

Database Design Using
Entity-Relationship

Diagrams
Essential to database design, entity-relationship (ER) diagrams are known for their
usefulness in data modeling and mapping out clear database designs. Tey are also well-
known for being difcult to master. With Database Design Using Entity-Relationship
Diagrams, T ird Edition, database designers, developers, and students preparing to enter
the feld can quickly learn the ins and outs of data modeling through ER diagramming.
Building on the success of the bestselling frst and second editions, this accessible

text includes a new chapter on the relational model and functional dependencies. It
also includes expanded chapters on Enhanced Entity-Relationship (EER) diagrams
and reverse mapping. It uses cutting-edge case studies and examples to help readers
master database development basics and defnes ER and EER diagramming in terms
of requirements (end user requests) and specifcations (designer feedback to those
requests), facilitating agile database development. T is book

• Describes a step-by-step approach for producing an ER diagram and developing
a relational database from it

• Contains exercises, examples, case studies, bibliographies, and summaries in each
chapter

• Details the rules for mapping ER diagrams to relational databases
• Explains how to reverse engineer a relational database back to an entity-

relationship model
• Includes grammar for the ER diagrams that can be presented back to the user,

facilitating agile database development

The updated exercises and chapter summaries provide the real-world understanding
needed to develop ER and EER diagrams, map them to relational databases, and test
the resulting relational database. Complete with a wealth of additional exercises
and examples throughout, this edition should be a basic component of any database
course. Its comprehensive nature and easy-to-navigate structure make it a resource that
students and professionals will turn to throughout their careers.

http://taylorandfrancis.com

 Database Design Using
Entity-Relationship

Diagrams
 T ird Edition

Sikha Saha Bagui
Richard Walsh Earp

 Tird Edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 Sikha Saha Bagui and Richard Walsh Earp

First edition published by CRC Press 2003

Second edition published by CRC Press 2011

 Reasonable eforts have been made to publish reliable data and information, but the
author and publisher cannot assume responsibility for the validity of all materials or the
consequences of their use. Te authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if
permission to publish in this form has not been obtained. If any copyright material has not
been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafer invented, including photocopying, microflming, and
recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978–750–8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks
and are used only for identifcation and explanation without intent to infringe.

 ISBN: 978-1-032-01718-1 (hbk)
ISBN: 978-1-032-32321-3 (pbk)
ISBN: 978-1-003-31445-5 (ebk)

 DOI: 10.1201/9781003314455

Typeset in Minion
by Apex CoVantage, LLC

http://www.copyright.com
http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003314455

Dedicated to my father, Santosh Saha; mother, Ranu

Saha; husband, Subhash; sons, Sumon and Sudip; brother,

Pradeep Saha; and nieces, Priyashi and Piyali.

S.S.B.

Dedicated to my late wife, Brenda, and my

children, Beryl, Rich, Gen, and Mary Jo.

And to my wife, Anne, who encouraged me to update

this work and meticulously edited every word.

R.W.E.

http://taylorandfrancis.com

Contents

 Preface ..xix
 Acknowledgments .. xxiii
Authors .. xxv
Introduction ... xxvii

Chapter 1 Data, Databases, and the Software
Engineering Process ... 1

 1.1 Introduction ..1
 1.2 Data ...1
 1.3 Building a Database ..2
 1.4 What Is the Sof ware Engineering Process? 3
 1.5 Entity-Relationship Diagrams and the

Sof ware Engineering Life Cycle 7
 1.5.1 Phase 1: Get the Requirements for

the Database ...8
 1.5.2 Phase 2: Specify the Database 8
 1.5.3 Phase 3: Design the Database 9

 1.6 Chapter Summary ..9
 Chapter 1 Exercises ...10
 Bibliography ...10

Chapter 2 Data and Data Models ... 11

 2.1 Introduction ..11
2.2 Files, Records, and Data Items 11
 2.3 Moving From 3 × 5 Cards to Computers 14
 2.4 Database Models ...19

 2.4.1 T e Hierarchical Model 20
 2.4.1.1 T e Hierarchical Model

with a Linked List 24
 2.4.1.2 Relationship Terminology 26
 2.4.1.3 Drawbacks of the

Hierarchical Model 27
 2.5 T e Network Model ... 28

vii

viii • Contents

2.6 T e Relational Model ...31
 2.7 Chapter Summary ..32
 Bibliography ...32

Chapter 3 The Relational Model and Functional
Dependencies .. 33

 3.1 Introduction ..33
3.2 Fundamentals of Relational Database 33
3.3 Relational Database and Sets ..36
 3.4 Functional Dependency ...38
 3.5 Non-1NF to 1NF .. 40
 3.6 T e Second Normal Form .. 44

 3.6.1 Anomalies .. 48
3.6.2 Non-2NF to 2NF ..49

 3.7 T e T ird Normal Form ..52
 3.8 T e Equijoin Operation ...57
 3.9 Some Functional Dependency Rules 59
 3.10 T e Boyce–Codd Normal Form 65
 3.11 Chapter Summary ... 68
 Chapter 3 Exercises ...68
 Bibliography ...69

Chapter 4 The Basic ER Diagram : A Data Modeling Schema 71

 4.1 Introduction ..71
4.2 What Is a Data Modeling Schema? 71

4.2.1 What Is an Entity-Relationship
Diagram?...72

 4.3 Def ning a Database—Some Def nitions:
Entity, Relationship, and Attribute 73
4.3.1 A Beginning Methodology 74
4.3.2 ER Design Methodology75

4.4 A First “Entity-Only” ER Diagram:
An Entity with Attributes ..76

4.5 More about Attributes ..79
 4.5.1 T e Simple or Atomic Attribute 79
 4.5.2 T e Composite Attribute 80
 4.5.3 T e Multivalued Attribute81

Contents • ix

4.5.4 T e Derived Attribute 82
 4.5.5 Keys ...82

 4.6 English Description of the Entity 87
 4.6.1 T e Method ..87

 4.6.1.1 T e Entity ..87
 4.6.1.2 T e Attributes 87
 4.6.1.3 T e Keys ... 88

 4.6.2 ER Design Methodology 88
 4.6.3 Examples .. 88

 4.6.3.1 Figure 4.3 Example 89
 4.6.3.2 Figure 4.4 Example 90
 4.6.3.3 Figure 4.5a Example 91
 4.6.3.4 Figure 4.6 Example 91
 4.6.3.5 Figure 4.7 Example 92

 4.7 Mapping the Entity Diagram to a
Relational Database ..94

 4.8 Chapter Summary ... 99
 Chapter 4 Exercises ...99
 Case Study .. 100
Notes ... 104
Bibliography .. 104

Chapter 5 Beyond the First Entity Diagram 107

 5.1 Introduction ..107
 5.2 Examining an Entity: Changing an

Attribute to Be an Entity ...108
 5.3 Def ning a Relationship for Our New Entity 109

 5.3.1 ER Design Methodology111
 5.4 A Preliminary Grammar for ER Diagrams 112

 5.4.1 T e Relationship ..112
 5.5 Def ning a Second Entity ...112
 5.6 Does a Relationship Exist? ...117
 5.7 Attribute or Relationship? ...117

 5.7.1 ER Design Methodology118
 5.8 Chapter Summary ..119
 Chapter 5 Exercises .. 119
 Case Study .. 120
 Bibliography .. 128

x • Contents

Chapter 6 Extending Relationships/Structural
Constraints ... 129

 6.1 Introduction ..129
 6.2 T e Cardinality Ratio of a Relationship 129

6.2.1 One to One (1:1) ...131
6.2.2 Many to One (M:1) ..131
 6.2.3 One to Many (1:M) ..132
6.2.4 Many to Many (M:N) 132

 6.3 Participation: Full/Partial .. 134
 6.4 English Descriptions ..135
 6.5 Tighter English ..137

 6.5.1 Pattern 1—x:y::k:1 ..139
 6.5.2 Pattern 2—x:y::k:1 ...139
 6.5.3 Pattern 3—x:y::k:M ...140
 6.5.4 Pattern 4—x:y::k:M ...140
6.5.5 Summary of the Patterns and

Relationships ..141
 6.5.5.1 Pattern 1 ..141
 6.5.5.2 Pattern 1 ..141
 6.5.5.3 Pattern 2 ..142
 6.5.5.4 Pattern 2 ..143
 6.5.5.5 Pattern 3 ..143
 6.5.5.6 Pattern 3 ..143
 6.5.5.7 Pattern 4 ..144
 6.5.5.8 Pattern 4 ..145

