

C++ for beginners

Your comprehensive step-by-step guide to learn
everything about C++

Daniel Harder

Introduction
C++ is a high-performance programming language that is widely used in a
variety of applications, such as operating systems, web browsers, and video

games. It was developed in 1979 by Bjarne Stroustrup as an extension of the
C programming language, adding object-oriented features and other
enhancements.
C++ is a statically-typed, compiled language, which means that it is more
efficient than dynamically-typed languages like Python or JavaScript. It is
also a very expressive language, allowing programmers to write code that is
both efficient and easy to read.
One of the key features of C++ is its support for object-oriented
programming (OOP). In OOP, data and behavior are encapsulated in
"objects," which can be used to model real-world concepts and interact with
each other through methods. C++ also supports procedural programming,
which is a more traditional style of programming that focuses on writing
functions to perform specific tasks.
C++ is a powerful and flexible language, but it can also be complex and
difficult to learn for beginners. It requires a good understanding of computer
science concepts and a solid foundation in programming concepts such as
variables, data types, loops, and control structures. However, once you have a
firm understanding of these concepts, C++ can be a very rewarding language
to learn and use.

Chapter one
basic concepts
C++ type system
In C++, data is stored and manipulated using various data types. These data
types determine the size and layout of memory used by the variables, as well
as the set of operations that can be performed on them.
C++ has a rich type system that includes both built-in types and user-defined
types.
Built-in types include:

Integer types: These represent whole numbers and include char , short ,
int , long , and long long . Each of these types has a different size, with
char being the smallest and long long being the largest.
Floating-point types: These represent numbers with fractional parts and
include float , double , and long double . These types also have different
sizes, with float being the smallest and long double being the largest.
Boolean type: This represents a true/false value and is represented by
the bool type.
Character types: These represent individual characters and include char
and wchar_t . char is used for ASCII characters and wchar_t is used for
wide characters, which can represent characters from a variety of
different alphabets.

User-defined types in C++ include:
Classes: A class is a user-defined data type that allows you to define
your own data fields and methods.
Structures: A structure is similar to a class, but the data fields and
methods are public by default.
Enumerations: An enumeration is a user-defined type that consists of a
set of named constants.
Typedef: The typedef keyword allows you to define a new name for an
existing data type. This can be used to create more readable or
expressive names for complex types.

C++ also supports type casting, which allows you to convert a value from one
data type to another. This can be useful when working with different data
types that need to be used together, but care must be taken when using type

casting, as it can lead to loss of precision or other unexpected behavior if not
used correctly.

Scope
In C++, the scope of a variable refers to the part of the program in which the
variable is visible or can be accessed. A variable's scope is determined by the
location of its declaration in the program.
There are two main types of scope in C++: local scope and global scope.
A local variable is one that is declared within a function or block of code.
Local variables are only visible within the function or block in which they are
declared, and they are only accessible from the point of their declaration to
the end of the block. When the function or block ends, the local variable is
destroyed and is no longer accessible.
A global variable is one that is declared outside of any function or block of
code. Global variables are visible throughout the entire program and can be
accessed from any function or block of code. However, it is generally
considered good programming practice to minimize the use of global
variables, as they can make the program more difficult to understand and
maintain.
C++ also supports nested scopes, where a block of code is defined within
another block of code. In this case, variables declared in the inner block are
only visible within that block, but they may also be accessed from the outer
block.
The scope of a variable is an important concept in C++, as it determines the
visibility and accessibility of the variable within the program. Understanding
the scope of variables is essential for writing efficient and maintainable code.

Header files
In C++, a header file is a file that contains declarations of functions,
variables, and other constructs that can be used in a C++ program. Header
files are typically denoted by the .h suffix and are included in a C++ source
file using the #include directive.

Header files are used for a variety of purposes in C++. They can be used to
declare functions and variables that are defined in another source file,
allowing them to be used in multiple files without duplication of code. They
can also be used to declare functions and variables that are implemented in a
library, allowing them to be used in a program without the need to link the
library into the program.
Header files can also be used to define macros, which are short pieces of code
that are replaced by the preprocessor with their corresponding expanded
form. Macros are often used to define constants and other values that need to
be used in multiple places in a program.
One of the main advantages of using header files is that they allow code to be
organized and reused more easily. By separating declarations from
definitions and placing them in a separate header file, it is possible to use the
same code in multiple programs without having to copy and paste it. This
makes it easier to maintain and update the code, as changes only need to be
made in a single location.
Some examples of standard C++ header files include <iostream> , which
provides input and output streams for reading and writing data, and <string> ,
which provides functions and classes for working with strings. There are
many other header files available in the C++ standard library, as well as in
third-party libraries, that provide a wide range of functionality for various
tasks.

Translation units and linkage
In C++, a translation unit is a source file and all the header files that it
includes, along with any header files included by those header files, and so
on. The process of turning a translation unit into an executable program is
called compilation.
During compilation, the preprocessor processes the #include directives in the
translation unit, inserting the contents of the included header files into the
source file. The resulting expanded source file is then passed to the compiler,
which translates it into object code.
Object code is a machine-readable representation of the program that can be
executed by the computer. However, object code is not in a form that can be
directly executed by the operating system. Instead, it must be combined with

other object code files and libraries to create an executable program. This
process is called linkage.
There are two types of linkage in C++: internal linkage and external linkage.
Internal linkage refers to symbols (variables and functions) that are visible
only within a single translation unit. These symbols are typically used for
implementation details that are not intended to be accessed from other
translation units. Internal linkage is achieved by declaring symbols with the
static keyword.
External linkage refers to symbols that are visible to multiple translation
units. These symbols are typically used to define functions and variables that
are intended to be shared between multiple translation units. External linkage
is the default for symbols that are not declared with the static keyword.
Linkage is an important concept in C++, as it determines the visibility and
accessibility of symbols within a program. Understanding linkage is essential
for writing efficient and maintainable code, particularly when working with
large programs that consist of multiple source files and libraries.

main function and command-line arguments
In C++, the main function is the entry point of a program. It is the function
that is called by the operating system when the program is started, and it
determines the flow of control for the rest of the program.
The main function has a specific syntax and return type. In C++, it can be
declared in one of the following ways:

The first version of main takes no arguments and returns an int value. The
second version takes two arguments: argc and argv . argc is an int value that
represents the number of command-line arguments passed to the program,

and argv is an array of char* values that holds the actual arguments.
Command-line arguments are values that are passed to the program when it is
started from the command line. They are typically used to pass configuration
options or other input to the program.
For example, consider the following program that prints the command-line
arguments it receives:
#include <iostream>

To run this program and pass it some command-line arguments, you would
use a command like this:

This would print the following output:

As you can see, the first argument (argv[0]) is the name of the program itself,
and the remaining arguments are the ones passed on the command line.
Command-line arguments can be useful for providing input to a program or
for configuring its behavior. They are a common feature of many command-
line programs and are easy to use in C++.

Program termination
In C++, a program terminates when the main function returns or when the
exit function is called.

The main function is the entry point of a C++ program and determines the
flow of control for the rest of the program. When the main function returns,
the program terminates. The return value of main is the exit status of the
program, which can be used by the operating system or other programs to
determine the outcome of the program. A return value of 0 typically indicates
that the program ran successfully, while a non-zero value typically indicates
an error.
For example, the following main function returns 0 to indicate that the
program ran successfully:

The exit function is a function defined in the cstdlib library that allows a
program to terminate immediately. It takes an int value as an argument,
which is the exit status of the program. The exit function can be called from
anywhere in the program and will cause the program to terminate
immediately, even if there are other functions or blocks of code that have not
yet completed.
For example, the following code calls the exit function to terminate the
program with an exit status of 1:

It is generally considered good programming practice to use return to
terminate the main function and to reserve the exit function for emergency
situations or exceptional circumstances.
Understanding how a program terminates is important for writing efficient
and maintainable code, as it allows you to ensure that all necessary cleanup
tasks are performed before the program exits.

Lvalues and rvalues
In C++, an lvalue (short for "left value") is an expression that refers to a

memory location and can appear on the left side of an assignment. An rvalue
(short for "right value") is an expression that does not refer to a memory
location and cannot appear on the left side of an assignment.

Here are some examples of lvalues and rvalues:

In C++, lvalues have a specific type and can be used to refer to objects that
are stored in memory. Rvalues, on the other hand, do not have a specific type
and cannot be used to refer to objects stored in memory.
Lvalues and rvalues are an important concept in C++, as they determine the
set of operations that can be performed on expressions. For example, lvalues
can be assigned to, while rvalues cannot. Lvalues can also be dereferenced,
while rvalues cannot. Understanding the difference between lvalues and
rvalues is essential for writing correct and efficient C++ code.

Temporary objects
In C++, a temporary object is an object that is created to hold the result of an
expression and is destroyed immediately after the expression has been
evaluated. Temporary objects are also known as "rvalues," as they are
typically created from rvalue expressions (expressions that do not refer to a
memory location and cannot appear on the left side of an assignment).
Temporary objects are created in a variety of situations in C++. For example,
they can be created when an rvalue is passed to a function or when an rvalue
is used as the right operand of an assignment.

Here are some examples of temporary objects being created in C++:

Point p = Point(1, 2); // a temporary object is created to hold the result of the Point constructor

Temporary objects are often used to avoid unnecessary copies or to take
advantage of move semantics, which allows the contents of an object to be
"moved" rather than copied.
It is important to be aware of temporary objects in C++, as they can have
different behavior than normal objects and can lead to unexpected results if
not used correctly. For example, it is not generally allowed to bind a non-
const reference to a temporary object, as the temporary object will be
destroyed as soon as the reference goes out of scope. Understanding the
behavior of temporary objects is essential for writing correct and efficient
C++ code.

Alignment
In C++, alignment refers to the way data is arranged in memory. Alignment
can have an impact on the performance and efficiency of a program, as it can

affect the speed at which data is accessed and the amount of memory used.
C++ provides a number of language features and library functions for
controlling alignment.
One way to control alignment in C++ is through the use of the alignas and
alignof keywords. The alignas keyword can be used to specify the alignment of
a variable or data type, and the alignof keyword can be used to determine the
alignment of a variable or data type.
For example, the following code defines a variable x with an alignment of
16 bytes:

The alignof keyword can be used to determine the alignment of a variable or
data type, as shown in the following example:

Another way to control alignment in C++ is through the use of the
std::aligned_storage and std::aligned_union types from the <type_traits> header. These
types provide a way to store data with a specified alignment in a way that is
portable and efficient.
For example, the following code defines a variable storage that can be used to
store an object of type T with an alignment of 16 bytes:

Understanding alignment is important for writing efficient and performant
C++ code, particularly when working with large data structures or when
interacting with low-level hardware or systems. Proper alignment can
significantly improve the performance of a program by reducing the number
of memory accesses and

Trivial, standard-layout, and POD types
In C++, a type is considered trivial if it is a type that has a trivial default
constructor, a trivial destructor, and no virtual functions or virtual base

classes.
A type is considered standard-layout if it is a type that satisfies the following
conditions:

It is a trivial type.
It has no non-static data members of type non-standard-layout class (or
array of such types).
It has no virtual functions and no virtual base classes.

A type is considered a POD (Plain Old Data) type if it is a type that satisfies
the following conditions:

It is a standard-layout type.
It has no non-static data members of type non-POD class (or array of
such types).
It has no user-defined copy assignment operator and no user-defined
destructor.

Trivial, standard-layout, and POD types are important concepts in C++, as
they have specific behavior and properties that can be relied upon by the
programmer. For example, trivial types can be memset to zero and copied
using memcpy, while standard-layout types can be passed to C functions and
can be used to implement union types. POD types can be used to implement
C-style structs and can be initialized with a brace-enclosed initializer list.
Understanding the behavior and properties of trivial, standard-layout, and
POD types is important for writing efficient and correct C++ code,
particularly when working with low-level hardware or systems, or when
interfacing with C code.

what is Value types
In C++, a value type is a type that holds a value and is typically stored in
memory on the stack. Value types are also known as "fundamental types," as
they are the most basic types provided by the language.
The standard C++ library provides several value types, including the
following:

bool : a boolean type that represents true or false.
char : a character type that represents a single character.
int , short , long , and long long : integer types of varying sizes.

float and double : floating-point types of varying precision.
Value types are typically used to hold simple data, such as numbers,
characters, and booleans. They are efficient to use, as they do not require any
additional memory management and are stored directly in memory on the
stack.
Here is an example of using value types in C++:

Value
types are an important concept in C++, as they form the basis for many other
types in the language. Understanding how value types work and how they can
be used is essential for writing efficient and correct C++ code.

Type conversions and type safety
In C++, type conversions are the process of converting a value from one type
to another. There are several ways to perform type conversions in C++,
including explicit type casting, function overloading, and type conversion
operators.
Explicit type casting is the process of explicitly converting a value from one
type to another using the static_cast operator. This is typically used to convert
a value from a base type to a derived type, or from a derived type to a base
type.
For example, the following code uses explicit type casting to convert a double
value to an int value:

Function overloading is the process of defining multiple functions with the
same name but with different parameter types. This allows the same function
to be used to perform different operations depending on the type of its
arguments.

For example, the following code defines an abs function that can be used to
calculate the absolute value of an int , a float , or a double :

Standard conversions
In C++, a standard conversion is a predefined implicit type conversion that is
performed by the compiler. Standard conversions are a set of predefined rules
that dictate how values of different types can be converted to one another.
There are three types of standard conversions in C++:

1. Lvalue-to-rvalue conversion: This conversion is applied to lvalues
(expressions that refer to a memory location) to produce rvalues
(expressions that do not refer to a memory location). This conversion is
typically applied to objects to allow them to be used as rvalues, such as
when they are passed to functions or used as the right operand of an
assignment.

2. Array-to-pointer conversion: This conversion is applied to arrays to
convert them to pointers to their first element. This conversion is
typically applied when an array is passed to a function or when it is
used in an expression.

3. Function-to-pointer conversion: This conversion is applied to function
names to convert them to pointers to the function. This conversion is
typically applied when a function name is passed to a function or when
it is used in an expression.

Standard conversions are applied automatically by the compiler, and the
programmer does not need to explicitly specify them. They are an important

part of the C++ type system, as they allow values of different types to be used
interchangeably in many contexts. Understanding how standard conversions
work is essential for writing correct and efficient C++ code.

Chapter II
built-in types

Built-in types
In C++, built-in types are a set of predefined types that are provided by the
language and are implemented directly by the compiler. Built-in types are
also known as "fundamental types" or "value types," as they are the most
basic types provided by the language and are typically stored in memory on
the stack.
The C++ standard library provides several built-in types, including the
following:

bool : a boolean type that represents true or false.
char : a character type that represents a single character.
int , short , long , and long long : integer types of varying sizes.
float and double : floating-point types of varying precision.
void : a special type that represents the absence of a value.

Built-in types are an important concept in C++, as they form the basis for
many other types in the language. Understanding how built-in types work and
how they can be used is essential for writing efficient and correct C++ code.
Here is an example of using built-in types in C++:

Data type ranges

In C++, the range of a data type is the set of values that it can represent. The
range of a data type is determined by its size and the way it is encoded.
The C++ standard library provides several built-in types, each with a specific
range of values it can represent. The following table shows the range of some
common built-in types in C++:

Type Size (bytes) Minimum value Maximum value
bool 1 false true

char 1 -128 127

wchar_t 2 or 4 implementation-defined implementation-defined
char16_t 2 0 65535

char32_t 4 0 4294967295

short 2 -32768 32767

int 4 -2147483648 2147483647

long 4 or 8 implementation-defined implementation-defined
long long 8 -9223372036854775808 9223372036854775807

float 4 1.17549e-38 3.40282e+38

double 8 2.22507e-308 1.79769e+308

long double 8 or 10 or 16 implementation-defined implementation-defined
It is important to be aware of the range of a data type when working with
C++, as using a value outside of its range can lead to undefined behavior.
Understanding the range of a data type is also important for choosing the
appropriate type for a given task, as using a type with a larger range may
result in better performance or more accurate results.

nullptr
In C++, nullptr is a special keyword that represents a null pointer value. It was
introduced in C++11 as a safer and more explicit way to represent a null
pointer than the use of the integer constant 0 or the macro NULL .
nullptr has type std::nullptr_t , which is a special type that can be implicitly
converted to any pointer type. This allows nullptr to be used in a variety of
contexts where a pointer is expected, such as when initializing a pointer or
when passing a pointer to a function.

Here is an example of using nullptr in C++:

Using nullptr instead of 0 or NULL has several advantages. It is more explicit
and easier to read, as it clearly indicates that a null pointer is being used. It is
also safer, as it prevents accidental conversions between pointers and
integers, which can lead to undefined behavior.
nullptr is an important concept in C++, particularly when working with
pointers and nullable values. Understanding how to use nullptr and how it
differs from 0 and NULL is essential for writing correct and safe C++ code.

nullptr
In C++, nullptr is a special keyword that represents a null pointer value. It was
introduced in C++11 as a safer and more explicit way to represent a null
pointer than the use of the integer constant 0 or the macro NULL .
nullptr has type std::nullptr_t , which is a special type that can be implicitly
converted to any pointer type. This allows nullptr to be used in a variety of
contexts where a pointer is expected, such as when initializing a pointer or
when passing a pointer to a function.
Here is an example of using nullptr in C++:

Using nullptr instead of 0 or NULL has several advantages. It is more explicit
and easier to read, as it clearly indicates that a null pointer is being used. It is
also safer, as it prevents accidental conversions between pointers and
integers, which can lead to undefined behavior.

nullptr is an important concept in C++, particularly when working with
pointers and nullable values. Understanding how to use nullptr and how it
differs from 0 and NULL is essential for writing correct and safe C++ code.

bool
In C++, bool is a built-in data type that represents a Boolean value, which can
be either true or false . It is used to represent the truth or falsehood of a
condition or expression.
Here is an example of how to use the bool data type in C++:
#include <iostream>

The output of this program will be:
b1: 1
b2: 0

In C++, true is typically represented as 1 and false is represented as 0 .
However, you can use the values true and false directly in your code to
represent Boolean values.

