its
“typicality.”

—Jon Louis Bentley, Writing Efficient Programs

Embrace the performance nondeterminism
Modern software and hardware consist of layers of complex optimizations. This
can cause nondeterministic conditions to change while performing our bench‐
marks, which might mean that the results will also be nondeterministic. We will
expand on this in “Reliability of Experiments” on page 256, but this is why we
usually repeat test iteration cycles hundreds if not thousands of times (our N
component) to increase confidence in our observations. The main goal here is to
figure out how repeatable our benchmark is. If the variance is too high, we know
we cannot trust the results and must mitigate the variance. This is why we rely on
statistics in our benchmarks, which helps a lot, but also makes it easy to mislead
others and ourselves.

Repeatability: Ensuring that the same operations are benchmarked on all configu‐
rations and that metrics are repeatable over many test runs. Rule of thumb is a
variation of up to 5% is generally acceptable.

—Bob Cramblitt, “Lies, Damned Lies, and Benchmarks: What Makes a Good
Performance Metric”

It is more expensive to write and run
As you can imagine, the number of iterations we have to perform increases the
running cost and complexity of performing the benchmark, both the compute
cost and developer time spent on creating those and waiting. But that is not the
only additional cost compared to correctness tests. To trigger efficiency prob‐
lems, especially for large systems load tests, we have to exhaust different systems
capacities, which means buying a lot of computing power just for the sake of
tests.

This is why we have to focus on a pragmatic optimization process where we only
care about efficiency where necessary. There are also ways to be smart and avoid
full-scale macrobenchmarks by using tactical microbenchmarks of isolated func‐
tions, as discussed in “Benchmarking Levels” on page 266.

Expectations are less specific
Correctness tests always end up with some assertions. For example, in Go tests,
we check if the result of the functions has the expected value. If not, we use
t.Error or t.Fail to indicate the test should fail (or one-liners like testutil.Ok
or testutil.Equals).
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It would be amazing if we could do the same when benchmarking—asserting if
the latency and resource consumption are not exceeding the RAER. Unfortu‐
nately, we cannot just do if maxMemoryConsumption < 200 * 1024 * 1024 at
the end of a microbenchmark. The typical high variance of the results, challenges
in isolating the latency and resource consumption to just one functionality we
test, and other problems mentioned in “Reliability of Experiments” on page 256
make it hard to automate the assertion process. Typically, there has to be human
or very complex anomaly detection or assertion software to understand whether
the results are acceptable. Hopefully, we will see more tools that make it easier in
the future.

To make things harder, we might have a RAER for bigger APIs and functionali‐
ties. But if the RAER says the latency of the whole HTTP request should be
lower than the 20s, what does that mean for the single Go function involved in
this request (out of thousands)? How much latency should we expect in
microbenchmarks used by this function? There is no good answer.

We Focus More on Relative Results than Absolute Numbers!

In benchmarks, we usually don’t assert absolute values.
Instead, we focus on comparing results to some baseline (e.g.,
the previous benchmark before our code change). This way,
we know if we improved or negatively affected the efficiency
of a single component without looking at the big picture. This
is usually enough on the unit microbenchmarks level.

With the basic concept of benchmarking explained, let’s address the elephant in the
room in the next section—the stereotype that associates benchmarks with lies.
Unfortunately, there are solid reasons for this relation. Let’s unpack this and see how
we can tell if we can trust the benchmarks that we or others do.

Benchmarks Lie
There is an extension to a famous phrase that states that we can order the following
words from the best to worst: “lies, damn lies, and benchmarks.”

This interest in performance has not gone unnoticed by the computer vendors. Just
about every vendor promotes their product as being faster or having better “bang for
the buck.” All of this performance marketing begs the question: “How can these com‐
petitors all be the fastest?” The truth is that computer performance is a complex phe‐
nomenon, and who is fastest all depends upon the particular simplifications being
employed to present a particular simplistic conclusion.

—Alexander Carlton, “Lies, Damn Lies, and Benchmarks”
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12 For example, car makers cheating on emission benchmarks and phone vendors cheating on hardware bench‐
marks (which sometimes results with a ban from the popular Geekbench listing). In the software world, we
have a constant battle between various vendors through unfair benchmarks. Whoever creates them is often
one of the fastest on the results list.

Cheating in benchmarks is indeed widespread. The efficiency results through bench‐
marks have significant importance in a competitive market. Users have too many
choices to make, so simplifying the comparison to a simple question, “which is the
fastest solution?” or “which one is the most scalable?” is common among decision-
makers. As a result, benchmarking became a gamification system that is cheated on.
The fact that efficiency assessment is very complex to get right and expensive to
reproduce makes it easy to get away with a misleading conclusion. There are many
examples of companies, vendors, and individuals lying in benchmarks.12 However, it
is essential to highlight that not all cases are done intentionally or with malicious
intent. For better or worse, in most cases, the author did not purposely report mis‐
leading results. It’s only natural to get tricked by statistical fallacies and paradoxes
that are counterintuitive to the human brain.

Benchmarks Don’t Lie; We Just Misinterpret the Results!

There are many ways we can make wrong conclusions from bench‐
marks. If done accidentally, it can have severe consequences—usu‐
ally a big waste of time and money. If done intentionally…well, lies
have short legs. :)
We can be misled by benchmarks due to human mistakes, bench‐
marks performed under conditions irrelevant to us and our prob‐
lem, or simply statistical error. The benchmark results themselves
don’t lie; we might have just measured the wrong thing!
The solution is to be a mindful consumer or developer of those
benchmarks, plus learn the basics of data science. We will discuss
common mistakes and solutions in “Reliability of Experiments” on
page 256.

To overcome some biases that are naturally happening in the benchmarks, industries
often come up with some standards and certifications. For example, to ensure fair
fuel economy efficiency assessments, all light-duty vehicles in the US are required to
have their economy results tested by the US Environmental Protection Agency
(EPA). Similarly, in Europe, in response to the 40% gap between the fuel economy
carmakers’ tests and reality, the EU adopted the Worldwide Harmonized Light-Duty
Vehicle Test Cycle and Procedure. For hardware and software, many independent
organizations design consistent benchmarks for specific requirements. SPEC and
Percona HammerDB are two examples out of many.
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To overcome both lies and honest mistakes, we must focus on understanding what
factors make benchmarks unreliable and what we can do to improve that quality. It’s
foundational knowledge explaining many benchmark practices we will discuss in
Chapter 8. Let’s do that in the next section.

Reliability of Experiments
The TFBO cycle takes time. No matter on what level we assess and optimize effi‐
ciency, in all cases, it is necessary to spend a nontrivial amount of time on imple‐
menting benchmarks, executing them, interpreting results, finding bottlenecks, and
trying new optimizations. It is frustrating if all or part of our efforts are wasted due to
unreliable assessments.

As mentioned when explaining benchmarking lies, there are many reasons why
benchmarks are prone to misleading us. There are a set of common challenges it’s
useful to be aware of.

The Same Applies to Bottleneck Analysis!

In this chapter, we might be discussing benchmarks, so experi‐
ments mainly allow us to measure our efficiency (latency or
resource consumption), but similar reliability concerns can be
applied to other experiments or measurements around efficiency.
For example, profiling our Go programs to find bottlenecks, dis‐
cussed in Chapter 9.

We can outline three common challenges to the reliability of benchmarks: human
errors, the relevance of our experiments to the production environment, and the
nondeterministic efficiency of modern computers. Let’s go through these in the next
sections.

Human Errors
Optimizations and benchmarking routines, as it stands today, involve a lot of manual
work from developers. We need to run experiments with different algorithms and
code, while caring about reproducing production and performance nondeterminism.
Due to the manual nature, this is prone to human error.

It’s easy to get lost in what optimizations we already tried, what code you added for
debugging purposes, and what is meant to be saved. It is also easy to get confused
about what version of code the benchmarking results belong to and what assump‐
tions you already proved wrong.
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13 Some good IDEs also have additional local history if you forgot to commit your changes in your git
repository.

Many problems with our benchmarks tend to be caused by our sloppiness and lack of
organization. Unfortunately, I am guilty of many of those mistakes too! For example,
when I thought I was benchmarking optimization X, I discarded it after seeing no sig‐
nificant difference in benchmarking results. Only some hours later did I notice I
tested the wrong code, and optimization X was helpful!

Fortunately, there are some ways to reduce those risks:

Keep it simple.
Try to iterate with code changes related to efficiency in the smallest iterations
possible. If you try to optimize multiple elements of your code simultaneously, it
most likely will obfuscate your benchmark results. You might miss that one of
those optimizations limits the efficiency of the aspect you are interested in.

Similarly, try to isolate complex parts into smaller separate parts you can opti‐
mize and assess separately (divide and conquer).

Know what version of software you are benchmarking.
It might be trivial, but it’s worth repeating—use software versioning! If you try
different optimizations, commit them in separate commits and distribute them
across separate branches so you can get back to previous versions if needed.
Don’t lose your optimization effort by forgetting to commit your work at the end
of the day.13

This also means you have to be strict about what version of code you just bench‐
marked. Even a small reorder of seemingly unrelated statements might impact
your code’s efficiency, so always benchmark your programs in atomic iterations.
This also includes all dependencies your code needs, for example, those outlined
in your go.mod file.

Know what version of benchmark you are using.
Furthermore, remember to version the code of the benchmark test itself! Avoid
comparing results between different benchmark implementations, even if the
change was minor (adding an extra check).

Scripting scripts to execute those benchmarks with the same configuration and
versioning those is also a great way not to get lost. In Chapter 8, I mention some
best practices around declarative ways to share benchmark options for your
future self and others on your team.
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14 Laziness is actually good for engineers! But it has to be pragmatic, productive, and reasonable laziness toward
the efficiency of our work, not purely based on our emotions in the given moment.

15 Unless we write software for fellow developers that runs on similar hardware.

Keep your work well organized and structured.
Make notes, design your own consistent workflow, and be explicit in what ver‐
sion of code you experimented with. Track the dependency versions, and track
all benchmarking results explicitly in a consistent way. Finally, be clear in com‐
municating your findings with others.

Your code should also be clean during different code attempts. Keep all best
practices like DRY, don’t keep commented out code, isolate state between tests,
etc.

Be skeptical about “too good to be true” benchmarking results.
If you can’t explain why your code is suddenly quicker or uses fewer resources,
you most certainly did something wrong while benchmarking. It is tempting to
celebrate, accept it, and move on without double-checking.

Check common issues like if your benchmark test cases trigger errors instead of
successful runs (mentioned in “Test Your Benchmark for Correctness!” on page
290), or perhaps the compiler optimized your microbenchmark away (discussed
in “Compiler Optimizations Versus Benchmark” on page 301).

A little bit of laziness in our work is healthy.14 However, laziness at the wrong
moment might significantly increase the number of unknowns and risks to the
already difficult subject of program efficiency optimizations.

Now let’s look at the second key element of reliable benchmarks, relevance.

Reproducing Production
It might be obvious, but we don’t optimize software so it can run faster or consume
fewer resources on our development machine.15 We optimize to ensure the software
has efficient enough execution for the target destinations that matter for our busi‐
ness, so-called production.

Production might mean a production server environment you deploy if you build a
backend application, or a customer device like a PC, laptop, or smartphone if you
build an end-user application. Therefore, we can significantly improve the quality of
our efficiency assessment for all benchmarks by enhancing their relevance. We can
do that by trying our best to simulate (reproduce) situations and environmental con‐
ditions of production. Particularly:
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Production conditions
The characteristics of a production environment. For example, how much RAM
and what kind of CPU the production machines will have dedicated for our pro‐
gram. What OS version does it have? What versions and kinds of dependencies
will our program use?

Production workload
The data our program will work with and the behavior of the user traffic it has to
handle.

Perhaps the first thing we should do is to gather requirements around the software
target destination, ideally in written form in our RAER. Without it, we can’t correctly
assess the efficiency of our software. Similarly, if you see benchmarks done by a ven‐
dor or independent entity, you should check if the benchmark conditions match your
production and requirements. Typically, they don’t, and to fully trust it, we should
try to reproduce such a benchmark on our side.

Assuming we roughly know what the target production for our software looks like,
we might start designing our benchmark flow, test data, and cases. The bad news is
that it’s impossible to fully reproduce every aspect of production in our development
or testing environment. There will always be differences and unknowns. There are
many reasons why production will be different:

• Even if we run the same kind and version of the OS as production, it is impossi‐
ble to reproduce the dynamic state of the OS, which impacts efficiency. In fact,
we cannot fully reproduce this state between two runs on the same local
machine! This challenge is often called nondeterministic performance, and we
will discuss it in “Performance Nondeterminism” on page 260.

• It’s often too expensive to reproduce all kinds of production workloads that can
happen (e.g., forking all production traffic and putting it through testing
clusters).

• When developing an end-user application, there are too many permutations of
different hardware, dependency software versions, and situations. For example,
imagine you create an Android app—tons of smartphone models could poten‐
tially run your software, even if we would limit ourselves to smartphones made
in the last two years.

The good news is that we don’t need to reproduce all aspects of production. Instead,
it’s often enough to represent key characteristics of the products that might limit our
workloads. We might know about it from the start of development—but with time,
experiments, and macrobenchmarks (see “Macrobenchmarks” on page 306), or even
production—you will learn what matters.
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For example, imagine you develop Go code responsible for uploading local files to a
remote server, and the users notice unacceptable latency when uploading a large file.
Based on that, our benchmark to reproduce this should:

• Focus on test cases that involve big files. Don’t try to optimize a large number of
small files, all different error cases, and potential encryption layers if that doesn’t
represent what production users are using the most. Instead, be pragmatic and
focus with benchmarks on what your goal is now.

• Be mindful that your local benchmarks are not reproducing potential network
latencies and behavior you will see in production. A bug in your code might
cause resource leaks only in case of a slow network, which might be hard to
reproduce on your machine. For these optimizations, it’s worth moving
with benchmarks to different levels, as explained in “Benchmarking Levels” on
page 266.

Simulating the “characteristics” of production does not necessarily mean the same
dataset and workload that will exist on production! For our earlier example, you
don’t need to create 200 GB test files and benchmark your program with them. In
many cases, you can start with relatively large files like 5 MB, then 10 MB, and
together with complexity analysis, deduce what will happen at the 200 GB level. This
will allow you to optimize those cases much faster and cheaper.

Typically it would be too difficult and inefficient to attempt to exactly reproduce a spe‐
cific workload. A benchmark is usually an abstraction of a workload. It is necessary, in
this process of abstracting a workload into a benchmark, to capture the essential
aspects of the workload and represent them in a way that maps accurately.

—Alexander Carlton, “Lies, Damn Lies, and Benchmarks”

To sum up, when trying to assess the efficiency or reproduce efficiency regressions,
be mindful of the differences between your testing setup and production. Not all of
them are worth reproducing, but the first step is to know about those differences and
how they can impact the reliability of our benchmarks! Let’s now look at what else we
can do to improve the confidence of our benchmarking experiments.

Performance Nondeterminism
Perhaps the biggest challenge with efficiency optimizations is the “nondeterministic
performance” of modern computers. It means so-called noise, so the variance in our
experiment results is because of the high complexity of all layers that impacts the effi‐
ciency we learned about in Chapters 4 and 5. As a result, efficiency characteristics are
often unpredictable and highly fragile to environmental side effects.
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16 The engineer Brendan Gregg demonstrated how screaming at server hard drive disks severely impacts their
I/O latency due to vibrations.

17 The situation where one workload from a totally different virtual machine impacts our workload is com‐
monly called a noisy neighbor situation. It is a serious issue that cloud providers continuously fight, with bet‐
ter or worse results depending on the offering and provider.

For example, let’s consider a single statement in the Go code, an a += 4. No matter
what conditions this code is executed in, assuming we are the only user of memory
used by the a variable, the result of a += 4 is always deterministic—a value of a plus
4. This is because, in almost all cases, it is hard to impact correctness. You can put the
computer in extreme heat or cold, you can shake it, you can schedule millions of
simultaneous processes in the OS, and you can use any version of CPU that exists
with any supported type of operating system that supports that hardware. Unless you
do something extreme like influencing the electric signal in the memory, or you put
the computer out of power, that a += 4 operation will always give us the same result.

Now let’s imagine we are interested to learn how our a += 4 operation contributes to
the latency in the bigger program. At first glance, the latency assessment should be
simple—this requires a single CPU instruction (e.g., ADDQ) and a single CPU register,
so the amortized cost should be as fast as your CPU frequency, so, for example, an
average of 0.3 ns for 3 GHz CPU.

In practice, however, overheads are never amortized and never static within a single
run, making that statement latency highly nondeterministic. As we learned in Chap‐
ter 4, if we don’t have the data in the registers, the CPU has to fetch it from L-caches,
which might take one nanosecond. If L-caches contain data the CPU needs, our sin‐
gle statement might take 50 ns. Suppose the OS is busy running millions of other pro‐
cesses; our single statement might take milliseconds. Notice that we are talking about
a single instruction! On a larger scale, if this noise builds, we can accumulate variance
measurable in seconds.

Be mindful. Almost everything can impact the latency of our operations. Busy OS,
different versions of hardware elements, and even differences in manufactured CPUs
from the same company might mean different latency measurements. Ambient tem‐
perature near a laptop’s CPU or battery modes can trigger thermal scaling of our
CPU frequency up and down. In extreme cases, even screaming at your computer can
impact the efficiency!16 The more complexity and layers we have when running our
programs, the more fragile our efficiency measurements. Similar problems apply to
remote devices, personal computers, and public cloud providers (e.g., AWS or
Google) that use shared infrastructure with virtualization like containers or virtual
machines.17
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Compressible Versus Noncompressible Resources
All efficiency aspects have some nondeterminism, but some resources are more pre‐
dictive than others. Typically, it is correlated to the categorization known as how
compressible resources are. Compression refers to the consequences of the saturation
of certain resources (what happens when you don’t have enough of the resource).

• The latency and I/O throughput of CPU time, memory or disk access, and net‐
work bandwidth are compressible. So if we have too many processes demanding
CPU time, we can slow down execution, but eventually, we will execute all the
scheduled work. This means we won’t see machines crashing due to CPU satura‐
tion, but it also results in highly dynamic latency results.

• The space and allocation aspect of the resource, like memory or disk space used,
is noncompressible on its own. As we learned in Chapter 5, if the program needs
more memory space than the OS has, it has to crash the process or the whole sys‐
tem in most cases. There are mitigations like using space of different mediums
instead (OS swap) and compressing the data we want to save, but used space
can’t compress automatically. This might feel like a challenge, but it is beneficial
for benchmarking and measurement purposes—behavior is more deterministic.

The fragility of efficiency assessment is so common that we have to expect it in every
benchmarking attempt. Therefore, we have to embrace it and embed mitigations to
those risks into our tools.

The first thing you might want to do before mitigating nondeterministic perfor‐
mance is to check if this problem impacts your benchmarks. Verify the repeatability
of your test by calculating the variance of your results (e.g., using standard deviation).
I will explain a good tool for that in “Understanding the Results” on page 284, but often
you can see it in plain sight.

For example, if you run the experiment once and see it finish in 4.05 seconds, and
other runs vary from 3.01 to 6.5 seconds, your efficiency assessment might not be
accurate. On the other hand, if the variance is low, you can be more confident about
the relevance of your benchmarks. Thus, check the repeatability of your benchmark
first.

262 | Chapter 7: Data-Driven Efficiency Assessment



Don’t Overuse the Statistics

It is tempting to accept high variance and either remove the
extreme results (outliers) or take the mean (average) of all your
results. You can apply very complex statistics to find some effi‐
ciency numbers with some probability. Increasing benchmark runs
can also make your average numbers more stable, thus giving you a
bit more confidence.
In practice, there are better ways to try first to mitigate stability.
Statistics are great where we can’t perform a stable measurement,
or we can’t verify all samples (e.g., we cannot poll all humans on
Earth to find out how many smartphones are used). While bench‐
marking, we have more control over stability than we might ini‐
tially think.

There are many best practices we can follow to ensure our efficiency measurements
will be more reliable by reducing the potential nondeterministic performance effects:

Ensure the stable state of the machine you benchmark on.
For most benchmarks that rely on comparisons, it matters less what conditions
we benchmark in as long as they are stable (the state of the machine does not
change during or between benchmarks). Unfortunately, three mechanics typi‐
cally get in the way of machine stability:

Background threads
As you learned in Chapter 4, it’s hard to isolate processes on machines. Even
a single, seemingly small process can make your OS and hardware busy
enough to change your efficiency measurements. For example, you might be
surprised how much memory and CPU time one browser tab or Slack appli‐
cation might use. On public clouds, it’s even more hidden as we might see
processes impacting us from different virtual OSes we don’t own.

Thermal scaling
The temperature of high-end CPUs increases significantly under load. The
CPUs are designed to sustain relatively hot temperatures like 80–110°C, but
there are limits. If the fans cannot cool the hardware fast enough, the OS or
the firmware will limit the CPU cycles to avoid component meltdown. Espe‐
cially with remote devices like laptops or smartphones, it’s easy to trigger
thermal scaling when the ambient temperature is high, your device is in the
sunlight, or something is obstructing the cooling fans.

Power management
Similarly, devices can limit the hardware speed to reduce power consump‐
tion. This is typically seen on laptops and smartphones with battery-saving
modes.
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18 This is why you won’t see me explaining the microbenchmark options like RunParallel. In general, running
multiple benchmark functions in parallel can distort the results. Therefore, I recommend avoiding this
option.

For Most Cases, It’s Enough to Maintain Simple Stability Best Practices
To reduce machine instability, you could go extreme and buy a dedicated bare-metal
server that only runs OS and your benchmarks. In addition, you could turn off all
software updates and all advanced thermal and power management components and
keep your server specially cooled. However, for practical efficiency benchmarking,
following a few reasonable practices is usually enough to avoid those problems, all
while still using your developer device for testing for the quick feedback loop. For
example, when benchmarking:

• Try to keep your machine relatively idle, don’t actively browse the internet, and
avoid running multiple benchmarks at the same time.18 Close your messaging
apps like Slack or Discord or any other programs that might become active dur‐
ing the benchmark. Literally just typing on characters in my IDE editor while
performing tests usually impacts my benchmarking results 10%!

• If you use a laptop as your benchmarking machine, keep your laptop connected
to power during benchmarks.

• Similarly, don’t keep the laptop on your lap or your bed (e.g., on the pillow)
when benchmarking. This blocks the fans from pulling the hot air out, which can
trigger thermal scaling!

Be extra vigilant on shared infrastructure.
Buying a dedicated virtual machine on a stable cloud provider for benchmarking
is not a bad idea. We mentioned noisy neighbor problems, but if done right, the
cloud can be sometimes more durable than your desktop machine running vari‐
ous interactive software during benchmarks.

When using cloud resources, ensure you choose the best possible, strict Quality
of Service (QoS) contract with the provider. For example, avoid cheaper bursta‐
ble or preemptible virtual machines, which by design are prone to infrastructure
instabilities and noisy neighbors.

Avoid Continuous Integration (CI) pipelines, especially those from free tiers like
GitHub Action or other providers. While they remain a convenient and cheap
option, they are designed for correctness testing that has to eventually finish (not
as fast as physically possible) and scale dynamically to the user demands to mini‐
mize costs. This doesn’t provide strict and stable resource allocations required
for benchmarks.
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19 You can also fully dedicate CPU cores to your benchmark; consider the cpuset tool.

20 I had this problem when writing Chapter 10. I ran some benchmarks in one go on a relatively cold day. Next
week there was a heat wave in the UK. I could not continue my optimization effort while reusing the past
benchmarking results on such a hot day, as all my code was running 10% slower! I had to redo all the experi‐
ments to compare the implementations fairly.

Be mindful of benchmark machine limits.
Be aware of your machine spec. For example, if your laptop has only 6 CPU cores
(12 virtual cores with Hyper-Threading), don’t implement benchmark cases that
require the GOMAXPROCS to be larger than the CPUs you have available for test.
Furthermore, it might make sense to benchmark with only four CPUs for six
physical core CPUs on your general-purpose machine to ensure spare room for
OS and background processes.19

Similarly, be mindful of the limits of other resources, like memory. For example,
don’t run benchmarks that use close to a maximum capacity of RAM, as memory
pressure, faster garbage collection, and memory trashing might slow down all
threads on the machine, including the OS!

Run the experiment longer.
One of the easiest ways to reduce variance between benchmark runs is to run the
benchmark a bit longer. This allows us to minimize the benchmarking overhead
that we might see at the beginning of our benchmarks (e.g., CPU cache warm-up
phase). This also statistically gives us more confidence that the average latency or
resource consumption metric shows the authentic pattern of the current effi‐
ciency level. This method takes time and depends on nontrivial statistics, prone
to statistical fallacies, so use it with care and ideally try the suggestions men‐
tioned before.

Avoid Comparing Efficiency with Older Experiment Results!
Put an expiration date on all benchmark results. It is tempting to save benchmarking
results after testing one version of your code for later. Then we switch our work focus
for a few days, perhaps go on holiday, and get back to optimization flow after a few
days or weeks. Resist resuming your benchmarking flow by benchmarking a version
with optimization and comparing it with days- or weeks-old benchmarking results
stored somewhere in your filesystem.

Chances are that things have changed. For example, your system got upgraded, dif‐
ferent processes run on your machine, or there is a different load in your clusters.
You also risk other human errors, as it’s easy to forget all the past details and environ‐
mental conditions you ran in. Solution? Repeat your past benchmarks on demand or
invest in continuous benchmarking practices that will do that for you.20
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21 In some way, this is why selling your product as a SaaS is so appealing in software. Your “production” is on
your premises, making it easier to control the experience of the users and validate some efficiency
optimizations.

To sum up, be mindful of potential human errors that can lead to confusion. Do care
about the relevance of your experiments to the production end goal you and your
development team have. Finally, measure the repeatability of your experiments to
assess if you can rely on their results. Of course, there will always be some discrep‐
ancy between benchmark runs or between benchmark runs and production setup.
Still, with these recommendations, you should be able to reduce them to a safe 2–5%
variance level.

Perhaps you came to this chapter to learn how to perform Go benchmarks. I can’t
wait to explain to you step-by-step how to perform those in the next chapter! How‐
ever, the Go benchmarks are not all we have in our empirical assessment arsenal.
Therefore, it’s essential to learn when to choose the Go benchmarks and when to fall
back on different benchmarking methods. I will outline that in the next section.

Benchmarking Levels
In Chapter 6, we discussed finding latency and resource usage metrics that will allow
us reliable measurements. But in the previous section, we learned that this might be
only half of the success. By definition, benchmarking requires an experimentation
stage that will trigger a certain situation or state of the application, which is valuable
to measure.

There is something simpler worth mentioning before we start with experiments. The
naive and probably simplest solution to assess the efficiency of, e.g., a new release of
our software, is to give it to our customers and collect our metrics during the “pro‐
duction” use. This is great because we don’t need to simulate or reproduce anything.
Essentially the customer is performing the “experiment” part on our software, and we
just measure their experience. We could call it “monitoring” at the source or “pro‐
duction monitoring.” Unfortunately, there are some challenges:

• Computer systems are complex. As we learned in “Reproducing Production” on
page 258, the efficiency depends on many environmental factors. To truly assess
whether our new software versions have better or worse efficiency, we must
know about all those “measurement” conditions. However, it is not economical
to gather all this information when it runs on client machines.21 Without it, we
cannot derive any meaningful conclusions. On top of that, many users would opt
out of any reporting capabilities, meaning we are even more unaware of what
happened.
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22 Feature flags are configuration options that can be changed dynamically without restarting the service—typi‐
cally through an HTTP call. This allows reverting new functionality quicker, which helps with testing or
benchmarking in production. For feature flags I rely on the excellent go-flagz library. I would also pay close
attention to the new CNCF project OpenFeature, which is meant to provide more standard interface in this
space.

• Even if we gather that observability information, it isn’t guaranteed that a situa‐
tion causing problems will ever occur again. There is no guarantee that the cus‐
tomer will perform all the steps to reproduce the old problem. Statistically, all
meaningful situations will happen at some point, but that eventual timing is too
long in practice. For example, imagine that one HTTP request to a particu‐
lar /compute path was causing efficiency problems. We fixed it and deployed it to
production. What if no one used this particular path for the next two weeks? The
feedback loop can be very long here.

Feedback Loop

The feedback loop is a cycle that starts from the moment of making
changes to our code and ends with observations around these
changes.
The longer this loop is, the more expensive development is. The
frustration of developers is also often underestimated. In extreme
cases, it will inevitably result in developers taking shortcuts by
ignoring important testing or benchmarking practices.
To overcome this, we must invest in practices that will give us as
much reliable feedback as possible in the shortest time.

• Finally, it is often too late if we rely on our users to “benchmark” our software. If
it’s too slow, we might have already lost their trust. This can be mitigated by can‐
ary rollouts and feature flags,22 but still, ideally, we catch efficiency issues before
releasing our software to production.

Production monitoring is critical, especially when your software runs 24 hours, 7
days a week. Even more, manual monitoring, like observing efficiency trends and
user feedback in your bug tracker, is also useful for the last step of efficiency assess‐
ment. Things do slip through the testing strategies we are discussing here, so it makes
sense to keep production monitoring as a last verification resort. But as a standalone
efficiency assessment, production monitoring is quite limited.
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Fortunately, we have more testing options that help to verify efficiency. Without fur‐
ther ado, let’s go through the different levels of efficiency testing. If we would put all
of them on a single graph that compares them based on the required effort to imple‐
ment and maintain and the effectiveness of the individual test, it could look like
Figure 7-2.

Figure 7-2. Types of efficiency and correctness test methods with respect to difficulty to
set up and maintain them (horizontal axis) versus how effective a singular test of a
given type is in practice (vertical axis)

Which of the methods presented in Figure 7-2 are used by mature software projects
and companies? The answer is all of them. Let me explain.

Benchmarking in Production
Following testing in production practice, we could use a live production system to
assess efficiency. It might mean hiring “test drivers” (beta users) who will run our
software on their devices and create real usage and report issues. Benchmarking in
production is also very useful when your company sells the software you develop as a
SaaS. For these cases, it is as easy as creating automation (e.g., a batch job or micro‐
service) that periodically or after every rollout benchmarks the cluster using a prede‐
fined set of test cases that mimic real user functionalities (e.g., HTTP requests that
simulate user traffic). Especially since you control the production environment, you
can mitigate the downsides of production monitoring. You can be aware of environ‐
mental conditions, revert quickly, use feature flags, perform canary deployments, and
so on.
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Benchmarking in Production Has Limited Use

Unfortunately, there are many challenges to this testing practice:

• It’s easier when you run your software as a SaaS. Otherwise,
it’s much harder as the developers can’t quickly revert or fix
potential impacts.

• You have to ensure Quality of Service (QoS). This means you
cannot do benchmarking with extreme payloads, as you need
to ensure you don’t impact—e.g., cause Denial of Service
(DoS)—your production environment.

• The feedback loop is quite long for developers in such a
model. For example, you need to release your software fully to
benchmark it.

On the other hand, if you are fine with those limitations, as presented in Figure 7-2,
benchmarking in production might be the most effective and reliable testing strategy.
It is ultimately the closest we can get to real production usage, which reduces the risk
of inaccurate results. The effort of creating and maintaining such tests is relatively
small, assuming we already have production monitoring. We don’t need to simulate
data, environment, dependencies, etc. We can reuse the existing monitoring tools
you need to keep the cluster up.

Macrobenchmarks
Testing or benchmarking in production is reliable, but spotting problems at that
point is expensive. That’s why the industry introduced testing in earlier stages of
development. The benefit is that we can assess the efficiency with just prototypes,
which can be produced much quicker. We call the tests on this level
“macrobenchmarks.”

Macrobenchmarks provide a great balance between good reliability of such tests and
faster feedback loop compared to benchmarking in production. In practice, it means
building your Go program and benchmarking it in a simulated environment with all
required dependencies. For example, for client-side applications, it might mean buy‐
ing some example client devices (e.g., smartphones if we build the mobile applica‐
tion). Then for some application releases, reinstall your Go program on those devices
and thoroughly benchmark it (ideally with some automated suite).

For SaaS-like use cases, it might mean creating copies of production clusters, com‐
monly called “testing” or “staging” environments. Then, to assess efficiency, build
your Go program, deploy how you would in production, and benchmark it. We will
also discuss more straightforward methods like using an e2e framework that you can
run on a single development machine without complex orchestration systems like
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Kubernetes. I will explain those two methods briefly in “Macrobenchmarks” on page
306.

There are many benefits of macrobenchmarking:

• They are highly reliable and effective (yet not as much as benchmarking in
production).

• You can delegate such macrobenchmarking to independent QA engineers
because you can treat your Go program as a “closed box” (previously known as a
“black box”—no need to understand how it is implemented).

• You don’t impact production with anything you do.

The downside of this approach, as shown in Figure 7-2, is the effort of building and
maintaining such a benchmark suite. Typically, it means complex configuration or
code to automate all of it. Additionally, in many cases, any functional changes to our
Go program mean we must rebuild parts of the complex macrobenchmarking sys‐
tem. As a result, such macrobenchmarks are viable for more mature projects with sta‐
ble APIs. On top of that, the feedback loop is still quite long. We also must limit how
many benchmarks we can do at once. Naturally, we have a limited number of those
testing clusters that we share with other team members for cost efficiency. This
means we have to coordinate those benchmarks.

Microbenchmarks
Fortunately, there is a way to have more agile benchmarks! We can follow the pattern
of divide and conquer for optimizations. Instead of looking at the efficiency of the
whole system or the Go program, we treat our program in an open box (previously
known as a “white box”) manner and divide program functionality into smaller parts.
We can then use the profiling we will learn in Chapter 9 to identify parts that con‐
tribute the most to the efficiency of the whole solution (e.g., use the most CPU or
memory resource or add the most to the latency). We can then assess the efficiency of
the program’s most “expensive” part by writing small unit tests like microbe‐
nchmarks just for this small part in isolation. The Go language provides a native
benchmarking framework that you can run with the same tool as unit tests: go test.
We will discuss using this practice in “Microbenchmarks” on page 275.

Microbenchmarks are probably the most fun to write because they are very agile and
provide rapid feedback about the efficiency of our Go function, algorithm, or struc‐
ture. You can quickly run those benchmarks on your (even small!) developer
machine, often without going out of your favorite IDE. You can implement such a
benchmark test in 10 minutes, execute it in the next 20 minutes, and then tear it
down or change it entirely. It is cheap to make, cheap to iterate, like a unit test. You
can also treat it as a more reusable development tool—write more complex
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microbenchmarks that will work as acceptance benchmarks for a small part of the
code the whole team can use.

Unfortunately, with agility comes many trade-offs. For example, suppose you
wrongly identify the efficiency bottleneck of your program. In that case, you might be
celebrating that your local microbenchmarks for some parts of the program take only
200 ms. However, when your program is deployed, it might still cause efficiency
problems (and violate the RAER). On top of that, some problems are only visible
when you run all the code components together (similar to integration tests). The
choice of test data is also nontrivial. In many cases, it is impossible to mimic depen‐
dencies in a way that makes sense to reproduce certain efficiency problems, so we
have to make some assumptions.

When Microbenchmarking, Don’t Forget About the Big Picture

It is not uncommon to perform easy, deliberate optimizations on
the part of code that is a bottleneck and see a major improvement.
For example, after optimization, our microbenchmarks might indi‐
cate that instead of 400 MB, our function now allocates only 2 MB
per operation. After thinking about that part of the code, you
might have plenty of other ideas about optimizations for that 2 MB
of allocations! So you might be tempted to learn and optimize that.
This is a risk. It’s easy to fixate on raw numbers from a single
microbenchmark and go into the optimization rabbit hole, intro‐
ducing more complexity and spending valuable engineering time.
In this case, we should most likely be happy with the massive, 200x
improvement, and do all it takes to get it deployed. If we want to
further improve the performance of the path we were looking at,
it’s not unlikely that the bottleneck of the code path we were testing
has now moved somewhere else!

What Level Should You Use?
As you might have already noticed, there is no “best” benchmark type. Each stage has
its purpose and is needed. Every solid software project should eventually have some
microbenchmarks, have some macro ones, and potentially benchmark some portion
of functionalities in production. This can be confirmed by just looking at some open
source projects. There are many examples, but just to pick two:

• The Prometheus project has dozens of microbenchmarks and a semiautomated,
dedicated macrobenchmark suite that deploys instances of the Prometheus pro‐
gram in Google Cloud and benchmarks them. Many Prometheus users also test
and gather efficiency data directly from production clusters.
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23 I am personally not a big fan of this approach. Not every part of the code is equally important to test, and not
everything is worth testing. On top of that, engineers tend to gamify this system by writing tests only to
improve the coverage, instead on focusing on finding potential problems with the code in the fastest possible
way (reducing cost of development).

• The Vitess project uses microbenchmarks written in Go as well. On top of that,
the Vitess project maintains macrobenchmarks. Amazingly, it builds automation
that runs both types of benchmarks nightly, with results reported on the dedica‐
ted website. This is an exceptional best-practice example.

What benchmarks to add to the software projects you work on, and when, depends
on needs and maturity. Be pragmatic with adding benchmarks. No software needs
numerous benchmarks in the early development cycle. When APIs are unstable and
detailed requirements are changing, the benchmark will need to change as well. In
fact, it can be harmful to the project if we spend time on writing (and later maintain‐
ing) benchmarks for a project that hasn’t yet functionally proven its usefulness.

Follow this (intelligently) lazy approach instead:

1. If the stakeholder is unhappy with visible efficiency problems, perform the
bottleneck analysis explained in Chapter 9 on production and add
microbenchmarks (see “Microbenchmarks” on page 275) to the part that is a bot‐
tleneck. When optimized, another part will likely be a bottleneck, so new tests
must be added. Do this until you are happy with the efficiency, or it’s too difficult
or expensive to optimize the program further. It will grow organically.

2. When a formal RAER is established, it might be useful to ensure that you test
efficiency more end to end. Then you might want to invest in the manual, then
automatic, macrobenchmarks (see “Macrobenchmarks” on page 306).

3. If you truly care about accurate and pragmatic tests, and you control your “pro‐
duction” environment (applicable for SaaS software), consider benchmarking in
production.

Don’t Worry About “Benchmark” Code Coverage!

For functional testing, it’s popular to measure the quality of the
project by ensuring the test code coverage is high.23

Never try to measure how many parts of your program have
benchmarks! Ideally, you should only implement benchmarks for
the critical places you want to optimize because the data indicates
they are (or were) the bottleneck.
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With this theory, you should know what benchmarking levels are available to you
and why there is no silver bullet. Still, benchmarks are in the code of our software
efficiency story, and the Go language is no different here. We can’t optimize without
experimenting and measuring. However, be mindful of the time spent in this phase.
Writing, maintaining, and performing benchmarks takes time, so follow the lazy
approach and add benchmarks on an appropriate level on demand and only if
needed.

Summary
The reliability issues of these tests are perhaps one of the biggest reasons developers,
product managers, and stakeholders de-scope efficiency efforts. Where do you think I
found all those little best practices to improve reliability? At the beginning of my
engineering career, I spent numerous hours on careful load testing and benchmarks
with my team, only to realize it meant nothing as we missed a critical element of the
environment. For example, our synthetic workloads were not providing a realistic
load.

Such cases can discourage even professional developers and product managers.
Unfortunately, this is where we typically prefer to pay more for waste computing
rather than invest in optimization efforts. That’s why it’s critically important to
ensure the experiment, load tests, and scale tests we do are as reliable as possible to
achieve our efficiency goals faster!

In this chapter, you learned the foundations behind reliable efficiency assessment
through empirical experiments we call benchmarks.

We discussed the basic complexity analysis that can help optimize our journey. I
mentioned the difference between benchmark testing and functional testing and why
benchmarks lie if we misinterpret them. You learned common reliability problems
that I found truly important during experimentation cycles and the levels of bench‐
marks commonly spotted in the industry.

We are finally ready to learn how to implement those benchmarks on all levels men‐
tioned above, so let’s jump right into it!
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CHAPTER 8

Benchmarking

Hopefully, your Go IDE is ready and warmed up for some action! It’s time to stress
our Go code to find its efficiency characteristics on the micro and macro levels men‐
tioned in Chapter 7.

In this chapter, we will start with “Microbenchmarks”, where we will go through the
basics of microbenchmarking and introduce Go native benchmarking. Next, I will
explain how to interpret the output with tools like benchstat. Then I will go through
the microbenchmark aspects and tricks that I learned that are incredibly useful for
the practical use of microbenchmarks.

In the second half of this chapter, we’ll go through “Macrobenchmarks” on page 306,
which is rarely in the scope of programming books due to its size and complexity. In
my opinion, macrobenchmarking is as critical to Go development as microbe‐
nchmarking, so every developer caring about efficiency should be able to work with
that level of testing. Next, in “Go e2e Framework” on page 310 we will go through a
complete example of a macro test written fully in Go using containers. We will dis‐
cuss results and common observability in the process.

Without further ado, let’s jump into the most agile way of assessing the efficiency of
smaller parts of the code, namely microbenchmarking.

Microbenchmarks
A benchmark can be called a microbenchmark if it’s focused on a single, isolated
functionality on a small piece of code running in a single process. You can think of
microbenchmarks as a tool for efficiency assessment of optimizations made for a sin‐
gle component on the code or algorithm level (discussed in “Optimization Design
Levels” on page 98). Anything more complex might be challenging to benchmark on
the micro level. By more complex, I mean, for example, trying to benchmark:
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• Multiple functionalities at once.
• Long-running functionalities (over 5–10 seconds long).
• Bigger multistructure components.
• Multiprocess functionalities. Multigoroutine functionalities are acceptable if they

don’t spin too many goroutines (e.g., over one hundred) during our tests.
• Functionalities that require more resources to run than a moderate development

machine (e.g., allocating 40 GB of memory to compute an answer or prepare a
test dataset).

If your code violates any of those elements, you might consider splitting it into
smaller microbenchmarks or consider using macrobenchmarks on ones with differ‐
ent frameworks (see “Macrobenchmarks” on page 306).

Keep Microbenchmarks Micro

The more we are benchmarking at once on a micro level, the more
time it takes to implement and perform such benchmarks. This
results in cascading consequences—we try to make benchmarks
more reusable and spend even more time building more abstrac‐
tions over them. Ultimately, we try to make them stable and harder
to change.
This is a problem because microbenchmarks were designed for
agility. We change code often, so we want benchmarks to be upda‐
ted quickly and not get in our way. So you write them quickly, keep
them simple, and change them.
On top of that, Go benchmarks do not have (and should not have!)
sophisticated observability, which is another reason to keep them
small.

The benchmark definition means that it’s very rare for the microbenchmark to vali‐
date if your program matches the high-level user RAER for certain functionality, e.g.,
“The p95 of this API should be under one minute.” In other words, it is usually not
well suited to answer questions requiring absolute data. Therefore, while writing
microbenchmarks, we should instead focus on answers that relate to a certain base‐
line or pattern, for example:

Learning about runtime complexity
Microbenchmarks are a fantastic way to learn more about the Go function or
method efficiency behavior over certain dimensions. For example, how is latency
impacted by different shares and sizes of the input and test data? Do allocations
grow in an unbounded way with the size of input? What are the constant factors
and the overhead of the algorithm you chose?
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Thanks to the quick feedback loop, it’s easy to manually play with test inputs and
see what your function efficiency looks like for various test data and cases.

