
Sau Sheong Chang

 Go
Cookbook
Expert Solutions for Commonly Needed Go Tasks

OTHER PROGR AMMING L ANGUAGES

“Developers new to
Go often want to
quickly implement a
common task but don’t
know the best way
to do so. Sau Sheong
Chang’s Go Cookbook
provides answers to
these questions. It’s
a good resource for
discovering Go’s
standard library.”

—Jon Bodner
Author of Learning Go

and Staff Engineer, Datadog

Go Cookbook

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Go is an increasingly popular language for programming
everything from web applications to distributed network
services. While Go is relatively easy and familiar for most
programmers coming from the C/Java tradition, there are
enough differences for developers to wonder, How can I
do this in Go?

This practical guide provides recipes to help you unravel
common problems and perform useful tasks when working
with Go. Each recipe includes self-contained code solutions
that you can freely use, along with a discussion of how and
why they work. Programmers new to Go can quickly ramp
up their knowledge while accomplishing useful tasks, and
experienced Go developers can save time by cutting and
pasting proven code directly into their applications.

Recipes in this guide will help you:

•	 Create a module

•	 Call code from another module

•	 Return and handle an error

•	 Convert strings to numbers
(or convert numbers to strings)

•	 Modify multiple characters in a string

•	 Create substrings from a string

•	 Capture string input

•	 And so much more

Sau Sheong Chang, a 28-year veteran
of the software development industry,
has been involved in building software
products in many industries using
various technologies. He’s been
an active member of the software
development communities for Java
and Ruby as well as for Go. He runs
meetups and gives talks in conferences
all around the world.

US $79.99	 CAN $99.99
ISBN: 978-1-098-12211-9

Praise for Go Cookbook

Developers new to Go often want to quickly implement a common task but don’t know
the best way to do so. Sau Sheong Chang’s Go Cookbook provides answers to these

questions. It’s a good resource for discovering Go’s standard library.
—Jon Bodner, Staff Engineer, Datadog

and author of Learning Go

Go Cookbook is an indispensable companion for seasoned programmers looking to
unleash the full potential of Go. Its practical recipes, covering everything from error

handling and concurrency to networking and testing, and much more, make it a go-to
resource for solving practical challenges. A must-have for any Go developer.

—Alex Chen, CTO, FMZ Quant

This book is a great asset to any Go developers, it covers many
daily essential recipes that any go developer would face including module

management, logging, string manipulations, file IO, structs and interfaces,
http server creation, unit testing and benchmarking.

—Jason Wong Ho Chi,
Senior Solution Engineer on APM

of AppDynamics, Go hobbyist,
Elasticsearch specialist, and trainer

The tips provided throughout the book are quite practical for production use,
and the organization of chapters into problem-solution subsections along with the

code snippets makes topics like testing and benchmarking easy to comprehend.
A must-read for entry-level software engineers.

—Vaibhav Jain, Senior Software
Engineer, Ninja Van (and

currently a Master’s student,
Georgia Institute of Technology)

Sau Sheong’s Go Cookbook takes the developer on a brief yet rich tour through some of
Go’s more intricate areas. Actionable examples coupled with clear explanations quickly
empower the developer to adopt alternative approaches, libraries and techniques. The

book is relevant for a wide range of backgrounds from beginner to experts alike wanting
to brush up on recent language features critically including coverage and fuzzing.

—Daniel J Blueman, Principal Software
Engineer, Numascale AS

Go Cookbook by Sau Sheong Chang is a great resource for those who want
to learn Go quickly. It covers essential topics in a straightforward manner.

I personally found it to be very useful as a reference guide.
—Carlos Alexandre Queiroz,

Global Head of Data Science Engineering
at a global bank

Sau Sheong Chang

Go Cookbook
Expert Solutions for Commonly Needed Go Tasks

978-1-098-12211-9

[LSI]

Go Cookbook
by Sau Sheong Chang

Copyright © 2023 Sau Sheong Chang. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editors: Zan McQuade; Brian Guerin
Development Editor: Shira Evans
Production Editor: Elizabeth Faerm
Copyeditor: Kim Cofer
Proofreader: Piper Editorial Consulting, LLC

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

September 2023: First Edition

Revision History for the First Edition
2023-09-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098122119 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Go Cookbook, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098122119

Table of Contents

Preface. xi

1. Getting Started Recipes. 1
1.0 Introduction 1
1.1 Installing Go 1
1.2 Playing Around with Go 3
1.3 Writing a Hello World Program 4
1.4 Using an External Package 5
1.5 Handling Errors 7
1.6 Logging Events 9
1.7 Testing Your Code 10

2. Module Recipes. 13
2.0 Introduction 13
2.1 Creating a Go Module 14
2.2 Importing Dependent Packages Into Your Module 15
2.3 Removing Dependent Packages from Your Module 18
2.4 Find Available Versions of Third-Party Packages 19
2.5 Importing a Specific Version of a Dependent Package Into Your Module 20
2.6 Requiring Local Versions of Dependent Packages 22
2.7 Using Multiple Versions of the Same Dependent Packages 26

3. Error Handling Recipes. 29
3.0 Introduction 29
3.1 Handling Errors 30
3.2 Simplifying Repetitive Error Handling 32

v

3.3 Creating Customized Errors 34
3.4 Wrapping an Error with Other Errors 36
3.5 Inspecting Errors 37
3.6 Handling Errors with Panic 39
3.7 Recovering from Panic 41
3.8 Handling Interrupts 43

4. Logging Recipes. 45
4.0 Introduction 45
4.1 Writing to Logs 45
4.2 Change What Is Being Logged by the Standard Logger 48
4.3 Logging to File 49
4.4 Using Log Levels 50
4.5 Logging to the System Log Service 53

5. Function Recipes. 57
5.0 Introduction 57
5.1 Defining a Function 57
5.2 Accepting Multiple Data Types with a Function 59
5.3 Accepting a Variable Number of Parameters 61
5.4 Accepting Parameters of Any Type 62
5.5 Creating an Anonymous Function 65
5.6 Creating a Function That Maintains State After It Is Called 66

6. String Recipes. 71
6.0 Introduction 71
6.1 Creating Strings 71
6.2 Converting String to Bytes and Bytes to String 73
6.3 Creating Strings from Other Strings and Data 73
6.4 Converting Strings to Numbers 77
6.5 Converting Numbers to Strings 79
6.6 Replacing Multiple Characters in a String 81
6.7 Creating a Substring from a String 84
6.8 Checking if a String Contains Another String 85
6.9 Splitting a String Into an Array of Strings or Combining an Array of

Strings Into a String 86
6.10 Trimming Strings 88
6.11 Capturing String Input from the Command Line 89
6.12 Escaping and Unescaping HTML Strings 91
6.13 Using Regular Expressions 92

vi | Table of Contents

7. General Input/Output Recipes. 97
7.0 Introduction 97
7.1 Reading from an Input 98
7.2 Writing to an Output 99
7.3 Copying from a Reader to a Writer 100
7.4 Reading from a Text File 102
7.5 Writing to a Text File 104
7.6 Using a Temporary File 106

8. CSV Recipes. 109
8.0 Introduction 109
8.1 Reading the Whole CSV File 110
8.2 Reading a CSV File One Row at a Time 111
8.3 Unmarshalling CSV Data Into Structs 112
8.4 Removing the Header Line 113
8.5 Using Different Delimiters 113
8.6 Ignoring Rows 114
8.7 Writing CSV Files 115
8.8 Writing to File One Row at a Time 116

9. JSON Recipes. 117
9.0 Introduction 117
9.1 Parsing JSON Data Byte Arrays to Structs 117
9.2 Parsing Unstructured JSON Data 121
9.3 Parsing JSON Data Streams Into Structs 124
9.4 Creating JSON Data Byte Arrays from Structs 131
9.5 Creating JSON Data Streams from Structs 133
9.6 Omitting Fields in Structs 136

10. Binary Recipes. 139
10.0 Introduction 139
10.1 Encoding Data to gob Format Data 140
10.2 Decoding gob Format Data to Structs 141
10.3 Encoding Data to a Customized Binary Format 144
10.4 Decoding Data with a Customized Binary Format to Structs 147

11. Date and Time Recipes. 151
11.0 Introduction 151
11.1 Telling Time 152
11.2 Doing Arithmetic with Time 152

Table of Contents | vii

11.3 Representing Dates 153
11.4 Representing Time Zones 154
11.5 Representing Duration 155
11.6 Pausing for a Specific Duration 156
11.7 Measuring Lapsed Time 156
11.8 Formatting Time for Display 159
11.9 Parsing Time Displays Into Structs 163

12. Structs Recipes. 167
12.0 Introduction 167
12.1 Defining Structs 168
12.2 Creating Struct Methods 170
12.3 Creating and Using Interfaces 172
12.4 Creating Struct Instances 175
12.5 Creating One-Time Structs 178
12.6 Composing Structs from Other Structs 181
12.7 Defining Metadata for Struct Fields 184

13. Data Structure Recipes. 187
13.0 Introduction 187
13.1 Creating Arrays or Slices 188
13.2 Accessing Arrays or Slices 190
13.3 Modifying Arrays or Slices 192
13.4 Making Arrays and Slices Safe for Concurrent Use 195
13.5 Sorting Arrays of Slices 198
13.6 Creating Maps 202
13.7 Accessing Maps 203
13.8 Modifying Maps 204
13.9 Sorting Maps 205

14. More Data Structure Recipes. 207
14.0 Introduction 207
14.1 Creating Queues 208
14.2 Creating Stacks 210
14.3 Creating Sets 212
14.4 Creating Linked Lists 216
14.5 Creating Heaps 221
14.6 Creating Graphs 225
14.7 Finding the Shortest Path on a Graph 229

viii | Table of Contents

15. Image-Processing Recipes. 235
15.0 Introduction 235
15.1 Loading an Image from a File 237
15.2 Saving an Image to a File 238
15.3 Creating Images 239
15.4 Flipping an Image Upside Down 240
15.5 Converting an Image to Grayscale 243
15.6 Resizing an Image 245

16. Networking Recipes. 247
16.0 Introduction 247
16.1 Creating a TCP Server 248
16.2 Creating a TCP Client 252
16.3 Creating a UDP Server 254
16.4 Creating a UDP Client 256

17. Web Recipes. 259
17.0 Introduction 259
17.1 Creating a Simple Web Application 260
17.2 Handling HTTP Requests 263
17.3 Handling HTML Forms 266
17.4 Uploading a File to a Web Application 268
17.5 Serving Static Files 269
17.6 Creating a JSON Web Service API 274
17.7 Serving Through HTTPS 276
17.8 Using Templates for Go Web Applications 280
17.9 Making an HTTP Client Request 285

18. Testing Recipes. 291
18.0 Introduction 291
18.1 Automating Functional Tests 292
18.2 Running Multiple Test Cases 293
18.3 Setting Up and Tearing Down Before and After Tests 295
18.4 Creating Subtests to Have Finer Control Over Groups of Test Cases 297
18.5 Running Tests in Parallel 301
18.6 Generating Random Test Inputs for Tests 306
18.7 Measuring Test Coverage 312
18.8 Testing a Web Application or a Web Service 316

Table of Contents | ix

19. Benchmarking Recipes. 319
19.0 Introduction 319
19.1 Automating Performance Tests 319
19.2 Running Only Performance Tests 321
19.3 Avoiding Test Fixtures in Performance Tests 322
19.4 Changing the Timing for Running Performance Tests 325
19.5 Running Multiple Performance Test Cases 327
19.6 Comparing Performance Test Results 329
19.7 Profiling a Program 332

Index. 341

x | Table of Contents

Preface

Go has been around for more than 10 years. It was publicly announced in 2009,
and version 1.0 was released in March 2012. Since 2013 it has gained a steady rise
in popularity and is frequently listed among the top 10 most popular programming
languages in use today. In the past 10 years there have been plenty of books written
about Go, including Go Web Programming, which I wrote in 2015. Most of what
needs to be written about Go has already been written; however, the language contin‐
ues to evolve, and there are new generations of would-be Go programmers coming
on board.

This book came about because of a podcast interview. In September 2021, in the
middle of the pandemic, Natalie Pistunovich hosted a “Go Time” podcast interview,
titled “Books that Teach Go,” with my friend, Bill Kennedy, and me regarding our
Go books. I spoke about Go Web Programming and my new blog site, Go Recipes,
which teaches readers how to do the basic stuff with Go. I wanted to provide a
steady stream of know-how to serve as a guide for both would-be and experienced
Go programmers.

After the podcast, Natalie mentioned that, coincidentally, O’Reilly was looking for
someone to write a Go cookbook. Since I already had been writing Go recipes, I
thought it was too much of a fateful encounter to ignore. Natalie put me in contact
with O’Reilly, and the rest became history (and is now part of the Preface)!

This cookbook, like many others, is not about teaching new or specific topics but
instead explains the basics of common tasks. It covers as much ground as possible
on what programmers are most likely to use. The coverage is wide, rather than
comprehensive. Each recipe is, more or less, standalone; although at times I cite other
recipes, it is not necessary to reference them. You may find some recipes either boring
or simple, but there are plenty to choose from!

xi

https://go-recipes.dev

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/sausheong/gocookbook.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Go Cookbook by Sau
Sheong Chang (O’Reilly). Copyright 2023 Sau Sheong Chang, 978-1-098-12211-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xii | Preface

https://github.com/sausheong/gocookbook
mailto:support@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/go-cookbook.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
I would like to thank my wife, Angela Lim, and my son, Chang Kai Wen, for bearing
with me while I write “just one more book,” for supporting me through this journey,
and for their patience over the long weekends and late nights. It can be tough being
the family of a writer, but they took it on admirably well (I think).

Preface | xiii

https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/go-cookbook
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

I want to acknowledge Natalie Pistunovich who not only introduced me to O’Reilly
but also helped me review the early chapters of this book. Also, Jon Bodner and Jess
Males, both of whom helped me tremendously with their reviews, encouragement,
and great suggestions.

I also want to thank my current and former colleagues from SP Group, Temasek, and
GovTech Singapore for their support and encouragement. The list is too long, but
you know who you are and I thank you for your constant support!

A writer is nothing without his readers. I appreciate and want to thank all the readers
of my blog articles and those who followed my writings on Go as well as various other
technologies on my blog site. Your continued support is a great motivator, and I’m
very grateful that you find it worthwhile to spend time reading them. Thank you!

Finally, I want to thank my late father, Chang Yoon Sang, who passed away last
November. He always supported me unconditionally and enthusiastically in every‐
thing I do. He was especially excited that I followed in his footsteps in writing books
(he was a traditional Chinese medicine physician and nutritionist, and wrote on both
topics, in Chinese). Even though I know he struggled to read my books (he’s not a
technical person), I know he was always proud of me, asking me for copies of all
my books, including the translations, and wanting to build a shelf full of books his
son wrote. My biggest regret is that he never had the chance to add this book to
his collection.

This book is dedicated to him.

xiv | Preface

https://sausheong.com

CHAPTER 1

Getting Started Recipes

1.0 Introduction
Let’s start easy first. In this chapter, you’ll go through the essential recipes to begin
coding in Go, installing Go, and then writing some simple Go code. You will go
through the fundamentals, from using external libraries and handling errors to sim‐
ple testing and logging events. Some of these recipes are intentionally concise—more
detail about them in later chapters. If you’re already familiar with the basics of Go,
you can skip this chapter altogether.

1.1 Installing Go
Problem
You want to install Go and prepare the environment for Go development.

Solution
Go to the Go website and download the latest, greatest version of Go. Then follow the
installation instructions to install Go.

Discussion
First, you need to go to the Go download site. You can choose the correct version
according to your operating system and hardware and download the right package.

1

https://golang.org
https://golang.org/dl

There are a couple of ways to install Go—you can either install the prebuilt binaries
for your platform or compile it from the source. Most of the time, there is no need
to compile it from the source unless you can’t find the appropriate prebuilt binaries
for your operating system. Even then, you can usually use your operating system’s
package manager to install Go instead.

MacOS
Open the downloaded package file and follow the prompts to install. Go will be
installed at /usr/local/go, and your PATH environment variable should also have /usr/
local/go/bin added to it.

You can also choose to install using Homebrew, which is usually a version or two
behind. To do this, run this from the command line:

$ brew update && brew install golang

You can set up the PATH later as you like.

Linux

Extract the downloaded archive file into /usr/local, which should create a go directory.
For example, run this from the command line (replace the Go version as necessary):

$ rm -rf /usr/local/go && tar -C /usr/local -xzf go1.20.1.linux-amd64.tar.gz

You can add /usr/local/go/bin into your PATH as needed by adding this line to your
$HOME/.profile:

export PATH=$PATH:/usr/local/go/bin

The changes will be made the next time you log in, or if you want it to take effect
immediately, run source on your profile file:

$ source $HOME/.profile

Windows
Open the downloaded MSI installer file and follow the prompts to install Go. By
default, Go will be installed to Program Files or Program Files (x86), but you can
always change this.

Build from source
You shouldn’t build from source unless you cannot find the prebuilt binaries for your
operating system. However, if you need to, extract the source files to an appropriate
directory first, then run these commands from the command line:

$ cd src
$./all.bash

2 | Chapter 1: Getting Started Recipes

If you’re building in Windows, use all.bat instead. The assumption here is that the
compilers are already in place. If not, and if you need a deeper dive into installing Go,
go to the Installing Go site for details.

If all goes well, you should see something like this:

ALL TESTS PASSED

Installed Go for linux/amd64 in /home/you/go.
Installed commands in /home/you/go/bin.
*** You need to add /home/you/go/bin to your $PATH. ***

To check if you have installed Go, you can run the Go tool with the version option to
see the installed version:

% go version

If you have correctly installed Go, you should see something like this:

go version go1.20.1 darwin/amd64

1.2 Playing Around with Go
Problem
You want to write and execute Go code without downloading and installing Go.

Solution
Use the Go Playground to run your Go code.

Discussion
The Go Playground runs on Google’s servers, and you can run your program inside
a sandbox. Go to the Go Playground URL on your browser. This online environment
lets you play with Go code, running the latest Go version (you can switch to a
different version). The same web page returns output but only supports standard
output and standard error (see Figure 1-1).

In a pinch, the Go Playground is a good option to test some Go code. You can also
use the Go Playground to share executable code directly.

1.2 Playing Around with Go | 3

https://go.dev/doc/install/source
https://go.dev/play
https://go.dev/play

Figure 1-1. Go Playground

1.3 Writing a Hello World Program
Problem
You want to create a simple Hello World program in Go.

Solution
Write the Hello World code in Go, build, and run it.

4 | Chapter 1: Getting Started Recipes

Discussion
Here’s a straightforward Hello World program. Put this in a file named hello.go, in a
directory named hello:

package main

import "fmt"

func main() {
 fmt.Println("Hello, World!")
}

The first line defines the package this code runs in. Functions are grouped in
packages, and code files in the same packages are all in the same directory. The
main package is special because it tells Go this should be compiled as an executable
program. We also import the fmt package, which is part of the standard library.

The main package must have a main function, which is where the execution of the
program starts. In the body of the main function, we use the Println function in the
fmt package to print out the string “Hello, World!” The fmt package is part of the Go
standard library. Go has a pretty good standard library that covers most of what you
will typically need. Visit Go’s Standard library to find out what the standard library
has.

You can run this program immediately by running it from the command line:

$ go run hello.go

You should see this on your screen:

Hello, World!

You can also compile it into an executable file by running this command:

$ go build

This will create an executable file named hello (macOS or Linux) or hello.exe
(Windows) in the same directory. The name hello follows the name of the directory
it’s in. You can change the output name with this command:

$ go build -o helloworld

This will create the executable file named helloworld (macOS or Linux) or
helloworld.exe (Windows).

1.4 Using an External Package
Problem
You want to import a package from an external library.

1.4 Using an External Package | 5

https://pkg.go.dev/std

Solution
Use the import keyword to import an external package.

Discussion
Let’s say you want to display the size of a file. You get the exact file size, but it’s a
relatively large number that is not intuitive to users. You want to easily display the file
size without doing much of the mathematics yourself.

You searched the internet and found this interesting third-party, open source package
at https://github.com/dustin/go-humanize, and it does all that you want. How can you
include it and use the functions in the package?

You can do this just like importing a standard library, but instead of using the
package name, use the package location. Normally you’d expect the name of the
package to be go-humanize. However, the package name used in the code itself is
humanize. This is because the package name, as defined by the author of this package,
is humanize:

package main

import (
"fmt"

"github.com/dustin/go-humanize"
)

func main() {
var number uint64 = 123456789
fmt.Println("Size of file is", humanize.Bytes(number))

}

In many cases, the last directory of the location is the name of the package, but it’s not
always necessarily so. You can even change the way you call functions in the external
package:

package main

import (
"fmt"

human "github.com/dustin/go-humanize"
)

func main() {
var number uint64 = 123456789
fmt.Println("Size of file is", human.Bytes(number))

}

6 | Chapter 1: Getting Started Recipes

https://github.com/dustin/go-humanize

Notice that you now use the name human when calling the functions. Why does Go
allow this? It’s because there might be conflicting package names since Go doesn’t
control how the package is named, nor does it have a centralized repository of
packages.

If you try to run this directly, assuming the source code is in a file named human.go:

$ go run human.go

you will see this error message:

human.go:6:2: no required module provides package github.com/dustin/go-humanize:
go.mod file not found in the current directory or any parent directory; see
'go help modules'

This is because Go doesn’t know where to find the third-party package (unlike the
standard library packages); you must tell it. To do this, you first need to create a Go
module:

$ go mod init github.com/sausheong/humanize

This creates a Go module with the module path github.com/sausheong/humanize,
specified in a go.mod file. This file provides Go with information on the various
third-party packages to include. Then you can get the go-humanize package using the
go tool again:

$ go get github.com/dustin/go-humanize

This will add the third-party package to the module. To clean up, you can run the
following:

$ go mod tidy

This will clean up the go.mod file. You will get back to Go modules in Chapter 2.

1.5 Handling Errors
Problem
You want to take care of errors, which will inevitably occur because things never
happen as expected.

Solution
Check if a function returns an error and handle it accordingly.

1.5 Handling Errors | 7

Discussion
Error handling in Go is important. Go is designed such that you need to check for
errors explicitly. Functions that could go wrong will return a built-in type called
error.

Functions that convert a string to a number (like ParseFloat and ParseInt) can get
into trouble because the string might not be a number, so it will always return an
error. For example, in the strconv package, functions that convert a number to a
string (like FormatFloat and FormatInt) do not return errors. This is because you are
forced to pass in a number, and whatever you pass in will be converted into a string.

Take a look at the following code:

func main() {
str := "123456789"
num, err := strconv.ParseInt(str, 10, 64)
if err != nil {

panic(err)
}
fmt.Println("Number is", num)

}

The ParseInt function takes in a string (and some other parameters) and returns
a number num and an error err. You should inspect the err to see if the ParseInt
function returns anything. If there is an error, you can handle it as you prefer. In this
example, you panic, which exits the program.

If all goes well, this is what you should see:

Number is 123456789

If you change str to "abcdefg", you will get this:

panic: strconv.ParseInt: parsing "abcdefghi": invalid syntax

goroutine 1 [running]:
main.main()

/Users/sausheong/work/src/github.com/sausheong/gocookbook/ch01_general/
main.go
+0xae

exit status 2

Of course, you can handle it differently or even ignore it if you want. You’ll get
in-depth with error handling in Chapter 3.

8 | Chapter 1: Getting Started Recipes

1.6 Logging Events
Problem
You want to record events that happen during the execution of your code.

Solution
Use the log package in the Go standard library to log events.

Discussion
Logging events during code execution gives you a good view of how the code is doing
during execution. This is important, especially during long-running programs. Logs
help to determine issues with the execution and also the state of the execution. Here
is a simple example used earlier:

package main

import (
"fmt"
"log"
"strconv"

)

func main() {
str := "abcdefghi"
num, err := strconv.ParseInt(str, 10, 64)
if err != nil {

log.Fatalln("Cannot parse string:", err)
}
fmt.Println("Number is", num)

}

When you encounter an error being returned from calling the strconv.ParseInt
function, you call log.Fatalln, which is equivalent to logging the output to the
screen and exiting the application. As you can see, logging to the screen also adds the
date and time the event occurred:

021/11/18 09:19:35 Cannot parse string: strconv.ParseInt: parsing "abcdefghi":
invalid syntax
exit status 1

By default, the log goes to standard out, which means it will print to the terminal
screen. You can easily convert it to log to a file instead, or even multiple files. More
about that in Chapter 4.

1.6 Logging Events | 9

1.7 Testing Your Code
Problem
You want to test your code’s functionality to ensure it’s working the way you want.

Solution
Use Go’s built-in testing tool to do functional tests.

Discussion
Go has a useful built-in testing tool that makes testing easier since you don’t need to
add another third-party library. You’ll convert the previous code to a function while
leaving your main function free:

func main() {
}

func conv(str string) (num int64, err error) {
num, err = strconv.ParseInt(str, 10, 64)
return

}

You’ll be doing some testing on this function. To do this, create a file that ends with
_test.go in the same directory. In this case, create a conv_test.go file.

In this file, you can write the various test cases you want. Each test case can corre‐
spond to a function that starts with Test and takes in a single parameter of type
testing.T.

You can add as many test cases as you want across all multiple test files, as long as
they all end with _test.go:

package main

import "testing"

func TestConv(t *testing.T) {
num, err := conv("123456789")
if err != nil {

t.Fatal(err)
}
if num != 123456789 {

t.Fatal("Number don't match")
}

}

func TestFailConv(t *testing.T) {
_, err := conv("")

10 | Chapter 1: Getting Started Recipes

if err == nil {
t.Fatal(err)

}
}

Within the test functions, you call the conv function that you wanted to test, passing
it whatever test data you want. If the function returns an error or the returned value
doesn’t match what you expect, you call the Fatal function, which logs a message and
then ends the execution of the test.

Try it: run this from the command line. The flag -v is to increase its verbosity so you
can see how many test cases are executed and passed:

$ go test -v

This is what you see:

=== RUN TestConv
--- PASS: TestConv (0.00s)
=== RUN TestFailConv
--- PASS: TestFailConv (0.00s)
PASS
ok github.com/sausheong/gocookbook/ch01_general

As you can see, all your cases pass. Now make a small change in your conv function:

func conv(str string) (num int64, err error) {
num, err = strconv.ParseInt(str, 2, 64)
return

}

Instead of parsing the number as base 10, you use base 2. Rerun the test:

=== RUN TestConv
 general_test.go:8: strconv.ParseInt: parsing "123456789": invalid syntax
--- FAIL: TestConv (0.00s)
=== RUN TestFailConv
--- PASS: TestFailConv (0.00s)
FAIL
exit status 1
FAIL github.com/sausheong/gocookbook/ch01_general

You see that the TestConv test case failed because it no longer returns the expected
number. However, the second test case passes because it tests for a failure and it
encountered it.

Testing is covered more extensively in Chapter 18.

1.7 Testing Your Code | 11

CHAPTER 2

Module Recipes

2.0 Introduction
Managing dependencies is a crucial part of the software development lifecycle. A
package manager is used to automate the downloading, updating, and removing of
dependencies. This ultimately ensures that change management is done reliably and
that nothing breaks after patches and upgrades.

You can find package managers everywhere. On Linux you have rpm, dpkg, apk, etc.,
and on macOS, you have Homebrew, MacPorts, Fink, etc. You can even consider
the Mac App Store and the Windows Store package managers. Most programming
languages also have package managers. For example, Python has pip and conda; Ruby
has gems and bundler; PHP has PEAR, Composer, Poetry, and so on. Their features
might differ, but at the end of the day, all package managers aim to make developers’
lives easier when managing libraries, especially third-party libraries.

Go has an interesting approach to package management. The go tool does package
management; for example, go get will download and install third-party packages.
However, before Go 1.11, Go didn’t bundle any versioning and dependency manage‐
ment mechanisms. This meant you inadvertently got only the latest version when you
got a package.

Sure, there were third-party package and dependency managers like dep and Glide,
but they weren’t part of Go. That changed in August 2018 when Go 1.11 introduced
the concept of modules.

13

Of course, if your software program is small (you stuff everything into the main
package) and if you only use the standard library, versioning is not a big issue.
But once your software program becomes large and has many third-party packages,
managing it suddenly becomes complex. Versioning becomes critical, and resolving
the dependencies can be a nightmare.

Also, third-party packages don’t necessarily mean they are managed by someone else;
they could also be yours, for example, packages created by your teammates in a larger
project.

In Go, a module is a way to group and version packages. It helps developers to
manage dependencies. This is critical for most developers who must scale their
applications and make them extensible.

The mechanism itself is relatively simple, almost trivial. Go uses a minimal version
selection (MVS) algorithm to select the versions. This is defined in a file named
go.mod. The go.mod file specifies the versions of the packages used in the software
program—and that’s it. Go will not use any version of the package other than the one
you specify in go.mod. Go modules are also retrofitted into existing tools. This means
tools like go get, go build, go run, go test, and so on understand modules.

In this chapter, we’ll explore how Go modules work and discuss a few important
things Go programmers should note.

2.1 Creating a Go Module
Problem
You want to set up your project as a module.

Solution
Run go mod init from the command line to create a go.mod file.

Discussion
Go modules are simple. Most of the module features in Go are built into existing
tools. The only new tool is go mod. To set up your project as a module, you run this in
your project directory:

$ go mod init

You will be asked to provide more information if you don’t have your GOPATH set up
or if your project directory is not within the GOPATH:

14 | Chapter 2: Module Recipes

go: cannot determine module path for source directory /Users/sausheong/go/src/
github.com/sausheong/gocookbook/ch02_modules (outside GOPATH, module path must
be specified)

Example usage:
'go mod init example.com/m' to initialize a v0 or v1 module
'go mod init example.com/m/v2' to initialize a v2 module

Run 'go help mod init' for more information.

You can set up your GOPATH or follow the suggestions to provide the module path to
go mod init like this:

$ module github.com/sausheong/gocookbook/ch02_modules

Once you run go mod init successfully, it will create a file named go.mod in your
project directory. This file defines the module and is central to everything else you do
with modules. Your mod file should be something like this:

module github.com/sausheong/gocookbook/ch02_modules

go 1.20

The first line starts with the module directive and describes the module path, which
is the location of your project directory. The module path should be a location from
which Go tools can download the module, such as the module code’s repository
location. There is a blank line after that, followed by the minimum version of Go used
in this project, specified in the go directive.

You might think that the go directive will fail compilation if you use a lower version
of the language to compile. However, the go directive just specifies which language
features are available to the code. You will be flagged only if you use an earlier version
of Go to compile and your code needs the newer version’s features.

2.2 Importing Dependent Packages Into Your Module
Problem
You want to import a third-party package into your module.

Solution
Use the go get tool to download the third-party package. The go.mod file will be
automatically modified to require the new package.

2.2 Importing Dependent Packages Into Your Module | 15

Discussion
One of the cool things about Go modules is how the existing go tools have incorpora‐
ted it seamlessly, and you don’t need to change your workflow to accommodate it.
Before Go modules, when you wanted to use a third-party package, you needed to
use go get to download the package before you could add it to your code.

This doesn’t change with Go modules. The third-party package you download using
go get simply gets added to the go.mod file. Let’s look at an example of a simple web
application that uses the gorilla/mux third-party package.

Let’s say you have run go mod init in a project directory, and this go.mod file was
created:

module github.com/sausheong/gocookbook/ch02_modules/hello

go 1.20

You also have your program in a main.go file:

package main

import (
"log"
"net/http"
"text/template"

"github.com/gorilla/mux"
)

func main() {
r := mux.NewRouter()
r.HandleFunc("/{text}", name)
log.Fatal(http.ListenAndServe(":8080", r))

}

func name(w http.ResponseWriter, r *http.Request) {
vars := mux.Vars(r)
t, _ := template.ParseFiles("static/text.html")
t.Execute(w, vars["text"])

}

You will receive an error message if you try running it immediately:

$ go run main.go
main.go:8:2: no required module provides package github.com/gorilla/mux; to add
it:

go get github.com/gorilla/mux

This is because you need to download the gorilla/mux package before using it:

$ go get github.com/gorilla/mux
go: added github.com/gorilla/mux v1.8.0

16 | Chapter 2: Module Recipes

Once you have downloaded the package, the go.mod file will be updated. This is the
go.mod file after getting the gorilla/mux package:

module github.com/sausheong/gocookbook/ch02_modules/hello

go 1.20

require github.com/gorilla/mux v1.8.0 // indirect

Notice the require directive requiring the third-party package you just downloaded.
The // indirect comment means it has been added as an indirect dependency. The
v1.8.0 after the package’s module path is the version you use in this project. You
didn’t specify the version earlier, so Go will take the latest version.

What’s the difference between direct and indirect dependencies? Direct dependen‐
cies, as the name suggests, are dependencies that are directly imported by the pro‐
gram. The gorilla/mux package is directly imported in the source code as in the
preceding example, so this should be a direct dependency. (The following paragraphs
explain why it’s not.)

On the other hand, indirect dependencies are dependencies that your third-party
packages have. If the package you import doesn’t use Go modules and therefore
doesn’t have a go.mod file, these packages will be added to your go.mod file by the
require directive but will be flagged as an indirect dependency.

So why is the gorilla/mux package flagged as indirect? When you do a go get on
any third-party package, it will be added as an indirect dependency first, regardless of
whether it’s directly imported in any code. After downloading the package, you must
run this from the command line to tidy up:

$ go mod tidy

This will clean things up, and the indirect flag will be removed:

module github.com/sausheong/gocookbook/ch02_modules/hello

go 1.20

require github.com/gorilla/mux v1.8.0

What if you already downloaded the package? Do you need to download it again
every time? The answer is no; when you run go mod tidy, Go will figure it out from
your source code and add that into your go.mod file as a direct dependency:

go: finding module for package github.com/gorilla/mux
go: found github.com/gorilla/mux in github.com/gorilla/mux v1.8.0

Go will also create another file for you, named go.sum. This is what you see when you
open it:

2.2 Importing Dependent Packages Into Your Module | 17

github.com/gorilla/mux v1.8.0 h1:i40aqfkR1h2SlN9hojwV5ZA91wcXFOvkdNIeFDP5koI=
github.com/gorilla/mux v1.8.0/go.mod h1:DVbg23sWSpFRCP0SfiEN6jmj59UnW/n46BH5rLB7
1So=

The go.sum file lists the checksum of the dependencies required and the versions.
This is a security feature; it’s there to make sure that the dependencies are not
modified. There are two lines here. The first line contains the checksum of the
package’s source code, while the second line (the one with /go.mod) is the checksum
of the package’s go.mod file. The h1: on each line indicates the hash algorithm used
(SHA-256).

You should check both the go.mod and the go.sum files into your source code
repository.

Now you can run your program:

$ go run main.go

Now open up http://localhost:8080/sausheong in a browser. You should see the screen
shown in Figure 2-1.

Figure 2-1. Simple hello web app

2.3 Removing Dependent Packages from Your Module
Problem
You want to remove an existing dependent package.

Solution
Remove the dependency on the package in the source code, then run go mod tidy to
remove the dependency on the package in the go.mod and go.sum files.

Discussion
Removing a dependent package is simple. You can start from the code by removing
the use of the package and the package itself from the list of dependent packages. For
example, if you only use the standard library, you can change the code to this:

18 | Chapter 2: Module Recipes

package main

import (
"log"
"net/http"
"text/template"

)

func main() {
http.HandleFunc("/", name)
log.Fatal(http.ListenAndServe(":8080", nil))

}

func name(w http.ResponseWriter, r *http.Request) {
t, _ := template.ParseFiles("static/text.html")
t.Execute(w, r.URL.EscapedPath()[1:])

}

The code no longer uses gorilla/mux, but the go.mod and go.sum files have not been
updated. Run go mod tidy from the command line, which removes the package from
go.mod and go.sum.

The go.mod file will change from this:

module github.com/sausheong/gocookbook/ch02_modules/hello

go 1.20

require github.com/gorilla/mux v1.8.0

to this:

module github.com/sausheong/gocookbook/ch02_modules/hello

go 1.20

2.4 Find Available Versions of Third-Party Packages
Problem
You want to know which versions of a third-party package are available.

Solution
For Git repositories, you can use git ls-remote -t to list all versions, or git
ls-remote -h to list all branches in the repository. Alternatively, you can go to the
GitHub or GitLab website and view tags or branches.

2.4 Find Available Versions of Third-Party Packages | 19

Discussion
This is not exactly a Go recipe, but it is a useful tip to determine the available package
versions.

You need to know the versions and branches available if you want to use releases
that are not the latest in the package. To do that, you can use the Git command
ls-remote with the tags -t or -h to view the tags and heads, respectively. In Git, tags
are often used to mark releases or versions. Heads are the tips of branches, so the
heads represent the available branches of the repository.

For example, run this from the command line to list all version releases in gorilla/
mux:

$ git ls-remote -t https://github.com/gorilla/mux.git

You will see this output:

0eeaf8392f5b04950925b8a69fe70f110fa7cbfc refs/tags/v1.1
b12896167c61cb7a17ee5f15c2ba0729d78793db refs/tags/v1.2.0
392c28fe23e1c45ddba891b0320b3b5df220beea refs/tags/v1.3.0
bcd8bc72b08df0f70df986b97f95590779502d31 refs/tags/v1.4.0
24fca303ac6da784b9e8269f724ddeb0b2eea5e7 refs/tags/v1.5.0
7f08801859139f86dfafd1c296e2cba9a80d292e refs/tags/v1.6.0
53c1911da2b537f792e7cafcb446b05ffe33b996 refs/tags/v1.6.1
e3702bed27f0d39777b0b37b664b6280e8ef8fbf refs/tags/v1.6.2
a7962380ca08b5a188038c69871b8d3fbdf31e89 refs/tags/v1.7.0
c5c6c98bc25355028a63748a498942a6398ccd22 refs/tags/v1.7.1
ed099d42384823742bba0bf9a72b53b55c9e2e38 refs/tags/v1.7.2
00bdffe0f3c77e27d2cf6f5c70232a2d3e4d9c15 refs/tags/v1.7.3
75dcda0896e109a2a22c9315bca3bb21b87b2ba5 refs/tags/v1.7.4
98cb6bf42e086f6af920b965c38cacc07402d51b refs/tags/v1.8.0

If you’re using GitHub or GitLab or some other SaaS that provides a code repository
service, you can also go to the site and view the tags or branches.

2.5 Importing a Specific Version of a Dependent Package
Into Your Module
Problem
You want to import a specific version of a dependent package instead of the latest
one.

Solution
Use go get to download the version you want by adding @version_number after the
module path.

20 | Chapter 2: Module Recipes

Discussion
Go modules use the Semantic Versioning (Semver) system for versioning. Semver
uses three parts in versioning—major, minor, and patch. For example, in
gorilla/mux the version number v1.8.0 means a major version 1, minor version
8, and patch version 0.

To download version v1.7.4 of gorilla/mux, run this from the command line:

$ go get github.com/gorilla/mux@v1.7.4

You should see a change in version of the gorilla/mux package in both the go.mod
and go.sum files.

You can even use specific branches or specific commits:

$ go get github.com/gorilla/mux@4248f5cd8717eaea35eded08100714b2b2bac756

If you run this from the command line, you will get the following:

go: downloading github.com/gorilla/mux v1.7.3-0.20190628153307-4248f5cd8717
go get: downgraded github.com/gorilla/mux v1.7.4 => v1.7.3-0.20190628153307-
4248f5
cd8717

Your go.mod file will look something like this:

module github.com/sausheong/gocookbook/ch02_modules

go 1.20

require github.com/gorilla/mux v1.7.3-0.20190628153307-4248f5cd8717

You can go back to the latest version by doing this:

$ go get github.com/gorilla/mux@latest

You can update the package’s latest minor or patch version using the -u flag:

$ go get -u github.com/gorilla/mux

However, for major versions, Go modules use a different path altogether. Starting at
v2, the path must end in the major version. For example, since gorilla/mux has a
major version release, the module path will change to github.com/gorilla/mux/v2,
and you will use go get github.com/gorilla/mux/v2 instead.

This convention of using different module paths for major versions is called semantic
import versions. Semantic import versions let you simultaneously use multiple major
package versions for incremental migration when migrating a large codebase.

2.5 Importing a Specific Version of a Dependent Package Into Your Module | 21

2.6 Requiring Local Versions of Dependent Packages
Problem
You want to use local versions of the dependent packages.

Solution
Set up Go to use a vendor directory by running go mod vendor.

Discussion
Local versions are the specific version of the dependent packages that you can use
and are a safeguard in case the originals disappear (it happens). Having local versions
of the dependent packages can be useful (and not only because you have trust issues).

Run this from the command line to download and keep local versions of the
dependent packages:

$ go mod vendor

This will create a vendor subdirectory in your project directory and populate it with
the dependencies from your go.mod file. It also creates a vendor/modules.txt file that
contains a listing of the packages you have just vendored and the versions they were
copied from.

For example, assuming you have the following go.mod file:

module github.com/sausheong/gocookbook/ch02_modules/hello

go 1.20

require github.com/gorilla/mux v1.8.0

you will find a new vendor subdirectory created in your project directory (which is
also your module path). If you list the vendor subdirectory, you should see something
like this:

vendor % ls -lR
total 8
drwxr-xr-x 3 sausheong staff 96 Dec 28 09:38 github.com
-rw-r--r-- 1 sausheong staff 76 Dec 28 09:38 modules.txt

./github.com:
total 0
drwxr-xr-x 3 sausheong staff 96 Dec 28 09:38 gorilla

./github.com/gorilla:
total 0
drwxr-xr-x 11 sausheong staff 352 Dec 28 09:38 mux

22 | Chapter 2: Module Recipes

./github.com/gorilla/mux:
total 224
-rw-r--r-- 1 sausheong staff 276 Dec 28 09:38 AUTHORS
-rw-r--r-- 1 sausheong staff 1486 Dec 28 09:38 LICENSE
-rw-r--r-- 1 sausheong staff 25363 Dec 28 09:38 README.md
-rw-r--r-- 1 sausheong staff 11227 Dec 28 09:38 doc.go
-rw-r--r-- 1 sausheong staff 2619 Dec 28 09:38 middleware.go
-rw-r--r-- 1 sausheong staff 17677 Dec 28 09:38 mux.go
-rw-r--r-- 1 sausheong staff 10522 Dec 28 09:38 regexp.go
-rw-r--r-- 1 sausheong staff 21706 Dec 28 09:38 route.go
-rw-r--r-- 1 sausheong staff 766 Dec 28 09:38 test_helpers.go

If you open modules.txt, you can see the vendored packages:

github.com/gorilla/mux v1.8.0
explicit; go 1.12
github.com/gorilla/mux

By default, Go will use the version in the vendor directory if your Go version is 1.1.4
and above and your vendor/modules.txt file is in sync with your go.mod file. If you
want to enable vendoring explicitly, you can include the -mod vendor flag in the go
command.

For example, to build the project, you will do this:

go build -mod vendor

If you want to disable vendoring explicitly, include the -mod readonly or -mod mod in
the go command.

What happens if you add a new dependent package after you have vendored the
module? If go.mod has changed since modules.txt was generated, the go command
will show an error, and you should update the vendor directory again by running go
mod vendor.

Try it out! Instead of showing text, you want to generate a QR code from the given
name using the go-qrcode package and display it on the browser.

First, you need to get the package:

$ go get github.com/yeqown/go-qrcode

This adds a whole bunch of indirect dependent packages to go.mod. Remember,
you’re only using go-qrcode; the rest are packages it’s dependent on:

module github.com/sausheong/gocookbook/ch02_modules/vendoring

go 1.20

require github.com/gorilla/mux v1.8.0

require (

2.6 Requiring Local Versions of Dependent Packages | 23

github.com/fogleman/gg v1.3.0 // indirect
github.com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0 // indirect
github.com/yeqown/go-qrcode v1.5.10 // indirect
github.com/yeqown/reedsolomon v1.0.0 // indirect
golang.org/x/image v0.0.0-20200927104501-e162460cd6b5 // indirect

)

You change the code to use go-qrcode:

package main

import (
"bytes"
"encoding/base64"
"log"
"net/http"
"text/template"

"github.com/gorilla/mux"
"github.com/yeqown/go-qrcode"

)

func main() {
r := mux.NewRouter()
r.HandleFunc("/{text}", name)
log.Fatal(http.ListenAndServe(":8080", r))

}

func name(w http.ResponseWriter, r *http.Request) {
vars := mux.Vars(r)
qrc, _ := qrcode.New(vars["text"])
var buf bytes.Buffer
qrc.SaveTo(&buf)
base64 := base64.StdEncoding.EncodeToString(buf.Bytes())
t, _ := template.ParseFiles("static/index.html")
t.Execute(w, base64)

}

Once done, use go mod tidy to clean up the go.mod file, which becomes this, with
qr-code set up as a direct dependency:

module github.com/sausheong/gocookbook/ch02_modules/vendoring

go 1.20

require (
github.com/gorilla/mux v1.8.0
github.com/yeqown/go-qrcode v1.5.10

)

require (
github.com/fogleman/gg v1.3.0 // indirect
github.com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0 // indirect

24 | Chapter 2: Module Recipes

github.com/yeqown/reedsolomon v1.0.0 // indirect
golang.org/x/image v0.0.0-20200927104501-e162460cd6b5 // indirect

)

So far, this is the standard modules workflow. However, you will hit this error if you
try to build or run in vendored mode:

go: inconsistent vendoring in /Users/sausheong/go/src/github.com/sausheong/
 gocookbook/ch02_modules/vendoring:

github.com/yeqown/go-qrcode@v1.5.10: is explicitly required in go.mod,
but not marked as explicit in vendor/modules.txt
github.com/fogleman/gg@v1.3.0: is explicitly required in go.mod, but
not marked as explicit in vendor/modules.txt
github.com/golang/freetype@v0.0.0-20170609003504-e2365dfdc4a0: is
explicitly required in go.mod, but not marked as explicit in vendor/
modules.txt
github.com/yeqown/reedsolomon@v1.0.0: is explicitly required in go.mod,
but not marked as explicit in vendor/modules.txt
golang.org/x/image@v0.0.0-20200927104501-e162460cd6b5: is explicitly
required in go.mod, but not marked as explicit in vendor/modules.txt

To ignore the vendor directory, use -mod=readonly or -mod=mod.
To sync the vendor directory, run:

go mod vendor

The error message tells you exactly what to do. You need to rerun go mod vendor.
Once you do that, modules.txt is updated. When you run go build -mod vendor
again, it will work.

If you go to the vendor subdirectory, you should see the newly vendored package
there. In the interest of space, I won’t list the files in the vendor subdirectory. The
modules.txt file should also be updated as well, and you should see all the vendored
packages in there:

github.com/fogleman/gg v1.3.0
explicit
github.com/fogleman/gg
github.com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0
explicit
github.com/golang/freetype/raster
github.com/golang/freetype/truetype
github.com/gorilla/mux v1.8.0
explicit; go 1.12
github.com/gorilla/mux
github.com/yeqown/go-qrcode v1.5.10
explicit; go 1.17
github.com/yeqown/go-qrcode
github.com/yeqown/go-qrcode/matrix
github.com/yeqown/reedsolomon v1.0.0
explicit
github.com/yeqown/reedsolomon
github.com/yeqown/reedsolomon/binary

2.6 Requiring Local Versions of Dependent Packages | 25

golang.org/x/image v0.0.0-20200927104501-e162460cd6b5
explicit; go 1.12
golang.org/x/image/draw
golang.org/x/image/font
golang.org/x/image/font/basicfont
golang.org/x/image/math/f64
golang.org/x/image/math/fixed

You’re not supposed to change the code in the vendored versions of the dependent
packages. That could make things pretty messy when managing dependencies and
could be a security breach. If you rerun go mod vendor, Go will check the integrity of
the vendored packages and make sure you’re using the version in go.mod.

While there are advantages to having vendored dependent packages, it can also be
challenging to manage, and you will end up in a bloated repository, with versions
appearing everywhere.

2.7 Using Multiple Versions of the Same
Dependent Packages
Problem
You want to use multiple versions of the same dependent packages in your code.

Solution
Use the replace directive in the go.mod file to rename your package.

Discussion
Though it might seem like a very niche requirement, there is sometimes a need to
be able to use multiple versions of the same package in your project. In the previous
recipe, we talked about one possible use—if you want to migrate a large codebase
incrementally but still enable it to work while you’re migrating, you might want to use
different versions of the same package.

Another possible reason is when you have a dependent package that works only with
a specific version of another package. This is more common than you might think
because packages developed by different developers move according to their project
schedules. You could be in trouble if one of your critical dependent packages still uses
an older version of a shared dependent package.

26 | Chapter 2: Module Recipes

Semantic import versions work well because the major versions require a change in
the path. However, this wouldn’t work in the case of minor version upgrades. In this
case, you can use the replace directive to rename a package and use the new name to
import it into your code.

First, change the go.mod file to rename your packages. Say you’re using both v1.8.0
and v1.7.4 for gorilla/mux.

You rename these packages accordingly using the replace directive:

module github.com/sausheong/gocookbook/ch02_modules

go 1.20

replace github.com/gorilla/mux/180 => github.com/gorilla/mux v1.8.0

replace github.com/gorilla/mux/174 => github.com/gorilla/mux v1.7.4

Run go get to get the package versions using their new names:

$ go get github.com/gorilla/mux/174
$ go get github.com/gorilla/mux/180

If you open your go.mod, you should see the two new packages being required:

module github.com/sausheong/gocookbook/ch02_modules

go 1.20

replace github.com/gorilla/mux/180 => github.com/gorilla/mux v1.8.0

replace github.com/gorilla/mux/174 => github.com/gorilla/mux v1.7.4

require (
github.com/gorilla/mux/174 v0.0.0-00010101000000-000000000000 // indirect
github.com/gorilla/mux/180 v0.0.0-00010101000000-000000000000 // indirect

)

Now you can go back to your code and import these two packages:

package main

import (
"log"
"net/http"
"text/template"

mux174 "github.com/gorilla/mux/174"
mux180 "github.com/gorilla/mux/180"

)

func main() {
r := mux180.NewRouter()

2.7 Using Multiple Versions of the Same Dependent Packages | 27

r.HandleFunc("/{text}", name)
log.Fatal(http.ListenAndServe(":8080", r))

}

func name(w http.ResponseWriter, r *http.Request) {
vars := mux174.Vars(r)
t, _ := template.ParseFiles("static/text.html")
t.Execute(w, vars["text"])

}

Note that while this program builds and runs because you are using two separate
packages, the mux174.Vars will not be able to get the path from the URL.

What happens if you vendor the packages now?

Run go mod vendor from the command line. Now open your vendor package. You
should be able to see two different versions of the package under two different
directories as if they are different packages altogether.

28 | Chapter 2: Module Recipes

CHAPTER 3

Error Handling Recipes

3.0 Introduction
In his An Essay on Criticism, Alexander Pope wrote, “to err is human.” And since
software is written by humans (for now), software errs as well. Just like human errors,
it’s about how gracefully we can recover from them. That’s what error handling is all
about—how we recover when our program gets into a situation we did not expect or
cater to in its normal flow.

Programmers often treat error handling as tedious work and an afterthought. That’s
generally an error in itself. Just as testing and error handling should be top of mind,
recovering from the error should be part of good software design. In Go, error han‐
dling is treated pretty seriously, though unconventionally. Go has the errors package
in the standard library that provides many functions to manipulate errors, but most
error handling in Go is built into the language or is part of the idiomatic way of
programming in Go. This chapter covers some basic ideas in error handling in Go.

Errors Are Not Exceptions
In programming languages like Python and Java, error handling is done through
exceptions. An exception is an object that represents an error, and whenever some‐
thing goes wrong, you can throw an exception. The calling function usually has a try
and catch (or try and except in Python) that handles anything that goes wrong.

Go does this slightly differently (or entirely differently, depending on how you look
at it). Go doesn’t have exception handling. Instead of exceptions, it has errors. An
error is a built-in type that represents an unexpected condition. Instead of throwing
an exception, you will create an error and return it to the calling function. Isn’t this
like saying the Odyssey wasn’t written by Homer but by another Greek named Homer,
who also lived 2,800 years ago?

29

Well, not exactly. Functions do not return exceptions at all; you don’t know if any
exceptions will be returned or what kind of exceptions they will be (well, sometimes
you do, but that’s a different story). You have to round it up using try and catch.
Exceptions are thrown only when there are problems (that’s why they are called
exceptions), and you can wrap around potentially exception-causing statements with
the same try and catch. On the other hand, errors are deliberately returned by the
function to be inspected by the calling function and dealt with individually.

As a result, programmers familiar with exceptions find error handling in Go particu‐
larly tedious. Instead of using a wide net to catch exceptions in a series of statements,
you are expected to inspect the returning errors each time and deal with these
errors individually. Of course, you can also ignore the errors altogether, though
idiomatically you are expected to take errors seriously and deal with them each time
you get one. The only exception to this is if you don’t care about the returning results
at all.

3.1 Handling Errors
Problem
You want to handle an unexpected condition in your code.

Solution
If you’re writing a function, return an error along with the return value (if any).
If you’re calling a function, inspect the error returned; if it is not nil, handle it
accordingly.

Discussion
There are two ways you need to deal with errors: when writing a function and when
calling a function.

Writing a function

Go represents errors with the error built-in error type, which is an interface. The
rule of thumb when writing functions is that if there is any way the function will fail,
you need to return an error, along with whatever return value your function returns.
This is possible because Go allows multiple return values. By convention, error is the
last return value; for example, this function allows you to guess a number:

30 | Chapter 3: Error Handling Recipes

func guess(number uint) (answer bool, err error) {
 if number > 99 {
 err = errors.New("Number is larger than 100")
 }
 // check if guess is correct
 return answer, err
}

The input to the function should be less than 100, and the function should return a
true or false, indicating whether or not the guess is correct. If the input number is
larger than 100, you want to flag an error, which is what you do here by creating a
new error using the errors.New function:

err = errors.New("Number is larger than 100")

There are other ways to create a new error, though. Another common way of creating
a new error is in the common fmt package using the Errorf function:

err = fmt.Errorf("Number is larger than 100")

The big difference between the two in this example is trivial—fmt.Errorf allows you
to format the string, like the Printf, Sprintf Sscanf, and similar functions in the
fmt package, while errors.New just creates an error with a string. There’s a bit more
to this in fmt.Errorf, though, because it can allow you to wrap an error around
another error (see Recipe 3.4).

Calling a function
Another Go rule of thumb is “don’t ignore errors.” The standard way to handle errors
in Go is relatively straightforward—you deal with it just like any other return value.
The following example is taken from Recipe 1.5:

str := "123456789"
num, err := strconv.ParseInt(str, 10, 64)
if err != nil {
 // handle the error
}

The function strconv.ParseInt returns two values—the first is the converted inte‐
ger, and the second is the error. You should inspect the error, and if the error is nil,
all is well, and you can continue with the program flow. If it’s not nil, then you should
handle it. In the example in Recipe 1.5, you called panic with the error, discussed
later in the chapter, but you can handle it whichever way you want, including ignor‐
ing it. You can, of course, also deliberately choose to ignore errors like this:

num, _ := strconv.ParseInt(str, 10, 64)

3.1 Handling Errors | 31

Here you’re assigning the returned error to the underscore (_), which means you’re
ignoring it. In either case, it becomes clear that you are deliberately ignoring returned
errors. Go cannot stop you if you’re not handling the error. However, a linter, your
IDE, or code review (if you’re on a team) will quickly bring this error to the surface,
along with your laziness in handling it.

Why is error handling done this way in Go?
You might wonder why Go does it this way instead of using exceptions like many
other languages. Exceptions seem easier to handle because you can group statements
and handle them together. Go forces you to handle errors with each function call,
which can be tedious.

However, exceptions can also be easily missed unless you have a try and catch. In
addition, if you’re wrapping a bunch of statements with try and catch it’s easy to
miss handling specific errors, and it can also be confusing if you bunch too many
statements together.

The other benefit of using errors instead of exceptions is that the returned error is a
value you can use just like any other value in your normal flow. While you can also
process exceptions, they are constructs in the try and catch loop, which is not in
your normal flow. It seems like a trivial point, but it’s an important one because doing
so makes handling errors an integral part of writing your code instead of making it
optional.

3.2 Simplifying Repetitive Error Handling
Problem
You want to reduce the number of lines of repetitive error-handling code.

Solution
Use helper functions to reduce the number of lines of repetitive error-handling code.

Discussion
One of the most frequent complaints about Go’s error handling, especially from
newcomers, is that it’s tedious to do repetitive checks. Let’s take, for example, this
piece of code that opens a JSON file to read and unmarshal to a struct:

func unmarshal() (person Person) {
r, err := http.Get("https://swapi.dev/api/people/1")
if err != nil {

// handle error
}

32 | Chapter 3: Error Handling Recipes

defer r.Body.Close()

data, err := io.ReadAll(r.Body)
if err != nil {

// handle error
}

err = json.Unmarshal(data, &person)
if err != nil {

// handle error
}
return person

}

You can see three sets of error handling: one when you call http.Get to get the API
response into an http.Response, then when you call io.ReadAll to get the JSON
text from the http.Response, and finally to unmarshal the JSON text into the Person
struct. Each of these calls is a potential point of failure, so you need to handle errors
that result from those failures.

However, these error-handling routines are similar to each other and, in fact, repeti‐
tive. How can you resolve this? There are several ways, but the most straightforward
is using helper functions:

func helperUnmarshal() (person Person) {
r, err := http.Get("https://swapi.dev/api/people/1")
check(err, "Calling SW people API")
defer r.Body.Close()

data, err := io.ReadAll(r.Body)
check(err, "Read JSON from response")

err = json.Unmarshal(data, &person)
check(err, "Unmarshalling")
return person

}

func check(err error, msg string) {
if err != nil {

log.Println("Error encountered:", msg)
 // do common error-handling stuff

}
}

The helper function here is the check function that takes in an error and a string.
Besides logging the string, you can also put all the common error-handling stuff that
you want to do into the function. Instead of a string, you can also take in a function
as a parameter and execute the function if an error is encountered.

Of course, this is only one possible type of helper function; here’s another one. You
will use a pattern found in another package in the standard library this time. In the

3.2 Simplifying Repetitive Error Handling | 33

text/template package, you can find a helper function called template.Must that
wraps around functions that return (*Template, error). If a function returns a
non-nil error, then Must panics. You can similarly create something like this to wrap
around other function calls:

func must(param any, err error) any {
if err != nil {

// handle errors
}
return param

}

Because it takes any single parameter (using any) and returns a single value (also
using any), you can use this for any function that returns a single value along with
an error. For example, you can convert your earlier unmarshal function to something
like this:

func mustUnmarshal() (person Person) {
r := must(http.Get("https://swapi.dev/api/people/1")).(*http.Response)
defer r.Body.Close()
data := must(io.ReadAll(r.Body)).([]byte)
must(nil, json.Unmarshal(data, &person))
return person

}

Note that in the first line of the mustUnmarshal function, the function call http.Get
returns two values, which are used as parameters in the must function. In the second
use of the must function, the json.Unmarshal function returns an error only.

The code is more concise, but at the same time, it also makes the code more unread‐
able, so this kind of helper function should be used sparingly.

3.3 Creating Customized Errors
Problem
You want to create custom errors to communicate more information about the error
encountered.

Solution
Create a new string-based error or implement the error interface by creating a struct
with an Error method that returns a string.

Discussion
There are different ways of creating errors (in a good way).

34 | Chapter 3: Error Handling Recipes

Using a string-based error
The simplest way to implement a customized error is to create a new string-based
error. You can use either the errors.New function, which creates an error with a
simple string, or the fmt.Errorf function, which allows you to include formatting for
the error string.

The errors.New function is very straightforward:

err := errors.New("Syntax error in the code")

The fmt.Errorf function, like many of the functions in the fmt function, allows for
formatting within the string:

err := fmt.Errorf("Syntax error in the code at line %d", line)

Implementing the error interface

The builtin package contains all the definitions of the built-in types, interfaces, and
functions. One of the interfaces is the error interface:

type error interface {
 Error() string
}

As you can see, any struct with a method named Error that returns a string is an
error. So if you want to define a custom error to return a custom error message,
implement a struct and add an Error method. For example, let’s say you are writing a
program used for communications and want to create a custom error to represent an
error during communications:

type CommsError struct{}

func (m CommsError) Error() string {
return "An error happened during data transfer."

}

You want to provide information about where the error came from. To do this, you
can create a custom error to provide the information. Of course, you usually wouldn’t
override Error; you can add fields and other methods to your custom error to carry
more information:

type SyntaxError struct {
Line int
Col int

}

func (err *SyntaxError) Error() string {
return fmt.Sprintf("Error at line %d, column %d", err.Line, err.Col)

}

3.3 Creating Customized Errors | 35

When you get such an error, you can typecast it using the “comma, ok” idiom
(because if you typecast it and it’s not that type, it will panic), and extract the
additional data for your processing:

if err != nil {
err, ok := err.(*SyntaxError)
if ok {

// do something with the error
} else {

// do something else
}

}

3.4 Wrapping an Error with Other Errors
Problem
You want to provide additional information and context to an error you receive
before returning it as another error.

Solution
Wrap the error you receive with another error you create before returning it.

Discussion
Sometimes you will get an error, but instead of just returning that, you want to
provide additional context before returning the error. For example, if you get a
network connection error, you might want to know where in the code that happened
and what you were doing when it happened.

Of course, you can simply extract the information, create a new customized error
with the additional information, and return that. Alternatively, you can also wrap
the error with another error and return it, passing it up the call stack while adding
additional information and context.

There are a couple of ways to wrap errors. The easiest is to use fmt.Errorf again and
provide an error as part of the parameter:

err1 := errors.New("Oops something happened.")
err2 := fmt.Errorf("An error was encountered - %w", err1)

The %w verb allows you to place an error within the format string. In the example,
err2 wraps err1. But how do you extract err1 out of err2?

The errors package has an Unwrap function that does precisely this:

err := errors.Unwrap(err2)

36 | Chapter 3: Error Handling Recipes

This will give you back err1.

Another way of wrapping an error with an error is to create a customized error struct
like this:

type ConnectionError struct {
Host string
Port int
Err error

}

func (err *ConnectionError) Error() string {
return fmt.Sprintf("Error connecting to %s at port %d", err.Host,
err.Port)

}

Remember, to make it an error, the struct should have an Error method. To allow the
struct to be unwrapped, you need to implement an Unwrap function:

func (err *ConnectionError) Unwrap() error {
return err.Err

}

3.5 Inspecting Errors
Problem
You want to check for specific errors or specific types of errors.

Solution
Use the errors.Is and errors.As functions. The errors.Is function compares an
error to a value and the errors.As function checks if an error is of a specific type.

Discussion
The errors.Is and errors.As functions are operators that work on errors. They
help us to inspect errors and figure out what the errors are.

Using errors.Is

The errors.Is function is essentially an equality check. Let’s say you define a set of
customized errors in your codebase—for example, ApiErr—which happens when a
connection to an API encounters an error:

var ApiErr error = errors.New("Error trying to get data from API")

3.5 Inspecting Errors | 37

Elsewhere in your code, you have a function that returns this error:

func connectAPI() error {
// some other stuff happening here
return ApiErr

}

You can use errors.Is to check if the error returned is ApiErr:

err := connectAPI()
if err != nil {

if errors.Is(err, ApiErr) {
// handle the API error

}
}

You can also verify if ApiErr is somewhere along the chain of wrapped errors. Take
the example of a connect function that returns a ConnectionError that wraps around
ApiErr:

func connect() error {
return &ConnectionError{

Host: "localhost",
Port: 8080,
Err: ApiErr,

}
}

This code still works because ConnectionError wraps around ApiErr:

err := connect()
if err != nil {

if errors.Is(err, ApiErr) {
// handle the API error

}
}

Using errors.As

The errors.As function allows you to check for a specific type of error. Continue
with the same example, but this time around, you want to check if the error is of the
type ConnectionError:

err := connect()
if err != nil {

var connErr *ConnectionError
if errors.As(err, &connErr) {

log.Errorf("Cannot connect to host %s at port %d", connErr.Host,
connErr.Port)

}
}

38 | Chapter 3: Error Handling Recipes

You can use errors.As to check if the returned error is a ConnectionError by pass‐
ing it the returned error and a variable of type *ConnectionError, named connErr. If
it turns out to be so, errors.As will then assign the returned error into connErr, and
you can process the error simultaneously.