For example, the following code is also valid:

The output of this program will be:
b1: 1
b2: 0
b1 is true
b2 is false

false
In C++, false is a Boolean value that represents the opposite of true . It is used
to represent the truth or falsehood of a condition or expression.
In C++, false is typically represented as 0 . However, you can use the value
false directly in your code to represent a Boolean value.

Here is an example of how to use the false value in C++:

The output of this program will be:
b1: 1
b2: 0
b1 is true
b2 is false

In this example, the variable b2 is assigned the value false , which is
represented as 0 . When the value of b2 is tested in an if statement, it is
considered to be false , and the code in the else block is executed.

true
In C++, true is a Boolean value that represents the opposite of false . It is used
to represent the truth or falsehood of a condition or expression.
In C++, true is typically represented as 1 . However, you can use the value
true directly in your code to represent a Boolean value.

Here is an example of how to use the true value in C++:

The output of this program will be:
b1: 1
b2: 0
b1 is true
b2 is false

In this example, the variable b1 is assigned the value true , which is
represented as 1 . When the value of b1 is tested in an if statement, it is
considered to be true , and the code in the if block is executed.
__m64
__m64 is a type definition in the C++ programming language that represents a
64-bit integer value. It is a built-in data type provided by the Intel C++
Compiler for use with the Intel Streaming SIMD Extensions (SSE)
instructions.
The __m64 type can be used to store and manipulate 64-bit integer values in a
way that is optimized for use with the SSE instructions. It is intended for use
in high-performance, multimedia, and scientific applications where data
needs to be processed in parallel.

Here is an example of how to use the __m64 data type in C++:

The output of this program will be:
m1: [1, 2]
m2: [3, 3]

Note that the __m64 data type is only available when using the Intel C++
Compiler and when the emmintrin.h header file is included. It is not a standard
C++ data type and is not supported by other compilers.

__m128
__m128 is a type definition in the C++ programming language that represents
a 128-bit floating-point value. It is a built-in data type provided by the Intel
C++ Compiler for use with the Intel Streaming SIMD Extensions (SSE)
instructions.
The __m128 type can be used to store and manipulate 128-bit floating-point
values in a way that is optimized for use with the SSE instructions. It is
intended for use in high-performance,
multimedia, and scientific applications where data needs to be processed in
parallel.

Here is an example of how to use the __m128 data type in C++:

The output of this program will be:
m1: [1.0, 2.0, 3.0, 4.0]
m2: [5.0, 5.0, 5.0, 5.0]

Note that the __m128 data type is only available when using the Intel C++
Compiler and when the emmintrin.h header file is included. It is not a standard
C++ data type and is not supported by other compilers.

__m128d
__m128d is a type definition in the C++ programming language that represents
a 128-bit floating-point value. It is a built-in data type provided by the Intel
C++ Compiler for use with the Intel Streaming SIMD Extensions (SSE)
instructions.
The __m128d type can be used to store and manipulate 128-bit floating-point
values in a way that is optimized for use with the SSE instructions. It is
intended for use in high-performance, multimedia, and scientific applications
where data needs to be processed in parallel.

Here is an example of how to use the __m128d data type in C++:

The output of this program will be:
m1: [1.0, 2.0]
m2: [3.0, 3.0]

Note that the __m128d data type is only available when using the Intel C++
Compiler and when the emmintrin.h header file is included. It is not a standard
C++ data type and is not supported by other compilers.

__m128i
__m128i is a type definition in the C++ programming language that represents
a 128-bit integer value. It is a built-in data type provided by the Intel C++
Compiler for use with the Intel Streaming SIMD Extensions (SSE)
instructions.
The __m128i type can be used to store and manipulate 128-bit integer values
in a way that is optimized for use with the SSE instructions. It is intended for
use in high-performance, multimedia, and scientific applications where data
needs to be processed in parallel.

Here is an example of how to use the __m128i data type in C++:

The output of this program will be:
m1: [1, 2, 3, 4]
m2: [5, 5, 5, 5]

Note that the __m128i data type is only available when using the Intel C++
Compiler and when the emmintrin.h header file is included. It is not a standard
C++ data type and is not supported by other compilers.

__ptr32, __ptr64
__ptr32 and __ptr64 are type specifiers in the C++ programming language that
are used to declare pointers with a specific size. They are provided by the
Microsoft Visual C++ compiler and are intended for use in 32-bit and 64-bit
applications, respectively.
The __ptr32 specifier declares a 32-bit pointer, which is a memory address
that occupies 4 bytes of memory. This type of pointer is used in 32-bit
applications, which are typically limited to addressing 4 GB of memory.
The __ptr64 specifier declares a 64-bit pointer, which is a memory address
that occupies 8 bytes of memory. This type of pointer is used in 64-bit
applications, which can address more than 4 GB of memory.

Here is an example of how to use the __ptr32 and __ptr64 type specifiers in
C++:

The output of this program will depend on the size of the pointers on your
system. On a 32-bit system, the output will be:
p1: 0x0012FF74
p2: 0x0012FF74

On a 64-bit system, the output will be:
p1: 0x00007FF75F4BFF74
p2: 0x00007FF75F4BFF74

Note that the __ptr32 and __ptr64 type specifiers are only available when using
the Microsoft Visual C++ compiler. They are not standard C++ type
specifiers and are not supported by other compilers.

Chapter III
NUMERICAL LIMITS

Numerical limits
In C++, the <limits> header file defines a set of templates and constants that
provide information about the range and precision of the fundamental data
types. These templates and constants are known as the numerical limits.
The numerical limits can be used to determine the minimum and maximum
values that can be represented by a given data type, as well as the precision of
the data type. They can be useful for ensuring that the values used in a
program are within the range of values that can be represented by the data
type.
Here is an example of how to use the numerical limits in C++:

The output of this program will depend on the implementation of the C++
standard library on your system. It may look something like this:
Minimum value of int: -2147483648
Maximum value of int: 2147483647
Precision of float: 6 decimal digits

The <limits> header file defines numerical limits templates and constants for
all of the fundamental data types, including char , short , int , long , long long ,
float , double , and long double . You can use these templates and constants to
determine the range and precision of any of these data types.

Integer limits

In C++, the <limits> header file defines a set of templates and constants that
provide information about the range and precision of the integer data types.
These templates and constants are known as the integer limits.
The integer limits can be used to determine the minimum and maximum
values that can be represented by the integer data types, such as char , short ,
int , long , and long long . They can be useful for ensuring that the values used in
a program are within the range of values that can be represented by the data
type.

Here is an example of how to use the integer limits in C++:

The output of this program will depend on the implementation of the C++
standard library on your system. It may look something like this:

Floating limits
In C++, the <limits> header file defines a set of templates and constants that
provide information about the range and precision of the floating-point data
types. These templates and constants are known as the floating-point limits.
The floating-point limits can be used to determine the minimum and
maximum values that can be represented by the floating-point data types,
such as float , double , and long double . They can also be used to determine the
precision of these data types, which is the number of decimal digits of
precision that they can represent.

Here is an example of how to use the floating-point limits in C++:

the fourth chapter
Declarations and definitions

In C++, declarations and definitions are two different concepts that refer to
the way in which variables, functions, and other entities are introduced and
used in a program.
A declaration is a statement that introduces an entity and specifies its type,
name, and other attributes. It does not allocate any memory or execute any
code. A declaration can be made using the extern keyword, which indicates
that the entity is defined in another translation unit.
A definition is a statement that creates an entity by allocating memory and
executing code. It must include a declaration, and it can also include
additional details such as an initial value or a function body. A definition
must be made in only one translation unit, but it can be declared in multiple
translation units using the extern keyword.
Here is an example of a declaration and definition in C++:

In this example, the global variable x is declared using the extern keyword,

which means that it is defined in another translation unit. The local

Storage classes
In C++, storage classes are keywords that specify the lifetime and visibility of
variables and functions. They determine how the variables and functions are
stored in memory and how they can be accessed from different parts of a
program.
There are four storage classes in C++:

1. auto : This is the default storage class for local variables. It specifies that
the variable is created and destroyed automatically when it goes out of
scope.

2. static : This storage class specifies that the variable or function has a
fixed memory location and a lifetime that spans the entire duration of
the program. It is often used to create variables that retain their value
between function calls.

3. register : This storage class specifies that the variable should be stored in
a register rather than in main memory. This can improve the
performance of the program by reducing access time to the variable.
However, it is not guaranteed that the variable will actually be stored in
a register, and the number of registers available is often limited.

4. extern : This storage class specifies that the variable or function is
defined in another translation unit and is being declared in the current
translation unit. It is often used to share variables and functions
between multiple source files.

Here is an example of how to use the storage classes in C++:

auto
In C++, auto is a storage class that specifies that a variable is created and
destroyed automatically when it goes out of scope. It is the default storage
class for local variables, which are variables that are declared inside a
function or block.
The auto storage class is used to create variables that have a limited lifetime
and are only accessible within the block in which they are declared. When the
block ends, the variable is automatically destroyed and the memory it
occupies is released for other uses.
Here is an example of how to use the auto storage class in C++:

The output of this program will be:
x: 10
y: 20

Note that the auto storage class is not the same as the auto type specifier,
which is used to deduce the type of a variable from its initializer. For
example:

const
In C++, const is a type qualifier that specifies that an object cannot be
modified. It can be applied to variables, functions, and other types of objects
to indicate that their value or behavior cannot be changed.
The const qualifier can be used to prevent unintended modifications to
variables and to ensure that functions do not modify their arguments or global
state. It can also be used to improve the readability and maintainability of a
program by making the intended behavior of variables and functions explicit.
Here is an example of how to use the const qualifier in C++:

The const qualifier can also be applied to pointers and references to indicate
that the object being pointed to or referenced cannot be modified. For
example:

constexpr
In C++, constexpr is a keyword that specifies that a function or variable is a
compile-time constant. It indicates that the value of the function or variable
can be determined at compile time, rather than at runtime.
The constexpr keyword can be used to improve the performance of a program
by allowing the compiler to perform constant folding and other optimization
techniques on expressions that use compile-time constants. It can also be
used to ensure that the value of a constant is known at compile time, which is
required in certain contexts, such as when initializing arrays with constant
expressions.
Here is an example of how to use the constexpr keyword in C++:

The output of this program will be:
x: 10
y: 20
square

extern
In C++, extern is a storage class that specifies that a variable or function is
defined in another translation unit and is being declared in the current
translation unit. It is often used to share variables and functions between
multiple source files.
The extern storage class is used to declare variables and functions that are
defined in another translation unit. It does not allocate any memory or
execute any code. Instead, it tells the compiler that the variable or function is
defined elsewhere and can be accessed from the current translation unit.
Here is an example of how to use the extern storage class in C++:

In this example, the global variable x and the function sum() are declared in
the header file declarations.h using the extern storage class. They are defined in
the source file definitions.cpp , which includes the header file. The main source
file main.cpp also includes the header file, which allows it to access the
variable and function.
Note that the extern storage class is not the same as the extern keyword, which
is used to indicate that a variable or function is defined

Initializers
In C++, an initializer is a value or expression that is used to initialize a
variable when it is declared. It specifies the value that the variable should be
initialized to when it is created.
Initializers can be used to give a variable a specific value at the time it is
declared, rather than assigning a value to it later. This can be useful for
setting the initial value of a variable to a constant or for providing a default
value for a function argument.

There are several ways to specify an initializer in C++:
1. Using an assignment expression: This is the most common way to

initialize a variable. It uses the assignment operator = to specify the
initial value of the variable. For example:

int x = 10;
double y = 3.14;
char c = 'A';

2. Using an initializer list: This method is used to initialize variables that
have a compound data type, such as arrays and structures. It uses a list
of values enclosed in curly braces to specify the initial values of the
variables. For example:

int a[3] = {1, 2, 3};
struct Point { int x, y; } p = {1, 2};

3. Using a constructor: This method is used to initialize variables that
have a user-defined type, such as classes and enumerations. It uses a
constructor function to create and initialize an object of the desired
type. For example:

Here is an example of how to use initializers in

Aliases and typedefs
In C++, an alias is a new name that is introduced for an existing type or
object. It allows you to use a different name to refer to the same type or
object, which can improve the readability and maintainability of a program.
There are two ways to create an alias in C++:

1. Using the using keyword: This method allows you to create an alias for
any type or object, including built-in types, user-defined types, and
templates. It uses the following syntax:

using alias_name = type_name;

For example:
using Int = int;
using Str = std::string;

2. Using typedef : This method allows you to create an alias for any type,
including built-in types, user-defined types, and templates. It uses the
following syntax:

typedef type_name alias_name;

For example:
typedef int Int;
typedef std::string Str;

Here is an example of how to use aliases and typedefs in C++:
#include <iostream>
#include <string>

// Create an alias using the 'using' keyword
using Int = int;

// Create an alias using 'typedef'
typedef std::string Str;

int main() {
 // Declare and define variables using the aliases
 Int x = 10;
 Str s = "Hello";

 std::cout << "x: " << x << std::endl;
 std::cout << "s: " << s << std::endl;

 return 0;
}

The output of this program will be:
x: 10
s: Hello

Note that the typedef keyword was widely used in C++ before the
introduction of the using keyword, but the using keyword is now considered
to be the preferred way to create aliases in C++. It is more flexible and allows
for more concise and expressive code.

using declaration
In C++, a using declaration is a statement that introduces a name from a
namespace into the current scope. It allows you to use the name without
specifying the namespace in which it is defined.
A using declaration is often used to avoid typing the full namespace name
every time you want to use a name from the namespace. It can also be used to

bring multiple names from the same or different namespaces into the same
scope, which can improve the readability and maintainability of a program.
Here is an example of how to use a using declaration in C++:

The output of this program will be:
x: 10
foo::y: 20

You can also use a using declaration to bring multiple names from the same
or different namespaces into the same scope, like this:

volatile
In C++, volatile is a type qualifier that specifies that a variable may be
modified by an external process or by hardware. It indicates that the value of
the variable may change unexpectedly, even if it does not appear to be
modified in the program.
The volatile qualifier is used to prevent the compiler from performing certain
optimizations on a variable, such as caching its value in a register or
optimizing access to it. It is often used for variables that are shared with
hardware or with other processes, such as memory-mapped I/O registers or
global variables that are accessed by multiple threads.

Here is an example of how to use the volatile qualifier in C++:

The output of this program will be:
x: 10
x: 20

Note that the volatile qualifier is not the same as the volatile keyword, which is
used to indicate that a variable or function may be modified by an external
process or by hardware. The volatile qualifier is used to indicate that a
variable may be modified by an external process or by hardware, whereas the
volatile keyword is used to declare a variable or function

decltype
In C++, decltype is a keyword that allows you to determine the type of an
expression. It is often used to deduce the type of a variable or function from
its initializer or return type.
The decltype keyword is used to specify the type of a variable or function by
evaluating an expression or a type-id. It is often used in conjunction with the
auto keyword to deduce the type of a variable from its initializer.

Here is an example of how to use the decltype keyword in C++:

The output of this program will be:
Type of a: int
Type of b: double

You can also use the decltype keyword to determine the return type of a
function by specifying the function name as an expression. For example:

Attributes
In C++, attributes are additional metadata that can be associated with a
function, variable, type, or other language construct. They allow you to
provide additional information or specify certain behaviors for the construct,
such as its alignment, visibility, or target platform.
Attributes are specified using the [[attribute]] syntax, which is followed by the
name of the attribute and any additional arguments. They can be applied to
declarations and definitions of functions, variables, types, and other
constructs.
C++ has a number of predefined attributes that are specified in the <attributes>
header file. Some examples of predefined attributes are:

[[noreturn]] : Indicates that a function does not return to its caller.
[[carries_dependency]] : Indicates that a function may carry a dependency
from one of its arguments to its return value.
[[deprecated]] : Indicates that a function or type is deprecated and should

not be used.
[[nodiscard]] : Indicates that the return value of a function should not be
discarded.

Here is an example of how to use attributes in C++:

In this example, the exit() function is declared with the [[noreturn]] attribute,
which indicates that it

Chapter V
Built-in operators, precedence, and association

In C++, operators are special symbols that perform specific operations on
one, two, or three operands, and produce a result. Operators can be classified
as unary, binary, or ternary based on the number of operands they require.
C++ has a set of built-in operators that are predefined by the language and are
available for use in any program. These operators can be grouped into the
following categories:

1. Arithmetic operators: These operators perform arithmetic calculations
on operands, such as addition, subtraction, multiplication, and division.

2. Comparison operators: These operators compare two operands and
return a Boolean value indicating whether the comparison is true or
false.

3. Logical operators: These operators perform logical operations on
operands, such as AND, OR, and NOT.

4. Bitwise operators: These operators perform bitwise operations on
operands, such as AND, OR, XOR, and NOT.

5. Assignment operators: These operators assign a value to a variable.
6. Increment and decrement operators: These operators increase or

decrease the value of a variable by 1.
7. Conditional operator: This operator selects one of two operands based

on a Boolean condition.
Operators have a precedence, which determines the order in which they are
evaluated in an expression. Operators with higher precedence are evaluated
before operators with lower precedence.
Operators also have an associativity, which determines the order in which
they are evaluated when they have the same precedence. Operators with left-
to-right associativity are evaluated from left to right, whereas operators with
right-to-left associativity are evaluated from right to left.

alignof operator
In C++, the alignof operator is a keyword that determines the alignment

requirement of a type or expression. It returns the minimum alignment
required for an object of the specified type, in bytes.
The alignof operator is used to determine the alignment requirement of a type
or expression in order to allocate memory for an object of that type. It is often
used in conjunction with the alignas specifier to specify the alignment of a
variable or type.
Here is an example of how to use the alignof operator in C++:

The output of this program will be:
alignof(S): 4 bytes
alignof(int): 4 bytes

Note that the alignof operator is not the same as the alignas specifier, which is
used to specify the alignment of a variable or type. The alignof operator is
used to determine the alignment requirement of a type or expression

__uuidof operator
In C++, the __uuidof operator is a Microsoft-specific operator that returns the
universally unique identifier (UUID) of a type. It is used to identify a type,
interface, or component in a COM (Component Object Model) program.
The __uuidof operator is used to retrieve the UUID of a type or interface in
order to create an instance of the object or to query for the object's type
information. It is often used in conjunction with the CoCreateInstance function
to create an instance of a COM object.