A/B testing
A/B tests are defined by performing the same test on version A of your program
and then on version B, which is different (ideally) only by one thing (e.g., you
reused one slice). They can tell us the relative impact of our changes.

Microbenchmarks are a great way to assess if a new change of the code, configu‐
ration, or hardware can potentially affect the efficiency. For example, suppose we
know that the absolute latency of some requests is two minutes, and we know
that 60% of that latency is caused by a certain Go function in a code we develop.
In this case, we can try optimizing this function and perform a microbenchmark
before and after. As long as our test data is reliable, if after optimization, our
microbenchmark shows our optimization makes our code 20% faster, the full
system will also be 18% faster.

Sometimes the absolute numbers on microbenchmarking for latency might mat‐
ter less. For example, it doesn’t tell us much if our microbenchmark shows 900
ms per operation on our machine. On a different laptop, it might show 500 ms.
What matters is that on the same machine, with as few changes to the environ‐
ment as possible and running one benchmark after another, the latency between
version A and B is higher or lower. As we learned in “Reproducing Production”
on page 258, there are high chances that this relation is then reproducible in any
other environment where you will benchmark those versions.

The best way to implement and run microbenchmarks in Go is through its native
benchmarking framework built into the go test tool. It is battle tested, integrated
into testing flows, has native support for profiling, and you can see many benchmark
examples in the Go community. I already mentioned the basics around the Go
benchmark framework with Example 6-3, and we saw some preprocessed results in
Example 7-2 outputs, but it’s now time to dive into details!

Go Benchmarks
Creating microbenchmarks in Go starts by creating a particular function with a spe‐
cific signature. Go tooling is not very picky—a function has to satisfy three elements
to be considered a benchmark:

Microbenchmarks | 277

https://oreil.ly/0h0y0


1 For bigger projects, I would suggest adding the _bench_test.go suffix for an easier way of discovering
benchmarks.

2 It is well explained in the testing package’s Example documentation.

• The file where the function is created must end with the _test.go suffix.1

• The function name must start with the case-sensitive Benchmark prefix, e.g.,
BenchmarkSum.

• The function must have exactly one function argument of the type *testing.B.

In “Complexity Analysis” on page 240, we discussed the space complexity of the
Example 4-1 code. In Chapter 10, I will show you how to optimize this code with a
few different requirements. I wouldn’t be able to optimize those successfully without
Go benchmarks. I used them to obtain estimated numbers for the number of alloca‐
tions and latency. Let’s now see how that benchmarking process looks.

The Go Benchmark Naming Convention

I try to follow the consistent naming pattern2 for the <NAME> part
on all types of functions in the Go testing framework, like bench‐
marks (Benchmark<NAME>), tests (Test<NAME>), fuzzing tests
(Fuzz<NAME>), and examples (Example<NAME>). The idea is simple:

• Calling a test BenchmarkSum means it tests the Sum function
efficiency. BenchmarkSum_withDuplicates means the same,
but the suffix (notice it starts with a lowercase letter) tells us a
certain condition we test in.

• BenchmarkCalculator_Sum means it tests a method Sum from
the Calculator struct. As above, we can add a suffix if we have
more tests for the same method to distinguish between cases,
e.g., BenchmarkCalculator_Sum_withDuplicates.

• Additionally, you can put an input size as yet another suffix
e.g., BenchmarkCalculator_Sum_10M.

Given that Sum in Example 4-1 is a single-purpose short function, one good
microbenchmark should suffice to tell its efficiency. So I created a new function in
the sum_test.go file with the name BenchmarkSum. However, before I did anything
else, I added the raw template of the small boilerplate required for most benchmarks,
as presented in Example 8-1.
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3 If we would remove b.N completely, the Go benchmark will try to increase a number of N until the whole
BenchmarkSum will take at least 1 second. Without the b.N loop, our benchmark will never exceed 1 second as
it does not depend on b.N. Such a benchmark will stop at b.N being equal to 1 billion iterations, but with just
a single iteration being executed, the benchmark results will be wrong.

Example 8-1. Core Go benchmark elements

func BenchmarkSum(b *testing.B) {
    b.ReportAllocs() 

    // TODO(bwplotka): Add any initialization that is needed.

    b.ResetTimer() 
    for i := 0; i < b.N; i++ { 
        // TODO(bwplotka): Add tested functionality.
    }
}

Optional method that tells the Go benchmark to provide the number of alloca‐
tions and the total amount of allocated memory. It’s equivalent to setting the -
benchmem flag when running the test. While it might, in theory, add a tiny
overhead to measured latency, it is only visible in very fast functions. I rarely
need to remove allocation tracing in practice, so I always have it on. Often, it’s
useful to see a number of allocations even if you expect the job to be only CPU
sensitive. As mentioned in “Memory Relevance” on page 150, some allocations
can be surprising!

In most cases, we don’t want to benchmark the resources required to initialize
the test data, structure, or mocked dependencies. To do this “outside” of the
latency clock and allocation tracking, reset the timer right before the actual
benchmark. If we don’t have any initialization, we can remove it.

This exact for loop sequence with b.N is a mandatory element of any Go bench‐
mark. Never change it or remove it! Similarly, never use i from the loop for your
function. It can be confusing at the start, but to run your benchmark, go test
might run BenchmarkSum multiple times to find the right b.N, depending on how
we run it. By default, go test will aim to run this benchmark for at least 1 sec‐
ond. This means it will execute our benchmark once with b.N that equals 1 m
only to assess a single iteration duration. Based on that, it will try to find the
smallest b.N that will make the whole BenchmarkSum execute at least 1 second.3

The Sum function I wanted to benchmark takes one argument—the filename contain‐
ing a list of the integers to sum. As we discussed in “Complexity Analysis” on page
240, the algorithm used in Example 4-1 depends on the number of integers in the file.
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4 As mentioned earlier, microbenchmarks are always based on some amount of assumptions; we cannot simu‐
late everything in such a small test.

5 Note that it definitely will not take 29 nanoseconds for a benchmark with a single integer. This number is a
latency we see for a larger number of integers.

In this case, space and time complexity are O(N), where N is a number of integers.
This means that Sum with a single integer will be faster and allocate less memory than
Sum with thousands of integers. As a result, the choice of input will significantly
change the efficiency results. But how do we find the correct test input for our bench‐
mark? Unfortunately, there is no single answer.

The Choice of Test Data and Conditions for Our Benchmarks

Generally, we want the smallest possible (thus quickest and cheap‐
est to use!) dataset, which will give us enough knowledge and con‐
fidence in our program efficiency characteristic patterns. On the
other hand, it should be big enough to trigger potential limits and
bottlenecks that users might experience. As we mentioned in
“Reproducing Production” on page 258, the test data should simu‐
late the production workload as much as possible. We aim for
“typicality.”
However, if our functionality has a massive problem for specific
input, we should also include that in our benchmarks!

To make things more difficult, we are additionally constrained with the data size for
microbenchmarks. Typically, we want to ensure those benchmarks can run at maxi‐
mum within a matter of minutes and in our development environments for the best
agility and shortest feedback loop possible. On the bright side, there are ways to find
some efficiency pattern of your program, run benchmarks with a couple of times
smaller dataset than the potential production dataset, and extrapolate the possible
results.

For example, on my machine it takes Example 4-1 about 78.4 ms to sum 2 million
integers. If I benchmark with 1 million integers, it takes 30.5 ms. Given these two
numbers, we could assume with some confidence4 that our algorithm, on average,
requires around 29 nanoseconds to sum a single integer.5 If our RAER specifies, for
example, that we have to sum 2 billion integers under 30 seconds, we can assume our
implementation is too slow as 29 ns * 2 billion is around 58 seconds.

For those reasons, I decided to stick with 2 million integers for the Example 4-1
benchmark. It is a big enough number to show some bottlenecks and efficiency pat‐
terns but small enough to keep our program relatively quick (on my machine, it can
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6 Note that it is acceptable to change test data in future versions of our program and benchmark. Usually, our
optimizations over time make our test dataset “too small,” so we can increase it over time to spot different
problems if we need to optimize further.

7 As explained previously, note that the full benchmarking process can take longer than 10 seconds because the
Go framework will try to find a correct number of iterations. The more variance in the test results—poten‐
tially the longer the test will last.

perform around 14 operations within 1 second.)6 For now, I created a testdata direc‐
tory (excluded from the compilation) and manually created a file called test.2M.txt
with 2 million integers. With the test data and Example 8-1, I added the functionality
I want to test, as presented in Example 8-2.

Example 8-2. Simplest Go benchmark for assessing efficiency of the Sum function

func BenchmarkSum(b *testing.B) {
    for i := 0; i < b.N; i++ {
        _, _ = Sum("testdata/test.2M.txt")
    }
}

To run this benchmark, we can use the go test command, which is available when
we install Go on our machine. go test allows us to run all specified tests, fuzzing
tests, or benchmarks. For benchmarks, go test has many options that allow us to
control how it will execute our benchmark and what artifacts it will produce after a
run. Let’s go through example options, presented in Example 8-3.

Example 8-3. Example commands we can use to run Example 8-2

$ go test -run '^$' -bench '^BenchmarkSum$' 
$ go test -run '^$' -bench '^BenchmarkSum$' -benchtime 10s 
$ go test -run '^$' -bench '^BenchmarkSum$' -benchtime 100x 
$ go test -run '^$' -bench '^BenchmarkSum$' -benchtime 1s -count 5 

This command executes a single benchmark function with the explicit name
BenchmarkSum. You can use the RE2 regex language to filter the tests you want to
run. Notice the -run flag that strictly matches no functional test. This is to make
sure no unit test will be run, allowing us to focus on the benchmark. Empty -run
flags mean that all unit tests will be executed.

With -benchtime, we can control how long or how many iterations (functional
operations) our benchmark should execute. In this example, we choose to have
as many iterations as can fit in a 10-second interval.7
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We can choose to set -benchtime to the exact amount of iterations. This is used
less often because, as a microbenchmark user, you want to focus on a quick feed‐
back loop. When iterations are specified, we don’t know when the test will end
and if we need to wait 10 seconds or 2 hours. This is why it’s often preferred to
limit the benchmark time, and if we see too few iterations, increase the number
in -benchtime a little, or change the benchmark implementation or test data.

We can also repeat the benchmark cycle with the -count flag. Doing so is very
useful, as it allows us to calculate the variance between runs (with tools explained
in “Understanding the Results” on page 284).

The full list of options is pretty long, and you can list them anytime using go help
testflag.

Running Go Benchmarks Through IDE

Almost all modern IDEs allow us to simply click on the Go bench‐
mark function and execute it from the IDE. So feel free to do it.
Just set up the correct options, or at least be aware of what options
are there by default!
I use the IDE to trigger initial, one-second benchmark runs, but I
prefer good old CLI commands for more complex cases. They are
easy to use and it’s easy to share the test run configuration with
others. In the end, use what you feel the most comfortable with!

For my Sum benchmark, I created a helpful one-liner with all the options I need, pre‐
sented in Example 8-4.

Example 8-4. One-line shell command to benchmark Example 4-1

$ export ver=v1 && \ 
    go test -run '^$' -bench '^BenchmarkSum$' -benchtime 10s -count 5 \
        -cpu 4 \ 
        -benchmem \ 
        -memprofile=${ver}.mem.pprof -cpuprofile=${ver}.cpu.pprof \ 
    | tee ${ver}.txt 

It is very tempting to write complex scripts or frameworks to save the result in
the correct place, create automation that compares results for your use, etc. In
many cases, that is a trap because Go benchmarks are typically ephemeral and
easy to run. Still, I decided to add a tiny amount of bash scripting to ensure the
artifacts my benchmark will produce have the same name I can refer to later.
When I benchmark a new code version with optimizations, I can manually adjust
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8 You can also provide multiple numbers after a comma. For example, -cpu=1,2,3 will run a test with GOMAX
PROCS set to 1, then to 2, and the third run with 3 CPUs.

the ver variable to different values like v2, v3, or v2-with-streaming for later
comparisons.

Sometimes if we aim to optimize latency via concurrent code, as in “Optimizing
Latency Using Concurrency” on page 402, it is important to control the number
of CPU cores the benchmarks were allowed to use. This can be achieved with the
-cpu flag. It sets the correct GOMAXPROCS setting. As we mentioned in “Perfor‐
mance Nondeterminism” on page 260, the choice of the exact value highly
depends on what the production environment looks like and how many CPUs
your development machine has.8

There is no point in optimizing latency if our optimization allocates an extreme
amount of memory which, as we learned in “Memory Relevance” on page 150,
might be our first enemy. In my experience, the memory allocations cause more
problems than CPU usage, so I always try to pay attention to allocations with
-benchmem.

If you run your microbenchmark and see results you are not happy with, your
first question is probably what caused that slowdown or high memory usage.
This is why the Go benchmark has built-in support for profiling, explained in
Chapter 9. I am lazy, so I usually keep those options on by default, similar to
-benchtime. As a result, I can always dive into the profile to find the line of code
that contributed to suspicious resource usage. Similar to -benchtime and
ReportAllocs, those are turned off by default because they add a slight overhead
to latency measurements. However, it’s usually safe to leave them turned on
unless you measure ultra-low latency operations (tens of nanoseconds). Espe‐
cially the -cpuprofile option adds some allocations and latency in the
background.

By default, go test prints results to standard output. However, to reliably com‐
pare and not get lost in what results correspond to what runs, I recommend sav‐
ing them in temporary files. I recommend using tee to write both to file and
standard output, so you can follow the progress of the benchmark.
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9 The internal representation of that format can be explored by looking at BenchmarkResult type.

10 Things like the Go version, Linux kernel version, other processes running at the same time, CPU mode, etc.
Unfortunately, the full list is almost impossible to capture.

With the benchmark implementation, input file, and execution command, it’s time to
perform our benchmark. I executed Example 8-4 in the directory of the test file on
my machine, and after 32 seconds, it finished. It created three files: v1.cpu.pprof,
v1.mem.pprof, and v1.txt. In this chapter, we are most interested in the last file, so you
can learn how to read and understand the Go benchmark output. Let’s do that in the
next section.

Understanding the Results
After each run, the go test benchmark prints the result in a consistent format.9

Example 8-5 presents the output runs executed with Example 8-4 on the code presen‐
ted in Example 4-1.

Example 8-5. The output of the v1.txt file produced by the Example 8-4 command

goos: linux 
goarch: amd64
pkg: github.com/efficientgo/examples/pkg/sum
cpu: Intel(R) Core(TM) i7-9850H CPU @ 2.60GHz
BenchmarkSum-4    67    79043706 ns/op    60807308 B/op    1600006 allocs/op 
BenchmarkSum-4    74    79312463 ns/op    60806508 B/op    1600006 allocs/op
BenchmarkSum-4    66    80477766 ns/op    60806472 B/op    1600006 allocs/op
BenchmarkSum-4    66    80010618 ns/op    60806224 B/op    1600006 allocs/op
BenchmarkSum-4    74    80793880 ns/op    60806445 B/op    1600006 allocs/op
PASS
ok     github.com/efficientgo/examples/pkg/sum    38.214s

Every benchmark run captures some basic information about the environment
like architecture, operating system type, the package we run the benchmark in,
and the CPU on the machine. Unfortunately, as we discussed in “Reliability of
Experiments” on page 256, there are many more elements that could be worth
capturing10 that can impact the benchmark.

Every row represents a single run (i.e., if you ran the benchmark with -count=1,
you would have just a single line). The line consists of three or more columns.
The number depends on the benchmark configuration, but the order is consis‐
tent. From the left, we have:
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11 The Go testing framework does not check how many CPUs are free to be used for this benchmark. As you
learned in Chapter 4, CPUs are shared fairly across other processes, so with more processes in the system, the
four CPUs, in my case, are not fully reserved for the benchmark. On top of that, programmatic changes to
runtime.GOMAXPROCS are not reflected here.

• Name of the benchmark with the suffix representing the number of CPUs
available (in theory11) for this benchmark. This tells us what we can expect
for concurrent implementations.

• Number of iterations in this benchmark run. Pay attention to this number; if
it’s too low, the numbers in the other columns might not reflect reality.

• Nanoseconds per operation resulting from -benchtime divided by a number
of runs.

• Allocated bytes per operation on the heap. As you learned in Chapter 5,
remember that this does not tell us how much memory is allocated in any
other segments, like manual mappings, caches, and stack! This column is
present only if the -benchmem flag was set (or ReportAllocs).

• Number of allocations per operation on the heap (also only present with the
-benchmem flag set).

• Optionally, you can report your own metrics per operation using the
b.ReportMetric method. See this example. This will appear as further col‐
umns and can be aggregated similarly with the tooling explained later.

If you run Example 8-4 and you see no output for a long time, it
might mean that the first run of your microbenchmark is taking
that long. If your -benchtime is time based, the go test quickly
checks how long it takes to run a single iteration to find the estima‐
ted number of iterations.
If it takes too much time, unless you want to run 30+ minute tests,
you might need to optimize the benchmark setup, reduce the data
size, or split the microbenchmark into smaller functionality.
Otherwise, you won’t achieve hundreds or dozens of required
iterations.
If you see the initial output (goos, goarch, pkg, and benchmark
name), a single iteration run has completed, and a proper bench‐
mark has started.

The results presented in Example 8-5 can be read directly, but there are some chal‐
lenges. First of all, the numbers are in the base unit—it’s not obvious at first glance to
see if we allocate 600 MB, 60 MB, or 6 MB. It’s the same if we translate our latency to
seconds. Secondly, we have five measurements, so which one do we choose? Finally,
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how do we compare a second microbenchmark result done for the code with the
optimization?

Fortunately, the Go community created another CLI tool, benchstat, that performs
further processing and statistical analysis of one or multiple benchmark results for
easier assessment. As a result, it has become the most popular solution for presenting
and interpreting Go microbenchmark results in recent years.

You can install benchstat using the standard go install tooling, for example, go
install golang.org/x/perf/cmd/benchstat@latest. Once completed, it will be
present in your $GOBIN or $GOPATH/bin directory. You can then use it to present
the results we got in Example 8-5; see the example usage in Example 8-6.

Example 8-6. Running benchstat on the results presented in Example 8-5

$ benchstat v1.txt 
name   time/op
Sum-4  79.9ms ± 1% 

name   alloc/op
Sum-4  60.8MB ± 0%

name   allocs/op
Sum-4   1.60M ± 0%

We can run benchstat with the v1.txt containing Example 8-5. The benchstat
can parse the format of the go test tooling from one or multiple benchmarks
performed once or multiple times on the same code version.

For each benchmark, benchstat calculates the mean (average) of all runs and ±
the variance across runs (1% in this case). This is why it’s essential to run go
test benchmarks multiple times (e.g., with the -count flag); otherwise, with just
a single run, the variance will indicate a misleading 0%. Running more tests
allows us to assess the repeatability of the result, as we discussed in “Performance
Nondeterminism” on page 260. Run benchstat --help to see more options.

Once we have confidence in our test run, we can call it baseline results. We typically
want to assess the efficiency of our code with the new optimization by comparing it
with our baseline. For example, in Chapter 10 we will optimize the Sum, and one of
the optimized versions will be twice as fast. I found this by changing the Sum function
visible in Example 4-1 to ConcurrentSum3 (the code is presented in Example 10-12).
Then I ran the benchmark implemented in Example 8-2 using exactly the same com‐
mand shown in Example 8-4, just changing ver=v1 to ver=v2 to produce v2.txt and
v2.cpu.pprof and v2.mem.pprof.
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The benchstat helped us calculate variance and provided human-readable units. But
there is another helpful feature: comparing results from different benchmark runs.
For example, Example 8-7 shows how I checked the difference between the naive and
improved concurrent implementation.

Example 8-7. Running benchstat to compare results from v1.txt and v2.txt

$ benchstat v1.txt v2.txt 
name   old time/op    new time/op    delta
Sum-4    79.9ms ± 1%    39.5ms ± 2%  -50.52%  (p=0.008 n=5+5) 

name   old alloc/op   new alloc/op   delta
Sum-4    60.8MB ± 0%    60.8MB ± 0%     ~     (p=0.151 n=5+5)

name   old allocs/op  new allocs/op  delta
Sum-4     1.60M ± 0%     1.60M ± 0%   +0.00%  (p=0.008 n=5+5)

Running benchstat with two files enables comparison mode.

In comparison mode, benchstat provides a delta column showing the delta
between two means in a percentage or ~ if the significance test fails. The signifi‐
cance test is defaulted to the Mann-Whitney U test and can be disabled with -
delta-test=none. The significance test is an extra statistical analysis that
calculates the p-value, which by default should be smaller than 0.05 (configura‐
ble with -alpha). It gives us additional information on top of the variance (after
±) if the results can be safely compared. The n=5+5 represents the sample sizes in
both results (both benchmark runs were done with -count=5).

Thanks to benchstat and Go benchmarks, we can tell with some confidence that our
concurrent implementation is around 50% faster and does not impact allocations.

Careful readers might notice that the allocation size failed the sig‐
nificance test of benchstat (p is higher than 0.05). I could improve
that by running benchmarks with a higher -count (e.g., 8 or 10).
I left this significance test failing on purpose to show you that there
are cases when you can apply common reasoning. Both results
indicate large 60.8 MB allocations with minimal variance. We can
clearly say that both implementations use a similar amount of
memory. Do we care whether one implementation uses a few KB
more or less? Probably not, so we can skip the benchstat signifi‐
cance test that verifies if we can trust the delta. No need to spend
more time here than needed!
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Analyzing microbenchmarks might be confusing initially, but hopefully, the presen‐
ted flow using benchstat taught you how to assess efficiencies of different implemen‐
tations without having a degree in data science! Generally, while using benchstat,
remember to:

• Run more tests than one (-count) to be able to spot the noise.
• Check that the variance number after ± is not higher than 3–5%. Be especially

vigilant in variance for smaller numbers.
• To rely on an accurate delta across results with higher variance, check the signifi‐

cance test (p-value).

With this in mind, let’s go through a few common advanced tricks that you might
find very useful in your day-to-day work with Go benchmarks!

Tips and Tricks for Microbenchmarking
The best practices for microbenchmarking are often learned from your own mistakes
and rarely shared with others. Let’s break that up by mentioning some of the com‐
mon aspects of Go microbenchmarks that are worth being aware of.

Too-High Variance
As we learned in “Performance Nondeterminism” on page 260, knowing the variance
of our tests is critical. If the difference between microbenchmarks is more than, let’s
say, 5%, it indicates potential noise, and we might not be able to rely on those results
entirely.

I had this case when preparing “Optimizing Latency Using Concurrency” on page 402.
When benchmarking, my results had way too large a variance as the benchstat result
suggested. The results from that run are presented in Example 8-8.

Example 8-8. benchstat indicating large variance in latency results

name   time/op
Sum-4  45.7ms ±19% 

name   alloc/op
Sum-4  60.8MB ± 0%

name   allocs/op
Sum-4   1.60M ± 0%

Nineteen percent variance is quite scary. We should ignore such results and sta‐
bilize the benchmark before making any conclusions.
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What can we do in this case? We already mentioned a few things in “Performance
Nondeterminism” on page 260. We should consider running the benchmark longer,
redesigning our benchmark, or running it in different environmental conditions. In
my case I had to close my browser and increase -benchtime from 5 s to 15 s to ach‐
ieve the 2% variance run in Example 8-7.

Find Your Workflow
In “Go Benchmarks” on page 277, you followed me through my efficiency assessment
cycle on a micro level. Of course, this can vary, but it is generally based on git
branches, and can be summarized as follows:

1. I check for any existing microbenchmark implementation for what I want to test.
If none exists, I will create one.

2. In my terminal, I execute a command similar to Example 8-4 to run the bench‐
mark several times (5–10). I save results to something like v1.txt, save profiles,
and assume that as my baseline.

3. I assess the v1.txt results to check if the resource consumption is roughly what I
expect from my understanding of the implementation and the input size. To
confirm or reject, I perform the bottleneck analysis explained in Chapter 9. I
might perform more benchmarks for different inputs at this stage to learn more.
This tells me roughly if there is room for some easy optimizations, should I
invest in more dangerous and deliberate optimization, or should I move to opti‐
mizations on a different level.

4. Assuming room for some optimizations, I create a new git branch and imple‐
ment it.

5. Following the TFBO flow, I test my implementation first.
6. I commit the changes, run the benchmarking function with the same command,

and save it to, e.g., v2.txt.
7. I compare the results with benchstat and adjust the benchmark or optimizations

to achieve the best results.
8. If I want to try a different optimization, I create yet another git branch or build

new commits on the same branch and repeat the process (e.g., produce v3.txt,
v4.txt, and so on). This allows me to get back to previous optimizations if an
attempt makes me pessimistic.

9. I jot findings in my notes, commit message, or repository change set (e.g., pull
requests), and discard my .txt results (expiration date!).

This flow works for me, but you might want to try a different one! As long as it’s not
confusing for you, is reliable, and follows the TFBO pattern we discussed in
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12 Make sure to strictly control the Go version you use to build those binaries. Testing binaries built using a
different Go version might create misleading results. For example, you can build a binary and add a suffix to
its name with the git hash of the version of your source code.

13 This is especially important for distributed systems and user-facing applications that handle errors very often,
and it’s part of the normal program life cycle. For example, I often worked with code that was fast for data‐
base writes, but was allocating an extreme amount of memory on failed runs, causing cascading failures.

“Efficiency-Aware Development Flow” on page 102, use it. There are many other
options, for example:

• You can use your terminal history to track benchmarking results.
• You can create different functions for the same functionality with different opti‐

mizations. Then you can swap what function you use in your benchmark func‐
tions if you don’t want to use git here.

• Use git stash instead of commits.
• Finally, you can follow the Dave Cheney flow that uses the go test -c com‐

mand to build the testing framework and your code into a separate binary. You
can then save this binary and perform benchmarks without rebuilding source
code or saving your test results.12

I would propose trying different flows and learning what helps you the most!

I would suggest avoiding writing too complex automation for our
local microbenchmarking workflow (e.g., complex bash script to
automate some steps). Microbenchmarks are meant to be more
interactive, where you can manually dig information you care for.
Writing complex automation might mean more overhead and a
longer feedback loop than needed. Still, if this is working for you,
do it!

Test Your Benchmark for Correctness!
One of the most common mistakes we make in benchmarking is assessing the effi‐
ciency of the function that does not provide correct results. Due to the nature of
deliberate optimizations, it is easy to introduce a bug that breaks the functionality of
our code. Sometimes, optimizing failed executions is important,13 but it should be an
explicit decision.

The “Testing” part in TFBO, explained in “Efficiency-Aware Development Flow” on
page 102, is not there by mistake. Our priority should be to write a unit test for the
same functionality we will benchmark. An example unit test for our Sum function can
look like Example 8-9.
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Example 8-9. Example unit test to assess the correctness of the Sum function

// import "github.com/efficientgo/core/testutil"

func TestSum(t *testing.T) {
    ret, err := Sum("testdata/input.txt")
    testutil.Ok(t, err)
    testutil.Equals(t, 3110800, ret)
}

Having the unit test ensures that with the right CI configured, when we propose our
change to the main repository (perhaps via a pull request [PR]), we will notice if our
code is correct or not. So this already improves the reliability of our optimization job.

However, there are still things we could do to improve this process. If you only test as
the last development step, you might have already performed all the effort of bench‐
marking and optimizing without realizing that the code is broken. This can be miti‐
gated by manually running the unit test in Example 8-10 before each benchmarking
run, e.g., the Example 8-2 code. This helps, but there are still some slight problems:

• It is tedious to run yet another thing after our changes. So it’s too tempting to
skip that manual process of running functional tests after the change to save time
and achieve an even quicker feedback loop.

• The function might be well tested in the unit test, but there are differences
between how you invoke your function in the unit test and the benchmark.

• Additionally, as you learned in “Comparison to Functional Testing” on page 252,
for benchmarks we need different inputs. A new thing means a new place for
making an error! For example, when preparing the benchmark for this book in
Example 8-2, I accidentally made a typo in the filename (testdata/test2M.txt
instead of testdata/test.2M.txt). When I ran my benchmark, it passed with very
low latency results. Turns out the Sum did not work other than failing with the
file does not exist error. Because in Example 8-2 I ignored all errors for simplic‐
ity, I missed that information. Only intuition told me that my benchmark ran a
bit too quickly to be true, so I double-checked what Sum actually returned.

• During benchmarking at higher load, new errors might appear. For example,
perhaps we could not open another file due to the limit of file descriptors on the
machine, or our code does not clean files on disk, so we can’t write changes to
the file due to a lack of disk space.

Fortunately, an easy solution to that problem is adding a quick error check to the
benchmark iteration. It could look like Example 8-10.
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14 In my benchmarks, on my machine, this instruction alone takes 244 ns and allocates zero bytes.

15 Profiling, explained in “Profiling in Go” on page 331, can also help determine how much your benchmark
affects those overheads.

Example 8-10. Go benchmark for assessing the efficiency of the Sum function with error
check

func BenchmarkSum(b *testing.B) {
    for i := 0; i < b.N; i++ {
       _, err := Sum("testdata/test.2M.txt")
        testutil.Ok(b, err) 
    }
}

Asserting Sum does not return an error on every iteration loop.

It’s important to notice that the efficiency metrics we get after the benchmark will
include the latency contributed by the testutil.Ok(b, err) invocation,14 even if
there is no error. This is because we invoke this function in our b.N loop, so it adds a
certain overhead.

Should we accept this overhead? This is the same question we have about including
-benchmem and profile generation for tests, which also can add small noise. Such
overhead is unacceptable if we try to benchmark very fast operations (let’s say under
milliseconds fast). For the majority of benchmarks, however, such an assertion will
not change your benchmarking results. One would even argue that such error asser‐
tion will exist in production, so it should be included in the efficiency assessment.15

Similar to -benchmem and profiles, I add that assertion to almost all microbenchmarks
I work with.

In some ways, we are still prone to mistakes. Perhaps with the large input, the Sum
function does not provide a correct answer without returning an error. As with all
testing, we will never stop all mistakes—there has to be a balance between the effort
of writing, executing, and maintaining extra tests and confidence. It’s up to you to
decide how much you trust your workflow.

If you want to choose the preceding case for more confidence, you can add a check
that compares the returned sum with the expected result. In our case, it will not be a
big overhead to add testutil.Equals(t, <expected number>, ret), but usually it
is more expensive and thus inappropriate to add for microbenchmarks. For those
purposes, I created a small testutil.TB object that allows you to run a single itera‐
tion of your microbenchmark for unit test purposes. This allows it to be always up-
to-date in terms of correctness, which is especially challenging in bigger shared code
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16 Note that TB is my own invention and it’s not common or recommended by the Go community, so use with
care!

repositories. For example, continuous testing of our Sum benchmark could look like
Example 8-11.16

Example 8-11. Testable Go benchmark for assessing the efficiency of the Sum function

func TestBenchSum(t *testing.T) {
    benchmarkSum(testutil.NewTB(t))
}

func BenchmarkSum(b *testing.B) {
    benchmarkSum(testutil.NewTB(b))
}

func benchmarkSum(tb testutil.TB) { 
    for i := 0; i < tb.N(); i++ { 
        ret, err := Sum("testdata/test.2M.txt")
        testutil.Ok(tb, err)
        if !tb.IsBenchmark() {
            // More expensive result checks can be here.
            testutil.Equals(tb, int64(6221600000), ret) 
        }
    }
}

testutil.TB is an interface that allows running a function as both benchmarks
and a unit test. Furthermore, it allows us to design our code, so the same bench‐
mark is executed by other functions, e.g., with extra profiling, as shown in
Example 10-2.

The tb.N() method returns b.N for the benchmark, allowing normal
microbenchmark execution. It returns 1 to perform one test run for unit tests.

We can now put the extra code that might be more expensive (e.g., more com‐
plex test assertions) in the space unreachable for benchmarks, thanks to the
tb.IsBenchmark() method.

To sum up, please test your microbenchmark code. It will save you and your team
time in the long run. On top of that, it can provide a natural countermeasure against
unwanted compiler optimizations, explained in “Compiler Optimizations Versus
Benchmark” on page 301.

Tips and Tricks for Microbenchmarking | 293



17 In fact, we should not even trust ourselves there! A second careful reviewer is always a good idea.

Sharing Benchmarks with the Team (and Your Future Self)
Once you finish your TFBO cycle and are happy with your next optimization itera‐
tion, it’s time to commit to new code. Share what you found or achieved with your
team for more than your small one-person project. When someone proposes an opti‐
mization change, it’s not uncommon to see the optimization in the production code
and only a small description: “I benchmarked it, and it was 30% faster.” This is not
ideal for multiple reasons:

• It’s hard for the reviewer to validate the benchmark without seeing the actual
microbenchmark code you use. It’s not that reviewers should not trust that you
tell the truth, but rather it’s easy to make a mistake, forget a side effect, or bench‐
mark wrongly.17 For example, the input has to be of a certain size to trigger the
problem, or the input does not reflect the expected use cases. This can only be
validated by another person looking at your benchmarking code. It’s especially
important when we work remotely with the team and in open source projects,
where strong communication is essential.

• Once merged, it’s likely any other change that touches this code might acciden‐
tally introduce efficiency regression.

• If you or anyone else wants to try to improve the same part of code, they have no
other option than to re-create the benchmark and go through the same effort you
did in your pull request because the previous benchmark implementation is gone
(or stored on your machine).

The solution here is to provide as much context as possible on your experiment
details, input, and implementation of the benchmark. Of course, we can provide that
in some form of documentation (e.g., in the description of the pull report), but there
is nothing better than committing the actual microbenchmark next to your produc‐
tion code! In practice, however, it isn’t so simple. Some extra pieces are worth adding
before sharing the microbenchmark with others.

I optimized our Sum function and explained my benchmarking process. However, you
don’t want to write an entire chapter to explain the optimization you made to your
team (and your future self)! Instead, you could provide all that is needed in a single
piece of code as presented in Example 8-12.
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18 Note that the t.TempDir and b.TempDir methods create a new, unique directory every time they are invoked!

Example 8-12. Well-documented, reusable Go benchmark for assessing concurrent
implementations of the Sum function

// BenchmarkSum assesses `Sum` function. 
// NOTE(bwplotka): Test it with a maximum of 4 CPU cores, given we don't allocate
// more in our production containers.
//
// Recommended run options:
/*
export ver=v1 && go test \
    -run '^$' -bench '^BenchmarkSum$' \
    -benchtime 10s -count 5 -cpu 4 -benchmem \
    -memprofile=${ver}.mem.pprof -cpuprofile=${ver}.cpu.pprof \
  | tee ${ver}.txt 
*/
func BenchmarkSum(b *testing.B) {
   // Create 7.55 MB file with 2 million lines.
   fn := filepath.Join(b.TempDir(), "/test.2M.txt")
   testutil.Ok(b, createTestInput(fn, 2e6)) 

   b.ResetTimer()
   for i := 0; i < b.N; i++ {
      _, err := Sum(fn)
      testutil.Ok(b, err) 
   }
}

It might feel excessive for a simple benchmark, but good documentation signifi‐
cantly increases the reliability of your and your team’s benchmarking. Mention
any surprising facts around this benchmark, dataset choice, conditions, or pre‐
requisites in the commentary.

I recommend commenting on the benchmark with the suggested way to invoke
it. It’s not to force anything but rather to describe how you envisioned running
this benchmark (e.g., for how long). Future you or your team members will
thank you!

Provide the exact input you intend to run your benchmark with. You could cre‐
ate a static file for unit tests and commit it to your repository. Unfortunately, the
benchmarking inputs are often too big to be committed to your source code (e.g.,
git). For this purpose, I created a small createTestInput function that can gen‐
erate a dynamic number of lines. Notice the use of b.TempDir(), which creates a
temporary directory and cares about cleaning it manually afterward.18
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Because you want to reuse this benchmark in the future, and it will also be used
by other team members, it makes sense to ensure others do not measure the
wrong thing, thus testing for basic error modes even in the benchmark.

Thanks to b.ResetTimer(), even if the input file creation is relatively slow, latency
and resource usage won’t be visible in the benchmarking results. However, it might
not be very pleasant for you while repeatedly running that benchmark. Even more,
you will experience that slowness more than once after. As we learned in “Go Bench‐
marks” on page 277, Go can run the benchmark multiple times to find the correct N
value. If the initialization takes too much time and impacts your feedback loop, you
can add the code that will cache test the input on the filesystem. See Example 8-13 for
how you can add a simple os.Stat to achieve this.

Example 8-13. Example of the benchmark with input creation executed only once and
cached on disk

func lazyCreateTestInput(tb testing.TB, numLines int) string {
    tb.Helper() 

    fn := fmt.Sprintf("testdata/test.%v.txt", numLines)
    if _, err := os.Stat(fn); errors.Is(err, os.ErrNotExist) { 
        testutil.Ok(tb, createTestInput(fn, numLines))
    } else {
        testutil.Ok(tb, err)
    }
    return fn
}

func BenchmarkSum(b *testing.B) {
    // Create a 7.55 MB file with 2 million lines if it does not exist.
    fn := lazyCreateTestInput(tb, 2e6)

    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        _, err := Sum(fn)
        testutil.Ok(b, err)
   }
}

t.Helper tells the testing framework to point out the line that invokes
lazyCreateTestInput when a potential error happens.

os.Stat stops executing createTestInput if the file exists. Be careful when
changing the characteristics or size of the input file. If you don’t change the file‐
name, the risk is that people who ran those tests will have a cached old version of
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the input. However, that small risk is worth it if the creation of the input is
slower than a few seconds or so.

Such a benchmark provides elegant and concise information about the benchmark
implementation, purpose, input, run command, and prerequisites. Moreover, it
allows you and your team to replicate or reuse the same benchmark with little effort.

Running Benchmarks for Different Inputs
It’s often helpful to learn how the efficiency of our implementation changes for dif‐
ferent sizes and types of input. Sometimes it’s fine to manually change the input in
our code and rerun our benchmark, but sometimes we would like to program bench‐
marks for the same piece of code against different inputs in our source code (e.g., for
our team to use later). Table tests are perfect for such use cases. Typically, we see this
pattern in functional tests, but we can use it in microbenchmarks, as presented in
Example 8-14.

Example 8-14. Table benchmark using a common pattern with b.Run

func BenchmarkSum(b *testing.B) {
    for _, tcase := range []struct { 
       numLines int
    }{
        {numLines: 0},
        {numLines: 1e2},
        {numLines: 1e4},
        {numLines: 1e6},
        {numLines: 2e6},
    } {
        b.Run(fmt.Sprintf("lines-%d", tcase.numLines), func(b *testing.B) { 
            b.ReportAllocs() 

            fn := lazyCreateTestInput(tb, tcase.numLines)

            b.ResetTimer()
            for i := 0; i < b.N; i++ { 
                _, err := Sum(fn)
                testutil.Ok(b, err)
            }
        })
    }
}

An inlined slice of anonymous structures works well here because you don’t need
to reference this type anywhere. Feel free to add any fields here to map test cases
as you need.
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In the test case loop, we can run b.Run that tells go test about a subbenchmark.
If you put the "" empty string as the name, go test will use numbers as your test
case identification. I decided to present a number of lines as a unique description
of each test case. The test case identification will be added as a suffix, so Bench
markSum/<test-case>.

For these tests, go test ignores any b.ReportAllocs and other benchmark
methods outside the b.Run, so make sure to repeat them here.

A common pitfall here is to accidentally use b from the main function, not from
the closure created for the inner function. This is common if you try to
avoid shadowing the b variable and use a different variable name for the inner
*testing.B, e.g., b.Run("", func(b2 *testing.B). These problems are hard to
debug, so I recommend always using the same name, e.g., b.

Amazingly, we can use the same recommended run command presented in
Example 8-4 for a nontable test. The example run output processes by benchstat will
then look like Example 8-15.

Example 8-15. benchstat output on results from the Example 8-14 test

name                 time/op
Sum/lines-0-4        2.79µs ± 1%
Sum/lines-100-4      8.10µs ± 5%
Sum/lines-10000-4     407µs ± 6%
Sum/lines-1000000-4  40.5ms ± 1%
Sum/lines-2000000-4  78.4ms ± 3%

name                 alloc/op
Sum/lines-0-4          872B ± 0%
Sum/lines-100-4      3.82kB ± 0%
Sum/lines-10000-4     315kB ± 0%
Sum/lines-1000000-4  30.4MB ± 0%
Sum/lines-2000000-4  60.8MB ± 0%

name                 allocs/op
Sum/lines-0-4          6.00 ± 0%
Sum/lines-100-4        86.0 ± 0%
Sum/lines-10000-4     8.01k ± 0%
Sum/lines-1000000-4    800k ± 0%
Sum/lines-2000000-4   1.60M ± 0%

I find the table tests great for quickly learning about the estimated complexity (dis‐
cussed in “Complexity Analysis” on page 240) of our application. Then, after I learn
more, I can trim the number of cases to those that can truly trigger bottlenecks we
saw in the past. In addition, committing such a benchmark to our team’s source code
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will increase the chances that other team members (and yourself!) will reuse it and
run a microbenchmark with all cases that matter for the project.

Microbenchmarks Versus Memory Management
The simplicity of microbenchmarks has many benefits but also downsides. One of the
most surprising problems is that the memory statistics reported in the go test
benchmarks don’t tell a lot. Unfortunately, given how memory management is imple‐
mented in Go (“Go Memory Management” on page 172), we can’t reproduce all the
aspects of memory efficiency of our Go programs with microbenchmarks.

As we saw in Example 8-6, the naive implementation of Sum in Example 4-1 allocates
around 60 MB of memory on the heap with the 1.6 million objects to calculate a sum
for 2 million integers. This tells us less about memory efficiency than we might think.
It only tells us three things:

• Some of the latency we experience in microbenchmark results inevitably come
from the sole fact of making so many allocations (and we can confirm with pro‐
files how much it matters).

• We can compare that number and size of allocations with other
implementations.

• We can compare the number and size of the allocation with expected space com‐
plexity (“Complexity Analysis” on page 240).

Unfortunately, any other conclusion based on those numbers is in the realm of
estimations, which only can be verified when we run “Macrobenchmarks” on page
269 or “Benchmarking in Production” on page 268. The reason is very simple—there
is no special GC schedule for benchmarks because we want to ensure as close to pro‐
duction simulation as possible. They run on a normal schedule like in production
code, which means that during our 100 iterations of our benchmark, the GC might
run 1,000 times, 10 times, or for fast benchmarks it might not run at all! Therefore,
any attempts to manually trigger runtime.GC() are also poor options, given that it’s
not how it will be running in production and might clash with normal GC schedules.