3.6 Handling Errors with Panic
Problem
You want to report an error that causes your program to halt.

Solution
Use the built-in panic function to stop the program.

Discussion
Sometimes your program will encounter an error that makes it unable to continue. In
this case, you want to stop the program. Go provides a built-in function called panic
that takes in a single parameter of any type and stops the normal execution of the
current goroutine.

When a function calls panic, the normal execution of the function stops immediately,
and any deferred actions (anything that you call that starts with defer) are executed
before the function returns to its caller.

The calling function will also panic and stop normal execution and execute deferred
actions as well. This bubbles up until the entire program exits with a nonzero exit
code.

Let’s take a closer look at this. You create a normal flow of functions where main calls
A, A calls B, and B calls C:

package main

import "fmt"

func A() {
defer fmt.Println("defer on A")
fmt.Println("A")
B()
fmt.Println("end of A")

}

func B() {
defer fmt.Println("defer on B")
fmt.Println("B")
C()

3.6 Handling Errors with Panic | 39

fmt.Println("end of B")
}

func C() {
defer fmt.Println("defer on C")
fmt.Println("C")
fmt.Println("end of C")

}

func main() {
defer fmt.Println("defer on main")
fmt.Println("main")
A()
fmt.Println("end of main")

}

The execution results are as follows, which is the expected flow:

% go run main.go
main
A
B
C
end of C
defer on C
end of B
defer on B
end of A
defer on A
end of main
defer on main

What happens if you call panic in C between the two fmt.Println statements like
this?

func C() {
defer fmt.Println("defer on C")
fmt.Println("C")
panic("panic called in C")
fmt.Println("end of C")

}

When C calls panic in the middle of the execution, C stops immediately and executes
the deferred code within its scope. After that, it bubbles up to the caller B, which
also stops immediately, executes the deferred code within its scope, and returns to
its calling function, A. The same happens to A, which bubbles up the main function,
which executes the deferred code within its scope. Since that’s the end of the chain, it
will print out the panic parameter.

40 | Chapter 3: Error Handling Recipes

This is what you should see if you run this code on the terminal:

% go run main.go
main
A
B
C
defer on C
defer on B
defer on A
defer on main
panic: panic called in C

As you can see from the results, the rest of the code in all the functions never gets
executed, but all the deferred code gets executed before panic exits with a parameter.

3.7 Recovering from Panic
Problem
One of your goroutines has an error and cannot continue, and a panic is called, but
you don’t want to stop the rest of the program.

Solution
Use the built-in recover function to stop the panic. This works only in deferred
functions.

Discussion
In Recipe 3.6, you saw how panic stops the normal execution of code, runs the
deferred code, and bubbles up until the program terminates. Calling panic doesn’t
always mean the program terminates. Sometimes you don’t want panic to end the
program. In this case, you can use the built-in recover function to stop panic and
continue the execution of the program.

But why would you want that? There could be a few reasons. You could be using
a package that panics whenever it encounters something it cannot recover from.
However, that doesn’t mean you want your program to terminate (maybe it’s OK for
you even if that part of the code cannot continue). Or you simply want to stop the
execution of a goroutine without killing off the main program; for example, if your
web application is running, you don’t want a panicked handler function to shut down
the whole server.

Whichever case it is, recover can work only if you use it within a defer. This
is because when a function calls panic, everything else stops working except for
deferred code.

3.7 Recovering from Panic | 41

Here is the example from Recipe 3.6:

package main

import "fmt"

func A() {
defer fmt.Println("defer on A")
fmt.Println("A")
B()
fmt.Println("end of A")

}

func B() {
defer dontPanic()
fmt.Println("B")
C()
fmt.Println("end of B")

}

func C() {
defer fmt.Println("defer on C")
fmt.Println("C")
fmt.Println("end of C")

}

func main() {
defer fmt.Println("defer on main")
fmt.Println("main")
A()
fmt.Println("end of main")

}

func dontPanic() {
err := recover()
if err != nil {

fmt.Println("panic called but everything's ok now:", err)
} else {

fmt.Println("defer on B")
}

}

You added a new function named dontPanic that is called during a defer call in B.
In dontPanic, you call the built-in function recover. Under normal circumstances,
recover returns nil, and the usual deferred code is run, printing out “defer on B”:

% go run main.go
main
A
B
C
end of C

42 | Chapter 3: Error Handling Recipes

defer on C
end of B
defer on B
end of A
defer on A
end of main
defer on main

If a panic happens, recover will return the parameter passed to panic and stop panic
from continuing. To see how this works, add a panic into C:

func C() {
defer fmt.Println("defer on C")
fmt.Println("C")
panic("panic called in C")
fmt.Println("end of C")

}

Run the program again and see what happens:

% go run main.go
main
A
B
C
defer on C
panic called but everything's ok now: panic called in C
end of A
defer on A
end of main
defer on main

When panic is called in C, the deferred code in C kicks in without running the rest
of the code in C, and bubbles up to B. B stops running the rest of the code and starts
running the deferred code, which calls dontPanic. dontPanic calls recover, which
returns the parameter passed to the panic called in C, and the recovery code is run.
This prints out “panic called, but everything’s ok now:” and the parameter passed to
panic, which is “panic called in C”. The panic stops at this point. Normal execution
of B doesn’t happen, but when B returns to A, all is well, and the normal execution
flow of the code continues.

3.8 Handling Interrupts
Problem
Your program receives an interrupt signal from the operating system (for example, if
the user presses Ctrl-C), and you want to clean up and exit gracefully.

3.8 Handling Interrupts | 43

Solution
Use a goroutine to monitor the interrupt using the os/signal package. Place your
clean-up code in the goroutine.

Discussion
Signals are messages sent to running programs to trigger certain behaviors within the
program. Signals are asynchronous and can be sent by the operating system or other
running programs. When a signal is sent, the operating system interrupts the running
program to deliver the signal. If the process has a signal handler for the signal, that
handler will be executed. Otherwise, a default handler will be executed.

On the command line, certain key combinations like Ctrl-C trigger a signal (in this
case, Ctrl-C sends the SIGINT signal) to the program running in the foreground. The
SIGINT signal or signal interrupt is a signal that interrupts the running program and
causes it to terminate.

You can capture such signals in Go using the os/signal package.

Here’s how you can do this:

ch := make(chan os.Signal)
signal.Notify(ch, os.Interrupt)

go func() {
<-ch
// clean up before graceful exit
os.Exit(0)

}()

First, you create a channel ch to send the signals. Then you use the signal.Notify
function to relay incoming signals to ch. The first parameter of signal.Notify is
the channel, and the second parameter is variadic, which means you can pass in
none or more parameters. In this case, you pass in the various signals you want to
capture. In the preceding example code, you want to relay os.Interrupt, which is a
syscall.SIGINT or Ctrl-C. If no parameters are passed in, all signals will be relayed
to the channel.

After you have set things up, you spin up a goroutine where you wait for the signal
to come in by receiving from ch. This causes the goroutine to block until a signal is
sent on it. Once a signal comes in, you continue the goroutine, executing whichever
clean-up routine you want before gracefully exiting the program.

44 | Chapter 3: Error Handling Recipes

CHAPTER 4

Logging Recipes

4.0 Introduction
Logging is the act of recording events that occur during the running of a program.
It is often an undervalued activity in programming because it is additional work that
has little immediate payback for the programmer.

During the normal operations of a program, logging is an overhead, taking up
processing cycles to write to a file, database, or even to the screen. In addition,
unmanaged logs can cause problems. The classic case of logfiles getting so big that
they take up all the available disk space and crash the server is too real and happens
too often.

However, when something happens, and you want to find out the sequence of events
that led to it, logs become an invaluable diagnostic resource. Logs can also be moni‐
tored in real time, and alerts can be sent out when needed.

4.1 Writing to Logs
Problem
You want to log events that happen during the execution of your code.

Solution
Use the log package in the standard library to log events.

45

Discussion
Go provides a log package in the standard library that you can use to log events while
the program is running. It has a default implementation that writes to standard error
and adds a timestamp. This means you can use it out of the box for logging without
configuration or setup if you’re looking to log to standard error.

The log package provides several functions that allow you to write logs. In particular,
there are three sets of functions:

Print
Prints the logs to the logger

Fatal
Prints to the logger and calls os.Exit with an exit code of 1

Panic
Prints to the logger and calls panic

Each set comes in a triplet of functions; for example, Print has Print and Printf,
which allow formatting, and Println adds a newline after printing.

Here is an example with Print:

func main() {
str := "abcdefghi"
num, err := strconv.ParseInt(str, 10, 64)
if err != nil {

log.Println("Cannot parse string:", err)
}
fmt.Println("Number is", num)

}

In this example, when you encounter an error, you call the Println function that
prints to the standard logger. You will see this on the command line when you run the
program:

% go run main.go
2022/01/23 18:39:06 Cannot parse string: strconv.ParseInt: parsing "abcdefghi":
 invalid syntax
Number is 0

You will also see that the program doesn’t stop and continues to the final statement of
the program. In other words, Println simply logs and continues. How is it different
from fmt.Println? It’s not, really—the only thing it adds to the line is the date.

Next, take a look at Fatal. You change just one line of the code to use Fatalln:

func main() {
str := "abcdefghi"
num, err := strconv.ParseInt(str, 10, 64)

46 | Chapter 4: Logging Recipes

if err != nil {
log.Fatalln("Cannot parse string", err)

}
fmt.Println("Number is", num)

}

When you run it, you should see this:

% go run main.go
2022/01/23 18:42:10 Cannot parse string strconv.ParseInt: parsing "abcdefghi":
invalid syntax
exit status 1

Notice that the final statement isn’t executed, and the program ends with exit code 1.
Exit code 1 is a catch-all for general errors, meaning something went wrong with the
program, and that’s why it has to exit.

Finally, you can use Panic. When you call the panic built-in function, it will halt
the current goroutine, run the deferred code, and return to the calling function,
triggering another panic, which bubbles up eventually to main and finally exits. Refer
to Recipe 3.7 for more on the built-in panic function:

func main() {
str := "abcdefghi"
num := conv(str)
fmt.Println("Number is", num)

}

func conv(str string) (num int64) {
defer fmt.Println("deferred code in function conv")
num, err := strconv.ParseInt(str, 10, 64)
if err != nil {

log.Panicln("Cannot parse string", err)
}
fmt.Println("end of function conv")
return

}

The Panicln function prints to the standard logger and panics. When you run the
code, this is what you will see:

% go run main.go
2022/01/23 18:48:20 Cannot parse string strconv.ParseInt: parsing "abcdefghi":
invalid syntax
deferred code in function conv
panic: Cannot parse string strconv.ParseInt: parsing "abcdefghi": invalid syntax
...
exit status 2

The deferred code in the conv function runs, but the final statement in the program
doesn’t. Interestingly you see exit code 2, which is technically inaccurate because

4.1 Writing to Logs | 47

traditionally, exit code 2 means something like “incorrect arguments.” As of Go
version 1.17.6 this minor bug is still in the backlog, waiting to be fixed.

4.2 Change What Is Being Logged by the Standard Logger
Problem
You want to change what the standard logger logs.

Solution
Use the SetFlags function to set flags and add fields to each log line.

Discussion
The default behavior of the standard logger adds the date and time fields to each line
of the log. For example, with this line of code:

log.Println("Some event happened")

you will see this on the screen:

2022/01/24 10:46:44 Some event happened

The log package allows you to add information along with the default date and
time fields. You can add these fields using the SetFlag function. The fields that are
provided include:

Date
The date in local time zone

Time
The time in local time zone

Microseconds
The microsecond resolution of the time field

UTC
Use UTC time zone instead of local time zone if date or time fields are set

Long file
The full filename and line number

Short file
The filename and the line number

Message prefix position
Move the prefix (from SetPrefix) from the beginning of the line to before the
start of the message

48 | Chapter 4: Logging Recipes

Here are some examples. You start by setting only the date field in the log:

log.SetFlags(log.Ldate)
log.Println("Some event happened")

This produces:

2022/01/24 Some event happened

If you want to add the time with microsecond details, you do this:

log.SetFlags(log.Ldate | log.Lmicroseconds)
log.Println("Some event happened")

Using the or operator on the flags, you set up the various fields to use with the log.
Here’s the result from before:

2022/01/24 20:43:54.595365 Some event happened

The file fields are interesting because you can use them to tell you where the
problems lie in the code through the logs:

log.SetFlags(log.Ldate | log.Lshortfile)
log.Println("Some event happened")

It gives you additional information about the filename and the line where the
problem occurred:

2022/01/24 20:51:02 logging.go:20: Some event happened

4.3 Logging to File
Problem
You want to log events to a logfile instead of standard error.

Solution
Use the SetOutput function to set the log to write to a file.

Discussion
So far, you’ve learned about writing the logs to standard error, mainly on the screen
if you run it in the command line. What if you want to write it to a logfile, which is
common in most cases?

The answer is pretty simple. You use SetOutput to redirect the output to a file.

4.3 Logging to File | 49

First, look at the logfile. You want to open a new file for create or append, and it’s for
write only:

file, err := os.OpenFile("app.log", os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0644)
if err != nil {
 log.Fatal(err)
}
defer file.Close()

You call SetOutput with the file as the parameter, then continue to log:

log.SetOutput(file)
log.Println("Some event happened")

The output will be written to the app.log file instead of the screen.

As you probably realize from the code, setting up the logs to be written to file should
be done once. What if you want to write to the screen and the file simultaneously?
You could reset the log output each time (don’t do this) or maybe create two log‐
gers, one for standard error and another for a file, then call the loggers in separate
statements.

Or you can use Go’s MultiWriter function in the io package, which creates a writer
that duplicates its writes to all the provided writers:

file, err := os.OpenFile("app.log", os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0644)
if err != nil {
 log.Fatal(err)
}
defer file.Close()
writer := io.MultiWriter(os.Stderr, file)
log.SetOutput(writer)
log.Println("Some event happened")
log.Println("Another event happened")

Doing this will write to both the screen and the file simultaneously. In fact, you can
write to more than two writers!

4.4 Using Log Levels
Problem
You want to log events according to log levels.

Solution
Use the New function to create a logger, one for each log level, and then use those
loggers accordingly.

50 | Chapter 4: Logging Recipes

Discussion
Log data is usually pretty large. You can use log levels to make it more manageable
and determine the priority of the events. Log levels indicate the event’s severity,
indicating the event’s importance. It’s a simple mechanism—you look at the higher-
severity log levels first, filtering off lower-level logs and reducing alert fatigue.
Examples of log levels from high to low are:

• Fatal•
• Error•
• Warn•
• Info•
• Debug•

To set up log levels for your logs, you can add the level to each line of the log. The
most straightforward way of doing this is to use the SetPrefix function:

log.SetPrefix("INFO ")
log.Println("Some event happened")

If you call the SetPrefix function with the log level as the prefix, you will set the log
level at the beginning of the line:

INFO 2022/01/26 00:48:15 Some event happened

Of course, the problem is that each time you want to add a log line with a different
log level from the previous line, you need to call SetPrefix again. That is not a
feasible solution.

Another method is to create new loggers upfront, with each logger representing a
single log level:

var (
info *log.Logger
debug *log.Logger

)

func init() {
info = log.New(os.Stderr, "INFO\t", log.LstdFlags)
debug = log.New(os.Stderr, "DEBUG\t", log.LstdFlags)

}

To do this, you use the New function, which returns a logger, but you can also set the
prefix and the fields to add to the log.

4.4 Using Log Levels | 51

All you need to do to log events with different log levels is to use the appropriate
loggers:

info.Println("Some informational event happened")
debug.Println("Some debugging event happened")

This is what will appear on the screen:

INFO 2022/01/26 00:53:03 Some informational event happened
DEBUG 2022/01/26 00:53:03 Some debugging event happened

You can also turn off logging for specific log levels to reduce the logfile size. For
example, when you’re developing the program you can log debug events, but once
you run in production, you no longer want to do that. A common practice is to use
environment variables to indicate if you are running in development or production.

Environment variables are named values that are part of the environment in which
programs run. Environment variables are set at the command line, and programs can
access these variables during runtime.

For example, for Unix-based systems like Linux and macOS, you can set an environ‐
ment variable ENV like this:

$ export ENV=development

To get the environment variable at the command line, you can use echo and add a $
in front of the variable name:

$ echo $ENV

Similarly, in Windows systems, you can set the environment variable this way:

$ set ENV=development

To get the environment variable in Windows, you can use echo and add a % before
and after the variable name:

$ echo %ENV%

Retrieving the environment variable in Go is simple. You can use the os.Getenv
function, passing it the environment variable name, and you will get the environ‐
ment variable value. Using the same previous example, let’s set the ENV environment
variable to production:

$ export ENV=production

If you run this code, you will see that the debug event is not printed:

info.Println("Some informational event happened")
if os.Getenv("ENV") != "production" {

debug.Println("Some debugging event happened")
}

If you switch to the development environment, the debug event is printed again.

52 | Chapter 4: Logging Recipes

At the start of this recipe, you learned that one of the reasons to use log levels is to
prioritize and filter off certain log levels. You can do this easily with a Unix-based
system using the grep command.

Say you have a file named logfile.log with the following entries:

INFO 2023/01/06 00:21:32 Some informational event happened
DEBUG 2023/01/06 00:21:32 Some debugging event happened
INFO 2023/01/06 00:21:35 Another informational event happened
WARN 2023/01/06 00:23:35 A warning event happened
WARN 2023/01/06 00:33:11 Another warning event happened
ERROR 2023/01/06 00:33:11 An error event happened

You want to look at all error events first so you can use grep to filter out only error
events:

$ grep "^ERROR" logfile.log

You will see only the error event. The ^ in front of grep means you just want to see
the lines that start with ERROR:

ERROR 2023/01/06 00:33:11 An error event happened

What if you want to see all log events except for debug events? You can just exclude
the debug events using the v flag in grep:

$ grep -v "^DEBUG" logfile.log

This will result in all events being shown except for debug events:

INFO 2023/01/06 00:21:32 Some informational event happened
INFO 2023/01/06 00:21:35 Another informational event happened
WARN 2023/01/06 00:23:35 A warning event happened
WARN 2023/01/06 00:33:11 Another warning event happened
ERROR 2023/01/06 00:33:11 An error event happened

Using grep is only the beginning. grep is a powerful tool, but there are many other
log analysis tools you can use.

4.5 Logging to the System Log Service
Problem
You want to log in to the system log instead of your logfiles.

Solution
Use the log/syslog package to write to syslog.

4.5 Logging to the System Log Service | 53

Discussion
Syslog is a standard network-based logging protocol. It has long been the de facto
standard for logging system events and was created by Eric Allman in the 1980s
as part of the Sendmail project. The protocol was documented in RFC 3164 by the
Internet Engineering Task Force (IETF). Subsequently, IETF standardized it in RFC
5424.

A syslog message (as in RFC 3164) consists of three parts:

Priority
Includes the facility and the severity

Header
Includes the timestamp and the hostname or IP address of the machine

Message
Includes the tag and the content

The facility describes the type of system that sends the log message. It allows log
messages from different facilities to be handled differently. There are 24 facilities
defined by the RFCs; here are a few:

• 0 (kernel)•
• 1 (user-level)•
• 2 (mail)•
• 3 (system daemons)•
• 4 (security/authorization messages)•

The severity level is similar to the log level. Syslog defines eight different levels, with 0
being the highest and 7 being the lowest:

• 0 (Emergency)•
• 1 (Alert)•
• 2 (Critical)•
• 3 (Error)•
• 4 (Warning)•
• 5 (Notice)•
• 6 (Informational)•
• 7 (Debug)•

54 | Chapter 4: Logging Recipes

The timestamp and the hostname or IP address are self-explanatory. The tag is the
name of the program that generated the message, while the content is the details of
the log message.

Syslog is not implemented uniformly in different operating systems. A popular imple‐
mentation of syslog is rsyslog, the default syslog implementation in many Linux
variants including Debian, Ubuntu, openSUSE, and others.

Go provides a log/syslog package as part of the standard library to interface with
syslog. However, it doesn’t work on all systems. For example, it doesn’t work with
Windows because it’s not implemented on Windows.

The example in this recipe is based on running against rsyslog on Ubuntu 20.04, and
it should work on systems with rsyslog. However, I have not tried it on all systems
and implementations.

Before we start on the Go code, you need to set up rsyslog to show the priority,
header, and message parts. In rsyslog this is done using a template in the rsyslog
configuration file.

Start by editing the /etc/rsyslog.conf configuration file:

$ sudo vi /etc/rsyslog.conf

Add the template configuration after this line— $ActionFileDefaultTemplate RSY
SLOG_TraditionalFileFormat in the configuration file:

$template gosyslogs,"%syslogseverity-text% %syslogfacility-text% %hostname%
%timegenerated% %syslogtag% %msg%\n"
$ActionFileDefaultTemplate gosyslogs

In this configuration, you name the template gosyslogs. You set it to show the
severity first, followed by the facility, then the hostname and the timestamp, and
finally, the tag and message.

Once you save this file, restart rsyslog:

sudo service rsyslog restart

Now that you have set up rsyslog, you can look at the code. Sending log messages to
syslog using the syslog package is relatively straightforward:

var logger *log.Logger

func init() {
var err error
logger, err = syslog.NewLogger(syslog.LOG_USER|syslog.LOG_NOTICE, 0)
if err != nil {

log.Fatal("cannot write to syslog: ", err)
}

}

4.5 Logging to the System Log Service | 55

func main() {
logger.Print("hello syslog!")

}

You use the NewLogger function to create a logger, passing the syslog priority flags
you want to set. The syslog package provides flags for the facility and the severity
levels. You can or them together to send the facility code and the severity level. For
the case of the preceding code, you send in syslog.LOG_USER indicating the user
facility code, and syslog.LOG_NOTICE indicating the notice severity level.

Run the code first in the file named main.go:

$ go run main.go

Now check the syslogs. Run this on the command line:

$ sudo tail /var/log/syslog

You should see a bunch of log messages, but somewhere at the bottom, you should
see something like this:

notice user myhostname Jan 26 15:30:08 /tmp/go-build2223050573/b001/exe/
main[163995]:
 hello syslog!

The first field is notice, the severity level, followed by user, which is the facility code.
Next is myhostname, which is the hostname, followed by the timestamp.

The next field is the tag, which is the /tmp/go-build2223050573/b001/exe/

main[163995] field in the log message. Why is it indicating that it’s in the /tmp
directory? That’s because you’re using go run. It will look different if you compile the
code and run the binary file. The final field in the log message is the details of the log,
which you print out using logger.

56 | Chapter 4: Logging Recipes

CHAPTER 5

Function Recipes

5.0 Introduction
Functions are sequences of code that are put together such that they can be activated
(or called) as a single unit. Functions enable programmers to break up problems into
smaller parts, making code easier to understand and reusable. There are many other
names used for such a construct, including routine, subroutine, procedure, and of
course, function. In Go, this construct is called function.

Functions are relatively simple to understand and use, and most of the time. How‐
ever, certain function concepts, like anonymous functions and closures, are more
advanced. This chapter will explain basic and some more advanced concepts in
functions and how Go implements them.

5.1 Defining a Function
Problem
You want to define a function.

Solution
Define a function using the func keyword.

Discussion
A function needs to be defined before it can be called. Each function definition in
Go starts with the func keyword. The function needs to have a name. As with any
variable, if the name is capitalized, it is exported and visible outside of the package.
Otherwise, it is visible only within the package. Each function can take in zero or

57

more parameters, which are inputs to the function. Each parameter must have a
name and a data type, and they are placed after the name of the function within
parentheses:

func myFunction(x int) {
 ...
}

In this example, x is the parameter’s name, and its data type is int. The body of the
function is within two curly brackets.

Functions can return zero or more values. The names of the return values are
optional, but their data types are not. If the return value is named, it must be within
parentheses, placed after the parameters:

func myfunction(x int) (y string) {
 ...
}

In the preceding example, y is the name of the return value, and its data type is
string. You can also omit the name of the return value, in which case you can drop
the parentheses:

func myfunction(x int) string {
 ...
}

Functions can be attached to structs. Such functions are called methods. In such cases
you need to specify a receiver in the function definition:

type MyStruct struct {
 ...
}

func (s MyStruct) myfunction(x int) string {
 ...
}

In this example, s is the receiver for the function.

In all cases, the receiver, parameters, and return values (when named) are all accessi‐
ble within the function.

Finally, if you want to allow multiple data types for the same function, you specify
one or more type parameters with corresponding type constraints in the function dec‐
laration. Both type parameter and type constraint are defined within square brackets
after the function name but before the parameters:

func myfunction[T int | float64] (x T) string {
 ...
}

58 | Chapter 5: Function Recipes

In this example, T is the type parameter. As you can see, it is used in the function
definition as the data type for the parameter (it can also be used in the return value).
It can be used in the function body as well. The type constraint specifies which data
types can be used in place of T. In this case, it can be an int or a float64.

5.2 Accepting Multiple Data Types with a Function
Problem
You want a function that can accept more than one data type.

Solution
Use generics to define a function that can take in more than a single function.

Discussion
Many data structures and algorithms can be used with different data types. For
example, you can apply the same sorting algorithm on int, string, or float. When you
implement an algorithm or write a function, you often need to specify the data type.

In Go, to create a function to add two numbers together, you need to know the data
types of the two numbers before you can write the function:

func AddInt(a, b int) int {
return a + b

}

func AddFloat(a, b float64) float64 {
return a + b

}

As you can see, if you want to add two ints, you need to write one function, and if
you’re going to add two floats, you need to write another.

Generics is a programming language feature that allows you to write code for a
generic data type instead of a specific one. This means you don’t need to use a specific
data type for your code. In the preceding case, generics allows you to create a single
function that can add two ints or two floats.

Go implements generics using a mechanism called type parameters. Type parameters
are abstract data types defined between the function name and the parameter list,
within square brackets. Type constraints are requirements that type parameters must
fulfill. Type constraints are special interfaces.

5.2 Accepting Multiple Data Types with a Function | 59

Using generics, you can define a single function Add that will add either ints
or float64s:

func Add[T int | float64] (x T) T {
 a + b
}

In this example, the type parameter is T, and the type constraint is a union between
int and float64.

The | operator allows you to create a union of types that creates a type constraint that
allows both int and float64 types. Doing this kind of union is kind of tedious, so Go
allows you to group them as an interface (which makes sense since type constraints
are also interfaces):

type Number interface {
 int | float64
}

Go also provides a package under the experimental packages umbrella called
constraints that provides some commonly used type constraint interfaces.

There are a number of type constraints, for example, the Signed constraint:

type Signed interface {
 ~int | ~int8 | ~int16 | ~int32 | ~int64
}

The tilde (~) operator indicates that this also applies to all custom types whose
underlying type is that type. For example, ~int indicates that this applies to int but
also to any custom types whose underlying type is int.

An interesting constraint is the Ordered constraint, which looks like this:

type Ordered interface {
 Integer | Float | ~string
}

With this, you can also write the same code from the previous example like this:

import "golang.org/x/exp/constraints"

type Number interface {
 constraints.Integer | constraints.Float
}

func AddNumbers[T Number](a, b T) T {
 return a + b
}

60 | Chapter 5: Function Recipes

https://pkg.go.dev/golang.org/x/exp/constraints

5.3 Accepting a Variable Number of Parameters
Problem
You want to accept a variable number of parameters in a function.

Solution
Define a variadic function using ... before the data type in the parameter definition.

Discussion
Sometimes you want a function to accept any number of parameters of the same
type. You could, of course, use a slice, place all the data into the slice, and pass that
slice over to the function. However, Go has a better mechanism—make it a variadic
function. A variadic function is a function that allows any number of parameters:

func varFunc(str ...string) {
for _, s := range str {

fmt.Printf("%s ", s)
}
fmt.Println()

}

The varFunc function here is a variadic function as it has a parameter str that is
variadic. It means you can pass zero or more strings into the function. For example,
you can do this:

varFunc("the", "quick")
varFunc("the", "quick", "brown", "fox")
varFunc()

All three are valid, and this is what you should see:

the quick
the quick brown fox

The last function call has no parameters. This is permitted in variadic functions.

You can also have other parameters besides the variadic parameters:

func varFunc2(i int, str ...string) {
for _, s := range str {

fmt.Printf("%s ", s)
}
fmt.Println()

}

However, the variadic parameter must be the last parameter in the list. The variadic
parameter passed into the function is converted into a slice, and you can manipulate
it like a slice.

5.3 Accepting a Variable Number of Parameters | 61

If you already have a slice and want to pass it to a variadic function, you can do this:

str := []string{"the", "quick", "brown", "fox"}
varFunc(str...)

The ... after the str variable allows the slice to be passed into the variadic function.

5.4 Accepting Parameters of Any Type
Problem
You want to accept any type of data in a function.

Solution
Use the any type constraint or the empty interface interface{}.

Discussion
An interface in Go is a type that has a set of methods. Any type that implements the
same methods is considered to be of that interface. Interfaces can be defined with the
keyword type ... interface.

For example, this is an interface named Stringer from the fmt standard library:

type Stringer interface {
 String() string
}

Any type with a String method that returns a string is considered to have imple‐
mented the Stringer interface. It is how Go implements polymorphism.

Here’s a trick question—what if the interface has no methods? An interface with no
methods is the empty interface interface{}, and it is the set of all types. All types
implement the empty interface, which means the empty interface represents all types.
For convenience, the predeclared type any is an alias for the empty interface.

In this case, if a parameter is of the empty interface type, or any, it means you can
pass in any data! Let’s take a closer look by creating a simple function that accepts a
single parameter with the any or interface{} type:

func anyFunc(a any) {
fmt.Printf("value is %v\n", a)

}

Let’s call the function with various data types:

anyFunc("hello world")
anyFunc(123)
anyFunc(123.456)

62 | Chapter 5: Function Recipes

Running the preceding code will give you these results:

value is hello world
value is 123
value is 123.456

How about a struct?

type Dog struct {
Name string
Age int
Breed string

}
snowy := Dog{"Snowy", 6, "Fox Terrier"}
anyFunc(snowy)

This works too!

value is {Snowy 6 Fox Terrier}

However, the irony is that because the parameter can be anything, you can’t do
anything with it (using fmt.Printf is kind of cheating). Why not? For example, if
you want to add the parameter to another number, you need to know if the parameter
is a number too, or at least something that can be converted into a number. In other
words, you need to find out what type the parameter is.

In Go, the reflect package provides two ways of helping you to figure out what a
variable is. The first is reflect.TypeOf, which tells you the variable type, and the
second is Kind, which tells you what kind of variable it is. For primitive types, both
are the same, but once you get a data structure, either built-in like slice or map, or a
custom struct, these will be different. Here’s how you can use the reflect package:

func anyFuncReflect(a any) {
fmt.Printf("value is %v, type is %v, kind is %v\n", a, reflect.TypeOf(a),

reflect.TypeOf(a).Kind())
}

If you pass different parameters to this function, you can see how they work:

anyFuncReflect("hello world")
anyFuncReflect(123)
anyFuncReflect(123.456)
anyFuncReflect(snowy)
anyFuncReflect([]int{1, 2, 3})

Here is the output:

value is hello world, type is string, kind is string
value is 123, type is int, kind is int
value is 123.456, type is float64, kind is float64
value is {Snowy 6 Fox Terrier}, type is functions.Dog, kind is struct
value is [1 2 3], type is []int, kind is slice

5.4 Accepting Parameters of Any Type | 63

For the struct, the type is the struct name, while the kind is struct. For the slice of
integers, the type is []int, while the kind is slice.

Even though you know what it is now, you still can’t use it. This is because from Go’s
perspective, the parameter is still any. To use the parameter a, you need to type-assert
it. Type assertion, unlike type casting, doesn’t convert an interface to another data
type. It just provides access to the interface value’s underlying value. In other words,
type assertion tells the compiler what the underlying value is.

Here’s how to do this in another function. In Go, you can use the comma, ok pattern
on type assertion. This pattern returns a boolean (in a variable normally named ok)
and the asserted type. If the assertion is fine, ok will be true; otherwise it will be false:

func anyFuncAssert(a any) {
dog, ok := a.(Dog)
if ok {

fmt.Printf("Name is %s, age is %d, breed is %s\n", dog.Name,
dog.Age,

dog.Breed)
} else {

fmt.Println("Not a dog")
}

}

Once you have type-asserted a using a.(Dog), you can use the variable as a Dog struct.

What if you want only certain data types to be accepted but not others? In this case,
you can use the Go generics implementation—the type parameter mechanism:

func anyFuncGeneric[T int | float64](a T) {
fmt.Printf("value is %v, type is %v, kind is %v\n", a, reflect.TypeOf(a),

reflect.TypeOf(a).Kind())
}

Rerun the following code:

anyFuncGeneric("hello world")
anyFuncGeneric(123)
anyFuncGeneric(123.456)
snowy := Dog{"Snowy", 6, "Fox Terrier"}
anyFuncGeneric(snowy)

You will get errors. The compiler will not allow you to proceed further:

string does not implement int|float64
Dog does not implement int|float64

64 | Chapter 5: Function Recipes

5.5 Creating an Anonymous Function
Problem
You want to create a function that is not attached to any identifier.

Solution
Define a function with no name as a function value or attach it to a variable.

Discussion
Anonymous functions are simply functions that do not have a name. They are useful
when you want to create a function within a function.

You can define an anonymous function like this:

func(a, b int) (c int) {
return a + b

}

As you can see, there is no name in the function definition. This creates a function
literal, which you can assign to a variable. If you inspect the variable, you’ll see that its
type is func(int, int) int, and its kind is func:

func anonFunc1() {
anon := func(a, b int) (c int) {

return a + b
}
fmt.Println("type is:", reflect.TypeOf(anon), "\nkind is:",

reflect.TypeOf(anon).Kind())
fmt.Println(anon(1, 2))

}

You can call the anonymous function through the variable by passing it the parame‐
ters like any normal function. You can even call the function literal directly by placing
the parameters after the function literal itself:

func anonFunc2() {
anon := func(a, b int) (c int) {

return a + b
}(1, 2)
fmt.Println(anon)

}

Both the anonFunc1 and anonFunc2 functions produce the same results. The anon
variable in anonFunc1 contains a func while the anon variable in anonFunc2 contains
the integer 3.

5.5 Creating an Anonymous Function | 65

As mentioned earlier, anon is of type func(int, int) int, and if you were wonder‐
ing if this means you can declare a variable with this type, then you are correct. In
fact, you can create a type out of it:

func anonFunc3() {
type myfunc func(int, int) int
var anon myfunc
anon = func(a, b int) (c int) {

return a + b
}
fmt.Println(anon(1, 2))

}

In this code example, you create a type named myfunc, which is of the signature
func(int, int) int. You can use this type to declare the anon variable, which
can be called subsequently by passing it parameters, just as before. When you call
anonFunc3, it will print 3 as the output.

You can also create a function that accepts a parameter of type myfunc. You can then
call this function and pass it a function literal:

type myfunc func(int, int) int

func caller() {
anonFunc4(func(a, b int) (c int) {

return a + b
})

}

func anonFunc4(f myfunc) {
fmt.Println(f(1, 2))

}

In the preceding code, anonFunc4 accepts a parameter of type myfunc, which is a
function. When you call anonFunc4 in the caller you can pass it a function literal.
This function literal will be executed, and the results will be returned to anonFunc4 as
a parameter to fmt.Println.

5.6 Creating a Function That Maintains State
After It Is Called
Problem
You want to create a function that will retain its state even after it finishes execution.

Solution
Create a Go closure by returning a function from a function call.

66 | Chapter 5: Function Recipes

Discussion
A closure is a function with an associated environment that persists outside the scope
of the function body. This is implemented by returning a function from a function
call, for example:

func outerFunc() func() int {
count := 0
return func() int {

count++
return count

}
}

In this example, outerFunc is a function that returns an anonymous function of type
func() int. This anonymous function can access the variable count and anything
else that is within the scope of outerFunc.

This is what happens when you call the outerFunc function:

next := outerFunc()
fmt.Println(next())
fmt.Println(next())
fmt.Println(next())

When you call the outerFunc function, it returns a function assigned to the next
variable. Subsequently, next is called repeatedly. This is the output from running the
code:

1
2
3

The variable count within the scope of outerFunc is persisted along with the anony‐
mous function returned by outerFunc and stored in next. As a result, count also
persists across every subsequent call, and the number increments.

The outerFunc function is a closure because it is closed with the environment in outer
Func. This allows the environment to persist even though outerFunc has completed
execution and its scope is gone.

Why do you need closures? They have many uses, but writing middleware for web
applications is one of the most well-known.

Web application middleware are functions that can be added to the web application’s
request/response pipeline to handle common tasks like logging or access control. In
Go, it’s common to implement web application middleware using closures.

To see how closure is being used, here’s a simple web application that shows “Hello
World” when you access the web application at /hello:

5.6 Creating a Function That Maintains State After It Is Called | 67

package main

import (
"fmt"
"net/http"

)

func main() {
http.HandleFunc("/hello", hello)
http.ListenAndServe(":8000", nil)

}

func hello(w http.ResponseWriter, r *http.Request) {
fmt.Fprintln(w, "Hello World")

}

The web application is simple. It has a handler named hello, which is used as a
parameter in the HandleFunc function to set up a handler for the web application.

If you want to log to screen or file each time a handler is called, and you also want
to know how long the handler takes to execute its tasks, you could create a small
function that allows you to log and call that function in each handler. It’s tedious, but
it works. Logging the time, however, is even messier because you need to insert code
at the beginning and run some deferred code to get the end timing to figure out the
execution time.

Alternatively, you can create a piece of middleware that will do both:

package main

import (
"fmt"
"log"
"net/http"
"reflect"
"runtime"
"time"

)

func main() {
http.HandleFunc("/hello", logger(hello))
http.ListenAndServe(":8000", nil)

}

func hello(w http.ResponseWriter, r *http.Request) {
fmt.Fprintln(w, "Hello World")

}

func logger(f http.HandlerFunc) http.HandlerFunc {
return func(w http.ResponseWriter, r *http.Request) {

start := time.Now()
f(w, r)

68 | Chapter 5: Function Recipes

end := time.Now()
name := runtime.FuncForPC(reflect.ValueOf(f).Pointer()).Name()
log.Printf("%s (%v)", name, end.Sub(start))

}
}

You create a logger function that accepts a function of type HandlerFunc (which is
simply of type func(ResponseWriter, *Request)) and returns a function of type
HandlerFunc as well. Inside this function, you return a closure that starts a timer, calls
the function that was passed in as a parameter, ends the timer, and logs the name of
the function, as well as the time it took to execute, to the screen.

Then when you set up the handlers, you simply wrap the hello handler with
the logger closure middleware. When you run the web application and call the
URL /hello, you will see this on the terminal:

% go run main.go
2022/06/15 00:27:23 main.hello (97.083µs)

In Recipe 5.5, you learned about anonymous functions, which are functions without
a name. A closure can be an anonymous function, but it doesn’t always have to be
one. In the previous example, the anonymous function in logger is a closure and not
logger itself. In the earlier example, outerFunc is a closure but not an anonymous
function.

5.6 Creating a Function That Maintains State After It Is Called | 69

CHAPTER 6

String Recipes

6.0 Introduction
String manipulation is one of the most common tasks in any programming language.
Most programs deal with text in one way or another, whether directly interacting
with users or communicating between machines. Text is probably the closest thing
we have to a universal medium, and string as data is everywhere. Being able to
manipulate strings is a critical capability in your arsenal as a programmer.

Go has several packages used for string manipulation. The strconv package focuses
on converting to or from strings. The fmt package provides functions to format
strings using verbs as replacements, much like in C. The unicode/utf8 and unicode/
utf16 packages have functions used in Unicode-encoded strings. The strings pack‐
age has functions to do many of the string manipulations we see so if you’re not sure
what you need, that’s the most likely location to look.

6.1 Creating Strings
Problem
You want to create strings.

Solution
Use either the double quotes ("") or the backtick (or backquote) (``) to create string
literals. Use the single quotes ('') to create character literals.

71

Discussion
In Go, string is a read-only (immutable) slice of bytes. It can be any byte and doesn’t
need to be in any encoding or format. This is unlike other programming languages,
where strings are sequences of characters. In Go, a character can be represented by
more than a single byte. This is in line with the Unicode standard, which defines a
code point to represent a value within a codespace. A character, in this case, can be
represented by more than a single code point. In Go, code points are also called runes,
and a rune is an alias for the type int32, just as a byte is an alias for the type uint8,
which represents an unsigned 8-bit integer.

As a result if you index a string, you will end up with a byte and not a character. In
any case Go doesn’t have a character data type—bytes and runes are used instead. A
byte represents ASCII characters and runes represent Unicode characters in UTF-8
encoding. To be clear, it doesn’t mean that there are no characters in Go, just that
there is no char data type, just byte and rune.

Characters in Go are created using single quotes:

var c = 'A'

In this case, the data type of the variable c is int32 or a rune, by default. If you want it
to be a byte, you can explicitly specify the type:

var c byte = 'A'

Strings in Go can be created using double quotes or backticks:

var str = "A simple string"

Strings created using double quotes can have escape characters in them. For example,
a very common escape character is the newline, represented by a backslash followed
by an n: \n:

var str = "A simple string\n"

Another common use of escape characters is to escape a double quote itself so it can
be used within a string created with a double quote:

var str = `A "simple" string`

Strings created using backticks are considered “raw” strings. Raw strings ignore all
formatting, including escape characters. In fact, you can create a multiline string
using backticks. For example, this is not possible using double quotes—it’ll be a
syntax error:

var str = "
A
simple
string
"

72 | Chapter 6: String Recipes

However, if you replace the double quotes with backticks, str will be a multiline
string:

var str = `
A
simple
string
`

This is because whatever comes in between the backticks is not processed by the Go
compiler (it is “raw”).

6.2 Converting String to Bytes and Bytes to String
Problem
You want to convert string to bytes and bytes to string.

Solution
Typecast a string to an array of bytes using []byte(str) and typecast an array of
bytes to a string using string(bytes).

Discussion
Strings are slices of bytes, so you can convert a string to an array of bytes directly
through typecasting:

str := "This is a simple string"
bytes := []byte(str)

Converting an array of bytes to a string is also done through typecasting:

bytes := []byte{84, 104, 105, 115, 32, 105, 115, 32, 97, 32, 115, 105, 109, 112,
108, 101, 32, 115, 116, 114, 105, 110, 103}

str := string(bytes)

6.3 Creating Strings from Other Strings and Data
Problem
You want to create a string from other strings or data.

Solution
There are various ways of doing this, including direct concatenation and strings.
Join, using fmt.Sprint and using strings.Builder.

6.2 Converting String to Bytes and Bytes to String | 73

Discussion
At times you want to create strings from other strings or data. One rather straightfor‐
ward way of doing this is to concatenate strings and other data:

var str string = "The time is " + time.Now().Format(time.Kitchen) + " now."

The Now function returns the current time, formatted by the Format method and
returned as a string. When you concatenate the strings, you will get this:

The time is 5:28PM now.

Another way of doing this is to use the Join function in the string package:

var str string = strings.Join([]string{"The time is",
 time.Now().Format(time.Kitchen),
 "now."}, " ")

This is straightforward as well because the function takes in an array of strings and,
given the separator, puts them together.

So far, both ways shown are about putting strings together. Obviously, you can
convert different data types into strings before joining them, but sometimes you just
want to Go to do it. For this, you have the fmt.Sprint function and its various
variants. Let’s look at the simplest and most direct variant:

var str string = fmt.Sprint("The time is ", time.Now().Format(time.Kitchen),
" now.")

This doesn’t seem very different from the Join or the direct concatenation because all
three parameters are strings. Actually, fmt.Sprint and its variants take parameters of
type any, which means it can take in any data type. In other words, you can pass in
the Time struct instance that’s returned by Now directly:

var str string = fmt.Sprint("The time is ", time.Now(), " now.")

A popular variant of fmt.Sprint is the formatted variant, that is, fmt.Sprintf.
Using this variant is slightly different—the first parameter is the format string, where
you can place different verb formats at different locations within the string. The
parameters after the first are the data values that can be replaced with the verbs:

var str string = fmt.Sprintf("The time is %v now.", time.Now())

There is no associated verb for a Time struct, so you use the %v, which will format the
value in the default format.

Finally, the string package also provides another way of creating strings using the
strings.Builder struct. Using Builder to create strings is a bit more involved, as it
requires you to add the data piece by piece. Let’s take a look at using Builder:

74 | Chapter 6: String Recipes

var builder strings.Builder
builder.WriteString("The time is ")
builder.WriteString(time.Now().Format(time.Kitchen))
builder.WriteString(" now.")
var str string = builder.String()

The idea is simple. You create a Builder struct, then write data to it bit by bit before
finally extracting the final string using the String method. The Builder struct has
a few other methods, including Write, which takes in an array of bytes; WriteByte,
which takes in a single byte; and WriteRune, which takes in a single rune. However, as
you can see, they are all strings. How about other data types? Do you need to convert
all other data types to string, byte, or rune first? No, because Builder is a Writer (it
implements a Write method), you can actually use another way of writing different
data types into it:

var builder strings.Builder
fmt.Fprint(&builder, "The time is ")
fmt.Fprint(&builder, time.Now())
fmt.Fprint(&builder, " now.")
var str string = builder.String()

Here you’re using fmt.Fprint to write whatever data type you want into the builder
and extract the final string using String.

You’ve seen quite a few ways of putting a string together using different pieces of data,
both string and other types of data. Some are very straightforward (just add them
together), and others are more deliberate. But which is the best way of doing it? Here’s
a look at the performance of these various ways:

package string

import (
"fmt"
"strings"
"testing"
"time"

)

func BenchmarkStringConcat(b *testing.B) {
for i := 0; i < b.N; i++ {

_ = "The time is " + time.Now().Format(time.Kitchen) + " now."
}

}

func BenchmarkStringJoin(b *testing.B) {
for i := 0; i < b.N; i++ {

_ = strings.Join([]string{"The time is", time.Now().Format
(time.Kitchen),

 "now."}, " ")
}

}

6.3 Creating Strings from Other Strings and Data | 75

func BenchmarkStringSprint(b *testing.B) {
for i := 0; i < b.N; i++ {

_ = fmt.Sprint("The time is ", time.Now().Format(time.Kitchen),
" now.")

}
}

func BenchmarkStringSprintDiff(b *testing.B) {
for i := 0; i < b.N; i++ {

_ = fmt.Sprint("The time is ", time.Now(), " now.")
}

}

func BenchmarkStringSprintf(b *testing.B) {
for i := 0; i < b.N; i++ {

 _ = fmt.Sprintf("The time is %v now.", time.Now().Format(time.Kitchen))
}

}

func BenchmarkStringSprintfDiff(b *testing.B) {
for i := 0; i < b.N; i++ {

_ = fmt.Sprintf("The time is %s now.", time.Now())
}

}

func BenchmarkStringBuilderFprint(b *testing.B) {
for i := 0; i < b.N; i++ {

var builder strings.Builder
fmt.Fprint(&builder, "The time is ")
fmt.Fprint(&builder, time.Now().Format(time.Kitchen))
fmt.Fprint(&builder, " now.")
_ = builder.String()

}
}

func BenchmarkStringBuilderWriteString(b *testing.B) {
for i := 0; i < b.N; i++ {

var builder strings.Builder
builder.WriteString("The time is ")
builder.WriteString(time.Now().Format(time.Kitchen))
builder.WriteString(" now.")
_ = builder.String()

}
}

Now run the benchmark from the command line:

$ % go test -bench=BenchmarkString -benchmem

76 | Chapter 6: String Recipes

These are the results:

goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch06_string
BenchmarkStringConcat-10 5787976 206.7 ns/op
BenchmarkStringJoin-10 5121637 235.0 ns/op
BenchmarkStringSprint-10 3680838 323.8 ns/op
BenchmarkStringSprintDiff-10 1541514 779.9 ns/op
BenchmarkStringSprintf-10 4032438 297.8 ns/op
BenchmarkStringSprintfDiff-10 1610212 740.9 ns/op
BenchmarkStringBuilderFprint-10 2580783 464.2 ns/op
BenchmarkStringBuilderWriteString-10 4866556 247.0 ns/op
PASS
ok github.com/sausheong/gocookbook/ch06_string 13.025s

It might (or might not) come as a surprise that the simplest way is the most
performant. Using fmt.Sprint and anything that uses any (or the empty interface
interface{}) is simply less efficient.

6.4 Converting Strings to Numbers
Problem
You want to convert strings to numbers.

Solution
Use the Atoi or the Parse functions in the strconv package to do string conversions.
Use functions to convert strings to numbers, and use Itoa or the Format functions to
convert numbers to strings.

Discussion
The strconv package is true to its name and is used mainly for strings conversion.
Broadly speaking, there are two sets of functions in the strconv package that do
string conversions. The Parse functions convert strings to numbers, and the Format
functions convert numbers to strings. If you’re unsure which ones to use, remember
this—parsing reads strings whereas formatting creates strings.

Parsing strings into numbers seems to be limited in usage, but it can be handy
when dealing with formatted text data, for example, JSON or YAML, or even XML.
Formatted text data is popular because it is human-readable, but the drawback is
that everything ends up being a string. Parsing strings into something more directly
usable, such as numbers, becomes really useful.

6.4 Converting Strings to Numbers | 77

Start with something simple. You want to parse a string that shows an integer and
produces an actual integer:

i, err := strconv.Atoi("123") // equivalent to ParseInt("123", 10, 0)

The strconv package provides a convenience function to convert a string to an
integer. This is quite easy to remember because Atoi literally converts (a)lphanumeric
to (i)nteger.

The equivalent of Atoi using the Parse functions is ParseInt(s, 10, 0), where s is
the string representing the number.

The ParseInt function, as the name suggests, parses a string into an integer. You can
specify the base (0, 2 to 36) and the bit size (0 to 64). You can use ParseInt for signed
or unsigned integers—just place a + or – in front of the number:

i, err := strconv.ParseInt("123", 10, 0)

The bit size parameter specifies the integer type the result must fit into. Bit sizes 0,
8, 16, 32, and 64 correspond to int, int8, int16, int32, and int64, respectively. Note
that the bit size here refers to the bit size of input number (which is in the form of a
string). The returned output, i in the case of the preceding example, is always int64.

Similarly, the ParseFloat function parses a string into a float. The bit size parameter
specifies the precision, 32 for float32, 64 for float64, etc., and as with ParseInt, the
bit size parameter refers to the input number and the returned output; in this case, f
is always a float64:

f, err := strconv.ParseFloat("1.234", 64)

ParseBool can be useful when you’re trying to parse a string that represents a boolean
value. It accepts 1, t, T, TRUE, true, True, 0, f, F, FALSE, false, and False:

b, err := strconv.ParseBool("TRUE")

In this code, b is a boolean with the value true.

All the Parse functions return NumError, including Atoi. NumError provides addi‐
tional information about the error, including the function that was called, the number
passed in, and why it failed:

str := "Not a number"
_, err := strconv.Atoi(str)
if err != nil {
 e := err.(*strconv.NumError)
 fmt.Println("Func:", e.Func)
 fmt.Println("Num:", e.Num)
 fmt.Println("Err:", e.Err)
 fmt.Println(err)
}

78 | Chapter 6: String Recipes

This is what you see if you run this code:

Func: Atoi
Num: Not a number
Err: invalid syntax
strconv.Atoi: parsing "Not a number": invalid syntax

6.5 Converting Numbers to Strings
Problem
You want to convert numbers to strings.

Solution
Use the Itoa or the Format functions in the strconv package to convert numbers to
strings.

Discussion
We discussed the strconv package and the Parse functions in the previous recipe.
In this recipe, we’ll talk about the Format functions and how you can use them to
convert numbers to strings.

Formatting numbers into strings is the reverse of parsing strings into numbers.
In cases where data needs to be communicated through text formats, formatting
numbers can be useful. One frequent usage of formatting numbers into strings is
when you need to show more readable numbers to users. For example, instead of
showing 1.66666666 to the user, you would want to show 1.67. This is also commonly
used when displaying currency.

Just as parsing strings has Atoi, formatting strings has Itoa. As the name suggests, it’s
the reverse of Atoi—it converts an integer into a string:

str := strconv.Itoa(123) // equivalent to FormatInt(int64(123), 10)

Notice that Itoa doesn’t return an error. In fact, none of the Format functions return
errors. It makes sense—it is always possible to make a number a string, while it’s not
the case in the reverse.

As before, Itoa is a convenient function for FormatInt. However, you must first
ensure the input number parameter is always an int64. FormatInt also requires a
base parameter where base is an integer between 2 and 36, both numbers included.
This means FormatInt can potentially convert binary numbers to string:

str := strconv.FormatInt(int64(123), 10)

6.5 Converting Numbers to Strings | 79

The code returns a string "123". What if you specify a base of 2?

str := strconv.FormatInt(int64(123), 2)

This will return a string "1111011". This means that you can use FormatInt to
convert a number in one base to another, at least to display it as a string.

The FormatFloat function is a bit more complicated than FormatInt. It converts a
floating-point number to a string according to a given format and precision. The
formats available in FormatFloat for decimal numbers (base 10) are:

• f (no exponent)•
• e and E (with exponent)•
• g and G - e or E respectively (if the exponent is large, it will follow the e or E•

format; else it will be without exponent, like f)

The other formats are b for binary numbers (base 2) and x and X for hexadecimal
numbers.

The precision describes the number of digits (excluding the exponents) to be printed
out. A precision of value –1 allows Go to select the smallest number of digits such
that ParseFloat returns the entire number.

Some code will make things clearer:

var v float64 = 123456.123456
var s string

s = strconv.FormatFloat(v, 'f', -1, 64)
fmt.Println("f (prec=-1)\t:", s)
s = strconv.FormatFloat(v, 'f', 4, 64)
fmt.Println("f (prec=4)\t:", s)
s = strconv.FormatFloat(v, 'f', 9, 64)
fmt.Println("f (prec=9)\t:", s)

You’re using a float value with 64-bit precision, float64, and you will compare the
precision of –1 with the precision of 4. You also use the same format, f. When you run
the code, you should see the following output:

f (prec=-1) : 123456.123456
f (prec=4) : 123456.1235
f (prec=9) : 123456.123456000

Now let’s try with the e format and the same set of precisions:

s = strconv.FormatFloat(v, 'e', -1, 64)
fmt.Println("\ne (prec=-1)\t:", s)
s = strconv.FormatFloat(v, 'E', -1, 64)
fmt.Println("E (prec=-1)\t:", s)
s = strconv.FormatFloat(v, 'e', 4, 64)

80 | Chapter 6: String Recipes

fmt.Println("e (prec=4)\t:", s)
s = strconv.FormatFloat(v, 'e', 9, 64)
fmt.Println("e (prec=9)\t:", s)

The following output is what you should see:

e (prec=-1) : 1.23456123456e+05
E (prec=-1) : 1.23456123456E+05
e (prec=4) : 1.2346e+05
e (prec=9) : 1.234561235e+05

In case you didn’t realize, both lowercase e and uppercase E are exactly the same,
except the exponent letter e is lower- or uppercase. Finally, let’s look at the g format:

s = strconv.FormatFloat(v, 'g', -1, 64)
fmt.Println("\ng (prec=-1)\t:", s)
s = strconv.FormatFloat(v, 'G', -1, 64)
fmt.Println("G (prec=-1)\t:", s)
s = strconv.FormatFloat(v, 'g', 4, 64)
fmt.Println("g (prec=4)\t:", s)

The following is the output:

g (prec=-1) : 123456.123456
G (prec=-1) : 123456.123456
g (prec=4) : 1.235e+05

6.6 Replacing Multiple Characters in a String
Problem
You want to replace parts in a string with another string.

Solution
You can use the strings.Replace function or strings.ReplaceAll function to
replace the selected string. You can also use the strings.Replacer type to create
replacers.

Discussion
The easiest way to replace parts of a string with another string is to use the
strings.Replace function.

The strings.Replace function is quite straightforward. Just pass it a string, the old
string you want to replace, and the new string you want to replace it with. Here’s the
code, using this quote from Great Expectations by Charles Dickens:

var quote string = `I loved her against reason, against promise,
against peace, against hope, against happiness,
against all discouragement that could be.`

6.6 Replacing Multiple Characters in a String | 81

Run a few replacements using Replace:

replaced := strings.Replace(quote, "against", "with", 1)
fmt.Println(replaced)
replaced2 := strings.Replace(quote, "against", "with", 2)
fmt.Println("\n", replaced2)
replacedAll := strings.Replace(quote, "against", "with", -1)
fmt.Println("\n", replacedAll)

The last parameter tells Replace the number of matches to replace. If the last parame‐
ter is –1, Replace will match every instance:

I loved her with reason, against promise,
against peace, against hope, against happiness,
against all discouragement that could be.

 I loved her with reason, with promise,
against peace, against hope, against happiness,
against all discouragement that could be.

 I loved her with reason, with promise,
with peace, with hope, with happiness,
with all discouragement that could be.

There is also a ReplaceAll function, which is more of a convenience function that
calls Replace with the last parameter set to –1.

The Replacer type in the strings package allows you to make multiple replacements
all at the same time. This is a lot more convenient if you need to do a lot of
replacements:

replacer := strings.NewReplacer("her", "him", "against", "for", "all", "some")
replaced := replacer.Replace(quote)
fmt.Println(replaced)

You just need to provide a list of replacement strings as the parameters. In the
previous code, you replaced “her” with “him,” “against” with “for,” and “all” with
“some.” All the replacements are done at the same time. If you run the code, you will
get the following results:

I loved him for reason, for promise,
for peace, for hope, for happiness,
for some discouragement that could be.

So is it better to use Replace or create a Replacer? It takes another line of code to
create the replacer, obviously. But how about its performance? Start with replacing
just one word:

func BenchmarkOneReplace(b *testing.B) {
for i := 0; i < b.N; i++ {

strings.Replace(quote, "her", "him", 1)
}

}

82 | Chapter 6: String Recipes

func BenchmarkOneReplacer(b *testing.B) {
replacer := strings.NewReplacer("her", "him")
b.ResetTimer()
for i := 0; i < b.N; i++ {

replacer.Replace(quote)
}

}

If it’s just one string to replace, Replace is faster. There is just more overhead for a
simple replacement:

goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch06_string
BenchmarkOneReplace-10 7264310 156.9 ns/op
BenchmarkOneReplacer-10 4336489 276.0 ns/op
PASS
ok github.com/sausheong/gocookbook/ch06_string 3.151s

To do multiple replacements:

func BenchmarkReplace(b *testing.B) {
for i := 0; i < b.N; i++ {

strings.Replace(quote, "against", "with", -1)
}

}

func BenchmarkReplacerCreate(b *testing.B) {
for i := 0; i < b.N; i++ {

strings.NewReplacer("against", "with")
}

}

func BenchmarkReplacer(b *testing.B) {
replacer := strings.NewReplacer("against", "with")
b.ResetTimer()
for i := 0; i < b.N; i++ {

replacer.Replace(quote)
}

}

You don’t need to create a Replacer each time because you can use the replacer
multiple times if you want to do the same replacements for different strings. At the
same time, if you have a lot of replacements, it’s easier to use a replacer:

goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch06_string
BenchmarkReplace-10 2250291 532.1 ns/op
BenchmarkReplacerCreate-10 31878366 37.13 ns/op
BenchmarkReplacer-10 4671319 255.0 ns/op

6.6 Replacing Multiple Characters in a String | 83

PASS
ok github.com/sausheong/gocookbook/ch06_string 4.547s

As you can see from the results, with more strings to replace, using Replacer
becomes more efficient.

6.7 Creating a Substring from a String
Problem
You want to create a substring from a string.

Solution
Treat a string like an array or a slice and take a substring out of the string.

Discussion
In Go, a string is a slice of bytes. As a result, if you want to take a substring out
of a string, you can do what you would do with any slice. Take the quote from the
previous recipes (Great Expectations by Charles Dickens):

var quote string = `I loved her against reason, against promise,
against peace, against hope, against happiness,
against all discouragement that could be.`

If you want to extract the words “against reason” from the quote, you can do this:

quote[12:26]

This is simple enough, but how do you know the position of the words without
manually counting the letters in the quote? Like in many programming languages,
you just need to find the index of the substring:

strings.Index(quote, "against reason")

The strings.Index function gives you the index of the first substring that matches
the second parameter. In this case, the index is 12. This will give you the starting
position of the substring. To find the end position of the substring, add the length of
the substring to the index:

i := strings.Index(quote, "against reason")
j := i + len("against reason")
fmt.Println(quote[i:j])

A word of caution—when slicing a string this way, don’t count the number of charac‐
ters manually. Not all encodings have a single character represented by a single byte.
Always use index and len to find the position and length of the string to slice.

84 | Chapter 6: String Recipes

6.8 Checking if a String Contains Another String
Problem
You want to check if a string contains another string.

Solution
Use the Contains functions in the strings package. If the string you want to check is
a suffix or a prefix, you can use the HasSuffix or the HasPrefix functions.

Discussion
Checking if a string has a substring is quite easy in Go. You can use the strings.Con
tains function and pass in both the string and substring, and it will return true or
false accordingly. We’ll use the quote from Great Expectations by Charles Dickens
again:

var quote string = `I loved her against reason, against promise,
against peace, against hope, against happiness,
against all discouragement that could be.`

The Contains function checks if the quote contains the string “against”:

var has bool = strings.Contains(quote, "against")

Alternatively, you can use strings.Index, and if the returned result is < 0 it means
the substring is not found in the string. The performance is the same in either
function, not surprisingly since Contains is just a convenience function around
Index. Another alternative is to use the Count function, which returns the number
of times the substring is found in the string, but this is usually a poorer alternative
(unless you need to know the count anyway) because the performance is worse than
either.

If you want to find out if the substring is the prefix of the string, you can use the
HasPrefix function:

strings.HasPrefix(quote, "I loved")

Of course, you can directly slice the length of the prefix from the string and check it
yourself:

prefix := "I loved"
if quote[:len(prefix)] == prefix {
 ... // do whatever you want if the string has the prefix
}

You can do the same for suffixes as well with the HasSuffix function:

strings.HasSuffix(quote, "could be.")

6.8 Checking if a String Contains Another String | 85

You can also directly slice the string for the suffix and compare it:

suffix := "could be."
if quote[len(quote)-len(suffix):] != suffix {
 ... // do whatever you want if the string has the prefix
}

6.9 Splitting a String Into an Array of Strings or
Combining an Array of Strings Into a String
Problem
You want to create an array of strings by splitting up a string or create a string by
combining an array of strings.

Solution
Use the Split functions in the strings package to split up a string and the Join
function to combine the array of strings into a single string.

Discussion
Many functions take in an array of strings. You might want to tackle words in a string
instead of individual bytes. You might be dealing with data delimited by a separator,
like in a delimited text format like CSV or TSV. Whichever case it may be, quickly
splitting up a string into an array of strings is useful.