 6.5.6 ER Design Methodology146
 6.6 Some Examples of Other Relationships147

 6.6.1 An Example of the One-to-Many
Relationship (1:M) ...147
 6.6.1.1 Pattern 4–1:M, From the

1 Side, Partial Participation 148
 6.6.1.2 Pattern 2—M(Partial):1,

From M Side, Optional
Participation 149

 6.6.2 An Example of the Many-to-One
Relationship (M:1) ...150
 6.6.2.1 Pattern 1—M:1, From the

M Side, Full Participation 150

Contents • xi

 6.6.2.2 Pattern 3–1:M, From the
1 Side, Full Participation 151

 6.6.3 An Example of the Many-to-Many
Relationship (M:N) ..151
 6.6.3.1 Pattern 3—M:N, From the

M Side, Full Participation 152
 6.6.3.2 Pattern 4—N:M, From the

N Side, Partial Participation 152
 6.7 One Final Example ...153

 6.7.1 ER Design Methodology 154
 6.7.1.1 T e Entity ..155
 6.7.1.2 T e Entity ..156

6.7.2 Pattern 1—M:1, From the M Side,
Full Participation ...158

6.7.3 Pattern 3–1:M, From the 1 Side,
Full Participation ...159

6.8 Mapping Relationships to a
Relational Database ..159
6.8.1 Mapping Binary M:N Relationships 159
6.8.2 Mapping Binary 1:1 Relationships 161
6.8.3 Mapping Binary 1:N Relationships 167

 6.9 Chapter Summary ..168
Cha pter 6 Exercises .. 168
 Case Study .. 172
Note .. 178
 Bibliography .. 178

Chapter 7 The Weak Entity ... 179

 7.1 Introduction ..179
7.2 Strong and Weak Entities ..179
7.3 Weak Entities and Structural Constraints 184
7.4 Weak Entities and the Identifying Owner 184

7.4.1 Another Example of a Weak
Entity and the Identifying Owner 186

7.5 Weak Entities Connected to Other
Weak Entities ..186

7.6 Revisiting the Methodology ..189
7.7 Weak Entity Grammar ... 190

xii • Contents

7.7.1 T e Keys ... 190
 7.8 Mapping Weak Entities to a

Relational Database ..191
 7.9 Chapter Summary ..193
 Chapter 7 Exercises .. 194
 Case Study .. 194
 Bibliography .. 200

Chapter 8 Further Extensions for ER Diagrams
with Binary Relationships ... 201

 8.1 Introduction ..201
 8.2 Attributes of Relationships ..201

 8.2.1 T e Attributes ... 203
 8.3 Relationships Developing into Entities:

T e M:N Relationship Revisited 204
 8.3.1 T e Entity .. 205

 8.3.1.1 T e Attributes 206
 8.3.1.2 T e Keys ... 206

 8.4 More Entities and Relationships 206
 8.4.1 More T an Two Entities 206

 8.4.1.1 Pattern 4—x:y::1:M,
From the 1 Side, Partial
Participation 207

 8.4.1.2 Pattern 1—x:y::M:1,
From the M Side, Full
Participation 207

 8.4.2 Adding More Attributes
T at Evolve into Entities 209

 8.5 More Evolution of the Database 213
 8.6 Attributes T at Evolve into Entities 213
 8.7 Recursive Relationships ...216

 8.7.1 Recursive Relationships and
Structural Constraints 219
 8.7.1.1 One-to-One Recursive

Relationship (Partial
Participation on Both Sides) 219

 8.7.1.2 One-to-Many Recursive
Relationship (Partial
Participation on Both Sides) 220

Contents • xiii

8.7.1.3 Many-to-Many Recursive
Relationship (Partial on
Both Sides) 220

 8.8 Multiple Relationships .. 222
 8.9 T e Derived or Redundant Relationship 224
 8.10 Optional: An Alternative ER Notation

for Specifying Structural Constraints
on Relationships ... 228

 8.11 Review of the Methodology 230
 8.11.1 ER Design Methodology 230
 8.11.2 T e Entity ...231

 8.11.2.1 T e Attributes 231
 8.11.2.2 T e Keys ..232

 8.12 Mapping Rules for Recursive Relationships 232
 8.13 Chapter Summary ... 234
 Chapter 8 Exercises .. 234
 Case Study .. 235
 Bibliography .. 238

Chapter 9 Ternary and Higher-Order ER Diagrams 239

 9.1 Introduction ..239
 9.2 Binary or Ternary Relationship? 240
 9.3 Structural Constraints for Ternary

Relationships .. 243
 9.3.1 Many to Many to Many (M1:M2:M3) 243

 9.4 An Example of an n -ary Relationship 245
 9.5 n -ary Relationships Do Not Preclude

Binary Relationships ... 246
 9.6 Methodology and Grammar for the

n -ary Relationship ... 247
 9.6.1 A More Exact Grammar 249

 9.6.1.1 Pattern 3—M:N, From
the M Side, Full Participation 249

 9.6.1.2 Pattern 3—k:M, from the
k Side, Full Participation
(k = 1 or N) 249

9.6.1.3 Pattern 5 (n -ary)—x:y:z::a:b:c,
From the a Side, Full/Partial
Participation 250

xiv • Contents

9.6.2 Grammar in a Partial Participation,
Ternary Relationship with an M1:1:M2
Relationship ..251

9.7 Ternary Relationships From
Relationship-Relationship Situations 252

 9.8 n-a ry Relationships T at May Be
Resolved into Binary Relationships 254

 9.9 Mapping n -ary Relationships to a
Relational Database ..259

 9.10 Review of the Methodology 260
 9.10.1 ER Design Methodology 260

 9.11 Chapter Summary ..261
 Chapter 9 Exercises .. 262
 Bibliography .. 263

Chapter 10 The Enhanced Entity-Relationship
(EER) Model ... 265

 10.1 Introduction... 265
 10.2 What Is a Generalization or Specialization? 265
 10.3 Variants .. 267
 10.4 Examples of Generalizations or

Specializations ... 268
 10.5 Methodology and Grammar for Generalization/

Specialization Relationships 274
 10.6 Mapping Rules for Generalizations

and Specializations ..276
 10.6.1 Mapping Rule 15 ... 277
 10.6.2 Mapping Rule 16 ... 280
 10.6.3 Mapping Rule 17 ..281
 10.6.4 Mapping Rule 18 ... 282

 10.7 Subclasses of Subclasses ... 283
 10.7.1 Mapping Rule 19 ... 285

 10.8 Categories or Union Types .. 286
 10.8.1 Participation Ratios in

Categories or Union Types 288
 10.8.2 Mapping Categories or Union

Types When Superclasses Have
the Same Primary Keys 291

Contents • xv

10.8.3 Mapping Categories or Union
Types When Superclasses Have
Dif erent Primary Keys 291

10.9 Final ER Design Methodology 292
10.9.1 ER Design Methodology293

 10.10 Chapter Summary .. 294
Cha pter 10 Exercises .. 294
 Case Study .. 295
 Bibliography .. 298

Chapter 11 Relational Mapping and Reverse
Engineering ER/EER Diagrams 299

 11.1 Introduction ... 299
11.2 Steps Used to Map ER/EER Diagrams

to Relational Databases ... 299
 11.3 Reverse Engineering .. 306

 11.3.1 Reverse Engineering Rule 1.
Develop Strong Entities 307

 11.3.2 Reverse Engineering Rule 2. Look
for 1:1 and 1:N (1:x) Relationships 308

 11.3.3 Reverse Engineering Rule 2a. Check
for Attributes of the 1:x Relationship 311

 11.3.4 Reverse Engineering Rule 3. Look
for Weak Entities and Multivalued
Attributes ..311

11.3.5 Reverse Engineering Rule 3a.
Checking for Weak Entities 314

11.3.6 Reverse Engineering Rule 3b.
Checking for Multivalued Attributes 314

11.3.7 Reverse Engineering Rule 4. Check
for M:N and n -ary Relationships 316

11.3.8 Reverse Engineering Rule 4a.
Check for the Binary Case 316

11.3.9 Reverse Engineering Rule 4b.
Check for the n -ary Case 316

11.3.10 Reverse Engineering Rule 5. Check
for Generalization/Specialization
Relationships ...318

xvi • Contents

 11.3.11 Reverse Engineering Rule 5a. Check
for Generalization/Specialization
Relationships with Disjoint or
Overlap Relationships with Total
or Partial Participation Constraints 319

11.3.12 Reverse Engineering Rule 5b. Check
for Disjoint Generalization/Specialization
Relationships with Single-Predicate-
Def ned Attributes .. 320

11.3.13 Reverse Engineering Rule 5c. Check
for Overlap Generalization/Specialization
Relationship with More T an One Flag 321

 11.3.14 Reverse Engineering Rule 6. Check
for Shared Subclasses 321

11.3.15 Reverse Engineering Rule 7. Check
for Categories or Union Types 321

 11.4 Chapter Summary ..322
Cha pter 11 Exercises ..323
 Bibliography ..324

Chapter 12 A Brief Overview of the Barker/Oracle-Like
Model .. 325

 12.1 Introduction..325
12.2 A First “Entity-Only” ER Diagram:

An Entity with Attributes .. 326
12.3 Attributes in the Barker/Oracle-Like

Model ...327
12.3.1 Optional versus Mandatory

Attributes ..327
12.4 Relationships in the Barker/Oracle-Like

Model ...329
 12.5 Structural Constraints in the Barker/

Oracle-Like Model ...329
 12.6 Dealing with the Concept of the Weak

Entity in the Barker/Oracle-Like Model 332
 12.7 Dealing with the Concept of Multivalued

Attributes in the Barker/Oracle-Like Model 333
 12.8 Treatment of Foreign Keys ...336

Contents • xvii

 12.9 Recursive Relationships in the Barker/
Oracle-Like Model ...336

 12.10 Mapping M:N Relationships 336
 12.11 Chapter Summary ...340
 Chapter 12 Exercises ..340
 Bibliography ..341

 Glossary ... 343

 Index .. 347

http://taylorandfrancis.com

Preface

Data modeling and database design have undergone signif cant evolu-
tion in recent years. Today, the relational data model and the relational
database system dominate business applications. Te relational model has
allowed the database designer to focus on the logical and physical char-
acteristics of a database separately. In this book, we concentrate on tech-
niques for database design with a very strong bias for relational database
systems using the ER (entity-relationship) approach for conceptual model-
ing (solely a logical implementation).