Here is an example of how to use the __uuidof operator in C++:

In this example, the __uuidof operator is used to retrieve the UUID of the
IUnknown interface, which is a fundamental interface in COM programming.
The UUID is then passed to the CoCreateInstance function to create an instance
of the IUnknown interface.
Note that the __uuidof operator is a Microsoft-specific operator and is not part
of the standard C++ language. It is only available on platforms that support
COM programming.

Additive operators: + and -
In C++, the + and - operators are additive operators that perform addition
and subtraction, respectively. They can be used to add or subtract two
operands of the same or compatible types, and produce a result of the same
type as the operands.
The + operator is a binary operator that adds two operands and returns their
sum. It can be used with operands of any arithmetic type, including integers,
floating-point numbers, and complex numbers.
The - operator is also a binary operator that subtracts one operand from
another and returns the difference. It can be used with operands of any
arithmetic type, including integers, floating-point numbers, and complex

numbers.

Here is an example of how to use the + and - operators in C++:

The output of this program will be:
x + y = 30
x - y = -10

Note that the + and - operators can also be used as unary operators, in
which case they operate on a single operand. The + operator returns the
operand unchanged, whereas the - operator returns the neg

Address-of operator: &
In C++, the & operator is the address-of operator, which returns the memory
address of a variable or object. It is a unary operator that takes a single
operand and returns a pointer to the operand.
The & operator is used to obtain the memory address of a variable or object
in order to access it directly or to pass it as an argument to a function. It is
often used in conjunction with pointer variables to manipulate the value of
the pointed-to object.

Here is an example of how to use the & operator in C++:

The output of this program will be:
x: 10
&x: 0x7ffdc91a6884
px: 0x7ffdc91a6884

In this example, the & operator is used to obtain the memory address of the
x variable, which is stored in the px pointer. The value of x can then be
accessed directly through the pointer using the * operator, like this:
*px = 20;
std::cout << "x: " << x << std::endl;

The output of this code will be:
x: 20

Note that the & operator has a higher precedence than the * operator, so it is
evaluated before the * operator. For example, the expression *&x is
equivalent to x , whereas the expression &*x is equivalent to x if x is a
pointer,

Assignment operators
In C++, assignment operators are used to assign a value to a variable. The
most basic assignment operator is the = operator, which assigns the value of
the right-hand operand to the left-hand operand.
C++ also has a number of compound assignment operators, which perform an
operation on the left-hand operand and assign the result to the left-hand
operand. These operators include:

+= : Add the right-hand operand to the left-hand operand and assign the
result to the left-hand operand.

-= : Subtract the right-hand operand from the left-hand operand and
assign the result to the left-hand operand.
*= : Multiply the left-hand operand by the right-hand operand and
assign the result to the left-hand operand.
/= : Divide the left-hand operand by the right-hand operand and assign
the result to the left-hand operand.
%= : Calculate the remainder of the left-hand operand divided by the
right-hand operand and assign the result to the left-hand operand.

Here is an example of how to use the assignment operators in C++:

Bitwise AND operator: &
In C++, the & operator is the bitwise AND operator, which performs a
bitwise AND operation on two operands and returns the result. It is a binary
operator that takes two operands of integral type and returns a result of the
same type as the operands.

The bitwise AND operator compares each bit of the first operand to the
corresponding bit of the second operand, and if both bits are 1, the
corresponding result bit is set to 1. Otherwise, the result bit is set to 0.
Here is an example of how to use the bitwise AND operator in C++:

The output of this program will be:
x & y = 0

In this example, the bitwise AND operator is used to perform a bitwise AND
operation on the x and y variables. The result is stored in the z variable,
which has a value of 0 in decimal.
Note that the bitwise AND operator has a higher precedence than the =
operator, so it is evaluated before the assignment. For example, the
expression x = y & z is equivalent to x = (y & z) , whereas the expression x &= y
is equivalent to x = x & y .

Bitwise exclusive OR operator: ^
In C++, the ^ operator is the bitwise exclusive OR (XOR) operator, which
performs a bitwise XOR operation on two operands and returns the result. It
is a binary operator that takes two operands of integral type and returns a
result of the same type as the operands.
The bitwise XOR operator compares each bit of the first operand to the
corresponding bit of the second operand, and if one of the bits is 1 and the
other is 0, the corresponding result bit is set to 1. Otherwise, the result bit is
set to 0.
Here is an example of how to use the bitwise XOR operator in C++:

The output of this program will be:
x ^ y = 15

In this example, the bitwise XOR operator is used to perform a bitwise XOR
operation on the x and y variables. The result is stored in the z variable,
which has a value of 15 in decimal.
Note that the bitwise XOR operator has a higher precedence than the =
operator, so it is evaluated before the assignment. For example, the
expression x = y ^ z is equivalent to x = (y ^ z) , whereas the expression x ^= y is
equivalent to x = x ^ y .

Bitwise inclusive OR operator: |
In C++, the | operator is the bitwise inclusive OR (OR) operator, which
performs a bitwise OR operation on two operands and returns the result. It is
a binary operator that takes two operands of integral type and returns a result
of the same type as the operands.
The bitwise OR operator compares each bit of the first operand to the
corresponding bit of the second operand, and if either of the bits is 1, the
corresponding result bit is set to 1. Otherwise, the result bit is set to 0.

Here is an example of how to use the bitwise OR operator in C++:

The output of this program will be:
x | y = 15

In this example, the bitwise OR operator is used to perform a bitwise OR
operation on the x and y variables. The result is stored in the z variable,
which has a value of 15 in decimal.
Note that the bitwise OR operator has a higher precedence than the =
operator, so it is evaluated before the assignment. For example, the
expression x = y | z is equivalent to x = (y | z) , whereas the expression x |= y is
equivalent to x = x | y .

Cast operator: ()
In C++, the () operator is the cast operator, which is used to explicitly cast a
value from one type to another. It is a unary operator that takes a single
operand and a type as its operands, and returns a value of the specified type.
The cast operator is used to convert a value from one type to another when an
implicit conversion is not possible or desired. It is often used to convert
values between basic types, such as integers and floating-point numbers, or to
convert pointers between different types.

Here is an example of how to use the cast operator in C++:

The output of this program will be:
y = 3

In this example, the cast operator is used to convert the x variable, which has
a type of double , to an int and store the result in the y variable. The value of
x is truncated to an integer when it is cast to int .
Note that the cast operator has a higher precedence than the = operator, so it
is evaluated before the assignment. For example, the expression x = (int)y is
equivalent to x = (int)(y) , whereas the expression x = int(y) is also equivalent to
x = (int)(y) .
C++ also provides a number of type-safe cast operators, such as dynamic_cast ,
static_cast , const_cast , and reinterpret_cast , which perform more specialized types
of conversions. These operators are often used in conjunction with
inheritance and polymorphism to convert between related types.

Comma operator: ,
In C++, the , operator is the comma operator, which separates two or more
operands and evaluates them from left to right. It is a binary operator that
takes two or more operands and returns the value of the right-hand operand.
The comma operator is often used to include multiple expressions in a single
statement, where each expression is separated by a comma. Only the value of
the right-hand operand is used in the final result, whereas the values of the
other operands are discarded.

Here is an example of how to use the comma operator in C++:

The output of this program will be:
z = 32

In this example, the comma operator is used to evaluate the x++ and y++
expressions, which increment the values of x and y , respectively. The value
of x + y is then calculated and assigned to the z variable.
Note that the comma operator has a lower precedence than most other
operators, so it is usually evaluated after the other operators. For example, the
expression x = y, z is equivalent to (x = y), z , whereas the expression x = y + z is
equivalent to x = (y + z) .

Conditional operator: ? :
In C++, the ? : operator is the conditional operator, also known as the ternary
operator, which is used to evaluate a conditional expression. It is a ternary
operator that takes three operands and returns a value based on the result of
the conditional expression.
The conditional operator is often used as a shorthand form of an if statement,
where the first operand is a boolean condition, the second operand is the
value to be returned if the condition is true, and the third operand is the value
to be returned if the condition is false.

Here is an example of how to use the conditional operator in C++:

The output of this program will be:
z = 10

In this example, the conditional operator is used to evaluate the x < y
condition. If the condition is true, the value of x is returned; otherwise, the
value of y is returned. The result is stored in the z variable.
Note that the conditional operator has a lower precedence than the
assignment operator, so it is usually evaluated after the assignment. For
example, the expression x = y ? z : w is equivalent to x = (y ? z : w) , whereas the
expression x ? y = z : w = t is equivalent to (x ? (y = z) : (w = t)) .

delete operator
In C++, the delete operator is used to deallocate memory that was previously
allocated by the new operator. It is a unary operator that takes a pointer as its
operand and frees the memory pointed to by the pointer.
The delete operator is used to release the memory occupied by an object or
array that was created using the new operator. It is important to use the delete
operator to deallocate memory when it is no longer needed, to avoid memory
leaks and other memory-related issues.

Here is an example of how to use the delete operator in C++:

In this example, the new operator is used to dynamically allocate memory for
an int object and assign the address of the object to the p pointer. The value
of the object is then initialized to 10. The delete operator is then used to
deallocate the memory pointed to by p .
Note that the delete operator should only be used to deallocate memory that
was previously allocated using the new operator. It should not be used to
deallocate memory that was allocated on the stack or using other memory
management techniques, such as malloc() and free() .
Equality operators: == and !=
In C++, the == and != operators are the equality and inequality operators,
respectively, which are used to compare two values for equality or inequality.
They are binary operators that take two operands and return a boolean value
indicating whether the operands are equal or unequal.
The equality operator == compares the values of its operands and returns
true if they are equal, and false if they are not equal. The inequality operator
!= compares the values of its operands and returns true if they are not equal,
and false if they are equal.

Here is an example of how to use the equality and inequality operators in
C++:

The output of this program will be:
x == y: 0
x != y: 1
x == z: 1
x != z: 0

In this example, the equality and inequality operators are used to compare the
values of the x , y , and z variables. The results of the comparisons are
printed to the console.
Note that the equality and inequality operators have a lower precedence than
most other operators, so they are usually evaluated after the other operators.
For example, the expression x = y == z is equivalent to x = (y == z) , whereas the
expression x == y = z is equivalent to (x == (y = z)) .

Explicit type conversion operator: ()
In C++, the () operator is the explicit type conversion operator, which is used
to explicitly convert a value from one type to another. It is a unary operator
that takes a single operand and a type as its operands, and returns a value of
the specified type.
The explicit type conversion operator is used to convert a value from one
type to another when an implicit conversion is not possible or desired. It is
often used to convert values between basic types, such as integers and
floating-point numbers, or to convert pointers between different types.
Here is an example of how to use the explicit type conversion operator in
C++:

The output of this program will be:
y = 3

In this example, the explicit type conversion operator is used to convert the x
variable, which has a type of double , to an int and store the result in the y
variable. The value of x is truncated to an integer when it is converted to int .
Note that the explicit type conversion operator has a higher precedence than
the = operator, so it is evaluated before the assignment. For example, the
expression x = int(y) is equivalent to x = (int)(y) , whereas the expression x = y +
int(z) is equivalent to x = (y + (int)(z)) .
C++ also provides a number of type-safe cast operators, such as dynamic_cast ,
static_cast , const_cast , and reinterpret_cast , which perform more specialized types
of conversions. These operators are often used in conjunction with
inheritance and polymorphism to convert between related types.

Function call operator: ()
In C++, the () operator is the function call operator, which is used to call a
function and execute its code. It is a unary operator that takes a function
name and a list of arguments as its operands, and returns a value of the
function's return type.
The function call operator is used to invoke a function and pass arguments to
it. The arguments are specified within the parentheses, and are separated by
commas. The function call operator can also be used to invoke a function
through a function pointer or a member function of a class.

Here is an example of how to use the function call operator in C++:

The output of this program will be:
z = 30

In this example, the add() function is defined to take two int arguments and
return their sum. The function call operator is then used to invoke the add()
function and pass the values of x and y as arguments. The result of the
function call is stored in the z variable.
Note that the function call operator has a higher precedence than the
assignment operator, so it is evaluated before the assignment. For example,
the expression x = add(y, z) is equivalent to x = (add(y, z)) , whereas the
expression x = y + add(z, w) is equivalent to x = (y + (add(z, w))) .

Indirection operator: *
In C++, the * operator is the indirection operator, also known as the
dereference operator, which is used to access the value stored at a memory
address. It is a unary operator that takes a pointer as its operand and returns
the value pointed to by the pointer.
The indirection operator is often used in conjunction with pointers to access
the value stored at the memory address pointed to by the pointer. It is also
used to declare pointers, where it is placed in front of the variable name to
indicate that the variable is a pointer.

Here is an example of how to use the indirection operator in C++:

The output of this program will be:
x = 10
*p = 10

In this example, the p pointer is declared and initialized to the address of the
x variable. The indirection operator is then used to access the value stored at
the memory address pointed to by p , which is the value of the x variable.
Note that the indirection operator has a higher precedence than the
assignment operator, so it is evaluated before the assignment. For example,
the expression x = *p is equivalent to x = (*p) , whereas the expression x = *p +
y is equivalent to x = (*p) + y .

Left shift and right shift operators (>> and <<)
In C++, the << and >> operators are the left shift and right shift operators,
respectively, which are used to perform bit shifting on integer values. They
are binary operators that take two operands, an integer value and a shift
count, and return a value that is the original value shifted left or right by the
specified number of bits.
The left shift operator << shifts the bits of its first operand to the left by the
number of positions specified in the second operand. The right shift operator
>> shifts the bits of its first operand to the right by the number of positions
specified in the second operand.
Here is an example of how to use the left shift and right shift operators in
C++:

The output of this program will be:
x << y = 80
x >> y = 1

In this example, the left shift operator << is used to shift the bits of the x
variable to the left by 3 positions, and the right shift operator >> is used to
shift the bits of the x variable to the right by 3 positions. The results of the
shift operations are printed to the console.
Note that the left shift and right shift operators have a higher precedence than
the addition and subtraction operators, so they are usually evaluated before
these operators. For example, the expression x << y + z is equivalent to x << (y
+ z) , whereas the expression x + y << z is equivalent to (x + y) << z .

Logical AND operator: &&
In C++, the && operator is the logical AND operator, which is used to
perform a logical AND operation on two boolean values. It is a binary
operator that takes two boolean operands and returns a boolean value
indicating the result of the logical AND operation.
The logical AND operator && performs a short-circuit evaluation of its
operands, meaning that it only evaluates the second operand if the first
operand is true . If the first operand is false , the second operand is not
evaluated and the result of the && operator is false . This can be useful for
optimizing code and avoiding unnecessary computations.

Here is an example of how to use the logical AND operator in C++:

The output of this program will be:
x && y: 0
x && z: 1
y && z: 0

In this example, the logical AND operator && is used to perform logical
AND operations on the x , y , and z variables. The results of the &&
operations are printed to the console.
Note that the logical AND operator has a higher precedence than the logical
OR operator || , so it is usually evaluated before the || operator. For example,
the expression x && y || z is equivalent to (x && y) || z , whereas the expression
x || y && z is equivalent to `x || (y && z)

Logical negation operator: !
In C++, the ! operator is the logical negation operator, which is used to
negate a boolean value. It is a unary operator that takes a boolean operand
and returns the negated value.
The logical negation operator ! negates the value of its operand by reversing
its truth value. If the operand is true , the ! operator returns false , and if the
operand is false , the ! operator returns true .

Here is an example of how to use the logical negation operator in C++:

The output of this program will be:
!x: 0
!y: 1

In this example, the logical negation operator ! is used to negate the values
of the x and y variables. The results of the ! operations are printed to the
console.
Note that the logical negation operator has a higher precedence than the
logical AND and OR operators && and || , so it is usually evaluated before
these operators. For example, the expression !x && y is equivalent to (!x) &&
y , whereas the expression x || !y is equivalent to x || (!y) .

Logical OR operator: ||
In C++, the || operator is the logical OR operator, which is used to perform a
logical OR operation on two boolean values. It is a binary operator that takes
two boolean operands and returns a boolean value indicating the result of the
logical OR operation.
The logical OR operator || performs a short-circuit evaluation of its
operands, meaning that it only evaluates the second operand if the first
operand is false . If the first operand is true , the second operand is not
evaluated and the result of the || operator is true . This can be useful for
optimizing code and avoiding unnecessary computations.

Here is an example of how to use the logical OR operator in C++:

The output of this program will be:
x || y: 1
x || z: 1
y || z: 1

In this example, the logical OR operator || is used to perform logical OR
operations on the x , y , and z variables. The results of the || operations are
printed to the console.
Note that the logical OR operator has a lower precedence than the logical
AND operator && , so it is usually evaluated after the && operator. For
example, the expression x || y && z is equivalent to x || (y && z) , whereas the
expression x && y || z is equivalent to (x && y) || z .

Member access operators: . and ->
In C++, the . and -> operators are the member access operators, which are
used to access data members and member functions of a class or struct. They
are binary operators that take an object or a pointer to an object as their left
operand and the name of a data member or member function as their right
operand.
The . operator is used to access data members and member functions of an
object, whereas the -> operator is used to access data members and member
functions of a pointer to an object. The -> operator is equivalent to using the
* operator to dereference the pointer and the . operator to access the data
member or member function.

Here is an example of how to use the member access operators in C++:

The output of this program will be:
(30, 40)
(70, 80)

In this example, the Point class is defined with two data members x and y ,
and two member functions set() and print() . The main() function creates a
Point object p and a pointer to a Point object q . The member access operators
. and -> are used to access the data members and member functions of the p
and q objects.
Note that the member access operators have a higher precedence than the
assignment operator = , so they are usually evaluated before the assignment.
For example, the expression p.x = y is equivalent to (p.x) = y , whereas the
expression x = p.y is equivalent to x = (p.y) .