In Go, you can do this using the strings.Split function. You can use the quote from
Great Expectations by Charles Dickens again:

var quote string = `I loved her against reason, against promise,
against peace, against hope, against happiness,
against all discouragement that could be.`

The Split function splits a string into an array of strings, given the separator:

array := strings.Split(quote, " ")
fmt.Printf("%q", array)

The preceding code uses a space as the separator, so this is what you will get:

["I" "loved" "her" "against" "reason," "against" "promise," "\nagainst" "peace,"
"against" "hope," "against" "happiness," "\nagainst" "all" "discouragement"
"that" "could" "be."]

You might notice that some elements in the array have newline characters and
punctuation marks because the original string has them. It’s probably not what you
want. Or worse, if you have multiple spaces, your array will look pretty messy with a
lot of additional empty string elements. Of course, you can clean it up by brute force

86 | Chapter 6: String Recipes

later on, but there are simpler ways. Let’s start with removing newline characters, and
leading and trailing spaces.

The strings package has a function called Fields that can split a string considering
one or more consecutive spaces as defined by uniform.isSpace.

You can swap out Split and replace it with the Fields function:

array := strings.Fields(quote)
fmt.Printf("%q", array)

You should see this:

["I" "loved" "her" "against" "reason," "against" "promise," "against" "peace,"
"against" "hope," "against" "happiness," "against" "all" "discouragement" "that"
"could" "be."]

The newline characters are gone, but the punctuation marks are still around. Remov‐
ing the punctuation marks (in this case, the commas and the full stops within the
elements) is a bit more complicated. You need to use the FieldsFunc function and
pass in a function that will determine whether it should be part of the separator:

f := func(c rune) bool {
 return unicode.IsPunct(c) || !unicode.IsLetter(c)
}
array := strings.FieldsFunc(quote, f)
fmt.Printf("%q", array)

In this code, you create a function f that considers consecutive punctuations and
nonletters as part of the separator. Then you pass this function into FieldsFunc for it
to be executed against the string. You should see the following results:

["I" "loved" "her" "against" "reason" "against" "promise" "against" "peace"
"against" "hope" "against" "happiness" "against" "all" "discouragement" "that"
"could" "be"]

As you can see, you have also removed the commas and the full stop. The FieldsFunc
function is very versatile; I’ve given only a very simple example. If you work a lot with
splitting strings, this will be a powerful function you can use to do many things.

What if you want to split the string just for the first nine elements and put the rest
in a single string? The SplitN function does exactly that, with n being the number of
elements to have in the resulting array—in this case, it’s 10:

array := strings.SplitN(quote, " ", 10)
fmt.Printf("%q", array)

You will see that there are 10 elements in the resulting array:

["I" "loved" "her" "against" "reason," "against" "promise," "\nagainst" "peace,"
"against hope, against happiness, \nagainst all discouragement that could be."]

6.9 Splitting a String Into an Array of Strings or Combining an Array of Strings Into a String | 87

Sometimes you want to keep the delimiter after you split the string. Go has a function
called SplitAfter that does this:

array := strings.SplitAfter(quote, " ")
fmt.Printf("%q", array)

When you use SplitAfter, each element ends with a space (the delimiter) except the
final element:

["I " "loved " "her " "against " "reason, " "against " "promise, " "\nagainst "
"peace, " "against " "hope, " "against " "happiness, " "\nagainst " "all "
"discouragement " "that " "could " "be."]

6.10 Trimming Strings
Problem
You want to remove the leading and trailing characters of a string.

Solution
Use the Trim functions in the strings package.

Discussion
When processing strings, it’s quite common to encounter trailing or leading white‐
spaces or other unnecessary characters. You often want to remove these characters
before storing or processing the strings further. String trimming removes characters
from the start or the end of the string, but not within the string.

In Go, there are several Trim functions in the strings package that can help you with
trimming strings.

Let’s start with the Trim function. It takes in a string and a cutset, which is a string
consisting of one or more Unicode code points, and returns a string with all leading
and trailing code points removed:

var str string = ", and that is all."
var cutset string = ",. "
trimmed := strings.Trim(str, cutset) // "and that is all"

In this code, you want to remove the leading comma, whitespace, and the trailing full
stop. To do this, you use a cutset consisting of these three Unicode code points, so the
cutset string ends up being ",. " (comma, full stop, and space, respectively).

88 | Chapter 6: String Recipes

The Trim function removes both trailing and leading characters. If you want to
remove trailing characters only, you can use the TrimRight function, or if you want to
remove the leading characters only, you can use the TrimLeft function:

trimmedLeft := strings.TrimLeft(str, cutset) // "and that is all."
trimmedRight := strings.TrimRight(str, cutset) // ", and that is all"

The earlier Trim functions remove any characters in the cutset. However, if you
want to remove an entire leading substring (or a prefix) you can use the TrimPrefix
function:

trimmedPrefix := strings.TrimPrefix(str, ", and ") // "that is all."

Similarly, if you want to remove an entire trailing substring (or a suffix) you can use
the TrimSuffix function:

trimmedSuffix := strings.TrimSuffix(str, " all.") // ", and that is"

The Trim functions allow you to remove any leading or trailing characters or string.
However, the most commonly removed characters are usually whitespaces, which can
be newlines (\n) or tabs (\t), or carriage returns (\r). For convenience, Go provides a
TrimSpace function that simply removes trailing and leading whitespaces:

trimmed := strings.TrimSpace("\r\n\t Hello World \t\n\r") // Hello World

The last set of Trim functions are TrimFunc, TrimLeftFunc, and TrimRightFunc. As
the names indicate, these allow you to substitute the cutset string with a function
that will inspect the leading or trailing or both Unicode code points and ensure they
satisfy the conditions:

f := func(c rune) bool {
return unicode.IsPunct(c) || !unicode.IsLetter(c)

}
trimmed := strings.TrimFunc(str, f) // "and that is all"

These TrimFunc functions allow you finer control over string trimming, which can be
useful if you have unexpected rules for removing the leading or trailing characters.

6.11 Capturing String Input from the Command Line
Problem
You want to capture user input string data from the command line.

Solution
Use the Scan functions in the fmt package to read a single string from standard input.
To read a string separated by spaces, use ReadString on a Reader wrapped around
os.Stdin.

6.11 Capturing String Input from the Command Line | 89

Discussion
If your Go program runs from the command line, you might need to get string input
from the user. This is where the Scan function from the fmt package comes in handy.

You can use Scan to get input from the user by creating a variable and then passing a
reference to that variable into Scan:

package main

import "fmt"

func main() {
var input string
fmt.Print("Please enter a word: ")
n, err := fmt.Scan(&input)
if err != nil {

fmt.Println("error with user input:", err, n)
} else {

fmt.Println("You entered:", input)
}

}

If you run this code, the program will wait for your input at fmt.Scan and will
continue only when you enter an input. Once you have entered some data, Scan will
store the data in the input variable.

This is what you should see:

% go run scan.go
Please enter a word: Hello
You entered: Hello

The documentation does not explicitly mention that you need to pass in a reference
to a variable. You can pass in a variable by value, and it will compile. However, if you
do that you will get an error:

n, err := fmt.Scan(input)
if err != nil {

fmt.Println("error with user input:", err, n)
}

If you run the preceding code, you will get this:

% go run scan.go
Please enter a word: error with user input: type not a pointer: string 0

The Scan function can take in more than one parameter, and each parameter repre‐
sents a user input separated by a space. Try this again with two inputs:

func main() {
var input1, input2 string
fmt.Print("Please enter two words: ")

90 | Chapter 6: String Recipes

n, err := fmt.Scan(&input1, &input2)
if err != nil {

fmt.Println("error with user input:", err, n)
} else {

fmt.Println("You entered:", input1, "and", input2)
}

}

If you run this and enter the words Hello and World, they will be captured and stored
into input1 and input2, respectively. You should see the following output:

% go run scan.go
Please enter two words: Hello World
You entered: Hello and World

This seems a bit limited. What if you want to capture a string that has spaces in it?
For example, you want to get a user to input a sentence. In that case, you can use the
ReadString function on a Reader wrapped around os.Stdin:

func main() {
reader := bufio.NewReader(os.Stdin)
fmt.Print("Please enter many words: ")
input, err := reader.ReadString('\n')
if err != nil {

fmt.Println("error with user input:", err)
} else {

fmt.Println("You entered:", input)
}

}

If you run the code, you should see this:

% go run scan.go
Please enter many words: Many words here and still more to go
You entered: Many words here and still more to go

You should know that Scan can be used to get more than just string input from users.
It can also be used to get numbers and so on.

6.12 Escaping and Unescaping HTML Strings
Problem
You want to escape or unescape HTML strings.

Solution
Use the EscapeString and UnescapeString functions in the html package to escape
or unescape HTML strings.

6.12 Escaping and Unescaping HTML Strings | 91

Discussion
HTML is a text-based markup language that structures a web page and its content. It
is usually interpreted by a browser and displayed. Much of HTML is described within
HTML tags. For example, <a> is an anchor tag and is an image tag. Similarly,
other characters like & and " have specific meanings in HTML.

But what if you want to show those characters in HTML itself? For example, the
ampersand (&) is a commonly used character. The less than and greater than (< and >)
characters are also commonly used. If you don’t intend these symbols to have any
meaning in HTML, you need to convert them into HTML character entities. For
example:

• < (less than) becomes <•
• > (greater than) becomes >•
• & (ampersand) becomes &•

This applies to all such character entities. The process of converting HTML charac‐
ters into entities is called HTML escaping, and the reverse is called HTML unescaping.

Go has a pair of functions called EscapeString and UnescapeString in the html
package that can be used to escape or unescape HTML:

str := "Rock & Roll"
escaped := html.EscapeString(str) // "Rock & Roll"

Unescaping reverts the escaped HTML to the original string:

unescaped := html.UnescapeString(escaped) // "Rock & Roll"

You might notice that there is also an HTMLEscapeString function in the html/
template package. The results of both functions are the same.

6.13 Using Regular Expressions
Problem
You want to use regular expressions to do string manipulation.

Solution
Use the regex package and parse the regular expression using the Compile function
to return a Regexp struct. Then use the Find functions to match the pattern and
return the string.

92 | Chapter 6: String Recipes

Discussion
Regular expressions are a popular notation for describing a search pattern in a string.
When a particular string is in the set described by a regular expression, the regular
expression matches the string. Regular expressions are available in many languages.

Go has an entire standard package dedicated to regular expressions called regex. The
syntax of the regular expressions is the same general syntax used by Perl, Python, and
other languages.

Using the regex package is quite straightforward. First, create a Regexp struct
instance from the regular expressions. With this struct, you can call any number
of Find functions that will return the strings or the index of the strings that match.

While it might seem there are a lot of Find functions in the regex package, mostly
attached as methods to the Regexp struct, there is a general pattern to them:

• The ones without All will return only the first match.•
• The ones with All potentially return all the matches in the string, depending on•

the n parameter.
• The ones with String will return strings or slices of strings.•
• The ones without String will return as an array of bytes, []byte.•
• The ones with Index return the index of the match.•

In the following code snippets, we will use the quote from Great Expectations by
Charles Dickens as with the other recipes in this chapter:

var quote string = `I loved her against reason, against promise,
against peace, against hope, against happiness,
against all discouragement that could be.`

Start with creating a Regexp struct instance that you will use later:

re, err := regexp.Compile(`against [\w]+`)

The regular expression here is against [\w]+.

You use backticks to create the regular expression string because regular expressions
use a lot of backslashes, and these would be interpreted differently if you use double
quotes. The regular expression you use matches against a pattern within a string that
starts with against and has a word after it.

A convenient alternative to Compile is the MustCompile function. This function does
exactly the same thing as Compile, except that it doesn’t return an error. Instead, if the
regular expression doesn’t compile, the function will panic.

6.13 Using Regular Expressions | 93

Once you have the regular expression set up, you can use it to find matches. As
mentioned earlier, there are many Find methods, but this recipe will cover only a
few. One of the most straightforward methods is MatchString, which tells you if the
regular expression has any matches in the string:

re.MatchString(quote) // true

At times, besides checking if the regular expression has any matches, you also want to
return the matching string. You can use FindString to do this:

str := re.FindString(quote) // "against reason"

Here you find a string from the quote string, using the regular expression you set
up earlier. It returns the first match, so the returned string is against reason.
If you want to return all matches, you have to use a method with All in it, like
FindAllString:

strs := re.FindAllString(quote, -1)
fmt.Println(strs)

The second parameter in FindAllString, like all All methods, indicates the number
of matches you want returned. If you want to return all matches, you need to use a
negative number, in this case, -1. The returned values are an array of strings.

If you run the code, which also prints out the array of strings, this is what you get:

[against reason against promise against peace against hope against happiness
against all]

Besides returning the matched strings, sometimes you want to find the locations
of the matches. In this case, you can use the Index functions; for example, the
FindStringIndex:

locs := re.FindStringIndex(quote) // [12 26]

This returns a two-element slice of integers, which indicates the position of the first
match. If you use these two integers on the quote itself, you will be able to extract the
matching substring:

quote[locs[0]:locs[1]] // against reason

As before, to get all matches, you need to use the All method, so in this case, you can
use the FindAllStringIndex method:

allLocs := re.FindAllStringIndex(quote, -1)
fmt.Println(allLocs)

This will return a two-dimensional slice of all matches:

[[12 26] [28 43] [46 59] [61 73] [75 92] [95 106]]

94 | Chapter 6: String Recipes

In addition to finding and indexing regular expressions, you can replace the matched
strings altogether using ReplaceAllString. This is a simple example:

replaced := re.ReplaceAllString(quote, "anything")
fmt.Println(replaced)

If you run the preceding code, this is what you should see:

I loved her anything, anything,
anything, anything, anything,
anything discouragement that could be.

Beyond a simple replacement, you can replace the matched string with the output
of a function that takes in the matched string and produces another string. Here’s a
quick example:

replaced = re.ReplaceAllStringFunc(quote, strings.ToUpper)
fmt.Println(replaced)

You are replacing all the matched strings with the uppercase version of the string by
using the strings.ToUpper function. This is the result of running the code:

I loved her AGAINST REASON, AGAINST PROMISE,
AGAINST PEACE, AGAINST HOPE, AGAINST HAPPINESS,
AGAINST ALL discouragement that could be.

Instead of making both words in the matched string uppercase, what if you want only
the second word to be uppercase? You can create a simple function to do this:

f := func(in string) string {
split := strings.Split(in, " ")
split[1] = strings.ToUpper(split[1])
return strings.Join(split, " ")

}
replaced = re.ReplaceAllStringFunc(quote, f)
fmt.Println(replaced)

If you run this code, you will get this:

I loved her against REASON, against PROMISE,
against PEACE, against HOPE, against HAPPINESS,
against ALL discouragement that could be.

Regular expressions are very flexible and used in many places. In Go, they can be
used for very powerful string manipulation. However, there is a word of caution. The
regex package in Go supports the regular expression syntax accepted by RE2. This
guarantees the regular expressions to run in time linear to the size of the input. As a
result, some syntax like lookahead and lookbehind are not supported. If you’re more
familiar with the syntax supported by PCRE library, you might want to check and
make sure your regular expressions work the way you expect.

6.13 Using Regular Expressions | 95

CHAPTER 7

General Input/Output Recipes

7.0 Introduction
Input and output (more popularly known as I/O) are how a computer communicates
with the external world. Typical input into a computer refers to the keystrokes from
a keyboard or clicks from or movement of a mouse. It can also refer to other external
input sources like a camera or a microphone, gaming joystick, and so on. Output
often refers to whatever is shown on the screen (or on the terminal) or printed out on
a printer. I/O can also refer to network connections and to files. I/O is a key part of
developing software and most programming languages, including Go, have standard
libraries that can read from input and write to output.

This chapter explores some common Go recipes for managing I/O. We’ll warm up
with some basic I/O recipes, then talk about files in general. In the next few chapters,
we’ll move on to CSV, followed by JSON and binary files.

The io package is the base package for input and output in Go and contains inter‐
faces for I/O and a few convenient functions. The main and the most commonly
used interfaces are Reader and Writer, but there are several variants of these, like
ReadWriter, TeeReader, WriterTo, and many more.

Generally, these interfaces are nothing more than a descriptor for functions. For
example, a struct that is a Reader has a Read function. A struct that is a WriterTo has
a WriteTo function. Some interfaces combine two or more interfaces. For example,
the ReadWriter combines the Reader and Writer interfaces and has both the Read
and Write functions.

The recipes in this chapter explain more about how these interfaces are used.

97

7.1 Reading from an Input
Problem
You want to read from an input.

Solution
Use the io.Reader interface to read from an input.

Discussion
Go uses the io.Reader interface to represent the ability to read from an input stream
of data. Many packages in the Go standard library and third-party packages use the
Reader interface to allow data to be read:

type Reader interface {
Read(p []byte) (n int, err error)

}

Any struct that implements the Read function is a Reader. Let’s say you have a reader
(a struct that implements the Reader interface). To read data from the reader, you
make a slice of bytes, and you pass that slice to the Read method:

bytes = make([]byte, 1024)
reader.Read(bytes)

It might look counterintuitive and seem like you would want to read data from bytes
into the reader, but you’re actually reading the data from the reader into bytes. Think
of it as the data flowing from left to right, from the reader into bytes.

Read will fill the slice of bytes only to its capacity. If you want to read everything from
the reader, you can use the io.ReadAll function:

bytes, err := io.ReadAll(reader)

This looks more intuitive because the ReadAll reads from the reader passed into the
parameter and returns the data into bytes. In this case, the data flows from the reader
on the right into the bytes on the left.

You will often find functions that expect a reader as an input parameter. Let’s say you
have a string, and you want to pass the string to the function. What can you do? You
can create a reader from the string using the strings.NewReader function, then pass
it into the function:

str := “My String Data”
reader := strings.NewReader(str)

You can now pass reader into functions that expect a reader.

98 | Chapter 7: General Input/Output Recipes

7.2 Writing to an Output
Problem
You want to write to an output.

Solution
Use the io.Writer interface to write to an output.

Discussion
The interface io.Writer looks like io.Reader:

type Writer interface {
Write(p []byte) (n int, err error)

}

When you call Write on an io.Writer, you are writing the bytes to the underlying
data stream:

bytes = []byte("Hello World")
writer.Write(bytes)

You might notice that this is the reverse of io.Reader in Recipe 7.1 even though the
method signature looks very similar. In Reader, you call the Read method to read
from the struct into the bytes variable, whereas here, you call the Write method to
write from the bytes variable into the struct. In this case, the data flows from right to
left, from bytes into the writer.

A common pattern in Go is for a function to take in a writer as a parameter. The
function calls the Write function on the writer, and later you can extract the data
from the writer, for example:

var buf bytes.Buffer
fmt.Fprintf(&buf, "Hello %s", "World")
s := buf.String() // s == "Hello World"

The bytes.Buffer struct is a Writer (it implements the Write function), so you
can easily create one and pass it to the fmt.Fprintf function, which takes in an
io.Writer as its first parameter. The fmt.Fprintf function writes data onto the
buffer, and you can extract the data from it later.

This pattern of using a writer to pass data around by writing to it, then extracting
it later is quite common in Go. An example of this in the standard library is in the
HTTP handlers with the http.ResponseWriter.

7.2 Writing to an Output | 99

The following is a handler function named myHandler:

func myHandler(w http.ResponseWriter, r *http.Request) {
 w.Write([]bytes("Hello World"))
}

In this handler, you write data, a slice of bytes representing the string “Hello World,”
to the ResponseWriter. The data is stored within the ResponseWriter implementa‐
tion and passed around for further processing until it is finally sent to the browser.

7.3 Copying from a Reader to a Writer
Problem
You want to copy from a reader to a writer.

Solution
Use the io.Copy function to copy from a reader to a writer.

Discussion
Sometimes you read from a reader because you want to write it to a writer. The
process can take a few steps to read everything from a reader into a buffer and then
write it to the writer again. Instead of doing this, you can use the io.Copy function.
The io.Copy function takes from a reader and writes to a writer all in one function.

Here is an example of using io.Copy.

A common way to download a file is to use http.Get to get a reader, which you read,
and then you use os.WriteFile to write to a file:

// using a random 1MB test file
var url string = "http://speedtest.ftp.otenet.gr/files/test1Mb.db"

func readWrite() {
r, err := http.Get(url)
if err != nil {

log.Println("Cannot get from URL", err)
}
defer r.Body.Close()
data, _ := io.ReadAll(r.Body)
os.WriteFile("rw.data", data, 0755)

}

100 | Chapter 7: General Input/Output Recipes

When you use http.Get to download a file, you get an http.Response struct, r. The
content of the file is in the Body variable of the http.Response struct, which is an
io.ReadCloser. A ReadCloser is an interface that groups a Reader and a Closer so
you can treat it just like a reader. You use the io.ReadAll function to read the data
from Body and then os.WriteFile to write it to a file.

That’s simple enough, but what about the performance of the function. You use the
benchmarking capabilities that are part of the standard Go tools. First, you create a
test file:

import "testing"

func BenchmarkReadWrite(b *testing.B) {
readWrite()

}

In this test file, instead of a function that starts with Testxxx you create a function
that starts with Benchmarkxxx, which takes in a parameter b that is a reference to
testing.B.

The benchmark function is very simple. You just call your readWrite function. Run it
from the command line and see how it performs:

$ go test -bench=. -benchmem

You use the -bench=. flag telling Go to run all the benchmark tests and -benchmem
flag to show memory benchmarks. You should see the following output:

goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch07_io
BenchmarkReadWrite
BenchmarkReadWrite-10 1 1916690833 ns/op 5271952 B/op 218 allocs/op
PASS
ok github.com/sausheong/gocookbook/ch07_io 2.051s

You ran a benchmark test for a function that downloaded a 1 MB file. The test only
ran one time, and it took 1.91 seconds. It also took 5.27 MB of memory and 218
distinct memory allocations.

As you can see, it’s quite an expensive operation to download a 1 MB file. After all,
it takes about 5 MB of memory to download a 1 MB file. Alternatively, you can use
io.Copy to do pretty much the same thing for a lot less memory:

func copy() {
r, err := http.Get(url)
if err != nil {

log.Println("Cannot get from URL", err)
}
defer r.Body.Close()
file, _ := os.Create("copy.data")

7.3 Copying from a Reader to a Writer | 101

defer file.Close()
writer := bufio.NewWriter(file)
io.Copy(writer, r.Body)
writer.Flush()

}

First, you create a file for the data, here using os.Create. Next, you create a buffered
writer using bufio.NewWriter, wrapping around the file. This will be used in the
Copy function, copying the contents of the response Body into the buffered writer.
Finally, you flush the writer’s buffers and make the underlying writer write to the file.

If you run this copy function it works the same way, but how does the performance
compare? Go back to our benchmark and add another benchmark function for this
copy function:

import "testing"

func BenchmarkReadWrite(b *testing.B) {
readWrite()

}

func BenchmarkCopy(b *testing.B) {
copy()

}

Run the benchmark again and this is what you should see:

goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch07_io
BenchmarkReadWrite
BenchmarkReadWrite-10 1 3379608041 ns/op 5271872 B/op 218 allocs/op
BenchmarkCopy
BenchmarkCopy-10 1 1618772042 ns/op 43200 B/op 62 allocs/op
PASS
ok github.com/sausheong/gocookbook/ch07_io 5.409s

This time the readWrite function took 3.37 seconds, used 5.27 MB of memory, and
did 218 memory allocations. The copy function, however, only took 1.61 seconds,
used 43.2 kB of memory, and did 62 memory allocations.

The copy function is about twice as fast and uses only a fraction (less than 1%) of
the memory. With really large files, if you’re using the io.ReadAll and os.WriteFile,
you might run out of memory quickly.

7.4 Reading from a Text File
Problem
You want to read a text file into memory.

102 | Chapter 7: General Input/Output Recipes

Solution
You can use the os.Open function to open the file, followed by Read on the file.
Alternatively, you can use the simpler os.ReadFile function to do it in a single
function call.

Discussion
Reading and writing to the filesystem are basic things a programming language needs
to do. Of course, you can always store data in memory but, sooner or later, if you
need to persist the data beyond a shutdown, you need to store it somewhere. There
are several ways that data can be persisted, but persisting it to the local filesystem is
probably the most common.

Read everything in one go

The easiest way to read a text file is to use os.ReadFile. Say you want to read from a
text file named data.txt that has the following content:

hello world!

To read the file, just give the name of the file as a parameter to os.ReadFile and
you’re done!

data, err := os.ReadFile("data.txt")
if err != nil {
 log.Println("Cannot read file:", err)
}
fmt.Println(string(data))

This will print out hello world!.

Opening a file and reading from it
Reading a file by opening it and then doing a read on it is more flexible but takes a
few more steps. First, you need to open the file:

// open the file
file, err := os.Open("data.txt")
if err != nil {
 log.Println("Cannot open file:", err)
}
// close the file when we are done with it
defer file.Close()

You can do this using os.Open, which returns a File struct instance that is read-only.
If you want to open it in different modes, you can use os.OpenFile. It’s good practice
to set up the file for closing using the defer keyword, which will close the file just
before the function returns.

7.4 Reading from a Text File | 103

Next, you need to create a byte array to store the data:

// get some info from the file
stat, err := file.Stat()
if err != nil {
 log.Println("Cannot read file stats:", err)
}
// create the byte array to store the read data
data := make([]byte, stat.Size())

To do this, you need to know how large the byte array should be, and that should be
the size of the file. You use the Stat method on the file to get a FileInfo. Then you
call the Size method on FileInfo to get the size of the file.

Once you have the byte array, you can pass it as a parameter to the Read method on
the file struct:

// read the file
bytes, err := file.Read(data)
if err != nil {
 log.Println("Cannot read file:", err)
}
fmt.Printf("Read %d bytes from file\n", bytes)
fmt.Println(string(data))

This will store the read data into the byte array and return the number of bytes read.
If all goes well you should see something like this from the output:

Read 13 bytes from file
Hello World!

There are a few more steps, but you have the flexibility of reading parts of the whole
document, and you can also do other stuff in between opening the file and reading it.

7.5 Writing to a Text File
Problem
You want to write data to a text file.

Solution
You can use the os.Open function to open the file, followed by Write on the file.
Alternatively, you can use the os.WriteFile function to do it in a single function call.

Discussion
Just as in reading a file, there are a couple of ways to write to a file.

104 | Chapter 7: General Input/Output Recipes

Writing to a file in one go

Given the data, you can write to a file in one go using os.WriteFile:

data := []byte("Hello World!\n")

err := os.WriteFile("data.txt", data, 0644)
if err != nil {
 log.Println("Cannot write to file:", err)
}

The first parameter is the name of the file, the data is in a byte array, and the final
parameter is the Unix file permissions you want to give to the file. If the file doesn’t
exist, this will create a new file. If it exists, it will remove all the data in the file and
write the new data into it but without changing the permissions.

Creating a file and writing to it
Writing to a file by creating the file and then writing to it is a bit more involved but
it’s also more flexible. First, you need to create or open a file using the os.Create
function:

data := []byte("Hello World!\n")
// write to file and read from file using the File struct
file, err := os.Create("data.txt")
if err != nil {
 log.Println("Cannot create file:", err)
}
defer file.Close()

This will create a new file with the given name and mode 0666 if the file doesn’t exist.
If the file exists, this will remove all the data in it. As before, you would want to set up
the file to be closed at the end of the function, using the defer keyword.

Once you have the file you can write to it directly using the Write method and pass
the byte array to it:

bytes, err := file.Write(data)
if err != nil {
 log.Println("Cannot write to file:", err)
}
fmt.Printf("Wrote %d bytes to file\n", bytes)

This will return the number of bytes that were written to the file. As before, while it
takes a few more steps, breaking up the steps between creating a file and writing to it
gives you more flexibility to write in smaller chunks instead of everything at once.

7.5 Writing to a Text File | 105

7.6 Using a Temporary File
Problem
You want to create a temporary file for use.

Solution
Use the os.CreateTemp function to create a temporary file, and then remove it once
you don’t need it anymore.

Discussion
A temporary file is a file that’s created to store data temporarily while the program
is doing something. It’s meant to be deleted or copied to permanent storage once the
task is done. In Go, you can use the os.CreateTemp function to create a temporary
file. Then afterwards, you can remove it.

Different operating systems store their temporary files in different places. Regardless
of where it is, Go will let you know where it is using the os.TempDir function:

fmt.Println(os.TempDir())

You need to know because the temp files created by os.CreateTemp will be created
there. Normally you wouldn’t care, but because you’re trying to analyze step by step
how the temp file gets created, you want to know exactly where it is. When you
execute this statement, you should see something like this:

/var/folders/nj/2xd4ssp94zz41gnvsyvth38m0000gn/T/

This is the directory that your computer tells Go (and some other programs) to use
as a temporary directory. You can use this directory directly, or you can create a
subdirectory here using the os.MkdirTemp function:

tmpdir, err := os.MkdirTemp(os.TempDir(), "mytmpdir_*")
if err != nil {

log.Println("Cannot create temp directory:", err)
}
defer os.RemoveAll(tmpdir)

The first parameter to os.MkdirTemp is the temporary directory, and the second
parameter is a pattern string. The function will apply a random string to replace
the * in the pattern string. It is also a good practice to defer the cleaning up of the
temporary directory by removing it using os.RemoveAll.

106 | Chapter 7: General Input/Output Recipes

Next, you’re creating the actual temporary file using os.CreateTemp, passing it the
temporary directory you just created and also a pattern string for the filename, which
works the same as the temporary directory:

tmpfile, err := os.CreateTemp(tmpdir, "mytmp_*")
if err != nil {

log.Println("Cannot create temp file:", err)
}

With that, you have a file and everything else works the same way as any other file:

data := []byte("Some random stuff for the temporary file")
_, err = tmpfile.Write(data)
if err != nil {

log.Println("Cannot write to temp file:", err)
}
err = tmpfile.Close()
if err != nil {

log.Println("Cannot close temp file:", err)
}

If you didn’t choose to put your temporary files into a separate directory (which you
delete and also everything in it when you’re done), you can use os.Remove with the
temporary file name like this:

defer os.Remove(tmpfile.Name())

7.6 Using a Temporary File | 107

CHAPTER 8

CSV Recipes

8.0 Introduction
The CSV (comma-separated values) format is a file format in which tabular data
(numbers and text) can be easily written and read in a text editor. CSV is widely
supported, and most spreadsheet programs, such as Microsoft Excel and Apple Num‐
bers, support CSV. Consequently, many programming languages, including Go, come
with libraries that produce and consume the data in CSV files.

It might surprise you that CSV has been around for more than 50 years. The IBM
Fortran compiler supported it in OS/360 back in 1972. If you’re not quite sure
what that is, OS/360 is the batch processing operating system developed by IBM for
its System/360 mainframe computer. So yes, one of the first uses for CSV was for
Fortran in an IBM mainframe computer.

CSV is not very standardized, and not all CSV formats are separated by commas,
either. Sometimes it can be a tab or a semicolon or other delimiters. However,
there is an RFC specification for CSV—RFC 4180, though not everyone follows that
standard.

The Go standard library has an encoding/csv package that supports RFC 4180 and
helps you read and write CSV.

109

8.1 Reading the Whole CSV File
Problem
You want to read a CSV file into memory for use.

Solution
Use the encoding/csv package and csv.ReadAll to read all data in the CSV file into a
2D array of strings.

Discussion
Say you have a file like this:

id,first_name,last_name,email
1,Sausheong,Chang,sausheong@email.com
2,John,Doe,john@email.com

The first row is the header, the next two rows are data for the user. Here’s the code to
open the file and read it into the 2D array of strings:

file, err := os.Open("users.csv")
if err != nil {
 log.Println("Cannot open CSV file:", err)
}
defer file.Close()
reader := csv.NewReader(file)
rows, err := reader.ReadAll()
if err != nil {
 log.Println("Cannot read CSV file:", err)
}

First, you open the file using os.Open. This creates an os.File struct instance (which
is an io.Reader) that you can use as a parameter to csv.NewReader. The csv.New
Reader creates a new csv.Reader struct instance that can be used to read data from
the CSV file. With this CSV reader, you can use ReadAll to read all the data in the file
and return a 2D array of strings [][]string.

You might be surprised that this is a 2D array of strings. What if the CSV row item
is an integer? Or a boolean or any other type? Remember that CSV files are text files,
so there is no way for you to differentiate if a value is anything other than a string. In
other words, all values are assumed to be string, and if you think otherwise you need
to cast it to something else.

110 | Chapter 8: CSV Recipes

8.2 Reading a CSV File One Row at a Time
Problem
You want to read a CSV file one record at a time.

Solution
Use the encoding/csv package and csv.Read.

Discussion
Reading a CSV file all at once is good, but if you have a very large CSV file it might
be easier to read it one row at a time. You can use the same CSV file as in Recipe 8.1,
with the following content:

id,first_name,last_name,email
1,Sausheong,Chang,sausheong@email.com
2,John,Doe,john@email.com

The first row is the header, and the next two rows are data for the user. To read the
file row by row, use csv.NewReader to create a new csv.Reader struct:

file, err := os.Open("users.csv")
if err != nil {
 log.Println("Cannot open CSV file:", err)
}
defer file.Close()
reader := csv.NewReader(file)
for {
 record, err := reader.Read()
 if err == io.EOF {
 break
 }
 if err != nil {
 log.Println("Cannot read CSV file:", err)
 }
 for value := range record {
 fmt.Printf("%s\n", record[value])
 }
}

As in Recipe 8.1, you open the file using os.Open. This creates an io.Reader that
you can use as a parameter to csv.NewReader. The csv.NewReader creates a new
csv.Reader struct. With this CSV reader, you read each record one at a time until
io.EOF is encountered. The record returned by Read is a slice of strings, and each
string is the value of a column within a CSV row.

8.2 Reading a CSV File One Row at a Time | 111

8.3 Unmarshalling CSV Data Into Structs
Problem
You want to unmarshal CSV data into structs instead of a 2D array of strings.

Solution
Read the CSV into a 2D array of strings then store it into structs.

Discussion
For some other formats like JSON or XML, it’s common to unmarshal the data read
from files (or anywhere) into structs. You can also do this in CSV, though you need to
do a bit more work.

Say you want to put the data into a User struct:

type User struct {
 Id int
 firstName string
 lastName string
 email string
}

If you want to unmarshal the data in the 2D array of strings to the User struct, you
need to convert each item yourself:

var users []User
for _, row := range rows {
 id, _ := strconv.ParseInt(row[0], 0, 0)
 user := User{Id: int(id),
 firstName: row[1],
 lastName: row[2],
 email: row[3],
 }
 users = append(users, user)
}

In this example, because the user ID is an integer, you would use strconv.ParseInt
to convert the string into an integer before using it to create the User struct.

At the end of the for loop you will have an array of User structs. If you print that out,
this is what you should see:

{0 first_name last_name email}
{1 Sausheong Chang sausheong@email.com}
{2 John Doe john@email.com}

112 | Chapter 8: CSV Recipes

8.4 Removing the Header Line
Problem
If your CSV file has a line of headers that are column labels, you will get that as well
in your returned 2D array of strings or array of structs. You want to remove it.

Solution
Read the first line using Read and then continue reading the rest.

Discussion
When you use Read on the reader, you will read the first line and then move the
cursor to the next line. If you use ReadAll afterward, you can read the rest of the file
into the rows that you want:

file, err := os.Open("users.csv")
if err != nil {
 log.Println("Cannot open CSV file:", err)
}
defer file.Close()
reader := csv.NewReader(file)
reader.Read() // use Read to remove the first line
rows, err := reader.ReadAll()
if err != nil {
 log.Println("Cannot read CSV file:", err)
}

This will give you something like this:

{1 Sausheong Chang sausheong@email.com}
{2 John Doe john@email.com}

8.5 Using Different Delimiters
Problem
CSV doesn’t necessarily use commas as delimiters. You want to read a CSV file that
has a delimiter that is not a comma.

Solution
Set the Comma variable in the csv.Reader struct instance to the delimiter used in the
file and read as before.

8.4 Removing the Header Line | 113

Discussion
Perhaps the file you want to read has semicolons as delimiters:

id;first_name;last_name;email
1;Sausheong;Chang;sausheong@email.com
2;John;Doe;john@email.com

You need to to set the Comma in the csv.Reader struct instance you created earlier to a
semicolon:

file, err := os.Open("users2.csv")
if err != nil {
 log.Println("Cannot open CSV file:", err)
}
defer file.Close()
reader := csv.NewReader(file)
reader.Comma = ';' // change Comma to the delimiter in the file
rows, err := reader.ReadAll()
if err != nil {
 log.Println("Cannot read CSV file:", err)
}

8.6 Ignoring Rows
Problem
You want to ignore certain rows when reading the CSV file.

Solution
Use comments in the file to indicate the rows to be ignored. Then enable coding in
the csv.Reader and read the file as before.

Discussion
If you want to ignore certain rows, what you’d like to do is simply comment those
rows out. Well, in CSV you can’t because comments are not in the standard. However,
with the Go encoding/csv package, you can specify a comment rune that, if you
place at the beginning of the row, ignores the entire row.

Say you have this CSV file:

id,first_name,last_name,email
1,Sausheong,Chang,sausheong@email.com
2,John,Doe,john@email.com

114 | Chapter 8: CSV Recipes

To enable commenting, set the Comment variable in the csv.Reader struct instance
that you got from csv.NewReader:

file, err := os.Open("users.csv")
if err != nil {
 log.Println("Cannot open CSV file:", err)
}
defer file.Close()
reader := csv.NewReader(file)
reader.Comment = '#' // lines that start with this will be ignored
rows, err := reader.ReadAll()
if err != nil {
 log.Println("Cannot read CSV file:", err)
}

When you run this, you’ll see:

{0 first_name last_name email}
{1 Sausheong Chang sausheong@email.com}

8.7 Writing CSV Files
Problem
You want to write data from memory into a CSV file.

Solution
Use the encoding/csv package and csv.Writer to write to file.

Discussion
You had fun reading CSV files; now you have to write one. Writing is quite similar to
reading. First, you need to create a file (an io.Writer):

file, err := os.Create("new_users.csv")
if err != nil {
 log.Println("Cannot create CSV file:", err)
}
defer file.Close()

The data to write to the file needs to be in a 2D array of strings. Remember, if you
don’t have the data as a string, convert it into a string before you do this. Create
a csv.Writer struct instance with the file. After that you can call WriteAll on the
writer and the file will be created. This writes all the data in your 2D string array into
the file:

8.7 Writing CSV Files | 115

data := [][]string{
 {"id", "first_name", "last_name", "email"},
 {"1", "Sausheong", "Chang", "sausheong@email.com"},
 {"2", "John", "Doe", "john@email.com"},
}
writer := csv.NewWriter(file)
err = writer.WriteAll(data)
if err != nil {
 log.Println("Cannot write to CSV file:", err)
}

8.8 Writing to File One Row at a Time
Problem
Instead of writing everything in your 2D string, you want to write to the file one row
at a time.

Solution
Use the Write method on csv.Writer to write a single row.

Discussion
Writing to file one row at a time is pretty much the same, except you will want to
iterate the 2D array of strings to get each row and then call Write, passing that row.
You will also need to call Flush whenever you want to write the buffered data to
the Writer (the file). In the following example code you called Flush after you had
written all the data to the writer, but that’s because you don’t have a lot of data. If you
have a lot of rows, you would probably want to flush the data to the file once in a
while. To check if there are any problems with writing or flushing, you can call Error:

writer := csv.NewWriter(file)
for _, row := range data {
 err = writer.Write(row)
 if err != nil {
 log.Println("Cannot write to CSV file:", err)
 }
}
writer.Flush()

116 | Chapter 8: CSV Recipes

CHAPTER 9

JSON Recipes

9.0 Introduction
JavaScript Object Notation (JSON) is a lightweight data-interchange text format. It’s
meant to be read by humans but also easily read by machines and is based on a subset
of JavaScript. JSON was originally defined by Douglas Crockford but is currently
described by RFC 7159, as well as ECMA-404. JSON is used in REST-based web
services, although they don’t necessarily need to accept or return JSON data.

JSON is popular with RESTful web services but it’s also frequently used for configura‐
tion. Creating and consuming JSON is commonplace in many web applications, from
getting data from a web service to authenticating your web application through a
third-party authentication service to controlling other services.

Go supports JSON in the standard library using the encoding/json package.

9.1 Parsing JSON Data Byte Arrays to Structs
Problem
You want to read JSON data byte arrays and store them into structs.

Solution
Create structs to contain the JSON data and then use Unmarshal in the encoding/
json package to unmarshal the data into the structs.

117

Discussion
Parsing JSON with the encoding/json package is straightforward:

1. Create structs to contain the JSON data.1.
2. Unmarshal the JSON string into the structs.2.

Here’s a sample JSON file, containing data on the Star Wars character, Luke Sky‐
walker, taken from SWAPI, the Star Wars API. The data has been taken and stored in
a file named skywalker.json:

{
"name": "Luke Skywalker",
"height": "172",
"mass": "77",
"hair_color": "blond",
"skin_color": "fair",
"eye_color": "blue",
"birth_year": "19BBY",
"gender": "male",
"homeworld": "https://swapi.dev/api/planets/1/",
"films": [

"https://swapi.dev/api/films/1/",
"https://swapi.dev/api/films/2/",
"https://swapi.dev/api/films/3/",
"https://swapi.dev/api/films/6/"

],
"species": [],
"vehicles": [

"https://swapi.dev/api/vehicles/14/",
"https://swapi.dev/api/vehicles/30/"

],
"starships": [

"https://swapi.dev/api/starships/12/",
"https://swapi.dev/api/starships/22/"

],
"created": "2014-12-09T13:50:51.644000Z",
"edited": "2014-12-20T21:17:56.891000Z",
"url": "https://swapi.dev/api/people/1/"

}

To store the data in JSON, you can create a struct like this:

type Person struct {
Name string `json:"name"`
Height string `json:"height"`
Mass string `json:"mass"`
HairColor string `json:"hair_color"`
SkinColor string `json:"skin_color"`
EyeColor string `json:"eye_color"`
BirthYear string `json:"birth_year"`

118 | Chapter 9: JSON Recipes

https://swapi.dev/api/people/1

Gender string `json:"gender"`
Homeworld string `json:"homeworld"`
Films []string `json:"films"`
Species []string `json:"species"`
Vehicles []string `json:"vehicles"`
Starships []string `json:"starships"`
Created time.Time `json:"created"`
Edited time.Time `json:"edited"`
URL string `json:"url"`

}

The string literal after the definition in each field in the struct is called a struct tag.
Go determines the mapping between the struct fields and the JSON elements using
these struct tags. You don’t need them if your mapping is exactly the same. However,
as you can see, JSON normally uses snake case (variables with spaces replaced by
underscores), with lowercase characters, while Go uses camel case (variables have no
space but separation is indicated by a single capitalized letter).

As you can see from the struct, you can define string slices to store the arrays in the
JSON and use something like time.Time as the data type as well. You can use most
Go data types, and even maps (though only maps with strings as keys are supported).

Unmarshalling the data into the struct instance person is a single function call, using
json.Unmarshal:

func unmarshal() (person Person) {
file, err := os.Open("skywalker.json")
if err != nil {

log.Println("Error opening json file:", err)
}
defer file.Close()

data, err := io.ReadAll(file)
if err != nil {

log.Println("Error reading json data:", err)
}

err = json.Unmarshal(data, &person)
if err != nil {

log.Println("Error unmarshalling json data:", err)
}
return

}

In this code, after reading the data from the file, you create a Person struct instance
and then unmarshal the data into it using json.Unmarshal.

The JSON data came from the Star Wars API, so let’s have a bit of fun and grab
it directly from the API. You use the http.Get function and pass the URL in, but
everything else is the same:

9.1 Parsing JSON Data Byte Arrays to Structs | 119

func unmarshalAPI() (person Person) {
r, err := http.Get("https://swapi.dev/api/people/1")
if err != nil {

log.Println("Cannot get from URL", err)
}
defer r.Body.Close()

data, err := io.ReadAll(r.Body)
if err != nil {

log.Println("Error reading json data:", err)
}

err = json.Unmarshal(data, &person)
if err != nil {

log.Println("Error unmarshalling json data:", err)
}
return

}

If you print out the Person struct instance, this is what you should get (the output is
prettified):

json.Person{
 Name: "Luke Skywalker",
 Height: "172",
 Mass: "77",
 HairColor: "blond",
 SkinColor: "fair",
 EyeColor: "blue",
 BirthYear: "19BBY",
 Gender: "male",
 Homeworld: "https://swapi.dev/api/planets/1/",
 Films: {"https://swapi.dev/api/films/1/", "https://swapi.dev/api/films/2/",
 "https://swapi.dev/api/films/3/", "https://swapi.dev/api/films/6/"},
 Species: {},
 Vehicles: {"https://swapi.dev/api/vehicles/14/",
 "https://swapi.dev/api/vehicles/30/"},
 Starships: {"https://swapi.dev/api/starships/12/",
 "https://swapi.dev/api/starships/22/"},
 Created: time.Date(2014, time.December, 9, 13, 50, 51, 644000000,
 time.UTC),
 Edited: time.Date(2014, time.December, 20, 21, 17, 56, 891000000,
 time.UTC),
 URL: "https://swapi.dev/api/people/1/",
}

120 | Chapter 9: JSON Recipes

9.2 Parsing Unstructured JSON Data
Problem
You want to parse some JSON data but you don’t know the JSON data’s structure or
properties in advance enough to build structs, or the keys to the values are dynamic.

Solution
Use the same method as before but instead of predefined structs, use a map of strings
to any to store the data.

Discussion
The structure of the Star Wars API is quite clear. However, this isn’t always the
case. Sometimes you just don’t know the structure well enough to create structs, and
documentation is not available. Also, sometimes keys to the values can be dynamic.
Take a look at this JSON:

{
 "Luke Skywalker": [
 "https://swapi.dev/api/films/1/",
 "https://swapi.dev/api/films/2/",
 "https://swapi.dev/api/films/3/",
 "https://swapi.dev/api/films/6/"
],
 "C-3P0": [
 "https://swapi.dev/api/films/1/",
 "https://swapi.dev/api/films/2/",
 "https://swapi.dev/api/films/3/",
 "https://swapi.dev/api/films/4/",
 "https://swapi.dev/api/films/5/",
 "https://swapi.dev/api/films/6/"
],
 "R2D2": [
 "https://swapi.dev/api/films/1/",
 "https://swapi.dev/api/films/2/",
 "https://swapi.dev/api/films/3/",
 "https://swapi.dev/api/films/4/",
 "https://swapi.dev/api/films/5/",
 "https://swapi.dev/api/films/6/"
],
 "Darth Vader": [
 "https://swapi.dev/api/films/1/",
 "https://swapi.dev/api/films/2/",
 "https://swapi.dev/api/films/3/",
 "https://swapi.dev/api/films/6/"
]
}

9.2 Parsing Unstructured JSON Data | 121

Obviously from the JSON, the keys are not consistent and can change with the
addition of a character. For such cases, how do you unmarshal the JSON data?
Instead of predefined structs, you can use a map of strings to any (prior to Go 1.18
this would have been an empty interface—interface{}). Here’s the code:

func unstructured() (output map[string]any) {
file, err := os.Open("unstructured.json")
if err != nil {

log.Println("Error opening json file:", err)
}
defer file.Close()

data, err := io.ReadAll(file)
if err != nil {

log.Println("Error reading json data:", err)
}

err = json.Unmarshal(data, &output)
if err != nil {

log.Println("Error unmarshalling json data:", err)
}
return

}

And here’s the output:

map[string]any{
 "C-3P0": []any{
 "https://swapi.dev/api/films/1/",
 "https://swapi.dev/api/films/2/",
 "https://swapi.dev/api/films/3/",
 "https://swapi.dev/api/films/4/",
 "https://swapi.dev/api/films/5/",
 "https://swapi.dev/api/films/6/",
 },
 "Darth Vader": []any{
 "https://swapi.dev/api/films/1/",
 "https://swapi.dev/api/films/2/",
 "https://swapi.dev/api/films/3/",
 "https://swapi.dev/api/films/6/",
 },
 "Luke Skywalker": []any{
 "https://swapi.dev/api/films/1/",
 "https://swapi.dev/api/films/2/",
 "https://swapi.dev/api/films/3/",
 "https://swapi.dev/api/films/6/",
 },
 "R2D2": []any{
 "https://swapi.dev/api/films/1/",
 "https://swapi.dev/api/films/2/",
 "https://swapi.dev/api/films/3/",
 "https://swapi.dev/api/films/4/",

122 | Chapter 9: JSON Recipes

 "https://swapi.dev/api/films/5/",
 "https://swapi.dev/api/films/6/",
 },
}

Try the same code on the earlier Luke Skywalker JSON data and see the output:

map[string]any{
 "birth_year": "19BBY",
 "created": "2014-12-09T13:50:51.644000Z",
 "edited": "2014-12-20T21:17:56.891000Z",
 "eye_color": "blue",
 "films": []any{
 "https://swapi.dev/api/films/1/",
 "https://swapi.dev/api/films/2/",
 "https://swapi.dev/api/films/3/",
 "https://swapi.dev/api/films/6/",
 },
 "gender": "male",
 "hair_color": "blond",
 "height": "172",
 "homeworld": "https://swapi.dev/api/planets/1/",
 "mass": "77",
 "name": "Luke Skywalker",
 "skin_color": "fair",
 "species": []any{
 },
 "starships": []any{
 "https://swapi.dev/api/starships/12/",
 "https://swapi.dev/api/starships/22/",
 },
 "url": "https://swapi.dev/api/people/1/",
 "vehicles": []any{
 "https://swapi.dev/api/vehicles/14/",
 "https://swapi.dev/api/vehicles/30/",
 },
}

You might be thinking that this is much easier and simpler than trying to figure out
the structs! Also, it’s a lot more forgiving and flexible, so why not use this all the
time? Using structs has its advantages. Using any essentially makes the data structure
untyped. Structs can catch errors in the JSON where any simply lets them go.

It’s a lot easier to retrieve data from structs than from a map because you know for
sure what fields are available. Also, you need to do type assertion to get the data out of
an interface. For example, you want to get the films that featured Darth Vader, so you
might think you can do this:

unstruct := unstructured()
vader := unstruct["Darth Vader"]
first := vader[0]

9.2 Parsing Unstructured JSON Data | 123

You can’t—you’ll see this error instead:

invalid operation: vader[0] (type any does not support indexing)

This is because the variable vader is an any, so you have to type assert it first before
you do anything:

unstruct := unstructured()
vader, ok := unstruct["Darth Vader"].([]any)
if !ok {
 log.Println("Cannot type assert")
}
first := vader[0]

You should normally try to use structs and map to any only as a last resort.

9.3 Parsing JSON Data Streams Into Structs
Problem
You want to parse JSON data from a stream.

Solution
Create structs to contain the JSON data. Create a decoder using NewDecoder in the
encoding/json package, then call Decode on the decoder to decode data into the
structs.

Discussion
Using Unmarshal is simple and straightforward for JSON files or API data. But what
happens if the API is streaming JSON data? In that case, you can no longer use
Unmarshal because Unmarshal needs to read the whole file at once. Instead, the
encoding/json package provides a Decoder function for you to handle the data.

It might be difficult to understand the difference between JSON data and streaming
JSON data, so take a look by comparing two different JSON files.

In this first JSON file you have an array of three JSON objects (part of the data is
truncated to make it easier to read):

[{
"name": "Luke Skywalker",
"height": "172",
"mass": "77",
"hair_color": "blond",
"skin_color": "fair",
"eye_color": "blue",
"birth_year": "19BBY",

124 | Chapter 9: JSON Recipes

"gender": "male"
},
{
"name": "C-3PO",
"height": "167",
"mass": "75",
"hair_color": "n/a",
"skin_color": "gold",
"eye_color": "yellow",
"birth_year": "112BBY",
"gender": "n/a"
},
{
"name": "R2-D2",
"height": "96",
"mass": "32",
"hair_color": "n/a",
"skin_color": "white, blue",
"eye_color": "red",
"birth_year": "33BBY",
"gender": "n/a"
}]

To read this, you can use Unmarshal by unmarshalling into an array of Person structs:

func unmarshalStructArray() (people []Person) {
file, err := os.Open("people.json")
if err != nil {

log.Println("Error opening json file:", err)
}
defer file.Close()

data, err := io.ReadAll(file)
if err != nil {

log.Println("Error reading json data:", err)
}

err = json.Unmarshal(data, &people)
if err != nil {

log.Println("Error unmarshalling json data:", err)
}
return

}

This will result in an output like this:

[]json.Person{
 {
 Name: "Luke Skywalker",
 Height: "172",
 Mass: "77",
 HairColor: "blond",
 SkinColor: "fair",

9.3 Parsing JSON Data Streams Into Structs | 125

 EyeColor: "blue",
 BirthYear: "19BBY",
 Gender: "male",
 Homeworld: "",
 Films: nil,
 Species: nil,
 Vehicles: nil,
 Starships: nil,
 Created: time.Date(1, time.January, 1, 0, 0, 0, 0, time.UTC),
 Edited: time.Date(1, time.January, 1, 0, 0, 0, 0, time.UTC),
 URL: "",
 },
 {
 Name: "C-3PO",
 Height: "167",
 Mass: "75",
 HairColor: "n/a",
 SkinColor: "gold",
 EyeColor: "yellow",
 BirthYear: "112BBY",
 Gender: "n/a",
 Homeworld: "",
 Films: nil,
 Species: nil,
 Vehicles: nil,
 Starships: nil,
 Created: time.Date(1, time.January, 1, 0, 0, 0, 0, time.UTC),
 Edited: time.Date(1, time.January, 1, 0, 0, 0, 0, time.UTC),
 URL: "",
 },
 {
 Name: "R2-D2",
 Height: "96",
 Mass: "32",
 HairColor: "n/a",
 SkinColor: "white, blue",
 EyeColor: "red",
 BirthYear: "33BBY",
 Gender: "n/a",
 Homeworld: "",
 Films: nil,
 Species: nil,
 Vehicles: nil,
 Starships: nil,
 Created: time.Date(1, time.January, 1, 0, 0, 0, 0, time.UTC),
 Edited: time.Date(1, time.January, 1, 0, 0, 0, 0, time.UTC),
 URL: "",
 },
}

126 | Chapter 9: JSON Recipes

This is an array of Person structs, which you get after unmarshalling a single JSON
array. However, when you get a stream of JSON objects, this is no longer possible.
Here is another JSON file, one that is representative of a JSON data stream:

{
"name": "Luke Skywalker",
"height": "172",
"mass": "77",
"hair_color": "blond",
"skin_color": "fair",
"eye_color": "blue",
"birth_year": "19BBY",
"gender": "male"
}
{
"name": "C-3PO",
"height": "167",
"mass": "75",
"hair_color": "n/a",
"skin_color": "gold",
"eye_color": "yellow",
"birth_year": "112BBY",
"gender": "n/a"
}
{
"name": "R2-D2",
"height": "96",
"mass": "32",
"hair_color": "n/a",
"skin_color": "white, blue",
"eye_color": "red",
"birth_year": "33BBY",
"gender": "n/a"
}

Notice that this is not a single JSON object but three consecutive JSON objects. This
is no longer a valid JSON file, but it’s something you can get when you read the Body
of a http.Response struct. If you try to read this using Unmarshal you will get an
error:

Error unmarshalling json data: invalid character '{' after top-level value

However, you can parse it by decoding it using a Decoder:

func decode(p chan Person) {
file, err := os.Open("people_stream.json")
if err != nil {

log.Println("Error opening json file:", err)
}
defer file.Close()

decoder := json.NewDecoder(file)

9.3 Parsing JSON Data Streams Into Structs | 127

for {
var person Person
err = decoder.Decode(&person)
if err == io.EOF {

break
}
if err != nil {

log.Println("Error decoding json data:", err)
break

}
p <- person

}
close(p)

}

First, you create a decoder using json.NewDecoder and passing it the reader, in this
case, it’s the file you read from. Then while you’re looping in the for loop, you call
Decode on the decoder, passing it the struct you want to store the data in. If all goes
well, every time it loops, a new Person struct instance is created from the data. You
can use the data then. If there is no more data in the reader, i.e., you hit io.EOF, you’ll
break from the for loop.

In the case of the preceding code, you pass in a channel, in which you store the
Person struct instance in every loop. When you’re done reading all the JSON in the
file, you’ll close the channel:

func main() {
p := make(chan Person)
go decode(p)
for {

person, ok := <-p
if ok {

 fmt.Printf("%# v\n", pretty.Formatter(person))
} else {

break
}

}
}

Here’s the output from the code:

json.Person{
 Name: "Luke Skywalker",
 Height: "172",
 Mass: "77",
 HairColor: "blond",
 SkinColor: "fair",
 EyeColor: "blue",
 BirthYear: "19BBY",
 Gender: "male",
 Homeworld: "",
 Films: nil,

128 | Chapter 9: JSON Recipes

 Species: nil,
 Vehicles: nil,
 Starships: nil,
 Created: time.Date(1, time.January, 1, 0, 0, 0, 0, time.UTC),
 Edited: time.Date(1, time.January, 1, 0, 0, 0, 0, time.UTC),
 URL: "",
}
json.Person{
 Name: "C-3PO",
 Height: "167",
 Mass: "75",
 HairColor: "n/a",
 SkinColor: "gold",
 EyeColor: "yellow",
 BirthYear: "112BBY",
 Gender: "n/a",
 Homeworld: "",
 Films: nil,
 Species: nil,
 Vehicles: nil,
 Starships: nil,
 Created: time.Date(1, time.January, 1, 0, 0, 0, 0, time.UTC),
 Edited: time.Date(1, time.January, 1, 0, 0, 0, 0, time.UTC),
 URL: "",
}
json.Person{
 Name: "R2-D2",
 Height: "96",
 Mass: "32",
 HairColor: "n/a",
 SkinColor: "white, blue",
 EyeColor: "red",
 BirthYear: "33BBY",
 Gender: "n/a",
 Homeworld: "",
 Films: nil,
 Species: nil,
 Vehicles: nil,
 Starships: nil,
 Created: time.Date(1, time.January, 1, 0, 0, 0, 0, time.UTC),
 Edited: time.Date(1, time.January, 1, 0, 0, 0, 0, time.UTC),
 URL: "",
}

You can see that three Person structs are being printed here, one after another, as
opposed to the earlier one that was an array of Person structs.

A question that sometimes arises is when should you use Unmarshal and when should
you use Decode?

9.3 Parsing JSON Data Streams Into Structs | 129

Unmarshal is easier to use for a single JSON object, but it won’t work when you have a
stream of them coming in from a reader. Also, its simplicity means it’s not as flexible;
you just get the whole JSON data at a go.

Decode, on the other hand, works well for both single JSON objects and streaming
JSON data. Also, with Decode you can do stuff with the JSON at a finer level without
needing to get the entire JSON data out first. This is because you can inspect the
JSON as it comes in, even at a token level. The only slight drawback is that it is more
verbose.

In addition, Decode is a bit faster. You can do a quick benchmarking test on both:

var luke []byte = []byte(
`{
"name": "Luke Skywalker",
"height": "172",
"mass": "77",
"hair_color": "blond",
"skin_color": "fair",
"eye_color": "blue",
"birth_year": "19BBY",
"gender": "male"

}`)

func BenchmarkUnmarshal(b *testing.B) {
var person Person
b.ResetTimer()
for i := 0; i < b.N; i++ {

json.Unmarshal(luke, &person)
}

}

func BenchmarkDecode(b *testing.B) {
var person Person
data := bytes.NewReader(luke)
decoder := json.NewDecoder(data)
b.ResetTimer()
for i := 0; i < b.N; i++ {

decoder.Decode(&person)
data.Seek(0, 0)

}
}

Here you’re benchmarking Unmarshal and Decode using the standard Go benchmark‐
ing tool. To make sure you’re benchmarking properly you reset the timer just before
you run the iterations that test the performance of Unmarshal and Decode. You place
the creation of the decoder before the benchmarking because you need to create the
decoder only once since it’s going to wrap around the reader that’s streaming data in.
However, once Decode is called, you need to move the offset to the start for the next
benchmarking loop.

130 | Chapter 9: JSON Recipes

Run this in the command line to start the benchmarking:

$ go test -bench=. -benchmem

And this is the result:

goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch10_json
BenchmarkUnmarshal-8 437274 2494 ns/op 272 B/op 12 allocs/op
BenchmarkDecode-8 486051 2368 ns/op 48 B/op 8 allocs/op
PASS
ok github.com/sausheong/gocookbook/ch10_json 6.242s

As you can see, Decode is only a bit faster, taking 2,258 ns/op (nanoseconds per
operation) while Unmarshal takes 2,418 ns/op. However, Decode uses only 48 B/op
(bytes per operation), considerably less than Unmarshal, which uses 272 B/op.

9.4 Creating JSON Data Byte Arrays from Structs
Problem
You want to create JSON data from a struct.

Solution
Create the structs then use the json.Marshal package to marshal the data into a
JSON slice of bytes.

Discussion
Creating JSON data is essentially the reverse of parsing it:

1. Create structs that you will use to marshal data from.1.
2. Marshal the data into a JSON string using json.Marshal or json.Marshal2.

Indent.

You will be reusing the same structs as the previous recipe for parsing JSON. You’ll
also use the function used to unmarshal JSON data from the Star Wars API:

func main() {
person := get("https://swapi.dev/api/people/14")

data, err := json.Marshal(&person)
if err != nil {

log.Println("Cannot marshal person:", err)
}
err = os.WriteFile("han.json", data, 0644)
if err != nil {

9.4 Creating JSON Data Byte Arrays from Structs | 131

log.Println("Cannot write to file", err)
}

}

func get(url string) Person {
r, err := http.Get(url)
if err != nil {

log.Println("Cannot get from URL", err)
}
defer r.Body.Close()

data, err := os.ReadAll(r.Body)
if err != nil {

log.Println("Error reading json data:", err)
}

var person Person
json.Unmarshal(data, &person)
return person

}

The get function returns a Person struct instance that you can use for marshaling to
a file. The json.Marshal function takes the data in the struct instance and returns a
byte slice, data, containing the JSON string. If you just want it as a string, you can
cast it to a string and use it. Here, you pass it on to os.WriteFile to create a new
JSON file:

{"name":"Han Solo","height":"180","mass":"80","hair_color":"brown",
"skin_color":"fair","eye_color":"brown","birth_year":"29BBY","gender":"male",
"homeworld":"https://swapi.dev/api/planets/22/","films":
["https://swapi.dev/api/films/1/","https://swapi.dev/api/films/2/",
"https://swapi.dev/api/films/3/"],"species":[],"vehicles":[],"starships":
["https://swapi.dev/api/starships/10/","https://swapi.dev/api/starships/22/"],
"created":"2014-12-10T16:49:14.582Z","edited":"2014-12-20T21:17:50.334Z",
"url":"https://swapi.dev/api/people/14/"}

This is not very readable. If you want a more readable version, you can use json.
MarshalIndent instead. You need to put in two more parameters: the first is the
prefix, and the second is the indent. Mostly if you want to have a clean JSON output,
the prefix is an empty string while the indent is a single space:

data, err := json.MarshalIndent(&person, "", " ")

132 | Chapter 9: JSON Recipes

This will produce a more readable version:

{
 "name": "Han Solo",
 "height": "180",
 "mass": "80",
 "hair_color": "brown",
 "skin_color": "fair",
 "eye_color": "brown",
 "birth_year": "29BBY",
 "gender": "male",
 "homeworld": "https://swapi.dev/api/planets/22/",
 "films": [
 "https://swapi.dev/api/films/1/",
 "https://swapi.dev/api/films/2/",
 "https://swapi.dev/api/films/3/"
],
 "species": [],
 "vehicles": [],
 "starships": [
 "https://swapi.dev/api/starships/10/",
 "https://swapi.dev/api/starships/22/"
],
 "created": "2014-12-10T16:49:14.582Z",
 "edited": "2014-12-20T21:17:50.334Z",
 "url": "https://swapi.dev/api/people/14/"
}

9.5 Creating JSON Data Streams from Structs
Problem
You want to create streaming JSON data from structs.

Solution
Create an encoder using NewEncoder in the encoding/json package, passing it an
io.Writer. Then call Encode on the encoder to encode structs data to a stream.