INTENDED AUDIENCE

 Tis book is intended to be used for data modeling by database practitio-
ners and students. It is also intended to be used as a supplemental text in
database courses, systems analysis and design courses, and other courses
that design and implement databases. Many present-day database and sys-
tems analysis and design books limit their coverage of data modeling. T is
book not only increases the exposure to data modeling concepts, but also
presents a step-by-step approach to designing an ER diagram and devel-
oping a relational database from it.

BOOK HIGHLIGHTS

 Tis book focuses on data modeling using entity-relationship (ER) dia-
grams, presenting (a) an Entity-Relationship (ER) design methodology for
developing an ER diagram; (b) a grammar for the ER diagrams that can
be presented back to the user, facilitating agile database development; and
(c) mapping rules to map the ER diagram to a relational database. T e
steps for the ER design methodology, the grammar for the ER diagrams,
as well as the mapping rules are developed and presented in a system-
atic step-by-step manner throughout the book. Also, several examples of

xix

xx • Preface

sample data have been included with relational database mappings to give
a “realistic” feeling.
 Tis book is divided into 12 chapters. T e frst three chapters are back-

ground material. Chapter 1 introduces the concepts of data, the database,
and sofware engineering. Chapter 2 presents diferent database mod-
els. Chapter 3 introduces the relational model and discusses functional
dependencies used to generate third normal form databases.
From Chapter 4, we start presenting the concept of ER diagrams. Chapter 4

introduces the concept of the entity, attributes, relationships, and the “one-
entity” ER diagram. Steps 1, 2, and 3 of the ER design methodology are
developed in this chapter. Te one-entity grammar and mapping rules for
the one-entity diagram are presented.
Chapter 5 extends the one-entity diagram to include a second entity.

Te concept of testing attributes for entities is discussed, and relation-
ships between the entities are developed. Steps 3a, 3b, 4, 5, and 6 of the ER
Design Methodology are developed, and grammar for the ER diagrams
developed up to this point is presented.
Chapter 6 discusses structural constraints in relationships. Several exam-

ples are given of 1:1, 1:M, and N:M relationships. Step 6 of the ER design
methodology is revised, and step 7 is developed. A grammar for the struc-
tural constraints and the mapping rules is also presented.
Chapter 7 develops the concept of the weak entity. Tis chapter revisits

and revises steps 3 and 4 of the ER design methodology to include the
weak entity. Again, a grammar and the mapping rules for the weak entity
are presented.
Chapter 8 discusses and extends diferent aspects of binary relationships

in ER diagrams. Tis chapter revises step 5 to include the concept of more
than one relationship and revises step 6b to include derived and redun-
dant relationships. Te concept of the recursive relationship is introduced
in this chapter. Te grammar and mapping rules for recursive relation-
ships are presented.
Chapter 9 discusses ternary and other “higher-order” relationships.

Step 6 of the ER design methodology is again revised to include ternary
and other higher-order relationships. Several examples are given, and the
grammar and mapping rules are developed and presented.
Chapter 10 discusses enhanced entity-relationships (EERs): generaliza-

tions and specializations, shared subclasses, and categories or union types.
Once again, step 6 of the ER design methodology is modifed to include

Preface • xxi

generalizations and specializations, and the grammar and mapping rules
for mapping the EER are presented.
Chapter 11 gives a summary of the mapping rules and reverse engineer-

ing from a relational database to an ER diagram. Reverse engineering is
useful to describe existing databases that may have evolved but for which
no documentation exists.
Chapters 4–11 present ER and EER diagrams using a Chen-like model.

In Chapter 12, we discuss the Barker/Oracle-like models, highlighting
the main similarities and diferences between the Chen-like model and the
Barker/Oracle-like model.
In every chapter, we present numerous examples. “Checkpoint” sections

within the chapters and end-of-chapter exercises are presented in every
chapter, to be studied by the reader to obtain a better understanding of
the material within the respective sections and chapters. At the end of
Chapters 4–10, there is a running case study, with the solution (that is,
the ER/EER diagram and the relational database with some sample data).

http://taylorandfrancis.com

Acknowledgments

Our special thanks are due to our editors, John Wyzalek and Stephanie
Kiefer at CRC Press/Taylor & Francis Group.

xxiii

http://taylorandfrancis.com

Authors

Sikha Saha Bagui is Distinguished University Professor and Askew
Fellow in the Department of Computer Science at the University of West
Florida, Pensacola, Florida. She teaches in the database and data analytics
areas, and her research interests are in database design, data mining, Big
Data analytics and machine learning. Dr. Bagui has worked on funded
as well unfunded research projects and has over 100 peer reviewed
publications. Dr. Bagui has co-authored several books with Dr. Earp and
is on the editorial board of several journals.

Richard Walsh Earp, Professor Emeritus, is a former chair of and former
associate professor in the Department of Computer Science and former
dean of the College of Science and Technology at the University of West
Florida in Pensacola, Florida. Dr. Earp was also an instructor with Learning
Tree International and worked for Computer Sciences Corporation at the
Naval Air Station in Pensacola as a database consultant afer his retirement
from academia. He has co-authored several books with Dr. Bagui.

xxv

http://taylorandfrancis.com

Introduction

 Tis book was written to aid students in database classes and to help
database practitioners in understanding how to arrive at a def nite, clear
database design using an entity-relationship (ER) diagram. In designing
a database with an ER diagram, we recognize that this is but one way to
arrive at the objective: the database. Tere are other design methodologies
that also produce databases, but an ER diagram is the most common. T e
ER diagram is a subset of what are called “semantic models.” As we go
through this material, we occasionally point out where other models dif er
from the ER model.
 Te ER model is one of the best-known tools for logical database design.

Within the database community, it is considered a natural and easy-to-
understand way of conceptualizing the structure of a database. Claims
that have been made for it include the following: It is simple and easily
understood by non-specialists; it is easily conceptualized, the basic con-
structs (entities and relationships) are highly intuitive and thus provide
a natural way of representing a user’s information requirements; and it is a
model that describes a world in terms of entities and attributes that is most
suitable for computer-naïve end users. In contrast, many educators have
reported that students in database courses have dif culty grasping the
concepts of the ER approach, particularly in applying them to real-world
problems.
We took the approach of starting with an entity and then developing

from it an “inside-out strategy” (as mentioned in Elmasri and Navathe,
2016). Sofware engineering involves eliciting from a (perhaps) “naïve”
user what the user would like to have stored in an information system.
Te process we present follows the sofware engineering paradigm of
requirements/specifcations, with the ER diagram being the core of the
specifcation. Designing a sofware solution depends on correct elicita-
tion. In most sofware engineering paradigms, the process starts with a
requirements elicitation followed by a specifcation and then a feedback
loop. In plain English, the idea is (a) “tell me what you want” (require-
ments), then (b) “this is what I think you want” (specif cation). T is pro-
cess of requirements/specif cation may (and probably should) be iterative
so that the user understands what he or she will get from the system and

xxvii

xxviii • Introduction

the analyst understands what the user wants, facilitating agile database
development.
A methodology for producing an ER diagram is presented. T e process

leads to an ER diagram that is then translated into plain (but meant to be
precise) English that a user can understand. Te iterative mechanism then
takes over to arrive at a specif cation (a revised ER diagram and English)
that both the user and analyst understand. Te mapping of the ER dia-
gram into a relational database is presented; mapping to other logical
database models is not covered. We feel that the relational database is the
most appropriate to demonstrate mappings as it is the most used contem-
porary database model. Actually, the idea behind the ER diagram is to
produce a high-level database model that has no particular logical model
(relational, hierarchical, object oriented, or network) implied.
We have a strong bias toward the relational model. Te “goodness” of the

fnal relational model is testable via the idea of normal forms. T e goodness
of the relational model produced by a mapping from an ER diagram theo-
retically should be guaranteed by the mapping process. If a diagram is “good
enough,” then the mapping to a “good” relational model should happen
almost automatically. In practice, the scenario will be to produce as good an
ER diagram as possible, map it to a relational model, and then shif the dis-
cussion to discussion of “Is this a good relational model or not?” by using the
theory of normal forms and other associated criteria of “relational goodness.”
 Te approach we take to database design is intuitive and informal. We

do not deal with precise defnitions of set relations. We use the intuitive
“one/many” for cardinality and “may/must” for participation constraints.
Te intent is to provide a mechanism to produce an ER diagram that can
be presented to a user in English and to polish the diagram into a specif -
cation that can then be mapped into a database. We then suggest testing
the produced database by the theory of normal forms and other criteria
(i.e., referential integrity constraints). We also suggest a reverse-mapping
paradigm for mapping a relational database back to an ER diagram for the
purpose of documentation.