As a result, the microbenchmark will not give us a clear idea and the following mem‐
ory efficiency questions:

GC latency
As we learned in “Go Memory Management” on page 172, a bigger heap (more
objects in a heap) will mean more work for the GC, which always translates to
increased CPU usage or, more often, GC cycles (even with fair 25% CPU usage
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19 For longer microbenchmarks, you might see the GC latency. Some tutorials also recommend running
microbenchmarks without GC (using GOGC=off), but I found this not useful in practice. Ideally, move to the
macro level to understand the full impact.

mechanisms). Because of nondeterministic GC and quick benchmarking opera‐
tions, we most likely won’t see GC impact on a microbenchmark level.19

Maximum memory usage
If a single operation allocates 60 MB, does it mean that the program performing
one such operation at the time will need no more and no less than ~60 MB of
memory in our system? Unfortunately, for the same reason mentioned previ‐
ously, we can’t tell with microbenchmarks.

It might be that our single operation doesn’t need all objects for the full duration.
This might mean that the maximum usage of memory will be, for example, only
10 MB, despite the 60 MB allocation number, as the GC can do clean-up runs
multiple times in practice.

You might even have the opposite situation too! Especially for Example 4-1, most
of the memory is kept during the whole operation (it is kept in the file buffer—
we can tell that from profiling, explained in “Profiling in Go” on page 331). On
top of that, the GC might not clean the memory fast enough, resulting in the next
operation allocating 60 MB on top of the original 60 MB, requiring 120 MB in
total from the OS. This situation can be even worse if we do a larger concurrency
of our operations.

This is unfortunate, as the preceding problems are often seen in our Go code. If we
could verify those problems on microbenchmarks, it would be easier to tell if we can
reuse memory better (e.g., through “Memory Reuse and Pooling” on page 449) or if
we should straight reduce allocation and to what level. Unfortunately, to tell for sure,
we need to move to “Macrobenchmarks” on page 306.

Still, the microbenchmark allocation information is incredibly useful if we assume
that, generally, more allocations can cause more problems. This is why simply focus‐
ing on reducing the number of allocations or allocated space in our micro-
optimization cycle is still very effective. What we need to acknowledge, however, is
that those numbers from just microbenchmarking might not give us complete confi‐
dence about whether the end GC overhead or maximum memory usage will be
acceptable or problematic. We can try to estimate this, but we won’t know for sure
until we move to the macro level to assess that.
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20 Unless you run with the parallel option I discouraged in “Performance Nondeterminism” on page 260.

Compiler Optimizations Versus Benchmark
There is a very interesting “meta” dynamic between microbenchmarking and com‐
piler optimizations, which is sometimes controversial. It is worth knowing about this
problem, the potential consequences, and how to mitigate them.

Our goal when microbenchmarking is to assess the efficiency of the small part of our
production code with as high confidence as possible (given the amount of time avail‐
able and problem constraints). For this reason, the Go compiler treats our “Go
Benchmarks” on page 277 benchmarking function like any other production code.
The same AST conversions, type safety, memory safety, dead code elimination, and
optimizations rules discussed in “Understanding Go Compiler” on page 118 are per‐
formed by the compiler on all parts of the code—no special exceptions for bench‐
marks. Therefore, we are reproducing all production conditions, including the
compilation stage.

This premise is great, but what gets in the way of this philosophy is that
microbenchmarks are a little special. From the runtime process perspective, there are
three main differences between how this code is executed on production and when
we want to learn about production code efficiency:

• No other user code is running at the same time in the same process.20

• We are invoking the same code in a loop.
• We typically don’t use the output or return arguments.

Those three elements might not seem like a big difference, but as we learned in “CPU
and Memory Wall Problem” on page 126, modern CPUs can already run differently
in those cases due to, e.g., different branch prediction and L-cache locality. On top of
that, you can imagine a smart enough compiler that will adjust the machine code dif‐
ferently based on those cases too!

This problem is especially visible when programming in Java because some compila‐
tion phases are done in runtime, thanks to the mature just-in-time (JIT) compiler. As
a result, Java engineers must be very careful when benchmarking and use special
frameworks for Java to ensure simulating production conditions with warm-up pha‐
ses and other tricks to increase the reliability of benchmarks.
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21 The idea behind this function comes from amazing Dave’s tutorial and issue 14813, with some modifications.

In Go, things are simpler. The compiler is less mature than Java’s, and no JIT compi‐
lation exists. While JIT is not even planned, some form of runtime profile-guided
compiler optimization (PGO) is being considered for Go, which might make our
microbenchmark more complex in future. Time will tell.

However, even if we focus on the current compiler, it sometimes can apply unwanted
optimizations to our benchmarking code. One of the known problems is called dead
code elimination. Let’s consider a low-level function representing population count
instruction and the naive microbenchmark in Example 8-16.21

Example 8-16. popcnt function with the naive implementation of microbenchmark
impacted by compiler optimizations

const m1 = 0x5555555555555555
const m2 = 0x3333333333333333
const m4 = 0x0f0f0f0f0f0f0f0f
const h01 = 0x0101010101010101

func popcnt(x uint64) uint64 {
   x -= (x >> 1) & m1
   x = (x & m2) + ((x >> 2) & m2)
   x = (x + (x >> 4)) & m4
   return (x * h01) >> 56
}

func BenchmarkPopcnt(b *testing.B) {
   for i := 0; i < b.N; i++ {
      popcnt(math.MaxUint64) 
   }
}

In the original issue #14813, the input for the function was taken from
uint64(i), which is a huge anti-pattern. You should never use i' from the b.N
loop! I want to focus on the surprising compiler optimization risk in this exam‐
ple, so let’s imagine we want to assess the efficiency of popcnt working on the
largest unsigned integer possible (using math.MaxInt64 to obtain it). This also
will expose us to an unexpected behavior mentioned below.

If we execute this benchmark for a second, we will get slightly concerning output, as
presented in Example 8-17.
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Example 8-17. The output of the BenchmarkPopcnt benchmark from Example 8-16

goos: linux
goarch: amd64
pkg: github.com/efficientgo/examples/pkg/comp-opt-away
cpu: Intel(R) Core(TM) i7-9850H CPU @ 2.60GHz
BenchmarkPopcnt
BenchmarkPopcnt-12     1000000000          0.2344 ns/op 
PASS

Every time you see your benchmark making a billion iterations (maximum num‐
ber of iterations go test will do), you know your benchmark is wrong. It means
we will see a loop overhead rather than the latency we are measuring. This can be
caused by the compiler optimizing away your code or by measuring something
too fast to be measured with a Go benchmark (e.g., single instruction).

What is happening? The first problem is that the Go compiler inlines the popcnt
code, and further optimization phases detected that no other code is using the result
of the inlined calculation. The compiler detects that no change in observable behavior
would occur if we remove this code, so it elides that inlined code part. If we would list
assembly code using -gcflags=-S on go build or go test, you would notice there is
no code responsible for performing statements behind popcnt (we run an empty
loop!). This can also be confirmed by running GOSSAFUNC=BenchmarkPopcnt go

build and opening ssa.html in your browser, which also lists the generated assembly
more interactively. We can verify this problem by running a test with -gcflags=-N,
which turns off all compiler optimizations. Executing or looking at the assembly will
show you the large difference.

The second problem is that all the iterations of our benchmark run popcnt with the
same constant number—the largest unsigned integer. Even if code elimination did
not happen, with inlining, the Go compiler is smart enough to precompute some
logic (sometimes referred to as intrinsic). The result of popcnt(math.MaxUint64) is
always 64, no matter how many times and where we run it; thus, the machine code
will simply use 64 instead of calculating popcnt in every iteration.

Generally, there are three practical countermeasures against compiler optimization in
benchmarks:

Move to the macro level.
On a macro level, there is no special code within the same binary, so we can use
the same machine code for both benchmarks and production code.
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22 I am not discouraging microbenchmarks on super low-level functions. You can still compare things, but be
mindful that production numbers might surprise you.

23 This does not mean that the future Go compiler won’t be able to be smarter and consider optimization with
global variables.

24 The sink pattern is also popular in C++ for the same reasons.

Microbenchmark more complex functionality.
If compiler optimizations impact, you might be optimizing Go on a too low level.

I personally haven’t been impacted by compiler optimization, because I tend to
microbenchmark on higher-level functionalities. If you benchmark really small
functions like Example 8-16, typically inlined and a few nanoseconds fast, expect
the CPU and compiler effect to impact you more. For more complex code, the
compiler typically is not as clever to inline or adjust the machine code for bench‐
marking purposes. The number of instructions and data on bigger macrobench‐
marks will also more likely break the CPU branch predictor and cache locality
like it would at production.22

Outsmart compiler in microbenchmark.
If you want to microbenchmark such a tiny function like Example 8-16, there is
no other way to obfuscate the compiler code analysis. What typically works is
using exported global variables. They are hard to predict given the current per-
package Go compilation logic23 or using runtime.KeepAlive, which is a newer
way to tell compile that “this variable is used” (which is a side effect of telling the
GC to keep this variable on the heap). The //go:noinline directive that stops
the compiler from inlining function might also work, but it’s not recommended
as on production, your code might be inlined and optimized, which we want to
benchmark too.

If we would like to improve the Go benchmark shown in Example 8-16, we could
add the Sink pattern24 and global variable for input, as presented in
Example 8-18. This works in Go 1.18 with the gc compiler, but it’s not prone to
future improvements in the Go compiler.

Example 8-18. Sink pattern and variable input countermeasure unwanted compiler
optimization on microbenchmarks

var Input uint64 = math.MaxUint64 
var Sink uint64 

func BenchmarkPopcnt(b *testing.B) {
    var s uint64
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    b.ResetTimer()
    for i := 0; i < b.N; i++ {
       s = popcnt(Input) 
    }
    Sink = s
}

The global Input variable masks the fact that math.MaxUint64 is constant. This
forces the compiler to not be lazy and do the work in our benchmark iteration.
This works because the compiler can’t tell if anyone else will change this variable
in runtime before or during experiments.

Sink is a similar global variable to Input, but it hides from the compiler that the
value of our function is never used, so the compiler won’t assume it’s a dead
code.

Notice that we don’t assign a value directly to the global variable as it’s more
expensive, thus potentially adding even more overhead to our benchmark.

Thanks to the techniques presented in Example 8-18, I can assess that such an opera‐
tion on my machine takes around 1.6 nanoseconds. Unfortunately, although I got a
stable result that (one would hope) is realistic, assessing efficiency for such low-level
code is fragile and complicated. Outsmarting the compiler or disabling optimizations
are quite controversial techniques—they go against the philosophy that benchmarked
code should be as close to production code as possible.

Don’t Put Sinks Everywhere!

This section might feel scary and complicated. Initially, when I
learned about these complex compilation impacts, I was putting a
sink to all my microbenchmarks or assert errors only to avoid
potential elision problems.
That is unnecessary. Be pragmatic, be vigilant of benchmarking
results you can’t explain (as mentioned in “Human Errors” on page
256), and add those special countermeasures.

Personally, I’d rather not see sinks appear everywhere until they are needed. In many
cases they won’t be, and the code is clearer without them. My advice is to wait until the
benchmark is clearly optimized away and only then put them in. The details of the sink
can depend on the context. If you have a function returning an int, it’s fine to sum
them up and then assign the result to a global, for example.

—Russ Cox (rsc), “Benchmarks vs Dead Code Elimination,” email thread

In summary, be mindful of how the compiler can impact your microbenchmark. It
does not happen too often, especially if you are benchmarking on a reasonable level,
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but when it happens, you should now know how to mitigate those problems. My rec‐
ommendation is to avoid relying on a microbenchmark at such a low level. Instead,
unless you are an experienced engineer interested in the ultra-high performance of
your Go code for a specific use case, move to a higher level by testing more complex
functionality. Fortunately, most of the code you will work with will likely be too com‐
plex to trigger such a “battle” with the Go compiler.

Macrobenchmarks
Programming books that cover performance and optimization topics don’t usually
describe benchmarking on a larger level than micro. This is because testing on a
macro level is a gray area for developers. Typically, it is the responsibility of dedicated
tester teams or QA engineers. However, for backend applications and services, such
macrobenchmarking involves experience, skills, and tools to work with many depen‐
dencies, orchestration systems, and generally bigger infrastructure. As a result, such
activity used to be the domain of operation teams, system administrators, and
DevOps engineers.

However, things are changing a bit, especially for the infrastructure software, which
is my area of expertise. The cloud-native ecosystem makes infrastructure tools more
accessible for developers, with standards and technologies like Kubernetes, contain‐
ers, and paradigms like Site Reliability Engineering (SRE). On top of that, the popular
microservice architecture allows breaking functional pieces into smaller programs
with clear APIs. This allows developers to take more responsibility for their areas of
expertise. Therefore, in the last decades, we are seeing the move toward making test‐
ing (and running) software on all levels easier for developers.

Participate in Macrobenchmarks That Touch Your Software!

As a developer, it is extremely insightful to participate in testing
your software, even on a macro level. Seeing your software’s bugs
and slowdowns gives crystal clarity to the priority. Additionally, if
you catch those problems on the setup you control or are familiar
with, it is easier to debug the problem or find the bottleneck,
ensuring a quick fix or optimization.

I would like to break the mentioned convention and introduce you to some basic
concepts required for effective macrobenchmarking. Especially for backend applica‐
tions, developers these days have much more to say when it comes to accurate effi‐
ciency assessment and bottleneck analysis at higher levels. So let’s use this fact and
discuss some basic principles and provide a practical example of running a macro‐
benchmark via go test.
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25 Object storage is cheap cloud storage with simple APIs for uploading objects and reading them or their byte
ranges. It treats all data in the form of objects with a certain ID that typically looks similar to the file path.

26 You can find simplified microservice code in the labeler package.

Basics
As we learned in “Benchmarking Levels” on page 266, macrobenchmarks focus on
testing your code at the product level (application, service, or system) close to your
functional and efficiency requirements (as described in “Efficiency Requirements
Should Be Formalized” on page 83). As a result, we could compare macrobench‐
marking to integration or end-to-end (e2e) functional testing.

In this section, I will mostly focus on benchmarking server-side, multicomponent Go
backend applications. There are three reasons why:

• That’s my speciality.
• It’s the typical target environment of applications written in the Go language.
• This application typically involves working with nontrivial infrastructure and

many complex dependencies.

Especially the last two items make it beneficial for me to focus on backend applica‐
tions, as other types of programs (CLI, frontend, mobile) might require less-complex
architecture. Still, all types will reuse some patterns and learnings from this section.

For instance, in “Microbenchmarks” on page 275, we assessed the efficiency of the
Sum function (Example 4-1) in our Go code, but that function might have been a bot‐
tleneck for a much bigger product or service. Imagine that our team’s task is to
develop and maintain a bigger microservice called labeler that uses the Sum.

The labeler will run in a container and connect to an object storage25 with various
files. Each file has potentially millions of integers in each new line (the same input as
in our Sum problem). The labeler job is to return a label—the metadata and
some statistics of the specified object when the user calls the HTTP GET

method /label_object. The returned label contains attributes like the object name,
object size, checksum, and more. One of the key label fields is the sum of all numbers
in the object.26

You learned first how to assess the efficiency of the smaller Sum function on a micro
level because it’s simpler. On the product level the situation is much more complex.
That’s why to perform reliable benchmarking (or bottleneck analysis) on a macro
level, there are a few differences to notice and extra components to have. Let’s go
through them, as presented in Figure 8-1.
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Figure 8-1. Common elements required for the macrobenchmark, for example, to
benchmark the labeler service

The specific differences from our Sum microbenchmark can be outlined as follows:

Our Go program as a separate process
Thanks to “Go Benchmarks” on page 277, we understand the efficiency of the
Sum function and can optimize it. But what if another part of the code is now a
bigger bottleneck in our flow? This is why we typically want to benchmark our
Go program with its full user flow on a macro level. This means running the pro‐
cess in a similar fashion and configuration as in production. But unfortunately,
this also means we can’t run the go test benchmarking framework anymore as
we benchmark on the process level.

Dependencies, e.g., object storage
One of the key elements of macrobenchmarks is that we typically want to analyze
the efficiency of the full system, including all key dependencies. This is especially
important when our code might rely on certain efficiency characteristics of the
dependency. In our labeler example, we use object storage, which usually
means transferring bytes over the network. There might be little point in opti‐
mizing Sum if the object storage communication is the main bottleneck in latency
or resource consumption. There are generally three ways of handling dependen‐
cies on a macro level:

• We can try to use realistic dependency (e.g., in our example, the exact object
storage provider that will be used on production, with a similar dataset size).
This is typically the best idea if we want to test the end-to-end efficiency of
the whole system.
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27 One common pitfall is to implement inefficient load-testing code. There is a risk that your application does
not allow the throughput you want only because the client is not sending the traffic fast enough!

• We can try to implement or use a fake or adapter that will simulate production
problems. However, this often takes too much effort and it’s hard to simulate the
exact behavior of, for example, a slow TCP connection or server.

• We could implement the simplest fake for our dependency and assess the iso‐
lated efficiency of our program. In our example, this might mean running local,
open source object storage like Minio. It will not reflect all the problems we
might have with production dependencies, but it will give us some estimates on
the problems and overhead for our program. We will use this in “Go e2e Frame‐
work” on page 310 for simplicity.

Observability
We can’t use “Go Benchmarks” on page 277 on a macro level, so we don’t
have built-in support for latency, allocations, and custom metrics. So we
have to provide our observability and monitoring solution. Fortunately, we
already discussed instrumentation and observability for Go programs in
Chapter 6, which we can use on a macro level. In “Go e2e Framework” on
page 310, I will show you a framework that has built-in support for the open
source Prometheus project, which allows gathering latency, usage, and cus‐
tom benchmarking metrics. You can enrich this setup with other tools like
tracing, logging, and continuous profiling to debug the functional and effi‐
ciency problems even easier.

Load tester
Another consequence of getting out of the Go benchmark framework is the
missing logic of triggering the experiment cases. Go benchmark was execut‐
ing our code the desired amount of times with desired arguments. On the
macro level, we might want to use this service as the user would use the
HTTP REST API for web services like labeler. This is why we need some
load-tester code that understands our APIs and will call them the desired
amount of times and arguments.
You can implement your own to simulate the user traffic, which unfortu‐
nately is prone to errors.27 There are ways to “fork” or replay production
traffic to the testing product using more advanced solutions like Kafka. Per‐
haps the easiest solution is to pick an off-the-shelf framework like an open
source k6 project, which is designed and battle-tested for load-testing pur‐
poses. I will present an example of using k6 in “Go e2e Framework”.
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Continuous Integration (CI) and Continuous Deployment (CD)
Finally, we rarely run macrobenchmarks on local development machines for
more complex systems. This means we might want to invest in automation
that schedules the load test and deploys required components with the
desired version.

With such architecture, we can perform the efficiency analysis on a macro level. Our
goals are similar to what we have for “Microbenchmarks” on page 275, just on a more
complex system, such as A/B testing and learning the space and runtime complexity
of your system functionality. However, given that we are closer to how users use our
system, we can also treat it as an acceptance test that will validate efficiency with our
RAER.

The theory is important, but how does it look in practice? Unfortunately, there is no
consistent way of performing macrobenchmarks with Go, as it highly depends on
your use case, environment, and goals. However, I would like to provide an example
of a pragmatic and fast macrobenchmark of labeler that we can perform on our
local development machine using Go code! So let’s dive into the next section.

Go e2e Framework
Backend macrobenchmarking does not necessarily always mean using the same
deployment mechanism we have in production (e.g., Kubernetes). However, to
reduce the feedback loop, we can try macrobenchmarking with all the required
dependencies, dedicated load tester, and observability on our developer machine or
small virtual machine (VM). In many cases, it might give you reliable enough results
on a macro level.

For experiments, you can manually deploy all the elements mentioned in “Basics” on
page 307 on your machine. For example, you can write a bash script or Ansible run‐
book. However, since we are Go developers looking to improve the efficiency of our
code, what about implementing such a benchmark in Go code and saving it next to
your benchmarked code?

For this purpose, I would like to introduce you to the e2e Go framework that allows
running interactive or automated experiments on a single machine using Go code
and Docker containers. The container is a concept that allows running processes in
an isolated, secure sandbox environment while reusing the host’s kernel. In this con‐
cept, we execute software inside predefined container images. This means we must
build (or download) a required image of the software we want to run beforehand.
Alternatively, we can build our container image and add required software like pre-
build binary of our Go program, e.g., labeler.
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28 This space expanded quite quickly with two separate specifications (CRI and OCI) and various implementa‐
tions of various parts of the container ecosystem. Read more about it here.

29 This is often underestimated. Creating reusable dashboards, learning about your instrumentation, and what
metrics mean takes a nontrivial amount of work. If our local testing and production environment share the
same metrics and other signals, it saves us a lot of time and increases the chances our observability is high
quality.

A container is not a first-class citizen on any OS. Instead, it can be constructed
with existing Linux mechanisms like cgroups, namespaces, and Linux Security Mod‐
ules (LSMs). Docker provides one implementation of the container engine, among
others.28 Containers are also heavily used for large cloud-native infrastructure thanks
to orchestration systems like Kubernetes.

Benefits of Benchmarking in Containers
There are many reasons why on a macro level, I prefer using containers, even for
single-node local tests:

• They allow isolating our processes, enabling more reliable observability and limi‐
tation facilities. This allows us to constraint certain resources to simulate differ‐
ent production aspects and account for resource usage to a given process (e.g.,
network usage or CPU usage).

• If you use containers on production, you can use the same container images in
your macrobenchmarks. This ensures higher reliability—no unknowns are intro‐
duced by building, packaging, or installing phases.

• Similarly, for analyzing the benchmarking situation, we can use the same instru‐
mentation and observability as we use for production.29

• The isolation of containers has little overhead compared to heavier virtualization
like virtual machines (VMs) that have to fully virtualize hardware resources like
memory and CPU.

• Easier installation and use of dependencies (portability!).

To leverage all benefits of containers, run only one process per
container! Putting more processes (e.g., local database) into one
container is tempting. But that defies the point of observing and
isolating containers. Tools like Kubernetes or Docker are designed
for singular processes per container, so put auxiliary processes in
sidecar containers.

Let’s go through a complete macrobenchmark implementation divided into
two parts, Examples 8-19 and 8-20, that assess latency and memory usage of our
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30 You can run this code yourself or explore the e2e framework to see how it configures all components here.

labeler service introduced in “Basics” on page 307. For convenience, our implemen‐
tation can be scripted and executed as a normal go test guarded by t.Skip or build
tag to execute it manually or in a different cadence than functional tests.30

Example 8-19. Go test running the macrobenchmark in interactive mode (part 1)

import (
    "testing"

    "github.com/efficientgo/e2e"
    e2edb "github.com/efficientgo/e2e/db"
    e2einteractive "github.com/efficientgo/e2e/interactive"
    e2emonitoring "github.com/efficientgo/e2e/monitoring"
    "github.com/efficientgo/core/testutil"
    "github.com/thanos-io/objstore/providers/s3"
)

func TestLabeler_LabelObject(t *testing.T) {
    e, err := e2e.NewDockerEnvironment("labeler") 
    testutil.Ok(t, err)
    t.Cleanup(e.Close)

    mon, err := e2emonitoring.Start(e) 
    testutil.Ok(t, err)
    testutil.Ok(t, mon.OpenUserInterfaceInBrowser()) 

    minio := e2edb.NewMinio(e, "object-storage", "test") 
    testutil.Ok(t, e2e.StartAndWaitReady(minio))

    labeler := e2e.NewInstrumentedRunnable(e, "labeler"). 
        WithPorts(map[string]int{"http": 8080}, "http").
        Init(e2e.StartOptions{
            Image: "labeler:test", 
            LimitCPUs: 4.0,
            Command: e2e.NewCommand(
                "/labeler",
                "-listen-address=:8080",
                "-objstore.config="+marshal(t, client.BucketConfig{
                    Type: client.S3,
                    Config: s3.Config{
                        Bucket:    "test",
                        AccessKey: e2edb.MinioAccessKey,
                        SecretKey: e2edb.MinioSecretKey,
                        Endpoint:  minio.InternalEndpoint(e2edb.AccessPortName),
                        Insecure:  true,
                    },
                }),
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            ),
        })
    testutil.Ok(t, e2e.StartAndWaitReady(labeler))

The e2e project is a Go module that allows the creation of end-to-end testing
environments. It currently supports running the components (in any language)
in Docker containers, which allows clean isolation for both filesystems, network,
and observability. Containers can talk to each other but can’t connect with the
host. Instead, the host can connect to the container via mapped localhost ports
printed at the container start.

The e2emonitoring.Start method starts Prometheus and cadvisor. The latter
translates cgroups related to our containers to Prometheus metric format so it
can collect them. Prometheus will also automatically collect metrics from all con‐
tainers started using e2e.NewInstrumentedRunnable.

For an interactive exploration of resource usage and application metrics, we can
invoke mon.OpenUserInterfaceInBrowser() that will open the Prometheus UI
in our browser (if running on a desktop).

Labeler uses object storage dependency. As mentioned in “Basics” on page 307, I
simplified this benchmark by focusing on labeler Go program efficiency
without the impact of remote object storage. For that purpose, local Minio con‐
tainer is suitable.

Finally, it’s time to start our labeler Go program in the container. It is worth
noticing that I set the container CPU limit to 4 (enforced by Linux cgroups) to
ensure our local benchmark is not saturating all the CPUs my machines have.
Finally, we inject object storage configuration to connect with the local minio
instance.

I used the labeler:test image that is built locally. I often add a script in Make
file to produce such an image, e.g., make docker. You risk forgetting to build
the image with the desired Go program version you want to benchmark, so be
mindful of what you are testing!

Example 8-20. Go test running the macrobenchmark in interactive mode (part 2)

    testutil.Ok(t, uploadTestInput(minio, "object1.txt", 2e6)) 

    k6 := e.Runnable("k6").Init(e2e.StartOptions{
        Command: e2e.NewCommandRunUntilStop(),
        Image: "grafana/k6:0.39.0",
    })
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    testutil.Ok(t, e2e.StartAndWaitReady(k6))

    url := fmt.Sprintf(
        "http://%s/label_object?object_id=object1.txt",
        labeler.InternalEndpoint("http"),
    )
    testutil.Ok(t, k6.Exec(e2e.NewCommand(
        "/bin/sh", "-c", `cat << EOF | k6 run -u 1 -d 5m - 
import http from 'k6/http'; 
import { check, sleep } from 'k6';

export default function () {
    const res = http.get('`+url`');
    check(res, { 
        'is status 200': (r) => r.status === 200,
        'response': (r) =>
            r.body.includes(
    '{"object_id":"object1.txt","sum":6221600000,"checksum":"SUUr'
            ),
    });
    sleep(0.5)
}
EOF`)))

    testutil.Ok(t, `e2einteractive.RunUntilEndpointHit()`) 
}

We have to upload some test data. In our simple test, we upload a single file with
two million lines, using a similar pattern we used in “Go Benchmarks” on page
277.

I choose k6 as my load tester. k6 works as a batch job, so I first have to create a
long-running empty container. I can then execute new processes in the k6 envi‐
ronment to put the desired load on my labeler service. As a shell command, I
pass the load-testing script as an input to the k6 CLI. I also specify the number of
virtual users (-u or --vus) I want. VUS represents the workers or threads run‐
ning load-test functions specified in the script. To keep our tests and results sim‐
ple, let’s stick to one user for now to avoid simultaneous HTTP calls. The -d
(short flag for --duration) is similar to the -benchtime flag in our “Go Bench‐
marks” on page 277. See more tips about using k6 here.

k6 accepts load-testing logic programmed in simple JavaScript code. My load test
is simple. Make an HTTP GET call to the labeler path I want to benchmark. I
choose to sleep 500 ms after each HTTP call to give the labeler server time to
clean resources after each call.
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Similar to “Test Your Benchmark for Correctness!” on page 290, we have to test
the output. If we trigger a bug in the labeler code or macrobenchmark imple‐
mentation, we might be measuring the wrong thing! Using the check JavaScript
functions allows us to assert the expected HTTP code and output.

We might want to add here the automatic assertion rules that pass these tests
when latency or memory usage is within a certain threshold. However, as we
learned in “Comparison to Functional Testing” on page 252, finding reliable
assertion for efficiency is difficult. Instead, I recommend learning about our
labeler efficiency in a more interactive way. The e2einteractive.RunUntilEnd
pointHit() stops the go test benchmark until you hit the printed HTTP URL.
It allows us to explore all outputs and our observability signals, e.g., collected
metrics about labeler and the test in Prometheus.

The code snippet might be long, but it’s relatively small and readable compared to
how many things it orchestrates. On the other hand, it has to describe quite a com‐
plex macrobenchmark to configure and schedule five processes in one reliable bench‐
mark with rich instrumentation for containers and internal Go metrics.

Keep Your Container Images Versioned!

It is important to ensure you benchmark against a deterministic
version of dependencies. This is why you should avoid using :lat
est tags, as it is very common to update them without noticing
them transparently. Furthermore, it’s quite upsetting to realize
after the second benchmark that you cannot compare it to the
result of the first one because the dependency version changed,
which might (or might not!) potentially impact the results.

You can start the benchmark in Example 8-19 either via your IDE or a simple go
test . -v -run TestLabeler_LabelObject command. Once the e2e framework
creates a new Docker network, start Prometheus, cadvisor, labeler, and k6 contain‐
ers, and stream their output to your terminal. Finally, the k6 load test will be exe‐
cuted. After the specified five minutes, we should have results printed with
summarized statistics around correctness and latency for our tested functionality.
The test will stop when we hit the printed URL. If we do that, the test will remove all
containers and the Docker network.
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31 There is also a way to push those results directly to Prometheus.

Duration of Macrobenchmarks

In “Go Benchmarks” on page 277, it was often enough to run a
benchmark for 5–15 seconds. Why do I choose to run the macro
load test for five minutes? Two main reasons:

• Generally, the more complex functionality we benchmark, the
more time and iterations we want to repeat to stabilize all the
system components. For example, as we learned in “Microbe‐
nchmarks Versus Memory Management” on page 299,
microbenchmarks do not give us an accurate impact that GC
might have on our code. With macrobenchmarks, we run a
full labeler process, so we want to see how the Go GC will
cope with the labeler work. However, to see the frequency,
the impact of GC, and maximum memory usage, we need to
run our program longer under stress.

• For sustainable and cheaper observability and monitoring in
production, we avoid measuring the state of our application
too often. This is how the recommended Prometheus collec‐
tion (scrape) interval is around 15 to 30 s. As a result, we
might want to run our test through a couple of collection peri‐
ods to obtain accurate measurements while also sharing the
same observability as production.

In the next section, I will go through the outputs this experiment gives us and poten‐
tial observations we can make.

Understanding Results and Observations
As we saw in “Understanding the Results” on page 284, experimenting is only half of
the success. The second half is to correctly interpret the results. After running
Example 8-19 for around seven minutes, we should see k6 output31 that might look
like Example 8-21.

Example 8-21. Last 24 lines of the macrobenchmark output from a 7-minute test with
one virtual user (VUS) using k6

running (5m00.0s), 1/1 VUs, 476 complete and 0 interrupted iterations
default   [ 100% ] 1 VUs  5m00.0s/5m0s
running (5m00.4s), 0/1 VUs, 477 complete and 0 interrupted iterations
default ✓ [ 100% ] 1 VUs  5m0s
✓ is status 200
✓ response
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checks....................: 100.00% ✓ 954      ✗ 0 
data_received.............: 108 kB  359 B/s
data_sent.................: 57 kB   191 B/s
http_req_blocked..........: avg=9.05µs  min=2.48µs  med=8.5µs    max=553.13µs
    p(90)=11.69µs p(95)=14.68µs
http_req_connecting.......: avg=393ns   min=0s      med=0s       max=187.71µs
http_req_duration.........: avg=128.9ms min=92.53ms med=126.05ms max=229.35ms 
    p(90)=160.43ms p(95)=186.77ms 
{ expected_response:true }: avg=128.9ms min=92.53ms med=126.05ms max=229.35ms
    p(90)=160.43ms p(95)=186.77ms
http_req_failed...........: 0.00%   ✓ 0        ✗ 477
http_req_receiving........: avg=60.17µs min=30.98µs med=46.48µs  max=348.96µs
    p(90)=95.05µs  p(95)=124.73µs
http_req_sending..........: avg=35.12µs min=11.34µs med=36.72µs  max=139.1µs
    p(90)=59.99µs  p(95)=67.34µs
http_req_waiting..........: avg=128.81ms min=92.45ms med=125.97ms max=229.22ms
    p(90)=160.24ms p(95)=186.7ms
http_reqs.................: 477     1.587802/s 
iteration_duration........: avg=629.75ms min=593.8ms med=626.51ms max=730.08ms
    p(90)=661.23ms p(95)=687.81ms
iterations................: 477     1.587802/s 
vus.......................: 1       min=1      max=1
vus_max...................: 1       min=1      max=1

Check this line to ensure you measure successful calls!

http_req_duration is the most important measurement if we want to track the
latency of the total HTTP request latency.

It’s also important to note the total number of calls we made (the more iterations
we have, the more reliable it will be).

From the client’s perspective, the k6 results can tell us much about the achieved
throughput and latencies of different HTTP stages. It seems that with just one
“worker” calling our method and waiting 500 ms, we reached around 1.6 calls per
second (http_reqs) and the average client latency of 128.9 ms (http_req_duration).
As we learned in “Latency” on page 221, tail latency might be more relevant for
latency measurements. For that, k6 calculates the percentiles as well, which indicates
that 90% of requests (p90) were faster than 160 ms. In “Go Benchmarks” on page 277,
we learned that the Sum function involved in the process is taking 79 ms on average,
which means it accounts for most of the average latency or even total p90 latency. If
we care about optimizing latency in this case, we should try to optimize Sum. We will
learn how to verify that percentage and identify other bottlenecks in Chapter 9 with
tools like profiling.
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Another important result we should check is the variance of our runs. I wish k6 pro‐
vided out-of-the-box variance calculation because it’s hard to tell how repeatable our
iterations were without it. For example, we see that the fastest request took 92 ms,
while the slowest took 229 ms. This looks concerning, but it’s normal to have first
requests take longer. To tell for sure, we would need to perform the same test twice
and measure the average and percentile values variance. For example, on my
machine, the next run of the same 5-minute test gave me an average of 129 ms and a
p90 of 163 ms, which suggests the variance is small. Still, it’s best to gather those
numbers in some spreadsheet and calculate the standard deviation to find the var‐
iance percentage. There might be room for a quick CLI tool like benchstat that
would give us a similar analysis. This is important, as the same “Reliability of Experi‐
ments” on page 256 aspects apply to macrobenchmarks. If our results are not repeat‐
able, we might want to improve our testing environment, reduce the number of
unknowns, or test longer.

The k6 output is not everything we have! The beauty of macrobenchmarks with good
usage monitoring and observability, like Prometheus, is that we can assess and debug
many efficiency problems and questions. In the Example 8-19 setup, we have instru‐
mentation that gives us cgroup metrics about containers and processes thanks to cad
visor, built-in process and heap metrics from the labeler Go runtime, and
application-level HTTP metrics I manually instrumented in labeler code. As a
result, we can check the usage metrics we care for based on our goals and the RAER
(see “Efficiency-Aware Development Flow” on page 102), for example, the metrics we
discussed in “Efficiency Metrics Semantics” on page 220 and more.

Let’s go through some metric visualizations I could see in Prometheus after my run.

Server-side latency
In our local tests, we use a local network, so there should be almost no difference
between server and client latency (we talked about this difference in “Latency” on
page 221). However, more complex macro tests that may load test systems from dif‐
ferent servers or remote devices in another geolocation might introduce network
overhead that we may want or don’t want to account for in our results. If we don’t,
we can query Prometheus for the average request duration server handled for
our /label_object path, as presented in Figure 8-2.
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32 See the example code that labeler uses.

Figure 8-2. Dividing http_request_duration_seconds histogram sum by count rates
to obtain server-side latency

The results confirm what we saw in Example 8-21. The observed average latency is
around 0.12–0.15 seconds, depending on the moment. The metric comes from man‐
ually created HTTP middleware I added in Go using the prometheus/client_golang
library.32

Prometheus Rate Duration

Notice I am using [1m] range vectors for Prometheus counters in
queries for this macrobenchmark. This is because we only run our
tests for 5 minutes. With a 15-second scrape, 1 minute should have
enough samples for rate to make sense, but also I can see more
details in my metric value with one-time minute window
granularity.
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When it comes to the server-side percentile, we rely on a bucketed histogram. This
means that the accuracy of the result is up to the nearest bucket. In Example 8-21, we
saw that results are 92 ms to 229 ms, with p90 equal to 136 ms. At the moment of
benchmark, the buckets were defined in labeler as follows: 0.001, 0.01, 0.1,
0.3, 0.6, 1, 3, 6, 9, 20, 30, 60, 90, 120, 240, 360, 720. As a result, we
can only tell that 90% of requests were faster than 300 ms, as presented in Figure 8-3.

Figure 8-3. Using the http_request_duration_seconds histogram to calculate the p90
quantile of the /label_object request

To find more accurate results, we might need to adjust buckets manually or use a new
sparse histogram feature in the upcoming Prometheus 2.40 version. The default
buckets work well in cases when we don’t care if the request was handled in 100 ms
or 300 ms, but we care if it was suddenly 1 second.
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CPU time
Latency is one thing, but CPU time can tell us how much time the CPU needs to ful‐
fill its job, how much concurrency can help, and if our process is CPU or I/O bound.
We can also tell if we gave enough CPU for the current process load. As we learned in
Chapter 4, higher latency of our iterations might be a result of the CPU saturation—
our program using all available CPU cores (or close to the limit), in effect slowing the
execution of all goroutines.

In our benchmark we can use either the Go runtime process_cpu_seconds_total
counter or the cadvisor container_cpu_usage_seconds_total counter to find that
number. This is because labeler is the only process in its container. Both metrics
look similar, with the latter presented in Figure 8-4.

Figure 8-4. Using the container_cpu_usage_seconds_total counter to assess
labeler CPU usage
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33 128.9 ms divided by 128.9+500 milliseconds to tell what portion of time the load tester was actively
load-testing.

34 Looking on go_goroutines also helps. If we see a visible trend, we might forget to close some resources.

The value oscillates between 0.25–0.27 CPU seconds, which represents the amount of
CPU time the labeler needed for this load. I limited labeler to 4 CPU cores, but it
used a maximum of 27% of a single CPU. This means that, most likely, the CPUs are
not saturated (unless there are a lot of noisy neighbors running at the same moment,
which we would see in the latency numbers). The 270 ms of CPU time per second
seems like a sane value given that our requests take, on average, 128.9 ms, and after
that, k6 was waiting for 500 ms. This gives us 20%33 of load-testing time, so the k6 was
actually demanding some work from labeler, which might not all be used on CPU,
but also on I/O time. The labeler /label_object execution in our current version is
sequential, but there are some background tasks, like listening to signal, metric col‐
lection, GC, and HTTP background goroutines. Again, see “Profiling in Go” on page
331 as the best way to tell exactly what’s taking the CPU here.

Memory

In “Microbenchmarks” on page 275, we learned how much memory Sum allocates,
but Sum is not the only logic labeler has to perform. Therefore, if we want to assess
the memory efficiency of labeler, we need to look at the process or container level
memory metrics we gathered during our benchmark. On top of that, we mentioned
in “Microbenchmarks Versus Memory Management” on page 299 that only on the
macro level do we have a chance to learn more about GC impact and maximum
memory usage of our labeler process.

Looking at the heap metric presented in Figure 8-5, we can observe that a sin‐
gle /label_object is using the nontrivial amount of memory. This is not unexpected
after seeing the Sum function microbenchmarks results in Example 8-7 showing 60.8
MB per iteration.

This observation shows us the eventuality of GC that might cause problems. Given a
single “worker” (VUS) in k6, the labeler should never need more than ~61 MB of
live memory if the Sum is the main bottleneck. However, we can see that for durations
of 2 scrapes (30 seconds) and then 1 scrape, the memory got bumped to 118 MB.
Most likely, GC had not released memory from the previous HTTP /label_object
call before the second call started. If we account for spikes, the overall maximum
heap size is stable at around 120 MB, which should tell us there are no immediate
memory leaks.34
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35 The solution is to use counters. For memory, it would mean using the existing rate(go_mem
stats_alloc_bytes_total[1m]) and dividing it by the rate of bytes released by the GC. Unfortunately, the
Prometheus Go collector does not expose such metrics. Go allows us to get this information, so it is possible
to get it added in the future.

Figure 8-5. Using the go_memstats_heap_alloc_bytes gauge to assess labeler heap
usage

go_memstats_heap_alloc_bytes Gauge and Temporary Changes
Be careful with any Prometheus gauges that monitor changes that occur more often
than the scrape interval. For example, our Go program might have more spikes like
the two we see in Figure 8-5, but they were too short to be observed by Prometheus in
the go_memstats_heap_alloc_bytes metric.35

Something similar can happen when querying a gauge metric over a long period, like
a dozen hours or days. The UI resolution (so-called step) is adjusted for longer peri‐
ods and can potentially hide interesting moments. Ensure lower resolution or use
max_over_time to know for sure what were the observed maximums (or
min_over_time for minimums).
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This is rarely the problem in terms of memory as the GC and OS react very slowly
with lazy memory release mechanisms, explained in “OS Memory Management” on
page 156.

Unfortunately, as we learned in “OS Memory Management” on page 156 and “Mem‐
ory Usage” on page 234, the memory used by the heap is only a portion of the RAM
space that is used by the Go program. The space allocated for goroutine stacks, man‐
ually created memory maps, and kernel cache (e.g., for file access) requires the OS to
reserve more pages on the physical memory. We can see that when we look at our
container-level RSS metric presented in Figure 8-6.

Figure 8-6. Using the container_memory_rss gauge to assess labeler physical RAM
usage

Fortunately, nothing unexpected on the RSS side as well. The active memory pages
were more or less the size of the heap and returned to a smaller level as soon as the
test finished. So we can assess that labeler requires around 130 MB of memory for
this load.
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36 For bigger tests, consider making sure your load tester has enough resources. For k6, see this guide.

To sum up, we assessed the efficiency of latency and resources like CPU and memory
on a macro level. In practice, we can assess much more, depending on our efficiency
goals like disk, network, I/O devices, DB usage, and more. The k6 configuration was
straightforward in our test—single worker and sequential calls with a pause. Let’s
explore other variations and possibilities in the next section.

Common Macrobenchmarking Workflows
The example test in “Go e2e Framework” on page 310 should give you some aware‐
ness of how to configure the example load-testing tool, hook in dependencies, and set
up and use pragmatic observability for efficiency analysis. On top of that, you can
expand such local e2e tests in the direction you and your project need based on the
efficiency goals. For example:

• Load test your system with more than one worker to assess how many resources
it takes to sustain a given request per second (RPS) rate while sustaining a
desired p90 latency.36

• Run k6 or other load-testing tools to simulate realistic client traffic in a different
location.

• Deploy the macrobenchmark on remote servers, perhaps with the same hard‐
ware as your production.

• Deploy dependencies in a remote location; e.g., in our labeler example, use the
AWS S3 service instead of the local object storage instance.

• Scale out your macro test and services to multiple replicas to check if the traffic
can be load balanced properly, so the system’s efficiency stays predictable.