Discussion
The io.Writer interface has a Write method that writes bytes to the underlying data
stream. You use NewEncoder to create an encoder that wraps around a writer. When
you call Encode on the encoder, it will write the JSON struct instance onto the writer.

To show this properly you’ll need some JSON structs. You’ll use the same Star Wars
people API as before to create the structs:

9.5 Creating JSON Data Streams from Structs | 133

func get(n int) (person Person) {
r, err := http.Get("https://swapi.dev/api/people/" + strconv.Itoa(n))
if err != nil {

log.Println("Cannot get from URL", err)
}
defer r.Body.Close()

data, err := ioutil.ReadAll(r.Body)
if err != nil {

log.Println("Error reading json data:", err)
}

json.Unmarshal(data, &person)
return

}

This get function will call the API and return the requested Person struct. You’ll
need to use this Person struct instance next:

func main() {
encoder := json.NewEncoder(os.Stdout)
for i := 1; i < 4; i++ { // we're just retrieving 3 records

person := get(i)
encoder.Encode(person)

}
}

As you can see, you’re using os.Stdout as the writer. Actually os.Stdout is an
os.File struct instance but a File is also a writer, so that’s fine. What this does is
write the encoding to os.Stdout one at a time.

First, you create an encoder using json.NewEncoder, passing it os.Stdout as the
writer. Next, as you loop you get a Person struct instance and pass that to Encode to
write to os.Stdout.

When you run the program, you should see something like this, but each JSON
encoding will appear one by one:

{"name":"Luke Skywalker","height":"172","mass":"77","hair_color":"blond",
"skin_color":"fair","eye_color":"blue","birth_year":"19BBY","gender":"male",
"homeworld":"https://swapi.dev/api/planets/1/","films":
["https://swapi.dev/api/films/1/","https://swapi.dev/api/films/2/",
"https://swapi.dev/api/films/3/","https://swapi.dev/api/films/6/"],
"species":[],"vehicles":["https://swapi.dev/api/vehicles/14/",
"https://swapi.dev/api/vehicles/30/"],"starships":
["https://swapi.dev/api/starships/12/","https://swapi.dev/api/starships/22/"],
"created":"2014-12-09T13:50:51.644Z","edited":"2014-12-20T21:17:56.891Z",
"url":"https://swapi.dev/api/people/1/"}
{"name":"C-3PO","height":"167","mass":"75","hair_color":"n/a","skin_color":
"gold","eye_color":"yellow","birth_year":"112BBY","gender":"n/a","homeworld":
"https://swapi.dev/api/planets/1/","films":["https://swapi.dev/api/films/1/",
"https://swapi.dev/api/films/2/","https://swapi.dev/api/films/3/",

134 | Chapter 9: JSON Recipes

"https://swapi.dev/api/films/4/","https://swapi.dev/api/films/5/",
"https://swapi.dev/api/films/6/"],"species":["https://swapi.dev/api/species/2/"],
"vehicles":[],"starships":[],"created":"2014-12-10T15:10:51.357Z","edited":
"2014-12-20T21:17:50.309Z","url":"https://swapi.dev/api/people/2/"}
{"name":"R2-D2","height":"96","mass":"32","hair_color":"n/a","skin_color":
"white, blue","eye_color":"red","birth_year":"33BBY","gender":"n/a",
"homeworld":"https://swapi.dev/api/planets/8/","films":
["https://swapi.dev/api/films/1/","https://swapi.dev/api/films/2/",
"https://swapi.dev/api/films/3/","https://swapi.dev/api/films/4/",
"https://swapi.dev/api/films/5/","https://swapi.dev/api/films/6/"],
"species":["https://swapi.dev/api/species/2/"],"vehicles":[],"starships":[],
"created":"2014-12-10T15:11:50.376Z","edited":"2014-12-20T21:17:50.311Z",
"url":"https://swapi.dev/api/people/3/"}

If you are annoyed by the untidy output here and wonder if there is an equivalent
of MarshalIndent, yes there is. Just set up the encoder with SetIndent like this and
you’re good to go:

encoder.SetIndent("", " ")

You might be wondering what the difference is between using Encode and using
Marshal. To use Marshal you need to put everything into an object and marshal it all
at once—you can’t stream the JSON encodings one at a time.

In other words, if you have JSON structs coming to you and you either don’t know
when it will all come or if you want to write the JSON encodings out first, then you
need to use Encode. You can use Marshal only if you have all the JSON data available
to you.

And of course, Encode is also faster than Marshal, as this benchmarking shows:

var jsonBytes []byte = []byte(jsonString)
var person Person

func BenchmarkMarshal(b *testing.B) {
 json.Unmarshal(jsonBytes, &person)
 b.ResetTimer()

for i := 0; i < b.N; i++ {
data, _ := json.Marshal(person)
io.Discard.Write(data)

}
}

func BenchmarkEncoder(b *testing.B) {
json.Unmarshal(jsonBytes, &person)
b.ResetTimer()

 encoder := json.NewEncoder(io.Discard)
for i := 0; i < b.N; i++ {

encoder.Encode(person)
}

}

9.5 Creating JSON Data Streams from Structs | 135

You need to prepare the JSON struct instance before the test, so you unmarshal the
data into a Person struct instance as part of setting up, before running the benchmark
loop. Also use io.Discard as the writer instead. The io.Discard is a writer on which
all write calls will succeed and is the most convenient to use here.

To benchmark Marshal you marshal the Person struct instance and then write it to
io.Discard. To benchmark Encode, create an encoder that wraps around io.Discard
and then encode the Person struct instance to it. As in the decoder benchmarking,
you placed the creation of the encoder before the iterations because you need to
create it only once.

This is the result of the benchmark:

goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch10_json
BenchmarkMarshal-10 4717722 236.2 ns/op 504 B/op 3 allocs/op
BenchmarkEncoder-10 5885935 203.4 ns/op 264 B/op 2 allocs/op
PASS
ok github.com/sausheong/gocookbook/ch10_json 4.345s

As before, Encode is faster, and it also uses less memory, taking up less than half—
about 128 B/op as compared to Marshal, which takes up 288 B/op.

9.6 Omitting Fields in Structs
Problem
When marshaling JSON structs as JSON encoding, sometimes there is no data for
some of the struct variables. You want to create JSON encoding that leaves out the
variables without any data.

Solution
Use the omitempty tag to define struct variables that can be omitted when
marshaling.

Discussion
Take a look at the Person struct again:

type Person struct {
Name string `json:"name"`
Height string `json:"height"`
Mass string `json:"mass"`
HairColor string `json:"hair_color"`
SkinColor string `json:"skin_color"`
EyeColor string `json:"eye_color"`

136 | Chapter 9: JSON Recipes

BirthYear string `json:"birth_year"`
Gender string `json:"gender"`
Homeworld string `json:"homeworld"`
Films []string `json:"films"`
Species []string `json:"species"`
Vehicles []string `json:"vehicles"`
Starships []string `json:"starships"`
Created time.Time `json:"created"`
Edited time.Time `json:"edited"`
URL string `json:"url"`

}

You might notice that the API doesn’t specify the species when the person is a human
and that many of the characters don’t have vehicles or starships tagged to them. So
when you marshal the struct, it will come out as an empty array:

{
 "name": "Owen Lars",
 "height": "178",
 "mass": "120",
 "hair_color": "brown, grey",
 "skin_color": "light",
 "eye_color": "blue",
 "birth_year": "52BBY",
 "gender": "male",
 "homeworld": "https://swapi.dev/api/planets/1/",
 "films": [
 "https://swapi.dev/api/films/1/",
 "https://swapi.dev/api/films/5/",
 "https://swapi.dev/api/films/6/"
],
 "species": [],
 "vehicles": [],
 "starships": [],
 "created": "2014-12-10T15:52:14.024Z",
 "edited": "2014-12-20T21:17:50.317Z",
 "url": "https://swapi.dev/api/people/6/"
}

If you don’t want to show the species, vehicles, or starships, you can use the omit
empty tag on the JSON struct tags:

Species []string `json:"species,omitempty"`
Vehicles []string `json:"vehicles,omitempty"`
Starships []string `json:"starships,omitempty"`

9.6 Omitting Fields in Structs | 137

When you run the same code again, you will no longer see them in the output:

{
 "name": "Owen Lars",
 "height": "178",
 "mass": "120",
 "hair_color": "brown, grey",
 "skin_color": "light",
 "eye_color": "blue",
 "birth_year": "52BBY",
 "gender": "male",
 "homeworld": "https://swapi.dev/api/planets/1/",
 "films": [
 "https://swapi.dev/api/films/1/",
 "https://swapi.dev/api/films/5/",
 "https://swapi.dev/api/films/6/"
],
 "created": "2014-12-10T15:52:14.024Z",
 "edited": "2014-12-20T21:17:50.317Z",
 "url": "https://swapi.dev/api/people/6/"
}

Why would you want to do this at all? In this API, height and mass are strings.
However, if they are integers, and you don’t know their height or mass, the default
value would be 0. In this case, these values are wrong, but sometimes they might be
correct as well (say, for example, a Jedi Force ghost would have neither height nor
mass), but you can’t tell which is which. In this case, not showing it at all is the better
option.

138 | Chapter 9: JSON Recipes

CHAPTER 10

Binary Recipes

10.0 Introduction
So far our I/O-related recipes have been working with text data like in CSV or JSON.
This is good because this data is meant to be read by humans as well as machines.
However, verbose text data formats can sometimes be a disadvantage.

Speed, of course, is one consideration—it’s faster to transfer less data and being less
verbose helps. With the proliferation of Internet of Things (IoT) devices and sensors,
we often need to resort to low-bandwidth networks to send data. Memory and
storage space is the other consideration. Smaller devices and sensors, often powered
by batteries, mean that you cannot afford to use a lot of memory or storage for
the data.

All this comes down to compacting data formats to the bit and byte levels. There are
many such formats in existence already—storing data in smaller sizes has always been
a necessity for past computing. Some recently popular formats include BSON (Binary
JSON), Protocol Buffers/protobuf from Google, and Apache Thrift from Facebook.

In this chapter, you’ll go through Go’s binary format, gob. You’ll also build your
custom binary format using the encoding/binary package. In both cases, this chapter
discusses how you can encode, store, and decode these formats.

139

10.1 Encoding Data to gob Format Data
Problem
You want to encode structs into binary gob format.

Solution
Use the encoding/gob package to encode the structs into bytes that can be stored or
sent elsewhere.

Discussion
The encoding/gob package is a Go library to encode and decode a binary format. The
data can be anything but is particularly useful with Go structs. You should be aware
that gob is a proprietary Go binary format. Although there are attempts to decode
gob in other languages, it is not a widely used format like protobuf or Thrift. It is
advisable to use a more commonly used format if you have more complex use cases
for binary data.

Take a look at an example. You want to deploy small electricity meters all over a
building to measure the consumption of energy in the building. The metering points
are not only per floor but also per unit, per area, and even per meeting room. They
will also be used in common areas, including lighting as well as larger loads like
lifts and escalators. The information you gather will help you monitor any abnormal
usage of electricity, identify wastage, and allocate costs to the different occupants of
the building. You are going to deploy a lot of these meters all over the building so the
communications use a low-powered wide area network (LP-WAN). Your requirement
is for data packets to be small so they can be transported through the LP-WAN
efficiently.

Start with a simple struct to capture the information from the meter:

type Meter struct {
Id uint32
Voltage uint8
Current uint8
Energy uint32
Timestamp uint64

}

You set a unique identifier for each meter; the voltage, current, and energy are what
is being measured; and the timestamp gives you the time the reading is taken. The
voltage and current are measured at the moment, but the energy in kilowatt-hours is
how much energy has been consumed since the meter started.

140 | Chapter 10: Binary Recipes

Next, see how you can take readings from the meter and write them to a stream to be
sent across the LP-WAN. For this, you will assume the following meter-reading data
will be available and construct a struct to contain the data:

var reading Meter = Meter{
Id: 123456,
Voltage: 229.5,
Current: 1.3,
Energy: 4321,
Timestamp: uint64(time.Now().UnixNano()),

}

You also use a file to represent the network and will write to it:

func write(data interface{}, filename string) {
file, err := os.Create("reading")
if err != nil {

log.Println("Cannot create file:", err)
}
encoder := gob.NewEncoder(file)
err = encoder.Encode(data)
if err != nil {

log.Println("Cannot encode data to file:", err)
}

}

First, you create a file named reading, which will be your Writer. You then create an
encoder around this writer and call Encode on it, passing it the struct instance. This
will encode the struct instance in the gob format and will write it to a file.

10.2 Decoding gob Format Data to Structs
Problem
You want to decode gob format data back to structs.

Solution
Use the encoding/gob package to decode the gob format data back to structs.

Discussion
Recipe 10.1 showed how to create gob format binary data from a struct. Re-creating
the struct instance from the gob data is very similar, except that you use Decode
instead:

func read(data interface{}, filename string) {
file, err := os.Open("reading")
if err != nil {

log.Println("Cannot read file:", err)

10.2 Decoding gob Format Data to Structs | 141

}
decoder := gob.NewDecoder(file)
err = decoder.Decode(data)
if err != nil {

log.Println("Cannot decode data:", err)
}

}

Open the file named reading, which you created from the previous recipe. This file
will be your Reader. You will create a decoder around the reader and then call Decode
on it, passing the struct instance to be populated with the data.

Call the read function and pass in a reference to a struct instance:

read(&reading, "reading")

The reading struct instance will be populated with the data after the call.

Now that you can write and read gob format, how does it compare with doing this
with JSON? First, the data setup for the benchmark tests:

type Meter struct {
Id uint32
Voltage float32
Current float32
Energy uint32
Timestamp uint64

}

var reading Meter = Meter{
Id: 123456,
Voltage: 229.5,
Current: 1.3,
Energy: 4321,
Timestamp: uint64(time.Now().UnixNano()),

}

var jsonString string = `{
"Id": 123456,
"Voltage": 229.5,
"Current": 1.3,
"Energy": 4321,
"Timestamp": "2009-11-10 23:00:00 +0000 UTC"
}`

var jsonData []byte = []byte(jsonString)
var gobData *bytes.Buffer

func init() {
gobData = bytes.NewBuffer([]byte{})
gob.NewEncoder(gobData).Encode(reading)

}

142 | Chapter 10: Binary Recipes

You have a struct instance reading to be used for encoding for both JSON and
gob, and jsonData and gobData slices to be used for decoding for JSON and gob,
respectively. The init function prepares the gobData in advance for decoding.

Now look at the benchmarking tests:

func BenchmarkEncodeJson(b *testing.B) {
encoder := json.NewEncoder(io.Discard)
b.ResetTimer()
for i := 0; i < b.N; i++ {

encoder.Encode(reading)
}

}

func BenchmarkEncodeGob(b *testing.B) {
encoder := gob.NewEncoder(io.Discard)
b.ResetTimer()
for i := 0; i < b.N; i++ {

encoder.Encode(reading)
}

}

func BenchmarkDecodeJson(b *testing.B) {
var data Meter
buf := bytes.NewReader(jsonData)
decoder := json.NewDecoder(buf)
b.ResetTimer()
for i := 0; i < b.N; i++ {

decoder.Decode(&data)
buf.Seek(0, 0)

}
}

func BenchmarkDecodeGob(b *testing.B) {
var data Meter
buf := bytes.NewReader(gobData.Bytes())
decoder := gob.NewDecoder(buf)
b.ResetTimer()
for i := 0; i < b.N; i++ {

decoder.Decode(&data)
buf.Seek(0, 0)

}
}

10.2 Decoding gob Format Data to Structs | 143

There’s nothing fancy here; each benchmark is as simple as possible to test the
encoding and decoding of JSON and gob formats. Here are the results:

goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch10_binary/benchmarks
BenchmarkEncodeJson-10 4835588 241.2 ns/op 24 B/op 1 allocs/op
BenchmarkEncodeGob-10 7738795 155.4 ns/op 24 B/op 1 allocs/op
BenchmarkDecodeJson-10 1000000 1023 ns/op 101 B/op 5 allocs/op
BenchmarkDecodeGob-10 13910449 81.27 ns/op 96 B/op 2 allocs/op
PASS
ok github.com/sausheong/gocookbook/ch10_binary/benchmarks 5.138s

Encoding gob, as you can see, is faster than encoding JSON, though the amount of
memory used is the same. Decoding gob is much faster than decoding JSON as well
and uses a lot less memory.

10.3 Encoding Data to a Customized Binary Format
Problem
You want to encode struct data to a customized binary format.

Solution
Design your customized format and use the encoding/binary package to write data
in structs to it.

Discussion
Using gob has a couple of drawbacks. First, gob is supported by Go only and works
best if both sender and receiver are written in Go. Second, gob stores the whole
struct, labels and all, which makes the encoded binary data relatively large. In fact,
there is no difference between the size of a piece of JSON data compared to the size of
a piece of gob data when they have the same content!

An alternative is to strip away the labels; for example, the Meter struct can be stored
this way. Figure 10-1 shows how data for the Meter struct will be stored.

Figure 10-1. Customized binary format for Meter

144 | Chapter 10: Binary Recipes

Remember uint8 is 1 byte, uint16 is 2 bytes, uint32 is 4 bytes, and uint64 is 8 bytes.
You don’t need the labels if you know the positions of the values.

Writing this format is surprisingly easy. You simply use binary.Write to write the
data from the struct instance into this format:

func main() {
file, err := os.Create("data.bin")
if err != nil {

log.Println("Cannot create file:", err)
}
err = binary.Write(file, binary.BigEndian, reading)
if err != nil {

log.Println("Cannot write to file:", err)
}

}

The first parameter is the writer you want to write to; in this case, it’s a file. The
second parameter is the byte order for format. The encoding/binary supports both
big-endian and little-endian, and in this case, you are using big-endian. The last
parameter is the struct instance you’re taking the data from.

If you look at the file that’s created, it’s just 24 bytes, as opposed to the earlier gob
format, which turned out to be 110 bytes. That’s a significant reduction if you’re
moving smaller packets of data over a low-bandwidth network.

You can check out the performance next. The benchmarking test is quite simple:

func BenchmarkEncodeBinary(b *testing.B) {
for i := 0; i < b.N; i++ {

binary.Write(io.Discard, binary.BigEndian, reading)
}

}

Run it against the other encoding benchmarks to see how fast they run:

goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch10_binary/benchmarks
BenchmarkEncodeJson-10 4699872 238.6 ns/op 24 B/op 1 allocs/op
BenchmarkEncodeGob-10 7612948 156.8 ns/op 24 B/op 1 allocs/op
BenchmarkEncodeBinary-10 5537563 216.9 ns/op 88 B/op 7 allocs/op
PASS
ok github.com/sausheong/gocookbook/ch10_binary/benchmarks 4.646s

You might have thought it would encode faster but it’s only slightly better than
encoding in JSON, and gob encoding beats it by quite a bit. In addition, it takes up
more memory doing the job.

10.3 Encoding Data to a Customized Binary Format | 145

While binary.Write is the easiest way to encode customized binary data, you can
also use the encoding/binary package to encode a struct instance manually. Here’s
how this can be done:

func main() {
file, err := os.Create("data.bin")
if err != nil {

log.Println("Cannot create file:", err)
}
defer file.Close()

buf := make([]byte, 24)
binary.BigEndian.PutUint32(buf[0:], reading.Id)
binary.BigEndian.PutUint32(buf[4:], math.Float32bits(reading.Voltage))
binary.BigEndian.PutUint32(buf[8:], math.Float32bits(reading.Current))
binary.BigEndian.PutUint32(buf[12:], reading.Energy)
binary.BigEndian.PutUint64(buf[16:], reading.Timestamp)
file.Write(buf)

}

First, you need to create a byte array. You know the format is 24 bytes so you make
the byte array correctly sized. Then you use the correct function in the binary.BigEn
dian struct to put the values in the struct instance into the various positions in the
byte array. For example, reading.Id is a unit32 so you use the PutUint32 method to
place the values in the byte array at the correct location.

The values in reading.Voltage and reading.Current are float32 so you need to
convert the value into the correct IEEE 753 binary representation first, before placing
it into the byte array.

Finally, when you are done, you write the byte array to the file.

It seems like a lot of work, and the file size remains the same, so check out the
performance:

func BenchmarkEncodeBinaryManual(b *testing.B) {
for i := 0; i < b.N; i++ {

buf := make([]byte, 4+4+4+4+8)
binary.BigEndian.PutUint32(buf[0:], reading.Id)
binary.BigEndian.PutUint32(buf[4:], math.Float32bits
(reading.Voltage))
binary.BigEndian.PutUint32(buf[8:], math.Float32bits
(reading.Current))
binary.BigEndian.PutUint32(buf[12:], reading.Energy)
binary.BigEndian.PutUint64(buf[16:], reading.Timestamp)
io.Discard.Write(buf)

}
}

146 | Chapter 10: Binary Recipes

Now run the benchmark:

goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch10_binary/benchmarks
BenchmarkEncodeJson-10 4720197 238.2 ns/op 24 B/op 1 allocs/op
BenchmarkEncodeGob-10 7697342 156.9 ns/op 24 B/op 1 allocs/op
BenchmarkEncodeBinary-10 5449068 217.5 ns/op 88 B/op 7 allocs/op
BenchmarkEncodeBinaryManual-10 78357111 15.28 ns/op 24 B/op 1 allocs/op
PASS
ok github.com/sausheong/gocookbook/ch10_binary/benchmarks 6.798s

It’s a world of difference! The performance is significantly better, and it uses less
memory than the Write alone.

10.4 Decoding Data with a Customized Binary
Format to Structs
Problem
You want to decode the customized binary format back to structs.

Solution
Use the encoding/binary package to take data from the binary format and
reconstruct structs from it.

Discussion
Decoding customized binary data into structs works the same way you’d expect:

func main() {
var data Meter
file, err := os.Open("bindata")
if err != nil {

log.Println("Cannot read file:", err)
}
err = binary.Read(file, binary.BigEndian, &data)
if err != nil {

log.Println("Cannot read binary:", err)
}

}

Start with creating a struct to contain your data. Instead of Write you use Read,
passing the reader to it, the byte order, and the struct instance you want to store data.
This will read the bytes from the file and write them to the struct.

10.4 Decoding Data with a Customized Binary Format to Structs | 147

Here’s how you can do it manually, instead of using a one-liner like Read:

func main() {
var data Meter = Meter{}
file, err := os.Open("data.bin")
if err != nil {

log.Println("Cannot read file:", err)
}
buf := make([]byte, 24)
file.Read(buf)
defer file.Close()

data.Id = binary.BigEndian.Uint32(buf[:4])
data.Voltage = math.Float32frombits(binary.BigEndian.Uint32(buf[4:8]))
data.Current = math.Float32frombits(binary.BigEndian.Uint32(buf[8:12]))
data.Energy = binary.BigEndian.Uint32(buf[12:16])
data.Timestamp = binary.BigEndian.Uint64(buf[16:])
fmt.Println(data)

}

First, you read the data from the file into a byte array. Then using the functions from
binary.BigEndian you extract the data from the byte array and rebuild a new struct
using the data.

It’s pretty straightforward so you would expect the performance to be good as well. To
check that out, compare the performance of reading with a single function, Read, to
doing it manually:

func BenchmarkDecodeBinary(b *testing.B) {
var data Meter
buf := bytes.NewReader(binData.Bytes())
b.ResetTimer()
for i := 0; i < b.N; i++ {

binary.Read(buf, binary.BigEndian, &data)
buf.Seek(0, 0)

}
}

func BenchmarkDecodeBinaryManual(b *testing.B) {
var data Meter
buf := binData.Bytes()
b.ResetTimer()
for i := 0; i < b.N; i++ {

data.Id = binary.BigEndian.Uint32(buf[:4])
data.Voltage = math.Float32frombits(binary.BigEndian.Uint32
(buf[4:8]))
data.Current = math.Float32frombits(binary.BigEndian.Uint32
(buf[8:12]))
data.Energy = binary.BigEndian.Uint32(buf[12:16])
data.Timestamp = binary.BigEndian.Uint64(buf[16:])

}
}

148 | Chapter 10: Binary Recipes

Remember for the single function call benchmark, you need to rewind the reader, but
the manual benchmark doesn’t need to rewind because you’re just reading from the
byte slice.

These are the benchmark results:

goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch10_binary/benchmarks
BenchmarkDecodeJson-10 1141518 1032 ns/op 101 B/op 5 allocs/op
BenchmarkDecodeGob-10 14736854 81.21 ns/op 96 B/op 2 allocs/op
BenchmarkDecodeBinary-10 14016166 85.29 ns/op 24 B/op 1 allocs/op
BenchmarkDecodeBinaryManual-10 1000000000 1.099 ns/op 0 B/op 0 allocs/op
PASS
ok github.com/sausheong/gocookbook/ch10_binary/benchmarks 5.939s

As expected, the single function decoding takes longer than with gob, but the perfor‐
mance is fast when you manually decode the data into structs. It’s a bit more tedious
to code, but the performance is there if you need it.

10.4 Decoding Data with a Customized Binary Format to Structs | 149

CHAPTER 11

Date and Time Recipes

11.0 Introduction
Time (and as an extension of that, date) manipulation is an important part of any
programming language. We use it to keep track of time, calculate the elapsed duration
between times, format dates and times for representation, and much more. However,
time manipulation is often not as straightforward as it seems.

Our computers have two different types of clocks—a wall clock and a monotonic
clock. The wall clock is what we’re used to and is literally a wall clock that we look at
to determine the time of day. The wall clock is usually synchronized with a Network
Time Protocol (NTP) server to set the correct time on the computer. As a result, the
wall clock can sometimes jump back and forth.

Also, the clock itself might be adjusted by a user or another program, so if you’re
using the wall clock to measure duration, the timing might not be accurate. For
example, if the clock is changed while you’re trying to measure how long a task takes,
the results might become a negative number!

A monotonic clock, on the other hand, provides a time that is always going forward.
With the same example, you won’t be affected by clock changes or adjustments. In
general, you should be using the wall clock to tell the time, and the monotonic clock
to measure duration.

Like many programming languages, Go has a pretty good package to help with time
and it’s called (no surprise here) the time package.

151

11.1 Telling Time
Problem
You want to know the current time.

Solution
Use time.Now to return the current time.

Discussion
To find the current time, you can do this:

time.Now()

This will return a Time struct instance that represents both the wall clock and
monotonic clock reading.

11.2 Doing Arithmetic with Time
Problem
You want to do simple addition and subtraction with time.

Solution
Use Add to add or subtract a duration to or from a given time. Use Sub to find the
difference between two Time structs.

Discussion
A Time struct represents an instant in time with nanosecond precision. You can
perform operations on it. For example, if you add a Duration to a Time struct, you
will get another Time struct:

t0 := time.Now()
t1 := t0.Add(10 * time.Minute) // add 10 minutes

When you add 10 minutes to the Time struct, you get a new Time struct that
is 10 minutes after the current time. What if you want to subtract 10 minutes?
You might think you use the Sub method but no; actually you just Add a negative
number instead:

t2 := to.Add(-10 * time.Minute) // subtract 10 minutes

152 | Chapter 11: Date and Time Recipes

So when do you use the Sub method? When you are trying to find the difference
between two Time structs:

t3 := t1.Sub(t2)

This will return a Duration type that is just an int64. You’ll learn more about
Duration in Recipe 11.5.

11.3 Representing Dates
Problem
You want to represent a date.

Solution
Use time.Time because there is no separate struct for date in the Go standard library.

Discussion
There is no Date struct in the time package or anywhere in the standard library.
There is, however, a Date function in the time package, which is used to create a
specific date and time, and returns a Time struct:

t := time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC)

The parameters you need are year, month, day, hour, minute, second, nanosecond,
and Location. You need a non-nil value for the Location parameter (using UTC
here) or else Date will panic.

You can see that all the values are int other than Location. Month is a special one
because there is a Month type (which is an int), and you can extract the name of the
month using a String method:

m := t.Month() // returns a Month type
m.String() // "November"

You can also extract the name of the day if you use the Weekday method on the
Time struct:

w := t.Weekday() // returns a Weekday type
w.String() // "Tuesday"

11.3 Representing Dates | 153

11.4 Representing Time Zones
Problem
You want to include the time zone information in a Time struct.

Solution
The Time struct includes a Location, which is the representation of the time zone.

Discussion
A time zone is an area that follows a standard time that roughly follows longitude but
in practice tends to follow political boundaries. All time zones are defined as offsets
of the Coordinated Universal Time (UTC), ranging from UTC-12:00 to UTC+14:00.

The Location struct in the time package represents a time zone. Go’s time package,
like many other libraries in different programming languages, uses the time zone
database managed by the Internet Assigned Numbers Authority (IANA).

This database, also known as tz or zoneinfo, contains data for many locations around
the world, and the latest as of this writing is 28 March 2023. The naming convention
for time zones in the tz database is in the form of Area/Location, for example
Asia/Singapore or America/New_York.

There are a few ways to create a Location struct. First, you can use LoadLocation
(loading the location from the tz database):

func main() {
 location, err := time.LoadLocation("Asia/Singapore")
 if err != nil {
 log.Println("Cannot load location:", err)
 }
 fmt.Println("location:", location)
 utcTime := time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC)
 fmt.Println("UTC time:", utcTime)
 fmt.Println("equivalent in Singapore:", utcTime.In(location))
}

This is what you should see:

location: Asia/Singapore
UTC time: 2009-11-10 23:00:00 +0000 UTC
equivalent in Singapore: 2009-11-11 07:00:00 +0800 +08

You can see that the name of the time zone is just 08 instead of Asia/Singapore. Load
Location simply loads the location from the tz database that’s in the computer it’s
running on. If you want to use different data, you can use the LoadLocationFromTZ
Data function instead.

154 | Chapter 11: Date and Time Recipes

Another way of creating a Location is to use the FixedZone function. This allows you
to create any location you want (without being in the tz database) and also name it
whatever you want:

func main() {
 location := time.FixedZone("Singapore Time", 8*60*60)
 fmt.Println("location:", location)
 utcTime := time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC)
 fmt.Println("UTC time:", utcTime)
 fmt.Println("equivalent in Singapore:", utcTime.In(location))
}

This is what you should see:

location: Singapore Time
UTC time: 2009-11-10 23:00:00 +0000 UTC
equivalent in Singapore: 2009-11-11 07:00:00 +0800 Singapore Time

As you can see, the name of the time zone is now Singapore Time.

11.5 Representing Duration
Problem
You want to specify a duration of time.

Solution
Use the Duration type to represent a span of time.

Discussion
The main representation for a span of time in the time package is, of course,
Duration. Duration is nothing fancy, though; it’s just an int64 with some interesting
methods. You normally create a Duration like this:

d := 2 * time.Hour

This creates two hours. You can find the pretty form by calling the String method, or
if you simply want to print it out to the screen, just do this:

fmt.Println(d)

and you should see this:

2h0m0s

What if you want to create 2 hours, 34 minutes, and 5 seconds? Just add them
together, of course (since Duration is just an int64):

d := (2 * time.Hour) + (34 * time.Minute) + (5 * time.Second)

11.5 Representing Duration | 155

If you want to find out the equivalent in minutes, you can do this:

d.Minutes()

Or in seconds, milliseconds, and so on using the respective methods. However, there
is no equivalent for anything larger than time.Hour.

11.6 Pausing for a Specific Duration
Problem
You want to pause the program for a duration of time.

Solution
Use time.Sleep to pause for a given duration.

Discussion
Sometimes you simply want to pause the program (or any goroutine) for some time.
Whether it is because you want to wait for something to happen or to simulate
processing time, it’s a useful trick to have up your sleeve.

To pause for a given duration, use time.Sleep and pass in the duration:

time.Sleep(2 * time.Minutes) // pause for 2 minutes

This will pause the current goroutine for two minutes. Since the main program is a
goroutine, if you run this in the main program, it will pause for two minutes while
other goroutines can continue running.

11.7 Measuring Lapsed Time
Problem
You want to measure the lapsed time and make sure that it is accurate.

Solution
Use the monotonic clock in the Time struct to find the lapsed time.

Discussion
One of the more popular uses of the time package, or any time-related libraries, is
to measure elapsed time. Go, like many other programming languages, uses the mon‐
otonic clock in the computer for this. Unlike some other programming languages,

156 | Chapter 11: Date and Time Recipes

though, the standard library in Go uses the same time package, and even methods,
for both purposes.

But where do you see this monotonic time? The Time struct contains the data but
only under certain circumstances. If you create a Time struct instance using time.Now,
and print out the struct, you will be able to see the monotonic clock:

t := time.Now()
fmt.Println(t)

When you run it you see this:

2021-10-09 13:10:43.311791 +0800 +08 m=+0.000093742

The m=+0.000093742 part is the monotonic clock. The part before that is the wall
clock. This is what the package documentation says:

If the time has a monotonic clock reading, the returned string includes a final field
“m=±<value>”, where value is the monotonic clock reading formatted as a decimal
number of seconds.

— time package documentation

But what does it mean by the monotonic clock reading formatted as a decimal num‐
ber of seconds? It’s a really small number! Actually, this just shows how long your
program has been running. This recipe has been showing you just a snippet, but this
snippet is part of a program. Take a look at the larger program:

package main
import (
 "fmt"
 "time"
)
func main() {
 t := time.Now()
 fmt.Println(t)
}

Run this and you should also see this:

2021-10-09 13:10:43.311791 +0800 +08 m=+0.000093742

You can change it a bit by extending the running time before you print out the
current time:

func main() {
 time.Sleep(10 * time.Second) // pretend to do something for 10s
 t := time.Now()
 fmt.Println(t)
}

Here you’re going to Sleep for 10 seconds. This is what you will see after 10 seconds:

2021-10-09 13:21:28.090604 +0800 +08 m=+10.000173581

11.7 Measuring Lapsed Time | 157

Does this make more sense now? You can see that m is slightly more than 10 seconds
because that’s the running time of the program at that point in time. Now, here’s how
you measure lapsed time with the monotonic clock:

func main() {
 time.Sleep(10 * time.Second) // pretend to do something for 10s
 t1 := time.Now()
 t2 := time.Now()
 fmt.Println("t1:", t1)
 fmt.Println("t2:", t2)
 fmt.Println("difference:", t2.Sub(t1))
}

This is what you should see after 10 seconds:

t1: 2021-10-09 15:12:12.432516 +0800 +08 m=+10.005330678
t2: 2021-10-09 15:12:12.432516 +0800 +08 m=+10.005330984
difference: 306ns

If you subtract the two monotonic clock values, you see it will match to 306ns, which
is the amount of time that elapsed between calling time.Now twice consecutively:

10.005330984 - 10.005330678 = 0.000000306

The interesting point to note here is that if you use the wall clock, you won’t be able to
tell the difference at all!

t1: 2021-10-09 15:12:12.432516 +0800 +08 m=+10.005330678
t2: 2021-10-09 15:12:12.432516 +0800 +08 m=+10.005330984

As noted earlier, the monotonic clock data is not always available in the Time struct.
Methods such as AddDate, Round, and Truncate are wall clock computations so the
Time structs they return won’t have the monotonic clock. Similarly, In, Local, and
UTC interpret the wall clock, so the Time structs they return won’t have the monotonic
clock either.

You can also remove the monotonic clock yourself. Just use the Round method with a
0 parameter:

t := time.Now().Round(0)
fmt.Println(t)

You should get something like this:

2021-10-09 15:25:31.369518 +0800 +08

You no longer see the monotonic clock here. So what happens when you try to call
Sub (or any other monotonic methods) on a Time struct instance that doesn’t have the
monotonic clock?

158 | Chapter 11: Date and Time Recipes

func main() {
 t1 := time.Now().Round(0)
 t2 := time.Now().Round(0)
 fmt.Println("t1:", t1)
 fmt.Println("t2:", t2)
 fmt.Println("difference:", t2.Sub(t1))
}

Now t1 and t2 have their monotonic clocks stripped away. If you try to find the
difference between these two times, you will get a big fat 0. This is because the
operation will be done on the wall clock instead of the monotonic clock, and the wall
clock just isn’t fine-grained enough:

t1: 2021-10-09 15:28:38.451622 +0800 +08
t2: 2021-10-09 15:28:38.451622 +0800 +08
difference: 0s

You can pretend to do something in between the two calls to time.Now:

func main() {
 t1 := time.Now().Round(0)
 time.Sleep(10 * time.Second) // pretend to do something for 10s
 t2 := time.Now().Round(0)
 fmt.Println("t1:", t1)
 fmt.Println("t2:", t2)
 fmt.Println("difference:", t2.Sub(t1))
}

You should now be able to see the difference:

t1: 2021-10-09 15:25:31.369518 +0800 +08
t2: 2021-10-09 15:25:41.372606 +0800 +08
difference: 10.003088s

11.8 Formatting Time for Display
Problem
You want to format a Time struct instance to display in various formats.

Solution
Use the Format function with the appropriate layout pattern to display time in the
format you want.

11.8 Formatting Time for Display | 159

Discussion
Date and time formats are important—important enough that there is an ISO stan‐
dard, ISO 8601, as well as an IETF RFC, the RFC 3339. Both these standards define
a date and time format, with ISO 8601 being the wider-scoped document. Other than
these two there are also a bunch of RFCs that talk about date and time formats. These
time formats are described in the following paragraphs.

ISO 8601
ISO 8601 uses the Gregorian calendar and a 24-hour clock system. Calendar dates are
commonly in the basic format YYYYMMDDD or YYMMDD or YYYY-MM-DD in
the extended format. When the day is omitted, only the extended format YYYY-MM
is allowed.

ISO 8601 allows for week date representations that look something like this: 2021-
W04–2. The week date formats are YYYYWww or YYYYWwwD or YYYY-Www or
YYYY-Www-D. The week is represented by the week number prefixed by a W, from
W01 to W53. D is the weekday number from 1 (Monday) to 7 (Sunday). The basic
format for time is Thhmmss with the extended format being Thh:mm:ss. The latest
ISO 8601–1:2019—allows T to be omitted in the extended format.

Time zones in ISO 8601 are represented as UTC if there is a Z after the time without
space (for example 13:57 UTC is 1:57 p.m. UTC time, represented in ISO 8601 as
13:57Z). If there is an offset after the time without space, it will be the time zone
offset (for example 1:57 p.m. in Singapore is represented as 13:57+8:00). Any time
representation with Z or offset is considered local time.

RFC 3339
The RFC 3339 is very similar to the ISO 8601 and is sometimes considered a subset of
the ISO standard. However there are certain differences; for example, T is mandated
for time representations in ISO 8601 before the 2019 version, all dates must contain
hyphens in RFC 3339, and RFC 3339 doesn’t cater to week date representations.

ISO standards are created by the industry and government and often used for reg‐
ulations so the language is more formal and used more widely by many different
industries. RFCs are standards created by the Internet Engineering Task Force (IETF)
for the internet and other technologies so they tend to be more focused on the
internet.

Other formats
Besides these two most widely used standards, there are other time and date
standards, for example:

160 | Chapter 11: Date and Time Recipes

RFC 822
RFC 822 is the standard for ARPA Internet Text Messages (what we know as
email) and is one of the oldest and most important internet standards. It has
nothing to do with date or time, but it does provide a date and time specification
in the standard.

RFC 850
RFC 850 is the standard for the Interchange of USENET Messages. Again it has
nothing to do with date and time, but obviously, USENET messages need a date-
time format, and it’s defined here as well. USENET is a distributed discussion
system that was very popular in the earlier days of the internet and the precursor
to the internet forums.

RFC 1123
RFC 1123 is part of a pair of standards that defines the requirements for internet
hosts. This RFC described application and support protocols while the compan‐
ion RFC 1122 covered the communication protocol layers. As before, it has a date
and time specification, which also references RFC 822.

Formatting time

The time package formats time via pattern-based layouts. What this means is that
you provide a particular format layout that is like a reference, and the time package
will format the time accordingly.

It’s quite straightforward to do this. The Format method of the Time struct will take in
a layout and return the formatted string:

func main() {
 t := time.Now()
 fmt.Println(t.Format("3:04PM"))
 fmt.Println(t.Format("Jan 02, 2006"))
}

When you run this you should see something like:

1:45PM
Oct 23, 2021

That’s simple enough. The time package makes it even simpler because it has several
layout constants that you can use directly (note those RFCs described earlier):

func main() {
 t := time.Now()
 fmt.Println(t.Format(time.UnixDate))
 fmt.Println(t.Format(time.RFC822))
 fmt.Println(t.Format(time.RFC850))
 fmt.Println(t.Format(time.RFC1123))
 fmt.Println(t.Format(time.RFC3339))
}

11.8 Formatting Time for Display | 161

Here’s the output:

Sat Oct 23 15:05:37 +08 2021
22 Oct 23 15:05 +08
Saturday, 23-Oct-21 15:05:37 +08
Sat, 23 Oct 2021 15:05:37 +08
2021-10-23T15:05:37+08:00

Besides the RFCs, there are a few other formats including the interestingly named
Kitchen layout, which is just 3:04 p.m. Also if you’re interested in doing timestamps,
there are a few timestamp layouts as well:

func main() {
 t := time.Now()
 fmt.Println(t.Format(time.Stamp))
 fmt.Println(t.Format(time.StampMilli))
 fmt.Println(t.Format(time.StampMicro))
 fmt.Println(t.Format(time.StampNano))
}

Here’s the output:

Oct 23 15:10:53
Oct 23 15:10:53.899
Oct 23 15:10:53.899873
Oct 23 15:10:53.899873000

You might have seen earlier that the layout patterns are like this:

t.Format("3:04PM")

The full layout pattern is a layout by itself—it’s the time.Layout constant:

const Layout = "01/02 03:04:05PM '06 -0700"

As you can see, the numerals are ascending, starting with 1 and ending with 7.
Because of a historic error (mentioned in the time package documentation), the date
uses the American convention of putting the numerical month before the day. This
means 01/02 is January 2 and not 1 February.

The numbers are not arbitrary. Take this code fragment, where you use the format
“3:09pm” instead of “3:04pm”:

func main() {
 t := time.Date(2009, time.November, 10, 23, 45, 0, 0, time.UTC)
 fmt.Println(t.Format(time.Kitchen))
 fmt.Println(t.Format("3:04pm")) // the correct layout
 fmt.Println(t.Format("3:09pm")) // mucking around
}

This is the output:

11:45pm
11:45pm
11:09pm

162 | Chapter 11: Date and Time Recipes

You can see that the time is 11:45 p.m., but when you use the layout 3:09 p.m., the
hour is displayed correctly while the minute is not. It shows :09, which means it’s
considering 09 as the label instead of a layout for minute.

What this means is that the numerals are not just a placeholder for show. The month
must be 1, day must be 2, hour must be 3, minute must be 4, second must be 5, year
must be 6, and the time zone must be 7.

This is something that new Go developers (or anyone being careless) can stumble
on. The Format method doesn’t return an error so you can’t tell if the time format
returned is correct, unless you have very explicit tests for them.

11.9 Parsing Time Displays Into Structs
Problem
You want to parse time display strings to Time structs.

Solution
Use the Parse method to convert a time display string to a Time struct.

Discussion
While the Format method converts a Time struct instance to a string representation
according to the layout, the Parse method converts a string representation into a
Time struct, according to a layout. The layout here is the same as in Format:

func main() {
 str := "4:31am +0800 on Oct 1, 2021"
 layout := "3:04pm -0700 on Jan 2, 2006"
 t, err := time.Parse(layout, str)
 if err != nil {
 log.Println("Cannot parse:", err)
 }
 fmt.Println(t.Format(time.RFC3339))
}

This is the result:

2021-10-01T04:31:00+08:00

You might notice that the Parse function returns two values, and one of them is an
error. This is usually indicative that errors can occur during parsing. Sure enough, if
your string or your layout is not what is expected, the compiler will scold you.

Say you have this layout pattern instead:

layout := "3:04pm -0700"

11.9 Parsing Time Displays Into Structs | 163

You are removing the date information because you just want to have the time. This is
the error you will get:

2021/10/23 18:16:42 Cannot parse: parsing time "4:31am +0800 on Oct 1, 2021":
extra text: " on Oct 1, 2021"

Your value string has extra stuff and the compiler doesn’t like it. What about the other
way around; you keep the earlier layout but instead remove the date part of the value
string like this:

str := "4:31am +0800"

You get an error as well. The compiler now complains that you don’t have enough
stuff in your value string (it’s a bit sarcastic):

2021/10/23 18:19:17 Cannot parse: parsing time "4:31am +0800" as "3:04pm -0700 on
Jan 2, 2006": cannot parse "" as " on "

Earlier you saw that using the wrong numeral for the layout will result in wrong
formatting. This happens in Parse as well, except that this time you will be getting an
error. Say you change the layout to this:

layout := "3:09pm -0700 on Jan 2, 2006"

Notice that you changed the layout to :09 instead of :04. You will get this error:

2021/10/23 20:46:36 Cannot parse: parsing time "4:31am +0800 on Oct 1, 2021" as
"3:09pm -0700 on Jan 2, 2006": cannot parse "31am +0800 on Oct 1, 2021" as ":09"

If you’re using a time zone abbreviation like SGT or EST, it will still be parsed and it
will be considered a location. However, the offset will be zero. Yes, you got that right.
It will say what you want it to say but totally ignore your intention of using it as the
time zone.

Take a look at what this means. If your value string and layout are like this:

str := "4:31am SGT on Oct 1, 2021"
layout := "3:04pm MST on Jan 2, 2006"

Print the parsed Time struct instance with a few more layouts from the package:

fmt.Println(t.Format(time.RFC822)) // "02 Jan 06 15:04 MST"
fmt.Println(t.Format(time.RFC822Z)) // "02 Jan 06 15:04 -0700"
fmt.Println(t.Format(time.RFC3339)) // "2006-01-02T15:04:05Z07:00"

The RFC 822Z layout uses the numeric offset while the RFC 822 layout uses the
abbreviation for time zone representation. This is what you get:

01 Oct 21 04:31 SGT
01 Oct 21 04:31 +0000
2021-10-01T04:31:00Z

164 | Chapter 11: Date and Time Recipes

As you can see, the abbreviation is printed nicely, and no error is returned but the
offset is obviously wrong since SGT is +0800. In fact, in the RFC 3339 layout shows
that it is actually in UTC (it shows a Z).

This is something that can easily trip up someone who is not aware or careless
because there is an error returned.

Why is it like this? According to the package documentation:
When parsing a time with a zone abbreviation like MST, if the zone abbreviation
has a defined offset in the current location, then that offset is used. The zone abbrevia‐
tion “UTC” is recognized as UTC regardless of location. If the zone abbreviation is
unknown, Parse records the time as being in a fabricated location with the given zone
abbreviation and a zero offset.

— time package documentation

To solve this problem, you should use a numeric offset like +0800 instead of an
abbreviation like SGT.

11.9 Parsing Time Displays Into Structs | 165

CHAPTER 12

Structs Recipes

12.0 Introduction
In Go, a struct is a collection of named data fields. It is used to group related data to
represent an entity. Structs are usually defined and later instantiated when needed.

Structs are an important construct in Go. For programmers who come from an
object-oriented programming background, this will be familiar (and maybe unfami‐
liar at the same time) as structs can be considered a stand-in for classes. Some
concepts are similar; for example, you can define a struct like you define a class,
and you can define methods for a struct as well. Go also supports polymorphism
using interfaces and encapsulation using exported and nonexported struct fields and
methods.

However, structs do not inherit from other structs (you can compose structs with
other structs, though), and there are no objects (though instances of structs are
sometimes called objects) because there are no classes.

Go is a profoundly object oriented language.
—Rob Pike

Go is object oriented, but it’s not type oriented.
—Russ Cox

167

12.1 Defining Structs
Problem
You want to define a struct.

Solution
Define a struct using the type … struct syntax.

Discussion
To define a struct you can use the type … struct syntax. Start with a struct that
represents data related to a person:

type Person struct {
Id int
Name string
Email string

}

You can group all kinds of data types within a struct, even other structs. For example,
if you want to add a date of birth to the Person struct:

type Person struct {
Id int
Name string
Email string
BirthDate time.Time

}

In this example, both the struct name and all the field names are capitalized (that
is, they start with an uppercase letter). This means both the class and the fields are
exported outside of the package. As you may have guessed, if the names are not
capitalized, it means that the struct or the fields are not exported and not visible
outside of the package.

If the field names are not capitalized but the struct name is, that means the struct is
exported and visible outside of the package but the fields are not directly accessible:

type Person struct {
Id int
Name string
Email string
birthDate time.Time

}

In this example, only Id, Name, and Email are visible outside of the package. This
is useful because when you’re creating a package you might want to put the data

168 | Chapter 12: Structs Recipes

together but you want the programmer using the package to only use the methods
and not the struct fields directly. This is a quite common pattern.

You can even define struct fields that are functions. This is different from defining
methods for a struct. Here’s how that looks:

type NameFunc func(string, string) string

type Person struct {
 Id int
 GivenName string
 FamilyName string
 Email string
 Name NameFunc
}
asian := func(giveName string, familyName string) string {
 return familyName + " " + giveName
}

western := func(giveName string, familyName string) string {
 return giveName + " " + familyName
}

Asian names are often displayed with the family name first, followed by the given
name, while Western names display the given name first, followed by the family
name. However, under different conditions, the ordering of the names might be
different as well. For example, Japanese names are usually in the Western name order
when mentioned in Western media, while in Japanese (or other Asian) media their
names are in the Asian name order. Hayao Miyazaki, the famous founder of Studio
Ghibli, has the family name Miyazaki and the given name Hayao. In Western media,
he is known as Hayao Miyazaki, while in Japanese media he is known as Miyazaki
Hayao.

In this case, you need to display names dynamically, depending on the context. You
can do this by making the Name field a function, and accordingly, during runtime, you
can assign whichever function best fits the situation. In addition, this gives flexibility
to some other programmers using the struct to define custom functions to display
names accordingly:

person := Person{
 Id: 1,
 GivenName: "Sau Sheong",
 FamilyName: "Chang",
 Email: "sausheong@email.com",
 Name: asian,
}

fmt.Println("Name:", person.Name(person.GivenName, person.FamilyName))
person.Name = western
fmt.Println("Name:", person.Name(person.GivenName, person.FamilyName))

12.1 Defining Structs | 169

This is what you will see when you run the code:

Name: Chang Sau Sheong
Name: Sau Sheong Chang

So how does this differ from using methods? Methods are associated with the structs
and cannot be changed at runtime, but a function field can be reassigned during
runtime. Function fields are also often used to store callback functions.

12.2 Creating Struct Methods
Problem
You want to create a method for your struct.

Solution
Create a function that associates with a struct.

Discussion
You can define methods, which are functions that are associated with the struct.
Here’s how you can associate a function with a struct.

First, you add a new field called roles to the Person struct you used earlier. This is a
slice of strings that stores the roles that the person plays.

Then you make the data field nonexported so that it’s not directly accessible outside
of the package. However, you still want the roles to be available (just not modifiable)
so you add an exported method called Roles that returns a slice of strings that
represents the roles:

type Person struct {
Id int
GivenName string
FamilyName string
Email string
Name NameFunc
roles []string

}

func (person Person) Roles() (roles []string) {
roles = make([]string, len(person.roles))
copy(roles, person.roles)
return

}

The slice is a copy of the actual roles because slices are references; if you return it
directly, the caller can still modify the roles even though it’s not exported.

170 | Chapter 12: Structs Recipes

To check if a person has a specific role, use a method called HasRole that takes in a
role to check and returns either true or false depending on if the role is found in the
roles field:

func (person Person) HasRole(role string) (has bool) {
for _, r := range person.roles {

if role == r {
has = true

}
}
return

}

You can tell the difference between a function and a method by what is placed after
the func keyword. Functions have the function name after the func keyword while
methods have a receiver after the func keyword and before the function name. A
receiver is a copy of the struct and can be used within the method. In this example,
(person Person) is placed after the func keyword, where person is the receiver of
type Person. It’s important to know that the receiver is a copy of the struct and not
the actual struct, and whatever you do with it will not be reflected in the original.

If you want the changes made within the method to affect the struct, you will need to
make the receiver a pointer. Take a look at another method:

func (person *Person) AddRole(role string) {
person.roles = append(person.roles, role)

}

The receiver person is now a pointer to the struct Person, and anything you do with
the receiver will be done on the actual struct. In this case, when you append a new
role to existing roles, it will be added to the struct.

Here’s how you can use these methods:

person := Person{
 Id: 1,
 GivenName: "Sau Sheong",
 FamilyName: "Chang",
 Email: "sausheong@email.com",
}
fmt.Println("Roles:", person.Roles())
person.AddRole("approver")
fmt.Println("Roles:", person.Roles())
fmt.Println("Has approver role?", person.HasRole("approver"))

This is what you should see:

Roles: []
Roles: [approver]
Has approver role? true

12.2 Creating Struct Methods | 171

First, you create a Person struct instance called person. You check on the roles that
this person has by calling the Roles method, using the dot notation. This notation is
just putting a dot after the struct instance, followed by the method name: very similar
to the way you call functions. The difference is when you call functions, you put a dot
after the package name followed by the function name.

As you can see, there are no roles in the person struct instance. You call the AddRole
method on the Person struct to add a new role to it. After doing that, you call Roles
again to show the roles in the person struct instance. You see the changes in the roles,
precisely because the AddRole method made changes to the struct instance itself. If
the receiver for AddRole hadn’t been a pointer to a struct, but instead was just a struct,
the original struct would not be modified and you would not see the new role.

While it is common to assign methods to structs, you can also create methods on any
user-defined types, even if you redefine an existing type:

type Strings string

func (s Strings) Len() int { return len(s) }

In this example, you redefined the string type as Strings and added a method
called Len that returns the length of the string. You can now create a string using the
Strings type and then call Len on an instance of Strings to get its length:

s := Strings("hello")
fmt.Println(s.Len())

12.3 Creating and Using Interfaces
Problem
You want to create interfaces for code reusability and better code organization.

Solution
Use the type … interface syntax to create an interface.

Discussion
Whether Go is an object-oriented programming language is quite gray. On one hand,
it doesn’t have classes or type hierarchy or inheritance, but on the other, it supports
several object-oriented programming concepts like encapsulation and composition
and what we’ll be discussing in this recipe—polymorphism.

Polymorphism is a core concept in object-oriented programming. In simple terms,
polymorphism is a concept that objects of different types can be accessed through a
single interface. If you imagine a circular hole of a certain radius, you can pass a ball

172 | Chapter 12: Structs Recipes

through it, or you can pass a coin through it, or even a cylinder. Each of these objects
is a different type but they all fit in the same circular hole interface. Go implements
polymorphism through interfaces. An interface in Go is a type that has a certain set
of methods. Any types that implement the same methods are considered to be of that
interface.

Here’s an example from the standard library:

type Reader interface {
Read(p []byte) (n int, err error)

}

The Reader interface from the io package has only one method, which is Read, a
method that takes in a slice of bytes and returns an integer and an error. Any struct
that has a method named Read with the same method signature will be considered to
implement the Reader interface.

You can think of it this way: any struct that implements Read with the same method
signature is a Reader. By convention, one-method interfaces have noun names,
following the verb names for the methods. For example, the interface that has a
single verb method Read would be called Reader. Other names like Writer, Stringer,
Formatter, and so on, have single methods named Write, String, Format, and so on.

This example shows how you can use interfaces. You’ll use the Person struct again:

type Person struct {
 Id int
 Email string
}

Create a new interface named Worker with only one method, Work:

type Worker interface {
Work()

}

You want to pay your workers, so you create a function named Pay that has a single
parameter of type Worker:

func Pay(worker Worker) {
worker.Work()
fmt.Println("and getting paid!")

}

Now, try to create a new Person struct instance and try to pay this person:

person := Person{
 Id: 1,
 Email: "sausheong@email.com",
}

Pay(person)

12.3 Creating and Using Interfaces | 173

When you try to compile this, Go will quickly tell you that person is not a Worker
because it doesn’t implement the Work method:

cannot use person (type Person) as type Worker in argument to Pay:
Person does not implement Worker (missing Work method)

Once Person implements Work, you can compile the code:

func (person Person) Work() {
fmt.Print("Working hard ... ")

}

This is what you see when you run the program:

Working hard ... and getting paid!

The Pay function only accepts types that implement the Work method, which is why
you can confidently call the Work method on the worker. This also means you can
pass other structs into the Pay method as long as it implements Work.

Do that and see what happens:

type Machine struct {
Id int
IPAddress string

}

func (machine Machine) Work() {
fmt.Print("Automating stuff ... ")

}

Now try to pay the machine:

person := Person{
 Id: 1,
 Email: "sausheong@email.com",
}
machine := Machine{
 Id: 2,
 IPAddress: "192.168.0.1",
}

Pay(person)
Pay(machine)

This is what you should see:

Working hard ... and getting paid!
Automating stuff ... and getting paid!

In other words, it doesn’t matter if it’s a Person or a Machine; if it works it will
get paid.

174 | Chapter 12: Structs Recipes

You might notice that no special syntax indicates that a struct implements a particular
interface, unlike some other languages. This could make it difficult to know which
interfaces your struct implements.

12.4 Creating Struct Instances
Problem
You want to create an instance of a struct.

Solution
Create a struct instance directly using the name of the struct, or a pointer to a struct
instance using the new keyword.

Discussion
There are two ways to create an instance of a struct. The first is to directly use the
name of the struct:

type Person struct {
Id int
Name string
Email string

}

person := Person{}

This creates an empty struct instance, which you can populate subsequently by
accessing the struct fields:

person.Id = 1
person.Name = "Chang Sau Sheong"
person.Email = "sausheong@email.com"

A quicker way is to create and initialize the struct instance at the same time:

person := Person{1, "Chang Sau Sheong", "sausheong@email.com"}

This is pretty straightforward. However, you need to specify all field values.

You can also make the code clearer by indicating the name of the data field during
initialization. When you do this, you can leave out field values:

person := Person{
 Id: 1,
 Email: "sausheong@email.com",
}

Note that the last data field line also ends with a comma.

12.4 Creating Struct Instances | 175

To create a reference to a struct instance you can use the address operator (&):

person := &Person{
 Id: 1,
 Name: "Chang Sau Sheong",
 Email: "sausheong@email.com",
}

This brings us to the second way of creating struct instances, which is to use the new
built-in function. The new function is used for more than creating struct instances
though; it can be used to create references to a specified type. In this case, you’re
using it to create a reference to a struct instance:

person := new(Person)

When creating a struct instance this way, new returns a reference to the struct
instance and not the actual instance itself. In other words, this is equivalent to the
following code:

person := &Person{}

Should you pass a struct instance by copy or by reference? The usage is quite clear;
you would want to pass by reference if you want the function to modify the struct
instance in some way. If not, both ways work. In this case, wouldn’t it be better to
always pass by reference so you don’t need to think too much about it?

Not really, because there is a difference in performance. There are two ways we
normally pass struct instances around. The first is passing a struct instance down to a
function either by copy or by reference.

Here’s a quick benchmark on the performance:

func byCopyDown(p Person) {
_ = fmt.Sprintf("%v", p)

}

func byReferenceDown(p *Person) {
_ = fmt.Sprintf("%v", p)

}

You create two functions that take a struct instance by copy and a struct instance by
reference and use them the same way. Then you create two benchmark tests to see the
difference in performance:

func BenchmarkStructInstanceDownCopy(b *testing.B) {
for i := 0; i < b.N; i++ {

p := Person{
Id: 1,
GivenName: "Sau Sheong",
FamilyName: "Chang",
Email: "sausheong@email.com",

}

176 | Chapter 12: Structs Recipes

byCopyDown(p)
}

}

func BenchmarkStructInstanceDownReference(b *testing.B) {
for i := 0; i < b.N; i++ {

p := &Person{
Id: 1,
GivenName: "Sau Sheong",
FamilyName: "Chang",
Email: "sausheong@email.com",

}
byReferenceDown(p)

}
}

The benchmarks are straightforward; you just create the structs and pass them by
copy or by reference into your earlier functions. When you run the benchmark, this
is what you should see:

% go test -bench=BenchmarkStructInstanceDown
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch13_structs
BenchmarkStructInstanceDownCopy-10 2387568 490.7 ns/op
BenchmarkStructInstanceDownReference-10 1704202 703.6 ns/op

Passing down by copy is faster than passing down by reference. Now let’s look at the
second direction, which is passing the struct instance by copy or by reference back
from the function to the caller.

You create two functions. One returns a struct instance by copy, and the other returns
a struct instance by reference:

func byCopyUp() Person {
return Person{

Id: 1,
GivenName: "Sau Sheong",
FamilyName: "Chang",
Email: "sausheong@email.com",

}
}

func byReferenceUp() *Person {
return &Person{

Id: 1,
GivenName: "Sau Sheong",
FamilyName: "Chang",
Email: "sausheong@email.com",

}
}

12.4 Creating Struct Instances | 177

As before, you create two benchmark tests to check their performance:

func BenchmarkStructInstanceUpCopy(b *testing.B) {
var p Person
b.ResetTimer()
for i := 0; i < b.N; i++ {

p = byCopyUp()
}
b.StopTimer()
_ = fmt.Sprintf("%v", p)

}

func BenchmarkStructInstanceUpReference(b *testing.B) {
var p *Person
b.ResetTimer()
for i := 0; i < b.N; i++ {

p = byReferenceUp()
}
b.StopTimer()
_ = fmt.Sprintf("%v", p)

}

When you run it this is what you should see:

% go test -bench=BenchmarkStructInstanceUp
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch13_structs
BenchmarkStructInstanceUpCopy-10 144514798 8.181 ns/op
BenchmarkStructInstanceUpReference-10 36263088 31.82 ns/op
PASS
ok github.com/sausheong/gocookbook/ch13_structs 3.358s

The difference is even more significant when passing up. In general, if you don’t need
to pass structs around by reference, you should stick with passing by copy.

12.5 Creating One-Time Structs
Problem
You want to organize a collection of struct fields without defining it as a struct.

Solution
Use anonymous structs, which are structs that are not named and are created for
one-time use.

178 | Chapter 12: Structs Recipes

Discussion
Go allows you to create anonymous structs, which are structs that are not named and
do not need to be predefined:

person := struct {
 Id int
 Name string
 Email string
}{1, "Chang Sau Sheong", "sausheong@email.com"}

When you define an anonymous struct you have to create the struct instance at the
same time. You can also create the struct instance with the struct field names:

person = struct {
 Id int
 Name string
 Email string
}{
 Id: 1,
 Name: "Chang Sau Sheong",
 Email: "sausheong@email.com",
}

Either way, this is a one-time use; each time you want to create an instance of the
struct you need to include the definition again. If you are going to use this struct
more than once, you want to define it first.

There are a few use cases for anonymous structs but one particular case is pretty
useful for bundling multiple pieces of unrelated data together to be sent to a function.
Here’s a concrete example.