Multiplicative operators and the modulus operator
In C++, the * , / , and % operators are the multiplicative operators and the
modulus operator, respectively, which are used to perform multiplication,
division, and modulus operations on integer and floating-point values. They
are binary operators that take two operands and return a value that is the
result of the multiplication, division, or modulus operation.
The * operator is the multiplication operator, which multiplies its operands
and returns the product. The / operator is the division operator, which
divides its first operand by its second operand and returns the quotient. The
% operator is the modulus operator, which returns the remainder of the
division of its first operand by its second operand.
Here is an example of how to use the multiplicative operators and the
modulus operator in C++:

The output of this program will be:
x * y = 30
x / y = 3
x % y = 1
x * z = 55
x / z = 1.81818
z / x = 0.55

In this example, the multiplicative operators * , / , and % are used to
perform multiplication, division, and modulus operations on the x , y , and z
variables. The results of the operations are printed to the console.
Note that the multiplicative operators and the modulus operator have a higher

precedence than the additive operators + and - , so they are usually
evaluated before these operators. For example, the expression x * y + z is
equivalent to (x * y) + z , whereas the expression x + y * z is equivalent to x + (y
* z) .

new operator
In C++, the new operator is used to dynamically allocate memory from the
heap for an object or an array of objects. It is a unary operator that takes a
type and an optional initializer expression as its operand and returns a pointer
to the newly allocated memory.
The new operator is often used to create objects that have a longer lifetime
than local variables, or to create objects that are larger than the available
stack memory. It is usually paired with the delete operator to deallocate the
memory when it is no longer needed.
Here is an example of how to use the new operator in C++:

The output of this program will be:
p: (10, 20)
q[0]: (1, 2)
q[4]: (9, 10)

In this example, the new operator is used to dynamically allocate memory for
a single Point object and an array of Point objects. The delete operator is used
to deallocate the memory when it is no longer needed. The member access
operators -> and [] are used to access the data members of the objects.
Note that the new operator throws a std::bad_alloc exception if it fails to
allocate the requested memory, so it is usually used within a try-catch block
to handle the exception. It is also a good practice to use the new and delete
operators consistently, as mixing them with the malloc() and free() functions
from the C standard library can lead to undefined behavior.

One's complement operator: ~
In C++, the ~ operator is the one's complement operator, which is used to
perform a bitwise NOT operation on an integer value. It is a unary operator
that takes an integer operand and returns an integer value that is the result of
the bitwise NOT operation.
The one's complement operator ~ negates the value of its operand by
flipping all of its bits. If the operand is an n -bit integer, the ~ operator
returns an n -bit integer that has all of its bits flipped. For example, the one's
complement of 0000 1100 (12 in decimal) is 1111 0011 (243 in decimal).
Here is an example of how to use the one's complement operator in C++:

The output of this program will be:
x: 12
y: -13

In this example, the one's complement operator ~ is used to negate the value
of the x variable. The result of the ~ operation is stored in the y variable
and printed to the console.

Note that the one's complement operator has a higher precedence than the
bitwise AND, OR, and XOR operators & , | , and ^ , so it is usually evaluated
before these operators. For example, the expression ~x & y is equivalent to
(~x) & y , whereas the expression x | ~y is equivalent to x | (~y) .

Pointer-to-member operators: .* and ->*
In C++, the .* operator and the ->* operator are used to access a member of
a class or struct through a pointer to the object.
The .* operator is used when the object itself is a pointer, while the ->*
operator is used when the object is an actual object and you want to access a
member through a pointer to the object.
Here is an example of how these operators can be used:

The output of this program would be:
s.x = 10

s.y = 3.14
(p->*px) = 10
(p->*py) = 3.14
(s.*px) = 10
(s.*py) = 3.14

In this example, we have a struct S with two members: x and y . We create
an object s of type S and a pointer p to s . We also define two pointers to
members of S , px and py , which point to the members x and y ,
respectively.
We can access the members x and y of s directly using the dot operator . ,
and we can access them through the pointer p using the ->* operator. We
can also access the members x and y of s through the pointer to the object
itself using the .* operator.

Postfix increment and decrement operators: ++ and --
In C++, the postfix increment operator (++) and the postfix decrement
operator (--) are used to increment or decrement the value of a variable by 1.
These operators are called "postfix" because they come after the operand (the
variable whose value is being incremented or decremented).
Here is an example of how these operators can be used:

The output of this program would be:
x = 10

y = 10
x++ = 10
y-- = 10
x = 11
y = 9

In this example, we have two variables x and y , both initialized to 10. We
use the postfix increment operator x++ to increment the value of x by 1, and
we use the postfix decrement operator y-- to decrement the value of y by 1.
The postfix increment and decrement operators return the value of the
operand before it is incremented or decremented. This is why the output of
x++ and y-- is 10, even though the values of x and y are incremented and
decremented, respectively.
It's important to note that the postfix increment and decrement operators have
a lower precedence than most other operators, so they are often used in
combination with other operators. For example:

In this example, the value of
c is calculated as 10 + 20 = 30 , and the value of a is incremented to 11 after
the calculation is complete. Similarly, the value of d is calculated as 11 - 20 =
-1 , and the value of a is decremented to 10 after the calculation is complete.

Prefix increment and decrement operators: ++ and --
In C++, the prefix increment operator (++) and the prefix decrement operator
(--) are used to increment or decrement the value of a variable by 1. These
operators are called "prefix" because they come before the operand (the
variable whose value is being incremented or decremented).
Here is an example of how these operators can be used:

The output of this
program would be:
x = 10
y = 10
++x = 11
--y = 9
x = 11
y = 9

In this example, we have two variables x and y , both initialized to 10. We
use the prefix increment operator ++x to increment the value of x by 1, and
we use the prefix decrement operator --y to decrement the value of y by 1.
The prefix increment and decrement operators return the value of the operand
after it is incremented or decremented. This is why the output of ++x and --y
is 11 and 9, respectively, even though the values of x and y are incremented
and decremented before the output is produced.
It's important to note that the prefix increment and decrement operators have
a higher precedence than most other operators, so they are often used in
combination with other operators. For example:

In this example, the value of a is incremented to 11 before the value of c is

calculated as 11 + 20 = 31 . Similarly, the value of a is decremented to 10
before the value of d is calculated as 10 - 20 = -10 .

Relational operators: <, >, <=, and >=
In C++, the relational operators < , > , <= , and >= are used to compare the
values of two operands. These operators return a boolean value indicating
whether the comparison is true or false.

Here is an example of how these operators can be used:

The output of this program would be:
(x < y) = 1
(x > y) = 0
(x <= y) = 1
(x >= y) = 0
(x == z) = 1
(x != z) = 0

In this example, we have three variables: x , y , and z . We use the relational
operators to compare the values of x and y , as well as the values of x and
z .
The relational operator < returns true if the value of the left operand is less

than the value of the right operand, and false otherwise. The relational
operator > returns true if the value of the left operand is greater than the
value of the right operand, and false otherwise.
The relational operator <= returns true if the value of the left operand is less
than or equal to the value of the right operand, and false otherwise. The
relational operator >= returns true if the value of the left operand is greater
than or equal to the value of the right operand, and false otherwise.
The relational operator == returns true if the value of the left operand is
equal to the value of the right operand, and false otherwise. The relational
operator != returns true if the value of the left operand is not equal to the
value of the right operand, and false otherwise.

It's important to note that the relational operators have a lower precedence
than most other operators, so they are often used in combination with other
operators. For example:
int a = 10;
int b = 20;

if (a < b && b > a)
{
 std::cout << "a is less than b and b is greater than a" << std::endl;
}

if (a == b || a != b)
{
 std::cout << "a is either equal to b or not equal to b" << std::endl;
}

In this example, the first if statement will be true because both conditions

Scope resolution operator: ::
In C++, the scope resolution operator (::) is used to specify the scope in
which a name is defined. It is used to qualify the name of a class, function, or
variable, and is often used to access a name that is defined in a different
scope.
Here is an example of how the scope resolution operator can be used:

The output of this program would be:
x = 20
::x = 10

In this example, we have a global variable x and a local variable x in the
main function. The local variable x is defined within the scope of the main
function, while the global variable x is defined outside of any function and is
therefore in the global scope.
We use the scope resolution operator :: to specify the global scope when
accessing the global variable x . Without the scope resolution operator, the
local variable x would be accessed instead.
The scope resolution operator can also be used to access a name that is
defined in a different namespace:

The output of this program would be:

x = 20
NS1::x = 10
NS2::x = 20

In this example, we have two namespaces, NS1 and NS2 , each with a
variable x . The variable x in NS2 is defined within the scope of the main
function, while the variable x in NS1 is defined outside of any function and
is therefore in the global scope.
We use the scope resolution operator :: to specify the namespace when
accessing the variables x in NS1 and NS2 . Without the scope resolution
operator, the local variable x in NS2 would be accessed instead.

sizeof operator
In C++, the sizeof operator is used to determine the size, in bytes, of a data
type or an expression. It is often used to allocate memory dynamically or to
determine the size of an array.

Here is an example of how the sizeof operator can be used:
#include <iostream>
#include <array>

int main()
{
 std::cout << "sizeof(int) = " << sizeof(int) << " bytes" << std::endl;
 std::cout << "sizeof(double) = " << sizeof(double) << " bytes" << std::endl;

 std::array<int, 10> arr;
 std::cout << "sizeof(arr) = " << sizeof(arr) << " bytes" << std::endl;

 int* p = new int[10];
 std::cout << "sizeof(p) = " << sizeof(p) << " bytes" << std::endl;
 delete [] p;

 return 0;
}

The output of this program will depend on the machine and compiler being
used, but it might look something like this:
sizeof(int) = 4 bytes
sizeof(double) = 8 bytes
sizeof(arr) = 40 bytes
sizeof(p) = 8 bytes

In this example, we use the sizeof operator to determine the size of various

data types and expressions. We use it to determine the size of an int and a
double , as well as the size of an std::array of int s and a dynamically-allocated
array of int s.
It's important to note that the sizeof operator does not evaluate the expression
that it is applied to. It simply determines the size of the data type or
expression, regardless of its value.
For example:
int x = 10;
std::cout << "sizeof(x + 20) = " << sizeof(x + 20) << " bytes" << std::endl;

The output of this program would be:
sizeof(x + 20) = 4 bytes

In this example, the expression x + 20 is not evaluated. The sizeof operator
simply determines the size of an int , which is 4 bytes.

Subscript operator:
In C++, the subscript operator ([]) is used to access an element of an array or
a container class. It is used to specify the index of the element that is being
accessed.
Here is an example of how the subscript operator can be used with an array:

The output of this program would be:
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[9] = 10

In this example, we have an array of int s called arr , with 10 elements. We
use the subscript operator [] to access the elements of the array, specifying
the index of the element that we want to access. The first element of the array

has an index of 0, the second element has an index of 1, and so on.

The subscript operator can also be used with container classes that provide
subscript operator overloads, such as std::vector and std::map . For example:

The output of this program would be:
vec[0] = 1
vec[1] = 2
m["one"] = 1
m["two"] = 2

In this example, we have a std::vector of int s called vec and a std::map of int s
called m . We use the subscript operator [] to access the elements of the
vector and map , specifying the index of the element that we want to access.
The indices for a vector are integer values starting from 0, while the indices
for a map are keys of the appropriate type (in this case, std::string).
It's important to note that the subscript operator can be used to both read from
and write to the elements of an array or container. For example:
arr[0]

typeid operator in
In C++, the typeid operator is used to determine the type of an expression at
runtime. It returns a std::type_info object that describes the type of the
expression.
Here is an example of how the typeid operator can be used:

The output of this program will depend on the implementation, but it might
look something like this:
typeid(x).name() = i
typeid(y).name() = d
typeid(z).name() = NSt3__112basic_stringIcNS_11char_traitsIcEENS_9allocatorIcEEEE

In this example, we have three variables: x of type int , y of type double , and
z of type std::string . We use the typeid operator to determine the type of each
variable at runtime, and we use the name member function of the std::type_info
object that is returned to get the name of the type.
It's important to note that the typeid operator can only be used with
expressions that have a defined type. It cannot be used with expressions that
have an undefined or incomplete type, such as uninitialized variables or
variables with incomplete class types.

For example:
int x;
std::cout << "typeid(x).name() = " << typeid(x).name() << std::endl; // error: x has an undefined type

In this example, the variable x has an undefined type because it is
uninitialized. Attempting to use the typeid operator on x would result in a
compile-time error.

Unary plus and negation operators: + and -
In C++, the unary plus and negation operators (+ and -) are used to perform
arithmetic operations on a single operand. The unary plus operator returns the
value of the operand, while the unary negation operator returns the negation
of the value of the operand.
Here is an example of how these operators can be used:

The output of this program would be:
+x = 10
-x = -10
+y = -20
-y = 20

In this example, we have two variables: x and y . x has a value of 10, while
y has a value of -20.
We use the unary plus operator + to return the value of x , which is 10. We
use the unary negation operator - to return the negation of the value of x ,
which is -10.
We use the unary plus operator + to return the value of y , which is -20. We
use the unary negation operator - to return the negation of the value of y ,

which is 20.
It's important to note that the unary plus operator does not actually perform
any arithmetic operation, it simply returns the value of the operand. It is often
used to explicitly indicate that a value is positive, especially when the value is
surrounded by other arithmetic operators.
For example:
int a = 10;
int b = 20;
int c = -30;

std::cout << a + b - c << std::endl; // output: 40
std::cout << a + +b - c << std::endl; // output: 50

In the first example, the expression a + b - c is evaluated as 10 + 20 - (-30) ,
which results in a value of 40.
In the second example, the expression a + +b - c is evaluated as 10 + (+20) - (-30) ,
which results in a value of 50. The unary plus operator is used to explicitly
indicate that the value of b is positive, even though it is already a positive
value.

Expressions
In C++, an expression is a combination of one or more operands and
operators that can be evaluated to a single value. Expressions can be simple,
such as a constant value or a variable, or they can be complex, involving
multiple operations and function calls.
Here are some examples of expressions in C++:
1 + 2 // simple expression, evaluates to 3
x + y // simple expression, evaluates to the sum of x and y
f(x) // function call expression, evaluates to the return value of the function f
x + y * z // complex expression, evaluates to the sum of x and the product of y and z

Expressions can be used in a variety of contexts in C++, including as the

right-hand side of an assignment statement, as an argument to a function, or
as part of a larger expression.

For example:
int x = 1 + 2; // assignment statement, x is assigned the value 3
int y = f(x + 3); // function call, y is assigned the return value of f(x + 3)
if (x > 0 && y < 10) // conditional statement, tests whether x is greater than 0 and y is less than 10
 std::cout << "x is positive and y is less than 10" << std::endl;

It's important to note that expressions can have side effects, such as
modifying the value of a variable or performing some other action. For
example:
int x = 1;
int y = x++; // y is assigned the value of x before x is incremented
std::cout << "x = " << x << " y = " << y << std::endl; // output: x = 2 y = 1

In this example, the expression x++ increments the value of x after it is used
to assign a value to y . The output of the program is x = 2 y = 1 , indicating that
x was incremented after it was used to assign a value to y .

Chapter six
Types of expressions

In C++, there are several different types of expressions, each with its own
syntax and rules for evaluation. Some common types of expressions include:

Arithmetic expressions: These expressions involve arithmetic
operations, such as addition, subtraction, multiplication, and division.
They can include constants, variables, and other arithmetic expressions
as operands. For example: 1 + 2 , x + y , x * y / z .
Relational expressions: These expressions involve comparison
operators, such as < , > , <= , and >= , and evaluate to a Boolean value
indicating whether the comparison is true or false. They can include
constants, variables, and other arithmetic expressions as operands. For
example: x < y , a <= b , c > d .
Logical expressions: These expressions involve logical operators, such
as && (and), || (or), and ! (not), and evaluate to a Boolean value
indicating whether the logical operation is true or false. They can
include constants, variables, and other logical expressions as operands.
For example: x && y , a || b , !c .
Assignment expressions: These expressions involve the assignment
operator = and are used to assign a value to a variable. They can
include constants, variables,

Primary expressions
In C++, a primary expression is a simple expression that can stand on its own
and does not require any additional operators to be evaluated. Primary
expressions include literals, variables, function calls, and object or member
access expressions.
Here are some examples of primary expressions in C++:

Literals: Constants such as integer literals (42), floating-point literals
(3.14), character literals ('a'), and string literals ("hello") are all primary
expressions.
Variables: Variables such as x , y , and z are primary expressions.

Function calls: Function calls such as f(x, y, z) are primary expressions.
Object or member access expressions: Expressions that access an object
or a member of an object, such as obj.x , ptr->y , and arr[i] , are primary
expressions.

Primary expressions are often used as operands in larger expressions, but
they can also be used on their own.
For example:
int x = 10;
double y = 3.14;
std::string z = "hello";

std::cout << x << std::endl; // primary expression: variable x
std::cout << y << std::endl; // primary expression: variable y
std::cout << z << std::endl; // primary expression: variable z
std::cout << f(x, y) << std::endl; // primary expression: function call f(x, y)

In this example, we have three variables: x of type int , y of type double , and
z of type std::string . We use each of these variables as a primary expression in
a separate std::cout statement. We also use a function call f(x, y) as a primary
expression.
It's important to note that primary expressions do not include expressions that
require additional operators to be evaluated, such as arithmetic expressions or
logical expressions. For example, x + y and x && y are not primary
expressions.

Ellipsis and variadic templates
In C++, an ellipsis (...) is used to indicate a variadic function, which is a
function that can take a variable number of arguments. An ellipsis is used in
the function's parameter list to denote the variable number of arguments.
Here is an example of a variadic function in C++:

In this example, we have a function called print_all that takes a variable
number of arguments. The first argument is a const char* called fmt , which
specifies the format of the remaining arguments. The ellipsis (...) in the
parameter list indicates that there can be any number of additional arguments.
Inside the function, we use the va_list , va_start , va_arg , and va_end macros to
access the variable arguments. The va_list type is used to hold the list of
arguments, and the va_start macro is used to initialize the va_list with the first
argument after fmt . The va_arg macro is used to retrieve the next argument

from the list, and the va_end macro is used to clean up the va_list when we are
finished with it.
In this example, we use a loop to iterate over the characters in the fmt string.
If we encounter a % character, we increment the pointer to the fmt string and
check the next character to determine the type of the next argument. If the
next character is d , we print the next argument as an int , if it is s , we print
the next argument as a const char* , and if it is f , we print the next argument as
a double .
The output of this program would be:
10 hello 3.14

Postfix expressions
In computer science, a postfix expression is an expression in which each
operator follows its operands. This is in contrast to an infix expression, in
which operators are placed between their operands.
For example, the infix expression "2 + 3 * 4" would be written as "2 3 4 * +"
in postfix notation.