Similar to “Find Your Workflow” on page 289, you should find the workflow for per‐
forming such experiments and analysis that suits you the most. For example, for
myself and the teams I worked with, the process of designing and using the macro‐
benchmark like in “Go e2e Framework” on page 310 might look as follows:

1. As a team, we plan the macrobenchmark elements, dependencies, what aspects
we want to benchmark, and what load we want to put on it.

2. I ensure a clean code state for labeler and macrobenchmark code. I commit all
the changes to know what I am testing and with what benchmark. Let’s say we
end up with a benchmark as in “Go e2e Framework” on page 310.
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37 Any other medium like Jira ticket comments or GitHub issue works too. Just ensure you can easily paste
screenshots so it’s less fuss and there are fewer occasions to make mistakes on what screenshot was for what
experiment!

38 Don’t just make it all screenshots first and delay describing them until later. Try to iterate on each observation
in Google Documents, as it’s easy to forget later what situation you were capturing. Additionally, I saw many
incidents of thinking screenshots were saved in my laptop’s local directory, then losing all benchmarking
results.

3. Before starting the benchmark, I create a shared Google Document37 and note all
the experiment details like environmental conditions and software version.

4. I perform the benchmark to assess the efficiency of a given program version:
• I run my macrobenchmarks, e.g., by starting the go test with the Go e2e

framework (see “Go e2e Framework” on page 310) in Goland IDE and waiting
until the load test finishes.

• I confirm no functional errors are present.
• I save the k6 results to Google Documents.
• I gather interesting observations of the resources I want to focus on, for exam‐

ple, heap and RSS to assess memory efficiency. I capture screenshots and paste
them to my Google document.38 Finally, I note all conclusions I made.

• Optionally, I gather profiles for the “Profiling in Go” on page 331 process.
5. If the findings allowed me to find the optimization in my code, I implement it

and save it as a new git commit. Then I benchmark again (see step 5) and save
the new results to the same Google Doc under a different version, so I can com‐
pare my A/B test later on.

The preceding workflow allows us to analyze the results and conclude an efficiency
assessment given the assumptions that can be formulated thanks to the document I
create. Linking the exact benchmark, which ideally is committed to the source code,
allows others to reproduce the same test to verify results or perform further bench‐
marks and tests. Again, feel free to use any practice you need as long as you care for
the elements mentioned in “Reliability of Experiments” on page 256. There is no sin‐
gle consistent procedure and framework for macrobenchmarking, and it all highly
depends on the type of software, production conditions, and price you want to invest
in to ensure your product’s efficiency.

It’s also worth mentioning that macrobenchmarking is not so far from “Benchmark‐
ing in Production” on page 268. You can reuse many elements for macrobenchmarks
like load tester and observability tooling in benchmarking against production (and
vice versa). Such interoperability allows us to save time on building and learning new
tools. The main difference in performing benchmarks in a production environment
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39 Explained well in Martin Kleppmann’s book Designing Data-Intensive Applications: The Big Ideas Behind
Reliable, Scalable, and Maintainable Systems (O’Reilly).

is to assure the quality of the production users—either by ensuring basic qualities of a
new software version on different testing and benchmarking levels, or by leveraging
beta testers or canary deployments.

Summary
Congratulations! With this chapter, you should now understand how to practically
perform micro- and macrobenchmarks, which are core ways to understand if we
have to optimize our software further, what to optimize if we have to, and how much.
Moreover, both micro- and macrobenchmarks are also invaluable in other aspects of
software development connected to efficiency like capacity planning and scalability.39

In my daily career in software development, I lean heavily on micro- and macro‐
benchmarks. Thanks to the micro-level fast feedback loop, I often do them for
smaller functions in the critical path to decide how the implementation should go.
They are easy to write and easy to delete.

Macrobenchmarks require more investment, so I especially recommend creating and
doing such benchmarks:

• As an acceptance test against the RAER assessment of the entire system after a
bigger feature or release.

• When debugging and optimizing regressions or incidents that trigger efficiency
problems.

The experimentation involved in both micro- and macrobenchmarks is useful for
efficiency assessment and in “6. Find the main bottleneck” on page 107. However,
during that benchmark, we can also perform profiling of our Go program to deduce
the main efficiency bottlenecks. Let’s see how to do that in action in the next chapter!
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CHAPTER 9

Data-Driven Bottleneck Analysis

Programmers are usually notoriously bad at guessing which parts of the code are the
primary consumers of the resources. It is all too common for a programmer to modify
a piece of code expecting see a huge time savings and then to find that it makes no
difference at all because the code was rarely executed.

— Jon Louis Bentley, Writing Efficient Programs

One of the key steps to improving the efficiency of our Go programs is to know
where is the main source of the latency or resource usage you want to improve.
Therefore, we should make a conscious effort to first focus on the code parts that
contribute the most (the bottleneck or hot spot) to get the biggest value for our
optimizations.

It is very tempting to use our experience in software development to estimate what
part of the code is the most expensive or too slow to compute. We might have already
seen similar code fragments causing efficiency problems in the past. For example,
“Oh, I worked with linked lists in Go, it was so slow, this must be it!” or “We create a
lot of new slices here, I think this is our bottleneck, let’s reuse some.” We might still
remember the pain or stress it might have caused. Unfortunately, those feelings-
based conclusions are often wrong. Every program, use case, and environment is dif‐
ferent. The software might struggle in other places. It’s essential to uncover that part
quickly and reliably so we know where to spend our optimization efforts.

Fortunately, we don’t need to guess. We can gather appropriate data! Go provides
and integrates very rich tools we can use for bottleneck analysis. We will start our
journey with the “Root Cause Analysis, but for Efficiency” on page 330 that introduces
some of them. Then, I will introduce you to “Profiling in Go” on page 331, where you
will learn about the pprof ecosystem. This profiling foundation is quite popular, yet
it isn’t easy to understand its results if you don’t know the basics. The tooling,
reports, and views are poorly documented, so I will spend a few sections describing
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1 A symptom is an effect we see caused by some underlying situation, e.g., OOM is a symptom of the Go pro‐
gram requiring more memory than allowed. The problem with symptoms is that they often look like a root
cause, but there might be an underlying bottleneck causing them. For example, the high memory usage of a
process that caused the OOM might look like a root cause, but it can as well be just a symptom of a different
issue if it was caused by a dependency not processing requests fast enough.

2 A red herring is an unexpected behavior that turns out to not be a problem to the general topic of our investi‐
gation. For example, while investigating the higher latency of our requests, it might be concerning to see the
debug log “started handling request” in our application and not see a “finished request” for hours. It often
turns out that the “finish” log message we might expect was not implemented, or we just dropped it in our
logging system. Things often can mislead us; that’s why we should be clean and explicit without observability
and program flows to mislead us when we need to find the problem fast.

3 Usually, tracing does not provide a full stack trace, just the most important functionalities. This is to limit
overhead and cost of tracing.

the principles and common representations. In “Capturing the Profiling Signal” on
page 355, you will learn how to instrument and collect profiles. In “Common Profile
Instrumentation” on page 360, I will explain a few important existing profiles we can
use right now in Go. Finally, we go through some “Tips and Tricks” on page 373,
including the recently popular technique called “Continuous Profiling” on page 373!

This is one of those chapters where I learned a lot while researching and preparing
the content. This is why I am even more excited to share that knowledge with you!
Let’s start with root cause analysis and its connection to bottleneck analysis.

Root Cause Analysis, but for Efficiency
The bottleneck analysis process is no different from the causal analysis or root cause
analysis engineers perform after system incidents or failed tests. In fact, efficiency
problems cause many of those incidents, e.g., HTTP requests timing out as the CPUs
were saturated. As a result, it’s best if we equip ourselves with similar mindsets and
tools during bottleneck analysis of our system or program.

For more complex systems with multiple processes, the investigation might be quite
involved with many symptoms,1 red herrings,2 or even multiple bottlenecks.

The tools in Chapter 6 are always invaluable for bottleneck analysis. With metrics
around resource usage, we can narrow down when and which process allocated or
used the most memory or CPU time, etc. With detailed logging, we could provide
extra latency measurements for each stage. With tracing, we can analyze the request
path and find which process and sometimes program function3 contribute the most
to the latency of the whole operation.

The other naive way is trial-and-error flow. We can always manually experiment by
disabling certain code parts one by one to check if we can reproduce that efficiency
error or not. However, for large systems, this is likely to be infeasible in practice.
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4 Or methods, but that is treated in Go in the same way. Especially in this chapter, I will use the term function
very often, and I mean both Go functions and methods.

There might be a better way to determine the main contributor to the extensive
resource usage or high latency. Something that, in seconds, can tell us the exact code
line responsible for it.

That convenient signal is called profiling, and it’s often described as the fourth pillar
of observability. Let’s explore profiling in detail in the next section.

Profiling in Go
Profiling is a form of dynamic code analysis. You capture characteristics of the applica‐
tion as it runs, and then you use this information to identify how to make your appli‐
cation faster and more efficient.

—“Profiling Concepts,” Google Cloud Documentation

Profiling is a perfect concept for representing the exact usage of something (e.g.,
elapsed time, CPU time, memory, goroutines, or rows in the database) caused by a
specific code line in a program. Depending on what we look for, we can compare the
contribution of something for different code lines or grouped by functions4 or files.

In my experience, profiling is one of the most mature debugging methods in the Go
community. It’s rich, efficient, and accessible to everyone, with the Go standard
library providing six profile implementations out of the box, community-created
ones, and easy-to-build custom ones. What’s amazing is that all these profiles might
have different meanings and are related to different resources, but their representa‐
tion follows the same convention and format. This means that no matter if you want
to explore heap (see “Heap” on page 360), goroutine (see “Goroutine” on page 365),
or CPU (see “CPU” on page 367), you can use the same visualization and analysis
tools and patterns.

Without a doubt, many thanks should go to the pprof project (“pprof” stands for
performance profiles). There are many profilers out there. We have perf_events
(perf tool) for Linux, hwpmc for FreeBSD, DTrace, and much more. What’s special
about pprof is that it establishes a common representation, file format, and visualiza‐
tion tooling for profiling data. This means you can use any of the preceding tools, or
implement a profiler in Go from scratch and use the same tooling and semantics for
analyzing those profiles.
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5 Such a profiler was already proposed in the Go community to be included in the standard library. However,
for now, the idea was rejected by the Go team as you can, in theory, track opened files thanks to the memory
profile focused on allocations from os.Open.

6 With pprof.Profile, we can only track objects. We cannot profile advanced things like past object creation,
I/O usage, etc. We also can’t customize what is in the resulted pprof file, like extra labels, custom sampling,
other value types, etc. Such custom profiling requires more code, but it is still relatively easy to implement
thanks to Go packages like github.com/google/pprof/profile.

Profiler

A profiler is a piece of software that can collect the stack traces and
usage of a certain resource (or time) and then save it into a profile.
Configured, installed, or instrumented profiler can be called profil‐
ing instrumentation.

Let’s dive into pprof in the next section.

pprof Format
The original pprof tool was a Perl script developed internally at Google. Based on the
copyright header, development might go back to 1998. It was first released in 2005 as
part of gperftools, and added to the Go project in 2010. In 2014 the Go project
replaced the Perl based version of the pprof tool with a Go implementation by Raul
Silvera that was already used inside of Google at this point. This implementation was
re-released as a standalone project in 2016. Since then the Go project has been vendor‐
ing a copy of the upstream project, updating it on a regular basis.

—Felix Geisendörfer, “Go’s pprof Tool and Format”

Many programming languages like Go and C++, and tools like Linux perf can lever‐
age the pprof format, so it’s worth learning about it more. To truly understand
profiling, let’s quickly create our custom profiling to track currently opened files in
our Go program. There is a limit to how many file descriptors the program can hold
simultaneously. If our program encounters such a problem, the file descriptor profil‐
ing might be beneficial to find what part of the program is responsible for opening
the largest number of descriptors.5

For such basic profiling, we don’t need to implement any pprof encoding or tracking
code. Instead, we can use a simple runtime/pprof.Profile struct that the standard
library implements. It allows for creating profiles that record counts and sources of
the currently used objects of the desired type. pprof.Profile is very simple and a bit
limited,6 but it’s perfect to start our journey with profiling.
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The basic profiler example is presented in Example 9-1.

Example 9-1. Implementing file descriptor profiling using pprof.Profile functionality

package fd

import (
    "os"
    "runtime/pprof"
)

var fdProfile = pprof.NewProfile("fd.inuse") 

// File is a wrapper on os.File that tracks file descriptor lifetime.
type File struct {
    *os.File
}

// Open opens a file and tracks it in the `fd` profile`.
func Open(name string) (*File, error) {
    f, err := os.Open(name)
    if err != nil {
        return nil, err
    }
    fdProfile.Add(f, 2) 
    return &File{File: f}, nil
}

// Close closes files and updates profile.
func (f *File) Close() error {
    defer fdProfile.Remove(f.File) 
    return f.File.Close()
}

// Write saves the profile of the currently open file
// descriptors into a file in pprof format.
func Write(profileOutPath string) error {
    out, err := os.Create(profileOutPath)
    if err != nil {
        return err
    }
    if err := fdProfile.WriteTo(out, 0); err != nil { 
        _ = out.Close()
        return err
    }
    return out.Close()
}
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pprof.NewProfile is designed to be used as a global variable. It registers profiles
with the provided name, which has to be unique. In this example, I use the
fd.inuse name to indicate the profile tracks in-use file descriptors.

Unfortunately, this global registry convention has a few downsides. If you import
two packages that create profiles you don’t want to use, or they register profiles
with common names, our program will panic. On the other hand, the global pat‐
tern allows us to use pprof.Lookup("fd.inuse") to get the created profile from
different packages. It also automatically works with the net/http/pprof handler,
explained in “Capturing the Profiling Signal” on page 355. For our example, it
works fine, but I would usually not recommend using global conventions for any
serious custom profiler.

To record living file descriptors, we offer an Open function that mimics the
os.Open function. It opens a file and records it. It also wraps the os.File, so we
know when it’s closed. The Add method records the object. The second argument
tells how many calls to skip in the stack trace. The stack trace is used to record
the location of the profile in the further pprof format.

I decided to use the Open function as the reference to sample creation, so I have
to skip two stack frames.

We can remove the object when the file is closed. Note I am using the same inner
*os.File, so the pprof package can track and find the object I opened.

Standard Go profiles offer a WriteTo method that writes bytes of a full pprof file
into a provided writer. However, we typically want to save it to the file, so I
added the Write method.

Many standard profiles, like those mentioned later in “Common Profile Instrumenta‐
tion” on page 360, are transparently instrumented. For example, we don’t have to allo‐
cate memory differently to see it in the heap profile (see “Heap” on page 360). For
custom profiles like ours, a profiler has to be manually instrumented in our program.
For example, I created TestApp that simulates an app that opens exactly 112 files. The
code using Example 9-1 is presented in Example 9-2.

Example 9-2. TestApp code instrumented with fd.inuse profiling saves the profile at
the end to the fd.pprof file

package main

// import "github.com/efficientgo/examples/pkg/profile/fd"

type TestApp struct {
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    files []io.ReadCloser
}

func (a *TestApp) Close() {
    for _, cl := range a.files {
        _ = cl.Close() // TODO: Check error. 
    }
    a.files = a.files[:0]
}

func (a *TestApp) open(name string) {
    f, _ := fd.Open(name) // TODO: Check error. 
    a.files = append(a.files, f)
}

func (a *TestApp) OpenSingleFile(name string) {
    a.open(name)
}

func (a *TestApp) OpenTenFiles(name string) {
    for i := 0; i < 10; i++ {
        a.open(name)
    }
}

func (a *TestApp) Open100FilesConcurrently(name string) {
    wg := sync.WaitGroup{}
    wg.Add(10)
    for i := 0; i < 10; i++ {
        go func() {
            a.OpenTenFiles(name)
            wg.Done()
        }()
    }
    wg.Wait()
}

func main() {
    a := &TestApp{}
    defer a.Close()

    // No matter how many files we opened in the past...
    for i := 0; i < 10; i++ {
        a.OpenTenFiles("/dev/null") 
        a.Close()
    }

    // ...after the last Close, only files below will be used in the profile.
    f, _ := fd.Open("/dev/null") // TODO: Check error.
    a.files = append(a.files, f)

    a.OpenSingleFile("/dev/null")
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    a.OpenTenFiles("/dev/null")
    a.Open100FilesConcurrently("/dev/null")

    if err := fd.Write("fd.pprof"); err != nil { 
        log.Fatal(err)
    }
}

We open the file using our fd.Open function, which starts recording it in the
profile as a side effect of opening the file.

We always need to ensure the file will be closed when we don’t need it anymore.
This saves resources (like file descriptor) and more importantly, flushes any buf‐
fered writes and records that the file is no longer used.

To demonstrate our profiling works, we first open 10 files and close them,
repeated 10 times. We use /dev/null as our dummy file for testing purposes.

Finally, we create 110 files using methods that are chained in some way. Then we
take a snapshot of this situation in the form of our fd.inuse profile. I use
the .pprof file extension for this file (Go documentation uses .prof), but techni‐
cally it’s a gzipped (compressed using gzip program) protobuf file, so the .pb.gz
file extension is often used. Use whatever you find more readable.

What’s happening in the code in Example 9-2 might seem straightforward. In prac‐
tice, however, the complexity of our Go program might cause us to wonder what
piece of code creates so many files that are not closed. The data saved in the created
fd.pprof should give us an answer to this question. We refer to the pprof format in
the Go community as simply a gzipped protobuf (binary format) file. The format is
typed with the schema defined in the .proto language and officially defined in
google/pprof project’s proto file.

To learn the pprof schema and its primitives quickly, let’s look at what the fd.pprof
file produced in Example 9-2 could store. The high-level representation of the open
(in use) and total file descriptors diagram is presented in Figure 9-1.

Figure 9-1 shows what objects are stored in pprof format and a few core fields those
objects contain (there are more). As you might notice, this format is designed for effi‐
ciency, with many indirections (referencing other things via integer IDs). I skipped
that detail on the diagram for simplicity, but all strings are also referenced as integers
with the string table for interning.
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Figure 9-1. The high-level representation of open (in use) and total file descriptors in
pprof format

pprof format starts with the single root object called Profile, which contains the fol‐
lowing child objects:

Mappings

Not every program has debugging symbols inside the binary. For example, in
“Understanding Go Compiler” on page 118, we mentioned that Go has them by
default to provide human-readable stack traces that refer to source code. How‐
ever, someone compiling binary might remove this information to make the
binary size much smaller. If there are no symbols, the pprof file can be used with
addresses of stack frames (locations). Those addresses will then be dynamically
translated to the exact source code line by further tooling in a process called sym‐
bolization. Mapping allows specifying how addresses are mapped to the binary if
it’s dynamically provided in a later step.

Unfortunately, if you need a binary file, it has to be built from the same source
code version and architecture from which we gathered profiles. This is usually
very tricky. For example, when we obtain profiles from remote services (more on
that in “Capturing the Profiling Signal” on page 355), we most likely won’t have
the same binary on the machine where we analyze the profiles.
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Fortunately, we can store all required metadata in the pprof profile, so no sym‐
bolization is needed. This is what’s used for standard profiles in Go from Go 1.9,
so I will skip explaining the symbolization techniques.

Locations

Locations are code lines (or their addresses). For convenience, a location can
point to a function it was defined in and the source code filename. Location
essentially represents a stack frame.

Functions

Functions structures hold metadata about functions in which locations are
defined. They are only filled if debug symbols were present in the binary.

ValueTypes

This tells how many dimensions we have in our profiles. Each location can be
responsible for using (contributing to usage of) some values. Value types define
the unit and what that value means. Our Example 9-1 profile has only the
fd.inuse type, because the current, simplistic pprof.Profile does not allow
putting more dimensions; but for demonstration, Figure 9-1 has two types repre‐
senting total count and current count.

Contributions

The pprof format profile does not limit what the profile value
means. It’s up to the implementation to define the measured
value semantics. For example, in Example 9-1, I defined it as
the number of open files present at the moment of the profile
snapshot. For other “Common Profile Instrumentation” on
page 360, the value means something else: the time spent on
CPU, allocated bytes, or the number of goroutines executing
in a specific location. Always clarify what your profile values
mean!
Generally, most profile values tell us how much each part of
our code uses a certain resource or time. That’s why I stick to
the contribution verb when explaining profile values on
samples.

Samples

The measurement or measured contribution by a given stack trace of some value
for a given value type. To represent a stack trace (call sequence), a sample lists all
location IDs starting from the top of the stack trace. The important detail is that
the sample has to have the exact number of values equal to the number (and
order) of value types we have defined. We can also attach labels to samples. For
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example, we could attach the example filename that was open in that stack trace.
“Heap” on page 360 uses it to show average allocation size.

Further metadata
Information like when the profile was captured, data tracking duration (if appli‐
cable), and some filtering information can also be in the profile object. One of
the most important fields is the period field, which tells us if the profile was sam‐
pled or not. We track all the instrumented Open calls in Example 9-2, so we have
period equal to one.

With all those components, the pprof data model is very well designed with the
profiling data that describes any aspect of our software. It also works well with statis‐
tical profiles, which capture the data from a small portion of all the things that
happened.

In Example 9-2, tracking opened files does not pose too much overhead to the
application. Perhaps in extreme production cases calling Add and Remove, and map‐
ping objects on every file open and closed, might slow down some critical paths.
However, the situation is much worse with complex profiles like “CPU” on page 367
or “Heap” on page 360. For the CPU profile that profiles the use of the CPU by our
program, it’s impractical (and impossible) to track what exact instruction was exe‐
cuted in every single cycle. This is because, for every cycle, we would need to capture
a stack trace and record it in memory, which, as we learned in Chapter 4, can take
hundreds of CPU cycles alone.

This is why the CPU profile has to be sampled. This is similar to other profiles, like
memory. As you will learn in “Heap” on page 360, we sample it because tracking all
individual allocations would add significant overhead and slow down all allocations
in our program.

Fortunately, even with highly sampled profiles, profiling is extremely useful. By
design, profiling is primarily used for bottleneck analysis. By definition, the bottle‐
neck is something that uses most of some resources or time. This means that no mat‐
ter if we capture 100%, 10%, or even 1% of events that use, e.g., the CPU time,
statistically, the code that uses the most CPU should still be at the top with the largest
usage number. This is why the more expensive profiles will always be sampled in
some way, which allows Go developers to safely pre-enable profiles in almost all our
programs. It also enables the continuous profiling practices discussed in “Continuous
Profiling” on page 373.
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Statistical Profiles Are Not 100% Precise

In the sampled profile, you can miss some portion of the
contributions.
Profilers like Go have a sophisticated scaling mechanism that
attempts to find the probability of missing the allocations and
adjust for it, which usually is precise enough.
Yet, those are only approximations. We can sometimes miss some
code locations with smaller allocations on our profiles. Sometimes
the real allocation is a little larger or smaller than estimated.
Make sure to check the period information in the pprof profiles
(explained in “go tool pprof Reports”), and be aware of the sam‐
pling in your profiles to reach the right conclusions. Don’t be sur‐
prised and worried that your benchmarked allocation numbers do
not exactly match the numbers in the profile. We can be entirely
certain about absolute numbers only when we obtain a profile with
a period equal to one (100% samples).

With the fundamentals of the pprof standard explained, let’s look at what we can do
with such a .pprof file. Fortunately, we have plenty of tools that understand this for‐
mat and help us analyze the profiling data.

go tool pprof Reports
There are many tools (and websites!) out there you can use to parse and analyze
pprof profiles. Thanks to a clear schema, you can also easily write your own tool.
However, the most popular one out there is the google/pprof project, which imple‐
ments the pprof CLI tool for this purpose. The same tool is also vendored in the Go
project, which allows us to use it through the Go CLI. For example, we can report all
the pprof relevant fields in semi-human readable format using the go tool pprof -
raw fd.pprof command, as presented in Example 9-3.

Example 9-3. Raw debug output of the .pprof file using the Go CLI

go tool pprof -raw fd.pprof
PeriodType: fd.inuse count
Period: 1 
Time: 2022-07-29 15:18:58.76536008 +0200 CEST
Samples:
fd.inuse/count
        100: 1 2
         10: 1 3 4
          1: 5 4
          1: 6 4
Locations
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7 The :8080 is shorthand for 0.0.0.0:8080, so listening on all network interfaces of your machine.

8 To run this command or generate graphs, you need to install the graphviz tool on your machine.

9 This guide is for the web interface from Go 1.19. There are no hints that it will change, but the pprof tool may
be enhanced or updated in subsequent versions of Go.

1: 0x4b237b M=1 main.(*TestApp).open example/main.go:23 s=0
    main.(*TestApp).OpenTenFiles example/main.go:33 s=0
2: 0x4b25cd M=1 main.(*TestApp).Open100FilesConcurrently.func1 (...)
3: 0x4b283a M=1 main.main example/main.go:64 s=0
4: 0x435b51 M=1 runtime.main /go1.18.3/src/runtime/proc.go:250 s=0
5: 0x4b26f2 M=1 main.main example/main.go:60 s=0
6: 0x4b2799 M=1 main.(*TestApp).open example/main.go:23 s=0
    main.(*TestApp).OpenSingleFile example/main.go:28 s=0
    main.main example/main.go:63 s=0
Mappings
1: 0x400000/0x4b3000/0x0 /tmp/go-build3464577057/b001/exe/main  [FN]

The -raw output is currently the best way to discover what sampling (period)
was used when capturing the profile. Using it with the head utility lets us see the
first few rows containing that information, which is useful for large profiles, for
example, go tool pprof -raw fd.pprof | head.

The raw output can reveal some basic information about the data contained by the
profile, and it helped create the diagram in Figure 9-1. However, there are much bet‐
ter ways to analyze bigger profiles. For example, if you run go tool pprof fd.pprof,
it will enter an interactive mode that lets you inspect different locations and generate
various reports. We won’t cover this mode in this book because there is a much better
way these days that does almost all the interactive mode can—the web viewer!

The most common way to run a web viewer is to run a local server on your machine
via the Go CLI. Use the -http flag to specify the address with the port to listen on.
For example, running the go tool pprof -http :8080 fd.pprof 7 command will
open the web viewer website8 in your browser showing the profile obtained in
Example 9-2. The first page you would see is a directed graph rendered based on the
given fd.pprof profile (see “Graph” on page 347). But before we get there, let’s get
familiar with the top navigation menu available9 in the web interface, shown in
Figure 9-2.
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10 You can also hover over each menu item, and after three seconds a short help pop-up will appear.

Figure 9-2. The top navigation on the pprof web interface

From the left, the top gray overlay menu has the following buttons and inputs:10

VIEW
Allows you to choose different views (reports) of the same profiling data. We will
go through all six view types in the subsections below. They all show profiles
from a slightly different angle and have a purpose; you might favor different
ones. They are generated from the location hierarchy (stack trace) that can be
reconstructed from the samples in Figure 9-1.

SAMPLE
This menu option is not present in Figure 9-2 because we only have one sample
value type (fd.inuse type with count unit), but for profiles with more types, the
SAMPLE menu allows us to choose what sample type we want to use (we can use
one at a time). This is commonly present on heap profiles.

REFINE
This menu works only in the Graph and Top views (see “Graph” on page 347 and
“Top” on page 345). It allows filtering the Graph or Top views to certain locations
of interest: nodes in the graph and rows in the top table. It is especially useful for
very complex profiles with hundreds or more locations. To use it, click on one or
more Graph nodes or rows in the Top table to select the locations. Then click
REFINE and choose if you want to focus, ignore, hide, or show them.

Focus and Ignore control the visibility of samples that go through a selected node
or row, allowing you to focus on or ignore full stack traces. Hide and Show con‐
trol only the node or row’s visibility without impacting samples.

The same filtering can be applied using -focus and other flags in the go tool
pprof CLI. Additionally, the REFINE > Reset option brings us back to a
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nonfiltered view, and if you change to a view that does not support refined
options, it only persists in the Focus value.

Focus and Ignore are incredibly useful when you want to find
the exact contribution of a certain code path. On the other
hand, you can use Hide and Show when you want to present
the graph to somebody or as documentation for a clearer
picture.
Don’t use those options if you’re trying to mentally correlate
your code with the profile, as you can get easily confused,
especially at the start of your profiling journey.

CONFIG
The refinement settings you used from the REFINE option are saved in the URL.
However, you can save these settings to a special, named configuration (as well as
a zoom option for the Graph view). Click CONFIG > Save As …, then choose the
configuration you will be using. The Default configuration works like REFINE >
Reset. The configuration is saved under <os.UserConfigDir>/pprof/settings.json.
On my Linux machine, it is in ~/.config/pprof/settings.json. This option also
works only on the Top and Graph views and automatically changes to Default if
you change to any other view.

DOWNLOAD
This option downloads the same profile you used in go tool pprof. It is useful if
someone exposes the web viewer on the remote server and you want to save the
remote profile.

Search regexp
You can search for samples of interest using the RE2 regular expression syntax
by the location’s function name, filename, or object name. This sets the Focus
option in the REFINE menu. In some views, like Top, Graph, and os.ReadFile,
the interface also highlights matched samples as you write the expression.

The binary name and sample type
In the right-hand corner is a link with the chosen binary name and sample value
type. You can click this menu item to open a small pop-up with quick statistics
about the profile, view, and options we are running with. For example, Figure 9-2
shows what you see when you click on that link with some REFINE options on.

Before diving into the different views available in the pprof tool, we have to under‐
stand important concepts of Flat and Cumulative (Cum for short) values for certain
location granularity.
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11 From the perspective of the profiling, the direct (Flat) contribution is decided by instrumentation implemen‐
tation. Our custom code in Example 9-1 treats the fd.Open function as the moment the file descriptor was
opened. Different profiling implementations might define the moment of “use” differently (moment of the
allocation, use of CPU time, waiting for lock opening, etc.).

Every pprof view shows Flat and Cumulative values for one or
more locations:

• Flat represents a certain node’s direct responsibility for
resource or time usage.

• Cumulative is a sum of direct in indirect contributions. Indi‐
rect means that the locations did not create any resource (or
were not used anytime) directly, but may have invoked one or
more functions that did.

Using code examples is best to explain those definitions in detail. Let’s use part of the
main() function from Example 9-2 presented in Example 9-4.

Example 9-4. Snippet of Example 9-2 explaining Flat and Cumulative values

func main() { 
    // ...

    f, _ := fd.Open("/dev/null") // TODO: Check error. 
    a.files = append(a.files, f) 

    a.OpenSingleFile("/dev/null")
    a.OpenTenFiles("/dev/null") 

    // ...
}

Profiling is tightly coupled with a stack trace representing a call sequence that led
to a certain sample, so in our case, opening files. However, we could aggregate all
samples going through the main() function to learn more. In this case, the
main() function Flat number of open files is 1, Cum is 12. This is because, in the
main function, we directly open only one file (via fd.Open);11 the rest were
opened via chained (descendant) functions.

From our fd.pprof profile, we could find that this code line Flat value is 1 and
Cum is 1. It directly opens one file and does not contribute indirectly to any
more file descriptor usage.

append does not contribute to any sample. Therefore, no sample should include
this code line.
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The code line that invokes the a.OpenSingleFile method has a Flat value of 0
and a Cum of 1. Similarly, the a.OpenTenFiles method Flat value is 0 and Cum
is 10. Both directly in the moment of the CPU touching this program line do not
create (yet) any files.

I find the Flat and Cum names quite confusing, so I will use the direct and cumula‐
tive terms in further content. Both numbers are beneficial to compare what parts of
the code contribute to the resource usage (or time used). The cumulative number
helps us understand what flow is more expensive, whereas the direct value tells us the
source of the potential bottleneck.

Let’s walk through the different views and see how we can use them to analyze the
fd.pprof file obtained in Example 9-2.

Top
First on the VIEW list, the Top report shows a table of statistics per location grouped
by functions. The view for the fd.pprof file is presented in Figure 9-3.

Figure 9-3. The Top view is sorted by the direct value

Each row represents direct and cumulative contributions of open files for the single
function, which, as we learned from Example 9-4, aggregates the usage of one or mul‐
tiple lines within that function. This is called function granularity, which can be con‐
figured by URL or CLI flag.

Choose Your Granularity
Certain views like Top, Graph, and Flame Graph allow us to group locations by file,
function, or not group at all (grouping by line or address). This means that one entry,
row, or graph node will group contributions from all lines within a single function or
file.

You can choose the granularity by using one of the following flags in the go tool
pprof command: -functions (default option), -files, -lines, or -address. Simi‐
larly, you can set this using the URL parameter ?g=<granularity>.
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Usually, function granularity is low enough, especially given low sampling rates (e.g.,
in the CPU profile). However, switching to line granularity effectively tells us exactly
which code line contributes to the resource we profile for and where to find it. If the
function has a nonzero direct contribution value, you might want to check what exact
part of the function is a bottleneck!

We already defined the values represented by the Flat and Cum columns. Other col‐
umns in this view are:

Flat%
The percentage of the row’s direct contributions to the program’s total contribu‐
tions. In our case, 99.11% of the open file descriptors were created directly by the
open method (111 out of 112).

Sum%
The third column is the percentage of all direct values from the top to the current
flow to the total contributions. For instance, the 2 top rows are directly responsi‐
ble for all 112 file descriptors. This statistic allows us to narrow down to the func‐
tions that might matter the most for our bottleneck analysis.

Cum%
The percentage of the cumulative contribution of the row to the total
contributions.

Be Careful When Goroutines Are Involved

The cumulative value can be misleading in some cases with
goroutines. For example, Figure 9-3 indicated that run
time.main cumulatively opened 12 files. However, from
Example 9-2 you can find that it also executes the
Open100FilesConcurrently method, which then executes
Open100FilesConcurrently.func1 (anonymous function) as
a new goroutine. I would expect a link from runtime.main to
Open100FilesConcurrently.func1 in the Graph, and the
cumulative value of runtime.main to be 112.
The problem is that stack traces of each goroutine in Go are
always separate. Therefore, there is no relation between gorou‐
tines in which goroutine created which one, which will be
clear when we look at the goroutine profiles in “Goroutine” on
page 365. We must keep this in mind while analyzing our pro‐
gram’s bottleneck.
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Name and Inlined
The function name for the location and whether it was inlined during compila‐
tion. In Example 9-2, both open and OpenSingleFile were simple enough for
compiler to inline them to the parent functions. You can represent the situation
from the binary (after inline) by adding the -noinlines flag to the pprof com‐
mand or by adding the ?noinlines=t URL parameter. Seeing the situation
before inlining is still recommended to map what happened to the source code
more easily.

The sorting order of rows in our Top table is by direct contribution, but we can
change it with the -cum flag to order by cumulative values. We can also click on each
header in the table to trigger different sorting in this view.

The Top view might be the simplest and fastest way to find the functions (or files or
lines, depending on the chosen granularity) directly or cumulatively responsible for
using resources or time you are profiling for. The downside is that it does not tell us
the exact link between those rows, which would tell us which code flow (full stack
trace) might have triggered the usage. For such cases, it might be worth using the
Graph view explained in the next section.

Graph

The Graph view is the first thing you see when opening the pprof tool web interface.
This is not without reason—humans work better if things are visualized than if we
have to parse and visualize all in our brain from the text report. This is my favorite
view as well, especially for profiles obtained from less familiar code bases.

To render the Graph view, the pprof tool generates a graphical directed acyclic graph
(DAG) from the provided profile in the DOT format. We can then use the -dot flag
with go tool pprof, and use other rendering tools or render it to the format we want
with the -svg, -png, -jpg, -gif, or -pdf formats. On the other hand, we have the -
http option that generates a temporary graphic using the .svg format and starts the
web browser from it. From the browser, we can see the .svg visualization in the
Graph view and use the interactive REFINE options explained before: zoom in, zoom
out, and move around through the graph. The example Graph view from our fd.pprof
format is presented in Figure 9-4.
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Figure 9-4. The Graph view of Example 9-2 with function granularity

What I love about this view is that it clearly represents the relation (hierarchy) of dif‐
ferent execution parts of your program regarding resource or time usage. While it
might be tempting, you cannot move nodes around. You can only hide or show them
using the REFINE options. Hovering over a node also shows the full package name or
code line.

On top of that, every aspect of this graph has its meaning, which helps to find the
most expensive parts. Let’s go through the graph attributes:
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12 The REFINE hidden option keeps the line solid.

Node
Each node represents the contribution of a function for the currently opened
files. This is why the first part of the text in the node shows the Go package and
function (or method). We would see the code line or file if we chose a different
granularity. The second part of the node shows the direct and cumulative values.
If any of the values are nonzero, we see that the percentage of that value to the
total contributions. For example, in Figure 9-4 we see the main.main() node (on
the right) confirms the number we found in Example 9-4. Using pprof, we recor‐
ded 1 direct contribution and 12 cumulative ones in that function. The color and
size tell us something too:

• The size of the node represents direct contributions. The bigger the node, the
more resource or time it used directly.

• The border and fill color represent cumulative values. The normal color is
gold. Large positive cumulative numbers make the node red. Cumulative
values close to zero cause the node to be gray.

Edge
Each edge represents the call path between functions (files or lines). The call does
not need to be direct. For example, if you use the REFINE option, you can hide
multiple nodes that were called between two, causing the edge to show an indi‐
rect link. The value on the edge represents the cumulative contributions of that
code path. The inline word next to the number tells us that the call pointed to
by edge was inlined into the caller. Other characteristics matter as well:

• The weight of the edge indicates cumulative contributions by a path. The
thicker the edge, the more resources were used.

• The color shows the same. Normally an edge is gold. Larger positive values
color an edge red, close to zero to gray.

• A dashed edge indicates that some connected locations were removed, e.g.,
because of a node limit.12
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Some Nodes Might Be Hidden!

Don’t be surprised if you don’t see every contribution to the
resource you profile in the Graph view. As I mentioned before,
most of the profiles are sampled. This means that statistically, the
locations that contribute a little might be missed in the resulting
profile.
The second reason is the node limit in the pprof viewer. By default,
it does not show more than 80 nodes for readability. You can
change that limit using the -nodecount flag.
Finally, the -edgefraction and -nodefraction settings hide the
edges and nodes with the fraction of direct contribution to the total
contribution lower than the specified value. By default it is 0.005
(0.5%) for node fraction and 0.001 (0.1%) for edge fraction.

With theory aside, what can we learn from the pprof Graph view? This view is per‐
fect for learning about efficiency bottlenecks and how to find their source. From
Figure 9-4 we can immediately see that the biggest cumulative contributor is
Open100FilesConcurrently, which seems to be a new goroutine since it is not con‐
nected to the runtime/main function. It might be a good idea to optimize that path
first. The most open files come from OpenTenFiles and open. This tells us that it’s a
critical path for the efficiency of this resource. If some new functionality required cre‐
ating an additional file on every open call, we would see a significant growth in
opened file descriptors by our Go program.

The Graph view is an excellent method to understand how your application’s differ‐
ent functionalities impact your program’s resource usage. It is especially important
for more complex programs with large dependencies your team did not create. As it
turns out, it is easy to misunderstand the right way of using the library you depend
on. Unfortunately, this also means that there will be a lot of function names or code
lines you don’t recognize or don’t understand. See Figure 9-5, taken from the opti‐
mized Sum we optimize in “Optimizing Latency Using Concurrency” on page 402.

This result also proves the importance of the skill of switching between different
granularity. It’s as easy as adding to a URL ?g=lines to switch to line granularity—
it’s way more effective than reopening go tool pprof with the -lines flag.
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Figure 9-5. Snippet of the Graph view of the CPU profile taken from Example 10-10
with line granularity

Don’t Be Afraid of Unknowns!
It’s normal to feel a bit anxious if you see your Go program’s Graph profile for the
first time. For example, it isn’t uncommon to see various runtime functions. We
don’t need to always have an idea of what they do exactly, but we can always find that
information if we want to!

Build your confidence in being able to dive into any new function or code line that
matters. In Figure 9-5, the runtime.newproc function was one of the biggest bottle‐
necks for CPU time. Instinct might tell us it has something to do with creating a new
goroutine (kind of new process), but it’s relatively easy to confirm:

• A quick Google search for runtime.newproc github or Peek, Source, and
Disassemble views gives us the exact code line of newproc. From this, we can try
to read the comment or code and figure out what this function is responsible for
(not always trivial).
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• The Top view or Graph view with line granularity tells the exact line where this
contribution starts. As presented in Figure 9-5, it is triggered by line 120, which
clearly shows creation of the goroutine!

Following the Graph view, we have the latest addition to the pprof tool—the Flame
Graph view, which many members of the Go community prefer. So let’s dive into it.

Flame Graph

The Flame Graph (sometimes also called the Icicle Graph) view in pprof is inspired
by Brendan Gregg’s work, focused initially on CPU profiling.

A flame graph visualizes a collection of stack traces (aka call stacks), shown as an adja‐
cency diagram with an inverted icicle layout. Flame graphs are commonly used to vis‐
ualize CPU profiler output, where stack traces are collected using sampling.

—Brendan Gregg, “The Flame Graphs”

The Flame Graph report rendered from fd.pprof is presented in Figure 9-6.

Color and Order of Segments Usually Do Not Matter

This depends on the tool that renders the Flame Graph, but for the
pprof tool, both color and order do not have any meaning here.
The segments are typically sorted by the location name or label
value.

Figure 9-6. The Flame Graph view of Example 9-2 with a function granularity

The pprof is an inverted version of the original Flame Graph, where each significant
code flow forms a separate icicle. The main attribute that matters here is the width of
the rectangular segment, which represents the node from the Graph view—function
in our case. The wider the block, the larger the cumulative contribution it is
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responsible for. You can hover over individual segments to see their absolute and
percentage cumulative values. Click on each block to focus the view on the given
code path.

Instead of edges, we can follow call hierarchy by looking at what’s above the current
segment. Don’t focus too much on the height of the icicle—it only shows how com‐
plex (deep) the call stack is. It’s the width that matters here.

In some way, a Flame Graph is often favored by more advanced engineers because it’s
more compact. It allows a pragmatic insight into the biggest bottlenecks of the sys‐
tem. It immediately shows the percentage of all resources that each code path con‐
tributed. At a glance, in Figure 9-6 we can quickly tell without any interactivity that
Open100FilesConcurrently.func1 is the major bottleneck of opened files with
approximately 90% of resources used by it. The Flame Graph is also excellent to show
if there is any major bottleneck. On some occasions, a lot of small contributors might
together generate a large usage. A Flame Graph will tell us about this situation imme‐
diately. Note that similar to the Figure 9-4 view, it can drop many nodes from the
view. The number of dropped nodes is presented if you click the binary name at the
top right corner.

Any of the three views we discussed—Top, Graph, or Flame Graph—should be the
first point of interest to find the biggest bottleneck in our program efficiency.
Remember about sampling, switching granularity to learn more, and focusing your
time on the biggest bottlenecks first. However, three more views are worth briefly
mentioning: Peek, Source, and Disassemble. Let’s look at them in the next section.

Peek, Source, and Disassemble
The other three views—Peek, Source, and Disassemble—are not affected by the gran‐
ularity option. They all show the raw line or address level of locations, which is espe‐
cially useful if you want to go back to your source code to focus on your code
optimization inside your favorite IDE.

The Peek view provides a table similar to the Top view. The only difference is that
each code line shows all direct callers and the usage distribution in the Call and Calls
% columns. It helps in cases with many callers where you want to narrow down the
code path that contributes the most.