THE ER MODELS WE CHOSE

We begin our venture into ER diagrams with a “Chen-like” model, and
most of this book is written using the Chen-like model. Why did we choose

Introduction • xxix

this model? Chen (1976) introduced the idea of the ER diagrams. Elmasri
and Navathe (2016) and most database texts use some variant of the Chen
model. Chen and others have improved the ER process over the years, and
while there is no standard ER diagram model, the Chen-like model and
variants thereof are common, particularly in comprehensive database texts.
In the last chapter, we briefy introduce the “Barker/Oracle-like” model. As
with the Chen model, we do not follow the Barker or Oracle models pre-
cisely and hence use the term Barker/Oracle-like models in this text.
 Tere are also other reasons for choosing the Chen-like model over the

other models. With the Chen-like model, one need not consider how the
database will be implemented. Te Barker-like model is more intimately
tied to the relational database paradigm. Oracle Corporation uses an ER
diagram that is closer to the Barker model. Also, in the Barker-like and
Oracle-like ER diagram, there is no accommodation for some of the fea-
tures we present in the Chen-like model. For example, multivalued attri-
butes, many-to-many relationships, and weak entities are not part of the
Barker- or Oracle-like design process.
 Te process of database design follows the agile sof ware engineering

paradigm, and during the requirements and specifcations phase, sketches
of ER diagrams are made and remade. It is not at all unusual to arrive at
a design and then revise it. In developing ER models, one needs to realize
that the Chen model is developed to be independent of implementation.
Te Chen-like model is used almost exclusively by universities in database
instruction. Te mapping rules of the Chen model to a relational database
are relatively straightforward, but the model itself does not represent any
particular logical model. Although the Barker/Oracle-like model is popu-
lar, it is implementation dependent on knowledge of the relational data-
base. Te Barker/Oracle-like model maps directly to a relational database;
there are no real mapping rules for that model.

BIBLIOGRAPHY

Chen, P. P. 1976. Te entity-relationship model-toward a unifed view of data, ACM
Transactions on Database Systems , 1(1).

Elmasri, R., and Navathe, S. B. 2016. Fundamentals of Database Systems. Addison Wesley,
Reading, MA.

http://taylorandfrancis.com

1
Data, Databases, and the
Software Engineering Process

1.1 INTRODUCTION

In this chapter, we introduce some concepts and ideas that are funda-
mental to our presentation of the design of a database. We def ne data,
describe the notion of a database, and explore a process of how to design
a database.

1.2 DATA

Data, as we use the term, are facts about something or someone. For
example, a person has a name, an address, and a gender. Some data
(facts) about a specifc person might be “Mary Jo Davis,” “123 4th St.,”
“Female.” If we had a list of several people’s names, addresses, and gen-
ders, we would have a set of facts about several people. A database is a
collection of related data. For this “set of facts about several people” to be
a database, we would expect the people in the database had something in
common—that is, they were “related” in some way. Here related does not
imply a familial relationship, but rather something more like “people who
play golf,” “people who have dogs,” or “people I interviewed on the street
today.” In a “database of people,” one expects the people to have some
common characteristic tying them together. A “set of facts about some
people” is not a database until the common characteristic is also def ned.
To put it another way: Why are these people’s names and addresses being
kept in one list?

DOI: 10.1201/9781003314455-1 1

https://doi.org/10.1201/9781003314455-1

2 • Database Design Using ER Diagrams

Checkpoint 1.1

1. A tree is classifed as a “large oak tree about 100 years old.” What
are three facts about this tree?

2. Another tree has the following characteristics: pine, small, 15
years old. If I write the information about the oak and pine trees
on a piece of paper, could you consider this a database? Why or
why not?

3. Why is the piece of paper not a database of trees?

1.3 BUILDING A DATABASE

How do we construct a database? Suppose you were asked to put together
a database of items one keeps in a pantry. How would you go about doing
this? You might grab a piece of paper and begin listing items you see.
When you are done, you should have a database of items in the pantry.
Simple enough—you have a collection of related data. But take this a step
further—Is this a good database? Was your approach to database con-
struction a good methodology? Te answer to these questions depends
in part on why and how you constructed the list and who will use the list
and for what. Also, will whoever uses the database be able to fnd a fact
easily? If you are more methodical, you might frst ask yourself how best to
construct this database before you grab the paper and begin a list of items.
A bit of pre-thinking will save time in the long run because you plan how
the list is to be used and by whom.
When dealing with sofware and computer-related activity like data-

bases, there exists a science of “how to” called sofware engineering (SE).
SE is a process of specifying systems and writing sofware. To design a
good database, we will use some ideas from SE.
In this chapter, we present a brief description of SE as it pertains to plan-

ning our database. Afer this background/overview of SE, we explore data-
base models and in particular the relational database model. While there
are historically many kinds of database models, most of the databases in
use today use a model known as “relational database.” Our focus in this
book is to put forward a methodology based on SE to design a sound rela-
tional database.

Data, Databases, and Sofware Engineering • 3

Checkpoint 1.2

You have a set of books on bookshelves in your house. Someone asks
you to create a list of all the books you have.

1. Who is going to use this list?
2. When the list is completed, will it be a database?
3. What questions should be asked before you begin?
4. What is the question-and-answer procedure in question 3 going

to accomplish?

1.4 WHAT IS THE SOFTWARE
ENGINEERING PROCESS?

 Te term sof ware engineering refers to a process of specifying, designing,
writing, delivering, maintaining, and fnally retiring sof ware. Sof ware
engineers ofen refer to the “life cycle” of sof ware; sofware has a begin-
ning and an ending. Tere are many excellent references on the topic of
SE. Some are referenced at the end of this chapter.
Some authors use the term sof ware engineering synonymously with

“systems analysis and design,” but the underlying point is that any infor-
mation system requires some process to develop it correctly. SE spans a
wide range of information system tasks. Te task we are primarily inter-
ested in here is specifying and designing a database. “Specifying a data-
base” means documenting what the database is supposed to contain and
how to go about the overall design task itself.
A basic idea in SE is to build sofware correctly; a series of steps or

phases is required to progress through a “life cycle.” Tese steps ensure
that a process of thinking precedes action—thinking through “what
is needed” precedes “what sof ware is written.” Further, the “thinking
before action” necessitates that all parties involved in sof ware devel-
opment understand and communicate with one another. A common
version of presenting the “thinking before acting” scenario may be
called a “waterfall” model; the sofware development process is sup-
posed to fow in a directional way without retracing. Like a waterfall,
once a decision point is passed, it is at best difcult to back up and
revisit it.

4 • Database Design Using ER Diagrams

Generally, the frst step in the SE process involves formally specifying
what is to be done. We can break this frst step down into two steps: (a)
requirement elucidation and (b) agreeing upon a specif cation document.
Te waterfall idea implies that once the specifcation of the sof ware is
written and accepted by a user, it is not changed or revisited, but rather
used as a basis for design. One may liken the overall SE exercise to build-
ing a house. Te elucidation is where you tell a builder what you want. T e
specifcation document is a formal statement of your wishes.
To amplify our example, suppose you approach a builder. You say you

want a three bedroom, two bath house. Te builder then asks questions—
one or two stories, brick or siding, where do you want a light switch, of -
grade or slab, etc. Te builder then gathers all notes about your wishes,
organizes the information, and presents the notes for your approval. T e
builder asking questions is called “elucidation.” Once the builder pres-
ents you with the what the builder thinks are your wishes, the “f nal,
negotiated wish list,” you have a specif cation. Tere must be a dialog
between you and the builder. At some point you and the builder under-
stand what you want, and your wishes are fnalized so the builder can
move on with the process of designing the house. T e development
of sofware and databases works the same way as the house example.
Making the house-process formal ensures the builder does not waste
time designing something you do not want. Te same is true for design-
ing databases.
Once the specifcation is agreed upon, the next step is to design the house

to the specifcation. As the house is designed and the blueprint (design) is
drawn up, it is not acceptable to revisit the specifcation except for minor
alterations. Tere must be a “meeting of the minds” at the end of the speci-
fcation phase to move along with the design (blueprint) of the house to
be constructed. So it is with sofware and database development. Sof ware
production is a life-cycle process—sofware (a database) is created, used,
maintained, and eventually retired.
 Te “players” in the sofware development life cycle may be placed

into two camps, ofen referred to as the user and the analyst. Sof ware is
designed by the analyst for the user according to the user’s specif cation. In
our presentation, we will think of ourselves as the analyst trying to enun-
ciate what the users think they want. Recall the example in this chapter
about the list of books in the home library. Here, the person requesting the
list is the user; the person drawing up the list of books is the analyst (a.k.a.,
the sofware writer, the builder or the designer).

Data, Databases, and Sofware Engineering • 5

 Tere is no general agreement among sofware engineers regarding the
exact number of steps or phases in a sofware development model. Models
vary depending on the interest of the SE-researcher in one part or another
in the process. A very brief description of the sofware process follows:
(Sofware in the following may be taken to mean a database)

Step 1 (or Phase 1): Requirements. Find out what the user wants/needs.
T e “fnding-out procedure” is ofen called “elucidation.”