Say you want to send a struct to an HTML template such that an HTML page will be
generated by substituting data from the struct into various locations in the template:

type Person struct {
 Id int
 Name string
 Email string
}
person := Person{1, "Chang Sau Sheong", "sausheong@email.com"}
tpl := `<div>
 <div>{{ .Id }}</div>
 <div>{{ .Name }}</div>
 <div>{{ .Email }}</div>
</div>
`
templ := template.Must(template.New("person").Parse(tpl))
templ.Execute(os.Stdout, person)

You have a template named tpl and want to substitute various pieces of data in it
from a struct you pass to it. In this case, you pass the Person struct to the Execute

12.5 Creating One-Time Structs | 179

method. The template will substitute the data at the various locations and if you run
the preceding code, you will get this:

<div>
<div>1</div>
<div>Chang Sau Sheong</div>
<div>sausheong@email.com</div>

</div>

This is all well and good but what if you want to display a piece of information on the
same page that has nothing to do with a person, for example, a message for the user?
You can’t add a field into the Person struct, as that would be silly and awkward. You
could define another struct that wraps around the message and the Person struct but
it’s only going to be used for that one single page. You have many other pages with
other things to show besides the main piece of data. You can’t possibly define multiple
structs, each to pass in some data to the page.

Here is where anonymous structs make a lot of sense:

type Person struct {
 Id int
 Name string
 Email string
}
person := Person{1, "Chang Sau Sheong", "sausheong@email.com"}
tpl := `<h1>{{ .Message }}</h1>
<div>

<div>{{ .P.Id }}</div>
<div>{{ .P.Name }}</div>
<div>{{ .P.Email }}</div>

</div>
`
data := struct {
 P Person
 Message string
}{person, "Hello World!"}

templ := template.Must(template.New("person").Parse(tpl))
templ.Execute(os.Stdout, data)

Instead of sending in the Person struct, you create an anonymous struct that wraps
around Person as well as a string message and send that in instead. This is what you
will see when you run the code:

<h1>Hello World!</h1>
<div>

<div>1</div>
<div>Chang Sau Sheong</div>
<div>sausheong@email.com</div>

</div>

180 | Chapter 12: Structs Recipes

This way, you can preserve your defined structs and, if there are other pieces of data
to send to the page, you can create an anonymous struct to wrap around the data and
send that in.

A caveat on using anonymous structs: when you pass anonymous structs to a func‐
tion, that function needs to either accept any (as in the case of the Execute method
earlier) or the fields need to match in that function.

12.6 Composing Structs from Other Structs
Problem
You want a struct that has data and methods of another struct.

Solution
Embed an unnamed struct within another struct. The outer struct will gain the data
and methods of the inner struct.

Discussion
Inheritance is one of the major concepts in object-oriented programming. It allows
subclasses (or child classes) to gain data and methods from the superclasses (or
parent classes) it inherits from. For example, a Square subclass inherits its data and
methods from its Shape superclass.

Inheritance is useful because it allows you to reuse code and break your models
into submodels that can be extended and worked on independently. For example,
you can put common data and methods in Shape and have more specialized data
and functions in Square. You can also independently work on Triangle with its data
and functions, and if you change Shape you can extend its capabilities to both Square
and Triangle, but if you change Triangle it will not impact Square.

However, inheritance is not the only mechanism you can use for these purposes.
Another popular mechanism is composition, which allows you to assemble your
models from other models instead of inheriting from a superclass. Go implements
composition by embedding an unnamed struct within another struct.

Structs can contain named data fields including structs, as described in Recipe 12.1.
However, structs can also contain unnamed data fields, including structs. Whenever
a struct has an unnamed data field that is a struct, the data fields within that inner
struct are promoted to the outer struct:

12.6 Composing Structs from Other Structs | 181

type Person struct {
 Id int
 Name string
 Email string
}

type Manager struct {
 Person
}

mgr := Manager{}
mgr.Id = 2
mgr.Name = "Wong Fei Hung"
mgr.Email = "feihung@email.com"

In this example, Manager has a single unnamed data field that is of the type Person.
The data fields of Person are promoted to mgr and you can access them directly,
without referencing Person at all.

If you try to put mgr through to fmt.Println, you will see this:

{{2 Wong Fei Hung feihung@email.com}}

Notice the double braces {{}} used. This tells you that there is an inner struct
instance.

You set the data fields after you created the struct instance. How can you initialize the
struct instance as you create it?

mgr = Manager{
 Person{
 Id: 2,
 Name: "Wong Fei Hung",
 Email: "feihung@email.com",
 },
}

You have to create a Person instance first when initializing it. Let’s give the Manager
struct another data field:

type Manager struct {
 Person
 Department string
}

mgr := Manager{}
mgr.Id = 2
mgr.Name = "Wong Fei Hung"
mgr.Email = "feihung@email.com"
mgr.Department = "Poh Chi Lam"

182 | Chapter 12: Structs Recipes

When you print out mgr again, you will see that the department is printed outside of
the inner set of braces:

{{2 Wong Fei Hung feihung@email.com} Poh Chi Lam}

How about initializing the struct instance?

mgr = Manager{
 Person: Person{
 Id: 2,
 Name: "Wong Fei Hung",
 Email: "feihung@email.com",
 },
 Department: "Poh Chi Lam",
}

You have to use a name field with the same name as the struct.

The same rules for exported fields apply here as well—capitalized variable names
indicate the fields are exported, while lowercase variable names indicate they are not.

How about methods? They are also promoted to the outer struct:

func (person Person) Work() {
fmt.Print("Working hard ... ")

}

mgr.Work()

You can call the Work method directly on mgr because the methods associated with
Person are promoted to be available on Manager as well.

This also means any interfaces that Person satisfies, Manager also satisfies:

type Worker interface {
Work()

}

func Pay(worker Worker) {
worker.Work()
fmt.Println("and getting paid!")

}

Pay(mgr)

Since Person satisfies the Worker interface, this means Manager also satisfies the
Worker interface and therefore you can pass an instance of Manager to the Pay
function. If you run the preceding code, you should get:

Working hard ... and getting paid!

12.6 Composing Structs from Other Structs | 183

12.7 Defining Metadata for Struct Fields
Problem
You want to define metadata to describe the struct fields.

Solution
Use struct tags to define metadata and the reflect package to access the tags.

Discussion
Sometimes you want to provide a bit more information about the data fields in
structs, besides their name and type. You want to do this so you can process the
structs better. Go provides a mechanism called struct tags that allows you to add
string literals after each field to provide the information.

One very common place you find this is in the json package:

type Person struct {
 Id int `json:"id"`
 GivenName string `json:"given_name"`
 FamilyName string `json:"family_name"`
 Email string `json:"email"`
}

Go determines the mapping between the struct fields and the JSON elements using
these struct tags. They are optional, but it is useful to do mapping if the names differ.
There are other uses for JSON struct tags as well; for example, to omit the field from
the JSON that is generated if it’s empty, and others.

Many packages that process structs use struct tags. For example, xml package, the
protobuf package, and the sqlx package all use struct tags. You can also roll out your
support for struct tags using the reflect package.

Struct tags are defined in name-value pairs within the string literal. In the preceding
example, where the string literal is json:"given_name", the name is json and the
value is a string "given_name".

Here’s how you can extract the values:

person := Person{
 Id: 1,
 GivenName: "Sau Sheong",
 FamilyName: "Chang",
 Email: "sausheong@email.com",
}

p := reflect.TypeOf(person)

184 | Chapter 12: Structs Recipes

for i := 0; i < p.NumField(); i++ {
 field := p.Field(i)
 fmt.Println(field.Tag.Get("json"))
}

To get the values from the struct tags, you use the reflect package. Start with getting
the Type of the person variable, which is a struct. The NumField method on the Type
tells you how many fields are in this Type, which is 4. Then you call the Field method
on the Type with a given index to get the StructField. Call the Tag method on the
StructField to get the StructTag, and finally call the Get method with the name to
get the value.

If you run the code, this is what you should see:

id
given_name
family_name
email

Each struct tag can contain more than a single name-value pair, so you can call Get
on different names to get to the corresponding values.

12.7 Defining Metadata for Struct Fields | 185

CHAPTER 13

Data Structure Recipes

13.0 Introduction
Go has four basic types of data structures: arrays, slices, maps, and structs. Chapter 12
discussed structs and this chapter will cover arrays, slices, and maps. Following is
some background information on these data structures before getting into specific
recipes for using them.

Arrays
Arrays are data structures that represent an ordered sequence of elements of the
same type. Array sizes are static; they are set when the array is defined and cannot
be changed subsequently. In Go, arrays are values. This is an important difference,
because in some languages an array is a pointer to the first item in the array. This
means if you pass an array to a function you will be passing a copy of the array, and
this could be expensive.

Slices
Slices are data structures that also represent an ordered sequence of elements. Slices
are built on top of arrays and are used much more often than arrays because of their
flexibility. Slices have no fixed length. Internally, a slice is a struct that consists of a
pointer to an array, the length of the segment of the array, and the capacity of the
underlying array.

Maps
Maps are data structures that associate the values of one type (called the key) with
values of another type (called the value). Such data structures are very common in

187

many other programming languages, called by different names like hash table, hash
map, and dictionary. Internally, a map is a pointer to runtime.hmap structure.

It’s important to understand that these three data structures are the basic building
blocks of all other data structures, but they are also fundamentally very different
from each other. In short, arrays are fixed-length order lists and are values. Slices are
structs whose first element is a pointer to an array. Maps are pointers to an internal
hashmap struct.

13.1 Creating Arrays or Slices
Problem
You want to create arrays or slices.

Solution
There are many ways to create arrays or slices including directly from literals, from
another array, or using make.

Discussion
Arrays and slices are very different constructs, but conceptually they are very similar.
As a result, creating arrays and slices is also very similar.

Defining arrays
You can define an array by declaring the size of the array in square brackets, followed
by the data type of the elements. Arrays and slices can only have elements of the same
type. You can also initialize the array during the declaration by putting the elements
in curly brackets:

var numbers [10]int
fmt.Println(numbers)
rhyme := [4]string{"twinkle", "twinkle", "little", "star"}
fmt.Println(rhyme)

If you run the preceding code snippet, this is what you will see:

[0 0 0 0 0 0 0 0 0 0]
[twinkle twinkle little star]

The default value for an int or float array is 0. Note that the size of the array cannot
be changed once it’s created, but the elements can be changed. This makes arrays less
flexible and is the main reason why slices are used more often than arrays.

188 | Chapter 13: Data Structure Recipes

Defining slices
Slices are constructs that are built on top of arrays. Most of the time when you
need to deal with ordered lists, you would normally use slices because they are more
flexible and also much cheaper to use, especially if the underlying array is large.

Slices are defined the same way, except you don’t provide the size of the slice:

var integers []int
fmt.Println(integers)
var sheep = []string{"baa", "baa", "black", "sheep"}
fmt.Println(sheep)

If you run the preceding code snippet, this is what you will see:

[]
[baa baa black sheep]

Notice the difference here—a newly defined array must have a length and if it is not
initialized, it will be filled with the default value. A newly defined slice, however, can
have no elements and can be zero-length.

You can also create slices through the make function:

var integers = make([]int, 10)
fmt.Println(integers)

If you use make, you need to provide the type, the length, and an optional capacity. If
you don’t provide the capacity, it will default to the given length. This is what you will
see if you run the preceding snippet:

[0 0 0 0 0 0 0 0 0 0]

As you can see, make initializes the slice as well.

To find out the length of an array or a slice, you can use the len function. To find
out the capacity of an array or a slice, you can use the cap function. So what’s the
difference between a slice’s length and its capacity? The length of a slice is the number
of elements in it. The capacity of a slice is the length of the slice’s underlying array,
that is, the number of elements in the underlying array:

integers = make([]int, 10, 15)
fmt.Println(integers)
fmt.Println("length:", len(integers))
fmt.Println("capacity:", cap(integers))

Here, the make function allocates an array of 15 integers, then creates a slice with
length of 10 and capacity of 15 that points at the first 10 elements of the array.

If you run the code, this is what you get:

[0 0 0 0 0 0 0 0 0 0]
length: 10
capacity: 15

13.1 Creating Arrays or Slices | 189

You can also create new slices with the new method:

var ints *[]int = new([]int)
fmt.Println(ints)

The new method doesn’t return the slice directly; it returns only a pointer to the slice.
It also doesn’t initialize the slice; instead it just zeros it. This is what you get when you
run the code:

&[]

You can’t create new arrays using the make function, but you can create new arrays
using the new function:

var ints *[10]int = new([10]int)
fmt.Println(ints)

What you get is a pointer to an array:

&[0 0 0 0 0 0 0 0 0 0]

13.2 Accessing Arrays or Slices
Problem
You want to access elements in an array of a slice.

Solution
There are a few ways to access elements in an array or a slice. Arrays and slices are
ordered lists, so elements in them can be accessed by their index. The elements can
be accessed through a single index or a range of indices. You can also access them by
iterating through the elements.

Discussion
Accessing arrays and slices are almost the same. As they are ordered lists, you can
access an element of an array or a slice through its index:

numbers := []int{3, 14, 159, 26, 53, 59}

In the preceding slice, the 4th element, given the index 3 (we start with 0) is 25,
and can be accessed using the name of the variable, followed by square brackets, and
indicating the index within the square brackets:

numbers[3] // 26

You can also access a range of numbers by using the starting index, followed by a
colon (:) and the ending index. The ending index is not included and this results in a
slice (of course):

190 | Chapter 13: Data Structure Recipes

numbers[2:4] // [159, 26]

If you don’t have a starting index, the slice will start at 0:

numbers[:4] // [3 14 159 26]

If you don’t have an ending index, the slice will end with the last element of the
original slice (or array):

numbers[2:] // [159 265 53 59]

Needless to say, if you don’t have either a starting or ending index, the whole original
slice is returned. While this sounds silly, there is a valid use for this—if you use this
on an array, it simply converts the array to a slice:

numbers := [6]int{3, 14, 159, 26, 53, 59} // an array
numbers[:] // this is a slice

In this code snippet, numbers is an array. When you index numbers, you will get a
slice.

You can also access elements in an array or a slice by iterating through the array or
slice:

for i := 0; i < len(numbers); i++ {
 fmt.Println(numbers[i])
}

This uses a normal for loop, iterating through the length of the slice, and increment‐
ing the count at every loop. The resulting output is as follows:

3
14
159
25
53
59

This uses a for ... range loop and returns the index i and the value v:

for i, v := range numbers {
 fmt.Printf("i: %d, v: %d\n", i, v)
}

The resulting output is:

i: 0, v: 3
i: 1, v: 14
i: 2, v: 159
i: 3, v: 25
i: 4, v: 53
i: 5, v: 59

13.2 Accessing Arrays or Slices | 191

13.3 Modifying Arrays or Slices
Problem
You want to add, insert, or remove elements in an array or a slice.

Solution
There are a few ways to modify elements in an array or a slice. Elements can be
appended to the end of the slice, inserted at a particular index, or removed or
modified.

Discussion
Besides accessing the elements in an array or slice, you may also want to add, modify,
or remove elements in a slice. While you cannot add or remove elements in an array,
you can modify its elements. Arrays are not immutable; they just have fixed lengths so
you can’t shrink or expand them:

numbers := []int{3, 14, 159, 26, 53, 58}
numbers[2] = 1000

When you modify the element at the given index, it will change the array or slice
accordingly. In this case, when you run the code, you will get this:

[3 14 1000 26 53 58 97]

Appending
Arrays cannot change their size, so appending or adding elements to an array is out
of the question. Appending to slices is quite straightforward, though. You just use the
append function, passing it the slice and the new element, and a new slice that has the
appended element will be returned:

numbers := []int{3, 14, 159, 26, 53, 58}
numbers = append(numbers, 97)
fmt.Println(numbers)

If you run the preceding code, you will get this:

[3 14 159 26 53 58 97]

You cannot append an element of a different type to the slice. However, you can
append multiple items to the slice:

numbers = append(numbers, 97, 932, 38, 4, 626)

192 | Chapter 13: Data Structure Recipes

This means you can append a slice (or an array) to another slice by using the slice
unpacking notation (…):

nums := []int{97, 932, 38, 4, 626}
numbers = append(numbers, nums...)

However, appending both an element and an unpacked slice at the same time is not
allowed. You can choose to append multiple elements or an unpacked slice, but not
both at the same time:

numbers = append(numbers, 1, nums...) // this will produce an error

Inserting
While appending adds an element to the end of the slice, inserting means adding an
element anywhere in between elements in a slice. Again, this only applies to slices
because array sizes are fixed.

There is no built-in function for insertion, but you can still use append for the task.
Let’s say you want to insert the number 1000 between elements at index 2 and 3,
which are ints 159 and 26, respectively:

numbers := []int{3, 14, 159, 26, 53, 58}
numbers = append(numbers[:2+1], numbers[2:]...)
numbers[3] = 1000

First, you need to create a slice from the start of the original slice to the index 2 plus
1 (you’re adding just 1 element). This will reserve a space for the new element you
want to add. Next, you append this slice to another slice that begins at index 2 to the
end of the original slice, using the unpack notation. With this, you have created a new
element between the index 2 and 3. After the append, this is what numbers looks like:

[3 14 159 159 26 53 58]

Notice that there are now seven elements in the slice; the new element is inserted
between 159 and 26, with the value of 159. Finally, you set the new element, 1000, at
index 3. As a result, you will get this new slice:

[3 14 159 1000 26 53 58]

What if you want to add an element to the beginning of the slice; for example, you
want to add the integer 2000 to the beginning of the slice. This is quite simple; you
simply append the value, in the form of a slice, to the unpacked values of the original
slice:

numbers = append([]int{2000}, numbers...)

That was the case with inserting a single element. What if you want to add a slice
of numbers in between two elements of another slice of numbers? For example, you
want to insert the slice []int{1000, 2000, 3000, 4000} in between index 2 and 3 of
the numbers slice like before.

13.3 Modifying Arrays or Slices | 193

There are a few ways of doing this, but stick with using append, which is one of the
shortest ways:

numbers = []int{3, 14, 159, 26, 53, 58}
inserted := []int{1000, 2000, 3000, 4000}

tail := append([]int{}, numbers[3:]...)
numbers = append(numbers[:3], inserted...)
numbers = append(numbers, tail...)

fmt.Println(numbers)

First of all, you need to create another slice, tail, to store the tail part of the original
slice. You can’t simply slice it and store it into another variable (this is called shallow
copy), because slices are not arrays: they are a pointer to a part of the array and its
length. If you slice numbers and store it in tail, when you change numbers, tail will
also change, and that is not what you want. Instead, you want to create a new slice by
appending it to an empty slice of ints.

This will be tail after the first append:

[26 53 58]

Now that you have put the tail aside, you append the head of numbers to the
unpacked inserted. At this stage, numbers becomes this, because you take the first
three elements and append inserted behind it:

[3 14 159 1000 2000 3000 4000]

Finally, you append numbers (which now consists of the head of the original slice and
inserted) and the tail. This is what you should get:

[3 14 159 1000 2000 3000 4000 26 53 58]

Removing
Removing elements from a slice is very easy. If it’s at the start or end of the slice, you
simply reslice it accordingly to remove either the start or the end of the slice.

To take out the first element of the slice:

numbers := []int{3, 14, 159, 26, 53, 58}
numbers = numbers[1:] // remove element 0
fmt.Println(numbers)

When you run this, you will get:

[14 159 26 53 58]

Now take out the last element of the slice:

194 | Chapter 13: Data Structure Recipes

numbers := []int{3, 14, 159, 26, 53, 58}
numbers = numbers[:len(numbers)-1] // remove last element
fmt.Println(numbers)

When you run this code, you will get:

[3 14 159 26 53]

Removing elements in between two adjacent elements within a slice is quite straight‐
forward too. You simply append the head of the original slice with the tail of the
original slice, removing whatever is in between. In this case, you want to remove the
element at index 2, which is 159:

numbers := []int{3, 14, 159, 26, 53, 58}
numbers = append(numbers[:2], numbers[3:]...)
fmt.Println(numbers)

When you run the code, you get this:

[3 14 26 53 58]

13.4 Making Arrays and Slices Safe for Concurrent Use
Problem
You want to make arrays and slices safe for concurrent use by multiple goroutines.

Solution
Use a mutex from the sync library to safeguard the array or slice. Lock the array or
slice before modifying it, and unlock it after modifications are made.

Discussion
Arrays and slices are not safe for concurrent use. If you are going to share a slice or
array between goroutines, you need to make it safe from race conditions. Go provides
a sync package that can be used for this, in particular, Mutex.

Race conditions occur when a shared resource is used by multiple goroutines trying
to access it at the same time:

var shared []int = []int{1, 2, 3, 4, 5, 6}

// increase each element by 1
func increase(num int) {

fmt.Printf("[+%d a] : %v\n", num, shared)
for i := 0; i < len(shared); i++ {

time.Sleep(20 * time.Microsecond)
shared[i] = shared[i] + 1

}
fmt.Printf("[+%d b] : %v\n", num, shared)

13.4 Making Arrays and Slices Safe for Concurrent Use | 195

}

// decrease each element by 1
func decrease(num int) {

fmt.Printf("[-%d a] : %v\n", num, shared)
for i := 0; i < len(shared); i++ {

time.Sleep(10 * time.Microsecond)
shared[i] = shared[i] - 1

}
fmt.Printf("[-%d b] : %v\n", num, shared)

}

In this example, you have a slice of integers named shared that is used by two
functions named increase and decrease. These two functions simply take each
element in the shared slice and increase or decrease it by 1, respectively. However,
before you increase or decrease the element, you wait for a very short period, with
the increase function waiting for a longer time. This simulates the differences in
timing between multiple goroutines. You print out the shared slice before you start
modifying the shared element and also after you modify it to show the state of the
shared slice before and after.

You call the increase and decrease functions from main, and you make each call to
the functions a separate goroutine. At the end of the program, you wait a bit to let all
the goroutines finish (else all goroutines will end when the program ends):

func main() {
for i := 0; i < 5; i++ {

go increase(i)
}
for i := 0; i < 5; i++ {

go decrease(i)
}
time.Sleep(2 * time.Second)

}

When you run the program, you will see something like this:

[-4 a] : [1 2 3 4 5 6]
[-1 a] : [0 2 3 4 5 6]
[-2 a] : [0 1 3 4 5 6]
[-3 a] : [0 1 2 4 5 6]
[+0 a] : [-2 1 2 3 5 6]
[+1 a] : [-3 -1 2 3 4 6]
[-4 b] : [-2 -2 1 3 4 5]
[+3 a] : [-2 -2 0 3 4 5]
[+4 a] : [-1 -1 -1 1 4 5]
[-1 b] : [1 0 0 0 1 4]
[-2 b] : [1 0 0 0 1 3]
[-3 b] : [1 0 0 0 1 2]
[+2 a] : [1 0 0 0 1 2]
[-0 a] : [2 2 1 1 1 2]

196 | Chapter 13: Data Structure Recipes

[+0 b] : [1 2 3 2 1 3]
[-0 b] : [1 2 3 3 2 2]
[+1 b] : [1 2 3 4 4 3]
[+3 b] : [1 2 3 4 4 4]
[+4 b] : [1 2 3 4 4 5]
[+2 b] : [1 2 3 4 5 6]

A quick explanation of the output: The header in each line starts with – or +,
depending on whether the decrease or increase function is called. The number after
that is the sequence of the function call, and the letter a or b simply indicates the state
of the shared slice at the start of the function or at the end of it.

Let’s take the first line [-4 a] : [1 2 3 4 5 6]. This means the decrease function is
called, and this is sequence 4, and the state of the shared slice is [1 2 3 4 5 6].

If you run it multiple times the result will be a bit different each time. You will
notice that even though you spin out a goroutine in sequence (sending in the
sequence number to modify each time), the sequence that executes is random, which
is expected behavior. What you don’t want is for the goroutines to overlap each other
and for the shared slice to be incremented or decremented depending on which
goroutine accesses it first.

Subsequently, after the loop the line that is printed is [-4 b] : [-2 -2 1 3 4 5]
and you can see the first three elements of the shared slice are not what is expected!
In case this is not clear, the slice should be [0 1 2 3 4 5] instead of [–2 –2 1 3 4 5].

Also, you will realize that the overlap even happens within the loop for increasing or
decreasing the element.

How can you prevent such race conditions? Go has the sync package in the standard
library that provides you with a mutex, or a mutual exclusion lock:

var shared []int = []int{1, 2, 3, 4, 5, 6}
var mutex sync.Mutex

// increase each element by 1
func increaseWithMutex(num int) {

mutex.Lock()
fmt.Printf("[+%d a] : %v\n", num, shared)
for i := 0; i < len(shared); i++ {

time.Sleep(20 * time.Microsecond)
shared[i] = shared[i] + 1

}
fmt.Printf("[+%d b] : %v\n", num, shared)
mutex.Unlock()

}

// decrease each element by 1
func decreaseWithMutex(num int) {

mutex.Lock()

13.4 Making Arrays and Slices Safe for Concurrent Use | 197

fmt.Printf("[-%d a] : %v\n", num, shared)
for i := 0; i < len(shared); i++ {

time.Sleep(10 * time.Microsecond)
shared[i] = shared[i] - 1

}
fmt.Printf("[-%d b] : %v\n", num, shared)
mutex.Unlock()

}
}

Using it is quite simple. First you need to declare a mutex. Then, you call Lock on the
mutex before you start modifying the shared slice. This will lock the shared slice such
that nothing else can use it. When you’re done, you call Unlock to unlock the mutex.

Here’s the output if you call these functions from main as before:

[-4 a] : [1 2 3 4 5 6]
[-4 b] : [0 1 2 3 4 5]
[+0 a] : [0 1 2 3 4 5]
[+0 b] : [1 2 3 4 5 6]
[+1 a] : [1 2 3 4 5 6]
[+1 b] : [2 3 4 5 6 7]
[+2 a] : [2 3 4 5 6 7]
[+2 b] : [3 4 5 6 7 8]
[+3 a] : [3 4 5 6 7 8]
[+3 b] : [4 5 6 7 8 9]
[+4 a] : [4 5 6 7 8 9]
[+4 b] : [5 6 7 8 9 10]
[-0 a] : [5 6 7 8 9 10]
[-0 b] : [4 5 6 7 8 9]
[-1 a] : [4 5 6 7 8 9]
[-1 b] : [3 4 5 6 7 8]
[-2 a] : [3 4 5 6 7 8]
[-2 b] : [2 3 4 5 6 7]
[-3 a] : [2 3 4 5 6 7]
[-3 b] : [1 2 3 4 5 6]

The results are a lot more organized. The goroutines no longer overlap, and the
increase and decrease of elements are orderly and consistent.

13.5 Sorting Arrays of Slices
Problem
You want to sort elements in an array or slice.

Solution
For int, float64, and string arrays or slices you can use sort.Ints, sort.Float64s,
and sort.Strings. You can also use a custom comparator by using sort.Slice.

198 | Chapter 13: Data Structure Recipes

For structs, you can create a sortable interface by implementing the sort.Interface
interface and then using sort.Sort to sort the array or slice.

Discussion
Arrays and slices are ordered sequences of elements. However, this doesn’t mean they
are sorted in any way; it only means the elements are always laid out in the same
sequence. To sort the arrays or slices, you can use the various functions in the sort
package.

For int, float64, and string you can use the corresponding sort.Ints,
sort.Float64s, and sort.Strings functions:

integers := []int{3, 14, 159, 26, 53}
floats := []float64{3.14, 1.41, 1.73, 2.72, 4.53}
strings := []string{"the", "quick", "brown", "fox", "jumped"}

sort.Ints(integers)
sort.Float64s(floats)
sort.Strings(strings)

fmt.Println(integers)
fmt.Println(floats)
fmt.Println(strings)

If you run the code, this is what you will see:

[3 14 26 53 159]
[1.41 1.73 2.72 3.14 4.53]
[brown fox jumped quick the]

This is sorted in ascending order. What if you want to sort it in descending order?
There is no ready-made function to sort in descending order, but you can easily use a
simple for loop to reverse the sorted slice:

for i := len(integers)/2 - 1; i >= 0; i-- {
 opp := len(integers) - 1 - i
 integers[i], integers[opp] = integers[opp], integers[i]
}

fmt.Println(integers)

Simply find the middle of the slice, and then using a loop, exchange the elements with
their opposite side, starting from that middle. If you run the preceding snippet, this is
what you will get:

[159 53 26 14 3]

You can also use the sort.Slice function, passing in your less function:

13.5 Sorting Arrays of Slices | 199

sort.Slice(floats, func(i, j int) bool {
 return floats[i] > floats[j]
})
fmt.Println(floats)

This will produce the following output:

[4.53 3.14 2.72 1.73 1.41]

The less function, the second parameter in the sort.Slice function, takes in two
parameters i and j, indices of the consecutive elements of the slice. It’s supposed to
return true if the element at i is less than the element at j when sorting.

What if the elements are the same? Using sort.Slice means the original order of
the elements might be reversed (or remain the same). If you want the order to be
consistently the same as the original, you can use sort.SliceStable.

The sort.Slice function works with slices of any type, so this means you can also
sort custom structs:

people := []Person{
{"Alice", 22},
{"Bob", 18},
{"Charlie", 23},
{"Dave", 27},
{"Eve", 31},

}
sort.Slice(people, func(i, j int) bool {

return people[i].Age < people[j].Age
})
fmt.Println(people)

If you run the code you will get the following output, with the people slice sorted
according to the ages of the people:

[{Bob 18} {Alice 22} {Charlie 23} {Dave 27} {Eve 31}]

Another way of sorting structs is by implementing the sort.Interface. Here’s how
you can do this for the Person struct:

type Person struct {
Name string
Age int

}

type ByAge []Person

func (a ByAge) Len() int { return len(a) }
func (a ByAge) Less(i, j int) bool { return a[i].Age < a[j].Age }
func (a ByAge) Swap(i, j int) { a[i], a[j] = a[j], a[i] }

You want to sort a slice of structs, so you need to associate the interface functions to
the slice, not the struct. Create a type named ByAge that is a slice of Person structs.

200 | Chapter 13: Data Structure Recipes

Next, you associate the Len, Less, and Swap functions to ByAge, making it a struct that
implements sort.Interface. The Less method here is the same as the one used in
the sort.Slice function earlier.

Using this is quite simple. You cast people to ByAge, and pass that into sort.Sort:

people := []Person{
{"Alice", 22},
{"Bob", 18},
{"Charlie", 23},
{"Dave", 27},
{"Eve", 31},

}

sort.Sort(ByAge(people))
fmt.Println(people)

If you run this code, you will see the following results:

[{Bob 18} {Alice 22} {Charlie 23} {Dave 27} {Eve 31}]

Implementing sort.Interface is a bit long-winded, but there are certainly some
advantages. For one, you can use sort.Reverse to sort by descending order:

sort.Sort(sort.Reverse(ByAge(people)))
fmt.Println(people)

This produces the following output:

[{Eve 31} {Dave 27} {Charlie 23} {Alice 22} {Bob 18}]

You can also use the sort.IsSorted function to check if the slice is already sorted:

sort.IsSorted(ByAge(people)) // true if it's sorted

The biggest advantage, though, is that using sort.Interface is a lot more perform‐
ant than using sort.Slice, as shown by this simple benchmark:

func BenchmarkSortSlice(b *testing.B) {
f := func(i, j int) bool {

return people[i].Age < people[j].Age
}
b.ResetTimer()
for i := 0; i < b.N; i++ {

sort.Slice(people, f)
}

}

func BenchmarkSortInterface(b *testing.B) {
for i := 0; i < b.N; i++ {

sort.Sort(ByAge(people))
}

}

13.5 Sorting Arrays of Slices | 201

Here are the results of the benchmark:

$ go test -bench=BenchmarkSort
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch14_data_structures
BenchmarkSortSlice-10 9376766 108.9 ns/op
BenchmarkSortInterface-10 26790697 44.33 ns/op
PASS
ok github.com/sausheong/gocookbook/ch14_data_structures 2.901s

As you can see, using sort.Interface is more efficient. This is because sort.Slice
uses any as the first parameter. This means it takes in any structs but is less efficient.

13.6 Creating Maps
Problem
You want to create new maps.

Solution
Use the map keyword to declare it, and then use the make function to initialize it. Maps
must be initialized before use.

Discussion
To create a map, you can use the map keyword:

var people map[string]int

This snippet declares a map named people that maps a key of type string to a value
of type int. The people map can’t be used yet since its zero-value is nil. To use it you
need to initialize it with the make method:

people = make(map[string]int)

If it looks silly that you have to repeat map[string]int in both the declaration and
initialization, you should do both at the same time:

people := make(map[string]int)

This will create an empty map. To populate the map you can map a string to an int:

people["Alice"] = 22

You can also initialize the map this way:

people := map[string]int{
"Alice": 22,
"Bob": 18,

202 | Chapter 13: Data Structure Recipes

"Charlie": 23,
"Dave": 27,
"Eve": 31,

}

If you print the map out, this is how it will look:

map[Alice:22 Bob:18 Charlie:23 Dave:27 Eve:31]

13.7 Accessing Maps
Problem
You want to access keys and values in a map.

Solution
Use the key within square brackets to access the value in a map. You can also use a
for ... range loop to iterate through the map.

Discussion
Accessing the values given a key is straightforward. Just use the key within square
brackets to access the values:

people := map[string]int{
"Alice": 22,
"Bob": 18,
"Charlie": 23,
"Dave": 27,
"Eve": 31,

}

people["Alice"] // 22

What if the key doesn’t exist? Nothing happens: Go simply returns the zero-value of
the value type. In this case the zero-value of an integer is 0, so if you do this:

people["Nemo"] // 0

it will simply return a 0. This might not be what you’re looking for (especially if 0 is a
valid response) so there is a mechanism to check if the key exists or not:

age, ok := people["Nemo"]
if ok {

// do whatever you want if the value exists
}

The comma, ok pattern is commonly used in Go and can be used here to check if
the key exists in the map. If the key exists, ok becomes true, else ok is false. The
ok variable is not a keyword. You can use any variable name, because it’s using the

13.7 Accessing Maps | 203

multiple value assignment. The value is still returned but since you know the key
doesn’t exist and it’s just a zero-value, you probably would not use it.

You can also use a for ... range loop to iterate through a map, just like you did with
arrays and slices, except instead of getting the index and the element, you get the key
and the value:

for k, v := range people {
fmt.Println(k, v)

}

Running this code will give you the following output:

Alice 22
Bob 18
Charlie 23
Dave 27
Eve 31

If you want just the keys, you can leave out the second value you get from the range:

for k := range people {
fmt.Println(k)

}

You will get this output:

Alice
Bob
Charlie
Dave
Eve

What if you want just the values? There is no special way of getting just the values;
you have to use the same mechanism and put them all in a slice:

var values []int
for _, v := range people {

values = append(values, v)
}
fmt.Println(values)

You will get this output:

[22 18 23 27 31]

13.8 Modifying Maps
Problem
You want to modify or remove elements in a map.

204 | Chapter 13: Data Structure Recipes

Solution
Use the delete function to remove key-value pairs from a map. To modify the value,
just reassign the value.

Discussion
Modifying a value is simply overriding the existing value:

people["Alice"] = 23

The value of people["Alice"] will become 23.

To remove a key, Go provides a built-in function named delete:

delete(people, "Alice")
fmt.Println(people)

This will be the output:

map[Bob:18 Charlie:23 Dave:27 Eve:31]

What happens if you try to delete a key that doesn’t exist? Nothing happens.

13.9 Sorting Maps
Problem
You want to sort a map by its keys.

Solution
Get the keys of the map in a slice and sort that slice. Then, using the sorted slice of
keys, iterate through the map again.

Discussion
Maps are unordered. This means each time you iterate through a map, the order of
the key-value pairs might not be the same as the previous time. So how can you
ensure that it’s the same each time?

First, extract the keys into a slice:

var keys []string
for k := range people {

keys = append(keys, k)
}

13.9 Sorting Maps | 205

Then sort the keys accordingly. In this case, you want to sort by descending order:

// sort keys by descending order
for i := len(keys)/2 - 1; i >= 0; i-- {

opp := len(keys) - 1 - i
keys[i], keys[opp] = keys[opp], keys[i]

}

Finally, you can access the map by the descending order of the keys:

for _, key := range keys {
fmt.Println(key, people[key])

}

When you run the code, you will see this:

Eve 31
Dave 27
Charlie 23
Bob 18
Alice 22

206 | Chapter 13: Data Structure Recipes

CHAPTER 14

More Data Structure Recipes

14.0 Introduction
Chapter 12 discussed structs and Chapter 13 discussed arrays, slices, and maps. These
are the four basic data structures in Go. Unlike many other programming languages,
Go does not provide other basic data structures (although there is the container
package in the standard library it has very few implementations). In your daily
programming tasks, you often will have to use some other data structures that are not
provided either in the language or in the standard library, and it’s not very difficult to
re-create them.

In this chapter, you will be creating a few common data structures with Go:

• Queue•
• Stack•
• Set•
• Linked list•
• Heap•
• Graph•

Each recipe will start by explaining what that data structure is, then go through how
to build one from the ground up.

None of the data structures are concurrency-safe. This is because fundamentally they
are built on the three basic Go data structures—arrays, slices, and maps—and these
are not concurrency-safe. To avoid race conditions, you can add a mutex to the data
structure and use it to lock the data structure before any reads or writes. The sync
package has a RWMutex that you can use for this purpose.

207

A word on the terminology: these recipes use the term list to refer to a linear, ordered
sequence of items. Items within a list are called elements. Arrays and slices in Go are
lists. Similarly, a graph refers to a group of items that are connected. Items within a
graph are called nodes, and the connections between nodes are called edges.

14.1 Creating Queues
Problem
You want to create a queue data structure.

Solution
Wrap a struct around a slice. Create queue functions on the struct.

Discussion
A queue is a first-in-first-out (FIFO) ordered list. You add elements at the back of
the queue and get elements at the front of the queue. You can visualize a queue
to be exactly like what its name is—a line of shoppers queueing at the counter at
the supermarket, waiting to pay for their purchases. When a new shopper joins the
queue, they join the back of the queue. When a shopper completes the purchase, they
exit the queue from the front. Figure 14-1 shows a queue.

Figure 14-1. A queue

Queues are one of the simplest data structures. They are commonly used as a buffer
or queueing system.

Here are the functions associated with a queue:

Enqueue
Add an element to the back of the queue.

Dequeue
Remove an element at the front of the queue.

Peek
Get the element at the front of the queue without removing it from the queue.

208 | Chapter 14: More Data Structure Recipes

Size
Get the size of the queue.

IsEmpty
Check if the queue is empty.

You can easily implement a queue using a slice:

type Queue struct {
elements []any

}

In this code you are using any elements so it can be any type.

Enqueuing an element is as simple as appending the element to the back of the slice.
This means you consider the front of the slice to be the front of the queue as well:

func (q *Queue) Enqueue(el any) {
q.elements = append(q.elements, el)

}

To dequeue an element, take the element at index 0 and remove it from the queue by
reslicing. Of course, if the queue is empty, you should return an error:

func (q *Queue) Dequeue() (el any, err error) {
if q.IsEmpty() {

err = errors.New("empty queue")
return

}
el = q.elements[0]
q.elements = q.elements[1:]
return

}

Peeking at the queue returns the element at index 0:

func (q *Queue) Peek() (el any, err error) {
if q.IsEmpty() {

err = errors.New("empty queue")
return

}
el = q.elements[0]
return

}

Finally, checking the size and if the queue is empty is quite straightforward:

func (q *Queue) IsEmpty() bool {
return q.Size() == 0

}

func (q *Queue) Size() int {
return len(q.elements)

}

14.1 Creating Queues | 209

14.2 Creating Stacks
Problem
You want to create a stack data structure.

Solution
Wrap a struct around a slice. Create stack functions on the struct.

Discussion
A stack is a last-in-first-out (LIFO) ordered list. You add elements at the top of the
stack and get elements from the top of the stack as well. A good way to visualize a
stack is how t-shirts are folded and placed on top of each other on a shelf or table in a
shop. When you want to add a t-shirt, you add it to the top of the stack of t-shirts. If
you want to take one, you take it from the top of the stack as well.

Stacks are very important in programming, especially in memory management.
They’re also used for creating recursive functions, expression, evaluation, and back‐
tracking.

Here are the functions associated with a stack:

Push
Add an element to the top of the stack.

Pop
Remove an element at the top of the stack.

Peek
Get the element at the top of the stack without removing it.

Size
Get the size of the stack.

IsEmpty
Check if the stack is empty.

Figure 14-2 shows a stack.

There are a few ways to implement a stack but here you’ll simply be using a
single slice:

type Stack struct {
elements []any

}

210 | Chapter 14: More Data Structure Recipes

Figure 14-2. A stack

In the preceding code, you’re using any as elements in the stack:

func (s *Stack) Push(el any) {
s.elements = append(s.elements, el)

}

Pushing a new element to the top of the stack is the same as with the queue in Recipe
14.1, by appending the new element to the slice. By doing so, you’re assuming the last
element in the slice to be the top of the stack.

This means you will also pop from the same place:

func (s *Stack) Pop() (el any, err error) {
if s.IsEmpty() {

err = errors.New("empty stack")
return

}
el = s.elements[len(s.elements)-1]
s.elements = s.elements[:len(s.elements)-1]
return

}

To pop the stack, take the last element of the slice, then reslice it to exclude that last
element. Of course, you can’t pop the stack if it’s empty, so you need to return an
error when that happens:

func (s *Stack) Peek() (el any, err error) {
if s.IsEmpty() {

err = errors.New("empty queue")
return

}
el = s.elements[len(s.elements)-1]
return

}

Peeking the stack is nothing more than returning the last element of the slice
without reslicing:

14.2 Creating Stacks | 211

func (s *Stack) IsEmpty() bool {
return s.Size() == 0

}

func (s *Stack) Size() int {
return len(s.elements)

}

Finally, getting the size of the stack and checking if it’s empty are the same as with the
queue.

14.3 Creating Sets
Problem
You want to create a set data structure.

Solution
Wrap a struct around a map. Create set functions on the struct.

Discussion
A set is an unordered data structure that has only unique elements. It implements the
mathematical concept of a finite set and the operations around it. The basic functions
associated with sets include:

Add
Add a new element to the set.

Remove
Remove an existing element from the set.

IsEmpty
Check if the set is empty.

Size
Get the size of the set.

In addition to these basic functions are the set operations, which are the implementa‐
tions of mathematical operations:

Has
Check if an element is a member of a given set.

Union
Given two or more sets, the union of the sets is the set that consists of elements
that are in any of those sets.

212 | Chapter 14: More Data Structure Recipes

Intersection
Given two or more sets, the intersection of sets is the set that consists of elements
that are in all the sets.

Difference
Given two sets A and B, the difference A – B consists of elements that are in set A
but not set B.

IsSubset
Given two sets A and B, check if every element in set B is in set A.

Start with the implementation of the Set struct:

type Set struct {
elements map[any]bool

}

Map keys are unordered and are also unique so it’s no surprise that you implement
Set with a map. In this implementation, the key is the element in the set, while you
don’t care about the value at all.

However, because you’re using a map to represent a set, you need to use a separate
function to create a new set. This is because maps need to be initialized before they
can be used:

func NewSet() Set {
return Set{elements: make(map[any]bool)}

}

In the NewSet function, you create a Set by using make to initialize the internal map.

Add
Adding an element to the set is simply adding an element to the internal map. You
don’t care what is used for the value. In the following code, simply set it to false:

func (s *Set) Add(el any) {
s.elements[el] = false

}

Remove

Similarly, use delete to remove the element from the internal map:

func (s *Set) Remove(el any) {
delete(s.elements, el)

}

14.3 Creating Sets | 213

IsEmpty and Size

To check if the set is empty and also to get the size of the set, use len on the internal
map:

func (s *Set) IsEmpty() bool {
return s.Size() == 0

}

func (s *Set) Size() int {
return len(s.elements)

}

List
Also, as a convenience, you want to convert the set into a list, which is just a slice
representation of the keys in the internal map:

func (s *Set) List() (list []any) {
for k := range s.elements {

list = append(list, k)
}
return

}

Has
Next are the set operations. The first set operation is the membership operation,
where you want to check if a set has an element. You implement this with the
Has method. This is an important method because you’ll be using the membership
operation in the other set operations:

func (s Set) Has(el any) (ok bool) {
_, ok = s.elements[el]
return

}

To implement the Has method, you use the comma, ok notation on the internal
map, which tells you whether or not the key exists in the map. You ignore the value
altogether.

Union

Next is the union of sets. The Union function takes in a variable number of sets.
Union is an OR relationship on all the sets.

Take the first set and set it as the seed set for the union of all the sets. Remember, the
union has all the elements in all the sets, so it must also include all the elements in the
seed set. However, you don’t want to modify the first set directly—you want to make

214 | Chapter 14: More Data Structure Recipes

a copy of it instead of modifying the first set. To do that you create a Copy function,
which allows you to make a copy of a set:

func (s *Set) Copy() (u Set) {
u = NewSet()
for k := range s.elements {

u.Add(k)
}
return

}

With that, you iterate through the rest of the sets and add the elements in each of
the sets to the seed set. This will result in a final set that has all the elements from all
the sets:

func Union(sets ...Set) (u Set) {
u = sets[0].Copy()
for _, set := range sets[1:len(sets)] {

for k := range set.elements {
u.Add(k)

}
}
return

}

Intersect
The intersection of sets gives you a set in which elements exist in every given set. The
Intersect function takes in a variable number of sets and returns the intersection of
all the sets. Intersection is an AND relationship on all the sets:

func Intersect(sets ...Set) (i Set) {
i = sets[0].Copy()
for k := range i.elements {

for _, set := range sets[1:len(sets)] {
if !set.Has(k) {

i.Remove(k)
}

}
}
return

}

As before, you take the first set as the seed set for the intersection of all the sets. The
seed set must have all the elements in the intersection (because an element exists in
the intersection only if it exists in all the sets). You just need to remove those that are
not in the intersection from the seed set. As before, you don’t want to modify the first
set but make a copy of it instead.

Iterate through every element in the seed set and check if it exists in each of the rest
of the sets. If a set doesn’t have the element, remove the element from the seed.

14.3 Creating Sets | 215

The Difference method on a set subtracts the given set from itself and returns
the difference:

func (s Set) Difference(t Set) Set {
for k := range t.elements {

if s.Has(k) {
delete(s.elements, k)

}
}
return s

}

Given a set s and you want to subtract the set t from it, you iterate through each
element in t and check if it is found in s. If it is, you remove it from s. Once you’re
done with all the elements in t, you return s.

Finally, you also want to check if set s is a subset of t:

func (s Set) IsSubset(t Set) bool {
for k := range s.elements {

if !t.Has(k) {
return false

}
}
return true

}

To do this, iterate through each element in set s and check if it is also in set t. If there
is an element in set s that is not found in set t, this means s is not a subset of t.

14.4 Creating Linked Lists
Problem
You want to create a linked list data structure.

Solution
Create an element struct that has a pointer to the next element. Wrap another struct
around the first element to create a linked list.

Discussion
A linked list is a linear collection of elements that has each element pointing to the
next element. This is different from a list because in lists the elements are next to
each other (incrementing the index of the current element will give you access to the
next element) while for a linked list this is not necessarily so. As a result, inserting
or removing an element is faster because you don’t need to restructure the data

216 | Chapter 14: More Data Structure Recipes

structure, unlike in a list. On the other hand, accessing random elements in a linked
list is slower because elements are not indexed, so you need to iterate through the
elements until the correct one is found. Figure 14-3 shows a linked list.

Figure 14-3. A linked list

This recipe will go through a simple implementation of a singly linked list. The
payload for the linked list is just a string.

The functions for the singly linked list are:

Add
Add a new element to the end of the linked list.

Insert
Insert a new element into a specific position within the linked list.

Delete
Remove a specific element from the linked list.

Find
Find and return an element from the linked list.

In previous recipes in this chapter, you used only one struct to represent the data
structure. The elements in those data structures are of type any. In a linked list, you
will use two structs—one to represent the data structure, LinkedList, and another to
represent an element in the data structure, Element:

import "golang.org/x/exp/constraints"

type Element[T constraints.Ordered] struct {
value T
next *Element[T]

}

type LinkedList[T constraints.Ordered] struct {
head *Element[T]
size int

}

You need to do this because each element in the linked list points to the next;
therefore it needs to keep a pointer to the next. You create an Element struct to
represent an element, with a next field pointing to the next element. The Element

14.4 Creating Linked Lists | 217

struct also has a value, which is of type T, constrained by the constraints.Ordered
type. This means you can use the ordering operators (<, >, <=, >=) on Element
values.

You create a LinkedList struct to keep track of the head of the linked list and its size.
You need this struct to associate all the linked list functions.

Add
Adding to a linked list means adding a new element to the head of the linked list and
moving the current head down the chain:

func (l *LinkedList[T]) Add(el *Element[T]) {
if l.head == nil {

l.head = el
} else {

el.next = l.head
l.head = el

}
l.size++

}

If it’s an empty linked list with the head pointing to nil, set the new element to the
head. If not, set the next element of the new element to the head, and set the head to
the new element.

Insert
Inserting a new element requires you to know where you want to insert it. The
Insert method has two parameters—the new element and a marker that indicates
that the new element should be inserted after it:

func (l *LinkedList[T]) Insert(el *Element[T], marker T) error {
for current := l.head; current.next != nil; current = current.next {

if current.value == marker {
el.next = current.next
current.next = el
l.size++
return nil

}
}
return errors.New("element not found")

}

Figure 14-4 shows how to insert a new element between two elements of a linked list.

218 | Chapter 14: More Data Structure Recipes

Figure 14-4. Inserting into a linked list

Iterate the linked list until you find the marker. Then set the new element’s next
element to the current element’s next element, then set the current element’s next
element to the new element. This effectively inserts the new element between the
current element and its next element.

Delete
Deleting an element is a bit trickier. As before you need to iterate through the linked
list to find the element to delete. However, unlike previously you need to keep track
of the previous element as well as the current element:

func (l *LinkedList[T]) Delete(el *Element[T]) error {
prev := l.head
current := l.head
for current != nil {

if current.value == el.value {
if current == l.head {

l.head = current.next
} else {

prev.next = current.next
}
l.size--
return nil

}
prev = current
current = current.next

}
return errors.New("element not found")

}

Figure 14-5 shows how an element can be deleted from a linked list.

Figure 14-5. Deleting an element from a linked list

14.4 Creating Linked Lists | 219

Once you reach the element you want to delete, set the previous element next to the
current element’s next. This effectively bypasses the current element and therefore
removes it from the linked list. Of course, if the element to delete is the head of the
linked list, you simply make the next element the head instead.

Find
As before, finding an element in the linked list means you need to iterate through the
linked list and check each element:

func (l *LinkedList[T]) Find(value T) (el *Element[T], err error) {
for current := l.head; current.next != nil; current = current.next {

if current.value == value {
el = current
break

}
}
if el == nil {

err = errors.New("element not found")
}
return

}

Once the element is found, it will be returned.

List
A useful method to have is one that converts the linked list into a slice. This allows
you the best of both worlds: the elements in a linked list as well as in a slice.
However, the linked list and slice are not synchronized with each other; they are
simply different ways of organizing the elements:

func (l *LinkedList[T]) List() (list []*Element[T]) {
if l.head == nil {

return []*Element[T]{}
}
for current := l.head; current != nil; current = current.next {

list = append(list, current)
}
return

}

If you append a new Element to the slice, that element doesn’t get added to the linked
list, and if you insert a new Element into the linked list, it’s not going to be reflected in
the slice, unless you call the List method again.

Finally, the Size and IsEmpty methods take directly from the size field in the linked
list to determine the size of the linked list and if the linked list is empty, respectively:

func (l *LinkedList[T]) IsEmpty() bool {
return l.size == 0

220 | Chapter 14: More Data Structure Recipes

}

func (l *LinkedList[T]) Size() int {
return l.size

}

The standard library has a container package with a few data structure implementa‐
tions, and it includes a doubly linked list. If you’re looking for a linked list, this would
be a good place to start.

14.5 Creating Heaps
Problem
You want to create a min heap data structure.

Solution
Wrap a struct around a slice of elements to represent a heap. After each push or pop
on the heap, rearrange the heap structure.

Discussion
A heap is a tree-like data structure that satisfies the heap property. The heap property
is defined such that each node in a tree has a key that is greater (or less) than or equal
to its parent.

There are two types of heaps. The first is the min heap, where the heap property is
such that the key of the parent node is always smaller than that of the child nodes.
The second is the max heap, where the heap property, as you would expect, is such
that the key of the parent node is always larger than that of the child nodes.

The heap is commonly used as a priority queue. A priority queue, as the name
suggests, is a queue where each element is given a priority. Priority queues can be
implemented in other ways besides using heaps but heaps are so commonly used that
sometimes priority queues are simply called heaps.

The heap functions are simple:

Push
Add a node to the top of the heap.

Pop
Take the node at the top of the heap.

A popular heap implementation is the binary heap, where each node has at most
two child nodes. Let’s see how a binary heap can be implemented. You might be

14.5 Creating Heaps | 221

surprised that heaps are commonly implemented in the same way a queue or a stack
is implemented, using a slice!

In the max heap implementation in this recipe, use an integer as the node for
simplicity:

type Heap[T constraints.Ordered] struct {
nodes []T

}

Figure 14-6 shows a max heap.

Figure 14-6. A max heap

Figure 14-7 shows how the max heap in Figure 14-6 would look when laid out in the
form of a list.

Figure 14-7. A max heap laid out in the form of a list

Take a closer look at the list. You can see that 100 is the parent of 19 and 36, 19 is
the parent of 17 and 3, and so on. How you find the child node (if any) is basically to
double the index of the parent, and add either 1 or 2 (left or right). In other words:

Left child = (2 * parent) + 1
Right child = (2 * parent) + 2

In reverse, to find the parent, subtract 1 from the child and divide by 2. Because it’s a
binary tree and it’s an integer, it will return the nearest integer:

parent = (child - 1)/2

222 | Chapter 14: More Data Structure Recipes

This is what the code looks like:

func parent(i int) int {
return (i - 1) / 2

}

func leftChild(i int) int {
return 2*i + 1

}

func rightChild(i int) int {
return 2*i + 2

}

The two main functions of a heap are also very similar. Push adds a new node to the
top of the heap, while pop removes the top of the heap. However, unlike a stack, the
node that is returned by pop will always be the smallest or the largest in the heap,
depending on whether it’s a min heap or a max heap—that’s how the heap works.

As a result, every time you push or pop an element on the heap, the heap needs to
reorganize itself.

Here’s the Push method:

func (h *Heap[T]) Push(ele T) {
h.nodes = append(h.nodes, ele)
i := len(h.nodes) - 1
for ; h.nodes[i] > h.nodes[parent(i)]; i = parent(i) {

h.swap(i, parent(i))
}

}

The algorithm for push is straightforward. Assuming you’re doing a max heap, this is
how it works:

1. Append the new element to the list.1.
2. Take the last element of the list, and make it the current element.2.
3. Check if it is larger than the parent. If yes, swap it with the parent.3.
4. Make the parent the current element and loop until the parent is no longer larger4.

than the current element.

This will result in the newly added node bubbling up the heap until it is at a position
where it’s smaller than the parent but larger than both the children.

If you’re concerned about the sibling, don’t be. If it’s larger than the parent, it’ll be
larger than the sibling. If it’s not, it doesn’t matter. In a max heap, it doesn’t matter
which sibling is left or right as long as both are smaller than the parent. This means
there are many possible ways a heap can organize itself.

14.5 Creating Heaps | 223

Now here’s the Pop method:

func (h *Heap[T]) Pop() (ele T) {
ele = h.nodes[0]
h.nodes[0] = h.nodes[len(h.nodes)-1]
h.nodes = h.nodes[:len(h.nodes)-1]
h.rearrange(0)
return

}

To recap, pop means you take out the top node of the heap, and you need to
reorganize the heap after that. There is a bit more effort for popping the top of the
heap, which involves recursion, but it’s quite straightforward too.

This is how it works for a max heap:

1. Take out the top element (this means removing the element at index 0 of the list).1.
2. Take the last element of the list and move that to the top of the heap.2.
3. Call the recursive function to rearrange the heap, passing it the index of the top3.

of the heap (this will be 0).

This is the recursive function:

func (h *Heap[T]) rearrange(i int) {
largest := i
left, right, size := leftChild(i), rightChild(i), len(h.nodes)

if left < size && h.nodes[left] > h.nodes[largest] {
largest = left

}
if right < size && h.nodes[right] > h.nodes[largest] {

largest = right
}
if largest != i {

h.swap(i, largest)
h.rearrange(largest)

}
}

func (h *Heap[T]) swap(i, j int) {
h.nodes[i], h.nodes[j] = h.nodes[j], h.nodes[i]

}

The recursive algorithm works this way:

1. You start, assuming the element at the given index will be the largest.1.
2. You compare the left and right children of this element with itself.2.

224 | Chapter 14: More Data Structure Recipes

3. If either the left or right child is larger than itself, you make the left or right child3.
the largest by swapping out the elements and calling the recursive function with
the new largest element.

This bubbles the last node down to its natural position. As you’re doing this, you are
also forcing the children of the original top of the heap to compare to see which one
will go to the top of the heap (it must be either one of them since they are the next
largest).

As with other data structures, there are methods to tell the size of the heap and to
check if it’s empty or not:

func (h *Heap) Size() int {
return len(h.nodes)

}

func (h *Heap) IsEmpty() bool {
return h.Size() == 0

}

The standard library’s container package includes a heap package that provides heap
operations for any type that implements its interface. If you need a heap, you might
also consider using this package.

14.6 Creating Graphs
Problem
You want to create a weighted graph data structure.

Solution
Create structs for nodes and edges and place them in a Graph struct. Create and
attach functions to Graph to create nodes and edges for the graph.

Discussion
Graphs are very common nonlinear data structures that are used everywhere to map
relationships between entities. A graph consists of nodes and edges where edges
connect two nodes and often represent the relationship between two nodes. Nodes
are often given a name and sometimes a value.

In this recipe, you’ll implement a type of graph called the undirected weighted graph,
where the edges are also associated with a value, and the edges connect the nodes
both ways. As you probably realize, there are many other kinds of graphs, but you
can use the same techniques to implement them. Figure 14-8 shows an undirected
weighted graph.

14.6 Creating Graphs | 225

Figure 14-8. An undirected weighted graph

Here are the basic functions of a graph:

AddNode

Add a new node into the graph

AddEdge

Add a new edge that connects two nodes

RemoveNode

Remove an existing node from the graph

RemoveEdge

Remove an existing edge from the graph

You will use three structs to implement the weighted graph. The Node struct repre‐
sents a node, with a given name. The Edge struct has a pointer to a node and also a
weight. It might look odd but there is a reason for this:

type Node struct {
name string

}

type Edge struct {
node *Node
weight int

}

type Graph struct {
Nodes []*Node
Edges map[string][]*Edge // key is node name

}

226 | Chapter 14: More Data Structure Recipes

The last is the Graph struct, which represents the weighted graph. The Graph struct
has a slice of pointers to Node structs. It also has a map that has a string key that
associates with a slice of pointers to Edge structs. The key for this map is the name of
the node and the value is a slice of Edge structs.

Edges are implemented using a map so you can’t create a new Graph struct without
also initializing the Edges field. To do this you have a function to create a new Graph
struct:

func NewGraph() *Graph {
return &Graph{

Edges: make(map[string][]*Edge),
}

}

AddNode

Adding a new node is very simple; just use the append function to add to the slice of
existing nodes:

func (g *Graph) AddNode(n *Node) {
g.Nodes = append(g.Nodes, n)

}

AddEdge

Adding a new edge is simple as well. Add a new key-value pair in the Edges field by
creating a new Edge struct and appending it to the value:

func (g *Graph) AddEdge(n1, n2 *Node, weight int) {
g.Edges[n1.name] = append(g.Edges[n1.name], &Edge{n2, weight})
g.Edges[n2.name] = append(g.Edges[n2.name], &Edge{n1, weight})

}

Now that you can create a graph and add nodes and edges, you can build a simple
graph like the one in Figure 14-9.

Figure 14-9. A simple graph

Here’s the code:

graph := NewGraph()
c := &Node{"C"}
graph.AddNode(c)

14.6 Creating Graphs | 227

k := &Node{"K"}
graph.AddNode(k)
g := &Node{"G"}
graph.AddNode(g)
f := &Node{"F"}
graph.AddNode(f)

graph.AddEdge(c, k, 1)
graph.AddEdge(c, g, 2)
graph.AddEdge(c, f, 5)

RemoveEdge
Removing an edge is a bit more involved. The edges are in a slice that are the values
in the Edges map, so you need to iterate through them and mark it if it’s to be
removed. The r variable will store the index of the edge to be removed from the slice,
else it will be –1:

func (g *Graph) RemoveEdge(n1, n2 string) {
removeEdge(g, n1, n2)
removeEdge(g, n2, n1)

}

func removeEdge(g *Graph, m, n string) {
edges := g.Edges[m]
r := -1
for i, edge := range edges {

if edge.node.name == n {
r = i

}
}
if r > -1 {

edges[r] = edges[len(edges)-1]
g.Edges[m] = edges[:len(edges)-1]

}
}

Once you find out where the edge is, take the last element in the slice and place it
at the index, effectively removing that edge. After that, reslice to truncate the last
element.

You have to do this twice to remove edges from both directions since this is an
undirected graph.

RemoveNode
Removing nodes is also a bit more involved but very much the same as removing
edges. First, you need to find out the index of the node to remove. Once you do that
you take the last element in the slice and place it at the index, then truncate the last
element. This effectively removes the node from the slice of nodes:

228 | Chapter 14: More Data Structure Recipes

func (g *Graph) RemoveNode(name string) {
r := -1
for i, n := range g.Nodes {

if n.name == name {
r = i

}
}
if r > -1 {

g.Nodes[r] = g.Nodes[len(g.Nodes)-1] // remove the node
g.Nodes = g.Nodes[:len(g.Nodes)-1]

}
delete(g.Edges, name) // remove the edge from one side
// remove the edge from the other side
for n := range g.Edges {

removeEdge(g, n, name)
}

}

You also need to remove the edges that are connected to the node. First, delete the
edge from the Edges map. Then go through the rest of the other key-value pairs and
remove the node accordingly.

14.7 Finding the Shortest Path on a Graph
Problem
You want to find the shortest path between two nodes on a weighted graph.

Solution
Use Dijkstra’s algorithm to find the shortest path between two nodes. Dijkstra’s
algorithm also uses a priority queue, which can be implemented using a min heap.

Discussion
The graph is one of the most commonly used data structures, often used to model
many different problems. In social media applications like Facebook, how you and
your friends are connected is often mapped to undirected graphs. In fact, this is often
called the social graph, for a good reason. In mapping applications like Google Maps,
the intersection of two or more roads are considered a node and the roads between
the nodes are considered edges, where the map can be considered one big graph itself.
One of the most popular algorithms, famously used by Google’s search engine, is
the page rank algorithm. This algorithm considers web pages to be nodes while the
hyperlinks between the pages are edges.

As you probably realize, plenty of algorithms rely on graphs. One of the most
well-known algorithms on graphs is Dijkstra’s algorithm, sometimes called the shortest

14.7 Finding the Shortest Path on a Graph | 229

path algorithm. As the name suggests, this simple yet effective algorithm finds the
shortest path between two nodes in a graph.

Edsger Dijkstra was one of the giants in computer science, with many contributions
to operating systems, including distributed computing, concurrent systems, struc‐
tured programming, and graph algorithms. In 1959, Dijkstra published a three-page
article titled “A Note on Two Problems in Connexion with Graphs,” in Numerische
Mathematik. In this article, he explained the algorithm to find the shortest path in
a graph between any two given nodes. This eventually became what is known as
Dijkstra’s algorithm.

Say you want to travel from London to Istanbul and you figure out the following
possible routes through the different major cities in Europe. Figure 14-10 shows a
map of Europe, with the cities as nodes of a weighted directed graph, and flight routes
between them as edges. The flight times between two cities are the edge weights.