One of my favorite tools is the Source view. It shows the exact code line in the context
of the program source code. In addition, it shows the few lines before and after.
Unfortunately, the output is not ordered, so you have to use previous views to know
what function or code line you want to focus on, and use the Search feature to focus
on what you want. For example, we could see direct and cumulative contributions of
Open100FilesConcurrently directly mapped to the code line in our code, as presen‐
ted in Figure 9-7.
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13 Note that currently there are some bugs in this view in pprof. When you are missing binary, the UI shows no
matches found for regexp:. Search also does not work, but you can use the built-in browser search to find
what you want (e.g., using Ctrl+F).

Figure 9-7. The Source view of Example 9-2 focused on the
Open100FilesConcurrently search

For me, there is something special in the Source view. Seeing the open file descrip‐
tors, allocation points, CPU time, etc., directly mapped to a code statement in your
source code gives a bigger understanding and awareness than seeing lines as a bunch
of boxes in Figure 9-4. For the standard library code, or when you provide a binary
(as mentioned for the Disassemble view), you can also click on a function to display
its assembly code!

The Source view is incredibly useful when attempting to estimate the “Complexity
Analysis” on page 240 of the code we profile. I recommend using the Source view if
you can’t fully wrap your head around the part of the code that uses the resource and
why.

Finally, the Disassemble view is useful for advanced profiling. It provides the Source
view, but at the assembly level (see “Assembly” on page 115). It allows checking com‐
pilation details around the problematic code. This view requires a provided binary
built from the same source code as the program you took the profile from. For
example, for my case with the fd.inuse file, I have to provide a statically built binary
via a path using go tool pprof -http :8080 pkg/profile/fd/example/main

fd.pprof.13
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14 For example, the plugin in VSCode or GoLand.

Currently, no mechanism will check if you are using the correct
program binary for the profile you analyze. Therefore, the results
might be, by accident, correct or totally wrong. The result in the
error case is nondeterministic, so ensure you provide the correct
binary!

The pprof tool is an amazing way to confirm, in a data-driven way, your initial
guesses about the efficiency of your application and what causes the potential prob‐
lems. The amazing thing about the skills you acquired in this section is that the men‐
tioned text and visual representations of the pprof profiles are not only used by the
native pprof tooling. Similar views and techniques are used among many other
profiling tools and paid vendor services, like Polar Signals, Grafana Phlare Google
Profiler, Datadog’s Continuous Profiler, Pyroscope project, and more!

It is also quite likely that your Go IDE14 supports rendering and gathering pprof pro‐
files out of the box. Using IDE is great as it can integrate directly into your source
code and enable smooth navigation through locations. However, I prefer go tool
pprof and pprof tool-based cloud projects like the Parca project since we often have
to profile on the macrobenchmarks level (see “Macrobenchmarks” on page 306).

With the format and visualization descriptions complete, let’s dive into how to obtain
profiles from your Go program.

Capturing the Profiling Signal
Recently we started treating profiling as a fourth observability signal. This is because
profiling, in many ways, is very similar to the previously discussed signals in Chap‐
ter 6, like metrics, logging, and tracing. For example, similar to other signals, we need
instrumentation and reliable experiments to obtain meaningful data.

We discussed how to write custom instrumentation in “pprof Format” on page 332,
and we will go through common existing profilers available in Go runtime. However,
it’s not enough to be able to fetch profiles about various resource usage in our pro‐
gram—we also need to know how to trigger situations that would give us the infor‐
mation about the efficiency bottleneck we want.

Fortunately, we already went through “Reliability of Experiments” on page 256 and
“Benchmarking Levels” on page 266 that explained reliable experiments. Profiling
practices are designed to integrate with our benchmarking process naturally. This
enables a pragmatic optimization workflow that fits well in our TFBO loop
(“Efficiency-Aware Development Flow” on page 102):
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1. We perform a benchmark on the desired level (micro, macro, or production) to
assure the efficiency of our program.

2. If we are not happy with the result, we can rerun the same benchmark while also
capturing the profile during or at the end of the experiment to find the efficiency
bottleneck.

Always-On Profiling

You can design your workflow to not need to rerun the benchmark
for profiling capturing. In “Microbenchmarks” on page 275, I rec‐
ommended always capturing your profiles on most of your Go
benchmarks. In “Continuous Profiling” on page 373, you will learn
how to profile continuously at macro or production levels!

Having instrumentation and the right experiment (reusing benchmarks) is great.
Still, we also need to learn how to trigger and transfer the profile from the instrumen‐
tation of your choice to analysis with the tools you learned in “go tool pprof Reports”
on page 340.

We need to know the API for the profiler we want to use for that purpose. As we
learned in Chapter 6, similar to other signals, we generally have two main types of
instrumentation: autoinstrumentation and manual. Regarding the former model,
there are many ways to obtain profiles about our Go program without adding a single
line of code! With technology like eBPF, we can have instrumentation for virtually
any resource usage of our Go program. Many open source projects, start-ups, or
established vendors are on the mission to make this space accessible and easier to use.

However, everything is a trade-off. The eBPF is still early technology that works only
on Linux. It has some portability challenges across Linux kernel versions and non‐
trivial maintainability costs. It is also usually a generic solution that will never have
the same reliability and ability to provide semantic, application-level profiles as we
can now with more manual, in-process profilers. Finally, this is a Go programming
language book, so I would love to share how to create, capture, and use native in-
process profilers.

The API for using instrumentation depends on the implementation. For example,
you can write a profiler that will save a profile on a disk every minute or every time
some event occurs (e.g., when a certain Linux signal is captured). However, generally
in the Go community, we can outline three main patterns of triggering and saving
profiles:
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Programmatically triggered
Most profilers you will see and use in Go can be manually inserted into your
code to save profiles when you want. This is what I used in Example 9-2 to cap‐
ture the fd.pprof file we were analyzing in “go tool pprof Reports” on page 340.
The typical interface has a signature similar to the WriteTo(w io.Writer) error
(used in Example 9-1) that captures samples that were recorded from the begin‐
ning of the program run. The profile in pprof format is then written to a writer
of your choice (typically a file).

Some profilers set an explicit starting point when the profiler starts recording
samples. This is true, for example, for the CPU profiler (see “CPU” on page 367)
that has a signature like StartCPUProfile(w io.Writer) error to start the
cycle, and then StopCPUProfile() to end the profiling cycle.

This pattern of using the profiles is great for quick tests in the development envi‐
ronment or when used in the microbenchmarks code (see “Microbenchmarks”
on page 275). Usually, however, developers don’t use it directly. Instead, they
often use it as a building block for two other patterns: Go benchmark integra‐
tions and HTTP handlers:

Go benchmark integrations
As presented in an example command I typically use for Go benchmarks in
Example 8-4, you can fetch all standard profiles from a microbenchmark by
specifying flags in the go test tool. Almost all profiles explained in “Common
Profile Instrumentation” on page 360 can be enabled using the -memprofile,
-cpuprofile, -blockprofile, and -mutexprofile flags. No need to put custom
code into your benchmark unless you want to trigger the profile at a certain
moment. There’s no support for custom profiles at the moment.

HTTP handlers
Finally, an HTTP server is the most common way to capture profiles for pro‐
grams at macro and production levels. This pattern is especially useful for back‐
end Go applications, which by default accept HTTP connections for normal use.
It’s then fairly easy to add special HTTP handlers for profiling and other moni‐
toring functionalities (e.g., the Prometheus /metrics endpoint). Let’s explore
this pattern next.

The standard Go library provides HTTP server handlers for all profilers using the
pprof.Profile structure, for example, our Example 9-1 profiler or any of the stan‐
dard profiles explained in “Common Profile Instrumentation” on page 360. You can
add these handlers to your http.Server in a few code lines in your Go program, as
presented in Example 9-5.
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Example 9-5. Creating the HTTP server with debug handlers for custom and standard
profilers

import (
    "net/http"
    "net/http/pprof"

    "github.com/felixge/fgprof"
)

// ...

m := http.NewServeMux() 
m.HandleFunc("/debug/pprof/", pprof.Index) 
m.HandleFunc("/debug/pprof/profile", pprof.Profile) 
m.HandleFunc("/debug/fgprof/profile", fgprof.Handler().ServeHTTP) 

srv := http.Server{Handler: m}

// Start server...

The Mux structure allows registering HTTP server handlers on specific HTTP
paths. Importing _ "net/http/pprof" will register standard profiles in the
default global mux (http.DefaultServeMux) by default. However, I always rec‐
ommend creating a new empty Mux instead of using a global one to be explicit for
what paths you are registering. That’s why I register them manually in my
example.

The pprof.Index handler exposes a root HTML index page that lists quick statis‐
tics and links to profilers registered using pprof.NewProfile. An example view is
presented in Figure 9-8. Additionally, this handler forwards to each profiler ref‐
erenced by name; for example, /debug/pprof/heap will forward to the heap pro‐
filer (see “Heap” on page 360). Finally, this handler adds links to cmdline and
trace handlers, which provides further debugging capabilities, and to the
profile registered line below.

The standard Go CPU is not using pprof.Profile, so we have to register that
HTTP path explicitly.

The same profile-capturing method can be used for third-party profilers, e.g., the
profiler for “Off-CPU Time” on page 369 called fgprof.
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15 Funny enough, the 165 number is excessive. Making this screenshot gave me the insight that I have a bug in
the labeler code. I was not closing the temporary file.

Figure 9-8. The served HTML page from the debug/pprof/ path of the server created in
Example 9-5

The index page is nice to have if you forget what name the profiler uses or what pro‐
filers you have available in your Go program. Notice that our custom Example 9-1
profiler is also on this list (fd.inuse with 165 files15), because it was created using
pprof.NewProfile. For programs that do not import the fd package that has the
code presented in Example 9-1, this index page would miss the fd.inuse line.

A nice debugging page is not the primary purpose of the HTTP handlers. Their fun‐
damental benefit is that a human operator or automation can dynamically capture
the profiles from outside, triggering them in the most relevant moments of the macro
test, incident, or normal production run. In my experience, I have found four ways of
using the profilers via the HTTP protocol:

• You can click on the link for the desired profiler in the HTML page visible in
Figure 9-8, for example, heap. This will open the http://<address>/debug/
pprof/heap?debug=1 URL that prints the count of samples per stack trace in the
current moment—a simplified memory profile in text format.
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• Removing the debug parameter will download the desired profile in pprof for‐
mat; e.g., the http://<address>/debug/pprof/heap URL in the browser will
download the memory profile explained in “Heap” on page 360 to a local file. You
can then open this file using go tool pprof, as I explained in “go tool pprof
Reports” on page 340.

• You can point the pprof tool directly to the profiler URL to avoid the manual
process of downloading the file. For example, we can open a web profiler viewer
for a memory profile if we run in our terminal go tool pprof -http :8080
http://<address>/debug/pprof/heap.

• Finally, we can use another server to collect those profiles to a dedicated database
periodically, e.g., using the Phlare or Parca projects explained in “Continuous
Profiling” on page 373.

To sum up, use whatever you find more convenient for the program you are analyz‐
ing. Profiling is great for understanding the efficiency of complex production appli‐
cations in a microservice architecture, so the pattern of the HTTP API for capturing
profiles is usually what I use. The Go benchmark profiling is perhaps the most useful
for the micro level. The mentioned access patterns are commonly used in the Go
community, but it doesn’t mean you can’t innovate and write the capturing flow that
will fit to your workflow better.

To explain the view types in “go tool pprof Reports” on page 340, pprof format, and
custom profilers, I created the simplest possible file descriptor profiling instrumenta‐
tion (Example 9-1). Fortunately, we don’t need to write our instrumentation to have
robust profiling for common machine resources. Go comes with a few standard pro‐
filers, well maintained and used by the community and users worldwide. Plus, I will
mention a useful bonus profiler from the open source community. Let’s unpack those
in the next section.

Common Profile Instrumentation
In Chapters 4 and 5, I explained two main resources we have to optimize for—CPU
time and memory. I also discussed how those could impact latency. The whole space
can be intimidating at first, given the complexity and the concern given in “Reliability
of Experiments” on page 256. This is why it’s critical to understand what common
profiling implementations Go has and how to use them. We will start with heap
profiling.

Heap
The heap profile, also sometimes referred to as the alloc profile, provides a reliable
way to find the main contributors of the memory allocated on the heap (explained in

360 | Chapter 9: Data-Driven Bottleneck Analysis

https://oreil.ly/Ru0Hu
https://oreil.ly/2PKkx


16 The same profile is also available via /debug/pprof/alloc. The only difference is that the alloc profile has
alloc_space as the default value type.

“Go Memory Management” on page 172). However, similar to the go_

memstats_heap metric mentioned in “Memory Usage” on page 234, it only shows
memory blocks allocated on the heap, not memory allocated on stack, or custom
mmap calls. Still, the heap part of Go program memory usually causes the biggest
problem; thus, the heap profile tends to be very useful, in my experience.

You can redirect the heap profile to io.Writer using pprof.Lookup

("heap").WriteTo(w, 0), with -memprofile on Go benchmark, or by calling
the /debug/pprof/heap URL with handlers, as in Example 9-5.16

The memory profiler has to be efficient for it to be feasible for practical purposes.
That’s why the heap profiler is sampled and deeply integrated with the Go runtime
allocator flow that is responsible for allocating values, pointers, and memory blocks
(see “Values, Pointers, and Memory Blocks” on page 176). The sampling can be con‐
trolled by the runtime.MemProfileRate variable (or the GODEBUG=memprofilerate=X
environment variable) and is defined as the average number of bytes that must be
allocated to record a profile sample. By default, Go records a sample per every 512 KB
of allocated memory on the heap.

What Memory Profile Rate Should You Choose?

I would recommend not changing the default value of 512 KB. It is
low enough for practical bottleneck analysis for most Go programs,
and cheap enough so we can always have it on.
For more detailed profiling values or to optimize a smaller size of
allocations on the critical path, consider changing it to one byte to
record all allocations in your program. However, this can impact
your application’s latency and CPU time (which will be visible on
the CPU profile). Still, it might be fine for your memory-focused
benchmark.

If you have multiple allocations in a single function, it is often useful to analyze the
heap profile in lines granularity (add the &g=lines URL parameter in the web
viewer). An example heap profile of labeler in the e2e framework (see “Go e2e
Framework” on page 310) is presented in Figure 9-9.
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Figure 9-9. The zoomed-in Graph view for the heap profile from the labeler Sum code
from Example 4-1 in alloc_space dimension and lines granularity

The unique aspect of the heap profile is that it has four value (sample) types, which
you can choose in a new SAMPLE menu item. The currently selected value type is
presented in the top right-hand corner. Each type is useful in a different way:

alloc_space

In this mode, the sample value means a total number of allocated bytes by loca‐
tion on the heap since the start of your program. This means that we will see all
the memory that was allocated in the past, but most likely is already released by
the garbage collection.

362 | Chapter 9: Data-Driven Bottleneck Analysis



Don’t be surprised to see huge values here! For example, if the
program runs for a longer time and one function allocates 100
KB every minute, it means ~411 GB after 30 days. This looks
scary, but the same application might just use a maximum of
10 MB of physical memory during those 30 days.

The total historical allocations are great to see in the code that in total allocated
the largest amount of bytes in the past, which can lead to problems with the max‐
imum memory used by that program. Even if the allocations made by certain
locations were small but very frequent, it might be caused by the impact of the
garbage collection (see “Garbage Collection” on page 185). The alloc_space is
also very useful for spotting past events that allocated large space.

For example, in Figure 9-9 we see 78.6% of cumulative memory used by the
bytes.Split function. This knowledge will be extremely valuable in the example
in “Optimizing Memory Usage” on page 395. As we already saw in “Go Bench‐
marks” on page 277, the number of allocations is way larger than the dataset, so
there must be a way to find a less expensive memory solution to splitting a string
into lines.

Resetting Cumulative Allocations

We can’t reset the heap profiler programmatically, for exam‐
ple, to start recording allocations from a certain moment.
However, as you will learn in “Comparing and Aggregating
Profiles” on page 378, we can perform operations like subtract‐
ing the pprof values. So for example, we can capture the heap
profile at moment A, then 30 seconds later at moment B, and
create a “delta” heap profile that will show what allocation
happened during those 30 seconds.
There is also a hidden feature for Go pprof HTTP handlers.
When capturing the heap profile, you can add a seconds
parameter! For example, with Example 9-5 you can
call http://<address>/debug/pprof/heap?seconds=30s to
remotely capture a delta heap profile!

alloc_objects

Similar to alloc_space, the value tells us about the number of allocated memory
blocks, not the actual space. This is mainly useful for finding the latency bottle‐
necks caused by frequent allocations.
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17 Unfortunately, given I took the snapshot when the load test finished, the current amount of spaces contrib‐
uted by code toward the heap is minimal and does not represent any interesting event that happened in the
past. You will see this value type being more useful in “Continuous Profiling” on page 373.

inuse_space

This mode shows the currently allocated bytes on the heap—the allocated mem‐
ory minus the released memory at each location. This value type is great for
cases when we want to find the memory bottleneck in a specific moment of the
program.17

Finally, this mode is excellent for finding memory leaks. The memory that was
constantly allocated and never released will stand out in the profile.

Finding the Source of the Memory Leaks

The heap profile shows the code that allocated memory blocks,
not the code (e.g., variables) that currently reference those
memory blocks. To discover the latter, we could use the view
core utility that analyzes the currently formed heap. This is,
however, not trivial.
Instead, try to statically analyze the code path first to find
where the created structures might be referred. But even
before that, check the goroutine profile in the next section
first. We will discuss this problem in “Don’t Leak Resources”
on page 426.

inuse_objects

The value shows the current number of allocated memory blocks (objects) on the
heap. This is useful to reveal the amount of live objects on the heap, which repre‐
sents well the amount of work for garbage collection (see “Garbage Collection”
on page 185). Most of the CPU-bound work of garbage collection is in the mark
phase that has to traverse through objects in a heap. So the more we have, the
larger the negative impact allocation might be.

Knowing how to use heap profiles is a must-have skill for every Go developer interes‐
ted in the efficiency of their programs. Focus on the code with the biggest contribu‐
tion of allocations space. Don’t worry about the absolute numbers that might not
correlate with the memory you use with other observability tools (see “Memory
Usage” on page 234). With higher memory profile rates, you see only a portion of the
allocations that statically matter.
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18 See the excellent goroutine profiler overview.

19 Technically speaking, the Go scheduler records that information. It can be exposed to us when stack is
retrieved with GODEBUG=tracebackancestors=X.

Goroutine
The goroutine profiler can show us how many goroutines are running and what
code they are executing. This includes all goroutines waiting on I/O, locks, channels,
etc. There is no sampling for this profile—all goroutines except system goroutines are
always captured.18

Similar to the heap profile, we can redirect this profile to io.Writer using
pprof.Lookup("goroutine").WriteTo(w, 0), with -goroutineprofile on Go
benchmark, or by calling the /debug/pprof/goroutine URL with handlers, as in
Example 9-5. The overhead of capturing a goroutine profile can be significant for Go
programs with a larger number of goroutines or when you care about every 10 ms of
your program latency.

The key value of the goroutine profile is to give you an awareness of what most of
your code goroutines are doing. In some cases, you might be surprised how many
goroutines your program requires to fulfill some functionality. Seeing a large (and
perhaps increasing) number of goroutines doing the same thing might indicate a
memory leak.

Remember that, as mentioned in Figure 9-3, for Go developers, by design, there is no
link between the new goroutine and the goroutine that created it.19 For this reason,
the root location we see in the profile is always the first statement or function where
the goroutine is called.

The example Graph view for our labeler program is presented in Figure 9-10. We
can see that labeler does not do a lot. In the zoom-out view, we can see there are
only 13 goroutines, and none of the locations are the application logic—only profiler
goroutine, signal goroutine, and a few HTTP server ones polling connection bytes.
This indicates that perhaps the server is waiting on a TCP connection for the incom‐
ing request.

Common Profile Instrumentation | 365

https://oreil.ly/U8tCN
https://oreil.ly/g3tl2
https://oreil.ly/bg2fB


Figure 9-10. The zoomed-in Graph view for the goroutine profile from the labeler
Sum code from Example 4-1

Still, Figure 9-10 makes you aware of a few common functions you can typically find
in the goroutine view:

runtime.gopark

The gopark is an internal function that keeps the goroutine waiting for the state
until an external callback will get it back to work. Essentially it is a way for the
runtime scheduler to pause (park) goroutines when they are waiting for things a
bit longer—for example, channel communication, network I/O, or sometimes
mutex locks.

runtime.chanrecv and runtime.chansend
As the name suggests, a goroutine in the chanrecv function is receiving messages
or waiting for something to be sent in the channel. Similarly, it is in chansend if
it is sending a message or waiting for the channel to have a buffer room.
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runtime.selectgo

You will see this if the goroutine is waiting or checking cases in the select state‐
ment.

runtime.netpollblock

The netpoll function sets the goroutine to wait until the I/O bytes are received
from the network connection.

As you can see, it’s fairly easy to track the functions’ meaning, even if you are seeing
them in your profile for the first time.

CPU
We profile the CPU to find the parts of code that use CPU time the most. Reducing
that allows us to reduce the cost of running our program and enable easier system
scalability. For the CPU-bound programs, shaving some CPU usage also means
reduced latency.

Profiling the CPU usage is proven to be very hard. The first reason for this is that the
CPU just does a lot in a single moment—the CPU clocks can perform billions of
operations per second. Understanding the full distribution of all the cycles across our
program code is hard to track without slowing down significantly. The multi-CPU
core programs make this problem even harder.

At the time of writing this book, Go 1.19 provides a CPU profiler integrated into the Go
runtime. Any CPU profiler adds some overhead, so it can’t just run in the background.
We have to start and stop it for the whole process explicitly. Like other profilers, we can
do that programmatically through the pprof.StartCPUProfile(w) and pprof.StopCPU
Profile() functions. We can use the -cpuprofile flag on Go benchmark or
the /debug/pprof/profile?seconds=<integer> URL with handlers in Example 9-5.

CPU Profile Has Its Start and End

Don’t be surprised if the profile HTTP handler does not return
the response immediately, as with other profiles! The HTTP han‐
dler will start the CPU profiler, run it for the number of seconds
provided in the seconds parameter (30 seconds if not specified),
and only then return the HTTP request.

The current implementation is heavily sampled. When the profiler starts, it schedules
the OS-specific timers to interrupt the program execution at the specified rate. On
Linux, this means using either settimer or timer_create to set up timers for each
OS thread, and in the Go runtime, listening for the SIGPROF signal. The signal inter‐
rupts the Go runtime, which then obtains the current stack trace of the goroutine
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20 See the proposal for the next iteration of the potential CPU profiler for a detailed description.

21 Technically speaking, there is one very hacky way of setting different profiling CPU rates. You can call run
time.SetCPUProfileRate() with the rate you want right before pprof.StartCPUProfile(w). The
pprof.StartCPUProfile(w) will try to override the rate, but it will fail due to the bug. Change the rate only if
you know what you are doing—100 Hz is usually a good default. Values higher than 250–500 Hz are not sup‐
ported by most of the OS timers anyway.

22 See this issue for a currently known list of OSes with certain problems.

executing on that OS thread. The sample is then queued into a pre-allocated ring
buffer, which is then scraped by the pprof writer every 100 milliseconds.20

The CPU profiling rate is currently hardcoded21 to 100 Hz, so it will record, in theory,
one sample from each OS thread every 10 ms of the CPU time (not real time). There
are plans to make this value configurable in the future.

Despite the CPU profile being one of the most popular efficiency workflows, it’s a
complex problem to solve. It will serve you well for the typical cases, but it’s not per‐
fect. For example, there are known problems on some OSes like the BSD22 and vari‐
ous inaccuracies in some specific cases. In the future, we might see some
improvements in this space, with new proposals being currently considered that use
hardware-based performance monitor units (PMUs).

The example CPU profile showing the distribution of CPU time taken by each func‐
tion for the labeler is presented in Figure 9-11. Given the inaccuracies from the
lower sampling rate, the function granularity view might lead to better conclusions.

Figure 9-11. The Flame Graph view for the 30-second CPU profile from the labeler
Sum code from Example 4-1 at functions granularity
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The CPU profile comes with two value types:

Samples
The sample value indicates the number of samples observed at the location.

CPU
Each sample value represents the CPU time.

From Figure 9-11, we can see what we have to focus on if we want to optimize CPU
time or latency caused by the amount of work by our labeler Go program. From the
Flame Graph view, we can outline five major parts:

io.Copy

This function used by the code responsible for copying the file from local object
storage takes 22.6% of CPU time. Perhaps we could utilize local caching to save
that CPU time.

bytes.Split

This splits lines in Example 4-1 and takes 19.69%, so this function might be
checked if there is any way we can split it into lines with less work.

gcBgMarkWorker

This function takes 15.6%, which indicates there was a large number of objects
alive on the heap. Currently, the GC takes some portion of CPU time for garbage
collection.

runtime.slicebytetostring

It indicates a nontrivial amount of CPU time (13.4%) is spent converting
bytes to string. Thanks to the Source view, I could track it to num,

err := strconv.ParseInt(string(line), 10, 64) line. This reveals a
straightforward optimization of trying to come up with a function that parses
integers directly from the byte slice.

strconv.ParseInt

This function uses 12.4% of CPU. We might want to check if there is any unnec‐
essary work or checks we could remove by writing our parsing function (spoiler:
there is).

Turns out, such a CPU profile is valuable even if it is not entirely accurate. We will
try the mentioned optimizations in “Optimizing Latency” on page 383.

Off-CPU Time
It is often forgotten, but the typical goroutines mostly wait for work instead of exe‐
cuting on the CPU. This is why when looking to optimize the latency of our
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23 In fact, even CPU time includes waiting for a memory fetch, as discussed in “CPU and Memory Wall Prob‐
lem” on page 126. This is, however, included in the CPU profile.

24 This view is heavily inspired by the Felix’s great guide.

program’s functionality, we can’t just look at CPU time.23 For all programs, especially
the I/O-bound ones, your process might take a lot of time sleeping or waiting. Specif‐
ically, we can define four categories that compose the entire program execution, pre‐
sented in Figure 9-12.

Figure 9-12. The process execution time composition24

The first observation is that the total execution time is longer than the wall time, so
real time elapsed when executing this program. It’s not because computers can slow
time somehow; it’s because all Go programs are multithreaded (or even multigorou‐
tines in Go), so the total measured execution time will always be longer than real
time. We can outline four categories of execution time:

CPU time
The time our program actively spent using CPU, as explained in “CPU” on page
367.

Block time
The mutex time, plus the time our process spent waiting for Go channel commu‐
nication (e.g., <-ctx.Done(), as discussed in “Go Runtime Scheduler” on page
138), so all synchronization primitives. We can profile that time using the block
profiler. It’s not enabled by default, so we need to turn it on by setting a nonzero
block profiling rate using runtime.SetBlockProfileRate(int). This specifies
the number of nanoseconds spent blocked for one blocking event sample. Then
we can use pprof.Lookup in Go, -blockprofile in Go benchmark, or the /
debug/pprof/block HTTP handler to capture contention and delay value
types.
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Mutex time
The time spent on lock contentions (e.g., the time spent in sync.RWMutex.Lock).
Like block profile, it’s disabled by default and can be enabled with runtime.Set
MutexProfileFraction(int). Fraction specifies that 1/<fraction> lock conten‐
tions should be tracked. Similarly, we can use pprof.Lookup in Go, -

mutexprofile in Go benchmark, or the /debug/pprof/mutex HTTP handler to
capture mutex and delay value types.

Untracked off-CPU time
The goroutines that are sleeping, waiting for CPU time, I/O (e.g., from disk, net‐
work, or external device), syscalls, and so on are not tracked by any standard
profiling tool. To discover the impact of that latency, we need to use different
tools as explained next.

Do We Have to Measure or Find Bottlenecks in Off-CPU Time?

Program threads spend a lot of time off-CPU. This is why the main
reason your program is slow might not be its CPU time. For exam‐
ple, suppose the execution of your program takes 20 seconds, but it
waits 19 seconds on an answer from the database. In that case, we
might want to look at bottlenecks in the database (or mitigate the
database slowness in our code) instead of optimizing the CPU
time.

Generally, it is recommended to use tracing to find the bottlenecks in the wall time
(latency) of our functionality. Especially, distributed tracing allows us to narrow
down our optimization focus to what takes the most time in the request of function‐
ality flow. Go has built-in tracing instrumentation, but it only instruments Go run‐
time, not our application code. However, we discussed basic tracing instrumentation
compatible with the cloud-native standards like OpenTelemetry to achieve
application-level tracing.

There is also an amazing profiler called the Full Go Profiler (fgprof) out there
focused on tracking both CPU and off-CPU time. While it’s not officially recom‐
mended yet and has known limitations, I found it very useful, depending on what
kind of Go program I analyze. The fgprof profile can be exposed using the HTTP
handler mentioned in Example 9-5. The example view of the fgprof profile for
labeler service is presented in Figure 9-13.
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25 This can be confirmed in Example 8-19 code, where the k6s script has only one user that waits 500 ms
between HTTP calls.

26 I skipped the threadcreate profile present in the Go pprof package as it’s known to be broken since 2013
with little priority to be fixed in the future.

Figure 9-13. The Flame Graph view for the 30-seconds-fgprof profile from the labeler
Sum code from Example 4-1 at functions granularity

From the profile, we can quickly tell that for most of the wall time, the labeler ser‐
vice is simply waiting for the signal interrupt or HTTP requests! If we are interested
in improving the maximum rate of the incoming requests that labeler can serve, we
can quickly find that labeler is not the problem, but rather the testing client is not
sending requests fast enough.25

To sum up, in this section, I presented the most common profiler implementations
that are used26 in the Go community. There are also tons of closed-box monitoring
profilers like Linux perf and eBPF-based profiles, but they are outside the scope of
this book. I prefer the ones I mentioned as they are free (open source!), explicit, and
relatively easy to use and understand.

Let’s now look at some lesser-known tools and practices I found useful when profil‐
ing Go programs.
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Tips and Tricks
There are three more advanced yet incredibly useful tricks for profiling I would love
you to know. These helped me analyze software bottlenecks even more effectively. So
let’s go through them!

Sharing Profiles
Typically, we don’t work on software projects alone. Instead, we are in a bigger team,
which shares responsibilities and reviews each other’s code. Sharing is caring, so sim‐
ilar to “Sharing Benchmarks with the Team (and Your Future Self)” on page 294, we
should focus on presenting our bottlenecks results and findings with team members
or other interested parties.

We download or check multiple pprof profiles in the typical workflow. In theory, we
could name them descriptively to avoid confusion and send them to each other using
any file-sharing solution like Google Drive or Slack. This, however, tends to be cum‐
bersome because the recipient has to download the pprof file and run go tool pprof
locally to analyze.

Another option is to share a screenshot of the profile, but we have to choose some
partial view, which can be cryptic for others. Perhaps others would like to analyze the
profile using a different view or value type. Maybe they want to find the sampling rate
or narrow the profile down to some code path. With just a screenshot, you are miss‐
ing all of those interactive capabilities.

Fortunately, some websites allow us to save pprof files for others or our future self
and analyze them without downloading that profile. For example, the Polar Signals
company hosts an entirely free pprof.me website that allows exactly that. You can
upload your profile (note that it will be shared publicly!) and share the link with team
members, who can analyze it using common go tools pprof reports views (see “go
tool pprof Reports” on page 340). I use it all the time with my team.

Continuous Profiling
In the open source ecosystem, continuous profiling was perhaps one of the most pop‐
ular topics in 2022. It means automatically collecting useful profiles from our Go pro‐
gram at every configured interval instead of being manually triggered.

In many cases, the efficiency problem happens somewhere in the remote environ‐
ment where the program is running. Perhaps it happened in the past in response to
some event that is now hard to reproduce. Continuous profiling tools allow us to
have our profiling “always on” and retrospectively look at profiles from the past.
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Say you see an increase in resource usage – say, CPU usage. And then you take a one-
time profile to try to figure out what’s using more resources. Continuous profiling is
essentially doing this all the time. (...) When you have all this data over time, you can
compare the entire lifetime of a version of a process to a newly rolled-out version. Or
you can compare two different points in time. Let’s say there’s a CPU or memory
spike. We can actually understand what was different in our processes down to the line
number. It’s super powerful, and it’s an extension of the other tools already useful in
observability, but it shines a different light on our running programs.

—Frederic Branczyk, “Grafana’s Big Tent: Continuous Profiling with Frederic
Branczyk”

Continuous profiling emerged in the cloud-native open source community as the
fourth observability signal, but it’s not new. The concept was introduced first in 2010
by the “Google-Wide Profiling: A Continuous Profiling Infrastructure For Data Cen‐
ters” research paper by Gang Ren et al., which proved that profiling can be used
against production workloads continuously without the major overhead, and helped
in efficiency optimizations at Google.

We have recently seen open source projects that made this technology more accessi‐
ble. I have personally used the continuous profiling tool for a couple of years already
to profile our Go services, and I love it!

You can quickly set up continuous profiling using the open source Parca project. In
many ways, it is similar to the Prometheus project. Parca is a single binary Go pro‐
gram that periodically captures profiles using the HTTP handlers we discussed in
“Capturing the Profiling Signal” on page 355 and stores them in a local database.
Then we can search for profiles, download them, or even use the embedded tool
pprof like a viewer to analyze them.

You can use it anywhere: set up continuous profiling on your production, remote
environment, or macrobenchmarking environment that might run in the cloud or on
your laptop. It might not make sense on a microbenchmarks level, as we run tests in
the smallest possible scope, which can be profiled for the full duration of the bench‐
mark (see “Microbenchmarks” on page 275).

Adding continuous profiling with Parca to our labeler macrobenchmark in
Example 8-19 requires only a few lines of code and a simple YAML configuration, as
presented in Example 9-6.

Example 9-6. Starting continuous profiling container in Example 8-19 between
labeler creation and k6 script execution

labeler := ...

parca := e2e.NewInstrumentedRunnable(e, "parca").
    WithPorts(map[string]int{"http": 7070}, "http").
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    Init(e2e.StartOptions{
        Image: "ghcr.io/parca-dev/parca:main-4e20a666", 
        Command: e2e.NewCommand("/bin/sh", "-c",
          `cat << EOF > /shared/data/config.yml && \
    /parca --config-path=/shared/data/config.yml
object_storage: 
  bucket:
    type: "FILESYSTEM"
    config:
      directory: "./data"
scrape_configs: 
- job_name: "%s"
  scrape_interval: "15s"
  static_configs:
    - targets: [ '`+labeler.InternalEndpoint("http")+`' ]
  profiling_config:
    pprof_config: 
      fgprof:
        enabled: true
        path: /debug/fgprof/profile
        delta: true
EOF
`),
        User:      strconv.Itoa(os.Getuid()),
        Readiness: e2e.NewTCPReadinessProbe("http"),
    })
testutil.Ok(t, e2e.StartAndWaitReady(parca))
testutil.Ok(t, e2einteractive.OpenInBrowser("http://"+parca.Endpoint("http"))) 

k6 := ...

The e2e framework runs all workloads in the container, so we do that for the
Parca server. We use the container image build from the official project page.

The basic configuration of the Parca server has two parts. The first is object stor‐
age configuration: where we want to store Parca’s database internal data files.
Parca uses FrostDB columnar storage to store debugging information and pro‐
files. To make it easy, we can use the local filesystem as our most basic object
storage.

The second important configuration is the scrape configuration that allows us to
put certain endpoints as targets to profile capturing. In our case, I only put the
labeler HTTP endpoint on the local network. I also specified to get the profile
every 15 seconds. For always-on production use, I would recommend larger
intervals, e.g., one minute.
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The common profile—like a heap, CPU, goroutine block, and mutex—are
enabled by default. However, we have to manually allow other profiles, like the
fgprof profile discussed in “Off-CPU Time” on page 369.

Once Parca starts, we can use the e2einteractive package to open the Parca UI
to explore viewer-like presentations of our profiles during or after the k6 script
finishes.

Thanks to continuously profiling, we don’t need to wait until our benchmark (using
the k6 load tester) finishes—we can jump to our UI straightaway to see profiles every
15 seconds, live! Another great thing about continuous profiling is that we can
extract metrics from the sum of all sample values taken from each profile over time.
For example, Parca can give us a graph of heap memory usage for the labeler con‐
tainer over time, taken from periodic heap inuse_alloc profiles (discussed in
Figure 9-9). The result, presented in Figure 9-14, should have values very close to the
go_memstats_heap_total metric mentioned in “Memory Usage” on page 234.

Figure 9-14. Screenshot of Parca UI result showing the labeler Figure 9-9
inuse_alloc profiles over time

You can now click on samples in the graph, representing the moment of taking the
profile snapshot. Thanks to continuous form, you can choose the time that interests
you the most, perhaps the moment when the memory usage was the highest! Once
clicked, the Flame Graph of that specific profile appears, as presented in Figure 9-15.
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Figure 9-15. Screenshot of Parca UI Flame Graph (called Icicle Graph in Parca) when
you click the specific profile from Figure 9-4

The Parca maintainers decided to use a different visual style for the Flame Graphs
than the go tool pprof tool in “Flame Graph” on page 352. However, as many other
tools in the profiling space, it uses the same semantics. This means we can use our
analyzing skills from go tool pprof specifics with different UIs like Parca.

In the profile view, we can download the pprof file we selected. We can share the
profile as discussed in “Sharing Profiles” on page 373, filter view, or choose different
views. We also see a Flame Graph representing the function’s contributions to the
live objects in a heap for the selected time. We could not easily capture that manually.
In Figure 8-5, I captured the profile after the interesting event happened, so I had to
use alloc_space that shows the total allocations from when the program started. For
a long-living process, this view might be very noisy and show situations that I am not
interested in. Even worse, the process might have restarted after certain events, like
panics or OOMs. Doing such a heap profile after restart will tell us nothing. A similar
problem occurs with every other profile that only shows the current or specific
moment, like goroutines, CPUs, or our custom file descriptor profile.

This is where continuous profiling proves to be extremely helpful. It allows us to have
profiles captured whenever an interesting event occurs, so we can quickly jump into
the UI and analyze for efficiency bottlenecks. For example, in Figure 9-15, we can see
the bytes.Split as the function that uses the most memory on the heap at the cur‐
rent moment.
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27 Phlare, Pyroscope, Google Cloud Profiler, AWS CodeGuru Profiler, or Datadog continuous profiler, to name
a few.

Overhead of Continuous Profiling

Capturing on-demand profiles has some overhead to the running
Go program. However, capturing multiple profiles periodically
makes this overhead continuous throughout the application run, so
ensure your profilers do not cause your efficiency to drop below
the expected level.
Try to understand the overhead of profiling in your programs. The
standard default Go profilers aim to not add more than 5% of the
CPU overhead for a single process. You can control that by chang‐
ing the continuous profiling interval or the sampling of profiles. It
is also useful to profile only one of many of the same replicas in
large deployments to amortize collection cost.
In our infrastructure at Red Hat, we run continuous profiling
always on with a one-minute interval, and we keep only a few days’
worth of profiles.

To sum up, I recommend continuous profiling on live Go programs that you know
might need continuous efficiency improvement in the future. Parca is one open
source example, but there are other projects or vendors27 that allow you to do the
same. Just be careful, as profiling might be addictive!

Comparing and Aggregating Profiles
The pprof format has one more interesting characteristic. By design, it allows certain
aggregations or comparison for multiple profiles:

Subtracting profiles
You can subtract one profile from another. This is useful to reduce noise and
narrow down to the event or component you care about. For example, you can
have a heap profile from one run of your Go program when you load tested
simultaneously with some A and B events. Then, you can subtract the heap sec‐
ond profile you have from the same Go program that was load tested with only
the B event to check what the impact was purely from the A event. The go tool
pprof allows you to subtract one profile from another using the -base flag—for
example, go tool pprof heap-AB.pprof -base heap-B.pprof.
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Comparing profiles
The comparison is similar to subtracting; instead of removing matching sample
values, it provides negative or positive delta numbers between profiles. This is
useful to measure the change of the contribution of a particular function before
and after optimization. You can also use go tool pprof to compare your pro‐
files using -diff_base.

Merging profiles
It is less known in the community, but you can merge multiple profiles into one!
The merging functionality allows us to combine profiles representing the current
situation. For example, we could take dozens of short CPU profiles into a single
profile of all the CPU work across a longer duration. Or perhaps we could merge
multiple heap profiles to the aggregate profile of all heap objects from multiple
time points.

The go tool pprof does not support this. However, you can write your own Go
program that does it using the google/pprof/profile.Merge function.

I wasn’t using these mechanics very often because I was easily confused with multiple
local pprof files when working with the go tool pprof tool. This changed when I
started working with more advanced profiling tools like Parca. As you can see in
Figure 9-14, there is a Compare button to compare two particular profiles, and a
Merge button to combine all profiles from the focused time range into one profile.
With the UI, it is much easier to select what profiles you want to compare or aggre‐
gate, and how!

Summary
Profiling space for Go might be nuanced, but it’s not that difficult to utilize once you
know the basics. In this chapter, we went through all the profiling aspects from the
common profilers, through capturing patterns and pprof format, to standard visuali‐
zation techniques. Finally, we touched on advanced techniques like continuous
profiling, which I recommend trying.

Profile First, Ask Questions Later

I would suggest using profiling in any shape that fits in your daily
optimization workflow. Ask questions like what is causing the
slowdown or high resource usage in your code only after you have
already captured the profiles from your program.
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I believe this is not the end of the innovations in this space. Thanks to common effi‐
cient profiling formats like pprof that allow interoperability across different tools and
profilers, we will see more tools, UI, useful visualizations, or even correlations with
different observability signals mentioned in Chapter 6.

Furthermore, more eBPF profiles are emerging in the open source ecosystem, making
profiling cheaper and more uniform across programming languages. So be open-
minded and try different techniques and tools to find out what works best for you,
your team, or your organization.
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1 For example, I already know about a strconv.ParseInt optimization coming to Go 1.20, which would
change the memory efficiency of the naive Example 4-1 without any optimization from my side.

CHAPTER 10

Optimization Examples

It’s finally time to collect all the tools, skills, and knowledge you gathered from the
previous chapters and apply some optimizations! In this chapter, we will try to rein‐
force the pragmatic optimization flow by going through some examples.

We will attempt to optimize the naive implementation of the Sum from Example 4-1. I
will show you how the TFBO (from “Efficiency-Aware Development Flow” on page
102) can be applied to three different sets of efficiency requirements.

Optimizations/pessimizations don’t generalize very well. It all depends on the code, so
measure each time and don’t cast absolute judgments.

—Bartosz Adamczewski, Tweet (2022)

We will use our optimization stories as a foundation for some optimization patterns
summarized in the next chapter. Learning about thousands of optimization cases that
happened in the past is not very useful. Every case is different. The compiler and lan‐
guage change, so any “brute-force” attempt to try those thousands of optimizations
one by one is not pragmatic.1 Instead, I have focused on equipping you with the
knowledge, tools, and practices that will let you find a more efficient solution to your
problem!