Step 2: Specif cation. Write out the user’s wants/needs as precisely as
possible. In this step, the user and analyst document not only what is
desired but also how much it will cost and how long it will take to go
into use. A basic principle of SE is to generate sofware on time and on
budget. Terefore, in addition to making each other understand
what is wanted/needed, a very essential step is to defne a budget and
timeline for creating the product.

Step 2a: Feedback the specifcation to the user. A formal review of the
specifcation document is performed to see if the (a) the user agrees
the analyst has correctly enunciated what the user wants, and (b) the
analyst is satisfed that the user’s requirements are clearly def ned.

Step 2b: Redo the specifcation as necessary and return to step 2a until
the analyst and the user both understand one another and agree to
move on. Remember the waterfall model—once the end of the speci-
fcation phase is reached, one does not go back up stream.

Step 3: Design—Sofware or a database is designed to meet the speci-
fcation from step 2. As in-house building, now the analyst (the
builder) knows what is required, so the plan for the sofware is for-
malized—a blueprint is drawn up.

Step 3a: Sofware design is independently checked against the speci-
f cation. Independent checking of the design indicates the analyst
has clearly met the specifcation. Note the sense of agreement in
step 2 and the use of step 2 as a basis for further action. When step 3
begins, going backward is difcult at best; it is supposed to be that
way. Perhaps minor specifcation details might be revisited, but the
idea is to move on once each step is fnished. Once step 3a is com-
pleted, both the user and the analyst know what is to be done. In the
building-a-house analogy, the blueprint is now drawn up.

 One fnal point here: In the specifcation, a budget and timeline are pro-
posed by the analyst and accepted by the user. In the design phase, this

6 • Database Design Using ER Diagrams

budgetary part of the overall design is sometimes refned. All sof ware
development takes money and time. Not only is it vital to correctly pro-
duce a given product, but it is also necessary to make clear to all parties
the expenditure of time and money.

Step 4: Development. Sofware is written; a database is created.
Step 4a: In the development phase , sofware, as written, is checked

against the design until the analyst has clearly met the design. Note,
the specifcation in step 2 is long past, and only minor modif cations of
the design would be tolerated here or in Step3. Te point of step 4 is to
build the sofware according to the design (the blueprint) from step 3.
In our case, the database is created and populated in this phase.

Step 5: Implementation. Sofware is turned over to the user to be used
in the application.

Step 5a: User tests the sof ware and accepts or rejects it. T e ques-
tion is, “Was the database created correctly? Did it meet the speci-
fcation and design? In our case, the database is queried, data are
added or deleted, and the user accepts what was created. A person
may think this is the end of the sofware life cycle, but there are two
more important steps.

Step 6: Maintenance. Maintenance is performed on the sofware until it
is retired. No matter how well specif ed, designed, and written, some
parts of the sofware may fail. In databases, some data item may need
to be added or deleted. Perhaps some ancillary tables will need to be
created. Some parts of the database may need to be modifed over time
to suit the user or to enhance performance. Times change; demands
and needs change. Maintenance is a very time-consuming and an
expensive part of the sofware process—particularly if the SE process
has not been done well. Maintenance involves correcting hidden sof -
ware faults as well as enhancing the functionality of the sof ware.

In databases, new data items are ofen required; some old data may no
longer be needed. Hardware changes. Operating systems change.
Te database engine itself, which is sofware, is of en upgraded—
new versions are imposed on the market. Te data in the database
must conform to change, and a procedure for changing the data in
the database must be in place.

Step 7: Retirement. Eventually, whatever sofware is written becomes
outdated. Tink of old video games that were once state-of-the-art
and have become old-fashioned and outdated. Database engines,

Data, Databases, and Sofware Engineering • 7

computers, and technology in general are all evolving. Te old sof -
ware package you used on some old personal computer does not
work any longer because the operating system has been updated, the
computer is obsolete, and the old sofware must be retired. Basically,
the SE process must start all over with new specif cations. T e same
is true with databases and designed systems. At times, the most cost-
efective thing to do is to start anew.

Checkpoint 1.3

1. In what phase is the database created?
2. Which person tests the database?
3. In what phase does the user say what is wanted in the database?
4. When you are recording facts about a database, what phase is

that?

1.5 ENTITY-RELATIONSHIP DIAGRAMS AND
THE SOFTWARE ENGINEERING LIFE CYCLE

 Tis text concentrates on steps 1 through 3 of the sof ware life cycle for
databases. A database is a collection of related data. Te concept of related
data means a database stores information about one enterprise: a business,
an organization, a grouping of related people or processes. For example, a
database might contain data about Acme Plumbing and involve customers
and service calls. A diferent database might be about the members and
activities of a church group in town. It would be inappropriate to have data
about the church group and Acme Plumbing in the same database because
the two organizations are not related. Again, a database is a collection of
related data. To keep a database about each of the above entities is f ne, but
not in the same database.
Database systems are ofen modeled using an entity-relationship (ER)

diagram as the blueprint from which the actual database is created; the
fnalized blueprint is the output of the design phase. Te ER diagram is
an analyst’s tool to diagram the data to be stored in a database system.
Phase 1, the requirements phase, can be quite frustrating as the analyst
has to elicit needs and wants from the user. Te user may or may not be

8 • Database Design Using ER Diagrams

“computer savvy” and may or may not know the capabilities of a sof ware
system. Te analyst ofen has a difcult time deciphering a user’s needs
and wants to create a specifcation that (a) makes sense to both parties
(user and analyst) and (b) allows the analyst to design ef ciently.
In the real world, the user and the analyst may each be committees of

professionals, but users (or user groups) must convey their ideas to an ana-
lyst (or team of analysts). Users must express what they want and what
they think they need; analysts must elicit these wants and needs, docu-
ment them, and create a plan to realize the user’s requirements.
User descriptions may seem vague and unstructured. Typically, users

are successful at a business. Tey know the business; they understand the
business model. Te computer person is typically ignorant of the busi-
ness but understands the computer end of the problem. To the computer-
oriented person, the user’s description of the business is as new to the
analyst as the computer jargon is to the user. We present a methodology
designed to make the analyst’s language precise so the user is comfortable
with the to-be-designed database but still provides the analyst with a tool
to facilitate mapping directly into the database.
In brief, next we review the early steps in the SE life cycle as it applies to

database design.

1.5.1 Phase 1: Get the Requirements for
the Database

In phase 1, we listen and ask questions about what facts (data) the user
wants to organize into a database retrieval system. Tis step of en involves
letting users describe how they intend to use the data. You, the analyst,
will eventually provide a process for loading data into and retrieving data
from a database. Tere is ofen a “learning curve” necessary for the analyst
as the user explains the system.

1.5.2 Phase 2: Specify the Database

Phase 2 involves grammatical descriptions and diagrams of what the
analyst thinks the user wants. Database design is usually accomplished
with an ER diagram functioning as the blueprint for the to-be-designed
database. Since most users are unfamiliar with the notion of an ER dia-
gram, our methodology will supplement the ER diagram with grammati-
cal descriptions of what the database is supposed to contain and how the

Data, Databases, and Sofware Engineering • 9

parts of the database relate to one another. Te technical description of a
database can be dry and uninteresting to a user; however, when the ana-
lysts put what they think they heard into English statements, the users and
the analysts have a better meeting of the minds. For example, if the analyst
makes statements such as, “all employees must generate invoices,” the user
may then afrm, deny, or modify the declaration to ft the actual case. As
we will see, it makes a big diference in the database if “all employees must
generate invoices” versus “some employees may generate invoices.”

1.5.3 Phase 3: Design the Database

Once the database has been diagrammed and agreed upon, the ER dia-
gram becomes the fnalized blueprint for construction of the database in
phase 3. Moving from the ER diagram to the actual database is akin to
asking a builder of a house to take a blueprint and begin construction.
As we have seen, there may be more steps in the SE process, but this

book is about database design and hence the remaining steps of any SE
model are not emphasized.

Checkpoint 1.4

1. Briefy describe the major steps of the SE life cycle as it applies to
databases.

2. Who are the two main players in the sofware development life
cycle?

3. Why is written communication between the parties in the design
process important?

4. What is the blueprint from which the actual database is created
called?

5. What are the three important phases of designing a database?

1.6 CHAPTER SUMMARY

 Tis chapter serves as a background chapter. Te chapter brief y describes
data, databases, and the SE process. Te SE process is presented as it
applies to ER diagrams—the database design blueprint.

10 • Database Design Using ER Diagrams

CHAPTER 1 EXERCISES

David operates a golf shop with golf equipment and many customers; his
primary business is selling retail goods to customers. David wants to keep
track of everything on a computer. He approaches Kaitlin, who is knowl-
edgeable about computers, and asks her what to do.

1. In our context, David is a ; Kaitlin is a .
2. When David explains to Kaitlin what he wants, Kaitlin begins writ-

ing what?
3. When David says, “Kaitlin, this specifcation is all wrong,” what hap-

pens next?
4. If David says, “Kaitlin, this specifcation is acceptable,” what happens

next?
5. If, during the design, Kaitlin realizes David forgot to tell her about

something he wants, what is Kaitlin to do?
6. How does Kaitlin get David’s specifcations in the f rst place?
7. Step 3a from above suggests: “Sofware design is independently checked
against the specifcation.” What does this mean? How is it do be
done?