Expressions with unary operators
Unary operators are operators that act on a single operand. In C++, there are
several unary operators, including:

++ (increment operator)
-- (decrement operator)
+ (unary plus)
- (unary minus)
! (logical NOT)
~ (bitwise NOT)
* (dereference operator)
& (reference operator)

Here is an example of how to use the unary increment operator (++) in C++:

The unary decrement operator (--) works in a similar way.
You can use the unary plus and minus operators to change the sign of a value:

The logical NOT operator (!) can be used to invert the truth value of a
boolean expression:

The bitwise NOT operator (~) can be used to invert the bits of an integer
value:

The dereference operator (*) is used to access the value stored at a memory

address:

The reference operator (&) is used to get the memory address of a variable:

Expressions with binary operators
Binary operators are operators that act on two operands. In C++, there are
several binary operators, including:

+ (addition)
- (subtraction)
* (multiplication)
/ (division)
% (modulus)
= (assignment)
+= (addition assignment)
-= (subtraction assignment)
*= (multiplication assignment)
/= (division assignment)
%= (modulus assignment)
== (equal to)
!= (not equal to)
> (greater than)
< (less than)
>= (greater than or equal to)
<= (less than or equal to)
&& (logical AND)
|| (logical OR)

& (bitwise AND)
| (bitwise OR)
^ (bitwise XOR)
<< (left shift)
>> (right shift)

Here is an example of how to use some of these operators in C++:

Constant expressions
In C++, a constant expression is an expression that can be evaluated at
compile time, rather than at runtime. Constant expressions are typically used

to initialize variables with fixed values or to specify array sizes.
There are several ways to create constant expressions in C++:

1. Using constants: Any literal value (such as 42 , 3.14 , or 'A') is a
constant expression.

2. Using const variables: A variable that is declared with the const
keyword is a constant expression. For example:

const int x = 42;
const double pi = 3.14;
const char c = 'A';

3. Using constexpr variables: A variable that is declared with the constexpr
keyword is a constant expression. For example:

constexpr int x = 42;
constexpr double pi = 3.14;
constexpr char c = 'A';

4. Using enums: Enumeration constants are treated as constants in C++.
For example:

enum Colors { Red, Green, Blue };

constexpr Colors favoriteColor = Green;

5. Using constexpr functions: A function that is declared with the constexpr
keyword and meets certain criteria (such as having a single return
statement) can be used in constant expressions. For example:

constexpr int square(int x)
{
 return x * x;
}

constexpr int x = square(5); // x is 25

Here is an example of how to use a constant expression to initialize an array
in C++:

Semantics of expressions
In C++, the semantics of an expression refer to the meaning and behavior of
the expression when it is evaluated. The rules for evaluating expressions in
C++ are determined by the operator precedence and associativity rules, as
well as the types and values of the operands.
Here are some general rules for evaluating expressions in C++:

1. Parentheses can be used to override the default precedence and
associativity rules. Expressions within parentheses are always
evaluated first.

2. Unary operators are evaluated before binary operators. For example, in
the expression !x + y , the logical NOT operator (!) is applied to x
before the addition operator (+) is applied to x and y .

3. Binary operators are evaluated in order of precedence, from highest to
lowest. For example, in the expression x + y * z , the multiplication
operator (*) has a higher precedence than the addition operator (+), so
y and z are multiplied first.

4. Operators with the same precedence are evaluated from left to right (for
left-associative operators) or from right to left (for right-associative
operators). For example, in the expression x = y = z , the assignment
operator (=) is right-associative, so z is assigned to y first, then the
result of that assignment is assigned to x .

Here is an example of how these rules can be applied in a C++ expression:

In this example, the addition operator (+) has a lower precedence than the
multiplication operator (*), so the expressions within the parentheses are
evaluated first. The addition operator (+) is left-associative, so x and y are
added first, then z and 1 are added. The result of these additions is then
multiplied to produce the final result.

what is Casting
In C++, casting is the process of converting a value of one type to a value of
another type. There are several ways to perform casting in C++:

1. Static cast: The static_cast operator is used to perform a safe, explicit
type conversion. It can be used to convert a value from one type to
another, as long as the target type is explicitly specified. For example:

double x = 3.14;
int y = static_cast<int>(x); // y is 3

2. Dynamic cast: The dynamic_cast operator is used to perform a type
conversion at runtime. It is used to convert a pointer or reference from
a base class type to a derived class type. For example:

class Base { };
class Derived : public Base { };

Base *b = new Base();
Derived *d = dynamic_cast<Derived*>(b); // d is nullptr

3. Reinterpret cast: The reinterpret_cast operator is used to interpret the bits

of a value as a value of a different type. It is used to convert a pointer to
an integer type, or vice versa. For example:

int x = 42;
char *ptr = reinterpret_cast<char*>(&x); // ptr points to the first byte of x

4. Const cast: The const_cast operator is used to remove the const qualifier
from a value. It is used to modify a const value, or to pass a const value
to a function that expects a non- const parameter. For example:

const int x = 42;
int *ptr = const_cast<int*>(&x); // ptr points to x, but x can be modified through ptr

It is important to note that casting can sometimes result in loss of information
or undefined behavior if the target type is not capable of representing the
value being converted. Therefore, it is important to use casting cautiously and
only when necessary.

seventh chapter
Casting operators

In C++, casting refers to the process of converting a value of one data type to
another data type. This can be done using a variety of casting operators,
including:

1. static_cast : This operator is used to perform a safe, explicit type
conversion. It can be used to convert values between compatible types,
such as converting an int to a float .

2. dynamic_cast : This operator is used to perform a safe, downcast
conversion from a base class to a derived class. It is used when the type
of the object being converted is not known at compile-time, and is
typically used in conjunction with polymorphism.

3. const_cast : This operator is used to remove the const or volatile attribute
from a variable. It can be used to cast away the const or volatile qualifier
from a pointer or reference, allowing the value to be modified.

4. reinterpret_cast : This operator is used to perform a low-level,
implementation-defined type conversion. It can be used to convert a
value of one type to a value of a different type, regardless of whether
the two types are related. This operator is generally used to cast
pointers to and from integer types, or to cast one pointer type to
another.

It's important to note that these casting operators can often result in undefined
behavior if used improperly, so they should be used with caution.

dynamic_cast operator
The dynamic_cast operator in C++ is used to perform a safe, downcast
conversion from a base class to a derived class. It is typically used in
conjunction with polymorphism, where a pointer or reference to a base class
is used to refer to objects of derived classes.
The syntax for using dynamic_cast is as follows:
derived_type *ptr = dynamic_cast<derived_type*>(base_ptr);

Where derived_type is the type of the derived class and base_ptr is a pointer to
the base class. If the conversion is successful, dynamic_cast will return a
pointer to the derived class. If the conversion is not possible (for example, if
base_ptr does not actually point to an object of the derived class), dynamic_cast
will return a null pointer.
Here is an example of using dynamic_cast to downcast a pointer to a base class:

In this example, the dynamic_cast operator is used to downcast a pointer to a
Shape object to a pointer to a Circle object. If the Shape object is actually a
Circle , the conversion will succeed and the Draw method will be called on the
Circle object. If the Shape object is not a Circle , the dynamic_cast operator will
return a null pointer and the Draw method will not be called.

bad_cast exception
The bad_cast exception is a type of exception that is thrown by the dynamic_cast
operator in C++ when it fails to perform a downcast conversion from a base
class to a derived class.
The bad_cast exception is defined in the stdexcept header and is derived from
the exception class. It can be caught using a try - catch block, like any other
exception:

In this example, the dynamic_cast operator will fail to convert the Shape object
to a Circle object, and will throw a bad_cast exception. The exception will be
caught in the catch block, and the error message will be printed to the
console.
It's important to note that the bad_cast exception will only be thrown if the
dynamic_cast operator fails to perform the conversion. If the conversion is
successful, the bad_cast exception will not be thrown.

static_cast operator
The static_cast operator in C++ is used to perform a safe, explicit type
conversion. It can be used to convert values between compatible types, such
as converting an int to a float , or to convert a pointer to a base class to a
pointer to a derived class.
The syntax for using static_cast is as follows:
destination_type value = static_cast<destination_type>(expression);

Where destination_type is the type to which the value of expression will be
converted, and expression is the value to be converted.

Here is an example of using static_cast to convert an int to a float :

In this example, the value of x is converted from an int to a float using the
static_cast operator, and the result is stored in the float variable y . The output
of this program will be "y = 5.0".
It's important to note that static_cast does not perform any runtime checks to
ensure that the conversion is valid. It is the responsibility of the programmer
to ensure that the conversion is safe and will not result in undefined behavior.

const_cast operator
The const_cast operator in C++ is used to remove the const or volatile attribute
from a variable. It can be used to cast away the const or volatile qualifier from
a pointer or reference, allowing the value to be modified.
The syntax for using const_cast is as follows:
destination_type value = const_cast<destination_type>(expression);

Where destination_type is the type to which the value of expression will be
converted, and expression is the value to be converted.

Here is an example of using const_cast to remove the const attribute from a
const int :

In this example, the const_cast operator is used to remove the const attribute
from a pointer to x . This allows the value of x to be modified through the
pointer y . The output of this program will be "x = 10", even though x is
declared as a const int .

It's important to note that using const_cast to modify a const or volatile variable
can result in undefined behavior if the variable is actually intended to be
const or volatile . const_cast should be used with caution.

reinterpret_cast operator
The reinterpret_cast operator in C++ is used to perform a low-level,
implementation-defined type conversion. It can be used to convert a value of
one type to a value of a different type, regardless of whether the two types are
related. This operator is generally used to cast pointers to and from integer
types, or to cast one pointer type to another.
The syntax for using reinterpret_cast is as follows:
destination_type value = reinterpret_cast<destination_type>(expression);

Where destination_type is the type to which the value of expression will be
converted, and expression is the value to be converted.

Here is an example of using reinterpret_cast to convert a pointer to an int :

In this example, the reinterpret_cast operator is used to convert a pointer to an
int . The output of this program will be the address of x as an integer value.
It's important to note that reinterpret_cast does not perform any type checking or
conversion of the value being cast. It simply treats the value as a sequence of
bits and reinterprets those bits as a value of the destination type. This can
result in undefined behavior if the types being converted are not compatible.

reinterpret_cast should be used with caution.

Chapter VIII
Run-Time Type Information (RTTI)

Run-Time Type Information (RTTI) is a feature of the C++ programming
language that allows programmers to determine the type of an object at
runtime. RTTI is implemented using a set of special functions and typeid
expressions, and is typically used in conjunction with polymorphism to
determine the actual type of an object when a pointer or reference to a base
class is used to refer to objects of derived classes.
To use RTTI, you must first enable it by including the <typeinfo> header and
compiling your code with the -frtti flag.
Here is an example of using RTTI to determine the type of an object:
#include <iostream>
#include <typeinfo>

class Shape {
public:
 virtual ~Shape() {}
};

class Circle : public Shape {
public:
 void Draw() { std::cout << "Drawing a circle" << std::endl; }
};

int main() {
 Shape *shape = new Circle;
 std::cout << "Type of shape: " << typeid(*shape).name() << std::endl;
 return 0;
}

In this example, the typeid operator is used to determine the type of the object
pointed to by shape . The output of this program will be "Type of shape: class
Circle", indicating that the object is actually a Circle object, even though it is
referred to using a pointer to a Shape object.
It's important to note that RTTI can have a performance impact on your code,
as it requires additional runtime checks to determine the type of an object. It
should be used sparingly and only when necessary.

bad_typeid exception
The bad_typeid exception is a type of exception that is thrown by the typeid
operator in C++ when it is used on an object with a deleted or incomplete
type.
The bad_typeid exception is defined in the stdexcept header and is derived from
the exception class. It can be caught using a try - catch block, like any other
exception:
#include <iostream>
#include <stdexcept>

int main() {
 try {
 Shape *shape = nullptr;
 std::cout << "Type of shape: " << typeid(*shape).name() << std::endl;
 } catch (std::bad_typeid& e) {
 std::cout << "Error: " << e.what() << std::endl;
 }
 return 0;
}

In this example, the typeid operator is used on a null pointer, which has a
deleted type. This will cause the bad_typeid exception to be thrown, which will
be caught in the catch block and the error message will be printed to the
console.
It's important to note that the bad_typeid exception will only be thrown if the
typeid operator is used on an object with a deleted or incomplete type. If the
object has a complete and valid type, the bad_typeid exception will not be
thrown.

type_info class
The type_info class in C++ is a class that represents information about a type
at runtime. It is used in conjunction with the typeid operator to retrieve type
information about an object.
The type_info class is defined in the <typeinfo> header and provides several
member functions for accessing type information:

name() : Returns a null-terminated character array containing the name of
the type.

hash_code() : Returns a unique hash code for the type.
before(const type_info& rhs) : Returns true if the type represented by this
type_info object is lexicographically less than the type represented by the
rhs type_info object.
operator==(const type_info& rhs) : Returns true if the type represented by this
type_info object is the same as the type represented by the rhs type_info
object.
operator!=(const type_info& rhs) : Returns true if the type represented by this
type_info object is different from the type represented by the rhs type_info
object.

Here is an example of using the type_info class to compare the types of two
objects:
#include <iostream>
#include <typeinfo>

class Shape {
public:
 virtual ~Shape() {}
};

class Circle : public Shape {
public:
 void Draw() { std::cout << "Drawing a circle" << std::endl; }
};

int main() {
 Shape *shape1 = new Shape;
 Shape *shape2 = new Circle;
 if (typeid(*shape1) == typeid(*shape2)) {
 std::cout << "shape1 and shape2 are the same type" << std::endl;
 } else {
 std::cout << "shape1 and shape2 are different types" << std::endl;
 }
 return 0;
}

In this example, the typeid operator is used to retrieve the type_info objects for
the objects pointed to by shape1 and shape2 . The operator== member function
of the type_info class is then used to compare the two types. The output of this
program will be "shape1 and shape2 are different types", indicating that the
two objects are of different types.

Statements

In C++, a statement is a piece of code that performs an action or modifies the
state of a program. There are several types of statements in C++, including:

1. Expression statements: An expression statement is a statement that
consists of a single expression followed by a semicolon. Expression
statements are used to evaluate an expression and discard the result.

2. Declaration statements: A declaration statement introduces a new name
into the program and specifies the type and initial value of the named
entity. Declaration statements are used to define variables, functions,
and other named entities.

3. Selection statements: Selection statements are used to execute different
blocks of code based on the value of a condition. The two types of
selection statements in C++ are if and switch .

4. Iteration statements: Iteration statements, also known as loops, are used
to execute a block of code multiple times. The three types of iteration
statements in C++ are for , while , and do-while .

5. Jump statements: Jump statements are used to transfer control to
another part of the program. The three types of jump statements in C++
are break , continue , and goto .

Statements are an important part of C++ and are used to control the flow of
execution and perform actions within a program.

Overview of C++ statements
In C++, statements are used to perform actions or modify the state of a
program. There are several types of statements in C++, including:

1. Expression statements: Expression statements are used to evaluate an
expression and discard the result. They are typically used to call
functions, perform assignments, and increment or decrement variables.

2. Declaration statements: Declaration statements are used to introduce
new names into the program and specify the type and initial value of
the named entity. Declaration statements can be used to define
variables, functions, and other named entities.

3. Selection statements: Selection statements are used to execute different
blocks of code based on the value of a condition. The if statement is
used to execute a block of code if a condition is true, and the switch
statement is used to execute a block of code based on the value of a

variable.
4. Iteration statements: Iteration statements, also known as loops, are used

to execute a block of code multiple times. The for loop is used to
execute a block of code a specific number of times, the while loop is
used to execute a block of code while a condition is true, and the do-
while loop is used to execute a block of code at least once before
evaluating a condition.

5. Jump statements: Jump statements are used to transfer control to
another part of the program. The break statement is used to exit a loop
or switch statement, the continue statement is used to skip the rest of the
current iteration of a loop, and the goto statement is used to transfer
control to a labeled statement.

Statements are an important part of C++ and are used to control the flow of
execution and perform actions within a

Labeled statements
In C++, labeled statements are used to create a named location within a block
of code. Labeled statements are typically used in conjunction with the goto
statement to transfer control to a specific location within a program.
To create a labeled statement, you can use any valid identifier followed by a
colon:
label: statement

Here is an example of using a labeled statement in C++:

In this example, the labeled statement start: creates a named location within
the block of code. The goto start statement is then used to transfer control to
the start label and execute the statement following the label. This will cause
the block of code to be executed 10 times, with the value of x increasing by
1 each time. The output of this program will be the numbers 0 through 9,
each on a separate line.
It's important to note that the goto statement is generally considered to be a
less-desirable control flow mechanism and should be used with caution. It
can make code difficult to read and understand, and can lead to unstructured
and difficult-to-maintain code. There are generally more readable and
maintainable alternatives to using goto statements in most situations.

Expression statement
In C++, an expression statement is a statement that consists of a single
expression followed by a semicolon. Expression statements are used to
evaluate an expression and discard the result.
Here is an example of an expression statement in C++:

In this example, the expression x++ is an expression statement that
increments the value of x by 1. The result of the expression is discarded, and
the value of x is modified. The output of this program will be "x = 6".
Expression statements are commonly used to perform assignments, increment
or decrement variables, and call functions. They are an important part of C++
and are used to modify the state of a program.

Null statement
In C++, a null statement is a statement that consists of a single semicolon.
Null statements are used to create a placeholder in a program where a
statement is expected, but no action is required.

Here is an example of a null statement in C++:

In this example, the null statement ; is used as the body of a for loop. This
creates a loop that will execute 10 times, but no action will be taken on each
iteration.
Null statements are generally used as placeholders in situations where a
statement is required, but no action needs to be taken. They are a useful tool
for creating code that is easier to read and understand.

Compound statements (Blocks)
In C++, a compound statement, also known as a block, is a group of
statements that are executed together as a unit. Compound statements are
typically used to group statements together and create a new scope for
variables.
Compound statements are enclosed in curly braces {} and can contain any
number of statements. Here is an example of a compound statement in C++:

In this example, the compound statement { int y = 10; std::cout << "x + y = " << x + y
<< std::endl; } creates a new scope for the variable y , which is only accessible
within the compound statement. The output of this program will be "x + y =
15".
Compound statements are an important part of C++ and are used to group
statements together and create new scopes for variables. They are commonly
used in conjunction with selection and iteration statements to create blocks of
code that are executed together.