Figure 14-10. A map of Europe, with the cities as nodes of a weighted directed graph,
and flight routes between them as edges

You have figured out the amount of time to fly from these cities to other cities but
now you want to find the shortest amount of time needed to travel from London to
Istanbul.

This is where Dijkstra’s algorithm comes in handy, and it’s probably the most popular
algorithm to solve the shortest path problem. The algorithm itself is quite simple.
Dijkstra famously came up with the algorithm without pen and paper, in about 20
minutes, while accompanying his fiancee shopping in Amsterdam.

You need two data structures for Dijkstra’s algorithm—a weighted graph and a min
heap (explained in Recipes 14.5 and 14.6, so please read these recipes if you haven’t
already). The only change you need is the Node struct in the weighted graph, to add a
through pointer to a Node. This field, when not nil, points to the previous node in the
shortest path:

230 | Chapter 14: More Data Structure Recipes

type Node struct {
name string
value int
through *Node

}

Before you start with the algorithm, you need to populate the graph accordingly:

func buildGraph() *Graph {
graph := NewGraph()
nodes := make(map[string]*Node)
names := []string{"London", "Paris", "Amsterdam", "Luxembourg",

"Zurich", "Rome", "Berlin", "Vienna", "Warsaw", "Istanbul"}
for _, name := range names {

n := &Node{name, math.MaxInt, nil}
graph.AddNode(n)
nodes[name] = n

}
graph.AddEdge(nodes["London"], nodes["Paris"], 80)
graph.AddEdge(nodes["London"], nodes["Luxembourg"], 75)
graph.AddEdge(nodes["London"], nodes["Amsterdam"], 75)
graph.AddEdge(nodes["Paris"], nodes["Luxembourg"], 60)
graph.AddEdge(nodes["Paris"], nodes["Rome"], 125)
graph.AddEdge(nodes["Luxembourg"], nodes["Berlin"], 90)
graph.AddEdge(nodes["Luxembourg"], nodes["Zurich"], 60)
graph.AddEdge(nodes["Luxembourg"], nodes["Amsterdam"], 55)
graph.AddEdge(nodes["Zurich"], nodes["Vienna"], 80)
graph.AddEdge(nodes["Zurich"], nodes["Rome"], 90)
graph.AddEdge(nodes["Zurich"], nodes["Berlin"], 85)
graph.AddEdge(nodes["Berlin"], nodes["Amsterdam"], 85)
graph.AddEdge(nodes["Berlin"], nodes["Vienna"], 75)
graph.AddEdge(nodes["Vienna"], nodes["Rome"], 100)
graph.AddEdge(nodes["Vienna"], nodes["Istanbul"], 130)
graph.AddEdge(nodes["Warsaw"], nodes["Berlin"], 80)
graph.AddEdge(nodes["Warsaw"], nodes["Istanbul"], 180)
graph.AddEdge(nodes["Rome"], nodes["Istanbul"], 155)
return graph

}

Now that you have the graph, take a look at Dijkstra’s algorithm:

func dijkstra(graph *Graph, city string) {
visited := make(map[string]bool)
heap := &Heap{}

startNode := graph.GetNode(city)
startNode.value = 0
heap.Push(startNode)

for heap.Size() > 0 {
current := heap.Pop()
visited[current.name] = true
edges := graph.Edges[current.name]
for _, edge := range edges {

14.7 Finding the Shortest Path on a Graph | 231

if !visited[edge.node.name] {
heap.Push(edge.node)
if current.value+edge.weight < edge.node.value {

edge.node.value = current.value +
edge.weight
edge.node.through = current

}
}

}
}

}

Here is how it works. Let’s say you want to find the shortest travel time from London
to Istanbul:

1. Set up the weighted graph, a min heap, and a map to mark cities that have been1.
visited before.

2. Get the origin node, London, set its node value to 0, and push it into the heap.2.
3. The next step is a loop. While the heap is not empty, you pop the heap. This will3.

be your current node.
4. Mark the city as visited.4.
5. For each city that the current node is connected to (Paris, Luxembourg, and5.

Amsterdam for London), push the city into the heap if it’s not been visited
before.

6. Check if the current node’s value plus the edge’s weight is less than the connected6.
node’s (Paris, Luxembourg, and Amsterdam) value.

7. If it is, set the connected node’s value to the current node’s value plus the edge’s7.
weight. This is why you set every node (except the originating node, London) to
be MaxInt.

8. Set the connected node’s through field to be the current node. The through field8.
tells you which node the shortest path to this node is, so you can trace back later
to come up with the path.

9. Once you’re done, loop from step 3 until all the nodes are visited.9.

That’s it for the algorithm. Here’s how you can use it:

func main() {
// build and run Dijkstra's algorithm on graph
graph := buildGraph()
city := os.Args[1]
dijkstra(graph, city)

// display the nodes
for _, node := range graph.Nodes {

fmt.Printf("Shortest time from %s to %s is %d\n",

232 | Chapter 14: More Data Structure Recipes

city, node.name, node.value)
for n := node; n.through != nil; n = n.through {

fmt.Print(n, " <- ")
}
fmt.Println(city)
fmt.Println()

}
}

Build the graph and pass it to the algorithm. The results are all in the nodes. After
calling the dijkstra function, the values of the nodes are now the shortest flight
times needed to travel from London while the through fields are the previous nodes
that will link back to the shortest path.

If you take the nodes and walk backward to London, you’ll see the shortest path:

$ % go run dijkstra.go London
Shortest time from London to London is 0
London

Shortest time from London to Paris is 80
Paris <- London

Shortest time from London to Amsterdam is 75
Amsterdam <- London

Shortest time from London to Luxembourg is 75
Luxembourg <- London

Shortest time from London to Zurich is 135
Zurich <- Luxembourg <- London

Shortest time from London to Rome is 205
Rome <- Paris <- London

Shortest time from London to Berlin is 160
Berlin <- Amsterdam <- London

Shortest time from London to Vienna is 215
Vienna <- Zurich <- Luxembourg <- London

Shortest time from London to Warsaw is 240
Warsaw <- Berlin <- Amsterdam <- London

Shortest time from London to Istanbul is 345
Istanbul <- Vienna <- Zurich <- Luxembourg <- London

Running Dijkstra’s algorithm helps you to find the shortest path from London to all
the cities as well!

14.7 Finding the Shortest Path on a Graph | 233

CHAPTER 15

Image-Processing Recipes

15.0 Introduction
The standard library for 2D image manipulation is the image package and the main
interface is image.Image. To work with the different image formats, you need to
register the format first by initializing the format’s package in the program’s main
package:

import _ "image/png"

Importing a package with an underscore allows you to create the package-level vari‐
ables and also execute the init function in the image/png package. You can import
more than one format; it doesn’t matter and the compiler won’t complain (because
you’re naming it (“_”)—if you don’t name it, the compiler will complain).

Before you start using the image package, it’s important to know some of its most
often-used interfaces and structs.

Image and Other Interfaces
The image.Image type is an interface that represents a rectangular grid of
color.Color pixel values, taken from a color model. This is the main interface
for the image package. Structs that implement this interface have to implement the
ColorModel, Bounds, and At methods:

type Image interface {
ColorModel() color.Model
Bounds() Rectangle
At(x, y int) color.Color

}

235

The color.Color interface has a method that returns the four values—red, green,
blue, and alpha:

type Color interface {
 RGBA() (r, g, b, a uint32)
}

The color.Color interface represents a color. The At method in image.Image returns
the color at the specific location at x, y.

A image.Rectangle is a rectangle defined by its top-left and bottom-right points, Min
and Max, respectively:

type Rectangle struct {
 Min, Max Point
}

And finally, of course, an image.Point is a position defined by X and Y values:

type Point struct {
 X, Y int
}

Image Implementations
Several structs implement image.Image in the same package. These include RGBA,
NRGBA, Gray, CMYK, and NYCbCrA, to name a few. I’ll focus on NRGBA here because it’s
easy to understand. Let’s talk a bit more about what RGBA and NRGBA mean.

The A in RGBA is the alpha channel (also called the image mask) that controls whether
parts of the image are visible or not. The RGBA image is an image that is alpha-
premultiplied or already has the alpha channel applied to it. The N in NRGBA means
that the alpha channel is not applied to it. In other words, an NRGBA image is an image
that has an alpha channel but it’s not premasked.

The alpha channel is used in a technique called alpha compositing, which combines
two or more images into a final image called a composite. We won’t be doing compo‐
siting in this book but if you’re compositing images, the difference between having an
alpha channel or not having an alpha channel is important. It’s also important if you
are creating images with transparent backgrounds. Otherwise (meaning if the alpha
channel is not used anyway) it doesn’t matter.

236 | Chapter 15: Image-Processing Recipes

15.1 Loading an Image from a File
Problem
You want to load an image from an image file.

Solution
Use image.Decode to decode data from an image file into an implementation of
image.Image.

Discussion
If you want to work with an image from a file, you have to open up the file and then
decode its content. To do this, you should already know what kind of file you are
dealing with and register the type accordingly:

func load(filePath string) *image.NRGBA {
imgFile, err := os.Open(filePath)
if err != nil {

log.Println("Cannot read file:", err)
}
defer imgFile.Close()

img, _, err := image.Decode(imgFile)
if err != nil {

log.Println("Cannot decode file:", err)
}
rimg, ok := img.(*image.NRGBA)
if ok {

return rimg, nil
}
return nil, errors.New("cannot type assert image")

}

First, you need to open a file. Then using image.Decode, you decode it into the img
variable. The Decode method returns three values: the first is what you want to get,
the image.Image value; the second is a string signifying the format of the image; and
the third is the usual error value.

Take a closer look at the img value. Since you get an Image value, why do you want to
type assert to image.NRGBA before you return it? This is because Image is an interface,
and NRGBA is the actual implementation:

type NRGBA struct {
Pix []uint8
Stride int
Rect Rectangle

}

15.1 Loading an Image from a File | 237

In other words, you can manipulate the NRGBA but you can’t manipulate an Image. Of
course, you can still call methods on Image but you can’t directly manipulate it unless
you get a hold of the underlying implementation.

15.2 Saving an Image to a File
Problem
You have an image and want to save it to a file.

Solution
Use the Encode method of the correct file format package (e.g., png.Encode for PNG
files) to encode the image into a file.

Discussion
If you can load an image from a file you might also want to save it back to a
file. Saving images requires you to import the actual format packages because the
encoders are specific to the formats (which makes sense if you think about it):

import "image/png"

If you need to decode and encode, just the preceding code will do; you don’t need to
import the package and name it with an underscore:

func save(filePath string, img *image.NRGBA) {
imgFile, err := os.Create(filePath)
defer imgFile.Close()
if err != nil {

log.Println("Cannot create file:", err)
}
png.Encode(imgFile, img.SubImage(img.Rect))

}

First, you create the file. Then use png.Encode (or jpeg.Encode or gif.Encode) to
encode the image to the file. You might notice that this example uses the SubImage
method in the struct instance. This is because Encode takes in the Image interface as
a parameter (as it should). You need to make the NRGBA into an Image so you use the
SubImage method and pass in the dimensions of the entire image, which is found in
the Rect value.

238 | Chapter 15: Image-Processing Recipes

15.3 Creating Images
Problem
You want to create an image from scratch.

Solution
Create one of the Image implementation structs (e.g., NRGBA) and populate it with the
appropriate data.

Discussion
So you can load and save images from and to a file. What if you want to create an
image from scratch? You will have to create an implementation (you can’t create an
interface). As you remember from earlier, NRGBA has three attributes:

Pix

A slice of bytes that contains the pixels in the image (it’s just a slice of
color.Color)

Stride

The distance between the two vertically adjacent pixels

Rect

The dimensions of the image:

func main() {
rect := image.Rect(0, 0, 100, 100)
img := createRandomImage(rect)
save("random.png", img)

}

func createRandomImage(rect image.Rectangle) (created *image.NRGBA) {
pix := make([]uint8, rect.Dx()*rect.Dy()*4)
rand.Read(pix)
created = &image.NRGBA{

Pix: pix,
Stride: rect.Dx() * 4,
Rect: rect,

}
return

}

15.3 Creating Images | 239

Say you want to create an image that is 100 × 100 pixels. First, you need to create
a Rect with the correct dimensions. Next, the Pix should be a slice of bytes of size
100 × 100 × 4 = 40,000 because each pixel is represented by 4 bytes (R, G, B, and A).
Lastly, the Stride is the distance between two vertical pixels, which is the width of the
image, multiplied by 4, which is 100 × 4 = 400.

The example code created a random image with each pixel a random color by
populating the Pix slice of bytes with random bytes using rand.Read. You can fill it
up with anything else, of course.

15.4 Flipping an Image Upside Down
Problem
You want to flip an image upside down.

Solution
Convert an image to a grid of pixels. Swap the positions of the top and bottom
pairs of pixels and move down to swap the next pair until all the pixel positions are
swapped. Convert the grid of pixels back into a flipped image.

Discussion
In Recipe 15.3 we said the Image implementations (for example, image.NRGBA) have
a slice of bytes that represent pixels in the image. That’s not the most intuitive way
to represent a raster image. What’s more common is a grid of pixels (because a raster
image is literally a grid of pixels), so that’s the first thing you want to do—convert an
image.NRGBA to a grid of pixels.

In the image package, a pixel is represented by the type color.Color so you’re going
to create a 2D slice of color.Color pixels. You will extend the load function from
before to do this so you can return the grid:

func load(filePath string) (grid [][]color.Color) {
 // open the file and decode the contents into an image

file, err := os.Open(filePath)
if err != nil {

log.Println("Cannot read file:", err)
}
defer file.Close()
img, _, err := image.Decode(file)
if err != nil {

log.Println("Cannot decode file:", err)
}

 // create and return a grid of pixels
size := img.Bounds().Size()

240 | Chapter 15: Image-Processing Recipes

for i := 0; i < size.X; i++ {
var y []color.Color
for j := 0; j < size.Y; j++ {

y = append(y, img.At(i, j))
}
grid = append(grid, y)

}
return

}

As before, you load the file and decode its contents into an image.

To convert the image into a grid, you need to find out the size of the image. Use the
Size method on the Rect struct that is returned from calling the Bounds method on
the image. This returns a Point, which gives you the X and Y width and length of the
image. Iterate the width and length, and at each pixel position, use the At method to
get the pixel color.Color. This will give you a grid of color.Color pixels.

You will also need to extend the save function from Recipe 15.2 to let you save the
grid of pixels back into a file:

func save(filePath string, grid [][]color.Color) {
 // create an image and set the pixels using the grid

xlen, ylen := len(grid), len(grid[0])
rect := image.Rect(0, 0, xlen, ylen)
img := image.NewNRGBA(rect)
for x := 0; x < xlen; x++ {

for y := 0; y < ylen; y++ {
img.Set(x, y, grid[x][y])

}
}

 // create a file and encode the image into it
file, err := os.Create(filePath)
if err != nil {

log.Println("Cannot create file:", err)
}
defer file.Close()
png.Encode(file, img.SubImage(img.Rect))

}

You will be reversing what you did previously. First, you need to create an image.
Using the width and length of the 2D slice, create a Rect to represent the size of the
image. Create a new image using the image.NewNRGBA function, passing it the Rect.
Then iterate through the grid and at every position, set the color.Color pixel from
the grid into the new image.

Finally, take the image and encode it into a file.

Now that you can load an image file into a grid of pixels and save it back into an
image file, look at the algorithm you want to use to flip the image upside down:

15.4 Flipping an Image Upside Down | 241

func flip(grid [][]color.Color) {
for x := 0; x < len(grid); x++ {

col := grid[x]
for y := 0; y < len(col)/2; y++ {

z := len(col) - y - 1
col[y], col[z] = col[z], col[y]

}
}

}

It’s relatively simple to flip the image with a grid of pixels. You simply iterate through
each column of the grid and swap the top and bottom pixels. Here’s how you can use
this algorithm to flip the image:

func main() {
grid := load("monalisa.png")
flip(grid)
save("flipped.png", grid)

}

You will use an image of the Mona Lisa to test (see Figure 15-1).

Figure 15-1. Mona Lisa

First, load the image from a file using load, creating a grid of pixels. Then call the
flip function with the grid. Finally, save the flipped image into another file using
save. Figure 15-2 shows the Mona Lisa flipped upside down.

242 | Chapter 15: Image-Processing Recipes

Figure 15-2. Flipped Mona Lisa

15.5 Converting an Image to Grayscale
Problem
You want to convert the image to grayscale.

Solution
Convert an image to a grid of pixels. Take each pixel in the grid and convert it to
a gray pixel according to the relative luminance formula. Convert the grid of pixels
back into an image to get a grayscale image.

Discussion
A grayscale image is an image that has pixels that show different shades of gray
representing the amount of light intensity. Black and white represents the opposite
ends of the spectrum, with black having the least amount of light and white having
the most.

To create a grayscale image from a color image, you can calculate the relative lumi‐
nance of each pixel from the red, green, and blue values of each pixel. There are a few
formulas for calculating this relative luminance, but the simplest is just to take the
average of the red, green, and blue values:

L = (R + G + B)/3

15.5 Converting an Image to Grayscale | 243

Here’s the code to do the conversion:

func grayscale(grid [][]color.Color) (grayImg [][]color.Color) {
xlen, ylen := len(grid), len(grid[0])
grayImg = make([][]color.Color, xlen)
for i := 0; i < len(grayImg); i++ {

grayImg[i] = make([]color.Color, ylen)
}

for x := 0; x < xlen; x++ {
for y := 0; y < ylen; y++ {

pix := grid[x][y].(color.NRGBA)
gray := uint8(float64(pix.R)/3.0 + float64(pix.G)/3.0 +

float64(pix.B)/3.0)
grayImg[x][y] = color.NRGBA{gray, gray, gray, pix.A}

}
}
return

}

The first part of the grayscale function should look familiar; you’re creating a new
grid of pixels to represent the grayscale image, using the same dimensions as the
original image. Next, you iterate through the original image, take each pixel, get the
red, green, and blue values, then divide them by 3 and add them up:

gray := uint8(float64(pix.R)/3.0 + float64(pix.G)/3.0 + float64(pix.B)/3.0)

This is the luminance of the pixel, which you use to create a grayscale pixel that you
place in the corresponding position in the grayscale image:

grayImg[x][y] = color.NRGBA{gray, gray, gray, pix.A}

The luminosity formula here is the simplest, but there are other formulas defined
by various standards to convert color to grayscale. One of these standards is the
ITU-R BT.709 standard from the International Telecommunications Union (ITU)
Radiocommunication Sector, which produces a better result:

L = 0.2126 * R + 0.7152 * G + 0.0722 * B

Figure 15-3 shows three pictures of a rainbow lorikeet. The one on the left is the
colorful original. The middle picture is a grayscale version converted using the
BT.709 luminosity formula, while the last picture on the right is a grayscale version
converted using the average method.

244 | Chapter 15: Image-Processing Recipes

Figure 15-3. Rainbow lorikeet by David Clode. The first picture on the left (in color if
you’re reading the web version) is the original. The second picture in the middle is a
grayscale version converted using the BT.709 luminosity formula. The last picture on the
right is a grayscale version converted using the average method.

15.6 Resizing an Image
Problem
You want to resize an image, making it larger or smaller.

Solution
Convert an image to a grid of pixels as the source and create a new image with the
resized dimensions. Use the nearest neighbor interpolation algorithm to figure out
the color of each pixel in the new image. Convert the grid of pixels back into a resized
image.

Discussion
Resizing a raster image means creating an image with a higher or lower number
of pixels. Many algorithms are used for resizing images, including nearest neighbor,
bilinear, bicubic, Lanczos resampling, and box sampling. Among these algorithms,
the nearest neighbor is probably the simplest. However, the quality is usually not the
best, and it can also introduce jaggedness in the image.

The nearest neighbor interpolation algorithm works like this:

1. Assume you are given the original image and the scale of the resize. For example,1.
if you want to double the size of the image, the scale is 2.

2. Create a new image with the new size.2.
3. Take each pixel in the new image, and divide the X and Y positions by the scale to3.

get X' and Y' positions. These might not be whole numbers.
4. Find the floor of X' and Y'. These are the corresponding X and Y positions4.

mapped on the original image.

15.6 Resizing an Image | 245

5. Use the X' and Y' positions to get the pixel in the original image and put it into5.
the new image at the X and Y positions.

Here’s the code to implement the algorithm:

func resize(grid [][]color.Color, scale float64) (resized [][]color.Color) {
xlen, ylen := int(float64(len(grid))*scale), int(float64(len(grid[0]))*
scale)
resized = make([][]color.Color, xlen)
for i := 0; i < len(resized); i++ {

resized[i] = make([]color.Color, ylen)
}
for x := 0; x < xlen; x++ {

for y := 0; y < ylen; y++ {
xp := int(math.Floor(float64(x) / scale))
yp := int(math.Floor(float64(y) / scale))
resized[x][y] = grid[xp][yp]

}
}
return

}

As you can see, it’s quite straightforward. Per the algorithm, you create a new resized
image, then iterate through each pixel in the new image and find the corresponding
matching pixel in the original image. After that, you copy that pixel from the original
image over to the new image.

Figure 15-4 shows the Mona Lisa resized. The picture on the left is the original image,
the picture in the middle is a 10× size-reduced image, and the picture on the right is a
10× size-enlarged image.

Figure 15-4. The Mona Lisa resized

246 | Chapter 15: Image-Processing Recipes

CHAPTER 16

Networking Recipes

16.0 Introduction
While individual computers are powerful in their own right in processing data
and computing results, the real power of computers lies in connecting them to a
computer network. When computers are networked, they can tap into each other’s
strengths and capabilities, aggregate computing power, and distribute processing
among each other such that complex problems can be split up and worked on
separately.

Computer networks use network protocols to communicate with each other. Network
protocols are often abstracted into different layers. For example, Open Systems Inter‐
connection (OSI) describes seven layers of communication protocols—starting from
the application layer at the top, followed by the presentation, session, transport,
network, data link, and physical layers. The Internet Protocol suite, popularly known
as TCP/IP, has only four layers, starting with the application layer, followed by the
transport, internet, and link layers. TCP/IP predates OSI and is more commonly
used, but either protocol suite is only an abstraction layer used to describe the
network communications.

The application layer is, as the name suggests, the protocol layer that describes how
applications talk to each other. Examples of protocols on this layer include HyperText
Transfer Protocol (HTTP) and File Transfer Protocol (FTP).

The transport layer describes how datagrams are sent and received. The two main
protocols in this layer are Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP). TCP ensures packets of data (called datagrams) are delivered relia‐
bly. UDP, on the other hand, doesn’t ensure datagram delivery. TCP is reliable but has
a high overhead, while UDP is often much faster.

247

Internet layer protocols describe how bits and bytes of data are organized into
datagrams and how devices on the network find each other. The Internet Protocol
(IP) is the most widely used internet layer protocol in the world. Two main versions
of IP are in use today: the first is IP version 4, which is identified by a 4-byte number
written in a dotted quad format—for example, 192.168.1.1—where each of the four
numbers is an unsigned byte with value from 0 to 255.

There are about 4 billion possible IPv4 addresses, which means they are running out.
IP version 6, on the other hand, has a 16-byte address that provides 340 undecillion
(340 trillion trillion trillion) addresses, which should be more than enough for a
while. IPv6 addresses are written in eight blocks of four hexadecimal digits separated
by colons—for example, 2001:0db8:85a3:0000:0000:8a2e:0370:7334.

In addition to addresses, each IP address has 65,535 logical ports, which are normally
used to identify a service. For example, HTTP normally uses port 80 while FTP uses
two ports: port 20 for command and port 21 for data. Port numbers 1 to 1023 are
reserved for well-known services such as HTTP or FTP.

Go, like many other programming languages, provides standard libraries for network
programming. In particular, the net package in the standard library provides capabil‐
ities for socket programming. This chapter focuses on socket programming.

You will be using netcat to test our network programs. netcat is a simple utility that
can be used to read and write data across network connections, using TCP or UDP. It
is often used to test network connectivity and port availability.

In Unix-like operating systems, netcat is usually installed by default. On macOS,
instead of netcat you can use nc, which works roughly the same way (also installed
by default). In Windows, download netcat from Nmap.

In this chapter, you will use nc as the command name.

16.1 Creating a TCP Server
Problem
You want to create a TCP server to receive data from a TCP client.

Solution
Use the Listen function in the net package to listen for connections, then accept the
connection using Accept.

248 | Chapter 16: Networking Recipes

https://nmap.org/ncat

Discussion
TCP is a connection-oriented protocol at the transport layer. It ensures a reliable and
ordered delivery of bidirectional data by managing message acknowledgments and
sequences of data packets. As a result, it’s more reliable. When a TCP connection
is established, it is maintained until the applications on both ends finish exchanging
messages and close it.

Sockets are application-level connections between two computers and represent end‐
points for sending and receiving data to other programs across the network. Sockets
abstract the complexities behind networking, allowing programmers to develop pro‐
grams that communicate through the network. As a result, writing network programs
are often about socket programming.

There are three parts to a simple TCP server program:

1. Listen for incoming connections.1.
2. Accept the connection.2.
3. Read and optionally write data to the connection.3.

Here is the code:

func main() {
listener, err := net.Listen("tcp", "localhost:9000")
if err != nil {

log.Fatal(err)
}
defer listener.Close()
for {

conn, err := listener.Accept()
if err != nil {

log.Fatal(err)
}

go func(c net.Conn) {
buf := make([]byte, 1024)
_, err := c.Read(buf)
if err != nil {

log.Fatal()
}
log.Print(string(buf))
conn.Write([]byte("Hello from TCP server"))
c.Close()

}(conn)
}

}

16.1 Creating a TCP Server | 249

First, you set up the server to listen to a socket using the net.Listen function.
Sockets are identified by a combination of the transport protocol, IP address, and
port number. Then you loop indefinitely to accept connections. When a connection
comes, it is accepted and handled in a separate goroutine. The goroutine reads the
data from the connection and prints it out. The connection is then closed.

The net.Listen function returns a net.Listener interface, a generic network lis‐
tener for stream-oriented protocols. The net.Listen function takes two arguments.
The first is the network protocol, which is tcp in this case. The second is the address
to listen on, which is in the form <host>:<port>. If the host is provided, the listener
will listen only to that IP address. If it’s left empty, as in this case, for example,
:9000, it will listen on all available unicast and anycast IP addresses of the local
system. Interestingly if it’s a single hostname it will also listen only for IPv4 traffic.
If you leave it empty it will listen to both IPv4 and IPv6. If the port is 0, a random
port is chosen and the Addr method of net.Listener can be used to retrieve the
port number.

You read from the connection using the Read method. The Read method takes a byte
slice as an argument and returns the number of bytes read and an error. The byte slice
is used to store the data read from the connection.

You also write to the connection using the Write method. The Write method takes a
byte slice as an argument and returns the number of bytes written and an error.

Here’s how this works. Start the server first:

$ go run main.go

Then you can use the nc (netcat) command to connect and send data to the server. In
another terminal, run the following command as the client:

$ echo "Hello from TCP client" | nc localhost 9000
Hello from TCP server

Echo the string “Hello from TCP client” to the nc command, which sends it to the
server. The server then prints out the string and sends back “Hello from TCP server”
to the client.

“Hello from TCP server” prints out on the client side.

You might wonder what happens if you have more than 1,024 bytes from the client.
You can look until io.EOF is reached. Here is the snippet:

go func(c net.Conn) {
bytes := []byte{}
for {

buf := make([]byte, 32)
_, err := c.Read(buf)
if err != nil {

250 | Chapter 16: Networking Recipes

if err == io.EOF {
break

} else {
log.Fatal(err)

}
}
bytes = append(bytes, buf...)

}
log.Print(string(bytes))
_, err = conn.Write([]byte("Hello from TCP server"))
if err != nil {

log.Fatal(err)
}
c.Close()

}(conn)

You will loop until all the data from the client is read (and therefore io.EOF is
encountered).

You’re sending data from the nc client using IPv4. If you want to use IPv6, you can
use the -6 flag at the client but you also need to change the listener:

listener, err := net.Listen("tcp", ":9000")

If you do this, you can use the nc command to connect to the server using IPv6:

$ echo "Hello from TCP client" | nc -6 localhost 9000
Hello from TCP server

The net.Conn interface returned by the Accept method of net.Listener represents
a generic stream-oriented network connection. It is an abstraction of a network
connection and has Read and Write methods, meaning it is both a Reader and
Writer.

Both net.Listener and net.Conn are interfaces, and in this case, they are imple‐
mented by the net.TCPListener and the netTCPConn structs, respectively. Instead
of using the net.Listen and Accept functions, you could have created the net.TCP
Listener and net.TCPConn structs directly using the net.ListenTCP and AcceptTCP
functions. However, the net.Listen and Accept functions are more convenient
and portable:

func main() {
addr, err := net.ResolveTCPAddr("tcp", ":9000")
if err != nil {

log.Fatal(err)
}
listener, err := net.ListenTCP("tcp", addr)
if err != nil {

log.Fatal(err)
}
defer listener.Close()

16.1 Creating a TCP Server | 251

for {
conn, err := listener.AcceptTCP()
if err != nil {

log.Fatal(err)
}
go func(c net.Conn) {

buf := make([]byte, 1024)
_, err := c.Read(buf)
if err != nil {

log.Fatal()
}
log.Print(string(buf))
conn.Write([]byte("Hello from TCP server"))
c.Close()

}(conn)
}

}

It might seem redundant that you have more than one way of creating a TCP server.
The net.Listen and Accept functions are more convenient and simpler to use.
net.ListenTCP and AcceptTCP are more verbose but give you more control over the
connection; for example, you could set the KeepAlive property of the connection to
true to keep the TCP connection alive longer.

16.2 Creating a TCP Client
Problem
You want to create a TCP client to send data to a TCP server.

Solution
Use the Dial function in the net package to connect to a TCP server.

Discussion
Creating a TCP client is similar to creating a TCP server but even simpler. The main
difference is that the client connects to a server instead of listening for connections:

func main() {
conn, err := net.Dial("tcp", ":9000")
if err != nil {

log.Fatal(err)
}
defer conn.Close()
conn.Write([]byte("Hello World from TCP client"))

}

252 | Chapter 16: Networking Recipes

First, connect to the server using the net.Dial function. Then write data to the
connection; when you’re done you can close the connection.

You saw the net.Conn interface in Recipe 16.1. The net.Dial function returns a
net.Conn interface, which is a generic stream-oriented network connection. It is an
abstraction of a network connection and has Read and Write methods, meaning it is
both a Reader and Writer. In a TCP client, you will use this connection to write data
to the server.

Use nc to listen on a port and see what the client sends:

$ nc -l 9000

Then run the client on another terminal:

$ go run main.go

On the nc terminal “Hello World from TCP client” prints out.

How about IPv6? You can use the -6 flag to force nc to listen on IPv6:

$ nc -l -6 9000

If you run the client again you will see the same output. Go TCP clients send out the
data using both IPv4 and IPv6.

Just as you can create a TCP server using the net.ListenTCP and AcceptTCP func‐
tions, you can also create a TCP client using the net.DialTCP function:

func main() {
addr, err := net.ResolveTCPAddr("tcp", ":9000")
if err != nil {

log.Fatal(err)
}
conn, err := net.DialTCP("tcp", nil, addr)
if err != nil {

log.Fatal(err)
}
defer conn.Close()
conn.Write([]byte("Hello World from TCP Client"))

}

The net.DialTCP function takes a network string and two net.TCPAddr structs as
arguments. You can create the address structs using the net.ResolveTCPAddr func‐
tion. The first argument to net.DialTCP is the network, followed by the local address
and the remote address. If the local address is nil, a local address is automatically
chosen. If the remote address is nil, an error is returned (the documentation says
otherwise but as of Go 1.20, in the net/tcpsock.go source file, this is the behavior).

16.2 Creating a TCP Client | 253

16.3 Creating a UDP Server
Problem
You want to create a UDP server to receive data from a UDP client.

Solution
Use the ListenPacket function in the net package to listen for incoming packets.
Then use the ReadFrom method of the PacketConn interface to read data from the
connection. You can also use the WriteTo method to write data to the connection.

Discussion
UDP is a connectionless protocol. This means there is no connection between the
client and the server. The client sends data to the server and the server sends data
back to the client. Neither the client nor the server knows if the server or client
received the data or not.

A UDP server in Go is similar to a TCP server. The main difference is that you use
the net.ListenPacket function instead of the net.Listen function:

func main() {
conn, err := net.ListenPacket("udp", ":9001")
if err != nil {

log.Fatal(err)
}
defer conn.Close()
buf := make([]byte, 1024)
for {

_, addr, err := conn.ReadFrom(buf)
if err != nil {

log.Fatal(err)
}
log.Printf("Received %s from %s", string(buf), addr)
conn.WriteTo([]byte("Hello from UDP server"), addr)

}
}

The net.ListenPacket function returns a net.PacketConn interface, which is a
packet-oriented network connection. Unlike the net.Conn interface, net.PacketConn
is not a Reader or Writer because it doesn’t have Read or Write methods. Instead,
it has ReadFrom and WriteTo methods to read and write data from and to the
connection.

You can test the server. Start this on one terminal:

$ go run main.go

254 | Chapter 16: Networking Recipes

Use the nc command to send data to it. In another terminal, run the following
command as the client:

$ echo "Hello from UDP client" | nc -u localhost 9001

You should see “Received Hello from UDP client” printed out on the server side, and
“Hello from UDP server” printed out on the client side.

As in the TCP server, your UDP server is listening on both IPv4 and IPv6. To show
this you’ll use the -6 flag to force nc to use IPv6:

$ echo "Hello from UDP client" | nc -u -6 localhost 9001

You should see the same output as before.

Besides using net.ListenPacket you can also use the net.ListenUDP function to
create a UDP server:

func main() {
addr, err := net.ResolveUDPAddr("udp", ":9001")
if err != nil {

log.Fatal(err)
}
conn, err := net.ListenUDP("udp", addr)
if err != nil {

log.Fatal(err)
}
defer conn.Close()
buf := make([]byte, 1024)
for {

_, addr, err := conn.ReadFromUDP(buf)
if err != nil {

log.Fatal(err)
}
log.Printf("Received %s from %s", string(buf), addr)
conn.WriteToUDP([]byte("Hello from UDP server"), addr)

}
}

Unlike the net.ListenPacket, though, the net.ListenUDP function takes a
net.UDPAddr as an argument. First, use the net.ResolveUDPAddr function to resolve
and create the address. Then use the net.ListenUDP function to create the connec‐
tion. Instead of net.PacketConn you get a net.UDPConn interface. The net.UDPConn
struct implements both the net.PacketConn and net.Conn interfaces, meaning it has
both ReadFrom and WriteTo methods and Read and Write methods. In addition, it
has ReadFromUDP and WriteToUDP methods to read and write data from and to the
connection.

The net.ListenPacket function is more generic and can be used to create a UDP
server, but it is also used to create other types of servers such as IP and Unix domain

16.3 Creating a UDP Server | 255

sockets. The net.ListenUDP function is more specific and can only be used to create
a UDP server.

At this point, you might be confused about why net.UDPConn implements both the
net.PacketConn and net.Conn interfaces. After all, net.UDPConn is a packet-oriented
connection whereas net.Conn is a stream-oriented connection, which is also imple‐
mented by the net.TCPConn struct. How can a connection be both packet-oriented
and stream-oriented at the same time?

This comes from the original Berkeley, sockets API that has become the standard
in Unix-like systems where sockets are stream-oriented. Both UDP and TCP are
implemented on top of sockets so they both implement the net.Conn interface.

16.4 Creating a UDP Client
Problem
You want to create a UDP client to send data to a UDP server.

Solution
Use the Dial function in the net package to connect to a UDP server. Then use the
Write method of the net.UDPConn interface to write data to the connection.

Discussion
Creating a UDP client can be very straightforward, and it can look exactly like the
TCP client, except the network string is udp instead of tcp:

func main() {
conn, err := net.Dial("udp", ":9001")
if err != nil {

log.Fatal(err)
}
defer conn.Close()
conn.Write([]byte("Hello from UDP client"))

}

Try it out: set up a UDP listener using nc on one terminal. Use the -u flag to force nc
to use UDP and the -l flag to listen for incoming connections:

$ nc -l -u 9001

Then run your UDP client on another terminal. You should see “Hello from UDP
client” printed out on the server side.

256 | Chapter 16: Networking Recipes

This works for IPv4 and IPv6. To test this, you’ll use the -6 flag to force nc to use IPv6
on the server side:

$ nc -l -u -6 9001

If you run the same client you should see the same output.

You can also use the net.DialUDP function to create a UDP client:

func main() {
raddr, err := net.ResolveUDPAddr("udp", ":9001")
if err != nil {

log.Fatal(err)
}
conn, err := net.DialUDP("udp", nil, raddr)
if err != nil {

log.Fatal(err)
}
defer conn.Close()

_, err = conn.Write([]byte("Hello from UDP client"))
if err != nil {

log.Fatal(err)
}

}

The net.DialUDP function takes a net.UDPAddr as argument. First, use the
net.ResolveUDPAddr function to resolve and create the address. Then use the
net.DialUDP function to create the connection.

To write to the connection use the Write method of the net.UDPConn interface. The
Write method takes a byte slice as an argument and returns the number of bytes
written and an error.

16.4 Creating a UDP Client | 257

CHAPTER 17

Web Recipes

17.0 Introduction
Web applications are everywhere. Take any software application you use daily, and
it is likely a web application. Any programming language that supports developing
software that interfaces with human beings will inevitably support developing web
applications as well. One of the first libraries and frameworks to be built for any new
language is interaction with the internet and the World Wide Web. Go is no different.

A web application is a computer program that responds to an HTTP request by a
client and sends back HTML to the client in an HTTP response. In other words, a
web application is a server—a web server, to be exact. The client is usually a web
browser, and they communicate over HTTP.

A web service, on the other hand, is a computer program that responds to an HTTP
request by a client that is not a browser used by a human user but another computer
program. A web service is a server as well, but it usually returns JSON, and it
increasingly also returns binary formats.

HTTP is the application-level communications protocol that powers the World Wide
Web. Everything that you see on a web page is transported through this seemingly
simple text-based protocol. HTTP is simple but surprisingly powerful—since its
definition in 1990, it has gone through only three iterative changes. HTTP 1.1 is
the most widely used version, while HTTP 2 is the current version. HTTP 3 is in
the works.

This chapter will explore the Go standard library and the Go programming language’s
support for web application development.

259

Parts of a Web Application
A web application generally consists of three parts:

A multiplexer
A router that matches the request URI to a handler function

One or more handlers
Functions that handle the requests and return the responses

A template engine
An engine that combines one or more templates with data and renders the
response

The multiplexer is quite straightforward. It simply matches the request URI to a han‐
dler according to a URL route. For example, you want to match the URL route /home
to a homeHandler function.

The handler function is where the real work is done. It takes in a request, does some
processing with the data from the request, and returns a response.

The template engine is used to render the body of the response. It combines one or
more templates with data and returns the response body. While this is commonly
HTML, it can be any format, including JSON, XML, plain text, or even binary data,
such as images and PDFs.

Now that you’ve had a quick introduction, you can learn more about how to use Go
in web development.

17.1 Creating a Simple Web Application
Problem
You want to create a simple web application that responds to an HTTP request and
sends back an HTTP response.

Solution
Use the net/http package to create a simple Hello World web application.

Discussion
You want to create a simple web application running on port 8000 that shows a Hello
World message when a user visits the / URL.

260 | Chapter 17: Web Recipes

The only package you need is the net/http package:

package main

import (
"net/http"

)

func main() {
http.HandleFunc("/", index)
http.ListenAndServe(":8000", nil)

}

func index(w http.ResponseWriter, r *http.Request) {
w.Write([]byte("Hello World"))

}

Starting from the second line in the main function: here, you call the http.
ListenAndServe function to start the web server. The first parameter is the address to
listen on, which is in the format <host>:<port>. If the host is provided, the listener
will listen only to that IP address. If it’s left empty, as in this case, for example, :8000,
it will listen on all available unicast and anycast IP addresses of the local system.

The second parameter is a handler; that is, it is a struct that implements the http.
Handler interface. The http.Handler interface has only one method, ServeHTTP,
which takes in an http.ResponseWriter and an http.Request as parameters. The
http.ResponseWriter is used to write the response back to the client, and the
http.Request contains all the information about the request.

You might be wondering why you are setting up the server to use only one handler;
you would expect a lot more than just one handler. This is because in Go, the
multiplexer, the router that matches the request URI to a handler, is a handler itself!

In this case, it’s left as nil, which means it will assume the default multiplexer,
http.DefaultServeMux. http.DefaultServeMux is an instance of the http.ServeMux
struct, which in turn, implements the http.Handler interface. You don’t normally
interact directly with http.DefaultServeMux, despite it being a variable, but many of
the functions in the package are nothing more than wrappers around it, as you will
see in a while.

The http.ServeMux multiplexer has a HandleFunc method that registers a func‐
tion as a handler for a given URL pattern. This HandleFunc method takes in a
URL pattern and a function as parameters. The function must have the signature
func(http.ResponseWriter, *http.Request) and will be called when a request
matches the URL pattern.

Now when you look at the first line of the main function, things should become clear.
You call the http.HandleFunc function to register the index function as the handler

17.1 Creating a Simple Web Application | 261

for the / URL pattern. Internally what it does is simply call the HandleFunc method of
the http.DefaultServeMux multiplexer.

The index function is quite trivial. In this case, you simply write the string Hello
World to the http.ResponseWriter. It might not look like it, but w is a pointer.
http.ResponseWriter is an interface so you can’t tell if it’s a pointer or not. Whatever
is written to the http.ResponseWriter will then be sent back to the client as the
response body.

Start the server:

$ go run main.go

Now visit http://localhost:8000/ in your browser. You should see the Hello World
message displayed, as shown in Figure 17-1.

Figure 17-1. Hello World web application

In this recipe, you used the multiplexer in the standard library because it is the
default implementation. It is quite common to use more sophisticated and perform‐
ant multiplexers offered by third-party packages; for example, the chi package.

Here’s how the code would look with a third-party multiplexer like chi:

package main

import (
"net/http"

"github.com/go-chi/chi/v5"
)

func main() {
mux := chi.NewRouter()
mux.Get("/", index)
http.ListenAndServe(":3000", mux)

}

func index(w http.ResponseWriter, r *http.Request) {
w.Write([]byte("Hello World"))

}

As you can see, the main change is that you need to create a new multiplexer, mux,
and this will be used instead of the default multiplexer when you start the server with
http.ListenAndServe. Third-party multiplexers are more optimal and capable. In

262 | Chapter 17: Web Recipes

https://github.com/go-chi/chi

most cases, you should use one unless you are writing something that only uses the
standard library.

17.2 Handling HTTP Requests
Problem
You want to process HTTP requests and send back HTTP responses.

Solution
Use http.Request to extract information on HTTP requests and http.Response
Writer to send HTTP responses back.

Discussion
In the previous recipe, you created a simple web application that responds to an
HTTP request and sends back an HTTP response. In this recipe, we will look deeper
into how to extract data from the HTTP requests.

The http.Request struct represents an HTTP request message sent from the client.
The struct contains important information about the request, as well as several useful
methods. Some important parts of Request are:

• URL•
• Header•
• Body•
• Form, PostForm, and MultipartForm•

You can also get access to the cookies in the request and the referring URL, and the
user agent from methods in Request.

The URL field is a representation of the URL sent as part of the request line (the first
line of the HTTP request). The URL field is a pointer to the url.URL type.

The URL will look like this:

scheme://[userinfo@]host/path[?query]

The two most commonly used pieces of information from the URL of a request are
the path and the query. The path is the path to the resource. The query is the query
string, which often has the form of a key-value pair, for example, ?key=value.

17.2 Handling HTTP Requests | 263

You can also get the HTTP method as well as the hostname. The HTTP method is
the method used to make the request, such as GET, POST, PUT, DELETE, and so on. The
hostname is the name of the server that the request was sent to.

Here’s a quick look at this:

func main() {
http.HandleFunc("/hello/world", hello)
http.ListenAndServe(":8000", nil)

}

func hello(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "Method : %s, Host : %s", r.Method, r.Host)
fmt.Fprintf(w, "Path : %s, Query : %s\n", r.URL.Path, r.URL.Query())

}

Run this on the server and open http://localhost:8000/hello/world?name=sausheong.
Figure 17-2 shows a screenshot of a browser showing the method and host of the
request, as well as the path and query of the URL.

Figure 17-2. Method, host, path, and query

As you can see, the Query field is a map of key-value pairs.

Next are the request headers. The Header field of an http.Request is a map of all the
HTTP headers sent with the request. The keys in the map are the header names and
the values in the map are slices of strings, so if a header appears multiple times in the
request, the values will be appended to the slice:

func main() {
http.HandleFunc("/headers", headers)
http.ListenAndServe(":8000", nil)

}

func headers(w http.ResponseWriter, r *http.Request) {
for k, v := range r.Header {

fmt.Fprintf(w, "%s: %s\n", k, v)
}

}

Run this on the server and open http://localhost:8000/headers. Figure 17-3 is a
screenshot of a browser showing the request headers.

264 | Chapter 17: Web Recipes

Figure 17-3. Request headers

Don’t be overly taken by the headers. These are simply the headers that are sent by the
browser. In this case, I’m using Safari, so these are the headers sent by Safari. If you
use a different browser, you will see different headers.

Next is the body of a request. The Body field of an http.Request is an io.ReadCloser
that contains the request body. The request body is available only if the request has a
body, such as a POST request:

func main() {
http.HandleFunc("/body", body)
http.ListenAndServe(":8000", nil)

}

func body(w http.ResponseWriter, r *http.Request) {
body, _ := io.ReadAll(r.Body)
fmt.Fprintf(w, "%s", body)

}

Since the Body field is an io.ReadCloser, you can use the io.ReadAll function to
read the entire body into a byte slice. To test this, you can use the curl command:

$ curl -X POST -d "Hello World" http://localhost:8000/body

The curl command will send a POST request with the body Hello World to the
server. The server will then send back the body of the request. If you run this on the
command line, you will see the following:

 % curl -X POST -d "Hello World" http://localhost:8000/body
Hello World

17.2 Handling HTTP Requests | 265

17.3 Handling HTML Forms
Problem
You want to process data submitted from HTML forms.

Solution
Use the Form field of http.Request or the FormValue method to access the data
submitted from HTML forms.

Discussion
Before we dive into handling form data from a POST request, let’s take a closer look at
HTML forms. A typical HTML form often looks like this:

<form action="/process" method="post">
 <input type="text" name="name"/>
 <input type="text" name="book"/>
 <input type="submit"/>
</form>

Within the <form> tag, you place several HTML form elements including text input,
text area, radio buttons, and so on. These elements allow users to enter data to be
submitted to the server. Data is submitted to the server when the user clicks a submit
button or somehow triggers the form submission.

The HTML form data is always sent as name-value pairs. The format of the name-
value pairs sent through a POST request is specified by the content type of the HTML
form. This is defined using the enctype attribute:

<form action="/process" method="post"
enctype="application/x-www-form-urlencoded">
 <input type="text" name="name"/>
 <input type="text" name="book"/>
 <input type="submit"/>
</form>

The default value for enctype is application/x-www-form-urlencoded. This means
our HTML forms don’t normally need to specify the enctype. Browsers are required
to support at least application/x-www-form-urlencoded and multipart/form-data.
If you set enctype to application/x-www-form-urlencoded, the browser will encode
a long query string in the HTML form data, with the name-value pairs separated by
an ampersand (&) and the name separated from the values by an equals sign (=).
That’s the same as URL encoding, hence the name. In other words, the HTTP body
will look something like this:

name=sau%20sheong&book=go%20cookbook

266 | Chapter 17: Web Recipes

If you set enctype to multipart/form-data, each name-value pair will be converted
into a MIME message part, each with its own content type and content disposition.
When would you use one or the other? If you’re sending simple text data, the
URL-encoded form is better—it’s simpler and less processing is needed. If you’re
sending large amounts of data, the multipart/form-data form is better.

Now that you know how HTML forms work, take a look at how Go handles HTML
forms:

func main() {
http.HandleFunc("/form", form)
http.ListenAndServe(":8000", nil)

}

func form(w http.ResponseWriter, r *http.Request) {
r.ParseForm()
for k, v := range r.Form {

fmt.Fprintf(w, "%s: %s\n", k, v)
}

}

Handling HTML forms in Go is pretty straightforward. The Form field of an
http.Request is a map of all the form data sent with the request. The keys in the
map are the form element names and the values in the map are slices of strings.
However, before you start accessing the Form field you need to call the ParseForm
method on the http.Request to parse the form data. If you don’t call ParseForm, the
Form field will be nil.

Take a look at this in action. You can use the curl command to send a POST request
with the form data to the server:

$ curl -X POST -d "name=sau sheong&book=go cookbook" http://localhost:8000/form

If you run this on the command line, you will see the following:

name: [sau sheong]
book: [go cookbook]

If you know exactly what you want from the form, you can actually get the form data
even faster. The FormValue method is a convenience method that returns the first
value for the named component of the query. If no values are associated with the key,
it returns the empty string. If multiple values are associated with the key, it returns
the first value:

func main() {
http.HandleFunc("/form_value", formValue)
http.ListenAndServe(":8000", nil)

}

func formValue(w http.ResponseWriter, r *http.Request) {

17.3 Handling HTML Forms | 267

fmt.Fprintln(w, r.FormValue("name"))
}

If you run the same curl command again, you will see the following:

sau sheong

You might notice that you don’t even need to parse the form data to get the form
value. This is because the FormValue method will automatically parse the form data
for you.

17.4 Uploading a File to a Web Application
Problem
You want to upload a file to a web application.

Solution
Use the net/http package to create a web application and the io package to read the
file.

Discussion
Submitting a file to a web application is a common task. For example, you might want
to upload a profile picture to a social network, or you might want to upload a file to
a file-sharing service. Uploading files is commonly done through HTML forms. You
learned that HTML forms have an enctype attribute that specifies the format of the
form data. By default, the enctype is set to application/x-www-form-urlencoded.
This means that the form data is encoded as a query string. However, if you set
the enctype to multipart/form-data, the form data will be encoded as a MIME
message. This is the format you need to upload files.

Here’s an example. You will create a web application that allows users to upload a file.
The web application will display the filename and the file size. The web application
will also save the file to the local filesystem:

func main() {
http.HandleFunc("/upload", upload)
http.ListenAndServe(":8000", nil)

}

func upload(w http.ResponseWriter, r *http.Request) {
file, fileHeader, err := r.FormFile("uploadfile")
if err != nil {

fmt.Println(err)
return

}

268 | Chapter 17: Web Recipes

defer file.Close()
fmt.Fprintf(w, "%v", fileHeader.Header)
f, err := os.OpenFile("./uploaded/"+fileHeader.Filename,

os.O_WRONLY|os.O_CREATE, 0666)
if err != nil {

fmt.Println(err)
return

}
defer f.Close()
io.Copy(f, file)

}

As usual, the action is at the handler function. The first thing you need to do is
to get the file from the HTML form. You can do this using the FormFile method.
The FormFile method takes the name of the file input element as its argument and
returns two values and an error. The first value is the file, an io.ReadCloser, and the
second value is the file metadata, a multipart.FileHeader.

Using the file header, get the filename and then create a new file. Then use the
io.Copy function to copy the file from the io.ReadCloser to the new file.

To test this, use curl to post a file to the server form. The syntax for curl is to
use the -F (form) option, which will add enctype="multipart/form-data" to the
request. The argument to this option is a string with the name of the file form field
(uploadfile), followed by = and then @ followed by the path to the file to upload:

$ curl -F "uploadfile=@lenna.png" http://localhost:8000/upload

Once you run this command, you should see a file lenna.png created in the .uploaded
directory.

17.5 Serving Static Files
Problem
You want to serve static files such as images, CSS, and JavaScript files.

Solution
Use the http.FileServer function to serve static files.

Discussion
Web applications often need to serve static files such as images, CSS, and JavaScript
files. The net/http package provides a FileServer function that can be used to serve
static files.

17.5 Serving Static Files | 269

You can break it down into parts to analyze it better:

func main() {
dir := http.Dir("./static")
fs := http.FileServer(dir)
http.Handle("/", fs)
http.ListenAndServe(":8000", nil)

}

First, you need to understand where you want to serve the files from. For this, use
http.Dir. Despite how it looks, http.Dir is not a function but a type. It’s a type that
implements the http.FileSystem interface so the first line typecasts the directory
such that it becomes a http.Dir.

Next, the http.FileServer function takes in the http.Dir as a parameter and
returns an http.Handler that can be used to serve the files.

Finally, call the http.Handle function to register the http.Handler as the handler for
the / URL pattern.

The previous information broke down the steps, but most of the time, you’ll use it
this way:

func main() {
http.Handle("/", http.FileServer(http.Dir("./static")))
http.ListenAndServe(":8000", nil)

}

If you go to the URL from the browser, you should see the screen in Figure 17-4,
which is a screenshot of a browser showing the file that was served.

This works because you use / as the URL to start from. However, once you start using
different ones, you’ll need to use http.StripPrefix to remove the prefix:

func main() {
dir := http.Dir("./static")
fs := http.FileServer(dir)
fs = http.StripPrefix("/static", fs)
http.Handle("/static/", fs)
http.ListenAndServe(":8000", nil)

}

270 | Chapter 17: Web Recipes

Figure 17-4. Accessing static files

The main difference comes when you want to use /static as the root URL (or
any other starting point). If you proceed as before, when the user requests for a
file /static/rfc2616.txt, the file server you look for a file called /static/static/rfc2616.txt.
To avoid this, use the http.StripPrefix function to remove the prefix /static from
the request URL before it is passed to the file server. As before, you normally do it all
in a single line:

func main() {
http.Handle("/static/", http.StripPrefix("/static",

http.FileServer(http.Dir("./static"))))
http.ListenAndServe(":8000", nil)

}

17.5 Serving Static Files | 271

This seems quite redundant, but actually there is another reason for this. In the
example, you have a directory called static, and you want to serve it out from
the /static URL. You could have a directory called datafiles, for example, but you
want the user to access it from the /static URL:

func main() {
http.Handle("/static/", http.StripPrefix("/static",

http.FileServer(http.Dir("./datafiles"))))
http.ListenAndServe(":8000", nil)

}

In other words, while rfc2616.txt is in the datafiles directory, the user accesses it
from the URL /static/rfc2616.txt.

If you go to the URL from the browser, you should see the screen in Figure 17-5,
which is a screenshot of a browser showing the file that was served from the
“static” URL.

Figure 17-5. Accessing static files from the static URL

You should be aware that http.FileServer will list all the contents of the directory
that it is serving. This is might not be a major problem if you don’t care if the user can
see the contents of the directory. Figure 17-6 is a screenshot of a browser showing the
contents of the directory.

272 | Chapter 17: Web Recipes

Figure 17-6. Directory list

However, if you want to prevent this, you can create and place an index.html file in
the directory. This file will be served instead of the directory listing. index.html can be
anything, including being empty; it just needs to be there. Figure 17-7 is a screenshot
of a browser with index.html being shown instead.

Figure 17-7. Index file

If you want to serve a single file, just use http.ServeFile:

func main() {
file := func(w http.ResponseWriter, r *http.Request) {

http.ServeFile(w, r, "./static/rfc2616.txt")
}
http.HandleFunc("/static/http_rfc", file)
http.ListenAndServe(":8000", nil)

}

The http.ServeFile function takes in an http.ResponseWriter, an http.Request,
and the path to the file you want to serve. If you wrap it around an anonymous
function, you can use it as a handler function, which we did in the example. Then
you can use any URL you want to represent the file. Figure 17-8 is a screenshot of a
browser showing the file that was served.

17.5 Serving Static Files | 273

Figure 17-8. Serving a single file

17.6 Creating a JSON Web Service API
Problem
You want to create a simple web service API that returns JSON.

Solution
Use the net/http package to create a web service API and the encoding/json
package to encode data to be sent back as JSON.

Discussion
Web applications are software programs used by humans. Web services are software
programs used by other software programs to exchange data between themselves. Go
is a popular language for creating web services.

In this recipe, you’ll create a web service API that returns a list of people in JSON
format. You’ll use the net/http and chi packages to create the web service API and
the encoding/json package to encode data to be sent back as JSON.

274 | Chapter 17: Web Recipes

Start by creating a Person struct:

type Person struct {
Name string `json:"name"`
Height string `json:"height"`
Mass string `json:"mass"`
HairColor string `json:"hair_color"`
SkinColor string `json:"skin_color"`
EyeColor string `json:"eye_color"`
BirthYear string `json:"birth_year"`
Gender string `json:"gender"`

}

var list []Person

func init() {
file, _ := os.Open("people.json")
defer file.Close()
data, _ := io.ReadAll(file)
json.Unmarshal(data, &list)

}

You use the init function to initialize the list variable with the data from the
people.json file. This will be the data that you’ll return as JSON:

[
 {
 "name": "Luke Skywalker",
 "height": "172",
 "mass": "77",
 "hair_color": "blond",
 "skin_color": "fair",
 "eye_color": "blue",
 "birth_year": "19BBY",
 "gender": "male"
 },
 {
 "name": "C-3PO",
 "height": "167",
 "mass": "75",
 "hair_color": "n/a",
 "skin_color": "gold",
 "eye_color": "yellow",
 "birth_year": "112BBY",
 "gender": "n/a"
 },
 {
 "name": "R2-D2",
 "height": "96",
 "mass": "32",
 "hair_color": "n/a",
 "skin_color": "white, blue",
 "eye_color": "red",

17.6 Creating a JSON Web Service API | 275

 "birth_year": "33BBY",
 "gender": "n/a"
 }
]

Now you create a handler that uses the pattern "/people/{id}" to create a RESTful
API that uses the path pattern /people/<id>:

func main() {
mux := chi.NewRouter()
mux.Get("/people/{id}", people)
http.ListenAndServe(":8000", mux)

}

Next is the people handler function:

func people(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
idstr := chi.URLParam(r, "id")
id, err := strconv.Atoi(idstr)
if err != nil {

w.WriteHeader(http.StatusBadRequest)
return

}
if id < 0 || id >= len(list) {

w.WriteHeader(http.StatusNotFound)
return

}
json.NewEncoder(w).Encode(list[id])

}

First, set the Content-Type header to application/json. This tells the client that
the response is in JSON format. Next, get the id from the URL path using the
chi.URLParam function. If the id is not a number, you return a 400 Bad Request error.
If the id is out of range, you return a 404 Not Found error.

You might be wondering why there isn’t a recipe that shows a web service that
receives a JSON API. This is because processing JSON was covered in Chapter 9, and
handling HTTP requests was covered in Recipe 17.2. You simply take the body of the
request and unmarshal it into a struct; then, you can process the rest as you like.

17.7 Serving Through HTTPS
Problem
You want to serve your web application through HTTPS.

276 | Chapter 17: Web Recipes

Solution
Use the http.ListenAndServeTLS function to serve your web application through
HTTPS.

Discussion
Most web applications need to be served through HTTPS. This allows the communi‐
cation between the client and the server to be encrypted. This is important because
the communication between the client and the server can contain sensitive informa‐
tion such as passwords and credit card numbers. In some cases, this is mandated; for
example, if you accept credit card payments, you need to be PCI-compliant (Payment
Card Industry Data Security Standard) and to be PCI-compliant, you need to encrypt
the communications between the client and the server.

HTTPS is nothing more than layering HTTP on top of the Transport Security Layer
(TLS). The net/http package provides the http.ListenAndServeTLS function to
serve your web application through HTTPS. Go back to the simple web application
and see how you can use it to serve your web application through HTTPS:

package main

import (
"net/http"

)

func main() {
http.HandleFunc("/", index)
http.ListenAndServeTLS(":8000", "cert.pem", "key.pem", nil)

}

func index(w http.ResponseWriter, r *http.Request) {
w.Write([]byte("Hello World"))

}

Most of the code is the same, except you need a certificate file cert.pem and a private
key file key.pem. The cert.pem is the SSL certificate, while key.pem is the private key
for the server. In a production scenario, you will need to get the SSL certificate from
a certificate authority (CA) like VeriSign or Thawte or Comodo SSL, or you can use
Let’s Encrypt to get a free one. However, if you just need a certificate and private key
to try things out, you can generate self-signed ones using OpenSSL.

Run this from the command line:

$ openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365
-nodes

17.7 Serving Through HTTPS | 277

OpenSSL is an open source implementation of SSL and TLS. The library contains a
command-line tool with the same name that can do a number of things, including
creating private keys and SSL certificates.

The req command is used to manage certificate requests but can also be used to cre‐
ate self-signed certificates. Option -509 tells the tool to create self-signed certificates
(X.509 is an International Telecommunication Union standard defining the format of
public key certificates). The option -newkey tells the tool to generate a new private
key. The argument rsa:4096 tells the tool to create a key that is of size 4,096 bits.
The -keyout and -out options tell the tool to create the private key and certificate
files with the respective names given in the argument. The option -days specifies
the number of days to certify the certificate. Here you use 365, which means the
certificate is valid only for 1 year. Finally, use the -nodes option (which means, “no
DES” rather than “nodes”) to say you don’t want to encrypt the private key.

When you run the command, you should see something like this:

$ openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 3650
-nodes
Generating a 4096 bit RSA private key
...
...................................++++
...
...
...++++
writing new private key to 'key.pem'
\-----
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
\-----
Country Name (2 letter code) []:SG
State or Province Name (full name) []:
Locality Name (eg, city) []:
Organization Name (eg, company) []:Go Cookbook
Organizational Unit Name (eg, section) []:
Common Name (eg, fully qualified host name) []:localhost
Email Address []:sausheong@gmail.com
$ go run main.go

This is the interactive mode. You can press the return key to leave the entries empty
except for the common name. The common name is the fully qualified domain
name of the server you want to protect. In this case, it’s for testing, so you can just
enter localhost.

278 | Chapter 17: Web Recipes

Once you’re done, you should have two files—the cert.pem and key.pem files. Copy
them into the same directory as the main.go file. Then run the code again to start the
server.

Now try to access the web application through HTTPS. In a browser, go to https://
localhost:8000. Your browser might try to warn you that the site is insecure because
it is self-signed, after all. You can ignore the warning and proceed to the site. You
should see the Hello World message as shown in Figure 17-9.

Figure 17-9. HTTPS

If you double-click the lock icon in the address bar, you can see the details of the
certificate: the certificate is issued by Go Cookbook and is valid for 1 year. You can
also see the details of the certificate, including the public key and the signature (see
Figure 17-10).

Figure 17-10. HTTPS details

17.7 Serving Through HTTPS | 279

While there would be uses for configuring TLS this way, most likely, if you are
deploying your web application in a production environment, you will use a reverse
proxy like Nginx or Apache to handle the TLS termination. This way, you can offload
the TLS termination, which will improve the performance of your web application.
This means your web application can still run with HTTP while it is fronted by a
reverse proxy that runs through HTTPS.

17.8 Using Templates for Go Web Applications
Problem
You want to use Go’s templating system to create a web application.

Solution
Use the html/template package to create a web application.

Discussion
In the earlier web application, you simply wrote to the http.ResponseWriter directly.
This is fine for simple applications, but it’s not very flexible. If you want to create a
more complex web application, you’ll need to use a template engine.

As a quick recap, the template engine is one of the three parts of a web application,
and it is used to render the body of the response. It combines one or more templates
with data and returns the response body.

You can use the html/template package to create templates.

Take a look at a simple example:

package main

import (
"html/template"
"net/http"

)

func hello(w http.ResponseWriter, r *http.Request) {
t, _ := template.ParseFiles("hello.html")
t.Execute(w, "Hello World!")

}

func main() {
http.HandleFunc("/", hello)
http.ListenAndServe(":8000", nil)

}

280 | Chapter 17: Web Recipes

The only difference from the earlier web application is that you’re using the html/
template package to parse the template file into a template, which is an instance of
template.Template. You then call the Execute method on the template, passing it the
data to be rendered.