A good idea here would be for both David and Kaitlin to have someone
review the database design. In the chapter, we suggested an independent
evaluation of the database. Perhaps both Kaitlin and David have co-
workers who could and should review the design of the database before
proceeding.

BIBLIOGRAPHY

Schach, S.R. (2011). Object-Oriented and Classical Sof ware Engineering. New York:
McGraw-Hill.

2
Data and Data Models

2.1 INTRODUCTION

In this chapter, we look at the evolution of databases and show how the
relational database model for designing and using databases came to
be. Historically, there were many approaches to storing and retrieving
data, and some older systems may still be used. However, most of the
databases in use today are based on the relational model. Our objective
in this book is to design a good relational database. We introduce rela-
tional database as it evolved from historical approaches to data storage
and retrieval.
In the next chapter, we introduce the concept of functional dependencies

to defne what is a good (and a not-so-good) relational database. While the
aim of this chapter is to acquaint you with a relational database, we will
explore the evolution of databases because it engenders an appreciation for
the simplicity and power of the relational model.

2.2 FILES, RECORDS, AND DATA ITEMS

Data must be stored in an orderly fashion in a fle of some kind to be use-
ful. Suppose there were no computers—think back to a time when all f les
were paper documents for a business to keep track of its customers and
products. A doctor’s ofce kept track of patients. A sports team kept sta-
tistics on its players. In these cases, data was recorded on paper and likely
kept in a fling cabinet. T e fles with data in them could be referred to as
a “database.” A database is most simply a repository of data about some
specifc entity. A customer fle might be as plain and minimal as a list of

DOI: 10.1201/9781003314455-2 11

https://doi.org/10.1201/9781003314455-2

12 • Database Design Using ER Diagrams

people who did business with a merchant. Tere are two aspects to f ling:
storage and retrieval. Some method of storing data to facilitate retrieval is
most desirable.
In a fle of customer records, the whole fle might be called the customer

f le, whereas the individual customer’s information is kept in a customer
record. Files consist of records. More than likely, more information than
a list of just customer’s names would be recorded. At the very least, a cus-
tomer’s name, address, and phone number could constitute a customer
record. Each of these components of the record is called a data item or
f eld. Te customer f le contains customer records consisting of f elds of
data.
Table 2.1 presents an example of some data (you can imagine each line

as a 3 × 5 card, with the three cards [three records] making up a f le).
 T is fle contains three records with one record for each customer. T e

records each consist of four felds: record number, name, address, and
city. As more customers are added, their data will be recorded on a new
3 × 5 card (a new record) and placed in the customer fle. Several inter-
esting questions and observations arise for the merchant keeping this
information:

1. Te merchant may well want to add information, such as a telephone
number, in the future. Would you add a phone number to all 3 × 5
cards, or would the adding be done “as necessary”? If it were done
“as necessary,” then some customers would have telephone numbers,
and some would not. If a customer had no phone number on the
record, then the phone number for that customer would be “null.”
(We use the term “null” to mean “unknown.”)

2. How will the fle be organized? Imagine not three customers, but 300
or 3,000. Would the 3 × 5 cards be put in alphabetical order? Perhaps,
but what happens if you get another A. McDonald or S. Claud? Or,
what if you wanted to fnd addresses more ofen than you wanted to

TABLE 2.1

Sample Data for aaaaaaaaAaaaa.
Record 1 McDonald, A 123 4th St Mobile, AL

Record 2 Claud, S 452 Main St Pensacola, FL

Record 3 Jarzin, D 92 Adams Lane Elberta, AL

Data and Data Models • 13

fnd names? T e feld on which the fle is organized is called a key.
Perhaps the fle should be organized by telephone number or address
rather than name. Te key is a handle with which to fnd data. Keys
should be unique, but what if there exists a duplicate value for a key?

3. Suppose the fle were organized by telephone number. What if the
telephone number for a customer were not recorded because you
either didn’t know the number or the customer didn’t have a phone?
If there were no telephone number, the common terminology is to
say the telephone feld for that record is null. It would make no sense
to have the fle organized by telephone number if some values were
null. Clearly, the key of a fle cannot be null. Also, note if telephone
number were the key to the customer fle, then the person seeking a
customer record in the fle would have to know the phone number to
fnd the appropriate record ef ciently.

4. Te format of the fle above is:

AaaaaaaaaaaaaaaaaaaaaaaaAaaaaaAaaaaaaaaAaaaaaA

 Te format of the fle dictates the order of the felds in any record. In this
record, record number is frst, followed by a name, and so on. T e f le
design could have the felds in some other order, but once def ned, the
order of the felds stays constant.
If a telephone number feld were added, then the fle format could be:

AaaaaaaaaaaaaaaaaaaaaaaaAaaaaaAaaaaaaaaAaaaaaAaaaaaaaaaaA

 Tis illustrated shorthand format notation is called a f le design. If the f le
were set up to f nd data by name and name were the key, then the name
would be underlined, as follows:

aaaaaaaaaaaaaaaaaaaaaaaAAaaaaaAaaaaaaaaAaaaaaAaaaaaaaaaaA

5. You might ask, “Why not use the record number to organize the
fle?” On one hand, it is unique (which is desirable for a key), but on
the other hand, you would have to know the record number to f nd
a customer. Te example is organized by record number; however,
imagine 300 or more customers. You want to fnd Claud’s address—
you would have to know the record number. It makes more sense
to organize this fle of 3 × 5 cards by name. Taking some of these

14 • Database Design Using ER Diagrams

TABLE 2.2

Sample Data for Enhanced aaaaaaaaAaaaa.
Record 1 Adams, A 77 A St Pensacola, FL 555-5847
Record 2 Charles, X 365 Broad St Mobile, AL 555-8214
Record 3 Jarzin, H 92 Adams Lane Elberta, AL 555-1234
Record 4 McDonald, A 22 Pine Forest Pensacola, FL null
Record 5 McDonald, J 123 4th St Mobile, AL 555-9978
Record 6 Richard, E 932 Dracena Gulf Breeze, 555-1111

Way FL
Record 7 Claud, S 452 Main St Pensacola, FL 555-0003

points into consideration, Table 2.2 presents an enhanced version of
the customer fle in which each line represents a 3 × 5 card.

Checkpoint 2.1
1. What does it mean to say a feld has unique values?
2. Why is it desirable to have a key be unique?
3. Why does a fle have to be organized by a key f eld?
4. What does null mean?
5. Consider this customer f le:

Record 1 77 A St Adams, A Pensacola, 555-5847
FL

Record 2 Charles, 365 Broad 555-8214 Mobile,
X St AL

Record 3 555-1234 Jarzin, H 92 Adams Elberta,
Lane AL

What is wrong here?

2.3 MOVING FROM 3 × 5 CARDS TO COMPUTERS

Let us return to our example of a merchant who maintained a customer
fle on 3 × 5 cards. As time passed, the customer base grew and the mer-
chant desired to keep more information about customers. From a data-
processing standpoint, we would say the enhancement techniques for
storage and retrieval led to better organized cards, more felds, and per-
haps better ways to store and fnd individual records.

Data and Data Models • 15

Some questions arise: Were customer records kept in name-alphabetical
order? Were the records stored by telephone number or record number
(which might also be a customer number)? What happens if a feld not on
existing forms or cards were required? If data is added or changed, how
much will the record formats change? Such were data-processing dilem-
mas of the past.
When computers began to be used for businesses, data was stored on

magnetic media. Te magnetic media were mostly disks and tapes. T e
way data was stored and retrieved on a computer started out like the 3
× 5 cards, but the magnetic data was virtual. It did not physically exist
where you could touch it or see it without some kind of sof ware to
load and fnd records. Further, a display device to see what the “3 × 5
card” had on it was required. Prior to about 1975, the most common
way data was fed into a computer was via punched cards. Punched card
systems for handling data were in use as early as the 1930s; sorters were
capable of scanning and arranging a pile of cards. Using punched cards to
input data into computers was common in the 1960s because it was known
technology. Te output or “display device” was typically a line printer.
As data was placed on a computer, sofware was developed to handle the

data and fling techniques evolved. In the very early days of databases, the
fles kept on computers basically replicated the 3 × 5 cards. Tere were many
problems with computers and databases in the “early days.” (Generally,
early days in terms of computers and databases means roughly early-to-mid
1960s.) Some problems involved input (how the data got into the computer),
output (how the data was to be displayed), and fle maintenance (how the
data was to be stored and kept up to date, how records were to be added and
deleted, and how felds were to be added, deleted, or changed). A person
using a computer for keeping track of data could buy a computer and hire
programmers, computer operators, and data entry personnel.
In the early days, computers were expensive and large. Most small busi-

nesses did not have the resources to acquire a computer, much less hire
people whose jobs were solely “on the computer.” Because of the cost of
computers and the physical storage demands, early attempts at f ling and
retrieving data was the purview of large businesses and large organizations.
If a company bought a computer and all the necessary infrastruc-

ture, the departments within the company would want to keep fles
of various types on the computer. Suppose the company made some
product and had several departments (e.g., sales, accounting, and pro-
duction). Each department wanted to keep data about customers. Each

16 • Database Design Using ER Diagrams

department had a diferent view of customers. Te sales department
wanted to know the name, address, telephone number, and some data
related to the propensity to buy the product. Te accounting depart-
ment wanted to know roughly the same information but wanted to
keep track of billing and payments. Production also wanted some of the
same information but wanted to know what the customer needed in the
product and how many products they should make. Each department
wanted roughly similar things, but each approached the problem in a
dif erent way.
What actually happened in the early days was each department shared

the expensive computer but hired its own programming staf to keep “its
database.” While the sense of sharing the expensive computer was there,
the sense of sharing data was not. Te idea of a “sofware package” to
store and retrieve data was not there either. Programmers used computer
languages like COBOL, RPG, ALGOL, PL/1, and FORTRAN to store and
retrieve data. Each department created its own records and its own stor-
age and retrieval methods, kept its own programs, and had its own data
entry groups.
 Te earliest databases were fling systems maintained by programmers

using a computer language (typically COBOL). For example, a program-
mer wrote a COBOL program to gather input data on punched cards and
store the data in a computer f le. Ten, the programmer wrote another
set of programs to retrieve the data and display it in whatever way a user
wanted to see it. Early computer fling systems were simple sequential f les.
Te data on punched cards was read and stored. In Table 2.3, we recon-
sider the customer fle we introduced previously.
If you could look at the data on a disk, it would look like Table 2.4.