Chapter Nine
Selection statements

In C++, selection statements are used to execute different blocks of code
based on the value of a condition. There are two types of selection statements
in C++: the if statement and the switch statement.
The if statement is used to execute a block of code if a condition is true. The
syntax for the if statement is as follows:
if (condition) {
 // code to be executed if condition is true
} else {
 // code to be executed if condition is false
}

Here is an example of using the if statement in C++:

In this example, the if statement is used to execute different blocks of code
based on the value of x . If x is greater than 0, the first block of code will be
executed and the message "x is positive" will be printed to the console. If x
is not greater than 0, the second block of code will be executed and the
message "x is not positive" will be printed to the console.
The switch statement is another type of selection statement in C++ that is
used to execute a block of code based on the value of a variable. The syntax
for the switch statement is as follows:
switch (expression) {
 case value1:
 // code to be

if-else statement
In C++, the if-else statement is a selection statement that is used to execute
different blocks of code based on the value of a condition. The if-else
statement consists of an if clause and an else clause, and the syntax is as
follows:
if (condition) {
 // code to be executed if condition is true
} else {
 // code to be executed if condition is false
}

The if clause is used to specify a condition, and the code within the curly
braces following the if clause is executed if the condition is true. The else
clause is used to specify an alternate block of code to be executed if the
condition is false.
Here is an example of using the if-else statement in C++:

In this example, the if clause specifies the condition x > 0 , and the code
within the curly braces following the if clause is executed if this condition is
true. The else clause specifies an alternate block of code to be executed if the
condition is false. If x is greater than 0, the message "x is positive" will be
printed to the console. If x is not greater than 0, the message "x is not
positive" will be printed to the console.
The `if

__if_exists statement
In C++, the __if_exists statement is a preprocessor directive that is used to
include a block of code if a specified symbol exists. The __if_exists statement
is typically used to include code that is specific to a particular compiler or
platform, and the syntax is as follows:
#if __has_include(<symbol>)

 #include <symbol>
#endif

Here is an example of using the __if_exists statement in C++:
#include <iostream>

#if __has_include(<windows.h>)
 #include <windows.h>
#endif

int main() {
 std::cout << "Hello, world!" << std::endl;
 return 0;
}

In this example, the __if_exists statement is used to include the windows.h
header file if it exists. If the header file is not available, the block of code
within the #if and #endif directives will be skipped and the windows.h header
file will not be included.
The __if_exists statement is a useful tool for including code that is specific to a
particular compiler or platform, and is often used to create code that is
portable across different systems.

__if_not_exists statement
In C++, the __if_not_exists statement is a preprocessor directive that is used to
include a block of code if a specified symbol does not exist. The __if_not_exists
statement is typically used to include code that is specific to a particular
compiler or platform, and the syntax is as follows:
#if !__has_include(<symbol>)
 #include <symbol>
#endif

Here is an example of using the __if_not_exists statement in C++:
#include <iostream>

#if !__has_include(<windows.h>)
 #include "windows.h"
#endif

int main() {
 std::cout << "Hello, world!" << std::endl;
 return 0;
}

In this example, the __if_not_exists statement is used to include the windows.h

header file if it does not exist. If the header file is available, the block of code
within the #if and #endif directives will be skipped and the windows.h header
file will not be included.
The __if_not_exists statement is a useful tool for including code that is specific
to a particular compiler or platform, and is often used to create code that is
portable across different systems.

switch statement
In C++, the switch statement is a selection statement that is used to execute a
block of code based on the value of a variable. The switch statement consists
of a switch clause, a series of case clauses, and an optional default clause. The
syntax for the switch statement is as follows:
switch (expression) {
 case value1:
 // code to be executed if expression == value1
 break;
 case value2:
 // code to be executed if expression == value2
 break;
 ...
 default:
 // code to be executed if expression does not match any of the case values
}

Here is an example of using the switch statement in C++:
#include <iostream>

int main() {
 int x = 3;
 switch (x) {
 case 1:
 std::cout << "x is 1" << std::endl;
 break;
 case 2:
 std::cout << "x is 2" << std::endl;
 break;
 case 3:
 std::cout << "x is 3" << std::endl;
 break;
 default:
 std::cout << "x is not 1, 2, or 3" << std::endl;
 }
 return 0;
}

In this example, the switch statement is used to execute different blocks of
code based on the value of x . If x is 1, the message "x is 1" will be printed
to the console. If x is 2, the message "x is 2" will be printed to the console. If
x is 3, the message "x is 3" will be printed to the console. If x is none of
these values, the message "x is not 1, 2, or 3" will be printed to the console.
The switch statement is a useful tool for executing code based on the value of
a variable, and can be more efficient than using multiple if-else statements in
certain situations. It is important to include the break statement at the end of
each case clause to prevent the code from falling through to the next case.
The default clause is optional, but is generally included to specify a block of
code to be executed if the expression does not match any of the case values.

Iteration statements
In C++, iteration statements, also known as loops, are used to execute a block
of code multiple times. There are three types of iteration statements in C++:
the for loop, the while loop, and the do-while loop.
The for loop is used to execute a block of code a specific number of times.
The syntax for the for loop is as follows:
for (initialization; condition; increment) {
 // code to be executed
}

The initialization clause is used to initialize a loop variable, the condition clause
is used to specify a condition that is checked before each iteration of the loop,
and the increment clause is used to modify the loop variable at the end of each
iteration.
Here is an example of using the for loop in C++:

In this example, the for loop is used to execute the block of code 10 times.
The loop variable i is initialized to 0, and the condition i < 10 is checked
before each iteration of the loop. If the condition is true, the block of code is
executed and the loop variable is incremented by 1. This will cause the loop

to execute 10 times, with the value of i increasing by

while statement
In C++, the while loop is a type of iteration statement that is used to execute a
block of code repeatedly while a condition is true. The syntax for the while
loop is as follows:
while (condition) {
 // code to be executed
}

The condition clause is used to specify a condition that is checked before each
iteration of the loop. If the condition is true, the block of code is executed. If
the condition is false, the loop is terminated and control is transferred to the
next statement following the loop.
Here is an example of using the while loop in C++:

In this example, the while loop is used to execute the block of code 10 times.
The condition x < 10 is checked before each iteration of the loop. If the
condition is true, the block of code is executed and the value of x is
incremented by 1. This will cause the loop to execute 10 times, with the value
of x increasing by 1 each time. The output of this program will be the
numbers 0 through 9, each on a separate line.
The while loop is a useful tool for executing a block of code repeatedly while
a condition is true. It is important to include a statement within the loop that
will eventually cause the condition to become

do-while statement

In C++, the do-while loop is a type of iteration statement that is used to
execute a block of code repeatedly while a condition is true. The syntax for
the do-while loop is as follows:
do {
 // code to be executed
} while (condition);

The block of code is executed once before the condition is checked. If the
condition is true, the block of code is executed again. If the condition is false,
the loop is terminated and control is transferred to the next statement
following the loop.
Here is an example of using the do-while loop in C++:

In this example, the do-while loop is used to execute the block of code 10
times. The block of code is executed once before the condition x < 10 is
checked. If the condition is true, the block of code is executed again and the
value of x is incremented by 1. This will cause the loop to execute 10 times,
with the value of x increasing by 1 each time. The output of this program
will be the numbers 0 through 9, each on a separate line.
The do-while loop

for statement
In C++, the for loop is a type of iteration statement that is used to execute a
block of code a specific number of times. The syntax for the for loop is as
follows:
for (initialization; condition; increment) {
 // code to be executed
}

The initialization clause is used to initialize a loop variable, the condition clause
is used to specify a condition that is checked before each iteration of the loop,
and the increment clause is used to modify the loop variable at the end of each

iteration.

Here is an example of using the for loop in C++:

In this example, the for loop is used to execute the block of code 10 times.
The loop variable i is initialized to 0, and the condition i < 10 is checked
before each iteration of the loop. If the condition is true, the block of code is
executed and the loop variable is incremented by 1. This will cause the loop
to execute 10 times, with the value of i increasing by 1 each time. The
output of this program will be the numbers 0 through 9, each on a separate
line.
The for loop is a useful tool for executing a block of code a specific number
of times, and is often used when the number of iterations is known in
advance. It is important to include a statement within the loop that will
eventually cause the condition to become false, otherwise the loop will
become an infinite loop.

Range-based for statement
In C++, the range-based for loop is a type of iteration statement that is used
to iterate over the elements in a range. The syntax for the range-based for
loop is as follows:
for (range_declaration : range_expression) {
 // code to be executed
}

The range_declaration is a variable that is declared for each element in the range,
and the range_expression is an expression that specifies the range to be iterated
over.

Here is an example of using the range-based for loop in C++:

In this example, the range-based for loop is used to iterate over the elements
in the numbers vector. The loop variable number is declared for each element
in the range, and the range expression numbers specifies the range to be
iterated over. This will cause the loop to execute 5 times, with the value of
number being set to each element in the numbers vector in turn. The output of
this program will be the numbers 1 through 5, each on a separate line.
The range-based for loop is a useful tool for iterating over the elements in a
range, and is often used to simplify code that uses traditional for loops. It is
important to ensure that the range expression specifies a range that is not
modified during the loop, as this can result in undefined behavior.

Chapter Ten
jump statements

In C++, jump statements are used to transfer control to a different point in the
program. There are four types of jump statements in C++: the break
statement, the continue statement, the goto statement, and the return statement.
The break statement is used to terminate a loop or switch statement and
transfer control to the next statement following the loop or switch. The syntax
for the break statement is as follows:
break;

Here is an example of using the break statement in C++:

In this example, the break statement is used to terminate the for loop when
the value of i is 5. The loop will execute 5 times, with the value of i
increasing by 1 each time. When the value of i becomes 5, the break
statement will be executed and the loop will be terminated. The output of this
program will be the numbers 0 through 4, each on a separate line.
The continue statement is used to skip the remainder of the current iteration of
a loop and transfer control to the next iteration. The syntax for the continue
statement is as follows:
continue;

Here is an example of using the continue statement in C++:

In this example, the continue statement is used to skip the remainder of the
current iteration of the for loop if the value of i is even. The loop will
execute 10 times, with the value of i increasing by 1 each time. If the value
of i is even, the continue statement will be executed and the remainder of the
current iteration will be skipped. The output of this program will be the odd
numbers 1 through 9, each on a separate line.

The goto statement is used to transfer control to a labeled statement in the
same function. The syntax for the goto statement is as follows:
goto label;
...
label:
 // code to be executed

The return statement is used to terminate a function and return a value

break statement
In C++, the break statement is a jump statement that is used to terminate a
loop or switch statement and transfer control to the next statement following
the loop or switch. The syntax for the break statement is as follows:
break;

Here is an example of using the break statement in C++:

In this example, the break statement is used to terminate the for loop when
the value of i is 5. The loop will execute 5 times, with the value of i
increasing by 1 each time. When the value of i becomes 5, the break
statement will be executed and the loop will be terminated. The output of this
program will be the numbers 0 through 4, each on a separate line.
The break statement is often used to terminate a loop or switch statement
early when a certain condition is met. It is important to use the break
statement only within the body of a loop or switch statement, as using it
outside of these contexts will result in a compile-time error.

continue statement
In C++, the continue statement is a jump statement that is used to skip the
remainder of the current iteration of a loop and transfer control to the next
iteration. The syntax for the continue statement is as follows:
continue;

Here is an example of using the continue statement in C++:

In this example, the continue statement is used to skip the remainder of the
current iteration of the for loop if the value of i is even. The loop will
execute 10 times, with the value of i increasing by 1 each time. If the value
of i is even, the continue statement will be executed and the remainder of the

current iteration will be skipped. The output of this program will be the odd
numbers 1 through 9, each on a separate line.
The continue statement is often used to skip certain iterations of a loop when a
certain condition is met. It is important to use the continue statement only
within the body of a loop, as using it outside of a loop will result in a
compile-time error.

return statement
In C++, the return statement is a jump statement that is used to terminate a
function and return a value to the calling function. The syntax for the return
statement is as follows:
return expression;

The expression is an optional expression that specifies a value to be returned to
the calling function. If the expression is omitted, the function returns the
default value for the return type of the function.
Here is an example of using the return statement in C++:

In this example, the return statement is used to return the result of the add
function to the calling function. The add function takes two arguments, x
and y , and returns their sum. The return statement is executed when the add
function is called, and the value of x + y is returned to the calling function. In

this case, the value 5 is returned and printed to the screen.
The return statement is used to terminate a function and return a value to the
calling function. It is important to ensure that the return type of the function
is compatible with the value being returned, as attempting to return a value of
the wrong type will result in a compile-time error.

goto statement
In C++, the goto statement is a jump statement that is used to transfer control
to a labeled statement in the same function. The syntax for the goto statement
is as follows:
goto label;
...
label:
 // code to be executed

The label is a user-defined identifier that is used to mark a point in the code
to which control can be transferred.
Here is an example of using the goto statement in C++:

In this example, the goto statement is used to transfer control to the even
label when the value of x is even. The while loop will execute indefinitely,
with the value of x increasing by 1 each time. If the value of x is even, the

goto statement will be executed and control will be transferred to the even
label. At the even label, a message is printed to the screen indicating that an
even number has been encountered.
The goto statement is generally considered to be a less desirable control flow
construct than other options such as if statements, for loops, and while loops.
It is generally recommended to use goto sparingly, if at all, as it can make
code more difficult to understand and maintain.

Transfers of control
In C++, transfers of control are used to change the flow of execution in a
program. There are several types of transfers of control in C++, including:

Conditional statements: Conditional statements are used to execute a
block of code conditionally based on the value of a boolean expression.
The if statement is used to execute a block of code if a condition is
true, and the if-else statement is used to execute one block of code if a
condition is true and another block of code if the condition is false.
Iteration statements: Iteration statements are used to execute a block
of code repeatedly. The while loop is used to execute a block of code
while a condition is true, the do-while loop is used to execute a block of
code at least once and then repeatedly while a condition is true, and the
for loop is used to execute a block of code a specific number of times.
Jump statements: Jump statements are used to transfer control to a
different point in the program. The break statement is used to terminate
a loop or switch statement and transfer control to the next statement
following the loop or switch, the continue statement is used to skip the
remainder of the current iteration of a loop and transfer control to the
next iteration, the goto statement is used to transfer control to a labeled
statement in the same function, and the return statement is used to
terminate a function and return a value to the calling function.
Exception handling: Exception handling is used to handle errors or
exceptional circumstances that may occur during the execution of a
program. The try statement is used to enclose a block of code that may
throw an exception, the throw statement is used to throw an exception,
and the catch statement is used to handle an exception that has been
thrown.

Namespaces
In C++, a namespace is a container for a set of identifiers (such as functions,
variables, and classes). Namespaces are used to organize and manage the
identifiers in a program, and to prevent name collisions between identifiers
with the same name but different meanings.
The syntax for defining a namespace in C++ is as follows:
namespace namespace_name {
 // declarations
}

The namespace_name is the name of the namespace, and the declarations within
the namespace are the identifiers that are contained within the namespace.

Here is an example of defining and using a namespace in C++:

In this example, the my_namespace namespace contains the variables x and y
and the function add . The identifiers within the namespace can be accessed
using the namespace_name::identifier syntax. In this case, the variables x and y
are accessed using the my_namespace::x and my_namespace::y syntax, and the

function add is accessed using the my_namespace::add syntax.
Namespaces are useful for organizing and managing the identifiers in a
program, and for preventing name collisions between identifiers with the
same name but different meanings. It is important to choose descriptive and
unique names for namespaces to avoid conflicts with other namespaces in the
same program.

Enumerations
An enumeration (or enum) in C++ is a way to define a set of named integer
constants. It is often used to assign meaningful names to a set of integral
values, making it easier to understand and maintain the code.
Here's an example of how to define an enumeration:
enum Color {
 RED, // RED is assigned the value 0
 GREEN, // GREEN is assigned the value 1
 BLUE, // BLUE is assigned the value 2
 YELLOW // YELLOW is assigned the value 3
};

In this example, we have defined an enumeration called Color with four
members: RED , GREEN , BLUE , and YELLOW . By default, the first member
of an enumeration is assigned the value 0, and each subsequent member is
assigned a value that is one greater than the previous member. So, in this
case, RED is 0, GREEN is 1, BLUE is 2, and YELLOW is 3.
You can also specify the values for each member of the enumeration
explicitly, like this:
enum Color {
 RED = 10, // RED is assigned the value 10
 GREEN = 20, // GREEN is assigned the value 20
 BLUE = 30, // BLUE is assigned the value 30
 YELLOW = 40 // YELLOW is assigned the value 40
};

Once you have defined an enumeration, you can use its members like
variables:
Color favoriteColor = RED;

if (favoriteColor == RED) {
 std::cout << "Your favorite color is red." << std::endl;
}

Enumerations are often used in conjunction with a switch statement to handle
a fixed set of values:
switch (favoriteColor) {
 case RED:
 std::cout << "Your favorite color is red." << std::endl;
 break;
 case GREEN:
 std::cout << "Your favorite color is green." << std::endl;
 break;
 case BLUE:
 std::cout << "Your favorite color is blue." << std::endl;
 break;
 case YELLOW:
 std::cout << "Your favorite color is yellow." << std::endl;
 break;
 default:
 std::cout << "Your favorite color is unknown." << std::endl;
 break;
}

I hope this helps! Let me know if you have any questions.

Unions
In C++, a union is a data type that allows you to store different data types in
the same memory location. It is similar to a structure, but only one member
can be accessed at a time.
Here is an example of how to define a union in C++:

In this example, the union MyUnion has three members: x , y , and z .
However, because a union only allows you to access one member at a time,
you can only use one of these members at any given time.
To access the members of a union, you can use the . operator, just like you
would with a structure:

Unions are often used when you want to store different data types in the same
memory location, but you only need to access one of them at a time. This can
be useful for saving memory in certain situations. However, you should be
careful when using unions, as it is easy to accidentally overwrite the values of
one member with another.