Please don’t focus on particular optimizations, e.g., the specific
algorithmic or code changes I applied. Instead, try to follow how I
came up with those changes, how I found what piece of code to
optimize first, and how I assessed the change.
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2 If you are interested in what input files I used, see the code I used for generating the input.

We will start in “Sum Examples” by introducing the three problems. Then we will
take the Sum and perform the optimizations in “Optimizing Latency” on page 383,
“Optimizing Memory Usage” on page 395, and “Optimizing Latency Using Concur‐
rency” on page 402. Finally, we will mention some other ways we could solve our
goals in “Bonus: Thinking Out of the Box” on page 411. Let’s go!

Sum Examples
In Chapter 4, we introduced a simple Sum implementation in Example 4-1 that sums
large numbers of integers provided in a file.2 Let’s leverage all the learning you have
gained and use it to optimize Example 4-1. As we learned in “Resource-Aware Effi‐
ciency Requirements” on page 86, we can’t “just” optimize—we have to have some
goal in mind. In this section, we will repeat the efficiency optimization flow three
times, each time with different requirements:

• Lower latency with a maximum of one CPU used
• Minimal amount of memory
• Even lower latency with four CPU cores available for the workload

The terms lower or minimal are not very professional. Ideally, we have some more
specific numbers to aim for, in a written form like a RAER. A quick Big O analysis
can tell us that the Sum runtime complexity is at least O(N)—we have to revisit all
lines at least once to compute the sum. Thus, the absolute latency goal, like “Sum has
to be faster than 100 milliseconds,” won’t work as its problem space depends on the
input. We can always find big enough input that violates any latency goals.

One way to address this is to specify the maximum possible input with some assump‐
tions and latency goals. The second is to define the required runtime complexity as a
function that depends on input—so throughput. Let’s do the latter and specify the
amortized latency function for the Sum. We can do the same with memory. So let’s be
more specific. Imagine that, for my hardware, a system design stakeholder came up
with the following required goals for the Sum in Example 4-1:

• Maximum latency of 10 nanoseconds per line (10 * N nanoseconds) with maxi‐
mum one CPU used

• Latency as above and a maximum of 10 KB of memory allocated on the heap for
any input
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• Maximum latency of 2.5 nanoseconds per line (2.5 * N nanoseconds) with maxi‐
mum four CPU used

What If We Can’t Match This Goal?

It might be the case that the goals we initially aimed for will be
hard to achieve due to underestimation of the problem, new
requirements, or new knowledge. This is fine. In many cases, we
can try to renegotiate the goals. For example, as we dissected in
“Optimization Design Levels” on page 98, every optimization
beyond a certain point costs more and more in time, effort, risk,
and readability, so it might be cheaper to add more machines,
CPUs, or RAM to the problem. The key is to estimate those costs
roughly and help stakeholders decide what’s best for them.

Following the TFBO flow, before we optimize, we first have to benchmark. Fortu‐
nately, we already discussed designs of benchmarks for the Sum code in “Go Bench‐
marks” on page 277, so we can go ahead and use Example 8-13 for our benchmarks. I
used the command presented in Example 10-1 to perform 5 10-second benchmarks
with a 2 million integer input file and limited to 1 CPU.

Example 10-1. The command to invoke the benchmark

export ver=v1 && go test -run '^$' -bench '^BenchmarkSum$' \
    -benchtime 10s -count 5 -cpu 1 -benchmem \
    -cpuprofile=${ver}.cpu.pprof -memprofile=${ver}.mem.pprof | tee ${ver}.txt

With Example 4-1, the preceding benchmark yielded the following results: 101 ms,
60.8 MB space allocated, and 1.60 million allocations per operation. Therefore, we
will use that as our baseline.

Optimizing Latency
Our requirements are clear. We need to make the Sum function in Example 4-1 faster
to achieve a throughput of at least 10 * N nanoseconds. The baseline results give us
50 * N nanoseconds. Time to see if there are any quick optimizations!

Optimizing Latency | 383



In “Complexity Analysis” on page 240, I shared a detailed com‐
plexity of the Sum function that clearly outlines the problems and
bottlenecks. However, I used information from this section to
define that. For now, let’s forget that we discussed such complexity
and try to find all the information from scratch.

The best way is to perform a bottleneck analysis using the profiles explained in Chap‐
ter 9. I captured the CPU profile on every benchmark with Example 8-4, so I could
quickly bring the Flame Graph of the CPU time, as presented in Figure 10-1.

Figure 10-1. Flame Graph view of Example 4-1 CPU time with function granularity

Profiling gives us a great overview of the situation. We see four clear major contribu‐
tors to the CPU time usage:

• bytes.Split

• strconv.ParseInt

• Runtime function runtime.slicebytetostr..., which ends with runtime.mal
loc, meaning we spent a lot of CPU time allocating memory

• Runtime function runtime.gcBgMarkWorker, which indicates GC runs
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The CPU profile gives us a list of functions we can go through and potentially cut out
some CPU usage. However, as we learned in “Off-CPU Time” on page 369, the CPU
time might not be a bottleneck here. Therefore, we must first confirm if our function
here is CPU bound, I/O bound, or mixed.

One way of doing this is by manually reading the source code. We can see that the
only external medium used in Example 4-1 is a file, which we use to read bytes from.
The rest of the code should only perform computations using the memory and CPU.

This makes this code a mixed-bound job, but how mixed? Should we start with file
reads optimization or CPU time?

The best way to find this out is the data-driven way. Let’s check both CPU and off-
CPU latency thanks to the full goroutine profile (fgprof) discussed in “Off-CPU
Time” on page 369. To collect it in the Go benchmark, I quickly wrapped our bench‐
mark from Example 8-13 with the fgprof profile in Example 10-2.

Example 10-2. Go benchmark with fgprof profiling

// BenchmarkSum_fgprof recommended run options:
// $ export ver=v1fg && go test -run '^$' -bench '^BenchmarkSum_fgprof' \
//    -benchtime 60s  -cpu 1 | tee ${ver}.txt 
func BenchmarkSum_fgprof(b *testing.B) {
    f, err := os.Create("fgprof.pprof")
    testutil.Ok(b, err)

    defer func() { testutil.Ok(b, f.Close()) }()

    closeFn := fgprof.Start(f, fgprof.FormatPprof)
    BenchmarkSum(b) 
    testutil.Ok(b, closeFn())
}

To get more reliable results, we have to measure for longer than five seconds.
Let’s measure for 60 seconds to be sure.

To reuse code and have better reliability, we can execute the same Example 8-13
benchmark, just wrapped with the fgprof profile.

The resulting fgprof.pprof profile after 60 seconds is presented in Figure 10-2.
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3 There is a small segment in Figure 10-2 that shows ioutil.ReadFile latency with 0.38% of all samples. When
we unfold the ReadFile, the syscall.Read (which we could assume is an I/O latency) takes 0.25%, given the
sum.BenchmarkSum_fgprof contributes to 4.67% of overall wall time (the rest is taken by benchmarking and
CPU profiling). The (0.25 * 100%)/4.67 is equal to 5.4%.

Figure 10-2. Flame Graph view of Example 4-1 CPU and off-CPU time with function
granularity

The full goroutine profile confirms that our workload is a mix of I/O (5%3) and CPU
time (majority). So while we have to worry about latency introduced by file I/O at
some point, we can optimize CPU time first. So let’s go ahead and focus on the big‐
gest bottleneck first: the bytes.Split function that takes almost 36% of the Sum CPU
time, as seen in Figure 10-1.

Optimize One Thing at a Time

Thanks to Figure 10-1, we found four main bottlenecks. However,
I have chosen to focus on the biggest one in our first optimization
in Example 10-3.
It is important to iterate one optimization at a time. It feels slower
than if we would try to optimize all we know about now, but in
practice, it is more effective. Each optimization might affect the
other and introduce more unknowns. We can draw more reliable
conclusions, e.g., compare the contributions percentage between
profiles. Furthermore, why eliminate four bottlenecks if optimizing
first might be enough to match our requirements?
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4 We can further inspect that using “Heap” on page 360 profile, which would in my tests show us that 78.6% of
the total 60.8 MB of allocation per operation is taken by bytes.Split!

Optimizing bytes.Split
To figure out where the CPU time is spent in bytes.Split, we have to try to under‐
stand what this function does and how. By definition, it splits a large byte slice into
smaller slices based on the potentially multicharacter separator sep. Let’s quickly look
at the Figure 10-1 profile and focus on that function using the Refine options. This
would show bytes.Index, and impact allocations and garbage collections with func‐
tions like makeslice and runtime.gcWriteBarrierDX. Furthermore, we could
quickly look into the Go source code for the genSplit used by bytes.Split to check
how it’s implemented. This should give us a few warning signals. There might be
things that bytes.Split does but might not be necessary for our case:

• genSplit goes through the slices first to count how many slices we expect to
have.

• genSplit allocates a two-dimensional byte slice to put the results in. This is scary
because for a large 7.2 MB byte slice with 2 million lines, it will allocate a slice
with 2 million elements. A memory profile confirms that a lot of memory is allo‐
cated by this line.4

• Then it will iterate two million times using the bytes.Index function we saw in
the profile. That is two million times we will go and gather bytes until the next
separator.

• The separator in bytes.Split is a multicharacter, which requires a more compli‐
cated algorithm. Yet we need a simple, single-line newline separator.

Unfortunately, such an analysis of the mature standard library functions might be
difficult for more beginner Go developers. What parts of this CPU time or memory
usage are excessive, and what aren’t?

What always helps me to answer this question is to go back to the algorithm design
phase and try to design my own simplest splitting-lines algorithm tailored for the Sum
problem. When we understand what a simple, efficient algorithm could look like and
we are happy with it, we can then start challenging existing implementations. It turns
out there is a very simple flow that might work for Example 4-1. Let’s go through it in
Example 10-3.
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Example 10-3. Sum2 is Example 4-1 with optimized CPU bottleneck of bytes.Split

func Sum2(fileName string) (ret int64, _ error) {
    b, err := os.ReadFile(fileName)
    if err != nil {
        return 0, err
    }

    var last int 
    for i := 0; i < len(b); i++ {
        if b[i] != '\n' { 
            continue
        }
        num, err := strconv.ParseInt(string(b[last:i]), 10, 64)
        if err != nil {
            return 0, err
        }

        ret += num
        last = i + 1
    }
    return ret, nil
}

We record the index of the last seen newline, plus one, to tell where the next line
starts.

Compared to bytes.Split, we can hardcode a new line as our separator. In one
loop iteration, while reusing the b byte slice, we can find the full line, parse the
integer, and perform the sum. This algorithm is also often called “in place.”

Before we come to any conclusion, we have to first check if our new algorithm works
functionally. After successfully verifying it using the unit test, I ran Example 8-13
with the Sum2 function instead of Sum to assess its efficiency. The results are optimis‐
tic, with 50 ms and 12.8 MB worth of allocations. Compared to bytes.Split, we
could perform 50% less work while using 78% less memory. Knowing that
bytes.Split was responsible for ~36% of CPU time and 78.6% of memory alloca‐
tions, such an improvement tells us we completely removed this bottleneck from our
code!
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Standard Functions Might Not Be Perfect for All Cases

The preceding example of working optimization asks why the
bytes.Split function wasn’t optimal for us. Can’t the Go commu‐
nity optimize it?
The answer is that bytes.Split and other standard or custom
functions you might import on the internet could be not as effi‐
cient as the tailored algorithm for your requirements. Such a popu‐
lar function has to be, first of all, reliable for many edge cases that
you might not have (e.g., multicharacter separator). Those are
often optimized for cases that might be more involved and com‐
plex than our own.
It doesn’t mean we have to rewrite all imported functions now. No,
we should just be aware of the possibility of easy efficiency gains by
providing a tailored implementation for critical paths. Still, we
should use known and battle-tested code like a standard library. In
most cases, it’s good enough!

Is our Example 10-3 optimization our final one? Not quite—while we improved the
throughput, we are at the 25 * N nanoseconds mark, still far from our goal.

Optimizing runtime.slicebytetostring
The CPU profile from the Example 10-3 benchmark should give us a clue about the
next bottleneck, shown in Figure 10-3.

Figure 10-3. Flame Graph view of Example 10-3 CPU time with function granularity
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5 We can deduce that from the runtime.slicebytetostring function name in the profile. We can also split
this line into three lines (string conversion in one, subslicing in the second, and invoking the parsing function
in the third) and profile again to be sure.

As the next bottleneck, let’s take this odd runtime.slicebytetostring function that
spends most of its CPU time allocating memory. If we look for it in the Source or
Peek view, it points us to the num, err := strconv.ParseInt(string(b[last:i]),
10, 64) line in Example 10-3. Since this CPU time contribution is not accounted for
to strconv.ParseInt (a separate segment), it tells us that it has to be executed before
we invoke strconv ParseInt, yet in the same code line. The only dynamically exe‐
cuted things are the b byte slice subslicing and conversion to string. On further
inspection, we can tell that the string conversion is expensive here.5

What’s interesting is that string is essentially a special byte slice with no Cap field
(capacity in string is always equal to length). As a result, at first it might be surpris‐
ing that the Go compiler spends so much time and memory on this. The reason is
that string(<byte slice>) is equivalent to creating a new byte slice with the same
number of elements, copying all bytes to a new byte, and then returning the string
from it. The main reason for copying is that, by design, string type is immutable, so
every function can use it without worrying about potential races. There is, however, a
relatively safe way to convert []byte to string. Let’s do that in Example 10-4.

Example 10-4. Sum3 is Example 10-3 with optimized CPU bottleneck of string
conversion

// import "unsafe"

func zeroCopyToString(b []byte) string {
    return *((*string)(unsafe.Pointer(&b))) 
}

func Sum3(fileName string) (ret int64, _ error) {
    b, err := os.ReadFile(fileName)
    if err != nil {
        return 0, err
    }

    var last int
    for i := 0; i < len(b); i++ {
        if b[i] != '\n' {
            continue
        }
        num, err := strconv.ParseInt(zeroCopyToString(b[last:i]), 10, 64)
        if err != nil {
            return 0, err
        }
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        ret += num
        last = i + 1
    }
    return ret, nil
}

We can use the unsafe package to remove the type information from b and form
an unsafe.Pointer. Then we can dynamically cast this to different types, e.g.,
string. It is unsafe because if the structures do not share the same layout, we
might have memory safety problems or nondeterministic values. Yet the layout is
shared between []byte and string, so it’s safe for us. It is used in production in
many projects, including Prometheus, known as yoloString.

The zeroCopyToString allows us to convert file bytes to string required by ParseInt
with almost no overhead. After functional tests, we can confirm this by using the
same benchmark with the Sum3 function again. The benefit is clear—Sum3 takes 25.5
ms for 2 million integers and 7.2 MB of allocated space. This means it is 49.2% faster
than Example 10-3 when it comes to CPU time. The memory usage is also better,
with our program allocating almost precisely the size of the input file—no more, no
less.

Deliberate Trade-offs

With unsafe, no-copy bytes to string conversion, we enter a delib‐
erate optimization area. We introduced potentially unsafe code and
added more nontrivial complexity to our code. While we clearly
named our function zeroCopyToString, we have to justify and use
such optimization only if necessary. In our case, it helps us reach
our efficiency goals, so we can accept these drawbacks.

Are we fast enough? Not yet. We are almost there with 12.7 * N nanoseconds
throughput. Let’s see if we can optimize something more.

Optimizing strconv.Parse
Again, let’s look at the newest CPU profile from the Example 10-4 benchmark to see
the latest bottleneck we could try to check, as shown in Figure 10-4.
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6 In benchmarks, I also found that my ParseInt is also faster by 10% to strconv.Atoi for the Sum test data.

Figure 10-4. Flame Graph view of Example 10-4 CPU time with function granularity

With strconv.Parse using 72.6%, we can gain a lot if we can improve its CPU time.
Similar to bytes.Split, we should check its profile and implementation. Following
both paths, we can immediately outline a couple of elements that feel like excessive
work:

• We check for an empty string twice, in ParseInt and ParseUint. Both are visible
as nontrivial CPU time used in our profile.

• ParseInt allows us to parse to integers with different bases and bit sizes. We
don’t need this generic functionality or extra input to check our Sum3 code. We
only care about 64-bit integers of base 10.

One solution here is similar to bytes.Split: finding or implementing our own
ParseInt function that focuses on efficiency—does what we need and nothing more.
The standard library offers the strconv.Atoi function, which looks promising. How‐
ever, it still requires strings as input, which forces us to use unsafe package code.
Instead, let’s try to come up with our own quick implementation. After a few itera‐
tions of testing and microbenchmarking my new ParseInt function,6 we can come
up with the fourth iteration of our sum functionality, presented in Example 10-5.
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Example 10-5. Sum4 is Example 10-4 with optimized CPU bottleneck of string
conversion

func ParseInt(input []byte) (n int64, _ error) {
    factor := int64(1)
    k := 0

    if input[0] == '-' {
        factor *= -1
        k++
    }

    for i := len(input) - 1; i >= k; i-- {
        if input[i] < '0' || input[i] > '9' {
           return 0, errors.Newf("not a valid integer: %v", input)
        }

        n += factor * int64(input[i]-'0')
        factor *= 10
    }
    return n, nil
}

func Sum4(fileName string) (ret int64, err error) {
    b, err := os.ReadFile(fileName)
    if err != nil {
        return 0, err
    }

    var last int
    for i := 0; i < len(b); i++ {
        if b[i] != '\n' {
            continue
        }
        num, err := ParseInt(b[last:i])
        if err != nil {
            return 0, err
        }

        ret += num
        last = i + 1
    }
    return ret, nil
}

The side effect of our integer parsing optimization is that we can tailor our ParseInt
to parse from a byte slice, not a string. As a result, we can simplify our code and avoid
unsafe zeroCopyToString conversion. After tests and benchmarks, we see that Sum4
achieves 13.6 ms, 46.66% less than Example 10-4, with the same memory allocations.
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The full comparison of our sum functions is presented in Example 10-6 using our
beloved benchstat tool.

Example 10-6. Running benchstat on the results from all four iterations with a two
million line file

$ benchstat v1.txt v2.txt v3.txt v4.txt
name \ (time/op)  v1.txt       v2.txt       v3.txt       v4.txt
Sum                101ms ± 0%    50ms ± 2%   25ms ± 0%   14ms ± 0% 

name \ (alloc/op) v1.txt       v2.txt       v3.txt       v4.txt
Sum               60.8MB ± 0%  12.8MB ± 0%  7.2MB ± 0%  7.2MB ± 0%

name \ (allocs/op) v1.txt       v2.txt       v3.txt       v4.txt
Sum                1.60M ± 0%   1.60M ± 0%  0.00M ± 0%  0.00M ± 0%

Notice that benchstat can round some numbers for easier comparison with the
large number from v1.txt. The v4.txt result is 13.6 ms, not 14 ms, which can
make a difference in throughput calculations.

It seems like our hard work paid off. With the current results, we achieved 6.9 * N
nanoseconds throughput, which is more than enough to fulfill our first goal. How‐
ever, we only checked it with two million integers. Are we sure the same throughput
can be maintained with larger or smaller input sizes? Our Big O runtime complexity
O(N) would suggest so, but I ran the same benchmark with 10 million integers just in
case. The 67.8 ms result gives the 6.78 * N nanoseconds throughput. This more or less
confirms our throughput number.

The code in Example 10-5 is not the fastest or most memory-efficient solution possi‐
ble. There might be more optimizations to the algorithm or code to improve things
further. For example, if we profile Example 10-5, we would see a relatively new seg‐
ment, indicating 14% of total CPU time used. It’s os.ReadFile code that wasn’t so
visible on past profiles, given other bottlenecks and something we didn’t touch with
our optimizations. We will mention its potential optimization in “Pre-Allocate If You
Can” on page 440. We could also try concurrency (which we will do in “Optimizing
Latency Using Concurrency” on page 402). However, with one CPU, we cannot expect
a lot of gains here.

What’s important is that there is no need to improve anything else in this iteration, as
we achieved our goal. We can stop the work and claim success! Fortunately, we did
not need to add magic or dangerous nonportable tricks to our optimization flow.
Only readable and easier deliberate optimizations were required.
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Optimizing Memory Usage
In the second scenario, our goal is focused on memory consumption while maintain‐
ing the same throughput. Imagine we have a new business customer for our software
with Sum functionality that needs to run on an IoT device with little RAM available
for this program. As a result, the requirement is to have a streaming algorithm: no
matter the input size, it can only use 10 KB of heap memory in a single moment.

Such a requirement might look extreme at first glance, given the naive code in
Example 4-1 has a quite large space complexity. If a 10 million line, 36 MB file
requires 304 MB of heap memory for Example 4-1, how can we ensure the same file
(or bigger!) can take a maximum of 10 KB of memory? Before we start to worry, let’s
analyze what we can do on this subject.

Fortunately, we already did some optimization work that improved memory alloca‐
tions as a side effect. Since the latency goal still applies, let’s start with Sum4 in
Example 10-5, which fulfills that. The space complexity of Sum4 seems to be around
O(N). It still depends on the input size and is far from our 10 KB goal.

Moving to Streaming Algorithm
Let’s pull up the heap profile from the Sum4 benchmark in Figure 10-5 to figure out
what we can improve.

Figure 10-5. Flame Graph view of Example 10-5 heap allocations with function granu‐
larity (alloc_space)

The memory profile is very boring. The first line allocates 99.6% of memory in
Example 10-5. We essentially read the whole file into memory so we can iterate over
the bytes in memory. Even if we waste some allocation elsewhere, we can’t see it
because of excessive allocation from os.ReadFile. Is there anything we can do about
that?

During our algorithm, we must go through all the bytes in the file; thus, we have to
read all bytes eventually. However, we don’t need to read all of them to memory at
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the same time. Technically, we only need a byte slice big enough to hold all digits for
an integer to be parsed. This means we can try to design the external memory algo‐
rithm to stream bytes in chunks. We can try using the existing bytes scanner from the
standard library—the bufio.Scanner. For example, Sum5 in the Example 10-7 imple‐
mentation uses it to scan enough memory to read and parse a line.

Example 10-7. Sum5 is Example 10-5 with bufio.Scanner

func Sum5(fileName string) (ret int64, err error) {
    f, err := os.Open(fileName) 
    if err != nil {
        return 0, err
    }
    defer errcapture.Do(&err, f.Close, "close file") 

    scanner := bufio.NewScanner(f)
    for scanner.Scan() { 
        num, err := ParseInt(scanner.Bytes())
        if err != nil {
            return 0, err
        }

        ret += num
    }
    return ret, scanner.Err() 
}

Instead of reading the whole file into memory, we open the file descriptor here.

We have to make sure the file is closed after the computation so as not to leak
resources. We use errcapture to get notified about potential errors in the
deferred file Close.

The scanner .Scan() method tells us if we hit the end of the file. It returns true if
we still have bytes to result in splitting. The split is based on the provided func‐
tion in the .Split method. By default, ScanLines is what we want.

Don’t forget to check the scanner error! With such iterator interfaces, it’s very
easy to forget to check its error.

To assess efficiency, now focusing more on memory, we can use the same
Example 8-13 with Sum5. However, given our past optimizations, we’ve moved dan‐
gerously close to what can be reasonably measured within the accuracy and overhead
of our tools for input files on the order of a million lines. If we got into microsecond
latencies, our measurements might be skewed, given limits in the instrumentation
accuracy and benchmarking tool overheads. So let’s increase the file to 10 million
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lines. The benchmarked Sum4 in Example 10-5 for that input results in 67.8 ms and
36 MB of memory allocated per operation. The Sum5 with the scanner outputs 157.1
ms and 4.33 KB per operation.

In terms of memory usage, this is great. If we look at the implementation, the scanner
allocates an initial 4 KB and uses it for reading the line. It increases this if needed
when the line is longer, but our file doesn’t have numbers longer than 10 digits, so it
stays at 4 KB. Unfortunately, the scanner isn’t fast enough for our latency require‐
ment. With a 131% slowdown to Sum4, we hit 15.6 * N nanoseconds latency, which is
too slow. We have to optimize latency again, knowing we still have around 6 KB to
allocate to stay within the 10 KB memory goal.

Optimizing bufio.Scanner
What can we improve? As usual, it’s time to check the source code and profile of
Example 10-7 in Figure 10-6.

Figure 10-6. Graph view of Example 10-7 CPU time with function granularity
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The commentary on the Scanner structure in the standard library gives us a hint. It
tells us that “Scanner is for safe, simple jobs”. The ScanLines is the main bottleneck
here, and we can swap the implementation with a more efficient one. For example,
the original function removes carriage return (CR) control characters, which wastes
cycles for us as our input does not have them. I managed to provide optimized Scan
Lines, which improves the latency by 20.5% to 125 ms, which is still too slow.

Similar to previous optimizations, it might be worth writing a custom streamed scan‐
ning implementation instead of bufio.Scanner. The Sum6 in Example 10-8 presents a
potential solution.

Example 10-8. Sum6 is Example 10-5 with buffered read

func Sum6(fileName string) (ret int64, err error) {
    f, err := os.Open(fileName)
    if err != nil {
        return 0, err
    }
    defer errcapture.Do(&err, f.Close, "close file")

    buf := make([]byte, 8*1024) 
    return Sum6Reader(f, buf)
}

func Sum6Reader(r io.Reader, buf []byte) (ret int64, err error) { 
    var offset, n int
    for err != io.EOF {
        n, err = r.Read(buf[offset:]) 
        if err != nil && err != io.EOF { 
            return 0, err
        }
        n += offset 

        var last int
        for i := range buf[:n] { 
            if buf[i] != '\n' {
                continue
            }
            num, err := ParseInt(buf[last:i])
            if err != nil {
                return 0, err
            }

            ret += num
            last = i + 1
        }

        offset = n - last
        if offset > 0 {
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7 Interestingly enough, just adding a new function call and interface slows down the program by 7% per opera‐
tion on my machine, proving that we are on a very high efficiency level already. However, given reusability,
perhaps we can afford that slowdown.

8 As an interesting fact, if we replace this line with a technically simpler loop like for i := 0; i < n; i++ {,
the code is 5% slower! Don’t take it as a rule (always measure!), as it probably depends on your workload, but
it’s interesting to see the range loop (without a second argument) be more efficient here.

            _ = copy(buf, buf[last:n]) 
        }
    }
    return ret, nil
}

We create a single 8 KB buffer of bytes we will use for reading. I chose 8 KB and
not 10 KB to leave some headroom within our 10 KB limit. The 8 KB also feels
like a great number given the OS page is 4 KB, so we know it will need only 2
pages.

This buffer assumes that no integer is larger than ~8,000 digits. We can make it
much smaller, even down to 10, as we know our input file does not have num‐
bers with more than 9 digits (plus the newline). However, this would make the
algorithm much slower due to the certain waste explained in the next steps.
Additionally, even without waste reading, 8 KB is faster than reading 8 bytes
1,024 times due to overhead.

This time, let’s separate functionality behind the convenient io.Reader interface.
This will allow us to reuse Sum6Reader in the future.7

In each iteration, we read the next 8 KB, minus offset bytes from a file. We start
reading more file bytes after offset bytes to leave potential room for digits we
didn’t parse yet. This can happen if we read bytes that split some numbers into
parts, e.g., we read ...\n12 and 34/n... in two different chunks.

In the error handling, we excluded the io.EOF sentinel error, which indicated we
hit the end of the file. That’s not an error for us—we still want to process the
remaining bytes.

The number of bytes we have to process from the buffer is exactly n + offset,
where n is the number of bytes read from a file. The end of file n can be smaller
than what we asked for (length of the buf).

We iterate over n bytes in the buf buffer.8 Notice that we don’t iterate over the
whole slice because in an err == io.EOF situation, we might read less than 10
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KB of bytes, so we need to process only n of them. We process all lines found in
our 10 KB buffer in each loop iteration.

We calculate offset, and if there is a need for one, we shift the remaining bytes
to the front. This creates a small waste in CPU, but we don’t allocate anything
additional. Benchmarks will tell us if this is fine or not.

Our Sum6 code got a bit bigger and more complex, so hopefully, it gives good effi‐
ciency results to justify the complexity. Indeed, after the benchmark, we see it takes
69 ms and 8.34 KB. Just in case, let’s put Example 10-8 to the extra test by computing
an even larger file—100 million lines. With bigger input, Sum6 yields 693 ms and
around 8 KB. This gives us a 6.9 * N nanoseconds latency (runtime complexity) and
space (heap) complexity of ~8 KB, which satisfies our goal.

Careful readers might still be wondering if I didn’t miss anything. Why is space com‐
plexity 8 KB, not 8 + x KB? There are some additional bytes allocated for 10 million
line files and even more bytes for larger ones. How do we know that at some point for
a hundred-times larger file, the memory allocation would not exceed 10 KB?

If we are very strict and tight on that 10 KB allocation goal, we can try to figure out
what happens. The most important thing is to validate that there is nothing that
grows allocation with the file size. This time the memory profile is also invaluable,
but to understand things fully, let’s ensure we record all allocations by adding run
time.MemProfileRate = 1 in our BenchmarkSum benchmark. The resulting profile is
presented in Figure 10-7.

Figure 10-7. Flame Graph view of Example 10-8 memory with function granularity
and profile rate 1
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We can see more allocations from the pprof package than our function. This indi‐
cates a relatively large allocation overhead by the profiling itself! Still, it does not
prove that Sum does not allocate anything else on the heap than our 8 KB buffer. The
Source view turns out to be helpful, presented in Figure 10-8.

Figure 10-8. Source view of Example 10-8 memory with profile rate 1 after benchmark
with 1,000 iterations and 10 MB input file

It shows that Sum6 has only one heap allocation point. We can also benchmark
without CPU profiling, which now gives stable 8,328 heap allocated bytes for any
input size.

Success! Our goal is met, and we can move to the last task. The overview of each iter‐
ation’s achieved result is shown in Example 10-9.

Example 10-9. Running benchstat on the results from all 3 iterations with a 10 million
line file

$ benchstat v1.txt v2.txt v3.txt v4.txt
name \ (time/op)   v4-10M.txt   v5-10M.txt    v6-10M.txt
Sum                67.8ms ± 3%  157.1ms ± 2%  69.4ms ± 1%

name \ (alloc/op) v4-10M.txt   v5-10M.txt    v6-10M.txt
Sum               36.0MB ± 0%    0.0MB ± 3%   0.0MB ± 0%

name \ (allocs/op)  v4-10M.txt   v5-10M.txt    v6-10M.txt
Sum                 5.00 ± 0%     4.00 ± 0%    4.00 ± 0%
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Optimizing Latency Using Concurrency
Hopefully, you are ready for the last challenge: getting our latency down even more
to the 2.5 nanoseconds per line level. This time we have four CPU cores available, so
we can try introducing some concurrency patterns to achieve it.

In “When to Use Concurrency” on page 145, we mentioned the clear need for con‐
currency to employ asynchronous programming or event handling in our code. We
talked about relatively easy gains where our Go program does a lot of I/O operations.
However, in this section, I would love to show you how to improve the speed of our
Sum in the Example 4-1 code using concurrency with two typical pitfalls. Because of
the tight latency requirement, let’s take an already optimized version of Sum. Given
we don’t have any memory requirements, and Sum4 in Example 10-5 is only a little
slower than Sum6, yet has a smaller amount of lines, let’s take that as a start.

A Naive Concurrency
As usual, let’s pull out the Example 10-5 CPU profile, shown in Figure 10-9.

Figure 10-9. Graph view of Example 10-5 CPU time with function granularity
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9 We discussed synchronization primitives in “Go Runtime Scheduler” on page 138.

As you might have noticed, most of Example 10-5 CPU time comes from ParseInt
(47.7%). Since we’re back to reading the whole file at the beginning of the program,
the rest of the program is strictly CPU bound. As a result, with only one CPU we
couldn’t expect better latency with the concurrency. However, given that within this
task we have four CPU cores available, our task now is to find a way to evenly split
the work of parsing the file’s contents with as little coordination9 between goroutines
as possible. Let’s explore three example approaches to optimize Example 10-5 with
concurrency.

The first thing we have to do is find computations we can do independently at the
same time—computations that do not affect each other. Because the sum is commu‐
tative, it does not matter in what order numbers are added. The naive, concurrent
implementation could parse the integer from the string and add the result atomically
to the shared variable. Let’s explore this rather simple solution in Example 10-10.

Example 10-10. Naive concurrent optimization to Example 10-5 that spins a new
goroutine for each line to compute

func ConcurrentSum1(fileName string) (ret int64, _ error) {
    b, err := os.ReadFile(fileName)
    if err != nil {
        return 0, err
    }

    var wg sync.WaitGroup
    var last int
    for i := 0; i < len(b); i++ {
        if b[i] != '\n' {
            continue
        }

        wg.Add(1)
        go func(line []byte) {
            defer wg.Done()
            num, err := ParseInt(line)
            if err != nil {
                // TODO(bwplotka): Return err using other channel.
                return
            }
            atomic.AddInt64(&ret, num)
        }(b[last:i])
        last = i + 1
    }
    wg.Wait()
    return ret, nil
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After the successful functional test, it’s time for benchmarking. Similar to previous
steps, we can reuse the same Example 8-13 by simply replacing Sum with Concurrent
Sum1. I also changed the -cpu flag to 4 to unlock the four CPU cores. Unfortunately,
the results are not very promising—for a 2 million line input, it takes about 540 ms
and 151 MB of allocated space per operation! Almost 40 times more time than the
simpler, noncurrent Example 10-5.

A Worker Approach with Distribution
Let’s check the CPU profile in Figure 10-10 to learn why.

Figure 10-10. Flame Graph view of Example 10-10 CPU time with function granularity

The Flame Graph clearly shows the goroutine creation and scheduling overhead indi‐
cated by blocks called runtime.schedule and runtime.newproc. There are three
main reasons why Example 10-10 is too naive and not recommended for our case:

• The concurrent work (parsing and adding) is too fast to justify the goroutine
overhead (both in memory and CPU usage).

• For larger datasets, we create potentially millions of goroutines. While goroutines
are relatively cheap and we can have hundreds of them, there is always a limit,
given only four CPU cores to execute. So you can imagine the delay of the sched‐
uler that tries to fairly schedule millions of goroutines on four CPU cores.

• Our program will have a nondeterministic performance depending on the num‐
ber of lines in the file. We can potentially hit a problem of unbounded concur‐
rency since we will spam as many goroutines as the external file has lines
(something outside our program control).
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That is not what we want, so let’s improve our concurrent implementation. There are
many ways we could go from here, but let’s try to address all three problems we
notice. We can solve problem number one by assigning more work to each goroutine.
We can do that thanks to the fact that addition is also associative and cumulative. We
can essentially group work into multiple lines, parse and add numbers in each
goroutine, and add partial results to the total sum. Doing that automatically helps
with problem number two. Grouping work means we will schedule fewer goroutines.
The question is, what is the best number of lines in a group? Two? Four? A hundred?

The answer most likely depends on the number of goroutines we want in our process
and the number of CPUs available. There is also problem number three—unbounded
concurrency. The typical solution here is to use a worker pattern (sometimes called
goroutine pooling). In this pattern, we agree on a number of goroutines up front, and
we schedule all of them at once. Then we can create another goroutine that will dis‐
tribute the work evenly. Let’s see an example implementation of that algorithm in
Example 10-11. Can you predict if this implementation will be faster?

Example 10-11. Concurrent optimization of Example 10-5 that maintains a finite set of
goroutines that computes a group of lines. Lines are distributed using another
goroutine.

func ConcurrentSum2(fileName string, workers int) (ret int64, _ error) {
    b, err := os.ReadFile(fileName)
    if err != nil {
        return 0, err
    }

    var (
        wg     = sync.WaitGroup{}
        workCh = make(chan []byte, 10)
    )

    wg.Add(workers + 1)
    go func() {
        var last int
        for i := 0; i < len(b); i++ {
            if b[i] != '\n' {
                continue
            }
            workCh <- b[last:i]
            last = i + 1
      }
        close(workCh) 
        wg.Done()
    }()

    for i := 0; i < workers; i++ {
        go func() {
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            var sum int64
            for line := range workCh { 
                num, err := ParseInt(line)
                if err != nil {
                    // TODO(bwplotka): Return err using other channel.
                    continue
                }
                sum += num
            }
            atomic.AddInt64(&ret, sum)
            wg.Done()
        }()
    }
    wg.Wait()
    return ret, nil
}

Remember, the sender is usually responsible for the closing channel. Even if our
flow does not depend on it, it’s a good practice to always close channels after use.

Beware of common mistakes. The for _, line := range <-workCh would
sometimes compile as well, and it looks logical, but it’s wrong. It will wait for the
first message from the workCh channel and iterate over single bytes from the
received byte slice. Instead, we want to iterate over messages.

Tests pass, so we can start benchmarking. Unfortunately, on average, this implemen‐
tation with 4 goroutines takes 207 ms to complete a single operation (using 7 MB of
space). Still, this is 15 times slower than simpler, sequential Example 10-5.

A Worker Approach Without Coordination (Sharding)
What’s wrong this time? Let’s investigate the CPU profile presented in Figure 10-11.

Figure 10-11. Flame Graph view of Example 10-11 CPU time with function granularity
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If you see a profile like this, it should immediately tell you that the concurrency over‐
head is again too large. We still don’t see the actual work, like parsing integers, since
this work has outnumbered the overhead. This time the overhead is caused by three
elements:

runtime.schedule

The runtime code responsible for scheduling goroutines.

runtime.chansend

In our case, waiting on the lock to send to our single channel.

runtime.chanrecv

The same as chansend but waiting on a read from the receive channel.

As a result, parsing and additions are faster than the communication overhead.
Essentially, coordination and distribution of the work take more CPU resources than
the work itself.

We have multiple options for improvement here. In our case, we can try to remove
the effort of distributing the work. We can accomplish this via a coordination-free
algorithm that will shard (split) the workload evenly across all goroutines. It’s coordi‐
nation free because there is no communication to agree on which part of the work is
assigned to each goroutine. We can do that thanks to the fact that the file size is
known up front, so we can use some sort of heuristic to assign each part of the file
with multiple lines to each goroutine worker. Let’s see how this could be imple‐
mented in Example 10-12.

Example 10-12. Concurrent optimization of Example 10-5 that maintains a finite set of
goroutines that computes groups of lines. Lines are sharded without coordination.

func ConcurrentSum3(fileName string, workers int) (ret int64, _ error) {
    b, err := os.ReadFile(fileName)
    if err != nil {
        return 0, err
    }

    var (
        bytesPerWorker = len(b) / workers
        resultCh       = make(chan int64)
    )

    for i := 0; i < workers; i++ {
        go func(i int) {
            // Coordination-free algorithm, which shards
            // buffered file deterministically.
            begin, end := shardedRange(i, bytesPerWorker, b) 

            var sum int64
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            for last := begin; begin < end; begin++ {
                if b[begin] != '\n' {
                    continue
                }
                num, err := ParseInt(b[last:begin])
                if err != nil {
                    // TODO(bwplotka): Return err using other channel.
                    continue
                }
                sum += num
                last = begin + 1
            }
            resultCh <- sum
        }(i)
    }

    for i := 0; i < workers; i++ {
        ret += <-resultCh
    }
    close(resultCh)
    return ret, nil
}

shardedRange is not supplied for clarity. This function takes the size of the input
file and splits into bytesPerWorker shards (four in our case). Then it gives each
worker the i-th shard. You can see the full code here.

Tests pass too, so we confirmed that Example 10-12 is functionally correct. But is it
faster? Yes! The benchmark shows 7 ms and 7 MB per operation, which is almost
twice as fast as sequential Example 10-5. Unfortunately, this puts us in 3.4 * N nano‐
seconds throughput, which is failing our goal of 2.5 * N.

A Streamed, Sharded Worker Approach
Let’s profile in Figure 10-12 one more time to check if we can improve anything
easily.

The CPU profile shows that the work done by our goroutines takes the most CPU
time. However, ~10% of CPU time is spent reading all bytes, which we can also try to
do concurrently. This effort does not look promising at first glance. However, even if
we would remove all 10% of the CPU time, 10% better throughput gives us only the
3.1 * N nanoseconds number, so not enough.
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Figure 10-12. Flame Graph view of Example 10-12 CPU time with function granularity

This is where we have to be vigilant, though. As you can imagine, reading files is not
a CPU-bound job, so perhaps the actual real time spend on that 10% of CPU time
makes os.ReadFile a bigger bottleneck, thus a better option for us to optimize. As in
“Optimizing Latency” on page 383, let’s perform a benchmark wrapped with the
fgprof profile! The resulting full goroutine profile is presented in Figure 10-13.

Figure 10-13. Flame Graph view of Example 10-12 full goroutine profile with function
granularity
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The fgprof profile shows that a lot can be gained in latency if we try to read files
concurrently, as it currently takes around 50% of the real time! This is way more
promising, so let’s try to move file reads to worker goroutines. The example imple‐
mentation is shown in Example 10-13.

Example 10-13. Concurrent optimization of Example 10-12 that also reads from a file
concurrently using separate buffers

func ConcurrentSum4(fileName string, workers int) (ret int64, _ error) {
    f, err := os.Open(fileName)
    if err != nil {
        return 0, err
    }
    defer errcapture.Do(&err, f.Close, "close file")

    s, err := f.Stat()
    if err != nil {
        return 0, err
    }

    var (
        size           = int(s.Size())
        bytesPerWorker = size / workers
        resultCh       = make(chan int64)
    )

    if bytesPerWorker < 10 {
        return 0, errors.New("can't have less bytes per goroutine than 10")
    }

    for i := 0; i < workers; i++ {
        go func(i int) {
            begin, end := shardedRangeFromReaderAt(i, bytesPerWorker, size, f)
            r := io.NewSectionReader(f, int64(begin), int64(end-begin)) 

            b := make([]byte, 8*1024)
            sum, err := Sum6Reader(r, b) 
            if err != nil {
                // TODO(bwplotka): Return err using other channel.
            }
            resultCh <- sum
        }(i)
    }

    for i := 0; i < workers; i++ {
        ret += <-resultCh
    }
    close(resultCh)
    return ret, nil
}
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Instead of splitting the bytes from the input file in memory, we tell each gorout‐
ine what bytes from the file it can read. We can do this thanks to the Section
Reader, which returns a reader that only allows reading from a particular section.
There is a small complexity in shardedRangeFromReaderAt to make sure we read
all lines (we don’t know where the newlines in a file are), but it can be done in
the relatively easy algorithm presented here.

We can reuse Example 10-8 for this job as it knows how to use any io.Reader
implementation, so in our example, both *os.File and *io.SectionReader.

Let’s assess the efficiency of that code. Finally, after all this work, Example 10-13
yields an astonishing 4.5 ms per operation for 2 million lines, and 23 ms for 10 mil‐
lion lines. This takes us into ~2.3 * N nanosecond throughput, which satisfies our
goal! A full comparison of latencies and memory allocations for successful iterations
is presented in Example 10-14.