In the template file hello.html, you can use the {{.}} syntax to render the data:

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Cookbook</title>
 </head>
 <body>
 <h1>{{ . }}</h1>
 </body>
</html>

The dot (.) between the double braces is an action, and it’s a command for the Go
template engine to replace it with a value when the template is executed. In this case,
the value is the string “Hello World!”

If you run the program and open the browser, you’ll see the output shown in
Figure 17-11.

Figure 17-11. Hello World template

Actions are a critical part of the template engine. They are used to control the flow
of the template, and they can also be used to perform operations on the data in the
template.

Some of the more commonly used actions are:

• The most important commonly used action is the dot {{.}} action. It’s used to•
render the data passed to the template.

• The {{range}} action is used to iterate over a slice or a map.•
• The {{if}}, {{else}} action is used to perform conditional checks.•

The dot action represents the data passed to the template. It can be a string or an
integer, any primitive type, or it can be a struct, slice, or map. With a struct, you can
access the fields using the dot action.

17.8 Using Templates for Go Web Applications | 281

Take this struct:

type Person struct {
Name string
Gender string
Homeworld string

}

Send this struct to the template from the handler:

func person(w http.ResponseWriter, r *http.Request) {
t, _ := template.ParseFiles("person.html")
t.Execute(w, Person{

Name: "Luke Skywalker",
Gender: "male",
Homeworld: "Tatooine",

})
}

In the template file, you can access the fields using the dot action:

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Cookbook</title>
 </head>
 <body>
 <h1>{{ .Name }}</h1>

 Gender: {{ .Gender }}
 Home world: {{ .Homeworld }}

 </body>
</html>

If you run the program and open the browser, you’ll see the output shown in
Figure 17-12.

Figure 17-12. Person template

282 | Chapter 17: Web Recipes

For actions that wrap around a section of the template, the opening action is followed
by a {{end}} action. For example, the {{range}} action is followed by a {{end}}
action.

Within these wrapped-around sections, you can use the dot action to render the data.
For example, in the {{range}} action, you can use the dot action to render the data in
the slice or map.

Here’s how this works:

func people(w http.ResponseWriter, r *http.Request) {
t, _ := template.ParseFiles("people.html")
t.Execute(w, []string{"Luke", "Leia", "Han", "Chewbacca"})

}

func main() {
http.HandleFunc("/people", people)
http.ListenAndServe(":8000", nil)

}

As you can see, you are passing to the people.html template a slice of names. In the
template file, you can use the {{range}} action to iterate over the slice and render the
data:

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Cookbook</title>
 </head>
 <body>
 <div>This is a list of people in Star Wars:</div>

 {{ range . }}
 {{ . }}
 {{ end }}

 </body>
</html>

You might have noticed that you are ranging through the dot (.), but within the
{{range}} action, you are using the dot action again. The dot action within the range
refers to the item in the slice. This is equivalent to:

for _, item := range people // people is the dot for the range
 item // item is the dot within the range
}

Figure 17-13 is a screenshot of a browser showing the output of the people template.

17.8 Using Templates for Go Web Applications | 283

Figure 17-13. People template

The {{if}}, {{else}} action is used to perform conditional checks. For example, you
can use it to check if the slice is empty.

Send an empty slice to the people.html template:

func people(w http.ResponseWriter, r *http.Request) {
t, _ := template.ParseFiles("people.html")
t.Execute(w, []string{})

}

Now you can use the {{if}}, {{else}} action to check if the slice is empty:

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Go Cookbook</title>
 </head>
 <body>
 {{ if gt (len .) 0 }}
 <div>This is a list of people in Star Wars:</div>

 {{ range . }}
 {{ . }}
 {{ end }}

 {{ else }}
 <div>There are no people in this list.</div>
 {{ end }}
 </body>
</html>

Take a look at the output again. Figure 17-14 is a screenshot of a browser showing the
output of the people template with conditionals.

284 | Chapter 17: Web Recipes

Figure 17-14. No people template

So far, you’ve been ignoring the error that’s returned along with the parsed template.
The usual Go practice is to handle the error, but Go provides another mechanism to
handle errors returned by parsing templates:

t := template.Must(template.ParseFiles("people.html"))

The Must function wraps around a function that returns a pointer to a template and
an error and panics if the error is not a nil. This convenience function pattern is seen
elsewhere in the Go standard library and mentioned in Recipe 3.2.

17.9 Making an HTTP Client Request
Problem
You want to make an HTTP request to a web server.

Solution
Use the net/http package to make an HTTP request.

Discussion
HTTP is a request-respond protocol, and serving requests is only half of the story.
The other half is making requests. The net/http package provides functions to make
HTTP requests. You will start with the two most common HTTP request methods,
GET and POST, which have their own convenience functions.

The http.Get function is the most basic HTTP client function in the net/http
package. It simply makes a GET request to the specified URL and returns an
http.Response and an error. The http.Response has a Body field that you can read
to get the response body.

Here’s a simple example:

func main() {
resp, err := http.Get("https://www.ietf.org/rfc/rfc2616.txt")
if err != nil {

// resolve error
}

17.9 Making an HTTP Client Request | 285

defer resp.Body.Close()
body, err := io.ReadAll(resp.Body)
if err != nil {

// resolve error
}
fmt.Println(string(body))

}

The body is a slice of bytes, which you can convert into a string. If you run it on a
terminal, you’ll get the entire RFC 2616 document in text.

Next, you can make a POST request. Start with making a POST request that sends
a JSON message to a server. For this example, you’ll use the http://httpbin.org/post
endpoint, which will echo back the request body. HTTPBin is an open source tool
that provides a set of endpoints you can use to test your HTTP clients.

This example and the following examples will not handle errors for brevity, but you
should always handle errors properly in your code:

func main() {
msg := strings.NewReader(`{"message": "Hello, World!"}`)
resp, _ := http.Post("https://httpbin.org/post", "application/json", msg)
defer resp.Body.Close()
body, _ := io.ReadAll(resp.Body)
fmt.Println(string(body))

}

The http.Post function takes the URL, the content type, and a request body
that is of type io.Reader as parameters. You used strings.NewReader to create a
string.Reader (which is an io.Reader, of course) from the JSON message, and then
pass it to http.Post as the request body.

As before, the http.Post function returns an http.Response and an error, and you
can read the response body and print it out.

When you run it from the terminal, you get the following output:

% go run main.go
{
 "args": {},
 "data": "{\"message\": \"Hello, World!\"}",
 "files": {},
 "form": {},
 "headers": {
 "Accept-Encoding": "gzip",
 "Content-Length": "28",
 "Content-Type": "application/json",
 "Host": "httpbin.org",
 "User-Agent": "Go-http-client/2.0",
 "X-Amzn-Trace-Id": "Root=1-6342bd52-6167b9e86bafdf0a41bf106a"
 },
 "json": {

286 | Chapter 17: Web Recipes

 "message": "Hello, World!"
 },
 "origin": "123.80.47.37",
 "url": "https://httpbin.org/post"
}

A very common use case is to send data from an HTML form to a server with the
POST method. The http.PostForm function makes it easy to send form data to a
server. It takes the URL and a url.Values as parameters.

The url.Values type is a map of string keys and string values found in the net/url
package. The url.Values type has an Add method that you can use to add values to
the map. Each key can have multiple values. The http.PostForm function will encode
the form data and send it to the server:

func main() {
form := url.Values{}
form.Add("message", "Hello, World!")
resp, _ := http.PostForm("https://httpbin.org/post", form)
defer resp.Body.Close()
body, _ := io.ReadAll(resp.Body)
fmt.Println(string(body))

}

When you run it from the terminal, you get the following output:

{
 "args": {},
 "data": "",
 "files": {},
 "form": {
 "message": "Hello, World!"
 },
 "headers": {
 "Accept-Encoding": "gzip",
 "Content-Length": "25",
 "Content-Type": "application/x-www-form-urlencoded",
 "Host": "httpbin.org",
 "User-Agent": "Go-http-client/2.0",
 "X-Amzn-Trace-Id": "Root=1-6342bea1-0a79dc8766f32b8f0f855391"
 },
 "json": null,
 "origin": "123.80.47.37",
 "url": "https://httpbin.org/post"
}

So far, you have been using convenience methods to make HTTP requests.

The net/http package also provides a more generic function to make HTTP requests
using http.Client, which is quite straightforward. You create an instance of the
http.Client, and then you call the Do method, passing in a http.Request as the
parameter. This will return an http.Response and an error as before.

17.9 Making an HTTP Client Request | 287

To make it even simpler, the net/http package even provides an http.Default
Client instance that you can use immediately, with default settings.

Here’s how this can be done. This time around, you’ll add a cookie to the request:

func main() {
req, _ := http.NewRequest("GET", "https://httpbin.org/cookies", nil)
req.AddCookie(&http.Cookie{

Name: "foo",
Value: "bar",

})
resp, _ := http.DefaultClient.Do(req)
defer resp.Body.Close()
body, _ := io.ReadAll(resp.Body)
fmt.Println(string(body))

}

First, create an http.Request using the http.NewRequest function. Then pass in
the HTTP method, the URL, and an io.Reader as the request body. The http.New
Request function returns an http.Request and an error (which you disregard
for brevity as in the previous code). Then add a cookie to the request using the
http.Request.AddCookie method.

Finally, call the http.DefaultClient.Do method, passing in the http.Request as the
parameter. This will return an http.Response and an error.

When you run it from the terminal, you get the following output:

{
 "cookies": {
 "foo": "bar"
 }
}

You can do the same with POST requests as well:

func main() {
msg := strings.NewReader(`{"message": "Hello, World!"}`)
req, _ := http.NewRequest("POST", "https://httpbin.org/post", msg)
req.Header.Add("Content-Type", "application/json")
resp, _ := http.DefaultClient.Do(req)
defer resp.Body.Close()
body, _ := io.ReadAll(resp.Body)
fmt.Println(string(body))

}

The output is the same as using the http.Post function.

So far, you’ve only been sending GET and POST requests. The net/http package
also supports other HTTP methods like PUT, PATCH, DELETE, and so on, using the
http.Client mechanism.

288 | Chapter 17: Web Recipes

You can give PUT a try:

func main() {
msg := strings.NewReader(`{"message": "Hello, World!"}`)
req, _ := http.NewRequest("PUT", "https://httpbin.org/put", msg)
req.Header.Add("Content-Type", "application/json")
resp, _ := http.DefaultClient.Do(req)
defer resp.Body.Close()
body, _ := io.ReadAll(resp.Body)
fmt.Println(string(body))

}

If you look at the output at the terminal, it’s almost the same as with POST:

{
 "args": {},
 "data": "{\"message\": \"Hello, World!\"}",
 "files": {},
 "form": {},
 "headers": {
 "Accept-Encoding": "gzip",
 "Content-Length": "28",
 "Content-Type": "application/json",
 "Host": "httpbin.org",
 "User-Agent": "Go-http-client/2.0",
 "X-Amzn-Trace-Id": "Root=1-6342c1d0-0e22519a00dfa15d41ddeee2"
 },
 "json": {
 "message": "Hello, World!"
 },
 "origin": "123.80.47.37",
 "url": "https://httpbin.org/put"
}

17.9 Making an HTTP Client Request | 289

CHAPTER 18

Testing Recipes

18.0 Introduction
Software testing is the process of checking that the software does what it is supposed
to do. It’s a critical part of software development. Software testing, like many types of
testing activities in other fields, traditionally happens after development completes. It
is mostly done by people (testers) who run through scenarios, called test cases, and
verify the output with the expected results.

Testing happens at various stages of the software development lifecycle and even
beyond that. At the lowest level of code, unit testing checks code in individual
functions and software modules. Integration testing ensures that different modules
work well together, and functional testing ensures the correctness of the output.

Unlike many other fields, software testing doesn’t necessarily need to be done after
the programs have been written and neither does it always need to be done by
humans. Software testing can and often is done through automated testing by writing
test scripts that execute test cases.

In the test-driven development (TDD) methodology, automated test cases are writ‐
ten before any code is written and are repeatedly executed as the code is being
written until the test cases succeed. In continuous testing, automated testing is done
continuously throughout the software development lifecycle.

As you have realized, automated testing is pretty important in software development.
In Go, testing is built into the language itself, and Go provides the go test tool and
the testing package to automate it.

291

18.1 Automating Functional Tests
Problem
You want to automate functional testing of a function.

Solution
Create a test function and use the go test tool to run it.

Discussion
Go provides a minimalist set of built-in tools for testing with the go test command-
line tool and the testing package. These tools are used for both functional and
performance testing. In this recipe, we’ll focus on functional testing.

Go back to our trusty Add function and see how you can test it. You place the function
in a package called arith:

package arith

func Add(a, b int) int {
return a + b

}

First, create a file named testing_test.go. The go test tool will look for all files in the
same package that end with _test.go and consider those files to contain test functions:

package arith

import "testing"

func TestAdd(t *testing.T) {
result := Add(1, 2)
if result != 3 {

t.Error("Adding 1 and 2 doesn't produce 3")
}

}

The name of the package the file is in must be the same as the one with the function
you want to test.

Each test function starts with “Test,” followed by “<Xxx>,” and you use camel case to
describe what you’re testing. There must be only a single input parameter to the test
function, which is a pointer to testing.T. T is a struct instance that is passed to test
functions to manage the test state and also for logging test results.

292 | Chapter 18: Testing Recipes

The most straightforward use of T is how it’s used in TestAdd where you called
the Error function to signal failure in the test. You can also call various similar
functions like Errorf, Fail, Fatal, and Fatalf. For logging test results, you can use
the functions Log and Logf:

func TestAdd(t *testing.T) {
result := Add(1, 2)
if result != 3 {

t.Error("Adding 1 and 2 doesn't produce 3")
} else {

t.Log("Result is:", result)
}

}

To run the test, you use the go test tool at the command line, using the -v (verbose)
flag to show more information:

% go test -v
=== RUN TestAdd
 testing_test.go:10: Result is: 3
--- PASS: TestAdd (0.00s)
PASS
ok github.com/sausheong/gocookbook/ch18_testing 0.446s

Let’s say you want to skip the test for now; you can call SkipNow to skip the test
function:

func TestAdd(t *testing.T) {
t.SkipNow()
result := Add(1, 2)
if result != 3 {

t.Error("Adding 1 and 2 doesn't produce 3")
} else {

t.Log("Result is:", result)
}

}

When you run the test, this is what you’ll get:

% go test -v
=== RUN TestAdd
--- SKIP: TestAdd (0.00s)
PASS
ok github.com/sausheong/gocookbook/ch18_testing 0.530s

18.2 Running Multiple Test Cases
Problem
You want to run multiple test cases without having to set up different test functions.

18.2 Running Multiple Test Cases | 293

Solution
Run table-driven tests by providing a set of test cases.

Discussion
You wouldn’t normally want to test a function with just one set of data. Usually, you
would want to provide a set of test data that covers multiple scenarios and boundary
cases.

Table-driven testing is a simple technique that provides a set of test cases consisting of
inputs and expected results all in one go and then iterates through them in a single
test function:

func TestAddWithTables(t *testing.T) {
testCases := []struct {

a int
b int
result int

}{
{1, 2, 3},
{12, 30, 42},
{100, -1, 99},

}

for _, testCase := range testCases {
result := Add(testCase.a, testCase.b)
if result != testCase.result {

t.Errorf("Adding %d and %d doesn't produce %d, instead \
it produces %d",
testCase.a, testCase.b, testCase.result, result)

}
}

}

If you run the test now, it will go through all the test cases and passes only when all
of them pass. Let’s see what happens if you change the Add function to return a * b
instead of a + b:

func Add(a, b int) int {
return a * b

}

When you run the test, you see how each test case fails:

% go test -v -run TestAdd
=== RUN TestAddWithTables
 testing_test.go:30: Adding 1 and 2 doesn't produce 3, instead it produces 2
 testing_test.go:30: Adding 12 and 30 doesn't produce 42, instead it produces

360
 testing_test.go:30: Adding 100 and -1 doesn't produce 99, instead it produces

-100

294 | Chapter 18: Testing Recipes

--- FAIL: TestAddWithTables (0.00s)
FAIL
exit status 1
FAIL github.com/sausheong/gocookbook/ch18_testing 0.423s

18.3 Setting Up and Tearing Down Before and After Tests
Problem
You want to set up data and an environment for testing and tear it down after the test
is run.

Solution
You can create helper functions or use the TestMain feature to control the flow of the
test functions.

Discussion
Testing often needs data and an environment set up that is used in testing. These are
called test fixtures. While test fixtures are usually destroyed outside of the scope of the
test function, sometimes certain artifacts like files, database records, or configuration
files need to be removed so they won’t interfere with subsequent testing.

There are a couple of ways to set up and tear down test fixtures.

The easiest way is to create helper functions. For example, you want to take an image
file and flip it. In this example, you want to flip a PNG-format image of the Mona
Lisa.

The algorithm is easy; first load the image file into a two-dimensional grid of pixels
(where a pixel is represented by a color.Color struct). (For more information about
the algorithm, see Recipe 15.4.)

The specific code you want to test is the flip function that takes the grid and flips the
pixels in it:

func flip(grid [][]color.Color) {
for x := 0; x < len(grid); x++ {

col := grid[x]
for y := 0; y < len(col)/2; y++ {

k := len(col) - y - 1
col[y], col[k] = col[k], col[y]

}
}

}

18.3 Setting Up and Tearing Down Before and After Tests | 295

The obvious setup is to take a PNG file and load it into a grid to get it ready
for testing.

After flipping the grid, you’ll save it to a file, then load it up again to check the
dimensions. This leaves a file on the filesystem after the test is run, so you need to
clean that up.

The straightforward way to do this is to call setup at the beginning of the test
function and also call teardown before the end of the test function. Another way of
doing this is to create a setup function that returns a teardown closure:

func setup(filename string) (teardown func(tempfile string),
grid [][]color.Color) {

grid = load(filename)
teardown = func(tempfile string) {

os.Remove(tempfile)
}
return

}

You can then call the teardown using defer, which will ensure that the teardown
happens at the end of the function:

func TestFlip(t *testing.T) {
teardown, grid := setup("monalisa.png")
defer teardown("flipped.png")
flip(grid)
save("flipped.png", grid)
g := load("flipped.png")
if len(g) != 321 || len(g[0]) != 480 {

t.Error("Grid is wrong size", "width:", len(g), "length:",
len(g[0]))

}
}

A test suite is a collection of test cases. Helper functions work well for smaller test
suites, but in a larger one, it is tedious to call the helper function over and over again,
especially if it takes up resources. Normally you would want to set up all the test
fixtures up front and then tear it all down after the test suite completes.

The TestMain feature was added in Go 1.4, and it allows more flexible and lower-level
control of setting up and tearing down test fixtures. If a test file contains the Test
Main function, then Go will run TestMain instead of the tests directly. TestMain runs
in the main goroutine and will run the rest of the test cases when you call m.Run.
As a result, you can set up whatever you need before m.Run and tear down whatever
fixtures were created after.

296 | Chapter 18: Testing Recipes

When you call m.Run, it will return an exit code that you can pass to os.Exit to exit
the test suite cleanly:

func TestMain(m *testing.M) {
fmt.Println("setup")
exitCode := m.Run()
fmt.Println("teardown")
os.Exit(exitCode)

}

When you run go test in the command line, you will get this:

% go test -v
setup
=== RUN TestAdd
 testing_test.go:23: Result is: 3
--- PASS: TestAdd (0.00s)
=== RUN TestAddWithTables
--- PASS: TestAddWithTables (0.00s)
=== RUN TestFlip
--- PASS: TestFlip (0.07s)
PASS
teardown
ok github.com/sausheong/gocookbook/ch18_testing 0.527s

As you can see, the setup runs before any test functions are run, and the teardown
runs after all the test functions complete.

18.4 Creating Subtests to Have Finer Control Over
Groups of Test Cases
Problem
You want to create subtests within a test function to have finer control over test cases.

Solution
Use the t.Run function to create subtests within a test function. Subtests extend the
flexibility of test functions to another level down.

Discussion
When using table-driven tests, you often want to run specific tests or have finer-
grained control over the test cases. However, table-driven tests are really driven
through data so there is no way you can control it. For example, in the previous
test function using table-driven tests you can only test the results for nonequality for
every single test case:

18.4 Creating Subtests to Have Finer Control Over Groups of Test Cases | 297

func TestAddWithTables(t *testing.T) {
testCases := []struct {

a int
b int
result int

}{
{1, 2, 3},
{12, 30, 42},
{100, -1, 99},

}

for _, testCase := range testCases {
result := Add(testCase.a, testCase.b)
if result != testCase.result {

t.Errorf("Adding %d and %d doesn't produce %d, instead \
it produces %d",
testCase.a, testCase.b, testCase.result, result)

}
}

}

Go 1.7 added a new feature to allow subtests within a test function, using the t.Run
function. This is how you can turn your table-driven test function into one that uses
subtests:

func TestAddWithSubTest(t *testing.T) {
testCases := []struct {

name string
a int
b int
result int

}{
{"OneDigit", 1, 2, 3},
{"TwoDigits", 12, 30, 42},
{"ThreeDigits", 100, -1, 99},

}
for _, testCase := range testCases {

t.Run(testCase.name, func(t *testing.T) {
result := Add(testCase.a, testCase.b)
if result != testCase.result {

t.Errorf("Adding %d and %d doesn't produce %d, \
instead it produces %d",
testCase.a, testCase.b, testCase.result,
result)

}
})

}
}

As you can see, you added a test name to each of the test cases. Then within the for
loop, you call t.Run, passing it the test case name and also calling an anonymous

298 | Chapter 18: Testing Recipes

function that has the same form as a normal test function. This is the subtest from
which you can run each test case.

Run the test now and see what happens:

% go test -v -run TestAddWithSubTest
=== RUN TestAddWithSubTest
=== RUN TestAddWithSubTest/OneDigit
=== RUN TestAddWithSubTest/TwoDigits
=== RUN TestAddWithSubTest/ThreeDigits
--- PASS: TestAddWithSubTest (0.00s)
 --- PASS: TestAddWithSubTest/OneDigit (0.00s)
 --- PASS: TestAddWithSubTest/TwoDigits (0.00s)
 --- PASS: TestAddWithSubTest/ThreeDigits (0.00s)
PASS
ok github.com/sausheong/gocookbook/ch18_testing 0.607s

As you can see, each subtest is named and run separately under the umbrella test
function. You could, in fact, pick and choose the subtest you want to run:

% go test -v -run TestAddWithSubTest/TwoDigits
=== RUN TestAddWithSubTest
=== RUN TestAddWithSubTest/TwoDigits
--- PASS: TestAddWithSubTest (0.00s)
 --- PASS: TestAddWithSubTest/TwoDigits (0.00s)
PASS
ok github.com/sausheong/gocookbook/ch18_testing 0.193s

In the preceding example, you didn’t do anything more than what you did before, but
you could have done more to customize the setup and teardown. For example:

func TestAddWithCustomSubTest(t *testing.T) {
testCases := []struct {

name string
a int
b int
result int
setup func()
teardown func()

}{
{"OneDigit", 1, 2, 3,

func() { fmt.Println("setup one") },
func() { fmt.Println("teardown one") }},

{"TwoDigits", 12, 30, 42,
func() { fmt.Println("setup two") },
func() { fmt.Println("teardown two") }},

{"ThreeDigits", 100, -1, 99,
func() { fmt.Println("setup three") },
func() { fmt.Println("teardown three") }},

}
for _, testCase := range testCases {

t.Run(testCase.name, func(t *testing.T) {
testCase.setup()

18.4 Creating Subtests to Have Finer Control Over Groups of Test Cases | 299

defer testCase.teardown()
result := Add(testCase.a, testCase.b)
if result != testCase.result {

t.Errorf("Adding %d and %d doesn't produce %d, \
instead it produces %d",
testCase.a, testCase.b, testCase.result,
result)

} else {
fmt.Println(testCase.name, "ok.")

}
})

}
}

If you run it now, you can see that each subtest has its own setup and teardown
functions that are called separately:

% go test -v -run TestAddWithCustomSubTest
=== RUN TestAddWithCustomSubTest
=== RUN TestAddWithCustomSubTest/OneDigit
setup one
OneDigit ok.
teardown one
=== RUN TestAddWithCustomSubTest/TwoDigits
setup two
TwoDigits ok.
teardown two
=== RUN TestAddWithCustomSubTest/ThreeDigits
setup three
ThreeDigits ok.
teardown three
--- PASS: TestAddWithCustomSubTest (0.00s)
 --- PASS: TestAddWithCustomSubTest/OneDigit (0.00s)
 --- PASS: TestAddWithCustomSubTest/TwoDigits (0.00s)
 --- PASS: TestAddWithCustomSubTest/ThreeDigits (0.00s)
PASS
ok github.com/sausheong/gocookbook/ch18_testing 0.278s

In the previous examples, you used subtests on a table-driven test. However, it doesn’t
need to be table-driven. Subtests can be used simply to group different tests under a
single test function. For example, in the following case, you want to group the tests on
the flip function under a single test function:

func TestFlipWithSubTest(t *testing.T) {
grid := load("monalisa.png") // setup for all flip tests
t.Run("CheckPixels", func(t *testing.T) {

p1 := grid[0][0]
flip(grid)
defer flip(grid) // teardown for check pixel to unflip the grid
p2 := grid[0][479]
if p1 != p2 {

t.Fatal("Pixels not flipped")
}

300 | Chapter 18: Testing Recipes

})

t.Run("CheckDimensions", func(t *testing.T) {
flip(grid)
save("flipped.png", grid)
// teardown for check dimensions to remove the file
defer os.Remove("flipped.png")
g := load("flipped.png")
if len(g) != 321 || len(g[0]) != 480 {

t.Error("Grid is wrong size", "width:", len(g),
"length:", len(g[0]))

}
})

}

In this case, you have a single setup for all the flip tests but different teardowns
for individual test cases. Each test case can be run as a different test function, but
grouping them together allows you to have a one-time setup for test fixtures and also
to run multiple subtests under a single umbrella:

% go test -v -run TestFlipWithSubTest
=== RUN TestFlipWithSubTest
=== RUN TestFlipWithSubTest/CheckPixels
=== RUN TestFlipWithSubTest/CheckDimensions
--- PASS: TestFlipWithSubTest (0.07s)
 --- PASS: TestFlipWithSubTest/CheckPixels (0.00s)
 --- PASS: TestFlipWithSubTest/CheckDimensions (0.05s)
PASS
ok github.com/sausheong/gocookbook/ch18_testing 0.269s

18.5 Running Tests in Parallel
Problem
You want to speed up testing by running tests in parallel.

Solution
Use the t.Parallel function to enable tests or subtests to run in parallel.

Discussion
By default, test functions in the same package are run sequentially. Go 1.7 included a
new function, t.Parallel, that allows test functions to be run in parallel. Doing this
is very straightforward. You only need to add a line that calls t.Parallel in your test
functions. Here is a quick look at some simple test functions:

18.5 Running Tests in Parallel | 301

func TestAddOneDigit(t *testing.T) {
result := Add(1, 2)
if result != 3 {

t.Error("Adding 1 and 2 doesn't produce 3")
}

}

func TestAddTwoDigits(t *testing.T) {
result := Add(12, 30)
if result != 42 {

t.Error("Adding 12 and 30 doesn't produce 42")
}

}

func TestAddThreeDigits(t *testing.T) {
result := Add(100, -1)
if result != 99 {

t.Error("Adding 100 and -1 doesn't produce 99")
}

}

You also add a 0.5-second delay in the Add function to highlight the test timing:

func Add(a, b int) int {
time.Sleep(500 * time.Millisecond)
return a + b

}

If you run the tests, you can see that the tests are run in sequence. Including other
overheads, the overall test timing is almost 2 seconds:

% go test -v
=== RUN TestAddOneDigit
--- PASS: TestAddOneDigit (0.50s)
=== RUN TestAddTwoDigits
--- PASS: TestAddTwoDigits (0.50s)
=== RUN TestAddThreeDigits
--- PASS: TestAddThreeDigits (0.50s)
PASS
ok github.com/sausheong/gocookbook/ch18_testing 1.997s

By adding a single line in each of the test functions, you can run the code in parallel:

func TestAddOneDigit(t *testing.T) {
t.Parallel()
result := Add(1, 2)
if result != 3 {

t.Error("Adding 1 and 2 doesn't produce 3")
}

}

func TestAddTwoDigits(t *testing.T) {
t.Parallel()
result := Add(12, 30)

302 | Chapter 18: Testing Recipes

if result != 42 {
t.Error("Adding 12 and 30 doesn't produce 42")

}
}

func TestAddThreeDigits(t *testing.T) {
t.Parallel()
result := Add(100, -1)
if result != 99 {

t.Error("Adding 100 and -1 doesn't produce 99")
}

}

Now run it again:

% go test -v
=== RUN TestAddOneDigit
=== PAUSE TestAddOneDigit
=== RUN TestAddTwoDigits
=== PAUSE TestAddTwoDigits
=== RUN TestAddThreeDigits
=== PAUSE TestAddThreeDigits
=== CONT TestAddOneDigit
=== CONT TestAddTwoDigits
=== CONT TestAddThreeDigits
--- PASS: TestAddTwoDigits (0.50s)
--- PASS: TestAddOneDigit (0.50s)
--- PASS: TestAddThreeDigits (0.50s)
PASS
ok github.com/sausheong/gocookbook/ch18_testing 0.686s

You can see how the test functions now run in parallel, and the timing is reduced to
almost 0.5 seconds.

You can also run subtests in parallel, but you need to be careful because there’s a big
gotcha here. Let’s take whatever you’ve done in the test functions and translate that
into subtests, making it run in parallel:

func TestAddWithSubTestAndParallel(t *testing.T) {
testCases := []struct {

name string
a int
b int
result int

}{
{"OneDigit", 1, 2, 3},
{"TwoDigits", 12, 30, 42},
{"ThreeDigits", 100, -1, 99},

}
for _, testCase := range testCases {

t.Run(testCase.name, func(t *testing.T) {
t.Parallel()
result := Add(testCase.a, testCase.b)

18.5 Running Tests in Parallel | 303

if result != testCase.result {
t.Errorf("Adding %d and %d doesn't produce %d,

instead it produces %d",
testCase.a, testCase.b, testCase.result,
result)

}
})

}
}

When you run it, it looks fine:

% go test -v -run TestAddWithSubTestAndParallel
=== RUN TestAddWithSubTestAndParallel
=== RUN TestAddWithSubTestAndParallel/OneDigit
=== PAUSE TestAddWithSubTestAndParallel/OneDigit
=== RUN TestAddWithSubTestAndParallel/TwoDigits
=== PAUSE TestAddWithSubTestAndParallel/TwoDigits
=== RUN TestAddWithSubTestAndParallel/ThreeDigits
=== PAUSE TestAddWithSubTestAndParallel/ThreeDigits
=== CONT TestAddWithSubTestAndParallel/OneDigit
=== CONT TestAddWithSubTestAndParallel/TwoDigits
=== CONT TestAddWithSubTestAndParallel/ThreeDigits
--- PASS: TestAddWithSubTestAndParallel (0.00s)
 --- PASS: TestAddWithSubTestAndParallel/TwoDigits (0.50s)
 --- PASS: TestAddWithSubTestAndParallel/OneDigit (0.50s)
 --- PASS: TestAddWithSubTestAndParallel/ThreeDigits (0.50s)
PASS
ok github.com/sausheong/gocookbook/ch18_testing 0.718s

This looks fine because you know if it doesn’t run in parallel, it would take almost 2
seconds. But is it really OK? Let’s check by adding a single line to check the actual test
case that was run in each subtest:

...
t.Parallel()
t.Logf("Test case %s with inputs %d and %d should produce %d",
 testCase.name, testCase.a, testCase.b, testCase.result)
result := Add(testCase.a, testCase.b)
...

Run it again and see the results:

% go test -v -run TestAddWithSubTestAndParallel
=== RUN TestAddWithSubTestAndParallel
=== RUN TestAddWithSubTestAndParallel/OneDigit
=== PAUSE TestAddWithSubTestAndParallel/OneDigit
=== RUN TestAddWithSubTestAndParallel/TwoDigits
=== PAUSE TestAddWithSubTestAndParallel/TwoDigits
=== RUN TestAddWithSubTestAndParallel/ThreeDigits
=== PAUSE TestAddWithSubTestAndParallel/ThreeDigits
=== CONT TestAddWithSubTestAndParallel/OneDigit
=== CONT TestAddWithSubTestAndParallel/ThreeDigits
=== CONT TestAddWithSubTestAndParallel/TwoDigits

304 | Chapter 18: Testing Recipes

=== CONT TestAddWithSubTestAndParallel/OneDigit
 testing_test.go:108: Test case ThreeDigits with inputs 100 and -1 should

produce 99
=== CONT TestAddWithSubTestAndParallel/TwoDigits
 testing_test.go:108: Test case ThreeDigits with inputs 100 and -1 should

produce 99
=== CONT TestAddWithSubTestAndParallel/ThreeDigits
 testing_test.go:108: Test case ThreeDigits with inputs 100 and -1 should

produce 99
--- PASS: TestAddWithSubTestAndParallel (0.00s)
 --- PASS: TestAddWithSubTestAndParallel/ThreeDigits (0.50s)
 --- PASS: TestAddWithSubTestAndParallel/TwoDigits (0.50s)
 --- PASS: TestAddWithSubTestAndParallel/OneDigit (0.50s)
PASS
ok github.com/sausheong/gocookbook/ch18_testing 0.691s

The last test case was run three times in parallel! What happened? This happened
because you are trying to use a goroutine (by calling t.Run) on a loop iterator
variable (the testCase variable). The second parameter in t.Run is a closure that is
bound to the same testCase variable in every iteration, and a pointer to this variable
is passed into the closure. The iterator and the goroutines run independently, and the
iterator (in this case) ran and finished faster than the goroutine could even start, so
the testCase variable ends up being assigned the last test case.

This is a well-known problem. Normally, what you should do is pass the variable into
the closure by value instead of using it directly from the iterator. However, this is
not possible here because t.Run expects a function with only one parameter, which is
testing.T. So how can you avoid this?

The simplest fix is to make testCase a local variable within the loop instead. This is
because variables declared within the loop are not shared between iterations:

for _, tc := range testCases {
 testCase := tc
 t.Run(testCase.name, func(t *testing.T) {
 t.Parallel()
 t.Logf("Test case %s with inputs %d and %d should produce %d",
 testCase.name, testCase.a, testCase.b, testCase.result)
 result := Add(testCase.a, testCase.b)
 if result != testCase.result {
 t.Errorf("Adding %d and %d doesn't produce %d, instead it produces \
 %d", testCase.a, testCase.b, testCase.result, result)
 }
 })
}

As you can see from the code, you change the iterator variable to something else (tc)
and make testCase a local variable that takes the value of tc. When you rerun the
test, this should fix the problem:

18.5 Running Tests in Parallel | 305

% go test -v -run TestAddWithSubTestAndParallel
=== RUN TestAddWithSubTestAndParallel
=== RUN TestAddWithSubTestAndParallel/OneDigit
=== PAUSE TestAddWithSubTestAndParallel/OneDigit
=== RUN TestAddWithSubTestAndParallel/TwoDigits
=== PAUSE TestAddWithSubTestAndParallel/TwoDigits
=== RUN TestAddWithSubTestAndParallel/ThreeDigits
=== PAUSE TestAddWithSubTestAndParallel/ThreeDigits
=== CONT TestAddWithSubTestAndParallel/OneDigit
=== CONT TestAddWithSubTestAndParallel/ThreeDigits
=== CONT TestAddWithSubTestAndParallel/OneDigit
 testing_test.go:108: Test case OneDigit with inputs 1 and 2 should produce 3
=== CONT TestAddWithSubTestAndParallel/ThreeDigits
 testing_test.go:108: Test case ThreeDigits with inputs 100 and -1 should

produce 99
=== CONT TestAddWithSubTestAndParallel/TwoDigits
 testing_test.go:108: Test case TwoDigits with inputs 12 and 30 should produce

42
--- PASS: TestAddWithSubTestAndParallel (0.00s)
 --- PASS: TestAddWithSubTestAndParallel/TwoDigits (0.50s)
 --- PASS: TestAddWithSubTestAndParallel/OneDigit (0.50s)
 --- PASS: TestAddWithSubTestAndParallel/ThreeDigits (0.50s)
PASS
ok github.com/sausheong/gocookbook/ch18_testing 0.699s

18.6 Generating Random Test Inputs for Tests
Problem
You want to generate random test data for running your test functions.

Solution
Use fuzzing, which is an automated testing technique to generate random test data for
your test functions.

Discussion
Fuzzing, or fuzz testing, is an automated testing technique that generates random,
unexpected data for your program in order to detect bugs. Fuzzing has been around
for quite a while; the first paper on fuzzing was published in 1990. Go has had fuzzing
libraries for a while as well, but in Go 1.18, fuzzing was added as a feature. The
feature was added as part of the go test tool as well as the standard library.

You can use fuzzing to test the max heap implementation you first saw in Recipe 14.5.
For simplicity’s sake, in the following code snippet some of the functions have been
removed, keeping only those that are relevant here:

306 | Chapter 18: Testing Recipes

type Heap struct {
elements []int

}

func (h *Heap) Push(ele int) {
h.elements = append(h.elements, ele)
i := len(h.elements) - 1
for ; h.elements[i] > h.elements[parent(i)]; i = parent(i) {

h.swap(i, parent(i))
}

}

func (h *Heap) Pop() (ele int) {
ele = h.elements[0]
h.elements[0] = h.elements[len(h.elements)-1]
h.elements = h.elements[:len(h.elements)-1]
h.rearrange(0)
return

}

func (h *Heap) rearrange(i int) {
largest := i
left, right, size := leftChild(i), rightChild(i), len(h.elements)
if left < size && h.elements[left] > h.elements[largest] {

largest = left
}
if right < size && h.elements[right] > h.elements[largest] {

largest = right
}
if largest != i {

h.swap(i, largest)
h.rearrange(largest)

}
}

Fuzzing is useful because it automates input data into your test functions such that
it tests unexpected cases. If you were to test the max heap implementation discussed
earlier, this is a typical test function you might write, which will test the Push and Pop
functions:

func TestHeap(t *testing.T) {
var h *Heap = &Heap{}
h.elements = []int{452, 23, 6515, 55, 313, 6}
h.Build()

testCases := []int{51, 634, 9, 8941, 354}
for _, tc := range testCases {

h.Push(tc)
// make a copy of the elements in the slice and sort it in
// descending order
elements := make([]int, len(h.elements))
copy(elements, h.elements)

18.6 Generating Random Test Inputs for Tests | 307

sort.Slice(elements, func(i, j int) bool {
return elements[i] > elements[j]

})
// pop the heap and check if the top of heap is the largest

 // element
popped := h.Pop()
if elements[0] != popped {

t.Errorf("Top of heap %d is not the one popped %d\n heap\
is %v",
elements[0], popped, elements)

}
}

}

First, create a max heap and prepopulate the heap with data. Next, use a set of test
cases (which are just a bunch of integers), and push them into the heap. You want to
pop the heap, which will give you the largest integer in the heap.

To check if this is the case, take the slice of elements that is the data for the heap and
sort it in descending order. The first element of the slice is the largest integer and
should be the same as the integer you get from popping the heap.

When you run the test function with these test cases, everything works fine:

% go test -run=TestHeap -v
=== RUN TestHeap
--- PASS: TestHeap (0.00s)
PASS
ok github.com/sausheong/gocookbook/ch18_testing 0.229s

As you can see, you test only with this input data into the heap. This is where fuzzing
comes in. In Go 1.18, fuzzing was introduced in the go test toolset. Fuzz tests are
added as fuzz functions in the same _test.go files you use for the test functions.

Each fuzz function must start with Fuzz, similar to how test functions start with Test;
and each takes only one parameter, which is a pointer to testing.F.

There are two parts to creating a fuzz function:

• Seeding the input to the fuzz function using the f.Add function.•
• Running the fuzz test itself by calling the f.Fuzz function and passing it a fuzz•

target, which is a function that has a pointer to the testing.T parameter, as well
as a set of fuzzing arguments.

Take a look at how you can convert your test function to a fuzz function:

func FuzzHeap(f *testing.F) {
var h *Heap = &Heap{}
h.elements = []int{452, 23, 6515, 55, 313, 6}
h.Build()

308 | Chapter 18: Testing Recipes

testCases := []int{51, 634, 9, 8941, 354}
for _, tc := range testCases {

f.Add(tc)
}

f.Fuzz(func(t *testing.T, i int) {
h.Push(i)
// make a copy of the elements in the slice and sort it in
// descending order
elements := make([]int, len(h.elements))
copy(elements, h.elements)
sort.Slice(elements, func(i, j int) bool {

return elements[i] > elements[j]
})
// pop the heap and check if the top of heap is the largest
// element
popped := h.Pop()
if elements[0] != popped {

t.Errorf("Top of heap %d is not the one popped %d\n heap\
is %v", elements[0], popped, elements)

}
})

}

You create a function named FuzzHeap that accepts a pointer to testing.F. In this
function, you start off by setting up the max heap as before. Then you take the test
cases and add them to the seed corpus, the collection of seed input for the fuzz tests,
using f.Add.

The fuzz target has a pointer testing.T as well as a single integer. The fuzzing
arguments must be the same and also in the same sequence as the parameters you
pass into f.Add as you register the inputs into the seed corpus. In your fuzz function,
you pass a single integer into the f.Add function, so you will have only a single
integer as the fuzzing argument.

The fuzz target body is the same as the earlier test function, and you’re done! Run it!

To run a fuzz function, you need to use the -fuzz flag, passing it a part of the
function name (or simply a period to indicate everything). You can also pass in a
-fuzztime parameter to indicate how long you want to run the fuzz function, because
fuzz functions will run forever if they can’t find any bugs!

% go test -v -fuzz=Heap -fuzztime=30s
=== RUN TestHeap
--- PASS: TestHeap (0.00s)
=== FUZZ FuzzHeap
fuzz: elapsed: 0s, gathering baseline coverage: 0/1484 completed
fuzz: elapsed: 0s, gathering baseline coverage: 1484/1484 completed, now fuzzing
with 10 workers
fuzz: elapsed: 3s, execs: 692916 (230887/sec), new interesting: 1 (total: 1485)
fuzz: elapsed: 6s, execs: 1343416 (216901/sec), new interesting: 1 (total: 1485)

18.6 Generating Random Test Inputs for Tests | 309

fuzz: elapsed: 9s, execs: 2078265 (244901/sec), new interesting: 1 (total: 1485)
fuzz: elapsed: 12s, execs: 2827429 (249737/sec), new interesting: 1 (total: 1485)
fuzz: elapsed: 15s, execs: 3527717 (233462/sec), new interesting: 1 (total: 1485)
fuzz: elapsed: 18s, execs: 4256457 (242874/sec), new interesting: 1 (total: 1485)
fuzz: elapsed: 21s, execs: 5014656 (252735/sec), new interesting: 1 (total: 1485)
fuzz: elapsed: 24s, execs: 5757659 (247697/sec), new interesting: 1 (total: 1485)
fuzz: elapsed: 27s, execs: 6447953 (230105/sec), new interesting: 1 (total: 1485)
fuzz: elapsed: 30s, execs: 7175096 (242388/sec), new interesting: 1 (total: 1485)
fuzz: elapsed: 30s, execs: 7175096 (0/sec), new interesting: 1 (total: 1485)
--- PASS: FuzzHeap (30.30s)
PASS
ok github.com/sausheong/gocookbook/ch18_testing 30.935s

The first line indicates that the baseline coverage is gathered by executing the test
with the seed corpus and the generated corpus before fuzzing begins. If the test
doesn’t work in the first place, there’s no point doing fuzzing.

The number of workers indicates how many fuzz targets are run in parallel. You can
actually specify this using the -parallel flag, but if you leave it empty, it will use
GOMAXPROCS, which by default is the number of cores available.

In the following lines, elapsed shows how long the fuzzing has been running, execs
shows the total number of inputs that have been run against the fuzz target, while
new interesting shows how many inputs have expanded the code coverage beyond
existing corpora, with the size of the entire corpus.

The fuzz function itself can be run as a normal test function with the seed corpus. If
you run it with go test as you would any test function, you should get these results:

% go test -run=FuzzHeap -v
=== RUN FuzzHeap
=== RUN FuzzHeap/seed#0
=== RUN FuzzHeap/seed#1
=== RUN FuzzHeap/seed#2
=== RUN FuzzHeap/seed#3
=== RUN FuzzHeap/seed#4
--- PASS: FuzzHeap (0.00s)
 --- PASS: FuzzHeap/seed#0 (0.00s)
 --- PASS: FuzzHeap/seed#1 (0.00s)
 --- PASS: FuzzHeap/seed#2 (0.00s)
 --- PASS: FuzzHeap/seed#3 (0.00s)
 --- PASS: FuzzHeap/seed#4 (0.00s)
PASS
ok github.com/sausheong/gocookbook/ch18_testing 0.246s

As you can see, you have five runs of the fuzz target against the five seed inputs in the
seed corpus, and all of them pass.

This is all good, but it doesn’t really show how fuzzing helps make the software
more robust. A simple example can show this. Change your rearrange function a

310 | Chapter 18: Testing Recipes

bit. Instead of comparing h.elements[left] you compare h.elements[left-1]. It’s
a small change that can result in an error, and it can easily go undetected:

func (h *Heap) rearrange(i int) {
 ...

if left < size && h.elements[left-1] > h.elements[largest] {
largest = left

}
 ...
}

To prove this, run it against your TestHeap test function. You should see that it runs
perfectly well and the test case passes. Now run it against the FuzzHeap fuzz function:

% go test -v -fuzz=Heap -fuzztime=30s
=== RUN TestHeap
--- PASS: TestHeap (0.00s)
=== FUZZ FuzzHeap
fuzz: elapsed: 0s, gathering baseline coverage: 0/1484 completed
fuzz: elapsed: 0s, gathering baseline coverage: 19/1484 completed
--- FAIL: FuzzHeap (0.28s)
 --- FAIL: FuzzHeap (0.00s)
 testing_test.go:260: Top of heap 313 is not the one popped 158
 heap is [313 158 55 23 6 -327 -349]

 Failing input written to testdata/fuzz/FuzzHeap/03b1c861389a9c041082690dc8b
 25528f6ff6debab2a7fc99524a738895bea1f
 To re-run:
 go test -run=FuzzHeap/03b1c861389a9c041082690dc8b25528f6ff6debab2a7fc99524a
 738895bea1f
FAIL
exit status 1
FAIL github.com/sausheong/gocookbook/ch18_testing 0.540s

As you can see, it fails at the baseline coverage, and the element that was popped from
the heap wasn’t the maximum. You can also see that the input to the failed test case is
written to a test data file. If you open it, you should see something like this:

go test fuzz v1
int(-349)

And if you run the FuzzHeap function as a normal test function, you will immediately
see that the other test cases pass with the other input, but with -349 the max heap
doesn’t work any more:

% go test -run=FuzzHeap -v
=== RUN FuzzHeap
=== RUN FuzzHeap/seed#0
=== RUN FuzzHeap/seed#1
=== RUN FuzzHeap/seed#2
=== RUN FuzzHeap/seed#3
=== RUN FuzzHeap/seed#4
=== RUN FuzzHeap/03363930589906b56680eea723dd29e2744bd87e28b0995dd65209094

18.6 Generating Random Test Inputs for Tests | 311

 ef3080d
 testing_test.go:260: Top of heap 313 is not the one popped 51
 heap is [313 55 51 48 23 9 6]
--- FAIL: FuzzHeap (0.00s)
 --- PASS: FuzzHeap/seed#0 (0.00s)
 --- PASS: FuzzHeap/seed#1 (0.00s)
 --- PASS: FuzzHeap/seed#2 (0.00s)
 --- PASS: FuzzHeap/seed#3 (0.00s)
 --- PASS: FuzzHeap/seed#4 (0.00s)
 --- FAIL: FuzzHeap/03363930589906b56680eea723dd29e2744bd87e28b0995dd65209094
 ef3080d (0.00s)
FAIL
exit status 1
FAIL github.com/sausheong/gocookbook/ch18_testing 0.475s

You can imagine this can be pretty hard to detect! If you fix the code, you can run the
same FuzzHeap test again and see that it has passed all the tests, including a regression
one that was automatically generated from a failed fuzz test:

% go test -run=FuzzHeap -v
=== RUN FuzzHeap
=== RUN FuzzHeap/seed#0
=== RUN FuzzHeap/seed#1
=== RUN FuzzHeap/seed#2
=== RUN FuzzHeap/seed#3
=== RUN FuzzHeap/seed#4
=== RUN FuzzHeap/03b1c861389a9c041082690dc8b25528f6ff6debab2a7fc99524a
 738895bea1f
--- PASS: FuzzHeap (0.00s)
 --- PASS: FuzzHeap/seed#0 (0.00s)
 --- PASS: FuzzHeap/seed#1 (0.00s)
 --- PASS: FuzzHeap/seed#2 (0.00s)
 --- PASS: FuzzHeap/seed#3 (0.00s)
 --- PASS: FuzzHeap/seed#4 (0.00s)
 --- PASS: FuzzHeap/03b1c861389a9c041082690dc8b25528f6ff6debab2a7fc99524a
 738895bea1f (0.00s)
PASS
ok github.com/sausheong/gocookbook/ch18_testing 0.283s

Fuzzing is a powerful tool. However, it can be pretty expensive to run, especially in an
automated continuous integration pipeline, since it can be CPU intensive.

18.7 Measuring Test Coverage
Problem
You want to know how much of the program code has been covered by tests.

312 | Chapter 18: Testing Recipes

Solution
Use the test coverage feature that is built into the go test tool.

Discussion
Test coverage is a metric that measures the amount of testing done on the codebase.
It’s immediately obvious that this is an important metric as it gives you a level
of confidence in your code. In fact, test coverage was one of the first metrics for
systematic software testing and was first mentioned in Communications of the ACM
in 1963.

Go provides a test coverage feature in the Go 1.2 release, which like all other test
features is integrated within the go test tool.

In this recipe, you’ll use the code for all the other recipes in this chapter. We have
written test functions for them, so it’s time to check how well you have covered them.

The simplest way to use test coverage is simply to use the -cover flag:

% go test -cover
PASS
coverage: 94.6% of statements
ok github.com/sausheong/gocookbook/ch18_testing 5.428s

That’s pretty simple! You can see that your coverage is pretty good. However, this
doesn’t tell you more information as to what you missed. To do that, you need a
coverage profile. You can do that by using the -coverprofile flag and specifying a
file for the output:

% go test -coverprofile=coverage.out
PASS
coverage: 94.6% of statements
ok github.com/sausheong/gocookbook/ch18_testing 5.899s

As you can see, the output on the command line is still the same, but now a
coverage.out file is produced, which contains something like this (truncated, as the file
can be long):

mode: set
github.com/sausheong/gocookbook/ch18_testing/testing.go:12.24,15.2 2 1
github.com/sausheong/gocookbook/ch18_testing/testing.go:18.33,19.33 1 1
github.com/sausheong/gocookbook/ch18_testing/testing.go:19.33,21.35 2 1
github.com/sausheong/gocookbook/ch18_testing/testing.go:21.35,24.4 2 1
github.com/sausheong/gocookbook/ch18_testing/testing.go:29.50,33.28 4 1
github.com/sausheong/gocookbook/ch18_testing/testing.go:38.2,39.16 2 1
...

18.7 Measuring Test Coverage | 313

With this coverage profile, next you can use the Go cover tool to find out more
information. As a start, you can use the -func flag to find out how well each function
is covered:

% go tool cover -func=coverage.out
github.com/sausheong/gocookbook/ch18_testing/testing.go:12: Add 100.0%
github.com/sausheong/gocookbook/ch18_testing/testing.go:18: flip 100.0%
github.com/sausheong/gocookbook/ch18_testing/testing.go:29: save 90.9%
github.com/sausheong/gocookbook/ch18_testing/testing.go:47: load 85.7%
github.com/sausheong/gocookbook/ch18_testing/testing.go:72: Push 100.0%
github.com/sausheong/gocookbook/ch18_testing/testing.go:80: Pop 100.0%
github.com/sausheong/gocookbook/ch18_testing/testing.go:88: rearrange 100.0%
github.com/sausheong/gocookbook/ch18_testing/testing.go:103: Build 100.0%
github.com/sausheong/gocookbook/ch18_testing/testing.go:109: swap 100.0%
github.com/sausheong/gocookbook/ch18_testing/testing.go:113: parent 100.0%
github.com/sausheong/gocookbook/ch18_testing/testing.go:117: leftChild 100.0%
github.com/sausheong/gocookbook/ch18_testing/testing.go:121: rightChild 100.0%
total: (statements) 94.6%

This is much better, as you can now see the coverage per function. Another way
to represent the coverage is an HTML coverage report, which provides source code–
level details on the coverage. To do so, run this on the command line:

% go tool cover -html=coverage.out

This should pop up an HTML page that looks something like Figure 18-1, which
shows the coverage report generated by the Go code coverage tool.

The covered code is in green, the uncovered code is in red, and the uninstrumented
code is in gray. This gives us a very clear indication of which part of our code is
covered. (Note that the colors will not show up in the print edition of this book.)

For even more fine-grained information about the coverage, you can use the
-covermode flag and set the mode to the count setting:

% go test -covermode=count -coverprofile=count.out
PASS
coverage: 94.6% of statements
ok github.com/sausheong/gocookbook/ch18_testing 5.980s

This creates another file, count.out, that looks something like this:

mode: count
github.com/sausheong/gocookbook/ch18_testing/testing.go:12.24,15.2 2 16
github.com/sausheong/gocookbook/ch18_testing/testing.go:18.33,19.33 1 4
github.com/sausheong/gocookbook/ch18_testing/testing.go:19.33,21.35 2 1284
github.com/sausheong/gocookbook/ch18_testing/testing.go:21.35,24.4 2 308160
github.com/sausheong/gocookbook/ch18_testing/testing.go:29.50,33.28 4 2
github.com/sausheong/gocookbook/ch18_testing/testing.go:38.2,39.16 2 2
...

314 | Chapter 18: Testing Recipes

To view the HTML coverage report in count mode, you can do this:

% go tool cover -html=count.out

Figure 18-1. Coverage report

You should see an HTML page that looks like Figure 18-2, which shows the coverage
report in count mode.

18.7 Measuring Test Coverage | 315

Figure 18-2. Coverage report in count mode

What’s interesting in this report is that you can see how well-covered the code is,
shown in the different shades of green. Note that this also is not going to show in the
print edition, so I encourage you to try this yourself to see what it looks like.

18.8 Testing a Web Application or a Web Service
Problem
You want to do unit testing on a web application or a web service.

316 | Chapter 18: Testing Recipes

Solution
Use the httptest.NewRecorder function to create an httptest.ResponseRecorder
that can be used to record what’s been written to the http.ResponseWriter. This can
then be used to test the response.

Discussion
Web applications and web services are the most popular type of programs written in
Go, so obviously you need to be able to test them. The httptest package provides a
way to do this.

The handler function is the function that is called when a request is received. The
handler function writes the response to the http.ResponseWriter, which is then
passed back to the client. This approach focuses on testing the handler function
that is used to handle the request, which covers most of what you need. Specific
functions can be tested using the normal approach, but testing the handler is a bit
tricky because you need to create an HTTP server to test it.

The httptest.NewRecorder function creates an httptest.ResponseRecorder that
implements the http.ResponseWriter interface. This can be used to record what’s
been written to the http.ResponseWriter so that you can test the response:

Let's say we have this handler function we want to test.

func hello(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "Hello World!")

}

You can test this using the httptest package like this:

func TestHttpHello(t *testing.T) {
http.HandleFunc("/hello", hello)
writer := httptest.NewRecorder()
request, _ := http.NewRequest("GET", "/hello", nil)
http.DefaultServeMux.ServeHTTP(writer, request)

if writer.Code != http.StatusOK {
t.Errorf("Response code is %v", writer.Code)

}

if expected, actual := "Hello World!", writer.Body.String();
expected != actual {
t.Errorf("Response body is %v", actual)

}
}

First, you need to register the handler function with the http.DefaultServeMux
using the http.HandleFunc function. This is the same way you would register the
handler function normally. Then you create an httptest.ResponseRecorder using

18.8 Testing a Web Application or a Web Service | 317

the httptest.NewRecorder function. This implements the http.ResponseWriter
interface.

Next, you need to create the client to emulate someone sending an HTTP request to
the server. Use the http.NewRequest function to create a GET request to the /hello
URL. With this, you have both the http.ResponseWriter and http.Request that you
can pass to ServeHTTP to dispatch the request to the handler function that matches
the URL. Remember, when you registered the handler function using http.Handle
Func, you actually registered the function to http.DefaultServeMux. This is the same
multiplexer you are using to dispatch the request.

Once the request is dispatched, the response is written to the httptest.Response
Recorder that you created. You can then test the response code and the response
body to make sure that the response is what you expect.

The httptest.ResponseRecorder has a Code field that contains the HTTP status
code that was written to the http.ResponseWriter. You can test this to make sure
it’s the expected value. The httptest.ResponseRecorder also has a Body field that
contains the response body that was written to the http.ResponseWriter. You can
test this as well to make sure it’s the expected value. You can also test for other parts
of the response, such as the headers, cookies, etc.

318 | Chapter 18: Testing Recipes

CHAPTER 19

Benchmarking Recipes

19.0 Introduction
Performance testing is an important part of software testing. It’s nonfunctional,
meaning it doesn’t test whether the software does what it’s supposed to do. Instead, it
tests how well the software performs in terms of stability, speed, and scalability under
a given workload.

In Go, performance testing is done with the same testing tools as functional testing,
using the go test tool and the testing standard library.

19.1 Automating Performance Tests
Problem
You want to automate the performance testing of a function.

Solution
Create a benchmark function and use the go test tool to run it.

Discussion
Go provides a minimalist set of built-in tools for testing with the go test command-
line tool and the testing package. These tools are used for both functional and
performance testing. In this recipe, we’ll focus on performance testing.

319

As in Chapter 18, you’ll be using a simple Add function and try to do performance
testing on it:

package test

func Add(a, b int) int {
return a + b

}

The test flow for performance testing is the same as functional testing. First you
define a set of benchmark functions in a file that has a general naming convention of
_test.go. In this case, put your benchmark functions in a benchmark_test.go file. As in
functional tests, the name of the package the file is in must be the same as the one
with the function you want to do performance testing on:

func BenchmarkAdd(b *testing.B) {
for i := 0; i < b.N; i++ {

Add(1, 2)
}

}

Each benchmark function starts with “Benchmark,” followed by “<Xxx>,” and you
use camel case to describe what you’re testing. There must be only a single input
parameter to the benchmark function, which is a pointer to testing.B. B is a struct
that is passed to benchmark functions to manage benchmark timing and specify how
many iterations to run. It is very similar to the T you saw in test functions used in
functional testing.

The main part of the body of any benchmark function is the loop, which normally
repeats b.N times, each time executing the statements you want to run performance
tests on. You need to write this loop. You can see how this works by running the
performance test:

% go test -bench=.
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkAdd-10 1000000000 0.4093 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 0.907s

You run the performance test using the go test tool and the -bench flag and passing
it the argument .. This will tell the tool to run all benchmark functions. If you want
to run only certain benchmark functions, you need to use a regular expression to
match the benchmarks you want to run.

The benchmark results tell you several things, and up to the cpu line only tells
you the environment you are running the tests with. The line that starts with
BenchmarkAdd-10 tells you the name of the benchmark function and the number

320 | Chapter 19: Benchmarking Recipes

of cores that the benchmark was run with. The next value is the number of iterations
(in this case, this was run 1 billion times!), and the last is the time it took (on average)
to run the benchmark. In this example, it took, on average, 0.4093 nanoseconds to
run Add.

If you run the performance test again, you might discover that the timing might be
different. To satisfy yourself that the performance is not a one-off, you can do that a
few times. Or you can use the -count flag to specify the number of times to run the
same performance test:

% go test -bench=. -count=5
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkAdd-10 1000000000 0.4106 ns/op
BenchmarkAdd-10 1000000000 0.4100 ns/op
BenchmarkAdd-10 1000000000 0.4099 ns/op
BenchmarkAdd-10 1000000000 0.4108 ns/op
BenchmarkAdd-10 1000000000 0.4096 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 2.451s

19.2 Running Only Performance Tests
Problem
You want to run only performance tests without running the functional tests.

Solution
When you have functional tests along with performance tests in the same file, both
kinds of tests are going to be run. To just run performance tests, use the -run flag to
filter out functional tests.

Discussion
Benchmark functions and test functions are in the same file, and when you run
performance tests, all the functions are run, including test functions. Conversely, this
is not true; if you run functional tests, performance tests are not run unless you add
the -bench flag. If you only want to run performance tests, this can be quite irritating.

Let’s say you have this test function in the same file:

func TestAdd(t *testing.T) {
result := Add(1, 2)
if result != 3 {

t.Error("Adding 1 and 2 doesn't produce 3")
} else {

19.2 Running Only Performance Tests | 321

t.Log("Adding 1 and 2 results in", result)
}

}

When you try to run the performance test, you will get this:

% go test -v -bench=.
=== RUN TestAdd
 benchmark_test.go:16: Adding 1 and 2 results in 3
--- PASS: TestAdd (0.00s)
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkAdd
BenchmarkAdd-10 1000000000 0.4099 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 0.901s

This looks harmless if there is just one test, but if there are a number of them and
they take some time to run, it can be quite painful. You can use the -run flag to
filter out functional tests that match the filter. If you put a filter that doesn’t match
anything, no functional tests will be run:

% go test -v -bench=. -run=XXX
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkAdd
BenchmarkAdd-10 1000000000 0.4109 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 0.634s

19.3 Avoiding Test Fixtures in Performance Tests
Problem
You want to customize the performance tests to avoid benchmarking test fixtures.

Solution
You can start, stop, and reset the benchmark timers using the StartTimer, Stop
Timer, and ResetTimer, respectively. This will allow you the flexibility to avoid
test fixtures.

322 | Chapter 19: Benchmarking Recipes

Discussion
As with functional tests, you will sometimes need to set up test fixtures before
running the performance test. Here is an example where you want to take an image
file and flip it. In this example, you want to flip a PNG-format image of the Mona
Lisa.

The algorithm is easy, and you first load the image file into a 2D grid of pixels (where
a pixel is represented by a color.Color struct). (For more information about the
algorithm, see Recipe 15.3.)

The specific code you want to test is the flip function that takes the grid and flips the
pixels in them:

//flip the image
func flip(grid [][]color.Color) {

for x := 0; x < len(grid); x++ {
col := grid[x]
for y := 0; y < len(col)/2; y++ {

k := len(col) - y - 1
col[y], col[k] = col[k], col[y]

}
}

}

The test fixture you need to set up is to take a PNG file and load it into a grid to get it
ready for testing:

func BenchmarkFlip(b *testing.B) {
grid := load("monalisa.png")
for i := 0; i < b.N; i++ {

flip(grid)
}

}

Let’s run this benchmark function:

% go test -v -bench=Flip -run=XXX
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkFlip
BenchmarkFlip-10 6492 184067 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 1.538s

You can see that it takes around 184,067 nanoseconds (or around 184 microseconds)
on average to do this. But wait, there is an issue here because the benchmark timer
starts at the beginning of the benchmark function, which means this timing includes
the setup activity of loading up the file. To overcome this, you need to reset the timer
after doing the setup activities by calling b.ResetTimer() after loading the PNG file:

19.3 Avoiding Test Fixtures in Performance Tests | 323

func BenchmarkFlip(b *testing.B) {
grid := load("monalisa.png")
b.ResetTimer()
for i := 0; i < b.N; i++ {

flip(grid)
}

}

Run it again and see what happens:

% go test -v -bench=Flip -run=XXX
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkFlip
BenchmarkFlip-10 6618 181478 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 2.338s

The timing is now about 181 microseconds instead, about 3 microseconds difference.