Functions
In C++, a function is a block of code that performs a specific task and may
return a value. Functions allow you to reuse code and divide a large program
into smaller, more manageable pieces.
Here is an example of a simple function in C++:

This function, called add , takes two integer arguments, x and y , and returns
their sum as an integer.
To call this function and use its return value, you would do something like
this:

In C++, functions can have different types of parameters and return values.
For example, a function could return a floating-point value, or it could have
no return value at all (in which case it would have a return type of void).
Functions can also have default values for their parameters. This allows you

to call the function with fewer arguments, in which case the default values
will be used for the missing arguments. Here is an example:

Functions are an important part of C++ and are used extensively in most
programs. They help you to write more modular, reusable code, which can
make your programs easier to understand and maintain.

Functions with variable argument lists
In C++, you can define a function with a variable number of arguments using
the ... notation. This is known as a "variadic" function.
Here is an example of a simple variadic function in C++:

This function, called print , takes a format string as its first argument and a
variable number of additional arguments. The format string specifies the types
of the additional arguments. For example, if the format string is "dffs", this
indicates that the next three arguments are integers, and the fourth argument
is a string.
To call this function, you can use the ... notation to pass in the additional
arguments. Here is an example:
print("dffs", 10, 3.14, 5.67, "hello"); // Outputs "10 3.14 5.67 hello"

Variadic functions can be useful when you need to pass a variable number of
arguments to a function, but they can also be more difficult to use and
maintain than functions with fixed arguments. It is generally recommended to
use fixed-argument functions whenever possible, and only use variadic
functions when necessary.

Function overloading
In C++, function overloading is a feature that allows you to define multiple
functions with the same name, but with different sets of arguments. The C++
compiler will automatically select the correct function to call based on the
number and types of arguments passed to the function.
Here is an example of function overloading in C++:

In this example, the function add is overloaded three times. The first version
takes two integer arguments and returns an integer. The second version takes
two double arguments and returns a double. The third version takes two
string arguments and returns a string.
To call one of these functions, you can use the normal function call syntax,
and the C++ compiler will automatically select the correct version of the
function based on the types of the arguments you pass. For example:
int a = add(1, 2); // Calls the first version of add
double b = add(3.14, 2.72); // Calls the second version of add
std::string c = add("hello", " world"); // Calls the third version of add

Function overloading can be useful when you want to perform similar
operations on different data types, or when you want to provide multiple
versions of a function with different numbers of arguments. However, you
should be careful when overloading functions, as it can be confusing for users
of your code if the functions have the same name but behave differently
based on the arguments. It is generally a good idea to choose function names
that clearly describe their purpose and the types of arguments they expect.

Explicitly defaulted and deleted functions
In C++, you can use the = default and = delete syntax to specify the default
behavior of certain functions in your class.
The = default syntax can be used to explicitly specify that a function should
have its default behavior, which is defined by the C++ language. This is
usually used for functions that have a default implementation, such as the
copy constructor or the assignment operator.
Here is an example of using = default to explicitly specify the default behavior
of a copy constructor:

The = delete syntax can be used to explicitly specify that a function should not
be used. This is often used to prevent the compiler from generating certain
functions that you do not want, such as the copy constructor or the
assignment operator.
Here is an example of using = delete to explicitly specify that a copy
constructor should not be used:

Using = default and = delete can be useful in certain situations where you want
to explicitly control the behavior of certain functions in your class. However,
you should be careful when using these syntaxes, as they can be confusing
for users of your code if not used appropriately. It is generally a good idea to
use the default behavior of functions whenever possible, and only use =
default or = delete when necessary.
Argument-dependent name (Koenig) lookup on
In C++, argument-dependent name lookup (also known as "Koenig lookup")
is a feature that allows the compiler to search for functions in the namespaces
of the types of the function arguments. This can be useful when you want to
call a function that is defined in the same namespace as one of the arguments

to the function.
Here is an example of how argument-dependent name lookup works in C++:

In this example, the function f is defined in the A namespace and takes an
argument of type X , which is also defined in the A namespace. The function
f calls the function g , which is not defined in the A namespace. However,
because g is called with an argument of type Y , which is defined in the B
namespace, the compiler will search for g in the B namespace using
argument-dependent name lookup. This allows the compiler to find the
correct definition of g and call it correctly.
Argument-dependent name lookup can be useful when you want to call
functions that are defined in the same namespace as one of the function
arguments. However, it can also cause confusion if you are not careful, as the
compiler may find multiple definitions of the same function in different
namespaces. It is generally a good idea to use fully qualified names for
functions to avoid any potential confusion.

functions in c++
In C++, a function is a block of code that performs a specific task and may
return a value. Functions allow you to reuse code and divide a large program
into smaller, more manageable pieces.
Here is an example of a simple function in C++:

This function, called add , takes two integer arguments, x and y , and returns
their sum as an integer.
To call this function and use its return value, you would do something like
this:

In C++, functions can have different types of parameters and return values.
For example, a function could return a floating-point value, or it could have
no return value at all (in which case it would have a return type of void).
Functions can also have default values for their parameters. This allows you
to call the function with fewer arguments, in which case the default values
will be used for the missing arguments. Here is an example:

Functions are an important part of C++ and are used extensively in most
programs. They help you to write more modular, reusable code, which can
make your programs easier to understand and maintain.

Default arguments
In C++, you can specify default values for function arguments. This allows
you to call the function with fewer arguments, in which case the default
values will be used for the missing arguments.

Here is an example of a function with default arguments in C++:

In this example, the function add takes two integer arguments, x and y . The
y argument has a default value of 1 , which means that it is optional. You can
call this function with either one or two arguments:
int a = add(3); // a is now equal to 4
int b = add(3, 5); // b is now equal to 8

Default arguments can be useful when you want to provide default values for
optional function arguments. However, you should be careful when using
default arguments, as they can make your code more difficult to understand if
used excessively. It is generally a good idea to use default arguments only for
optional arguments that have a clear and obvious default value.

Inline functions
In C++, an inline function is a function that is expanded in place by the
compiler whenever it is called, rather than being called through the normal
function call mechanism. Inline functions can be useful for improving the
performance of your program by reducing the overhead of function calls.
Here is an example of an inline function in C++:

To use this inline function, you can call it just like any other function:
int a = 3;
int b = 4;
int c = add(a, b); // c is now equal to 7

The inline keyword is a request to the compiler to expand the function inline,
but the compiler is not required to honor this request. The compiler may
choose not to inline the function if it determines that doing so would not be
beneficial.
Inline functions can be useful for improving the performance of your
program by reducing the overhead of function calls. However, you should be
careful when using inline functions, as they can increase the size of your
program if used excessively. It is generally a good idea to use inline functions

only for small, simple functions that are called frequently.

Chapter Eleven
Operator overloading

In C++, operator overloading is a feature that allows you to redefine the
behavior of operators for user-defined types. This can be useful for making
your code more readable and intuitive by allowing you to use operators like
+ , - , * , and / with your own types.
Here is an example of operator overloading in C++:

In this example, the Vector2 class has three overloaded operators: + , - , and
* . These operators allow you to add, subtract, and multiply Vector2 objects
using the familiar + , - , and * operators.
To use these overloaded operators, you can use the normal operator syntax:

Operator overloading can be useful for making your code more readable and
intuitive. However, you should be careful when overloading operators, as it
can be confusing for users of your code if the operators behave unexpectedly.
It is generally a good idea to overload operators in a way that is consistent
with their standard behavior.

General rules for operator overloading
In C++, there are a few general rules to follow when overloading operators:

1. Overload operators only for types that make sense. For example, it does
not make sense to overload the + operator for a type that represents a
database connection.

2. Overload operators in a way that is consistent with their standard
behavior. For example, if you overload the + operator for a type that
represents a complex number, it should add the real and imaginary
parts of the numbers.

3. Avoid overloading operators that change the fundamental behavior of
the operator. For example, it is generally not a good idea to overload
the = operator to perform some other operation, as this can be
confusing for users of your code.

4. Use the const keyword appropriately when overloading operators. This
will allow you to use the overloaded operator on const objects and
prevent users from modifying the object accidentally.

5. Be aware of the precedence and associativity of the operators you are
overloading. This will ensure that your overloaded operators behave as
expected when used in expressions with other operators.

By following these general rules, you can ensure that your operator
overloading is clear, intuitive, and consistent with the standard behavior of
the operators. This will make your code easier to understand and maintain.

Overloading unary operators
In C++, you can overload unary operators (operators that take a single
operand) by defining member functions or non-member functions with the
appropriate names.

Here is an example of overloading the unary - operator as a member
function:

In this example, the Vector2 class has an overloaded - operator that negates
the x and y components of the Vector2 object.
To use this overloaded operator, you can use the normal operator syntax:

Here is an example of overloading the unary ! operator as a non-member
function:

In this example, the MyClass class has a member function called getValue that
returns the value of a private member variable. The ! operator is overloaded
as a non-member function that negates the value returned by getValue .

To use this overloaded operator, you can use the normal operator syntax:

Unary operator overloading can be useful for making your code more
readable and intuitive. However, you should be careful when overloading
unary operators, as it can be confusing for users of your code if the operators
behave unexpectedly. It is generally a good idea to overload unary operators
in a way that is consistent with their standard behavior.

Increment and decrement operator overloading
In C++, you can overload the increment (++) and decrement (--) operators
for user-defined types. This can be useful for making your code more
readable and intuitive by allowing you to use these operators with your own

types.
Here is an example of overloading the increment and decrement operators as
member functions:

In this example, the Counter class has overloaded ++ and -- operators that
increment and decrement a private member variable called value_ . The ++
operator is overloaded in both prefix (++x) and postfix (x++) forms, and the
-- operator is overloaded in both prefix (--x) and postfix (x--) forms.
To use these overloaded operators, you can use the normal operator syntax:

Increment and decrement operator overloading can be useful for making your
code more readable and intuitive. However, you should be careful when
overloading these operators, as it can be confusing for users of your code if
the operators behave unexpectedly. It is generally a good idea to overload
these operators in a way that is consistent with their standard behavior.

Binary operators
In C++, a binary operator is an operator that takes two operands. Some
common examples of binary operators include + , - , * , / , and % .
Here is an example of using binary operators in C++:

In C++, you can also overload binary operators for user-defined types. This
allows you to define custom behavior for the operators when they are used
with your own types.
Here is an example of overloading the + operator as a member function:

In this example, the Vector2 class has an overloaded + operator that adds the
x and y components of the two Vector2 objects.

To use this overloaded operator, you can use the normal operator syntax:

Binary operator overloading can be useful for making your code more
readable and intuitive. However, you should be careful when overloading
binary operators, as it can be confusing for users of your code if the operators
behave unexpectedly. It is generally a good idea to overload binary operators
in a way that is consistent with their standard behavior.

Assignment
In C++, the assignment operator (=) is used to assign a value to a variable.
Here is an example of using the assignment operator in C++:

In the first line, the = operator is used to initialize the variable a to the value
3 . In the second line, the = operator is used to assign a new value to a ,
overwriting the previous value.
You can also use the assignment operator to chain assignments, like this:

In this example, the assignment operator is used to assign the value 0 to all
three variables in a single line of code.
You can also use the assignment operator to assign the value of an expression
to a variable, like this:

In this example, the = operator is used to assign the result of the expression
a + b (which is 7) to the variable c .
The assignment operator is an important part of C++ and is used extensively
in most programs. It allows you to assign values to variables and modify their
values as needed.

Function call
In C++, a function call is an expression that invokes a function and optionally
passes arguments to the function. The syntax for a function call is the name
of the function followed by a list of arguments in parentheses.
Here is an example of a function call in C++:

In this example, the function add takes two integer arguments, x and y , and
returns their sum as an integer. The function is called by using its name
followed by the arguments in parentheses. The return value of the function is
assigned to the variable c .
You can also use function calls as part of expressions, like this:

In this example, the function call add(a, b) is used as part of an expression that
multiplies the return value by 2 . The result of the expression is then assigned
to the variable c .
Function calls are an important part of C++ and are used extensively in most
programs. They allow you to reuse code and divide a large program into
smaller, more manageable pieces.

Subscripting
In C++, subscripting (also known as indexing) is a way to access individual
elements of an array or container using the [] operator.
Here is an example of using subscripting to access elements of an array in
C++:

In this example, the [] operator is used to access the elements of the arr
array. The first element of the array has an index of 0 , the second element
has an index of 1 , and so on.
You can also use subscripting to modify the elements of an array:

Subscripting is a powerful and convenient way to access and modify the
elements of an array or container in C++. It is used extensively in many
programs to manipulate data stored in arrays and containers.
Member access
In C++, member access is a way to access the data members and member
functions of a class or structure using the . or -> operator.

Here is an example of using member access to access data members of a class
in C++:

In this example, the Point class has two data members, x_ and y_ , and two
member functions, getX and getY , that return the values of these data
members. The data members are accessed using the . operator, and the
member functions are called using the . operator and parentheses.
You can also use member access to call member functions of a class:

Classes and structs
In C++, classes and structs are user-defined types that allow you to define
your own custom data types.
A class is a user-defined type that can contain data members (variables) and
member functions (functions that are part of the class). Classes are defined

using the class keyword, like this:

In this example, the Point class has two data members, x_ and y_ , and two
member functions, getX and getY , that return the values of these data
members.
A struct is similar to a class, but it has all members public by default. Structs
are defined using the struct keyword, like this:

In this example, the Point struct has two data members, x and y , which are
both public.
You can create an instance of a class or struct using the new operator or by
declaring a variable of the class or struct type, like this:
Point p1(1, 2); // Create an instance of Point using constructor

Point *p2 = new Point(3, 4); // Create an instance of Point using new

Point p3; // Create an instance of Point with default constructor

Classes and structs are an important part of C++ and are used extensively in
many programs to define custom data types and encapsulate data and
functionality.

what is class
In C++, a class is a user-defined type that can contain data members
(variables) and member functions (functions that are part of the class).
Classes are defined using the class keyword, like this:

In this example, the Point class has two data members, x_ and y_ , and two
member functions, getX and getY , that return the values of these data
members.
You can create an instance of a class using the new operator or by declaring a
variable of the class type, like this:
Point p1(1, 2); // Create an instance of Point using constructor

Point *p2 = new Point(3, 4); // Create an instance of Point using new

Point p3; // Create an instance of Point with default constructor

Classes are an important part of C++ and are used extensively in many
programs to define custom data types and encapsulate data and functionality.

what struct
In C++, a struct is a user-defined type that is similar to a class, but all
members are public by default. Structs are defined using the struct keyword,
like this:

In this example, the Point struct has two data members, x and y , which are
both public.
You can create an instance of a struct by declaring a variable of the struct
type, like this:

Structs are often used to define simple data structures that do not need the
encapsulation and protection provided by classes. However, structs can also
contain member functions and can be used in the same way as classes in
many cases.
Structs are an important part of C++ and are used extensively in many
programs to define custom data types and group related data together.

Class member overview
In C++, a class is a user-defined type that can contain data members
(variables) and member functions (functions that are part of the class).
Classes are defined using the class keyword, like this:

In this example, the Point class has two data members, x_ and y_ , and two
member functions, getX and getY , that return the values of these data
members.
The public keyword in the class definition specifies that the members
following it are accessible from outside the class. This means that you can
access the member functions and data members of an instance of the Point
class from outside the class using the . operator.
The private keyword in the class definition specifies that the members
following it are only accessible from within the class. This means that you
cannot access the data members directly from outside the class, but you can
access them through member functions.

You can create an instance of a class using the new operator or by declaring a
variable of the class type, like this:

Classes are an important part of C++ and are used extensively in many
programs to define custom data types and encapsulate data and functionality.

Member access control
In C++, you can use the public , private , and protected keywords to specify the
access control for the members of a class.
The public keyword specifies that the members following it are accessible
from outside the class. This means that you can access the member functions
and data members of an instance of the class from outside the class using the
. operator.
The private keyword specifies that the members following it are only
accessible from within the class. This means that you cannot access the data
members directly from outside the class, but you can access them through
member functions.
The protected keyword specifies that the members following it are only
accessible from within the class and its derived classes. This means that you
cannot access the data members directly from outside the class, but you can
access them through member functions in the class and its derived classes.

Here is an example of using access control in a class definition:

In this example, the Point class has two public member functions, getX and
getY , that can be called from outside the class using the . operator. The x_
and y_ data members are private, which means that they can only be
accessed from within the class.
Access control is an important part of C++ and is used to specify which
members of a class are accessible from outside the class. It allows you to
encapsulate data and functionality and control how it is used.

what is friend
In C++, a friend function is a function that has access to the private and
protected members of a class. A friend function is not a member function of
the class, but it has access to the class's internal implementation details.

You can declare a function as a friend of a class by using the friend keyword
in the class definition, like this:

In this example, the Point class has a private data member, x_ , and a friend
function, distance , that has access to the x_ data member. The distance
function is not a member function of the Point class, but it can access the
private data members of the Point class as if it were a member function.
friend functions are useful when you want to allow a function to access the
private data members of a class, but you do not want to make the function a
member function of the class. They are also used to implement operator
overloading in C++.
friend functions are an important part of C++ and are used extensively in
many programs to implement advanced programming techniques and
operator overloading.

private
In C++, the private keyword is used to specify the access control for the
members of a class. Members of a class that are declared as private are only
accessible from within the class, and they cannot be accessed directly from
outside the class.
Here is an example of using the private keyword in a class definition:

In this example, the Point class has two public member functions, getX and
getY , that can be called from outside the class using the . operator. The x_
and y_ data members are private, which means that they can only be
accessed from within the class.
The private access control is used to encapsulate data and functionality and
control how it is used. It allows you to hide the implementation details of a
class from external code and protect the integrity of the data.
The private keyword is an important part of C++ and is used extensively in
many programs to specify the access control for the members of a class.

protected
In C++, the protected keyword is used to specify the access control for the
members of a class. Members of a class that are declared as protected are only
accessible from within the class and its derived classes, and they cannot be
accessed directly from outside the class.