Example 10-14. Running benchstat on the results from all four iterations with a two
million line file

name \ (time/op)   v4-4core.txt  vc3.txt      vc4.txt
Sum-4              13.3ms ± 1%   6.9ms ± 6%   4.5ms ± 3%

name \ (alloc/op)  v4-4core.txt  vc3.txt      vc4.txt
Sum-4              7.20MB ± 0%   7.20MB ± 0%  0.03MB ± 0%

To summarize, we went through three exercises showcasing the optimization flow
focused on different goals. I also have some possible concurrency patterns that allow
utilizing our multicore machines. Generally, I hope you saw how critical benchmark‐
ing and profiling were throughout this journey! Sometimes the results might surprise
you, so always seek confirmation of your ideas.

There is, however, another way to solve those exercises in an innovative way that
might work for certain use cases. Sometimes it allows us to avoid the huge optimiza‐
tion effort we did in the past three sections. Let’s take a look!

Bonus: Thinking Out of the Box
Given the challenging goals we set in this chapter, I spent a lot of time optimizing and
explaining optimization for the naive Sum implementation in Example 4-1. This
showed you some optimization ideas, practices, and generally a mental model I use
during optimization efforts. But hard optimization work is not always an answer—
there are numerous ways to reach our goals.
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For example, what if I told you there is a way to get amortized runtime complexity of
a few nanoseconds and zero allocations (and just four more code lines)? Let’s see
Example 10-15.

Example 10-15. Adding simplest caching to Example 4-1

var sumByFile = map[string]int64{} 

func Sum7(fileName string) (int64, error) {
    if s, ok := sumByFile[fileName]; ok {
        return s, nil
    }

    ret, err := Sum(fileName)
    if err != nil {
        return 0, err
    }

    sumByFile[fileName] = ret
    return ret, nil
}

sumByFile represents the simplest storage for cache. There are tons of more pro‐
duction read-caching implementations you can consider as well. We can write
our own that will be goroutine safe. If we need more involved eviction policies, I
would recommend HashiCorp’s golang-lru and the even more optimized
Dgraph’s ristretto. For distributed systems, you should use distributed caching
services like Memcached, Redis, or peer-to-peer caching solutions like
groupcache.

The functional test passes, and the benchmarks show amazing results—for 100 million
line files, we see 228 ns and 0 bytes allocated! This example is, of course, a very trivial
one. It’s unlikely our optimization journey is always as easy as that. Simple caching is
limited and can’t be used if the file input constantly changes. But what if we can?

Think smart, not hard. It might be the case that we don’t need to optimize
Example 4-1 because the same input files are constantly used. Caching a single sum
value for each file is cheap—even if we would have a million of those files, we can
cache all using a few megabytes. If that’s not the case, perhaps the file content often
repeats, but the filename is unique. In that case, we could calculate the checksum of
the file and cache based on that. It would be faster than parsing all lines into integers.

Focus on the goal and be smart and innovative. For example, a hard, week-long, deep
optimization effort might not be worth it if there is some smart solution that avoids
that work!
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Summary
We did it! We optimized the initial naive implementation of Example 4-1 using the
TFBO flow from “Efficiency-Aware Development Flow” on page 102. Guided by the
requirements, we managed to improve the Sum code significantly:

• We improved the runtime complexity from around 50.5 * N nanoseconds (where
N is a number of lines) to 2.25 * N. This means around 22 times faster latency,
even though both naive and most optimized algorithms are linear (we optimized
O(N) constants).

• We improved the space complexity from around 30.4 * N bytes to 8 KB, which
means our code had O(N) asymptotic complexity but now has constant space
complexity. This means the new Sum code will be much more predictable for the
users and more friendly for the garbage collector.

To sum up, sometimes efficiency problems require a long and careful optimization
process, as we did for Sum. On the other hand, sometimes, you can find quick and
pragmatic optimization ideas that fulfill your goals quickly. Nevertheless, we all
learned a lot from the exercises in this chapter (including me!).

Let’s move to the last chapter of this book, where we will summarize some learning
and patterns we saw during our exercises in this chapter, and what I have seen in the
community from my experience.
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CHAPTER 11

Optimization Patterns

With all we’ve learned from the past 10 chapters, it’s time to go through various pat‐
terns and common pitfalls I found when developing efficient code in Go. As I men‐
tioned in Chapter 10, the optimization suggestion doesn’t generalize well. However,
given you should know at this point how to assess code changes effectively, there is
no harm in stating some common patterns that improve efficiency in certain cases.

Be a Mindful Go Developer

Remember that most optimization ideas you will see here are
highly deliberate. This means we have to have a good reason to add
them as they take the developer’s time to get right and maintain in
the future. Even if you learn about some common optimization,
ensure it improves efficiency for your specific workload.
Don’t use this chapter as a strict manual but as a list of potential
options you did not think about. Nevertheless, always stick to the
observability, benchmarking, and profiling tools we learned in pre‐
vious chapters to ensure the optimizations you do are pragmatic,
follow YAGNI, and are needed.

We will start with “Common Patterns” on page 416, where I describe some high-level
optimization patterns we could see from optimization examples in Chapter 10. Then
I will introduce you to the “The Three Rs Optimization Method” on page 421,
an excellent memory optimization framework from the Go (and Prometheus)
community.

Finally, in “Don’t Leak Resources” on page 426, “Pre-Allocate If You Can” on page 440,
“Overusing Memory with Arrays” on page 445, and “Memory Reuse and Pooling” on
page 449, we will go through a set of specific optimizations, tips, and gotchas I wish I’d
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known when I started my journey with making Go code more efficient. I have chosen
the most common ones that are worth being aware of!

Let’s start with common optimization patterns. Some of them I used in previous
chapters.

Common Patterns
How can you find optimizations? After benchmarking, profiling, and studying the
code, the process requires us to figure out a better algorithm, data structure, or code
that will be more efficient. Of course, this is easier said than done.

Some practice and experience help, but we can outline a few patterns that repeat in
our optimization journeys. Let’s now walk through four generic patterns we see in
the programming community and literature: doing less work, and trading functional‐
ity for efficiency, trading space for time, and trading time for space.

Do Less Work
The first thing we should focus on is avoiding unnecessary work. Especially in “Opti‐
mizing Latency” on page 383, we improved the CPU time multiple times by remov‐
ing a lot of unnecessary code. It might feel simplistic, but it’s a powerful pattern we
often forget. If some portion of the code is critical and requires optimization, we can
go through bottlenecks (e.g., lines of code with large contributions we see in Source
view as we discussed in “go tool pprof Reports” on page 340) and check if we can:

Skip unnecessary logic
Can we remove this line? For example, in “Optimizing Latency” on page 383,
strconv.ParseInt had a lot of checks that weren’t needed in our implementa‐
tion. We can use the assumptions and requirements we have to our advantage
and trim down the functionality that isn’t strictly needed. This also includes
potential resources we can clean early or any resource leaks (see “Don’t Leak
Resources” on page 426).

Generic Implementations

It’s very tempting to approach programming problems with a
generic solution. We are trained to see patterns, and program‐
ming languages offer many abstractions and object-oriented
paradigms to reuse more code.
As we could see in “Optimizing Latency” on page 383, while
the bytes.Split and strconv.ParseInt functions are well
designed, safe to use, and richer in features, they might not
always be suitable for critical paths. Being “generic” has many
drawbacks, and efficiency is usually the first victim.
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Do things once
Was it done already? Perhaps we already loop over the same array somewhere
else, so we could do more things “in place,” as we did in Example 10-3.

There might be cases where we validate some invariant even though it was vali‐
dated before. Or we sort again “just in case,” but when we double-check the code,
it was sorted already. For example, in the Thanos project, we can do a k-way
merge instead of a naive merge and sort again when merging different metric
streams because of the invariant that each stream gives metrics in lexicographic
order.

Another common example is reusing memory. For instance, we can create a
small buffer once and reuse it, as in Example 10-8, instead of creating a new one
every time we need it. We can also use caching or “Memory Reuse and Pooling”
on page 449.

Leverage math to do less
Using math is an amazing way to reduce the work we have to do. For example, to
calculate the number of samples retrieved through the Prometheus API, we don’t
decode chunks and iterate over all samples to count them. Instead, we estimate
the number of samples by dividing the size of the chunk by the average sample
size.

Use the knowledge or precomputed information
Many APIs and functions are designed to be smart and automate certain work,
even if it means doing more work. One example is pre-allocation possibilities,
discussed in “Pre-Allocate If You Can” on page 440.

In another, more complex example, the minio-go object storage client we use in
objstore can upload an arbitrary io.Reader implementation. However, the
implementation requires calculating the checksum before upload. Thus, if we
don’t give the total expected size of the bytes available in a reader, minio-go will
use additional CPU cycles and memory to buffer the whole, potentially
gigabytes-large object. All this just to calculate a checksum that has to be some‐
times sent up front. On the other hand, if we notice this and have the total size
handy, providing this information through the API can dramatically improve
upload efficiency.

These elements seem like they focus on CPU time and latency, but we can use the
same toward memory or any other resource usage. For example, consider a small
example in Example 11-1 that shows what it means to do “less work” focused on
lower memory usage.
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Example 11-1. The function finding if the slice has a duplicated element optimized with
an empty struct. Uses “Generics” on page 63.

func HasDuplicates[T comparable](slice ...T) bool {
    dup := make(map[T]any, len(slice))
    for _, s := range slice {
        if _, ok := dup[s]; ok {
            return true
        }
        dup[s] = "whatever, I don't use this value"
    }
    return false
}

func HasDuplicates2[T comparable](slice ...T) bool {
    dup := make(map[T]struct{}, len(slice))
    for _, s := range slice {
        if _, ok := dup[s]; ok {
            return true
        }
        dup[s] = struct{}{} 
    }
    return false
}

Since we don’t use the map value, we can use the struct{} statement, which uses
no memory. Thanks to this, the HasDuplicates2 on my machine is 22% faster
and allocates 5 times less memory for a float64 slice with 1 million elements.
The same pattern can be used in places where we don’t care about value. For
example, for channels we use to synchronize goroutines, we can use make(chan
struct{}) to avoid unnecessary space we don’t need.

Usually, there is always room to reduce some effort in our programs. We can use
profiling to our advantage to check all expensive parts and their relevance to our
problem. Often we can remove or transform those into cheaper forms, gaining
efficiency.

Be Strategic!

Sometimes, doing less work now means more work or resource
usage later. We can be strategic about this and ensure that our local
benchmark doesn’t miss the important trade-off elsewhere. This
problem is highlighted in “Memory Reuse and Pooling” on page 449,
where the macrobenchmark results give opposite conclusions to
the microbenchmark.
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1 I spoke about this problem at the GitHub Global Maintainers Summit.
2 This list was inspired by Chapter 4 in Writing Efficient Programs by Jon Louis Bentley.

Trading Functionality for Efficiency
In some cases, we have to negotiate or remove certain functionality to improve effi‐
ciency. In “Optimizing Latency” on page 383, we can improve the CPU time by
removing support for negative integers in the file. Without this requirement, we can
remove the check for negative sign in the Example 10-5 ParseInt function! Perhaps
this feature is not well used, and it can be traded for cheaper execution!

This is also why accepting all the possible features in the project is often not very sus‐
tainable. In many cases, an extra API, extra parameter, or functionality might add a
significant efficiency penalty for critical paths, which could be avoided if we just limit
the functionality to a minimum.1

Trading Space for Time
What else can we do if we limit our program’s work to a minimum by reducing
unnecessary logic, features, and leaks? Generally, we can shift to systems, algorithms,
or code that use less time but cost us more in terms of storage, like memory, disk, and
so on. Let’s walk through some possible changes like this:2

Precomputing result
Instead of computing the same expensive function, we could try to precompute it
and store the result in some table lookup or variable.

These days, it’s very common to see a compiler adapting optimization like this.
The compiler trades compiler latency and program code space for faster execu‐
tion. For example, statements like 10*1024*1024 or 20 * time.Seconds can be
precomputed by a compiler, so they don’t have to be computed at runtime.

But there might be cases of more complex function statements that the
compiler can’t precompute for us. For example, we could use regexp.Must
Compile("… ").MatchString( in some condition, which is on a critical path.
Perhaps it will be efficient to create a variable pattern := regexp.Must

Compile("…") and operate on pattern.MatchString( in that heavily used code
instead. On top of that, some cryptographic encryption offer precompute meth‐
ods that speed up execution.
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3 There’s a reason some people call caches “a memory leak you don’t know about yet”.

Caching
When the computed results heavily depend on the input, precomputing it for
one input that is only used from time to time is not very helpful. Instead, we can
introduce caching as we did in Example 4-1. Writing our caching solution is a
nontrivial effort and should be done with care.3 There are many caching policies,
with the Least Recently Used (LRU) being the most popular in my experience. In
“Bonus: Thinking Out of the Box” on page 411, I mentioned a few off-the-shelf
solutions in open source that we can use.

Augmenting data structure
We can often change the data structure so certain information can be accessed
more easily, or by adding more information to the structure. For example, we
can store the size next to a file descriptor to know the file size instead of asking
for it every time.

In addition, we can maintain a map of elements next to the slice we already have
in our structure, so we deduplicate or find elements easier (similar to the dedu‐
plication map I did in Example 11-1).

Decompressing
Compression algorithms are great for saving disk or memory space. However,
any compression—e.g., string interning, gzip, zstd, etc.—have some CPU (thus,
time) overhead, so when time is money, we might want to get rid of compres‐
sion. Be careful, though, as enabled compression can improve program latency,
e.g., when used for messages across slow networks. Therefore, spending more
CPU time to reduce message size so that we can send more with a smaller num‐
ber of network packets can potentially be faster.

Ideally, the decision is deliberate. For example, perhaps we know that based on the
RAERs, our program can still use more memory, but we are not meeting the latency
goal. In such a case, we could check if there is anything we can add, cache, or store
that would allow you to spend less time in our program.

Trading Time for Space
If we can spare some latency or extra CPU time but are low on memory during the
execution, we can try the opposite rule to the previous one, trading space for time.
The methods are usually exactly the opposite of those in “Trading Space for Time” on
page 419: compressing and encoding more, removing extra fields from the struct,
recomputing results, removing caches, etc.
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Trading Space for Time or Time for Space Optimizations Is Not Always
Intuitive

Sometimes to save memory resource usage, we have to allocate
more first!
For example, in “Overusing Memory with Arrays” on page 445 and
“Memory Reuse and Pooling” on page 449, I mention situations
where allocating more memory or explicitly copying memory is
better, despite looking like more work. So it can save us more
memory space in the long run.

To sum up, consider the four general rules as higher-level patterns of possible opti‐
mizations. Let me now introduce you to the “three Rs,” which helped me a lot to
guide some of the optimizations in my efficiency development tasks.

The Three Rs Optimization Method
The three Rs technique is an excellent method to reduce waste. It is generally applica‐
ble for all computer resources, but it is often used for ecology purposes to reduce lit‐
eral waste. Thanks to those three ingredients—reduce, reuse, and recycle—we can
reduce the impact we have on the Earth’s environment and ensure sustainable living.

At FOSDEM 2018, I saw Bryan Boreham’s amazing talk, where he described using
this method to mitigate memory issues. Indeed, the three Rs method is especially
effective against memory allocations, which is the most common source of memory
efficiency and GC overhead problems. So, let’s explore each “R” component and how
each can help.

Reduce Allocations
Attempting to directly affect the pace [e.g., using GOGC or GOMEMLIMIT] of [garbage]
collection has nothing to do with being sympathetic with the collector. It’s really about
getting more work done between each collection or during the collection. You affect
that by reducing the amount or the number of allocations any piece of work adds to
heap memory.

—William Kennedy, “Garbage Collection in Go: Part I—Semantics”

There is almost always room to reduce allocations—look for the waste! Some ways to
reduce the number of objects our code puts on the heap are obvious (reasonable opti‐
mizations like the pre-allocations of slices we saw in Example 1-4).
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However, other optimizations require certain trade-offs—typically more CPU time or
less readable code, for example:

• String interning, where we avoid operating on the string type by providing a
dictionary and using a much smaller, pointer-free dictionary of integers repre‐
senting the ID of the string.

• Unsafe conversion from []byte to string (and vice versa) without copying
memory, which potentially saves allocations, but if done wrongly can keep more
memory in a heap (discussed in Example 11-15).

• Ensuring that a variable does not escape to the heap can also be considered an
effort that reduces allocations.

There are unlimited different ways we could reduce allocations. We already men‐
tioned some earlier. For example, when doing less work, we typically can allocate less!
Another tip is to look for reducing allocations on all optimization design levels
(“Optimization Design Levels” on page 98), not only code. In most cases, the algo‐
rithm must change first so we can have big improvements in the space complexity
before we move to the code level.

Reuse Memory
Reusing is also an effective technique. As we learned in “Garbage Collection” on page
185, the Go runtime already reuses memory somehow. Still, there are ways to explic‐
itly reuse objects like variables, slices, or maps for repeated operations instead of re-
creating them in every loop. We will discuss some techniques in “Memory Reuse and
Pooling” on page 449.

Again, utilize all optimization design levels (see “Optimization Design Levels” on
page 98). We can choose the designs of systems or algorithms that reuse memory; for
example, see “Moving to Streaming Algorithm” on page 395. Another example of a
“reuse” optimization on the system level is the TCP protocol. It offers to keep con‐
nections alive for reuse, which also helps with the network latency required to estab‐
lish a new connection.
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4 See a nice blog post about those here.

Be Careful When Reusing

Treating this tip literally is tempting—many try to go as far as reus‐
ing every little thing, including variables. As we learned in “Values,
Pointers, and Memory Blocks” on page 176, variables are boxes
that require some memory, but usually it’s on the stack, so we
should not be afraid to create more of them if needed. On the con‐
trary, overusing variables can lead to hard-to-find bugs when we
shadow variables.
Reusing complex structures can also be very dangerous for two
reasons:4

• It is often not easy to reset the state of a complex structure
before using it a second time (instead of allocating a new one,
which creates a deterministic, empty structure).

• We cannot concurrently use those structures, which can limit
further optimizations or surprise us and cause data races.

Recycle
Recycling is a minimum of what we must have in our programs if we use any mem‐
ory. Fortunately, we don’t need anything extra in our Go code, as it’s the built-in
GC’s responsibility to recycle unused memory to the OS, unless we utilize advanced
utilities like “mmap Syscall” on page 162 or other off-heap memory techniques.

However, if we can’t “reduce” or “reuse” more memory, we can sometimes optimize
our code or GC configuration, so the recycling is more efficient for the garbage col‐
lection. Let’s go through some ways to improve recycling:

Optimize the structure of the allocated object
If we can’t reduce the number of allocations, maybe we can reduce the number of
pointers in our objects! However, avoiding pointers is not always possible, given
popular structures like time, string, or slices, which contain pointers. Especially
string doesn’t look like it, but it is just a special []byte, which means it has a
pointer to a byte array. In extreme cases, in certain conditions, it might be worth
changing []string into offsets []int and bytes []byte to make it a pointer-
free structure!

Another widespread example where it’s easy to get very pointer-rich structures is
when implementing data structures that are supposed to be marshaled
and unmarshaled to different byte formats like JSON, YAML, or protobuf. It is
tempting to use pointers for nested structures to allow optionality of the field
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(the ability to differentiate if the field was set or not). Some code generation
engines like Go protobuf generator put all fields as pointers by default. This is
fine for smaller Go programs, but if we use a lot of objects (which is common,
especially if we use them for messages over the network), we might consider try‐
ing to remove pointers from those data structures (many generators and mar‐
shalers offer that option).

Reducing the number of pointers in our structures is better for
GC and can make our data structure more L-cache friendly,
decreasing the program latency. It also increases the chances
that the compiler will put the data structure on the stack
instead of the heap!
The main downside, however, is more overhead when you
pass that struct by value (copy overhead mentioned in “Val‐
ues, Pointers, and Memory Blocks” on page 176).

GC tuning
I mentioned in “Garbage Collection” on page 185 about two tuning options for
Go GC: GOGC and GOMEMLIMIT.

Adjusting the GOGC option from the default 100% value might sometimes posi‐
tively affect your program efficiency. Moving the next GC collection to happen
sooner or later (depending on need) might be beneficial. Unfortunately, it
requires lots of benchmarking to find the right number. It also does not guaran‐
tee that this tuning will work well for all possible states of your applications. On
top of that, this technique has poor sustainability if you change the critical path
in your code a lot. Every change requires another tuning session. This is why
some bigger companies like Google and Uber invest in automated tools that
adjust GOGC automatically in runtime!

The GOMEMLIMIT is another option you can adjust on top of the GOGC. It’s a rela‐
tively new option for GC to run more frequently when the heap is close to or
above the desired soft memory limit.

Using Kubernetes? Use GOMEMLIMIT
Together with Pod Memory Limits

Some orchestration systems like Kubernetes allow setting hard resource limits on
the workloads. For incompressible resources like memory, when the workload
requires more memory as a limit, the system will typically OOM the process.

The GOMEMLIMIT option is designed to help if the GC memory overhead is caus‐
ing those OOMs (GC reacted to memory spikes). The official guide also suggests
that we should leave an additional 5–10% of headroom to account for memory
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5 For example, in the Prometheus project we removed the manual GC trigger when code conditions changed a
little. That decision was based on micro- and macrobenchmarks discussed in Chapter 7.

sources the Go runtime is unaware of. Setting the GOMEMLIMIT option to 90–95%
of the workload memory limit might be quite effective.

If we don’t want to oversubscribe memory on our machines, we can also set
GOGC=off to trigger GC only if close to the memory limit, which can save some
CPU time.

See a more detailed guide on GC tuning with the interactive visualizations.

Triggering GC and freeing OS memory manually
In extreme cases, we might want to experiment with manually triggered GC col‐
lections using runtime.GC(). For example, we might want to trigger GC man‐
ually after an operation that allocated a lot of memory and no longer reference it.
Note that a manual GC trigger is usually a strong anti-pattern, especially in libra‐
ries as it has global effects.5

Allocating objects off-heap
We mentioned trying to allocate objects on the stack first instead of the heap. But
the stack and heap are not our only options. There are ways to allocate memory
off-heap, so that it’s outside of the Go runtime’s responsibility to manage.

We can achieve that with the explicit mmap syscall we learned in “mmap Syscall”
on page 162. Some have even tried calling C functions like jemalloc through the
CGO.

While possible, we need to acknowledge that doing this can be compared to
reimplementing parts of the Go Allocator from scratch, not to mention dealing
with the manual allocations and lack of memory safety. It is the last thing we
might want to try for the ultimate high-performance Go implementation!

On the bright side, this space is continuously improving. At the time of writing
this book, the Go team approved and implemented an exciting proposal behind
the GOEXPERIMENT=arena environment variable. It allows allocating a set of
objects from the contiguous region of memory (arena) that lives outside of heap
regions managed by GC. As a result, we will be able to isolate, track, and quickly
release that memory explicitly when we need it (e.g., when an HTTP request is
handled) without waiting or paying for garbage collection cycles. What’s special
about arenas is that it’s meant to panic your program when you accidentally use
the memory that was unused before assuring a certain level of memory safety. I
can’t wait to start playing with it once it is released—it might mean safe and
easier-to-use off-heap optimizations.
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6 The reason is that we might reuse the same code in a more long-living scenario, where a leak might have
much bigger consequences.

7 Unless we disabled it using the GOGC=off environment variable.

Benchmarking and measuring all the effects of these optimizations is essential before
trying any recycle improvements on our production code. Some of these can be con‐
sidered tricky to maintain and unsafe if used without extensive tests.

To sum up, keep the three Rs method in mind, ideally in the same order: reduce,
reuse, and recycle. Let’s now dive into some common Go optimizations I have seen in
my experience. Some of them might surprise you!

Don’t Leak Resources
Resource leak is a common problem that reduces the efficiency of our Go programs.
The leak occurs when we create some resource or background goroutine, and after
using it, we want it to get released or stopped, but it is accidentally left behind. This
might not be noticeable on a smaller scale, but sooner or later this can become a large
and hard-to-debug issue. I suggest always clearing something you created, even if you
expect to exit the program in the next cycle!6

“This Program Has a Memory Leak!”

Not every higher memory utilization behavior can be considered a
leak. For example, we could generally “waste” more memory for
some operations, resulting in a spike in heap usage, but it gets
cleared at some point.
Technically a leak is only when, for the same amount of load on the
program (e.g., the same amount of HTTP traffic for a long-living
service), we use an unbounded amount of resources (e.g., disk
space, memory, rows in the database), which eventually run out.
There are cases of unexpected nondeterministic memory usage on
the edge of the leak and waste. These are sometimes called pseudo‐
memory leaks, and we will discuss some of them in “Overusing
Memory with Arrays” on page 445.

Perhaps we might think that memory should be an exception to this rule. The stack
memory is automatically removed, and the garbage collection in Go dynamically
removes the memory allocated on the heap.7 There is no way to trigger the cleanup of
a memory block other than stop referencing it and waiting (or triggering) a full GC
cycle. However, don’t let that fool you. There are many cases when the Go developer
writes code that leaks memory, despite eventual garbage collection!
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8 For that, we could use tools that analyze the dumped core, but they aren’t very accessible at the moment, so I
would not recommend them.

There are a few reasons our program leaks memory:

• Our program constantly creates custom mmap syscalls and never closes them (or
closes them slower than creating them). This will typically end with a process or
machine OOM.

• Our program calls too many nested functions, typically infinite or large recur‐
sion. Our process will then exit with a stack overflow error.

• We are referencing a slice with a tiny length, but we forgot that its capacity is
very large, as explained in “Overusing Memory with Arrays” on page 445.

• Our program constantly creates memory blocks on the heap, which are always
referenced by some variables in the execution scope. This typically means we
have leaked goroutines or infinitely growing slices or maps.

It’s easy to fix memory leaks when we know where they are, but it’s not easy to spot
them. We often learn about leaks after the fact, when our application has already
crashed. Without advanced tools like those in “Continuous Profiling” on page 373,
we have to hope to reproduce the problem with local tests, which is not always
possible.

Even with the past heap profile, during the leak, we only see memory in the code that
allocated memory blocks, not the code that currently references it.8 Some of the
memory leaks, especially those caused by leaked goroutines, can be narrowed down
thanks to the goroutine, but not always.

Fortunately, a few best practices can proactively prevent us from leaking any incom‐
pressible resource (e.g., disk space, memory, etc.) and avoid that painful leak analysis.
Consider the suggestions in this section as something we always care for and use as
reasonable optimizations.

Control the Lifecycle of Your Goroutines
Every time you use the go keyword in your program to launch a goroutine, you must
know how, and when, that goroutine will exit. If you don’t know the answer, that’s a
potential memory leak.

—Dave Cheney, “Never Start a goroutine Without Knowing How It Will Stop”

Goroutines are an elegant and clean framework for concurrent programming but
have some downsides. One is that each goroutine is fully isolated from other gorou‐
tines (unless we use an explicit synchronization paradigm). There is no central dis‐
patch in the Go runtime that we could call and, for example, ask to close the
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goroutines created by the current goroutine (or even check which one it created).
This is not a lack of maturity of the framework, but rather a design choice allowing
goroutines to be very efficient. As a trade-off, we have to implement potential code
that will stop them when the job is done—or, to be specific, the code inside the
goroutine to stop itself (the only way!).

The solution is never to create a goroutine and leave it on its own without strict con‐
trol, even if we think the computation is fast. Instead, when scheduling goroutines,
think about two aspects:

How to stop them
We should always ask ourselves when the goroutine will finish. Will it finish on
its own, or do I have to trigger the finish using context, channels, and so on (as in
the examples that follow)? Should I be able to abort the goroutine long execution
if, e.g., the request was cancelled?

Should my function wait for the goroutine to finish?
Do I want my code to continue the execution without waiting for my goroutines
to finish? Usually, the answer is no, and you should wait for the goroutine to
stop, for example, using channels sync.WaitGroup (e.g., in Example 10-10),
errgroup, or the excellent run.Group abstraction.

There are many cases where it feels safe just to let the goroutines “eventually” stop,
but in practice, not waiting for them has dangerous consequences. For example, con‐
sider the HTTP server handler that computes some number asynchronously in
Example 11-2.

Example 11-2. Showcase of a common leak in a concurrent function

func ComplexComputation() int { 
    // Some computation...

    // Some cleanup...
    return 4
}

func Handle_VeryWrong(w http.ResponseWriter, r *http.Request) {
    respCh := make(chan int)

    go func() { 
        defer close(respCh) 
        respCh <- ComplexComputation()
    }()

    select { 
    case <-r.Context().Done():
        return 
    case resp := <-respCh:
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        _, _ = w.Write([]byte(strconv.Itoa(resp)))
        return
    }
}

Small function simulating longer computation. Imagine it takes around two sec‐
onds to complete all.

Imagine a handler that schedules asynchronous computation.

Our code does not depend on someone closing the channel, but as a good prac‐
tice, the sender closes it.

If cancellation happens, we return immediately. Otherwise, we wait for the result.
At first glance, the above code does not look too bad. It feels like we control the
lifecycle of the scheduled goroutine.

Unfortunately, the detail is hidden in more information. We control the lifecycle
only in a good case (when no cancellation occurs). If our code hits this line, we
are doing something bad here. We return without caring about the goroutine
lifecycle. We don’t stop it. We don’t wait for it. Even worse, this is a permanent
leak, i.e., the goroutine with ComplexCalculation will be starved—as no one
reads from the respCh channel.

While the goroutine looks like it’s controlled, it isn’t in all cases. This leaky code is
commonly seen in the Go codebase because it requires a lot of detailed focus to not
forget about every little edge case. As a result of these mistakes, we tend to delay
using goroutines in our Go, as it’s easy to create leaks like this.

The worst part about leaks is that our Go program might survive long before some‐
one notices the adverse effects of such leaks. For example, running Handle_Very
Wrong and cancelling it periodically will eventually OOM this Go program, but if we
cancel only from time to time and restart our application periodically, without good
observability we might never notice it!

Fortunately, an amazing tool allows us to discover those leaks at the unit test level.
Therefore, I suggest using a leak test in every unit (or test file) that uses concurrent
code. One of them is called goleak from Uber, and its basic use is presented in
Example 11-3.

Example 11-3. Testing for leaks in Example 11-2 code

func TestHandleCancel(t *testing.T) { 
    defer goleak.VerifyNone(t) 
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    w := httptest.NewRecorder()
    r := httptest.NewRequest("", "https://efficientgo.com", nil)

    wg := sync.WaitGroup{}
    wg.Add(1)

    ctx, cancel := context.WithCancel(context.Background())
    go func() {
        Handle_VeryWrong(w, r.WithContext(ctx))
        wg.Done()
    }()
    cancel()

    wg.Wait()
}

Let’s create tests that verify cancel behavior. This is where the leak is suspected to
be triggered.

To verify goroutine leaks, just defer goleak.VerifyNone at the top of our test. It
runs at the end of our test and fails if any unexpected goroutine is still running.
We can also verify whole package tests using the goloak.VerifyTestMain
method.

Running such a test causes the test to fail with the output in Example 11-4.

Example 11-4. Output of two failed runs of Example 11-3

=== RUN   TestHandleCancel
    leaks.go:78: found unexpected goroutines:
        [Goroutine 8 in state sleep, with time.Sleep on top of the stack:
        goroutine 8 [sleep]: 
        time.Sleep(0x3b9aca00)
           /go1.18.3/src/runtime/time.go:194 +0x12e
        github.com/efficientgo/examples/pkg/leak.ComplexComputation()
           /examples/pkg/leak/leak_test.go:107 +0x1e
        github.com/efficientgo/examples/pkg/leak.Handle_VeryWrong.func1()
           /examples/pkg/leak/leak_test.go:117 +0x5d
        created by github.com/efficientgo/examples/pkg/leak.Handle_VeryWrong
           /examples/pkg/leak/leak_test.go:115 +0x7d
        ]
--- FAIL: TestHandleCancel (0.44s)
=== RUN   TestHandleCancel
    leaks.go:78: found unexpected goroutines:
        [Goroutine 21 in state chan send, with Handle_VeryWrong.func1 (...):
        goroutine 21 [chan send]: 
        github.com/efficientgo/examples/pkg/leak.Handle_VeryWrong.func1()
           /examples/pkg/leak/leak_test.go:117 +0x71
        created by github.com/efficientgo/examples/pkg/leak.Handle_VeryWrong
           /examples/pkg/leak/leak_test.go:115 +0x7d
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        ]
--- FAIL: TestHandleCancel (3.44s)

We see the goroutines still running at the end of the test and what they were exe‐
cuting.

If we waited a few seconds after cancelling, we could see that the goroutine was
still running. However, this time it was waiting on a read from respCh, which
would never happen.

The solution to such an edge case leak is to fix the Example 11-2 code. So let’s go
through two potential solutions in Example 11-5 that seem to fix the problem, but
still leak in some way!

Example 11-5. (Still) leaking handlers. This time the goroutines left behind eventually
stop.

func Handle_Wrong(w http.ResponseWriter, r *http.Request) {
    respCh := make(chan int, 1) 

    go func() {
        defer close(respCh)
        respCh <- ComplexComputation()
    }()

    select {
    case <-r.Context().Done():
        return
    case resp := <-respCh:
        _, _ = w.Write([]byte(strconv.Itoa(resp)))
        return
    }
}

func Handle_AlsoWrong(w http.ResponseWriter, r *http.Request) {
    respCh := make(chan int, 1)

    go func() {
        defer close(respCh)
        respCh <- ComplexComputationWithCtx(r.Context()) 
    }()

    select {
    case <-r.Context().Done():
        return
    case resp := <-respCh:
        _, _ = w.Write([]byte(strconv.Itoa(resp)))
        return
    }
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}

func ComplexComputationWithCtx(ctx context.Context) (ret int) {
    var done bool
    for !done && ctx.Err == nil {
        // Some partial computation...
    }

    // Some cleanup... 
    return ret
}

The only difference between this code and HandleVeryWrong in Example 11-2 is
that we create a channel with a buffer for one message. This allows the computa‐
tion goroutine to push one message to this channel without waiting for someone
to read it. If we cancel and wait some time, the “left behind” goroutine will even‐
tually finish.

To make things more efficient, we could even implement a ComplexComputation
WithCtx that accepts context, which cancels computation and is no longer
needed.

Many context-cancelled functions do not finish immediately when the context is
cancelled. Perhaps context is checked periodically, or some cleanup might be
needed to revert cancelled changes. In our case, we simulate cleanup wait time
with sleep.

The examples in Example 11-5 provide some progress, but unfortunately, they still
technically leak. In some ways, the leak is only temporary, but it can still cause prob‐
lems for the following reasons:

Unaccounted resource usage.
If we used the Handle_AlsoWrong function for request A, then A would cancel.
As a result, the ComplexComputation would accidentally allocate a lot of memory
after Handle_AlsoWrong finished—it would create a confusing situation. Further‐
more, all observability tools would indicate that a spike of memory happened
after request A finished, so it would be a false perception that request A is not
correlated to the memory problem.

Accounting problems can have big consequences on the future scalability of our
program. For example, imagine that a cancelled request usually takes 200 ms to
finish. That’s not true—if we accounted for all computations, we would see it’s
200 ms with, e.g., 1 second for ComplexComputation cleanup latency. This calcu‐
lation is very important when predicting resource usage for certain traffic given
certain machine resources.
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We can run out of resources sooner.
Such “left behind” goroutines can still cause OOM as the usage is non-
deterministic. Continuous runs and cancels can still give the impression that the
server is ready to schedule another request, and keep adding leaked asynchro‐
nous jobs, which can eventually starve the program. This situation fits in the leak
definition.

Are we sure they finished?
Furthermore, leaving behind goroutines gives us no visibility on how long they
run and if they finished in all edge cases. Perhaps there is a bug that gets them
stuck at some point.

As a result, I would highly suggest never leaving behind goroutines in your code. For‐
tunately, Example 11-3 marks all three functions (Handle_VeryWrong, Handle_Wrong,
and Handle_AlsoWrong) as leaking, which is usually what we want. To fix the leak
completely, we can, in our case, always wait for the result channel, as presented in
Example 11-6.

Example 11-6. Version of Example 11-2 that is not leaking

func Handle_Better(w http.ResponseWriter, r *http.Request) {
    respCh := make(chan int)

    go func() {
        defer close(respCh)
        respCh <- ComplexComputationWithCtx(r.Context())
    }()

    resp := <-respCh 
    if r.Context().Err() != nil {
        return
    }

    _, _ = w.Write([]byte(strconv.Itoa(resp)))
}

Always reading from the channel allows us to wait for the goroutine stop. We
also respond to cancel as quickly as possible, thanks to propagating proper con‐
text to ComplexComputationWithCtx.

Last but not least, be careful when you benchmark concurrent code. Always wait in
each b.N iteration for what you want to define as “an operation.” A common leak in
benchmarking code with the solution is presented in Example 11-7.
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Example 11-7. Showcase of a common leak in benchmarking concurrent code

func BenchmarkComplexComputation_Wrong(b *testing.B) { 
    for i := 0; i < b.N; i++ {
        go func() { ComplexComputation() }()
        go func() { ComplexComputation() }()
    }
}

func BenchmarkComplexComputation_Better(b *testing.B) { 
    defer goleak.VerifyNone(
        b,
        goleak.IgnoreTopFunction("testing.(*B).run1"),
        goleak.IgnoreTopFunction("testing.(*B).doBench"),
    ) 

    for i := 0; i < b.N; i++ {
        wg := sync.WaitGroup{}
        wg.Add(2)

        go func() {
            defer wg.Done()
            ComplexComputation()
        }()
        go func() {
            defer wg.Done()
            ComplexComputation()
        }()
        wg.Wait()
   }
}

Let’s say we want to benchmark concurrent ComplexComputation. Scheduling
two goroutines might find some interesting slowdowns if any resources are
shared between those functions. However, these benchmark results are com‐
pletely wrong. My machine shows 1860 ns/op, but if we look carefully, we will
see we don’t wait for any of those goroutines to complete. As a result, we only
measure the latency needed to schedule two goroutines per operation.

To measure the latency of two concurrent computations, we have to wait for
their completion, perhaps with sync.WaitGroup. This benchmark shows a much
more realistic 2000339135 ns/op (two seconds per operation) result.

We can also use goleak on our benchmarks to verify against leaks! However, we
need to have a benchmark-specific filter due to this issue.

To sum up, control your goroutine lifecycle for reliable efficiency now and in the
future! Ensure the goroutine lifecycle as a reasonable optimization.
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9 Yes! If we don’t invoke the returned context.CancelContext function, it will keep a goroutine running for‐
ever (when WithContext was used) or until the timeout (WithTimeout).

10 I have only seen linters that check some basic things like if the code closed request body, or sql statements.
There is room to contribute more of those, e.g., in the semgrep-go project.

Reliably Close Things
This might be obvious, but if we create some object that is supposed to be closed after
use, we should ensure we don’t forget or ignore this. We have to be extra careful if we
create an instance of some struct or use a function, and we see some kind of
“closer,” for example:

• It returns cancel or close closure, e.g., context.WithTimeout or context.With
Cancel.9

• The returned object has a method with closing, cancelling, or
stopping-like semantics, e.g., io.ReaderCloser.Close(), time.Timer.Stop(), or
TearDown.

• Some functions do not have a closer method but have a dedicated closing or
deleting package-level function, e.g., the corresponding “releasing” function
for os.Create or os.Mkdir is os.Remove.

If we have such a situation, assume the worst: if we don’t call that function at the end
of using that object, bad things will happen. Some goroutine will not finish, some
memory will be kept referenced, or worse, our data will not bet saved (e.g., in case of
os.File.Close()). We should try to be vigilant. When we use a new abstraction, we
should check if it has any closers. Unfortunately, there are no linters that would point
out if we forgot to call them.10

Unfortunately, that isn’t everything. We can’t just defer a call to Close. Typically, it
also returns the error, which might mean the close could not happen, and this situa‐
tion has to be handled. For example, os.Remove failed because of permission issues
and the file was not removed. If we cannot exit the application, retry, or handle the
error, we should at least be aware of this potential leak.

Does it mean that defer statements are less useful, and we have to have that if
err != nil boilerplate for all closers? Not really. This is when I would suggest using
the errcapture and logerrcapture packages. See Example 11-8.

Example 11-8. Examples of closing files with defer

// import "github.com/efficientgo/core/logerrcapture"
// import "github.com/efficientgo/core/errcapture"
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func doWithFile_Wrong(fileName string) error {
    f, err := os.Open(fileName)
    if err != nil {
        return err
    }
    defer f.Close() // Wrong! 

    // Use file...

    return nil
}

func doWithFile_CaptureCloseErr(fileName string) (err error) { 
    f, err := os.Open(fileName)
    if err != nil {
        return err
    }
    defer errcapture.Do(&err, f.Close, "close file") 

    // Use file...

    return nil
}

func doWithFile_LogCloseErr(logger log.Logger, fileName string) {
    f, err := os.Open(fileName)
    if err != nil {
        level.Error(logger).Log("err", err)
        return
    }
    defer logerrcapture.Do(logger, f.Close, "close file") 

    // Use file...
}

Never ignore errors. Especially on a file close, which often flushes some of our
writes to disk only on Close, we lose data on an error.

Fortunately, we don’t need to give up on the amazing Go defer logic. Using err
capture, we can return an error if f.Close returns an error. If doWithFile_Cap
tureCloseErr returns an error and we do Close, the potential close error will be
appended to the returned one. This is possible thanks to the return argument
(err error) of this function. This pattern will not work without it!

We can also log the close error if we can’t handle it.
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If we see any project I was involved in (and influenced to impact patterns like this), I
use errcapture in all functions that return errors, and I can defer them—a clean and
reliable way to avoid some leaks.

Another common example of when we forget to close things is error cases. Suppose
we have to open a set of files for later use. Making sure we close them is not always
trivial, as shown in Example 11-9.

Example 11-9. Closing files in error cases

// import "github.com/efficientgo/core/merrors"

func openMultiple_Wrong(fileNames ...string) ([]io.ReadCloser, error) {
    files := make([]io.ReadCloser, 0, len(fileNames))
    for _, fn := range fileNames {
        f, err := os.Open(fn)
        if err != nil {
            return nil, err // Leaked files! 
        }
        files = append(files, f)
    }
    return files, nil
}

func openMultiple_Correct(fileNames ...string) ([]io.ReadCloser, error) {
    files := make([]io.ReadCloser, 0, len(fileNames))
    for _, fn := range fileNames {
        f, err := os.Open(fn)
        if err != nil {
            return nil, merrors.New(err, closeAll(files)).Err() 
        }
        files = append(files, f)
    }
    return files, nil
}

func closeAll(closers []io.ReadCloser) error {
    errs := merrors.New()
    for _, c := range closers {
        errs.Add(c.Close())
    }
    return errs.Err()
}

This is often difficult to notice, but if we create more resources that have to be
closed, or we want to close them in a different function, defer can’t be used. This
is normally fine, but if we want to create three files and we have an error when
opening the second one, we are leaking resources for the first nonclosed file! We
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cannot just return the files opened so far from openMultiple_Wrong and an error
because the consistent flow is to ignore anything returned if there was an error.
We typically have to close the already opened file to avoid leaks and confusion.

The solution is typically creating a short helper that will iterate over appended
closers and close them. For example, we use the merrors package for convenient
error append, because we want to know if any new error happened in any Close
call.

To sum up, closing things is very important and considered a good optimization. Of
course, no single pattern or linter would prevent us from all mistakes, but we can do
a lot to reduce that risk.