This is great for setting up before you get into the benchmarking loop. For example,
you need to actually do something every iteration and not just once before the start of
the loop:

func BenchmarkLoadAndFlip(b *testing.B) {
for i := 0; i < b.N; i++ {

grid := load("monalisa.png")
flip(grid)

}
}

Take a look at the timing:

% go test -v -bench=LoadAndFlip -run=XXX
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkLoadAndFlip
BenchmarkLoadAndFlip-10 69 14613379 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 1.232s

This took about 14.6 milliseconds. To ignore the timing for loading the image file,
you need to stop the timer before calling load and start the timer afterward. For this,
you can use the StopTimer and StartTimer to control which parts of the iteration
you don’t want to benchmark:

324 | Chapter 19: Benchmarking Recipes

func BenchmarkLoadAndFlip(b *testing.B) {
for i := 0; i < b.N; i++ {

b.StopTimer()
grid := load("monalisa.png")
b.StartTimer()
flip(grid)

}
}

Run it again and see the results:

% go test -v -bench=LoadAndFlip -run=XXX
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkLoadAndFlip
BenchmarkLoadAndFlip-10 1540 672674 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 23.672s

The timing for the flip function is about 0.67 milliseconds. However, the entire
performance test took a lot longer, almost 24 seconds! This is because the flip
function is much faster than the load function, and therefore you could do many
more iterations (1,540 compared with 69 earlier). However, even though you are not
considering the timing for the load function in the performance test, it still executes
and takes much longer.

19.4 Changing the Timing for Running Performance Tests
Problem
You want to run performance tests for a specific duration or a specific number of
iterations.

Solution
You can increase the minimum duration the benchmarks should run or increase the
number of iterations using the -benchtime flag.

Discussion
By default, Go iterates several times in the benchmark function such that it takes
roughly 1 second.

19.4 Changing the Timing for Running Performance Tests | 325

For example, for this benchmark function:

func BenchmarkLoadAndFlip(b *testing.B) {
for i := 0; i < b.N; i++ {

b.StopTimer()
grid := load("monalisa.png")
b.StartTimer()
flip(grid)

}
}

when you run the performance test, you get this:

% go test -v -bench=LoadAndFlip -run=XXX
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkLoadAndFlip
BenchmarkLoadAndFlip-10 1540 672674 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 23.672s

The results tell you that the benchmark function ran 1,540 iterations, and the timing
for each loop is 672,674 nanoseconds or about 0.67 milliseconds. If you multiply
1,540 by 672,674, you get 1,035,917,960 nanoseconds or about 1 second.

However, you can see that it runs for a long time because the load function, while
it’s not included in the timing calculations, takes quite some time. This is because
although the timing is about 1 second, the real running time for the performance test
is about 24 seconds!

To run this faster, you can specify the timing to run using the -benchtime flag:

% go test -v -bench=LoadAndFlip -run=XXX -benchtime=100ms
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkLoadAndFlip
BenchmarkLoadAndFlip-10 226 687917 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 4.789s

In this case, you are saying you want to run the benchmark in 100 milliseconds
instead of 1 second (which is about 10 times less). Correspondingly the iterations
reduced to 226, and the overall timing dropped to 4.8 seconds. The timing isn’t
the most accurate, though. As you can see, if you multiply 226 by 687,917, you get
around 155.5 milliseconds and not 100 milliseconds.

You can also use the -benchtime flag to specify the number of times the iterator
should run, using the argument Nx, where N is the number of times to run:

326 | Chapter 19: Benchmarking Recipes

% go test -v -bench=LoadAndFlip -run=XXX -benchtime=100x
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkLoadAndFlip
BenchmarkLoadAndFlip-10 100 712695 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 1.932s

You can see here that you’re running 100 iterations in the loop.

19.5 Running Multiple Performance Test Cases
Problem
You want to run multiple benchmark test cases with table-driven tests like in
functional testing.

Solution
Create sub-benchmarks and run each test case with a sub-benchmark.

Discussion
You have seen table-driven tests in Recipe 18.2. They provide a means to run different
test cases for a test function and a better way to organize tests together. In the same
way, you also want to do table-driven performance tests.

Say you have this recursive Fibonacci series function that you want to test its
performance on:

func fibonacci(n int) int {
if n <= 1 {

return n
}
return fibonacci(n-1) + fibonacci(n-2)

}

The larger the number you pass into the function, the more times it will recurse and
the longer it will take. This means the performance of the function depends on the
number you pass into the function.

Take a look at running a performance test on fibonacci with the parameter 5:

func BenchmarkFibonacci5(b *testing.B) {
for i := 0; i < b.N; i++ {

fibonacci(5)
}

}

19.5 Running Multiple Performance Test Cases | 327

If you run it, you will see something like this:

% go test -run=XXX -bench=Fibonacci5
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkFibonacci5-10 43522675 27.53 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 1.836s

However, table-driven performance testing the same way you did functional testing
is not possible prior to Go 1.7. This is because a benchmark function provides
only a single set of performance results, whatever you do. You can create multiple
benchmark functions, but that’s not table-driven testing anymore.

Subtests were introduced in Go 1.7, and this included the feature to run sub-
benchmarks as well. This provided the capability to finally do table-driven
performance testing:

func BenchmarkFibonacciWithSubBenchmark(b *testing.B) {
testCases := []struct {

name string
n int

}{
{"Fibonacci-1", 1},
{"Fibonacci-5", 5},
{"Fibonacci-10", 10},
{"Fibonacci-20", 20},
{"Fibonacci-30", 30},

}
for _, testCase := range testCases {

testCase := testCase
b.Run(testCase.name, func(b *testing.B) {

for i := 0; i < b.N; i++ {
fibonacci(testCase.n)

}
})

}
}

If you now run this test case you should see this:

% go test -run=XXX -bench=SubBenchmark
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkFibonacciWithSubBenchmark/Fibonacci-1-10 440615576 2.735 ns/op
BenchmarkFibonacciWithSubBenchmark/Fibonacci-5-10 42677919 27.86 ns/op
BenchmarkFibonacciWithSubBenchmark/Fibonacci-10-10 3598915 332.4 ns/op
BenchmarkFibonacciWithSubBenchmark/Fibonacci-20-10 29084 41173 ns/op
BenchmarkFibonacciWithSubBenchmark/Fibonacci-30-10 236 5069878 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 8.161s

328 | Chapter 19: Benchmarking Recipes

19.6 Comparing Performance Test Results
Problem
You want to compare performance test results to see if your code changes have made
improvements.

Solution
Use benchstat to compare different results from the performance tests.

Discussion
Running performance tests requires a certain consistency in the environment while
the tests are being run. While it seems like a reasonably simple requirement (just
don’t do anything else while you’re running performance tests), it’s often less straight‐
forward than you might think. For example, if the test is running a while, you
might switch to browsing the web or reading your emails, and that will take up
networking, memory, and CPU time. Even if you don’t do anything, thermal scaling
or the garbage collector or system updates, or some other background processes
might suddenly kick in.

As a result, the performance test numbers always have a margin of error. Obviously,
the lower the margin of error, the more reliable the numbers would be. This is why
you want to run the same test multiple times using the -count flag.

Take a look at running the benchmark on the flip method from Recipe 19.3 (earlier
in this chapter):

func BenchmarkFlip(b *testing.B) {
grid := load("monalisa.png")
b.ResetTimer()
for i := 0; i < b.N; i++ {

flip(grid)
}

}

You want to run it 10 times and analyze the results, so you save the output into a file
named flip.txt:

% go test -bench=BenchmarkFlip -run=XXX -count=10 > flip.txt
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkFlip-10 6543 182126 ns/op
BenchmarkFlip-10 6532 182625 ns/op
BenchmarkFlip-10 6614 181799 ns/op
BenchmarkFlip-10 6606 181278 ns/op
BenchmarkFlip-10 6547 182261 ns/op

19.6 Comparing Performance Test Results | 329

BenchmarkFlip-10 6600 181419 ns/op
BenchmarkFlip-10 6607 181435 ns/op
BenchmarkFlip-10 6583 184046 ns/op
BenchmarkFlip-10 6540 184130 ns/op
BenchmarkFlip-10 6562 181718 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 14.707s

The benchstat tool is a simple but useful tool that allows you to analyze the results.
You can install it like this:

% go install golang.org/x/perf/cmd/benchstat

Then, you can run benchstat and give it the file with the earlier results:

% benchstat flip.txt
name time/op
Flip-10 182µs ± 1%

This tells you that the benchmark function took 182 microseconds, with a variance
of 1%. A variance of 1–2% is considered good, and 3–5% is OK, but anything larger
than 5% means that not all results are reliable, and you should rerun the performance
test with a more stable environment.

It’s useful to compare benchmarks to figure out if you have improved your code’s
performance or if using different methods can improve your code’s performance. To
show this, you’ll use the two ways of encoding JSON from a struct to a JSON string in
Go—the Encode and the Marshal functions.

Let’s start with the JSON that you will build your struct from:

var jsonString string = `{"name":"Han Solo","height":"180","mass":"80",
"hair_color":"brown","skin_color":"fair","eye_color":"brown","birth_year":
"29BBY","gender":"male","homeworld":"https://swapi.dev/api/planets/22/","films":
["https://swapi.dev/api/films/1/","https://swapi.dev/api/films/2/",
"https://swapi.dev/api/films/3/"],"species":[],"vehicles":[],"starships":
["https://swapi.dev/api/starships/10/","https://swapi.dev/api/starships/22/"],
"created":"2014-12-10T16:49:14.582Z","edited":"2014-12-20T21:17:50.334Z",
"url":"https://swapi.dev/api/people/14/"}`

var jsonBytes []byte = []byte(jsonString)
var person Person

You will be creating a Person struct as part of the setup by unmarshalling the data
into it. Start by creating a benchmark function with JSON marshalling:

330 | Chapter 19: Benchmarking Recipes

func BenchmarkWrite(b *testing.B) {
json.Unmarshal(jsonBytes, &person)
b.ResetTimer()
for i := 0; i < b.N; i++ {

data, _ := json.Marshal(person)
io.Discard.Write(data)

}
}

Run this benchmark 10 times and save it to a marshal.txt file:

% go test -bench=Write -run=XXX -count=10 > marshal.txt
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkWrite-10 492763 2169 ns/op
BenchmarkWrite-10 550326 2162 ns/op
BenchmarkWrite-10 551032 2154 ns/op
BenchmarkWrite-10 547428 2151 ns/op
BenchmarkWrite-10 546570 2152 ns/op
BenchmarkWrite-10 550374 2155 ns/op
BenchmarkWrite-10 544342 2149 ns/op
BenchmarkWrite-10 550413 2154 ns/op
BenchmarkWrite-10 550292 2155 ns/op
BenchmarkWrite-10 543782 2160 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 12.452s

Now rewrite your benchmark function using JSON encoding:

func BenchmarkWrite(b *testing.B) {
json.Unmarshal(jsonBytes, &person)
b.ResetTimer()
encoder := json.NewEncoder(io.Discard)
for i := 0; i < b.N; i++ {

encoder.Encode(person)
}

}

Rerun the performance test, but this time save it to an encode.txt file instead:

% go test -bench=Write -run=XXX -count=10 > encode.txt
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkWrite-10 497305 2112 ns/op
BenchmarkWrite-10 551722 2102 ns/op
BenchmarkWrite-10 557810 2103 ns/op
BenchmarkWrite-10 555228 2102 ns/op
BenchmarkWrite-10 552826 2101 ns/op
BenchmarkWrite-10 558488 2105 ns/op
BenchmarkWrite-10 559686 2098 ns/op
BenchmarkWrite-10 550504 2105 ns/op
BenchmarkWrite-10 554644 2096 ns/op

19.6 Comparing Performance Test Results | 331

BenchmarkWrite-10 560419 2100 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 12.270s

If you just eyeball both results, you will hardly be able to tell the difference. Maybe
JSON encoding edges out JSON marshalling by a bit, but it’s hard to tell. Using
benchstat, however, give you better insights into how much of an improvement.

Run benchstat and give both files to it as arguments:

% benchstat marshal.txt encode.txt
name old time/op new time/op delta
Write-10 2.16µs ± 1% 2.10µs ± 0% -2.49% (p=0.000 n=10+10)

With this, you can see that marshalling takes 2.16 microseconds with 1% variance,
and encoding takes 2.1 microseconds with negligible variance. The delta of –2.49%
tells you the new code (encoding) is 2.49% faster than the old code (marshalling).

The p here is the p-value, a number used in statistics to tell you how statistically
significant it is. A number less than 0.05 is considered statistically significant. The
number n shows how many of the samples are considered valid. A number 10+10
indicates that 10 samples in the old (marshalling) and 10 samples in the new (encod‐
ing) are considered valid. You ran the benchmark function 10 times and have gotten
10 samples, so 100% of the samples are valid. If you get anything less than 90% of
samples being valid, you should consider rerunning the performance test.

19.7 Profiling a Program
Problem
You want to find out how your function or program uses CPU time.

Solution
You can profile a program to find out how the program uses CPU time using the
pprof tool.

Discussion
You use benchmarking to find out the performance of your functions or program so
that you can improve it. However, more often than not, you don’t even know how
your program is using available resources. To know more in-depth and therefore be
able to improve, you need to profile your functions or program.

A profile is a collection of stack traces that show the sequence of certain events like
CPU use, memory allocation, and so on. Just like how Go provides the go test
tool and the testing package for functional and performance testing, Go provides

332 | Chapter 19: Benchmarking Recipes

the pprof tool and the runtime/pprof package for profiling your functions and
programs. It provides a few types of built-in profiles, but we will be discussing the
CPU profile in this recipe.

The CPU profile helps you to figure out how much time is spent in processing
which parts of your code. When CPU profiling is enabled, the runtime will interrupt
itself every 10 milliseconds and record the stack trace. The amount of time the code
appears in the profile tells you how much time is spent with that particular line of
code.

There are two parts to profiling: creating the profile, which saves it to a file, and then
running the pprof tool to analyze the profile.

Before you start, look at the example code you’ll be profiling on. You’ll be profil‐
ing the code for resizing an image from Recipe 15.6 using the nearest neighbor
interpolation algorithm:

func resize(grid [][]color.Color, scale float64) (resized [][]color.Color) {
xlen, ylen := int(float64(len(grid))*scale), int(float64(len(grid[0]))*
scale)
resized = make([][]color.Color, xlen)
for i := 0; i < len(resized); i++ {

resized[i] = make([]color.Color, ylen)
}
for x := 0; x < xlen; x++ {

for y := 0; y < ylen; y++ {
xp := int(math.Floor(float64(x) / scale))
yp := int(math.Floor(float64(y) / scale))
resized[x][y] = grid[xp][yp]

}
}
return

}

For this to work, you need to load the image from the file, and after resizing, you
need to save it back to another file:

// load the image from file
func load(filePath string) (grid [][]color.Color) {

file, err := os.Open(filePath)
if err != nil {

log.Println("Cannot read file:", err)
}
defer file.Close()
img, _, err := image.Decode(file)
if err != nil {

log.Println("Cannot decode file:", err)
}
size := img.Bounds().Size()
for i := 0; i < size.X; i++ {

var y []color.Color

19.7 Profiling a Program | 333

for j := 0; j < size.Y; j++ {
y = append(y, img.At(i, j))

}
grid = append(grid, y)

}
return

}

// save the image to file
func save(filePath string, grid [][]color.Color) {

xlen, ylen := len(grid), len(grid[0])
rect := image.Rect(0, 0, xlen, ylen)
img := image.NewNRGBA(rect)
for x := 0; x < xlen; x++ {

for y := 0; y < ylen; y++ {
img.Set(x, y, grid[x][y])

}
}
file, err := os.Create(filePath)
if err != nil {

log.Println("Cannot create file:", err)
}
defer file.Close()
png.Encode(file, img.SubImage(img.Rect))

}

Now that you have the code, you can profile it. There are two ways of profiling your
code using pprof:

• Use the go test tool and the flag -cpuprofile on a benchmark function that has•
the code you want to profile.

• Add code from the runtime/pprof package into the code you want to profile,•
then run the code.

Using the go test tool with the -cpuprofile flag is relatively easier, so take a look at
that first:

func BenchmarkResize(b *testing.B) {
for i := 0; i < b.N; i++ {

grid := load("monalisa.png")
resized := resize(grid, 3.0)
save("resized.png", resized)

}
}

As you can see, the benchmark function is just like any other benchmark function. In
this function, first, you load the PNG file and create a grid, then you run the resize
function on the grid, and finally save the resized grid to another file.

334 | Chapter 19: Benchmarking Recipes

Start profiling like this:

% go test -cpuprofile cpu.prof -bench=Resize -run=XXX
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkResize-10 6 181341944 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 1.928s

Use the -cpuprofile flag and pass in the filename cpu.prof to create the profile into
this file. The code takes some time, and the benchmark function only runs six times
in a second. You’ll see a cpu.prof file being created. It’s a binary file, so you can’t open
it up to look inside. Instead, you’ll have to use pprof to analyze the profile.

The second way to create profiles is to add profiling code directly into the program
code using the runtime/pprof package. There’s quite a bit of profiling code to write,
but fortunately, there is a small package that allows you to profile a program a lot
easier:

func main() {
defer profile.Start(profile.ProfilePath(".")).Stop()
grid := load("monalisa.png")
resized := resize(grid, 3.0)
save("resized.png", resized)

}

Take the same few lines of code you wanted to profile earlier and put them into
a main function that is in a main package. You need to use the github.com/pkg/
profile package and add a simple line of code to start profiling and create a CPU
profile.

Then create the binary executable file:

% go build -o resize

This will create the resize program. When you run this program, it will generate a
CPU profile in a file named cpu.pprof.

Now that you have the CPU profiles—one created using go test and the other by
running profiling code in a program—you can analyze them using pprof. You’ll use
the same method of analyzing the two CPU profiles generated by the two different
methods, but you will quickly realize the profiles are different since they are created
differently.

The pprof tool can be accessed in a number of ways, but the easiest way to visualize
is probably using the web interface. Before you can use the pprof web interface, you
need to install Graphviz. On a macOS machine, install it using Homebrew:

% brew install graphviz

19.7 Profiling a Program | 335

For Windows machines, download the appropriate package from Graphviz and
install it by running the installer.

For Linux machines, use your usual package manager to install Graphviz. For exam‐
ple, for Debian machines:

% sudo apt install graphviz

Once you have done that, you can start the web interface for the pprof tool like this:

% go tool pprof -http localhost:8080 cpu.prof
Serving web UI on http://localhost:8080

Notice that you asked for it to be started at port 8080 and using the cpu.prof file. Run‐
ning this command on the command line will also pop up the browser. Figure 19-1
shows the screenshot of the web UI started by the pprof tool, showing the CPU
profile generated earlier.

Figure 19-1. Analyzing CPU profile with pprof—graph view (web version shows
different shades of red; print version shows grayscale); darker colors indicate that more
time is spent on those tasks

336 | Chapter 19: Benchmarking Recipes

https://graphviz.org/download

You can see from the web UI that testing.B takes up 86% of the CPU time. Within
BenchmarkResize, 77% of the time is spent on save, 6% is spent on load, and only 3%
is spent on resize function. Within the save function, most of the time is spent on
encoding the image. Within the load function, most of the time is spent on decoding
the image.

The web interface can do multiple views. The default view is the graph view, but you
can also choose the flame graph view by selecting the VIEW menu and then choosing
Flame Graph from the list. Figure 19-2 shows the flame chart view of the web UI
started by the pprof tool.

Figure 19-2. Analyzing CPU profile with pprof—flame graph view (web version shows
red, orange, and yellow; print version shows grayscale); darker colors indicate that more
time is spent on those tasks

This provides another perspective. Click the horizontal bars, and they will be expan‐
ded to show more. It is interesting that BenchmarkResize is shown more than once
on the flame graph. Remember that you actually ran the loop six times. The profiling
manages to capture a bit more than one of the iterations.

19.7 Profiling a Program | 337

What happens if you tell the benchmark function to iterate only once?

% go test -cpuprofile cpu.prof -bench=Resize -run=XXX -benchtime=1x
goos: darwin
goarch: arm64
pkg: github.com/sausheong/gocookbook/ch19_benchmarking
BenchmarkResize-10 1 196764042 ns/op
PASS
ok github.com/sausheong/gocookbook/ch19_benchmarking 0.497s

As you can see, there is only one BenchmarkResize. Figure 19-3 shows the flame
chart when running only one iteration in the benchmark function.

Figure 19-3. Flame graph when running only one iteration in the benchmark function
(web version shows red, orange, and yellow; print version shows grayscale); darker colors
indicate that more time is spent on those tasks

338 | Chapter 19: Benchmarking Recipes

Another interesting view is the source view, which shows the flat and cumulative
timings for the significant lines of code. There could be a lot of code shown, so you
can narrow it down to the functions you are interested in by searching through the
code. Figure 19-4 shows the source view of the web UI started by the pprof tool.

Figure 19-4. Analyzing CPU profile with pprof—source view

You’ve seen the profile created using the benchmark function. Take a quick look at
the profile created by placing the profiling code in the program.

Figure 19-5 shows how you can analyze the CPU profile by adding profiling code.

19.7 Profiling a Program | 339

Figure 19-5. Analyzing CPU profile created by adding profiling code (web version shows
different shades of red; print version shows grayscale); darker colors indicate that more
time is spent on those tasks

You can see that the benchmarking parts are now gone. The percentages differ
slightly, but they should be the same.

340 | Chapter 19: Benchmarking Recipes

Index

Symbols
"" (double quotes), string literals, 71
'' (single quotes), string literals, 71
[] (square brackets)

accessing maps, 203
defining arrays, 188

^ (carat), grep command, 53
_ (underscore), importing packages, 235
`` (backtick/backquote), string literals, 71
{{.}} syntax, template engine, 281-285
{{}} (double curly brackets) inner structs, 182
{} (curly brackets), defining arrays, 188
| (vertical bar) operator, 60
~ (tilde) operator, 60
… (ellipsis)

slice unpacking notation, 193
variadic function definition, 61

A
Accept function, 248
Add method

linked lists, 218
performance testing, 320
sets, 213
Time struct instance, 152

AddEdge function, 227
AddNode function, 227
against reason, 93
Allman, Eric, 54
alpha channel, 236
alpha compositing, 236
anonymous function, 65-66
anonymous structs, 178-181
any type constraint, 62, 124

app.log file, 50
append function

graphs, 227
slices, 192

arithmetic with time, 152
arrays, 187, 188-202

accessing, 190
byte arrays, 105, 117-120, 131-133, 146, 148
creating, 188, 189
modifying, 192
safety for concurrent use, 195-198
sorting arrays of slices, 198-202
string, 73, 86-88, 116
strings, 110

At method, 236
automated testing, 291, 292, 319-321

B
backtick/backquote (``), for string literals, 71
benchmarking (see performance testing)
benchstat, 329-332
binary data formats, encoding/decoding,

139-149
binary heap, 221-225
binary.BigEndian function, 148
binary.Read function, 147
binary.Write function, 145
Bounds method, 241
bufio.NewWriter function, 102
byte arrays, 105

creating JSON byte arrays from structs,
131-133

decoding customized binary data into
structs, 148

341

encoding data to customized binary format,
146

parsing JSON data to structs, 117-120
bytes

converting to strings, 73
in Go strings, 72
in I/O operations, 98, 99

bytes.Buffer struct, 99

C
CA (certificate authority), 277
calling functions, error handling, 29
camel case versus snake case, 119
capitalization of data field names, 168
certificate authority (CA), 277
certificate file, HTTPS, 277
characters, 72

(see also strings)
escaped characters in strings, 72
replacing multiple, 81-84

check function, 33
chi package, 262
classes versus structs, 167
closure, 66-69
code points, 72
color.Color interface, 240
ColorModel method, 235
Comma variable, CSV, 113
“comma, ok” pattern, 203
comma-separated value file format (see CSV)
command line, capturing string input from,

89-91
comment rune, 114
composition, structs, 181-183
concatenation, 73
concurrency-safety issue

arrays, 195-198
data structures, 207
slices, 195-198

conn.ReadFrom method, 254
conn.ReadFromUDP method, 255
conn.WriteTo method, 254
conn.WriteToUDP method, 255
ConnectionError type, 38
constraints package, 60
constraints.Ordered type, 217
container package, 207, 221
content, syslog message, 55
continuous testing, 291

copy, struct instance by, 176-178
copying from reader to writer, 100-102
CPU time, profiling to test, 332-339
Crockford, Douglas, 117
CSV (comma-separated value) file format,

109-116
ignoring rows, 114
reading one row at a time into memory, 111
reading whole file into memory, 110
removing header line, 113
unmarshalling data into structs, 112
using different delimiters, 113
writing into files, 115

csv.NewReader function, 115
csv.NewReader struct instance, 110-111
csv.Read function, 111, 113
csv.ReadAll function, 110, 113
csv.Reader struct instance, 113, 114
csv.Writer function, 115
csv.Writer struct instance, 115
curl command, 269
curly brackets ({}), defining arrays, 188
customized binary format, encoding/decoding,

144-149
customized errors, creating, 34-36
cutset, 88

D
data byte arrays from structs (JSON), 131-133
data fields, struct

capitalization of names, 168
metadata for, 184-185
omitting fields (JSON), 136-138
in struct construction, 175
structs within structs, 181-183

data streams from structs (JSON), 133-136
data structures, 187-206

arrays (see arrays)
graphs, 208, 225-233
heaps, 221-225, 229-233
linked lists, 216-221
maps, 121-124, 187, 202-206, 212-216, 227
queues, 208-209
sets, 212-216
slices, 187, 189-202, 205, 208-212
stacks, 210-212
structs (see structs)
types of, 187

data, creating strings from other data, 73-77

342 | Index

date fields, SetFlag, 48
date representation, 153
dates and times (see time manipulation)
Decode method

gob format to structs, 141-144
parsing JSON data streams into structs,

124-131
delete function, maps, 205
Delete method, linked lists, 219
delimiters, file data, 113
dependent packages (see modules)
Dequeue function, 208
Difference method, 216
dijkstra function, 233
Dijkstra, Edsger, 230
Dijkstra’s algorithm, 229-233
direct dependencies, 17
dontPanic function, 42
dot (.) notation, in method syntax, 172
dot actions {{.}} in template engine, 281-285
double quotes (""), in string literals, 71
duration representation, 151, 155-159
Duration type, 153, 155

E
Edge struct, Graph, 226
edges, graphs, 208, 225
Element struct, 217, 220
elements, list, 208
empty interface (interface{}), 62
Encode method

image files, 238
JSON data streams from structs, 133-136
structs to gob format, 141

encoder.SetIndent function, 135
encoding/binary package, 144-149
encoding/csv package, 109-111, 115
encoding/gob package, 140-144
encoding/json package, 117-120, 124-131,

133-136, 274
enctype attribute, 266, 268
Enqueue function, 208
environment variables, and multiple log levels,

52
Error function, testing, 293
error handling, 29-44

applying methods for, 30-32
creating customized errors, 34-36
exceptions versus errors, 29

getting started, 7-8
inspecting errors, 37-39
interrupts, 43
panic function to stop program, 39-41
reasons for Go’s approach, 32
recovering from panic function, 41-43
simplifying repetitive, 32-34
wrapping an error with other errors, 36-37
writing functions for, 30

error interface, implementing, 34-36
Error method, strings, 34
error type, 8, 29, 30
errors package, 29
errors.As function, 38
errors.Is function, 37
errors.New function, 31, 35
errors.Unwrap function, 36
escape characters, in strings, 72
escaping and unescaping HTML strings, 91
exceptions versus errors, 29
Execute method, web application, 281

F
facility, syslog message, 54
Field method, 185
FIFO (first-in-first-out) ordered list, 208
File Transfer Protocol (FTP), 247
files

creating to write to, 105
image processing, 237
loading images from, 237
logfile, 45, 49
reading from, 102-104, 110
serving static files in web application,

269-273
temporary, 106-107
uploading to web applications, 268
writing to, 115

files, writing to, 105
Find functions

linked lists, 220
regular expressions, 93

FindAllString method, regex, 94
FindAllStringIndex method, regex, 94
FindString method, regex, 94
FindStringIndex method, regex, 94
first-in-first-out (FIFO) ordered list, 208
flip function, images, 242, 295, 300, 323
flipping an image upside down, 240-242

Index | 343

fmt package, 5, 71, 89-91
fmt.Errorf function, 31, 35
fmt.Fprint function, 75
fmt.Fprintf function, 99
fmt.Println function, 5
fmt.ReadString function, 89, 91
fmt.Scan function, 90
fmt.Sprint function, 73, 74
fmt.Sprintf function, 74
for … range loop, maps, 203
Format functions, strings, 77
Format method, Time, 161-163
FormFile method, HTML forms, 269
FormValue method, HTML forms, 266-268
FTP (File Transfer Protocol), 247
func keyword, 57-59, 171
functional testing (see testing)
functions, 57-69

accepting any type in parameters, 62-64
anonymous, 65-66
calling, 30
closures, 66-69
defining a function, 57-59
error return role of, 30
versus methods, 169-172
multiple types with, 59-60
that maintain state after call, 66-69
variable number of parameters accepted in,

61-62
writing for error handling, 30

Fuzz function, 308
fuzz testing technique, 306-312
FuzzHeap function, testing, 309

G
generics, 59-60
Go, 1-11

external package for, 5-7
installing, 1-3
playing around with, 3
writing first program, 4-5

go directive, 15
go get tool, 15
go mod init command, 14
go mod tidy command, 17, 24
go mod vendor command, 22-26
Go Playground, 3
go test tool, 292, 310, 319
go tool, and package management, 13

go.mod file, 14
gob format data, encoding/decoding, 140-144
GOPATH, 14
Graph struct, 227
graphs, 208, 225-233
grayscale, converting image to, 243
grep command, 53

H
handlers, web application, 260
Has method, sets, 214
header line, removing from CSV file, 113
header, syslog message, 55
headers, HTTP request, 264
heap property, 221
heaps, 221-225, 229-233
Hello World program, 4-5
helper functions

in error handling, 32-34
for working with test fixtures, 295

HTML forms, 266-268
html package, 91
html.EscapeString function, 91, 92
html.UnescapeString function, 91, 92
html/template package, 280-285
HTTP (HyperText Transfer Protocol), 247, 259
HTTP request handling, 263-265, 285-288
http.Client, 287, 288
http.DefaultClient.Do method, 288
http.DefaultServeMux, 261
http.Dir type, 270
http.FileServer function, 269-273
http.FileSystem interface, 270
http.Get function, 100, 119, 285
http.HandleFunc function, 261
http.Handler interface, 261
http.ListenAndServe function, 262
http.ListenAndServeTLS function, 277-280
http.NewRequest function, 288, 318
http.POST function, 286
http.PostForm function, 287
http.Request, 261, 263-268
http.Request.AddCookie method, 288
http.Response struct, 101, 127, 285
http.ResponseWriter, 99, 261, 263-265, 317
http.ServeFile function, 273
http.ServeMux struct, 261
http.StripPrefix, 271
http/test package, 317

344 | Index

HTTPBin tool, 286
HTTPS, serving web applications through,

276-280
httptest.NewRecorder function, 317
httptest.ResponseRecorder, 317
HyperText Transfer Protocol (HTTP), 247, 259

I
ignoring rows, CSV file format, 114
image mask, 236
image package, 235
image processing, 235-246

converting to grayscale, 243
converting to pixel grid, 240, 243-246
creating images, 239
flipping images upside down, 240-242, 295,

300, 323
Image and other interfaces, 235
implementing image.Image, 236
loading images from files, 237
profiling a program for, 333-339
resizing images, 245
saving images to files, 238

image.Decode function, 237
image.Image interface, 235
image.NRGBA struct, 240
image.Point method, 236
image.Rectangle method, 236
image/png package, 235
img variable, 237
index function, 84
index function, web application, 261
Index functions, regular expressions, 94
indirect dependencies, 17
inheritance, 181
inner structs, 182
input/output (I/O), 97-107

copying from reader to writers, 100-102
reading from input, 98
reading from text file, 102-104
temporary file, 106-107
writing to output, 99-100
writing to text file, 104-105

Insert method, linked lists, 218
inspecting errors, 37-39
int32 type, 72
integration testing, 291
interfaces

empty (interface{}), 62

and methods, 62, 172-175
interface{} (empty interface), 62
Internet Protocol (IP), 248
interrupts, 43
Intersect function, sets, 215
io package, 97
io.Copy function, 100-102, 269
io.MultiWriter function, 50
io.Read function, 98
io.ReadAll function, 98, 101, 265
io.ReadCloser interface, 101, 265
io.Reader interface, 98
io.Write function, 99
io.Writer interface, 99-100, 133-136
IsEmpty function

queues, 208
sets, 214
stacks, 212

ISO 8601 time format, 160
Itoa function, strings, 79

J
JSON (JavaScript Object Notation), 117-138

comparing benchmarks, 330-332
creating data byte arrays from structs,

131-133
creating data streams from structs, 133-136
omitting fields in structs, 136-138
parsing data byte arrays to structs, 117-120
parsing data streams into structs, 124-131
parsing unstructured data, 121-124
and struct tags, 184

JSON Web Service API, 274-276
json.Decoder function, 124, 127
json.Marshal function, 131-133, 135
json.MarshalIndent function, 132, 135
json.NewDecoder function, 128-131
json.NewEncoder function, 133
json.Unmarshal function, 117, 119, 124-127,

129-131

K
KeepAlive property, 252
key-value pairs

maps, 187, 203, 205
URL query, 263

Kitchen layout, time and date formatting, 162

Index | 345

L
lapsed time measurement, 156-159
last-in-first-out (LIFO) ordered list, 210
len function, 84, 189
linked lists, 216-221
LinkedList struct, 217
Linux, 2, 5, 13, 52
List function, 214
List method, linked lists, 220
lists, 208

(see also arrays; slices)
converting set to list, 214
linked lists, 216-221
queues, 208-209

load function
image flipping, 240-242
performance testing, 324

local versions of modules, requiring, 22-26
Location struct, 154
locking/unlocking array or slice, 195-198
Log and Logf functions, 293
log package, 9, 45-48
log.Fatal function, 46
log.Fatalln function, 9
log.New function, 50
log.Panicln function, 47
log.Print function, 46
log.Println function, 46
log.SetFlags function, 48-49
log.SetOutput function, 49
log.SetPrefix function, 51
log/syslog package, 53-56
logfiles, 45, 49
logging events, 45-56

to a file, 49
getting started, 9
log levels, 50-53
standard logger input changes, 48-49
to system log service, 53-56
test results, 293
writing to logs, 45-48

longfile field, SetFlag, 48
loop iterator variable issue with parallel run‐

ning of tests, 305
luminosity formula, 244

M
m.Run function, 296
macOS, 2, 5, 13, 52

main function, 10
main package, 5
make function, slices, 189
make method, maps, 202
map keyword, 202
maps, 187, 202-206

and graph edges, 227
parsing JSON data with string, 121-124
and sets, 212-216

MatchString method, regex, 94
max heap, 221
message, syslog message, 55
messageprefixposition field, SetFlag, 48
metadata for struct fields, 184-185
methods

creating for structs, 170-172
for error handling, 30-32
versus functions, 169-172
HTTP request, 263
and interfaces, 62, 172-175
for putting strings together, 75-76
versus functions, 58

microseconds field, SetFlag, 48
min heap, 221
minimal version selection (MVS) algorithm, 14
modules, 13-28

creating, 14
finding available versions of third-party

packages, 19
importing dependent packages into, 15-18
importing specific version of dependent

packages into, 20-21
and importing third-party packages, 7
multiple versions of same dependent pack‐

ages, 26-28
removing dependent packages from, 18
requiring local versions of, 22-26

monotonic versus wall clocks, 151, 158
Month type, 153
multiline strings, 72
multipart/form-data, 266
multiple characters in strings, replacing, 81-84
multiple test cases, running, 293-294, 327
multiple types with functions, 59-60
multiplexer, web application, 260, 261-263
Must function, template, 285
mutex (mutual exclusion lock), 195, 197, 207
mutex.Lock function, 198
mutex.Unlock function, 198

346 | Index

MVS (minimal version selection) algorithm, 14

N
nearest neighbor interpolation algorithm, 245,

333
net package, 248
net.AcceptTCP function, 251
net.Conn interface, 251, 253
net.Dial function, 253, 256
net.DialTCP function, 253
net.DialUDP function, 257
net.Listen function, 248
net.Listener interface, 250
net.ListenPacket, 254-256
net.ListenUDP function, 255
net.PacketConn interface, 254-256
net.ResolveUDPAddr function, 255, 257
net.TCPAddr struct, 253
net.TCPConn struct, 251
net.TCPListener struct, 251
net.UDPAddr, 255
net.UDPConn interface, 255, 256
net/http package, 260-263, 268, 274-276,

285-288
net/url package, 287
netcat (nc) utility, 248, 250
network protocols, 247
Network Time Protocol (NTP) server, 151
networking setup, 247-257

TCP client, 252
TCP server, 248-252
UDP client, 256
UDP server, 254-256

new function, arrays, 190
new keyword, 175
NewSet function, 213
Node struct, Graph, 226
nodes, graphs, 208, 225
NRGBA struct, Image, 236, 239
NTP (Network Time Protocol) server, 151
numbers

converting strings to, 77-79
converting to strings, 79-81
generics to assign types to parameters, 59

NumError return value, 78
NumField method, 185

O
object-oriented programming, 172

omitting fields in structs (JSON), 136-138
one-time structs, creating, 178-181
Open System Interconnection (OSI), 247
opening file to read from it, 103
OpenSSL, 277
operating systems

environment variables, 52
installing Go, 1, 5
and package management, 13
syslog message variation among, 55

Ordered constraint, 60
os.Create function, 102, 105
os.CreateTemp function, 106-107
os.Exit, test suite, 297
os.File struct instance, 110
os.Getenv function, 52
os.MkdirTemp function, 106
os.Open function, 103-105, 110, 111
os.Read function, 103
os.ReadFile function, 103
os.Stdin, 89, 91
os.Stdout, 134
os.TempDir function, 106
os.Write function, 104
os.WriteFile function, 100, 105, 132
os/signal package, 44
OSI (Open System Interconnection), 247

P
p-values, 332
package management, 6, 13

(see also modules)
page rank algorithm, 229
panic function to stop program, 39-41
parameters in functions, 57, 61-64
Parse functions, strings, 77
ParseForm method, HTML forms, 267
parsing

JSON byte arrays to structs, 117-120
JSON data streams into structs, 124-131
time displays into structs, 163-165
unstructured data, 121-124

path, URL, 263
pausing for specific duration, 156
Peek function

queues, 208
stacks, 211

performance testing, 319-339
automating tests, 319-321

Index | 347

avoiding test fixtures, 322-325
comparing test results, 329-332
methods for putting strings together, 75-76
multiple test cases, 327
profiling a program, 332-339
readWrite versus copy functions, 102
running only performance tests, 321
sorting array or slice functions, 201
timing for running tests, 325-327

Pix attribute, NRGBA, 239
polymorphism, 62, 167, 172-175
Pop function

heap, 224
stacks, 211
testing, 307

pprof tool, 332-339
prebuilt binaries for GO installation, 2
priority queue, heap as, 221, 229
priority, syslog message, 54
private key file, HTTPS, 277
profiling a program, performance testing,

332-339
Push function

heap, 223
stacks, 211
testing, 307

Q
query, URL, 263
queues, 208-209

R
race conditions, making slices and arrays safe

from, 195-198
random test inputs, generating, 306-312
raw strings, 72
Read method, networking, 250
Reader interface, strings, 89, 91
reading

from input, 98
from text file, 110
one row of CSV file at a time into memory,

111
from text file, 102-104
whole CSV file into memory, 110

receiver
in function syntax, 58
methods versus functions, 171

recover function, 41-43

Rect attribute, NRGBA, 239
reference, struct instance by, 175-178
reflect package, 63, 184-185
reflect.Kind function, 63
reflect.TypeOf function, 63
regex package, 92-95
Regexp struct, 92-95
regexp.Compile function, 92
regexp.MustCompile function, 93
regular expressions, 92-95
Remove function, sets, 213
RemoveEdge function, Graph, 228
RemoveNode function, Graph, 228
repetitive errors, simplifying, 32-34
replace directive, 26-28
ReplaceAllString method, regex, 95
req command, certificate requests, 278
ResetTimer function, 322
resizing an image, 245
RESTful web services, 117
RFC 1123 time format, 161
RFC 3339 time format, 160
RFC 4180 specification for CSV, 109
RFC 822 time format, 161
RFC 850 time format, 161
RGBA struct, Image, 236
rsyslog, 55
runes, 72
runtime/pprof package, 332
RWMutex, 207

S
safety of code for concurrent use

arrays, 195-198
data structures, 207
slices, 195-198

saving image to file, 238
Scan functions, fmt, 89-91
seed corpus, testing, 309
self-signed certificates, 278
semantic import versions, 21, 27
Semantic Versioning (Semver) system, 21
ServeHTTP method, 261
serving static files, 269-273
set operations, 212
sets, 212-216
setup function, image flip test, 296
severity, syslog message, 54, 56
shallow copy, 194

348 | Index

shortest path algorithm, 229-233
shortfile field, SetFlag, 48
SIGINT signal, 44
signal interrupt, 44
signal.Notify function, 44
single quotes (''), string literals, 71
Size function

queues, 208
sets, 214
stacks, 212

sizing an image, 245
SkipNow function, testing, 293
slices, 187, 189-202

accessing, 190
appending to, 192
and arrays, 187
creating, 189
inserting, 193
modifying, 192-195
and queues, 208-209
removing, 194
safety for concurrent use, 195-198
sorting arrays of slices, 198-202
sorting maps from, 205
and stacks, 210-212

snake case versus camel case, 119
social graph, 229
socket programming, 248, 249
sort package, 199
sort.Float64s function, 199
sort.Interface interface, 200
sort.Ints function, 199
sort.IsSorted function, 201
sort.Slice function, 199
sort.SliceStable function, 200
sort.Sort function, 201
sort.Strings function, 199
sorting

arrays of slices, 198-202
maps, 205

Split functions, strings, 86-88
square brackets ([])

accessing maps, 203
defining arrays, 188

stacks, 210-212
standard logger, changing input to, 48-49
StartTimer function, 322
state, maintaining after function call, 66-69
static files, serving, 269-273

StopTimer function, 322
str type, 73
strconv package, 71, 77-81
strconv.Atoi function, 77
strconv.FormatFloat function, 8, 80
strconv.FormatInt function, 8, 79
strconv.Itoa function, 79
strconv.ParseBool function, 78
strconv.ParseFloat function, 8, 78
strconv.ParseInt function, 8, 9, 31, 78
Stride attribute, NRGBA, 239
string arrays

combining into single string, 86-88
converting bytes to strings, 73
converting string to byte array, 73
reading CSV files, 110
splitting string into array, 86-88
writing to CSV files, 116

String method, Builder, 75
string type, 72
string-based error, 34
string.Builder struct, 74
strings, 71-95

capturing command line input, 89-91
checking if string contains string, 85-86
combining array into single string, 86-88
converting numbers to, 79-81
converting string to byte array, 73
converting to numbers, 77-79
creating, 71-77
creating substrings from strings, 84
escaping and unescaping HTML, 91
regular expressions, 92-95
replacing multiple characters in, 81-84
splitting, 86-88
trimming, 88-89

strings.Builder struct, 73
strings.Contains function, 85-86
strings.Count function, 85
strings.Fields function, 87
strings.FieldsFunc function, 87
strings.HasPrefix function, 85
strings.HasSuffix function, 85
strings.Index function, 84, 85
strings.Join function, 73
strings.NewReader function, 98
strings.Replace function, 81-83
strings.ReplaceAll function, 82
strings.Replacer type, 82-84

Index | 349

strings.Split function, 86
strings.SplitAfter function, 88
strings.SplitN function, 87
strings.ToUpper function, 95
strings.Trim function, 88
strings.TrimLeft function, 89
strings.TrimLeftFunc function, 89
strings.TrimPrefix function, 89
strings.TrimRight function, 89
strings.TrimRightFunc function, 89
strings.TrimSpace function, 89
strings.TrimSuffix function, 89
struct tags, 119, 184
StructField, 185
structs, 58, 167-185

(see also data fields)
and any or empty interfaces, 63
attaching functions to, 58
composing structs from other structs,

181-183
conversion to gob format, 140
creating and using interfaces, 172-175
creating instances of, 175-178
creating methods for, 170-172
creating one-time, 178-181
decoding customized binary data into, 147
defining metadata for data fields, 184-185
gob format to, 141-144
and JSON data, 117-120, 124-138
parsing time displays into, 163-165
unmarshalling CSV data into, 112

StructTag, 185
Sub method, Time struct instance, 152
sub-benchmarks, 327
SubImage method, 238
substrings, creating from strings, 84
subtests to control test case groups, 297-301,

303
sync package, 195-198, 207
syslog package, 55
syslog protocol, 53
syslog.NewLogger function, 56

T
t.Parallel function, testing, 301-305
t.Run function, testing, 297-301
table-driven tests with test cases, 294-301, 327
Tag method, 185
tag, syslog message, 55

TCP (Transmission Control Protocol), 247
TCP client, setting up, 252
TCP server, setting up, 248-252
TDD (test-driven development), 291
teardown function, image flip test, 296
template engine, web application, 260, 280-285
template.HTMLEscapeString function, 92
template.Must function, 33
template.Template interface, 281
temporary file, using in I/O, 106-107
test cases, 291
test fixtures, 295-297, 322-325
test suite, 296
test-driven development (TDD), 291
TestAdd function, 293
testCase variable, and running Parallel tests,

305
testing, 291-318

automating functional tests, 292
generating random test inputs, 306-312
getting started, 10-11
logging results, 293
measuring test coverage, 312-316
performance (see performance testing)
running multiple test cases, 293-294
running tests in parallel, 301-305
setting up and tearing down, 295-297
subtests to control test case groups, 297-301
web applications, 316-318

testing package, 291, 319
TestMain feature, 295-297
text (see strings)
third-party packages, 6, 15-18, 19
tilde (~), operator, 60
time field, SetFlag, 48
time manipulation, 151-165

arithmetic with time, 152
date representation, 153
duration representation, 151, 155-159
formatting time for display, 159-163
lapsed time measurement, 156-159
parsing time displays into structs, 163-165
pausing for specific duration, 156
telling time, 152
time zone representation, 154-155

time package, 151-158, 161-163
Time struct, 74, 152, 156-165
time zone representation, 154-155, 160, 164
time.Date function, 153

350 | Index

time.FixedZone function, 155
time.Format function, 159-163
time.Hour function, 156
time.Layout constant, 162
time.LoadLocation function, 154
time.Now function, 74, 152
time.Parse method, 163-165
time.Sleep function, 156-159
time.Time function, 153
timing for running tests, changing, 325-327
Transmission Control Protocol (TCP), 247
Transport Security Layer (TLS), 277, 280
Trim functions, strings, 88-89
type assertions, 64, 124
type constraints, 58
type parameters, 58
type … interface keyword, 62
typecasting, string to bytes to string, 73

U
UDP (User Datagram Protocol), 247
UDP client, setting up, 256
UDP server, setting up, 254-256
uint8 type, 72
underscore (_), importing packages, 235
undirected weighted graph, 225-229
unicode/utf16 package, 71
unicode/utf8 package, 71
uniform.isSpace, 87
Union method, sets, 214
unit testing, 291
unmarshalling CSV data into structs, 112
unnamed data fields, 181-183
unstructured data, parsing JSON, 121-124
uploading file to web application, 268
url.Values type, 287
User Datagram Protocol (UDP), 247
utc field, SetFlag, 48

V
values

arrays (see arrays)
in function syntax, 58
key-value pairs (see key-value pairs)
p-values, 332
url.Values type, 287

varFunc function, 61
variables

assigning anonymous functions to, 65

environment, 52
img, 237
loop iterator variable, 305
reflect package to identify, 63

variadic function, 61
vendor directory, 22-26
versioning

importing specific version of dependent
package, 20-21

multiple versions of same dependent pack‐
age, 26-28

package management in Go, 13-14
requiring local versions of dependent pack‐

ages, 22-26
third-party packages, 19

@version_number, adding to go get to import
specific version, 20

vertical bar (|) operator, 60
vertical flipping of image, 240-242, 295, 300,

323

W
wall versus monotonic clocks, 151, 158
web applications, 259-288

closures in, 67-69
creating simple, 260-263
HTML forms, 266-268
HTTP client request, 285-288
HTTP request handling, 263-265
JSON Web Service API, 274-276
parts of, 260
serving static files, 269-273
serving through HTTPS, 276-280
templates for Go, 280-285
testing, 316-318
uploading files to, 268

web servers, 259
web services, 259, 274-276, 316-318
week-date format, 160
Weekday method, Time, 153
Windows, 2, 5, 13, 52
wrapping an error with other errors, 36-37
Write method

Builder, 75
csv.Writer, 116
input/output, 133
net package, 250, 257

WriteAll method, CSV files, 115
WriteByte method, Builder, 75

Index | 351

WriteRune method, Builder, 75
writing

into CSV files, 115
error handling in function writing, 30

to logs, 45-48
one CSV row at a time, 116
to output, 99-100
to text file, 104-105

352 | Index

About the Author
Sau Sheong Chang is the Deputy Chief Executive of the Government Technology
Agency of Singapore, more commonly known as GovTech. GovTech is the gov‐
ernment agency responsible for delivering smart city and digital services to the
Singapore government as well as the public.

Sau Sheong has been in the software development industry for more than 28 years
and has been involved in building software products in many industries and using
various technologies. He is an active member of various software development com‐
munities, previously Java and Ruby, but now focuses mostly on the Go community.
He runs meetups and gives talks at conferences all around the world on Go and also
on topics related to his work, especially on sustainability, smart cities, government,
and AI. He also runs GopherCon Singapore, one of the largest community-led devel‐
oper conferences in Southeast Asia, and has been doing so since 2017. Sau Sheong
has written four programming books, three in Ruby and the last one in Go.

Colophon
The animal on the cover of Go Cookbook is a stoat (Mustela erminea). Stoats are
a species of mustelid (carnivorous mammal) related to weasels and otters. They
can be found across Eurasia and North America in grasslands, farmlands, orchards,
woodlands, heathland, and moorland.

Stoats are small mammals with long, lithe bodies that can grow up to 25 centimeters
long. Most of their fur is brown with the exception of their white underside and
black tail tips. Stoats also molt in the winter. In colder climates, their fur coat
becomes entirely white. In warmer climes, their fur may stay brown or have a patchy
appearance.

Stoats tend to hunt during the day and can eat up to 25% of their own body weight.
Their slim shape makes them speedy, agile hunters. Their diet consists of other small
mammals, such as rabbits and water voles.

The population of stoats can vary based on availability of food. For example, if rabbits
are plentiful, there will be a plentiful number of stoats. However, if the rabbit popu‐
lation declines, so does the stoat population. Overall, the stoat population is not at
risk of endangerment and is categorized as least concern on endangered species lists.
Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Shaw’s Zoology. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

 7
x9

.19
75

https://www.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Started Recipes
	1.0 Introduction
	1.1 Installing Go
	Problem
	Solution
	Discussion

	1.2 Playing Around with Go
	Problem
	Solution
	Discussion

	1.3 Writing a Hello World Program
	Problem
	Solution
	Discussion

	1.4 Using an External Package
	Problem
	Solution
	Discussion

	1.5 Handling Errors
	Problem
	Solution
	Discussion

	1.6 Logging Events
	Problem
	Solution
	Discussion

	1.7 Testing Your Code
	Problem
	Solution
	Discussion

	Chapter 2. Module Recipes
	2.0 Introduction
	2.1 Creating a Go Module
	Problem
	Solution
	Discussion

	2.2 Importing Dependent Packages Into Your Module
	Problem
	Solution
	Discussion

	2.3 Removing Dependent Packages from Your Module
	Problem
	Solution
	Discussion

	2.4 Find Available Versions of Third-Party Packages
	Problem
	Solution
	Discussion

	2.5 Importing a Specific Version of a Dependent Package Into Your Module
	Problem
	Solution
	Discussion

	2.6 Requiring Local Versions of Dependent Packages
	Problem
	Solution
	Discussion

	2.7 Using Multiple Versions of the Same
Dependent Packages
	Problem
	Solution
	Discussion

	Chapter 3. Error Handling Recipes
	3.0 Introduction
	Errors Are Not Exceptions

	3.1 Handling Errors
	Problem
	Solution
	Discussion

	3.2 Simplifying Repetitive Error Handling
	Problem
	Solution
	Discussion

	3.3 Creating Customized Errors
	Problem
	Solution
	Discussion

	3.4 Wrapping an Error with Other Errors
	Problem
	Solution
	Discussion

	3.5 Inspecting Errors
	Problem
	Solution
	Discussion

	3.6 Handling Errors with Panic
	Problem
	Solution
	Discussion

	3.7 Recovering from Panic
	Problem
	Solution
	Discussion

	3.8 Handling Interrupts
	Problem
	Solution
	Discussion

	Chapter 4. Logging Recipes
	4.0 Introduction
	4.1 Writing to Logs
	Problem
	Solution
	Discussion

	4.2 Change What Is Being Logged by the Standard Logger
	Problem
	Solution
	Discussion

	4.3 Logging to File
	Problem
	Solution
	Discussion

	4.4 Using Log Levels
	Problem
	Solution
	Discussion

	4.5 Logging to the System Log Service
	Problem
	Solution
	Discussion

	Chapter 5. Function Recipes
	5.0 Introduction
	5.1 Defining a Function
	Problem
	Solution
	Discussion

	5.2 Accepting Multiple Data Types with a Function
	Problem
	Solution
	Discussion

	5.3 Accepting a Variable Number of Parameters
	Problem
	Solution
	Discussion

	5.4 Accepting Parameters of Any Type
	Problem
	Solution
	Discussion

	5.5 Creating an Anonymous Function
	Problem
	Solution
	Discussion

	5.6 Creating a Function That Maintains State
After It Is Called
	Problem
	Solution
	Discussion

	Chapter 6. String Recipes
	6.0 Introduction
	6.1 Creating Strings
	Problem
	Solution
	Discussion

	6.2 Converting String to Bytes and Bytes to String
	Problem
	Solution
	Discussion

	6.3 Creating Strings from Other Strings and Data
	Problem
	Solution
	Discussion

	6.4 Converting Strings to Numbers
	Problem
	Solution
	Discussion

	6.5 Converting Numbers to Strings
	Problem
	Solution
	Discussion

	6.6 Replacing Multiple Characters in a String
	Problem
	Solution
	Discussion

	6.7 Creating a Substring from a String
	Problem
	Solution
	Discussion

	6.8 Checking if a String Contains Another String
	Problem
	Solution
	Discussion

	6.9 Splitting a String Into an Array of Strings or Combining an Array of Strings Into a String
	Problem
	Solution
	Discussion

	6.10 Trimming Strings
	Problem
	Solution
	Discussion

	6.11 Capturing String Input from the Command Line
	Problem
	Solution
	Discussion

	6.12 Escaping and Unescaping HTML Strings
	Problem
	Solution
	Discussion

	6.13 Using Regular Expressions
	Problem
	Solution
	Discussion

	Chapter 7. General Input/Output Recipes
	7.0 Introduction
	7.1 Reading from an Input
	Problem
	Solution
	Discussion

	7.2 Writing to an Output
	Problem
	Solution
	Discussion

	7.3 Copying from a Reader to a Writer
	Problem
	Solution
	Discussion

	7.4 Reading from a Text File
	Problem
	Solution
	Discussion

	7.5 Writing to a Text File
	Problem
	Solution
	Discussion

	7.6 Using a Temporary File
	Problem
	Solution
	Discussion

	Chapter 8. CSV Recipes
	8.0 Introduction
	8.1 Reading the Whole CSV File
	Problem
	Solution
	Discussion

	8.2 Reading a CSV File One Row at a Time
	Problem
	Solution
	Discussion

	8.3 Unmarshalling CSV Data Into Structs
	Problem
	Solution
	Discussion

	8.4 Removing the Header Line
	Problem
	Solution
	Discussion

	8.5 Using Different Delimiters
	Problem
	Solution
	Discussion

	8.6 Ignoring Rows
	Problem
	Solution
	Discussion

	8.7 Writing CSV Files
	Problem
	Solution
	Discussion

	8.8 Writing to File One Row at a Time
	Problem
	Solution
	Discussion

	Chapter 9. JSON Recipes
	9.0 Introduction
	9.1 Parsing JSON Data Byte Arrays to Structs
	Problem
	Solution
	Discussion

	9.2 Parsing Unstructured JSON Data
	Problem
	Solution
	Discussion

	9.3 Parsing JSON Data Streams Into Structs
	Problem
	Solution
	Discussion

	9.4 Creating JSON Data Byte Arrays from Structs
	Problem
	Solution
	Discussion

	9.5 Creating JSON Data Streams from Structs
	Problem
	Solution
	Discussion

	9.6 Omitting Fields in Structs
	Problem
	Solution
	Discussion

	Chapter 10. Binary Recipes
	10.0 Introduction
	10.1 Encoding Data to gob Format Data
	Problem
	Solution
	Discussion

	10.2 Decoding gob Format Data to Structs
	Problem
	Solution
	Discussion

	10.3 Encoding Data to a Customized Binary Format
	Problem
	Solution
	Discussion

	10.4 Decoding Data with a Customized Binary
Format to Structs
	Problem
	Solution
	Discussion

	Chapter 11. Date and Time Recipes
	11.0 Introduction
	11.1 Telling Time
	Problem
	Solution
	Discussion

	11.2 Doing Arithmetic with Time
	Problem
	Solution
	Discussion

	11.3 Representing Dates
	Problem
	Solution
	Discussion

	11.4 Representing Time Zones
	Problem
	Solution
	Discussion

	11.5 Representing Duration
	Problem
	Solution
	Discussion

	11.6 Pausing for a Specific Duration
	Problem
	Solution
	Discussion

	11.7 Measuring Lapsed Time
	Problem
	Solution
	Discussion

	11.8 Formatting Time for Display
	Problem
	Solution
	Discussion

	11.9 Parsing Time Displays Into Structs
	Problem
	Solution
	Discussion

	Chapter 12. Structs Recipes
	12.0 Introduction
	12.1 Defining Structs
	Problem
	Solution
	Discussion

	12.2 Creating Struct Methods
	Problem
	Solution
	Discussion

	12.3 Creating and Using Interfaces
	Problem
	Solution
	Discussion

	12.4 Creating Struct Instances
	Problem
	Solution
	Discussion

	12.5 Creating One-Time Structs
	Problem
	Solution
	Discussion

	12.6 Composing Structs from Other Structs
	Problem
	Solution
	Discussion

	12.7 Defining Metadata for Struct Fields
	Problem
	Solution
	Discussion

	Chapter 13. Data Structure Recipes
	13.0 Introduction
	Arrays
	Slices
	Maps

	13.1 Creating Arrays or Slices
	Problem
	Solution
	Discussion

	13.2 Accessing Arrays or Slices
	Problem
	Solution
	Discussion

	13.3 Modifying Arrays or Slices
	Problem
	Solution
	Discussion

	13.4 Making Arrays and Slices Safe for Concurrent Use
	Problem
	Solution
	Discussion

	13.5 Sorting Arrays of Slices
	Problem
	Solution
	Discussion

	13.6 Creating Maps
	Problem
	Solution
	Discussion

	13.7 Accessing Maps
	Problem
	Solution
	Discussion

	13.8 Modifying Maps
	Problem
	Solution
	Discussion

	13.9 Sorting Maps
	Problem
	Solution
	Discussion

	Chapter 14. More Data Structure Recipes
	14.0 Introduction
	14.1 Creating Queues
	Problem
	Solution
	Discussion

	14.2 Creating Stacks
	Problem
	Solution
	Discussion

	14.3 Creating Sets
	Problem
	Solution
	Discussion

	14.4 Creating Linked Lists
	Problem
	Solution
	Discussion

	14.5 Creating Heaps
	Problem
	Solution
	Discussion

	14.6 Creating Graphs
	Problem
	Solution
	Discussion

	14.7 Finding the Shortest Path on a Graph
	Problem
	Solution
	Discussion

	Chapter 15. Image-Processing Recipes
	15.0 Introduction
	Image and Other Interfaces
	Image Implementations

	15.1 Loading an Image from a File
	Problem
	Solution
	Discussion

	15.2 Saving an Image to a File
	Problem
	Solution
	Discussion

	15.3 Creating Images
	Problem
	Solution
	Discussion

	15.4 Flipping an Image Upside Down
	Problem
	Solution
	Discussion

	15.5 Converting an Image to Grayscale
	Problem
	Solution
	Discussion

	15.6 Resizing an Image
	Problem
	Solution
	Discussion

	Chapter 16. Networking Recipes
	16.0 Introduction
	16.1 Creating a TCP Server
	Problem
	Solution
	Discussion

	16.2 Creating a TCP Client
	Problem
	Solution
	Discussion

	16.3 Creating a UDP Server
	Problem
	Solution
	Discussion

	16.4 Creating a UDP Client
	Problem
	Solution
	Discussion

	Chapter 17. Web Recipes
	17.0 Introduction
	Parts of a Web Application

	17.1 Creating a Simple Web Application
	Problem
	Solution
	Discussion

	17.2 Handling HTTP Requests
	Problem
	Solution
	Discussion

	17.3 Handling HTML Forms
	Problem
	Solution
	Discussion

	17.4 Uploading a File to a Web Application
	Problem
	Solution
	Discussion

	17.5 Serving Static Files
	Problem
	Solution
	Discussion

	17.6 Creating a JSON Web Service API
	Problem
	Solution
	Discussion

	17.7 Serving Through HTTPS
	Problem
	Solution
	Discussion

	17.8 Using Templates for Go Web Applications
	Problem
	Solution
	Discussion

	17.9 Making an HTTP Client Request
	Problem
	Solution
	Discussion

	Chapter 18. Testing Recipes
	18.0 Introduction
	18.1 Automating Functional Tests
	Problem
	Solution
	Discussion

	18.2 Running Multiple Test Cases
	Problem
	Solution
	Discussion

	18.3 Setting Up and Tearing Down Before and
After Tests
	Problem
	Solution
	Discussion

	18.4 Creating Subtests to Have Finer Control Over
Groups of Test Cases
	Problem
	Solution
	Discussion

	18.5 Running Tests in Parallel
	Problem
	Solution
	Discussion

	18.6 Generating Random Test Inputs for Tests
	Problem
	Solution
	Discussion

	18.7 Measuring Test Coverage
	Problem
	Solution
	Discussion

	18.8 Testing a Web Application or a Web Service
	Problem
	Solution
	Discussion

	Chapter 19. Benchmarking Recipes
	19.0 Introduction
	19.1 Automating Performance Tests
	Problem
	Solution
	Discussion

	19.2 Running Only Performance Tests
	Problem
	Solution
	Discussion

	19.3 Avoiding Test Fixtures in Performance Tests
	Problem
	Solution
	Discussion

	19.4 Changing the Timing for Running Performance Tests
	Problem
	Solution
	Discussion

	19.5 Running Multiple Performance Test Cases
	Problem
	Solution
	Discussion

	19.6 Comparing Performance Test Results
	Problem
	Solution
	Discussion

	19.7 Profiling a Program
	Problem
	Solution
	Discussion

	Index
	About the Author