Here is an example of using the protected keyword in a class definition:

In this example, the Point class has two public member functions, getX and
getY , that can be called from outside the class using the . operator. The x_
and y_ data members are protected, which means that they can only be
accessed from within the Point class and its derived classes.
The ColorPoint class is derived from the Point class and has access to the x_
and y_ data members. However, these data members are not accessible from
outside the ColorPoint class.
The protected access control is used to allow derived classes to access the data
and functionality of their base classes, while still hiding the implementation
details from external code. It is an important part of the inheritance
mechanism in C++ and is used extensively in many programs to specify the
access control for the members of a class.

public
In C++, the public keyword is used to specify the access control for the
members of a class. Members of a class that are declared as public are
accessible from outside the class, and they can be accessed directly using the
. operator.

Here is an example of using the public keyword in a class definition:

In this example, the Point class has two public member functions, getX and
getY , that can be called from outside the class using the . operator. The x_
and y_ data members are private, which means that they can only be
accessed from within the class.
The public access control is used to specify which members of a class are
accessible from outside the class. It allows you to expose the data and
functionality of a class to external code and control how it is used.
The public keyword is an important part of C++ and is used extensively in
many programs to specify the access control for the members of a class.

Brace initialization
In C++, brace initialization is a way of initializing variables and objects using
curly braces {} . It allows you to specify the values of the variables or the
arguments to the constructor of an object when it is created.

Here are some examples of using brace initialization:

Brace initialization is preferred over other forms of initialization in C++
because it is more expressive and less error-prone. It is also more flexible and
allows you to initialize variables and objects with a wider range of values and
types.
Brace initialization is an important part of C++ and is used extensively in
many programs to initialize variables and objects. It is especially useful when
you want to specify non-default values or arguments to the constructor of an
object.

Object lifetime and resource management (RAII)
In C++, the lifetime of an object refers to the period of time during which the
object exists in memory and is accessible from your code. Proper
management of the lifetime of objects is important because it determines
when resources are allocated and released, and how long the resources are
available to your program.
One common way to manage the lifetime of objects and resources in C++ is
through the use of the Resource Acquisition Is Initialization (RAII)
technique. RAII is a design pattern that uses object lifetime to manage
resources in a way that is safe, efficient, and exception-safe.
The basic idea of RAII is to associate the acquisition of a resource with the
creation of an object, and the release of the resource with the destruction of
the object. This ensures that the resource is automatically released when the
object goes out of scope or is destroyed, even if an exception is thrown.

Here is an example of using RAII to manage the lifetime of an object and a
resource:

In this example, the File class manages the lifetime of a file handle. The file
handle is acquired in the constructor of the File object and released in the
destructor. This ensures that the file handle is always properly closed, even if
an exception is thrown while the file is being used.
RAII is an important part of C++ and is used extensively in many programs
to manage the lifetime of objects and resources in a safe and efficient manner.
It helps to prevent resource leaks and improve the reliability and exception-

safety of your code.

Pimpl idiom for compile-time encapsulation
In C++, the Pointer to IMPLementation (Pimpl) idiom is a design pattern that
is used to achieve compile-time encapsulation of implementation details. It is
used to hide the implementation details of a class from the public interface,
while still allowing the class to be used in a type-safe manner.
The basic idea of the Pimpl idiom is to define the public interface of a class in
a header file, and to define the implementation details in a separate source
file. The implementation details are accessed through a pointer to a forward-
declared class that is defined in the implementation file.

Portability at ABI boundaries
In C++, the Application Binary Interface (ABI) defines the conventions and
rules for the interaction between different software components at the binary
level. It specifies how data is laid out in memory, how function calls and
returns are made, and other low-level details that are necessary for different
software components to interoperate.
When writing portable C++ code, it is important to consider the ABI at the
boundaries between different software components, such as libraries,
executables, and shared objects. Different compilers and platforms may have
different ABIs, and it is important to ensure that your code is compatible with
the ABIs of the platforms you are targeting.
There are several ways to ensure portability at ABI boundaries in C++:

1. Use a stable ABI: Some platforms, such as Linux and Windows, have
stable ABIs that are supported by multiple compilers. By using a stable
ABI, you can ensure that your code is compatible with different
compilers and platforms.

2. Use a cross-platform ABI: There are several cross-platform ABIs
available, such as the Itanium C++ ABI, that are supported by multiple
compilers on different platforms. By using a cross-platform ABI, you
can ensure that your code is portable across different platforms.

3. Use a versioning system: Some systems, such as the ELF versioning
system on Linux, allow you to specify different versions of your code

for different ABIs. By using a versioning system, you can ensure that
your code is compatible with different ABIs and platforms.

4. Use a compatibility layer: Some systems, such as the Microsoft
Windows Portable Executable (PE) format, allow you to specify
compatibility information in the binary. By using a compatibility layer,
you can ensure that your code is compatible

Chapter twelve
Constructors

In C++, a constructor is a special member function of a class that is called
when an object of the class is created. Constructors are used to initialize the
data members of the object and perform any other tasks that are required to
set up the object for use.
Constructors have the same name as the class and do not have a return type,
not even void. They are automatically called by the compiler when an object
is created, and they cannot be called directly from your code.
Here is an example of a class with a constructor:

In this example, the Point class has a constructor that takes two arguments, x
and y , and initializes the x_ and y_ data members with these values. The
constructor does not have a return type, and it is called automatically by the
compiler when an object of the Point class is created.
Constructors are an important part of C++ and are used extensively in many
programs to initialize objects and perform other tasks when they are created.
You can define multiple constructors in a class to provide different ways of
creating objects, or to support

Copy constructors and copy assignment operators
In C++, a copy constructor is a special member function of a class that is
called when an object of the class is created as a copy of another object. A
copy assignment operator is a special member function that is called when an
object is assigned to another object.
Copy constructors and copy assignment operators are used to perform a deep
copy of an object, which means that they create a new object with a separate
copy of the data members of the original object. This is necessary to ensure
that the new object is independent of the original object and can be modified
without affecting the original object.
Here is an example of a class with a copy constructor and a copy assignment
operator:

In this example, the Point class has a copy constructor that takes a const
reference to another Point object and initializes the data members of the new
object with the values of the original object. The copy assignment operator is
defined as an overloaded assignment operator that performs a deep copy of
the data members of the original object.
Copy constructors and copy assignment operators are an important part of
C++ and are used extensively in many programs to support the creation and

assignment of objects. They are necessary to ensure that objects are properly
copied and modified without affecting the original objects.

Move constructors and move assignment operators
In C++, a move constructor is a special member function of a class that is
called when an object of the class is created by moving the contents of
another object. A move assignment operator is a special member function
that is called when an object is assigned to another object by moving the
contents of the original object.
Move constructors and move assignment operators are used to perform a
move of an object, which means that they transfer the contents of the original
object to the new object without making a copy. This is more efficient than
making a copy because it avoids the overhead of copying the data members
of the object.
Here is an example of a class with a move constructor and a move
assignment operator:

In this example, the Point class has a move constructor that takes an rvalue
reference to another Point object and initializes the data members of the new
object with the values of the original object. The move assignment operator is
defined as an overloaded assignment operator that performs a move of the
data members of the original object.
Move constructors and move assignment operators are an important part of
C++ and are used extensively in many programs to support the efficient
creation and assignment of objects. They are especially useful when working
with large objects or objects with expensive copy operations, as they can
improve the performance of your code.

Delegating constructors
In C++, delegating constructors are a feature that allows a constructor of a
class to call another constructor of the same class as part of its initialization.
This can be useful when you want to provide multiple ways of constructing
an object, or when you want to reuse the initialization code of one constructor

in another constructor.
To use delegating constructors, you can use the : syntax followed by the
name of the constructor you want to call and the arguments you want to pass
to it. The called constructor is executed before the body of the calling
constructor, and it can initialize the data members and perform other tasks as
needed.
Here is an example of a class with delegating constructors:

In this example, the Point class has three constructors: a default constructor, a
single-argument constructor, and a two-argument constructor. The default
constructor and the single-argument constructor use delegating constructors
to initialize the data members of the object by calling the two-argument
constructor with the appropriate arguments.
Delegating constructors are an important part of C++ and are used
extensively in many programs to provide multiple ways of constructing
objects and to reuse initialization code. They can improve the readability and
maintainability of your code by reducing duplication and allowing you to
centralize common initialization tasks in a single constructor.

Destructors
In C++, a destructor is a special member function of a class that is called
when an object of the class is destroyed. Destructors are used to perform any
tasks that are required to clean up the object and release any resources that it
holds.
Destructors have the same name as the class preceded by a tilde (~) and do

not have any arguments or a return type. They are automatically called by the
compiler when an object goes out of scope or is deleted, and they cannot be
called directly from your code.
Here is an example of a class with a destructor:

In this example, the Point class has a destructor that does not have any
arguments or a return type and does not perform any tasks. The destructor is
called automatically by the compiler when the p object goes out of scope at
the end of main .
Destructors are an important part of C++ and are used extensively in many
programs to release resources and perform other tasks when objects are
destroyed. You can define a destructor in a class to perform any tasks that are
required to clean up the object before it is destroyed.

Overview of member functions
In C++, member functions are functions that are defined within a class and
operate on the data members of the class. They are an important part of the
class interface and are used to provide the behavior and functionality of the
class.
Member functions have several characteristics that distinguish them from
other types of functions:

1. Member functions are defined inside the class definition and have
access to the private data members of the class. This allows them to
operate on the internal state of the object and to provide the desired
behavior and functionality.

2. Member functions are called using the . or -> operator, depending on
whether the object is a reference or a pointer. This allows you to call
the member function on an object and access its data members.

3. Member functions can be declared as const , which means that they do
not modify the data members of the object and can be called on a const
object. This allows you to define functions that do not modify the state
of the object and can be called from const context.

Here is an example of a class with some member functions:

virtual specifier
In C++, the virtual specifier is used to declare a virtual member function in a
class. A virtual member function is a member function that can be overridden
by derived classes, allowing them to provide their own implementation of the
function.

The virtual specifier is used in the declaration of the member function in the
base class, and the function is marked as override in the derived class to
indicate that it is overriding the base class implementation.
Here is an example of a class with a virtual member function:

In this example, the Shape class has a pure virtual member function draw that
is declared with the virtual specifier and does not have an implementation.
The Circle and Square classes are derived from Shape and provide their own
implementations of the draw function by marking it as override .
Virtual member functions are an important part of C++ and are used
extensively in many programs to support polymorphism and runtime
polymorphism. They allow you to define a common interface for a group of
related classes and provide different implementations for each class,
depending on its specific behavior and functionality.

override specifier

In C++, the override specifier is used to indicate that a member function in a
derived class is overriding a virtual member function in the base class. The
override specifier ensures that the derived class function has the same signature
and return type as the base class function, and it helps to prevent mistakes
and improve the readability of the code.
The override specifier is used in the declaration of the member function in the
derived class, and it must be preceded by the virtual specifier in the
declaration of the base class function.
Here is an example of a class with a virtual member function and an
overridden function:

In this example, the Shape class has a pure virtual member function draw that
is declared with the virtual specifier and does not have an implementation.
The Circle class is derived from Shape and provides its own implementation
of the draw function by marking it as override .
The override specifier is an important part of C++ and is used extensively in
many programs to indicate that a member function in a derived class is
overriding a virtual member function in the base class. It helps to ensure that
the derived class function has the correct signature and return type and to
prevent mistakes in the implementation of the derived class.

table of contents
Your comprehensive step-by-step guide to learn everything about C++
Introduction

Chapter one
basic concepts

C++ type system
Scope
Header files
Translation units and linkage
main function and command-line arguments
Program termination
Lvalues and rvalues
Temporary objects
Alignment
Trivial, standard-layout, and POD types
what is Value types
Type conversions and type safety
Standard conversions

Chapter II
built-in types

Built-in types
Data type ranges
nullptr
nullptr
bool
false
true
__m64
__m128
__m128d
__m128i
__ptr32, __ptr64

Chapter III
NUMERICAL LIMITS

Numerical limits
Integer limits

Floating limits
the fourth chapter
Declarations and definitions

Storage classes
auto
const
constexpr
extern
Initializers
Aliases and typedefs
using declaration
volatile
decltype
Attributes

Chapter V
Built-in operators, precedence, and association

alignof operator
__uuidof operator
Additive operators: + and -
Address-of operator: &
Assignment operators
Bitwise AND operator: &
Bitwise exclusive OR operator: ^
Bitwise inclusive OR operator: |
Cast operator: ()
Comma operator: ,
Conditional operator: ? :
delete operator
Equality operators: == and !=
Explicit type conversion operator: ()

Function call operator: ()
Indirection operator: *
Left shift and right shift operators (>> and <<)
Logical AND operator: &&
Logical negation operator: !
Logical OR operator: ||
Member access operators: . and ->
Multiplicative operators and the modulus operator
new operator
One's complement operator: ~
Pointer-to-member operators: .* and ->*
Postfix increment and decrement operators: ++ and --
Prefix increment and decrement operators: ++ and --
Relational operators: <, >, <=, and >=
Scope resolution operator: ::
sizeof operator
Subscript operator:
typeid operator in
Unary plus and negation operators: + and -
Expressions

Chapter six
Types of expressions

Primary expressions
Ellipsis and variadic templates
Postfix expressions
Expressions with unary operators
Expressions with binary operators
Constant expressions
Semantics of expressions
what is Casting

seventh chapter
Casting operators

dynamic_cast operator
bad_cast exception
static_cast operator
const_cast operator
reinterpret_cast operator

Chapter VIII

Run-Time Type Information (RTTI)
bad_typeid exception
type_info class
Statements
Overview of C++ statements
Labeled statements
Expression statement
Null statement
Compound statements (Blocks)

Chapter Nine
Selection statements

if-else statement
__if_exists statement
__if_not_exists statement
switch statement
Iteration statements
while statement
do-while statement
for statement
Range-based for statement

Chapter Ten
jump statements

break statement
continue statement
return statement
goto statement
Transfers of control
Namespaces
Enumerations
Unions
Functions
Functions with variable argument lists
Function overloading
Explicitly defaulted and deleted functions
Argument-dependent name (Koenig) lookup on
Default arguments
Inline functions

Chapter Eleven

Operator overloading
General rules for operator overloading
Overloading unary operators
Increment and decrement operator overloading
Binary operators
Assignment
Function call
Subscripting
Member access
Classes and structs
what is class
what struct
Class member overview
Member access control
what is friend
private
protected
public
Brace initialization
Object lifetime and resource management (RAII)
Pimpl idiom for compile-time encapsulation
Portability at ABI boundaries

Chapter twelve
Constructors

Copy constructors and copy assignment operators
Move constructors and move assignment operators
Delegating constructors
Destructors
Overview of member functions
virtual specifier
override specifier

	Your comprehensive step-by-step guide to learn everything about C++
	Introduction
	Chapter one
	basic concepts
	C++ type system
	Scope
	Header files
	Translation units and linkage
	main function and command-line arguments
	Program termination
	Lvalues and rvalues
	Temporary objects
	Alignment
	Trivial, standard-layout, and POD types
	what is Value types
	Type conversions and type safety
	Standard conversions

	Chapter II
	built-in types
	Built-in types
	Data type ranges
	nullptr
	nullptr
	bool
	false
	true
	__m64
	__m128
	__m128d
	__m128i
	__ptr32, __ptr64

	Chapter III
	NUMERICAL LIMITS
	Numerical limits
	Integer limits
	Floating limits

	the fourth chapter
	Declarations and definitions
	Storage classes
	auto
	const
	constexpr
	extern
	Initializers
	Aliases and typedefs
	using declaration
	volatile
	decltype
	Attributes

	Chapter V
	Built-in operators, precedence, and association
	alignof operator
	__uuidof operator
	Additive operators: + and -
	Address-of operator: &
	Assignment operators
	Bitwise AND operator: &
	Bitwise exclusive OR operator: ^
	Bitwise inclusive OR operator: |
	Cast operator: ()
	Comma operator: ,
	Conditional operator: ? :
	delete operator
	Equality operators: == and !=
	Explicit type conversion operator: ()
	Function call operator: ()
	Indirection operator: *
	Left shift and right shift operators (>> and <<)
	Logical AND operator: &&
	Logical negation operator: !
	Logical OR operator: ||
	Member access operators: . and ->
	Multiplicative operators and the modulus operator
	new operator
	One's complement operator: ~
	Pointer-to-member operators: .* and ->*
	Postfix increment and decrement operators: ++ and --
	Prefix increment and decrement operators: ++ and --
	Relational operators: <, >, <=, and >=
	Scope resolution operator: ::
	sizeof operator
	Subscript operator:
	typeid operator in
	Unary plus and negation operators: + and -
	Expressions

	Chapter six
	Types of expressions
	Primary expressions
	Ellipsis and variadic templates
	Postfix expressions
	Expressions with unary operators
	Expressions with binary operators
	Constant expressions
	Semantics of expressions
	what is Casting

	seventh chapter
	Casting operators
	dynamic_cast operator
	bad_cast exception
	static_cast operator
	const_cast operator
	reinterpret_cast operator

	Chapter VIII
	Run-Time Type Information (RTTI)
	bad_typeid exception
	type_info class
	Statements
	Overview of C++ statements
	Labeled statements
	Expression statement
	Null statement
	Compound statements (Blocks)

	Chapter Nine
	Selection statements
	if-else statement
	__if_exists statement
	__if_not_exists statement
	switch statement
	Iteration statements
	while statement
	do-while statement
	for statement
	Range-based for statement

	Chapter Ten
	jump statements
	break statement
	continue statement
	return statement
	goto statement
	Transfers of control
	Namespaces
	Enumerations
	Unions
	Functions
	Functions with variable argument lists
	Function overloading
	Explicitly defaulted and deleted functions
	Argument-dependent name (Koenig) lookup on
	Default arguments
	Inline functions

	Chapter Eleven
	Operator overloading
	General rules for operator overloading
	Overloading unary operators
	Increment and decrement operator overloading
	Binary operators
	Assignment
	Function call
	Subscripting
	Member access
	Classes and structs
	what is class
	what struct
	Class member overview
	Member access control
	what is friend
	private
	protected
	public
	Brace initialization
	Object lifetime and resource management (RAII)
	Pimpl idiom for compile-time encapsulation
	Portability at ABI boundaries

	Chapter twelve
	Constructors
	Copy constructors and copy assignment operators
	Move constructors and move assignment operators
	Delegating constructors
	Destructors
	Overview of member functions
	virtual specifier
	override specifier