Exhaust Things
To make things more complex, certain implementations require us to do more work
to release all resources fully. For example, an io.Reader implementation might not
give the Close method, but it might assume that all bytes will be read fully. On the
other hand, some implementations might have a Close method, yet still expect us to
“exhaust” the reader for efficient use.

One of the most popular implementations that have such behavior are the
http.Request and http.Response body io.ReadCloser from the standard library.
The problem is shown in Example 11-10.

Example 11-10. An example of the inefficiency of http/net Client caused by a wrongly
handled HTTP response

func handleResp_Wrong(resp *http.Response) error { 
    if resp.StatusCode != http.StatusOK {
        return errors.Newf("got non-200 response; code: %v", resp.StatusCode)
    }
    return nil
}

func handleResp_StillWrong(resp *http.Response) error {
    defer func() {
        _ = resp.Body.Close() 
    }()

    if resp.StatusCode != http.StatusOK {
        return errors.Newf("got non-200 response; code: %v", resp.StatusCode)
    }
    return nil
}

func handleResp_Better(resp *http.Response) (err error) {
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    defer errcapture.ExhaustClose(&err, resp.Body, "close") 

    if resp.StatusCode != http.StatusOK {
        return errors.Newf("got non-200 response; code: %v", resp.StatusCode)
    }
    return nil
}

func BenchmarkClient(b *testing.B) {
    defer goleak.VerifyNone(
        b,
        goleak.IgnoreTopFunction("testing.(*B).run1"),
        goleak.IgnoreTopFunction("testing.(*B).doBench"),
    )

    c := &http.Client{}
    defer c.CloseIdleConnections() 

    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        resp, err := c.Get("http://google.com")
        testutil.Ok(b, err)
        testutil.Ok(b, handleResp_Wrong(resp))
    }
}

Imagine we are designing a function that handles an HTTP response from a
http.Client.Get request. Get clearly mentions that the “caller should close
resp.Body when done reading from it.” This handleResp_Wrong is wrong because
it leaks two goroutines:

• One doing net/http.(*persistConn).writeLoop
• The second doing net/http.(*persistConn).readLoop, which is visible

when we run BenchmarkClient with the goleak

The handleResp_StillWrong is better, as we stop the main leak. However, we
still don’t read bytes from the body. We might not need them, but the net/http
implementations can block the TCP connection if we don’t fully exhaust the
body. Unfortunately, this is not well-known information. It is briefly mentioned
in the http.Client.Do method description: “If the Body is not both read to EOF
and closed, the Client’s underlying RoundTripper (typically Transport) may not
be able to re-use a persistent TCP connection to the server for a subsequent
‘keep-alive’ request.”

Ideally, we read until the EOF (end of file), representing the end of whatever we
are reading. For this reason we created convenient helpers like ExhaustClose
from errcapture or logerrcapture that do exactly this.
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11 Which is quite interesting, considering we do more work in our code. We read through all bytes of the HTML
returned by Google. Yet, it’s faster as we create fewer TCP connections.

Client runs some goroutines for each TCP connection we want to keep alive and
reuse. We can close them using CloseIdleConnection to detect any leaks our
code might introduce.

I wish structures like http.Response.Body were easier to use. The close and exhaust
need for the body are important and should be used as a reasonable optimization.
handleResp_Wrong fails the BenchmarkClient with a leak error. The
handleResp_StillWrong does not leak any goroutine, so the leak test passes. The
“leak” is on a different level, the TCP level, with the TCP connection being unable to
reuse, which can cost us extra latency and insufficient file descriptors.

We can see its impact with the results of the BenchmarkClient benchmark in
Example 11-10. On my machine, it takes 265 ms to call http://google.com with
handleResp_StillWrong. For the version that cleans all resources in
handleResp_Better, it takes only 188 ms, which is 29% faster!11

The need for exhaust is also visible in http.HandlerFunc code. We should always
ensure our server implementation exhausts and closes the http.Request body.
Otherwise, we will have the same problem as in Example 11-10. Similarly, this can be
true for all sorts of iterators; for example, a Prometheus storage can have a
ChunkSeriesSet iterator. Some implementations can leak or overuse resources if we
forget to iterate through all items until Next() equals false.

To sum up, always check the implementation for those nontrivial edge cases. Ideally,
we should design our implementations to have obvious efficiency guarantees.

Let’s now dive into the pre-allocation technique I mentioned in previous chapters.

Pre-Allocate If You Can
I mentioned pre-allocation in “Optimized Code Is Not Readable” on page 7 as a rea‐
sonable optimization. I showed how easy it is to pre-allocate a slice with make in
Example 1-4 as an optimization to append. Generally, we want to reduce the amount
of work that code has to do to resize or allocate new items if we know the code has to
do it eventually.

The append example is important, but there are more examples. It turns out that
almost every container implementation that cares about efficiency has some easier
pre-allocation methods. See the ones in Example 11-11 with explanations.
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Example 11-11. Examples of pre-allocation for some common types

const size = 1e6 

slice := make([]string, 0, size) 
for i := 0; i < size; i++ {
    slice = append(slice, "something")
}

slice2 := make([]string, size) 
for i := 0; i < size; i++ {
    slice2[i] = "something"
}

m := make(map[int]string, size) 
for i := 0; i < size; i++ {
    m[i] = "something"
}

buf := bytes.Buffer{} 
buf.Grow(size)
for i := 0; i < size; i++ {
    _ = buf.WriteByte('a')
}

builder := strings.Builder{}
builder.Grow(size)
for i := 0; i < size; i++ {
    builder.WriteByte('a')
}

Let’s assume we know the size we want to grow the containers up front.

make with slices allows us to grow the capacity of the underlying arrays to the
given size. Thanks to the proactive growth of the array with make, the loop with
append is much cheaper in CPU time and memory allocation. This is because
append does not need to resize the array when it’s too small.

Resizing is quite naive. It simply creates a new, bigger array and copies all ele‐
ments. A certain heuristic also tells how many new slices are grown. This heuris‐
tic was recently changed, but it will still allocate and copy a few times until it
extends to our expected one million elements. In our case, the same logic is 8
times faster with pre-allocation and allocates 16 MB instead of 88 MB of
memory.

We can also pre-allocate the slice’s capacity and length. Both slice and slice2
will have the same elements. Both ways are almost equally efficient, so we use one
that fits more functionally to what we need to do. However, with slice2, we are
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12 This is often used when we know only the worst-case size. Sometimes it’s worth growing it to the worst case,
even if we use less in the end. See “Overusing Memory with Arrays” on page 445.

using all array elements, whereas in slice, we can grow it to be bigger but end
up using a smaller number if needed.12

Map can be created using make with an optional number representing its
capacity. If we know the size up front, it’s more efficient for Go to create the
required internal data structure with up-front sizes. The efficiency results show
the difference—on my machine, with pre-allocation, such map initialization
takes 87 ms, without 179 ms! The total allocated space with pre-allocation is 57
MB, without 123 MB. However, map insertion can still allocate some memory,
just much smaller than pre-allocation.

Various buffers and builders offer the Grow function that also pre-allocates.

The preceding example is actually something I use very often during almost every
coding session. Pre-allocation usually takes the extra line of code, but it is a fantastic,
more readable pattern. If you are still not convinced that you won’t have a lot of sit‐
uations when you know the size up front for the slice, let’s talk about io.ReadAll. We
use io.ReadAll (previously ioutil.ReadAll) functions in the Go community a lot.
Did you know you can optimize it significantly by pre-allocating the internal byte
slice if you know the size up front? Unfortunately, io.ReadAll does not have a size
or capacity argument, but there is a simple way to optimize it, as presented in
Example 11-12.

Example 11-12. Examples of ReadAll optimizations with the benchmark

func ReadAll1(r io.Reader, size int) ([]byte, error) {
   buf := bytes.Buffer{}
   buf.Grow(size)
   n, err := io.Copy(&buf, r) 
   return buf.Bytes()[:n], err
}

func ReadAll2(r io.Reader, size int) ([]byte, error) {
   buf := make([]byte, size)
   n, err := io.ReadFull(r, buf) 
   if err == io.EOF {
      err = nil
   }
   return buf[:n], err
}

func BenchmarkReadAlls(b *testing.B) {
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   const size = int(1e6)
   inner := make([]byte, size)

   b.Run("io.ReadAll", func(b *testing.B) {
      b.ReportAllocs()
      for i := 0; i < b.N; i++ {
         buf, err := io.ReadAll(bytes.NewReader(inner))
         testutil.Ok(b, err)
         testutil.Equals(b, size, len(buf))
      }
   })

   b.Run("ReadAll1", func(b *testing.B) {
      b.ReportAllocs()
      for i := 0; i < b.N; i++ {
         buf, err := ReadAll1(bytes.NewReader(inner), size)
         testutil.Ok(b, err)
         testutil.Equals(b, size, len(buf))
      }
   })

   b.Run("ReadAll2", func(b *testing.B) {
      b.ReportAllocs()
      for i := 0; i < b.N; i++ {
         buf, err := ReadAll2(bytes.NewReader(inner), size)
         testutil.Ok(b, err)
         testutil.Equals(b, size, len(buf))
      }
   })
}

One way of simulating ReadAll is by creating a pre-allocated buffer and using
io.Copy to copy all bytes.

Even more efficient is pre-allocating a byte slice and using ReadFull, which is
similar. ReadAll does not use the io.EOF error sentinel if everything is read, so
we need special handling for it.

The results, presented in Example 11-13, speak for themselves. The ReadAll2 using
io.ReadFull is over eight times faster and allocates five times less memory for our
one million byte slice.

Example 11-13. Results of the benchmark in Example 11-12

BenchmarkReadAlls
BenchmarkReadAlls/io.ReadAll
BenchmarkReadAlls/io.ReadAll-12  1210   872388 ns/op  5241169 B/op  29 allocs/op
BenchmarkReadAlls/ReadAll1
BenchmarkReadAlls/ReadAll1-12    8486   165519 ns/op  1007723 B/op  4 allocs/op
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13 For example, this is what we did in Thanos some time ago.

BenchmarkReadAlls/ReadAll2
BenchmarkReadAlls/ReadAll2-12    10000  102414 ns/op  1007676 B/op  3 allocs/op
PASS

The io.ReadAll optimization is very often possible in our Go code. Especially when
dealing with HTTP code, the request or response headers often offer a Content-
Length header that allows pre-allocations.13 The preceding examples represent only a
small subset of types and abstractions that allow pre-allocation. Check the documen‐
tation and code of the type we use if we can average eager allocations for better
efficiency.

However, there is one more amazing pre-allocation pattern I would like you to know.
Consider a simple, singly linked list. If we implement it using pointers, and if we
know we will insert millions of new elements on that list, is there a way to pre-
allocate things for efficiency? Turns out there might be, as shown in Example 11-14.

Example 11-14. Basic pre-allocation of linked list elements

type Node struct {
    next *Node
    value int
}

type SinglyLinkedList struct {
    head *Node

    pool      []Node 
    poolIndex int
}

func (l *SinglyLinkedList) Grow(len int) { 
    l.pool = make([]Node, len)
    l.poolIndex = 0
}

func (l *SinglyLinkedList) Insert(value int) {
    var newNode *Node
    if len(l.pool) > l.poolIndex { 
        newNode = &l.pool[l.poolIndex]
        l.poolIndex++
    } else {
        newNode = &Node{}
    }

    newNode.next = l.head
    newNode.value = value
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    l.head = newNode
}

This line makes this linked list a bit special. We maintain a pool of objects in the
form of one slice.

Thanks to the pool, we can implement our own Grow method, which will allocate
a pool of many Node objects within one allocation. Generally, it’s way faster to
allocate one large []Node than millions of *Node.

During the insert, we can check if we have room in our pool and take one ele‐
ment from it instead of allocating an individual Node. This implementation can
be expanded to be more robust, e.g., for subsequent growth, if we hit the capacity
limit.

If we benchmarked the insertion of one million elements using the preceding linked
list, we would see that the insertion takes four times less time with one eager alloca‐
tion and the same space with just one allocation instead of one million.

The simple pre-allocation with slices and maps presented in Example 11-11 have
almost no downsides, so they can be treated as reasonable optimizations. The pre-
allocation presented in Example 11-14, on the other hand, should be done with care,
deliberately, and with benchmarks as it’s not without trade-offs.

First, the problem is that potential deletion logic or allowing the Grow call multiple
times is not trivial to implement. The second issue is that a single Node element is
now connected to a very large single memory block. Let’s dive into this problem in
the next section.

Overusing Memory with Arrays
As you probably know, slices are very powerful in Go. They offer robust flexibility for
using arrays that is used daily in the Go community. But with power and flexibility
comes responsibility. There are many cases where we might end up overusing mem‐
ory, which some might call a “memory leak.” The main problem is that those cases
will never appear in “Go Benchmarks” on page 277, because it’s related to garbage
collection and will not release memory we thought could be released. Let’s explore
this problem in Example 11-15, which tests potential deletion in SinglyLinkedList
introduced in Example 11-14.
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14 This is great as a quick showcase, but does not work well as a reliable efficiency assessment.

Example 11-15. Reproducing memory overuse for a linked list that used pre-allocation
in Example 11-14

func (l *SinglyLinkedList) Delete(n *Node) { /* ... */ } 

func TestSinglyLinkedList_Delete(t *testing.T) { 
    l := &SinglyLinkedList{}
    l.Grow(size)
    for k := 0; k < size; k++ {
        l.Insert(k)
    }
    l.pool = nil // Dispose pool. 
    _printHeapUsage() 

    // Remove all but last.
    for curr := l.head; curr.next != nil; curr = curr.next { 
        l.Delete(curr)
    }
    _printHeapUsage() 

    l.Delete(l.head)
    _printHeapUsage() 
}

func _printHeapUsage() {
    m := runtime.MemStats{}

    runtime.GC()
    runtime.ReadMemStats(&m)
    fmt.Println(float64(m.HeapAlloc)/1024.0, "KB")
}

Let’s add deletion logic to the linked list, which removes the given element.

Using a microbenchmark to assess the efficiency of Delete would show us that
when Grow was used, the deletion was only marginally faster. However, to show‐
case the memory overuse problem, we would need the macrobenchmarks test
(see “Macrobenchmarks” on page 306). Alternatively, we can write a brittle inter‐
active test as we did here.14

Notice we are trying our best for the GC to remove the deleted node. However,
we nil the pool variable, so the slice we used to create all nodes in the list is not
referenced anywhere.
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We use a manual trigger for the GC and print of the heap, which is not very relia‐
ble generally as it contains allocations from background runtime work. However,
it’s good enough here to show us the problem. The pre-allocated list showed
15,818.5 KB in one of the runs, and 15,813.0 KB for the run without Grow. Don’t
look at the difference between those, but how this value changed for pre-
allocated.

Let’s remove all but one element.

In a perfect world, we would expect to hold only memory for one Node, right?
This is the case for the non-pre-allocated list—189.85 KB on the heap. On the
other hand, for the pre-allocated list, we can observe a certain problem: the heap
is still big, with 15,831.2 KB on it!

Only after all the elements do we see a small heap size for both cases (around 190
KB for both).

This problem is important to understand, and we have it every time we work with
structs with arrays. The representation of what happens when all but one element is
deleted in both cases is shown in Figure 11-1.

Figure 11-1. The heap’s state with references with one node in the list. On the left, cre‐
ated without a pool, on the right with it.

When we allocate an individual object, we see that it receives its own memory block
that can be managed in isolation. If we use pooling or subslicing (e.g., buf[1:2])
from a bigger slice, the GC will see that the big memory block for continuous mem‐
ory used by the array is referenced. It’s not smart enough to see that only 1% of it is
used and could be “clipped.”

The solution is to avoid pooling or come up with a more advanced pool that can be
grown or shrunk (maybe even automatically). For example, if half of the objects are
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deleted, we can “clip” the array behind our linked list nodes. Alternatively, we can
add the on-demand ClipMemory method, as presented in Example 11-16.

Example 11-16. Example implementation of clipping too-big memory block

func (l *SinglyLinkedList) ClipMemory() {
    var objs int
    for curr := l.head; curr != nil; curr = curr.next {
        objs++
    }

    l.pool = make([]Node, objs) 
    l.poolIndex = 0
    for curr := l.head; curr != nil; curr = curr.next {
        oldCurr := curr
        curr = &l.pool[l.poolIndex]
        l.poolIndex++

        curr.next = oldCurr.next 
        curr.value = oldCurr.value

        if oldCurr == l.head {
            l.head = curr 
        }
    }
}

At this moment, we get rid of the reference to the old []Node slice and create a
smaller one.

As we saw in Figure 11-1, there are still other references to bigger memory blocks
from each element in the list. So we need to perform a copy using a new pool of
objects to ensure the GC can remove that old bigger pool.

Let’s not forget about the last pointer, l.head, which would otherwise still point
to the old memory block.

We can now use the ClipMemory when we delete some items to resize the underlying
memory block.
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15 In the Prometheus project ecosystem, we experienced such a problem many times. For example, chunk pool‐
ing caused us to keep arrays that were way bigger than required, so we introduced the Compact method. In
Thanos, I introduced a (probably too) clever ZLabel construct that avoided expensive copy of strings for met‐
ric labels. It turned out to be beneficial for cases when we were not keeping the label strings for longer. For
example, it was better to perform when we did a lazy copy.

As presented in Example 11-15, the overuse of memory is more common than we
might think. However, we don’t need such specific pooling to experience it. Subslic‐
ing and using clever zero copy functions like in Example 10-4 (zeroCopyToString)
are very much prone to this problem.15

This section is not to demotivate you from pre-allocating things,
subslicing, or experimenting with reusing byte slices. Rather it’s a
reminder to always keep in mind how Go manages memory (as
discussed in “Go Memory Management” on page 172) when we
attempt to do more advanced things with slices and underlying
arrays.
Remember that Go benchmarking does not cover memory usage
characteristics, as mentioned in “Microbenchmarks Versus Mem‐
ory Management” on page 299. Move to the “Macrobenchmarks”
on page 306 level to verify all efficiency aspects if you suspect you
are affected by this problem.

Since we mentioned pooling, let’s dive into the last section. What are the other ways
to reuse and pool memory in Go? It turns out that sometimes not pooling anything
might be better!

Memory Reuse and Pooling
Memory reuse allows using the same memory blocks for subsequent operations. If
the operation we perform requires a bigger struct or slice and we perform a lot of
them in a quick sequence, it’s wasteful to allocate a new memory block every time
because:

• Allocation of memory with guaranteed zero-ing of the memory block takes CPU
time.

• We put more work into the GC, so more CPU cycles are used.
• The GC is eventual, so our maximum heap size can grow uncontrollably.

I already presented some memory reuse techniques in Example 10-8, using a small
buffer to process files chunk by chunk. Then, in Example 11-14, I showed how we
could allocate one bigger memory block at once and use that as our pool of objects.
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The logic of reusing objects, especially byte slices, is often enabled by many popular
implementations, such as io.CopyBuffer or io.ReadFull. Even our Sum6Reader
(r io.Reader, buf []byte) from Example 10-8 allows further reuse of the buffer.
However, memory reuse is not always so easy. Consider the following example of
byte slice reuse in Example 11-17.

Example 11-17. Simple buffering or byte slice

func processUsingBuffer(buf []byte) {
    buf = buf[:0] 

    for i := 0; i < 1e6; i++ {
        buf = append(buf, 'a')
    }

    // Use buffer...
}

func BenchmarkProcess(b *testing.B) {
    b.Run("alloc", func(b *testing.B) {
        for i := 0; i < b.N; i++ {
            processUsingBuffer(nil) 
        }
    })

    b.Run("buffer", func(b *testing.B) {
        buf := make([]byte, 1e6)
        b.ResetTimer()
        for i := 0; i < b.N; i++ {
            processUsingBuffer(buf) 
        }
    })
}

Because our logic uses append, we need to zero the length of the slice while reus‐
ing the same underlying array for efficiency.

We can simulate no buffer by simply passing nil. Fortunately, Go handles nil sli‐
ces in the operations like buf[:0] or append([]byte(nil), 'a').

Reusing the buffer is better in this case. On my machine, benchmarks show that
each operation with reused buffer is almost two times faster and allocates zero
bytes.

The preceding example looks excellent, but the real code contains complications and
edge cases. Two main problems sometimes block us from implementing such naive
memory reuse, as in Example 11-17:
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• We know the buffer size will be similar for most operations, but we don’t know
the exact number. This can be easily fixed by passing an empty buffer and reus‐
ing the grown underlying array from the first operation.

• We might run the processUsingBuffer code concurrently at some point. Some‐
times with four workers, sometimes with one thousand, sometimes with one. In
this case, we could implement this by maintaining a static number of buffers. The
number could be the maximum goroutines we want to run concurrently or less
with some locking. This obviously can have a lot of waste if the number of gorou‐
tines is dynamically changing and is sometimes zero.

For those reasons, the Go team came up with the sync.Pool structure that performs
a particular form of memory pooling. It’s important to understand that memory
pooling is not the same as typical caching.

The type that Brad Fitzpatrick requested [sync.Pool] is actually a pool: A set of inter‐
changeable values where it doesn’t matter which concrete value you get out, because
they’re all identical. You wouldn’t even notice when, instead of getting a value from
the pool, you get a newly created one. Caches, on the other hand, map keys to concrete
values.

—Dominik Honnef, “What’s Happening in Go Tip”

The sync.Pool from the standard library is implemented purely as a very short, tem‐
porary cache for the same type of free memory blocks that last until more or less the
next GC invocation. It uses quite smart logic that makes it thread-safe yet avoids
locking as much as possible for efficient access. The main idea behind sync.Pool is to
reuse memory that the GC did not yet release. Since we keep those memory blocks
around until eventual GC, why not make them accessible and useful? The example of
using sync.Pool in Example 11-17 is presented in Example 11-18.

Example 11-18. Simple buffering using sync.Pool

func processUsingPool(p *sync.Pool) {
    buf := p.Get().([]byte) 
    buf = buf[:0]

    for i := 0; i < 1e6; i++ {
        buf = append(buf, 'a')
    }
    defer p.Put(buf) 

    // Use buffer...
}

func BenchmarkProcess(b *testing.B) {
    b.ReportAllocs()
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    p := sync.Pool{
        New: func() any { return []byte{} }, 
    }
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        processUsingPool(&p) 
    }
}

sync.Pool pools an object of the given type, so we must cast it to the type we put
or create. When Get is involved, we either allocate a new object or use one of the
pooled ones.

To use the pool effectively, we need to put back the object to reuse. Remember to
never put back the object you are still using to avoid races!

The New closure specifies how a new object will be created.

For our example, the implementation with sync.Pool is very efficient. It’s over 2
times faster than without reuse, with an average of 2 KB of space allocated versus
5 MB allocated per operation from code that does not reuse the buffer.

While results look very promising, pooling using sync.Pool is a more advanced opti‐
mization that can bring more efficiency bottlenecks than optimizations if wrongly
used. The first problem is that, as with any other complex structure that works with
slices, using it is prone to errors. Consider the code with benchmark in
Example 11-19.

Example 11-19. Common, hard-to-spot bug while using sync.Pool and defer

func processUsingPool_Wrong(p *sync.Pool) {
    buf := p.Get().([]byte)
    buf = buf[:0]

    defer p.Put(buf) 

    for i := 0; i < 1e6; i++ {
        buf = append(buf, 'a')
    }

    // Use buffer...
}

func BenchmarkProcess(b *testing.B) {
    p := sync.Pool{
        New: func() any { return []byte{} },
    }
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    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        processUsingPool_Wrong(&p) 
    }
}

There is a bug in this function that defies the point of using sync.Pool—Get will
always allocate an object in our case. Can you spot it?

The problem is that the Put might be deferred to the correct time, but its argu‐
ment is evaluated at the moment of the defer schedule. As a result, the buf vari‐
able we are putting might point to a different slice if append will have to grow it.

As a result, the benchmark will show that this processUsingPool_Wrong opera‐
tion is twice as slow as the alloc case in Example 11-17 that always allocates.
Using sync.Pool to only Get and never Put is slower than straight allocation
(make([]byte) in our case).

However, the real difficulty comes from the specific sync.Pool characteristic: it only
pools objects for a short duration, which is not reflected by our typical
microbenchmark like in Example 11-18. We can see the difference if we trigger GC
manually in our benchmark, done for demonstration in Example 11-20.

Example 11-20. Common, hard-to-spot bug while using sync.Pool and defer,
triggering GC manually

func BenchmarkProcess(b *testing.B) {
    b.Run("buffer-GC", func(b *testing.B) {
        buf := make([]byte, 1e6)
        b.ResetTimer()
      for i := 0; i < b.N; i++ {
            processUsingBuffer(buf) 
            runtime.GC()
            runtime.GC()
        }
    })

    b.Run("pool-GC", func(b *testing.B) {
        p := sync.Pool{
            New: func() any { return []byte{} },
        }
        b.ResetTimer()
        for i := 0; i < b.N; i++ {
            processUsingPool(&p) 
            runtime.GC()
            runtime.GC()
        }
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16 If you are interested in the specific implementation details, check out this amazing blog post.

    })
}

The second surprise comes from the fact that in our initial benchmarks, the
process* operations are performed quickly, one after another. However, on a
macro level that might not be true. This is fine for processUsingBuffer. If the
GC runs once or twice in the meantime for our simple buffered solution, the
allocation and latency (adjusted with GC latency) stay the same because we keep
the memory references in our buf variable. The next processUsingBuffer will be
as fast as always.

This is not the case for the standard pool. After two GC runs, the sync.Pool is,
by design, fully cleaned from all objects,16 which results in performance worse
than alloc in Example 11-17.

As you can see, it’s fairly easy to make mistakes using sync.Pool. The fact that it does
not preserve the pool after garbage collection might be beneficial in cases where we
don’t want to keep pooled objects for a longer duration. However, in my experience,
it makes it very hard to work with due to nondeterministic behavior caused by the
combination of nontrivial sync.Pool implementation with an even more complex
GC schedule.

To show the potential damage when sync.Pool is applied to the wrong workloads,
let’s try to optimize the memory use of the labeler service from “Go e2e Frame‐
work” on page 310 using optimized buffered code from Example 10-8 and four dif‐
ferent buffering techniques:

no-buffering

Sum6Reader without buffering—always allocates a new buffer.

sync-pool

With sync.Pool.
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gobwas-pool

With gobwas/pool that maintains multiple buckets of sync.Pool. In theory, it
should work well for byte slices that might require different buffer sizes.

static-buffers

With four static buffers that offer a buffer for a maximum of four goroutines.

The main problem is that the Example 10-8 workload might not look immediately
like a wrong fit. The small allocation of make([]byte, 8*1024) per operation is the
only one we make during the computation, so pooling to save the total memory usage
might feel like a valid choice. The microbenchmark also shows amazing results. The
benchmarks perform sequential Sum6 operations on two different files (50% of the
time, we use files with 10 million numbers, 50% with 100 million). The results are
shown in Example 11-21.

Example 11-21. The microbenchmark results with one hundred iterations that compare
labeler labelObject logic using Example 10-8 and four different buffering versions

name                  time/op
Labeler/no-buffering   430ms ± 0%
Labeler/sync-pool      435ms ± 0%
Labeler/gobwas-pool    438ms ± 0%
Labeler/static-buffers 434ms ± 0%

name                  alloc/op
Labeler/no-buffering   3.10MB ± 0%
Labeler/sync-pool      62.0kB ± 0%
Labeler/gobwas-pool    94.5kB ± 0% 
Labeler/static-buffers 62.0kB ± 0%

name                  allocs/op
Labeler/no-buffering    3.00 ± 0%
Labeler/sync-pool       3.00 ± 0%
Labeler/gobwas-pool     3.00 ± 0%
Labeler/static-buffers  2.00 ± 0%

The bucketed pool is slightly more memory intensive, but this is expected, as two
separate pools are maintained. However, ideally, we expect to see larger benefits
from that split on a larger scale.
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We see that the sync.Pool version and static buffer are winning in terms of memory
allocations. The latency is more or less similar, given most of Example 10-8 is spent
on integer parsing, not allocating the buffer.

Unfortunately, on the macro level, for a 5-minute test per version with 2 virtual users
in k6s performing a sum on 10 million lines and then 100 million line files, we see
that the reality is different than what Example 11-21 showed. What’s good is that the
labeler without buffering allocates significantly more (3.3 GB in total) during that
load than other versions (500 MB on average), as visible in Figure 11-2.

Figure 11-2. The Parca Graph for the total memory allocated during macrobenchmark
from heap profiles. Four lines indicate runs of four different versions in order: no-
buffering, sync-pool, gobwas-pool, and static-buffers.

However, it seems that such allocations are not a huge problem for the GC, as the
simplest, no buffering solution labelObject1 has similar average latency to others
(same CPU usage as well), but also the lowest maximum heap usage, as visible in
Figure 11-3.
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Figure 11-3. The Prometheus Graph for the heap size during the macrobenchmark.
Four lines indicate runs of four different versions in order: no-buffering, sync-pool,
gobwas-pool, and static-buffers.

You can reproduce the whole experiment thanks to the e2e framework code in the
example repo. The results were not satisfying, but the experiment can give us a lot of
lessons:

• Reducing allocations might be the easiest way to improve latency and memory
efficiency, but not always! Clearly, in this case, higher allocations were better
than pooling. One reason is that the Sum6 in Example 10-8 was already heavily
optimized. The CPU profile of Sum6 in Example 10-8 clearly shows that alloca‐
tion is not a latency bottleneck. Secondly, the slower allocation pace caused the
GC to kick in less often, allowing generally higher maximum memory usage.
Additional GOGC tuning might have helped here.

• The microbenchmarking does not always show the full picture. So always assess
efficiency on multiple levels to be sure.

• The sync.Pool helps the most with allocation latency, not with maximum mem‐
ory usage, as our goal here.
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17 Interestingly enough, sync.Pool was proposed to be named sync.Cache initially and have cache semantics.

The Optimization Journey Can Be a Roller Coaster!

Sometimes we achieve improvement, and sometimes we spend a few
days on change that can’t be merged. We all learn every day, try
things, and sometimes fail. What’s most important is to fail early, so
the less efficient version is not accidentally released to our users!

The main issue of this experiment is that the sync.Pool is not designed for the type
of workload that labeler represents. The sync.Pool have very specific use cases. Use
it when:

• You want to reuse large or extreme amounts of objects to reduce the latency of
those allocations.

• You don’t care about the object content, just its memory blocks.
• You want to reuse those objects from multiple goroutines, which can vary in

number.
• You want to reuse objects between quick computations that frequently happen

(maximum one GC cycle away).

For example, sync.Pool works great when we want to pool objects for an extremely
fast pseudorandom generator. The HTTP servers use many different pools of bytes to
reuse bytes for reading from the network.

Unfortunately, in my experience, the sync.Pool is overused. The perception is that
the sync.Pool is in the standard library, so it must be handy, but that isn’t always
true. The sync.Pool has a very narrow use case, and there are high chances it’s not
what we want.

Why Can’t We Always Have Nice Things in the Standard Library?
The community and Go team always debate for a long time until something is
merged into the standard library. In most cases, features are rejected.

There is a good reason for that, and sync.Pool is a good example. It becomes the offi‐
cial standard whenever something is merged in the Go repository. However, in the
case of sync.Pool, I think it created a wrong perception that it is useful for more
cases. Perhaps to the point where it should be used more often than simple static buf‐
fers, as in Example 11-17. Otherwise, we would have an official structure like
sync.Reusable or sync.Cache, right?17
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This is misleading. We don’t have something for static reusable buffers because it’s
easy to write your own, not because it’s a less beneficial pattern!

To sum up, I prefer simple optimization first. The more clever the optimization is,
the more vigilant we should be and the more benchmarking effort we should make.
The sync.Pool structure is one of the more complex solutions. I would recommend
looking at easier solutions first, e.g., a simple static reusable buffer of memory, as in
Example 11-17. My recommendation is to avoid sync.Pool until you are sure your
workloads match the use cases mentioned previously. In most cases, after reduced
work and allocations, adding sync.Pool will only make your code less efficient, brit‐
tle, and harder to assess its efficiency.

Summary
That’s it. You made it to the end of this book, congratulations! I hope it was a fantas‐
tic and valuable journey. I know it was for me!

Perhaps, if you have made it this far, the world of pragmatic, efficient software is
much more accessible for you than it was before opening this book. Or perhaps you
see how all the details on how we write our code and design our algorithms can
impact the software efficiency, which can translate to real cost in the long run.

In some ways, this is extremely exciting. With one deliberate change and the right
observability tools to assess it, we can sometimes save millions of dollars for our
employer, or enable use cases or customers that were not possible before. But, on the
other hand, it is quite scary how easy it is to waste that money on silly mistakes like
leaking a few goroutines or not pre-allocating some slices on critical paths.

My advice for you, if you are more on the “scared” side, is…to relax! Remember that
nothing in the world is perfect, and our code can’t be perfect either. It’s good to know
in what direction to turn to for perfection, but as the saying goes, “Perfect is the
enemy of good”, and there has to be a moment when the software is “good enough.”
In my opinion, this is the key difference between the professional, pragmatic, every‐
day efficiency practices I wanted to teach you here and Donald Knuth’s “premature
optimization is the root of all evil” world. This is also why my book is called Efficient
Go and not Ultra-Performance, Super Fast Go.

I think the pragmatic car mechanic profession could be a good comparison to the
pragmatic efficiency-aware software developer (sorry for my car analogies!). Imagine
a passionate and experienced mechanical engineer with huge experience in building
F1 cars—one of the fastest racing automobiles in the world. Imagine they work at the
auto workshop, and a customer goes there with some standard saloon car that has an
oil leak. Even with the greatest knowledge about making the car extremely fast, the
pragmatic mechanic would fix the oil leak, double-check the whole car if there was
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18 And be vigilant when someone offers shiny observability for a low price. It is often less cheap in practice,
given how much data we usually have to pass through those systems.

anything wrong with it, and that’s it. However, if the mechanic starts to tune the cus‐
tomer’s car for faster acceleration, better air efficiency, and braking performance, you
can imagine the customer would not be satisfied. Better car performance would prob‐
ably make the customer happy, but this always comes with an extreme bill for work
hours, expensive parts, and delayed time to repair.

Follow the same rules as you would expect from your mechanic. Do what’s needed to
be done to satisfy functional and efficiency goals. This is not being lazy; it’s being
pragmatic and professional. No optimization is premature if we do this within the
premise of requirements.

That’s why my second piece of advice is to always set some goals. Look how (in some
sense) “easy” it was to assess if the Sum optimizations in Chapter 10 were acceptable
or not. One of the biggest mistakes I made in most of my software projects was to
ignore or procrastinate on setting clear, ideally written, data-driven goals for the
project’s expected efficiency. Even if it’s obvious, note, “I expect this functionality to
finish in one minute.” You can iterate on better requirements later on! Without clear
goals, every optimization is potentially premature.

Finally, my third bit of advice is to invest in good observability tools. I was lucky that
during my daily job for the last few years, the teams I worked with delivered observa‐
bility software. Furthermore, those observability tools are free in open source, and
every reader of this book can install them right now. I can’t imagine not having the
tools mentioned in Chapter 6.

On the other hand, I also see, as a tech leader of the CNCF interest group observabil‐
ity, and speaker and attendee of technical conferences, how many developers and
organizations don’t use observability tools. They either don’t observe their software
or don’t use those tools correctly! That is why it’s very hard for those individuals or
organizations to pragmatically improve the efficiency of their programs.

Don’t get distracted by overhyped solutions and vendors who promise shiny observa‐
bility solutions for a high price.18 Instead, I would recommend starting small with
open source monitoring and observability solutions like Prometheus, Loki, Open‐
Search, Tempo, or Jaeger!
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19 My recommendation is to avoid following only tutorials. If you are out of your comfort zone and have to
think on your own, you learn.

Next Steps
Throughout this book, we went through all the elements required to become effective
with the efficiency development of Go if required. Particularly:

• We discussed motivation for efficient programs and introduction in Chapter 1.
• We walked through the foundational aspects of Go in Chapter 2.
• We discussed challenges, optimizations, RAER, and TFBO in Chapter 3.
• I explained the two most important resources we optimize for: the CPU in Chap‐

ter 4 and memory in Chapter 5. I also mentioned latency.
• We discussed observability and common instrumentation in Chapter 6.
• We walked through data-driven efficiency analysis, complexities, and reliability

of experiments in Chapter 7.
• We discussed benchmarking in Chapter 8.
• I introduced the topic of profiling, which helps with bottleneck analysis in

Chapter 9.
• Finally, we optimized various code examples in Chapter 10 and summarized

common patterns in Chapter 11.

However, as with everything, there is always more to learn if you are interested!

First, I skipped some aspects of the Go language that were not strictly related to the
efficiency topic. To learn more about those, I would recommend reading “Practical
Go Lessons” authored by Maximilien Andile and…practicing writing Go programs
for realistic goals for work or as a fun side project.19

Secondly, hopefully, I enabled you to understand the underlying mechanisms of the
resources you are optimizing for. One of the next steps to becoming better at soft‐
ware efficiency is to learn more about other resources we commonly optimize for, for
example:

Disk
We use disk storage every day in our Go programs. The way OS handles reads or
writes to it can be similarly complex, as you saw in “OS Memory Management”
on page 156. Understanding disk storage better (e.g., the SSD characteristics)
will make you a better developer. If you are curious about the alternative opti‐
mizations to disk access, I would also recommend reading about the io_uring
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interface that comes with the new Linux kernels. It might allow you to build even
better concurrency for your Go programs using a lot of disk access.

Network
Reading more about the network constraints like latency, bandwidth, and differ‐
ent protocols will make you more aware of how to optimize your Go code that is
constrained by network limitations.

GPUs and FPGA
For more on offloading some computations to external devices like GPUs or pro‐
grammable hardware, I would recommend cu, which uses the popular CUDA
API for the NVIDIA GPUs, or this guide to run Go on Apple M1 GPUs.

Thirdly, while I might add more optimization examples in the next editions of this
book, the list will never be complete. This is because some developers might want to
try many more or less extreme optimizations for some specific part of their pro‐
grams. For example:

• Something I wanted to talk about but could not fit into this book is the impor‐
tance of error path and instrumentation efficiency. Choosing efficient interfaces
for your metrics, logging, tracing, and profiling instrumentations can be impor‐
tant.

• Memory alignment and struct padding optimizations with tools like structslop.
• Using more efficient string encodings.
• Partial encoding and decoding of common formats like protobuf.
• Removal of bound checks (BCE), e.g., from arrays.
• Branchless Go coding, optimizing for the CPU branch predictions.
• Array of structs versus structs of arrays and loop fusion and fission.
• Finally, try to run different languages from Go to offload some performance-

sensitive logic, for example, running Rust from Go, or in the future, Carbon from
Go! Let’s not forget about something much more common: running Assembly
from Go for efficiency reasons.

Finally, all examples in this book are available at the https://github.com/efficientgo/
examples open source repository. Give feedback, contribute, and learn together with
others.

462 | Chapter 11: Optimization Patterns

https://oreil.ly/Sxagc
https://oreil.ly/yEi43
https://oreil.ly/1dPXO
https://oreil.ly/1dPXO
https://oreil.ly/T8q9A
https://oreil.ly/PXZhH
https://oreil.ly/PXZhH
https://oreil.ly/v3dty
https://oreil.ly/2IoAP
https://oreil.ly/r1aJn
https://oreil.ly/IuWGN
https://oreil.ly/ALPOm
https://oreil.ly/gzswU
https://oreil.ly/uOHmo
https://oreil.ly/v9eNk
https://oreil.ly/SxPUA
https://oreil.ly/vp5V3
https://oreil.ly/ZO3Zn
https://oreil.ly/eLZKW
https://oreil.ly/eLZKW
https://github.com/efficientgo/examples
https://github.com/efficientgo/examples


20 If you are interested, I would like to invite you to our yearly efficiency-coding-advent, where we try to solve
coding challenges around Christmas time with an efficient approach.

21 You can find all the projects I maintain (or used to maintain) on my website.

Everybody learns differently, so try what helps you the most. However, I strongly rec‐
ommend practicing the software of your choice using the practices you learned in
this book. Try to set reasonable efficiency goals and try to optimize them.20

You are also welcome to use and contribute to other Go tools I maintain in the open
source: https://github.com/efficientgo/core, https://github.com/efficientgo/e2e, https://
github.com/prometheus/prometheus, and more!21

Join our “Efficient Go” Discord Community, and feel free to give feedback on the
book, ask additional questions, or find new friends!

Massive thanks to all (see “Acknowledgments” on page xvi) who directly or indirectly
helped to create this book. Thanks to those who mentored me to where I am now!

Thank you for buying and reading my book. See you in the open source! :)
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APPENDIX A

Latencies for Napkin Math Calculations

For designing and assessing optimizations on a different level, it’s useful to be able to
approximate and ballpark latency numbers for basic operations we see in interactions
with the computer.

It’s good to remember some of those numbers, but if you don’t, I prepared a small
table with the approximate, rounded, average latencies in Table A-1. It is heavily
inspired by Simon Eskildsen’s napkin-math repository, with a few modifications.

The repository was created in 2021. For CPU-based operations, those numbers are
based on the server x86 CPU from the Xeon family. Note that things are still improv‐
ing every year, however, most of the numbers are stable since 2005, due to limitations
explained in “Hardware Is Getting Faster and Cheaper” on page 17. CPU-related
latencies might be also different across various CPU architectures (e.g. ARM).

Table A-1. CPU-related latencies

Operation Latency Throughput
3 Ghz CPU clock cycle 0.3 ns N/A

CPU register access 0.3 ns (1 cycle) N/A

CPU L1 cache access 0.9 ns (3 cycles) N/A

CPU L2 cache access 3ns N/A

Sequential memory R/W (64 bytes) 5 ns 10 GBps

CPU L3 cache access 20 ns N/A

Hashing, not crypto-safe (64 bytes) 25 ns 2 GBps

Random memory R/W (64 bytes) 50 ns 1 GBps

Mutex lock/unlock 17 ns N/A

System call 500 ns N/A

Hashing, crypto-safe (64 bytes) 500 ns 200 MBps
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Operation Latency Throughput
Sequential SSD read (8 KB) 1 μs 4 GBps

Context switch 10 μs N/A

Sequential SSD write, -fsync (8KB) 10 μs 1 GBps

TCP echo server (32 KiB) 10 μs 4 GBps

Sequential SSD write, +fsync (8KB) 1 ms 10 MBps

Sorting (64-bit integers) N/A 200 MBps

Random SSD seek (8 KiB) 100 μs 70 MBps

Compression N/A 100 MBps

Decompression N/A 200 MBps

Proxy: Envoy/ProxySQL/NGINX/HAProxy 50 μs ?

Network within same region 250 μs 100 MBps

MySQL, memcached, Redis query 500 μs ?

Random HDD Seek (8 KB) 10 ms 0.7 MBps

Network NA East ↔ West 60 ms 25 MBps

Network EU West ↔ NA East 80 ms 25 MBps

Network NA West ↔ Singapore 180 ms 25 MBps

Network EU West ↔ Singapore 160 ms 25 MBps
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