TABLE 2.3

Sample Data for aaaaaaaaAaaaa.
Record 1 Adams, A 77 A St Pensacola, FL 555-5847

Record 2 Charles, X 365 Broad St Mobile, AL 555-8214

Record 3 Jarzin, H 92 Adams Lane Elberta, AL 555-1234

Record 4 McDonald, A 22 Pine Forest Pensacola, FL null

Record 5 McDonald, J 123 4th St Mobile, AL 555-9978

Record 6 Richard, E 932 Dracena Way Gulf Breeze, FL 555-1111

Record 7 Claud, S 452 Main St Pensacola, FL 555-0003

Data and Data Models • 17

TABLE 2.4

Appearance of Sample Data on Disk.
Adams, A 77 A St Pensacola, FL 555-5847
Charles, X 365 Broad St Mobile, AL 555-8214
Jarzin, H 92 Adams Lane Elberta, AL 555-1234
McDonald, A 22 Pine Forest Pensacola, FL null
McDonald, J 123 4th St Mobile, AL 555-9978
Richard, E 932 Dracena Gulf Breeze, 555-1111

Way FL
Claud, S 452 Main St Pensacola, FL 555-0003

Te records as addressed by COBOL had a structure like this:

 01 CUSTOMER
 05 NAME CHARACTER(20)
 05 ADDRESS CHARACTER(20)
 05 CITY-STATE CHARACTER(25)
 05 PHONE CHARACTER(7)

 Te depicted fle above was referred to as a “sequential fle.” If a person
wanted to see a listing of data by address rather than name, the f le had
to be sorted and the data redisplayed. If data were added to the fle, it had to
be put in its proper place according to the sequential key, which in this
example is the name feld. Early thinking revolved about punched cards
and lots of sorting—frst sorting punched cards and then techniques for
sorting data on disks or tapes.
To fx the drawbacks of sorting and more sorting to retrieve data,

two other principal fling systems evolved in the 1960s: indexed and the
direct access fling systems. Tapes were sequential devices capable of
storing a lot of data. Disks, on the other hand, could store data just like
tapes but with lower capacity. Disks provided random access capabil-
ity, whereas tapes could not. Hence, sofware systems evolved to take
advantage of disk storage with non-sequential data access. In the late
1960s, sofware packages called “database systems” began to emerge.
Database systems were purchasable programs to store and retrieve data
as well as perform maintenance (adding, deleting, and modifying f elds

18 • Database Design Using ER Diagrams

and records). With a database system, one did not have to write COBOL
programs to handle data directly but rather relied on the database pro-
gram to handle data. Programmers used a combination of COBOL and
some proprietary database languages to maintain data. With these sys-
tems, each department could share data and resources. As databases
evolved, instead of each department having its own programmers and
perhaps its own computer, there could be one central computer to store
data, one programming staf, and one database sofware package. Data
could and should be shared, with each department having its own view
of the data.
All this sounds great, but in reality it took several years to break away

from the “my data” mold. In addition, hybrid systems emerged focusing
mainly on retrieval of data. Tis delayed the move to a totally relational
environment because of the investment companies had in sof ware and
programmers.
Why was sharing data a good thing? Sharing not only used expensive

resources more efciently but also reduced redundancy. Redundancy
means storing the same information in diferent places. If each depart-
ment stored its own version of data, its own view of customers, then the
customer’s name, address, telephone number, and so on were recorded by
each department. Suppose the customer moved. Ten, each department
changed its data when it found out that the customer had moved, and
repeated moves by a customer could easily lead to a customer’s address
being stored inconsistently—the accounting department might have one
address, the sales department might have another, etc. Te root problem
here is the lack of data sharing, and sharing was a central goal of the early
database systems.
The early database software evolved into two main data models: the

hierarchical and the network models. Although the relational model
for a database was recognized as a desirable technique in the early
1970s, the relational model was treated as a really good theoretical
technique for which computers were not fast enough to implement at
that point.
 Te database models (hierarchical, network, and relational) were logi-

cal models—ways of logically perceiving the arrangement of data in a f le
structure. One perceived how the data was to be logically stored, and the
database physically implemented the logical model. As we shall see, there
is a close relationship between the logical and physical implementations
of the hierarchical and network models. Since there were no practical

Data and Data Models • 19

relational implementations other than what was then supercomputers at
research centers, the world of commercial databases in the 1970s involved
choosing between the hierarchical and network models. T e next sections
give a little insight into each of these three main models and an introduc-
tion to the relational model.

Checkpoint 2.2

1. What is a sequential f le?
2. What is COBOL?
3. Why is ordering important in a sequential f ling system?
4. What is a database program?
5. In the early days, how was data put into a f le?

2.4 DATABASE MODELS

We now take a look back at database models as they were before the
relational database was practical. Te look back shows why the “old sys-
tems” are considered obsolete and why the relational model is the de facto
standard in databases today. Te old systems were classif ed as two main
database models: hierarchical and network. Tese two models were the
backbone of database sofware before the 1980s. Although these legacy
systems might be considered “old fashioned,” there are some systems still
in use today dependent on these models.
In this section, we present some versions of the hierarchical model for

several reasons:

(a) To illustrate how older models were constructed from f le systems
(b) To show why these fle-based databases became outdated when rela-

tional databases became practical
(c) To see the evolution of f le-based systems

 T e fle systems discussed below are actual ways some database systems
were written prior to the availability of relational database. Te point here
is to illustrate the good and bad points of older database systems and to
show why relational database was and is such an improvement in database
design and use.

20 • Database Design Using ER Diagrams

2.4.1 The Hierarchical Model

In hierarchical database models, all data are arranged in a top-down
fashion in which some records have one or more “dependent” or “child”
records, and each child record is tied to one and only one “parent.” T e
parent-child relationship is not meant to infer a human familial relation-
ship. T e terms parent and child are historical and are meant to conjure
up a picture of one type of data as dependent on another. Another ter-
minology for the parent-child relationship is owner and objects owned,
but parent-child terminology is more common. As is illustrated here, the
“child” records will be sports played by a “parent” person.
We begin with an example of a hierarchical fle situation. Suppose you

have a database of people who play a sport at some location. Suppose we
have a person, Brenda, who plays tennis at city courts and who plays golf at
the municipal links. Te person, Brenda, would be at the top of the hierarchy,
and the sport location would be in the second tier. Usually, the connection
between the layers in the hierarchy is a parent-child relationship. Each par-
ent-person may be related to many child sport locations, but each sport loca-
tion (each child record) is tied back to the one person (one parent record)
who plays that particular sport. A way to store this hierarchical database
could be to have two fles, one fle for person, one fle for sport locations. For
the two-fle model to make sense (i.e., to have the fles “related” and hence
be a database), there would have to be pointers or references of some kind
from one f le to the other. One way to implement a pointer scheme would
be to have a pointer from the sport (child) to the person (parent) like this:

AaaaaaaaaaaaaaaaaaaaaaAaaaaaA
 With data:

1 Brenda
2 Richard
3 Abbie

AaaaaaaaaaaaaaAaaaaaaaaaAaaaaaaaaaAaaAaaaaaaaaAaaaaaaAaaaaaaaA
 With data:

tennis, city courts, 1
golf, municipal links, 1
golf, municipal links, 2
snorkeling, Pensacola Bay, 2
running, UWF track, 2
downhill skiing, Ski Beech, 3

Data and Data Models • 21

FIGURE 2.1
A Hierarchy of Persons and Sports with Parent Pointers.

A diagram of this relationship is shown in Figure 2.1.
 Te actual location of the records on a disk need not be known. T e

sense of the data is not lost if the locations are disk addresses and if you
imagine there are thousands of persons and sports. Here, suppose we
assume the “record address” is a four letter alphanumeric string:

AaaaaaaaaaaaaaaaaaaaaaaAaaaaaA
 With data:

A45C, Brenda
C333, Abbie
B259, Richard

aaaaaaaaaaaaaAaaaaaaaaaAaaaaaaaaaAaaAaaaaaaaA
 With data:

golf, municipal links, B259
running, UWF track, B259
downhill skiing, Ski Beech, C333
snorkeling, Pensacola Bay, B259
tennis, city courts, A45C
golf, municipal links, A45C

This system has a parent-child link—the pointer from child to par-
ent creates a relationship. The “reference to person” in the SPORTS file
refers to the primary key of the PERSON file and is called a foreign key
(FK) because the “reference to person” is a primary key of another file.
The FK references a primary key, hence completing the relationship of
one file to the other. If there were no relationship, then you would have
two independent files with no connection—the system would make
no sense.

22 • Database Design Using ER Diagrams

While we have established the relationship of child to parent in the dis-
cussion, the database has some drawbacks. Te point here is that in any
database, data should be stored in such a way that the database can be
queried. Does this mean the database designer has to ask the user what
questions they are likely to ask? You bet it does.
To answer a question in this database, “Who plays golf at municipal links?,”

you start looking at the SPORTS fle, look for “golf at municipal links,”
and see what parent records there are. Tis question and answer are easy
enough because you start with the object of the search—a sport. Now if
your question were, “What sports does Richard play?,” you would have
to f rst fnd Richard in the PERSON fle to get his record address, then
look through the SPORTS fle to fnd the links back to Richard. Since the
SPORTS fle is not organized in a way to facilitate fnding an answer to
your question, you must look at all instances of all sports to see which, if
any, pointed to Richard.
If you were actually implementing this database model, you could

enhance the system a bit to answer questions starting with the parent. An
improvement to this model could be to reference each sport from within
each parent record (let us go back to simple numbers for this):

AaaaaaaaaaaaaaAaaaaaaaaAaaaaaAaaaaaaAaaaaaaaaaaaA
 With data:

1 Brenda, (101, 102)
2 Richard, (103, 104, 105)
3 Abbie, (106)

AaaaaaaaaaaaaaAaaaaaaaaaAaaaaaaaaaAaaAaaaaaaaA
 With data:

101, tennis, city courts, 1
102, golf, municipal links, 1
103, golf, municipal links, 2
104, snorkeling, Pensacola Bay, 2
105, running, UWF track, 2
106, downhill skiing, Ski Beech, 3

Figure 2.2 depicts the relationship between parent and child records in
both directions. When viewed from the parent, these child-pointer links
are called a multiple-child pointer (MCP) system. Richard has three point-
ers to child records because in this database he plays three sports.

Data and Data Models • 23

FIGURE 2.2
A Hierarchy of Persons and Sports with Parent and Child Pointers.

When viewed from the child fle, the backward link is called a parent
pointer. In the SPORTS fle, if a record is examined like:

106, downhill skiing, Ski Beech, 3

the pointer-reference to person (3) would be called a parent pointer. T e 3
points to the parent, Abbie.
In this model, the relationship between parent and child records is done

two ways. Te “reference to person” in the SPORTS fle is a link (the FK)
from child to parent. Te reference to multiple children in the parent
records is called an MCP (multiple child pointer) scheme. While it is true
that the MCP is redundant to the relationship, it does two practical things:

(a) It allows questions to be asked of the system that are easier to answer
than with just parent pointers.

(b) It allows the system to be queried without looking at the child records.

For example, if you ask the question—how many sports does Richard
play?—you need only look at the person fle and count MCP references.
We have illustrated two ways to construct a relationship between two

fles: the FK parent pointer and the MCP. Both of the linking techniques
are viable database implementations. Te second one, the MCP system,
was implemented more ofen than the FK system.
What have we learned so far about hierarchical databases?

1. Te pointers in the database dictate the ease with which the database
is queried.

2. While the child to parent pointers implement the relationship, they
fall short of being able to easily answer some questions.

3. Te simple child to parent scheme can be enhanced to better answer
some questions by adding an MCP system to the plan.

24 • Database Design Using ER Diagrams

4. Te notion of one parent for each child is still in place. We will look
presently at a system that allows us to go from multiple parents to
multiple children. However, if you think having parent records link-
ing to multiple child records and vice versa will be complicated, you
are correct. It will take a lot of pointers.

5. Staying with just the system presented above with both a parent
pointer and multiple child pointers, the system is limited in that only
so many children can be addressed by an MCP system. In an MCP
system, each parent must have enough predefned pointer spaces for
as many child records there may be. In the next section, we will see a
system where the parent-to-child pointer scheme is limitless.

2.4.1.1 The Hierarchical Model with a Linked List

Having used the MCP/FK system to construct a hierarchical database,
we now present a second hierarchical model. Let us look again at the
above database with child pointers in the parent record (MCP). Now sup-
pose there were more child records than were originally planned. Suppose
the system was not a person and sports, but students at a school and
absences. Te student would be the parent record, and the absence records
would be the child. Now, suppose you designed this system with an MCP
relationship so a student could have up to 20 absences. What happens when
the student is absent for the 21st time? One of two things must happen:

(a) Te MCP system would have to be modifed to include some kind of
overf ow.

(b) Some other hierarchical system would have to be used.

We could, of course, implement this as an FK system and ignore the MCP
part entirely. But, what happens if you don’t have an MCP component in
your database? Would not some queries be harder to answer?
We could implement a diferent system to allow limitless children for a

parent without using an MCP. Te following fle system uses a “linked list”
or “chain” system to implement the relationship between parent and child.
With the same data, the records would set up like this:

Parent(link to 1st child)

And, within the child records:

Data and Data Models • 25

Child(link to next child)

Here is the data from above with this type of arrangement:

AaaaaaaaaaaaaaaaaaaaaaaAaaaaaAaAaaaAaaaaaaA
 With data:

1 Brenda (101)
2 Richard (103)
3 Abbie (106)

AaaaaaaaaaaaaaA aaaaaaaaaA aaaaA aaA aaaaA aaaaaA aaaA aaaaA aaaaaaaaA aA
aaaaaaaaAaaaaAaaaaaaaaaAaaaAaaaAaaAaaaAaaaaaAaaAaaaaaAaaaaaaaaA

 With data:

101, tennis, city courts, 102
102, golf, municipal links, 999
103, golf, municipal links, 104
104, snorkeling, Pensacola Bay, 105
105, running, UWF track, 999
106, downhill skiing, Ski Beech, 999

Here, 999 means “no next link.”
Figure 2.3 illustrates a linked list parent-to-child pointing scheme. In

this system, we have a link from parent to child that we did not have with
the FK system alone. Furthermore, the records in both the parent and the
child are uniform in size. Both the parent and the child records contain
only one pointer. Also in this system, it would not matter whether a person
played 1 sport or 100—the system works well if the number of child records
is unknown or highly variable. If you would argue that fnding a specif c
child record among 200,000 sport records might be time consuming, you

FIGURE 2.3
A Hierarchy of Persons and Sports with a Parent-to-Child Linked List.

26 • Database Design Using ER Diagrams

are 100% correct. If you argue that the system is fragile and if one link is
lost, the whole thing goes down, you are correct again. While this linked
list system may look somewhat fragile, it formed the basis for several of
the most successful commercial databases. As you might expect, the basic
linked list included enhancements such as direct links back to the parent,
forward and backward links, and links that skipped along the chain in one
direction and not in the other (coral rings). All these enhancements were
the fodder of database design in the 1970s.

2.4.1.2 Relationship Terminology

Having seen how to implement relationships in hierarchical databases,
we need to tighten some language about how relationships are formed.
Relationships in all database models have what are called structural con-
straints. A structural constraint consists of two notions: cardinality and
optionality. Cardinality is a description of how many of one record type
relate to the other and vice versa.
Suppose we implement a database about a person and their books. We

have a person (parent record) and books (children records). In our data-
base, if a person can own multiple books and each specifc book can have
only one named person-parent, we would say the cardinality of the rela-
tionship is one-to-many: One person relates to one or more books and
a specifc book has only one person-owner in the database. T is one-to-
many relationship is abbreviated 1:M; the cardinality of the relationship
of person-to-book is said to be 1:M.
If the situation were such that a person might have multiple books and

a book might be claimed by more than one person, then the cardinality
would be many-to-many: Many persons relate to many books. Many to
many is abbreviated M:N (as in M of one side relates to N on the other side,
and M and N are generally not equal).

Optionality refers to whether one record may or must have a correspond-
ing record in the other fle. If a person may or may not have books, then
the optionality of the person to book relationship is optional or partial. If
the books in the database must be “related to” or “assigned to” somebody,
then the optionality of book to person is mandatory or full.
Further, relationships are always stated in both directions in a database

description. We would say, for example,

People may have zero or more books,

Data and Data Models • 27

 and

Books must be associated with one and only one person.

Note the person to book, one-to-many cardinality and the optional/
mandatory nature of the relationship. We will return to this language,
but it is easy to see that the way a database is designed depends on the
description of it. If the description is clear and unambiguous, then the
likely outcome of database design is far more predictable. Hopefully, this
clarifes why such pains are taken in the elucidation/specifcation phase of
database design to carefully express how each relationship is to be imple-
mented. It will make a diference in the implementation of the database
whether “Books must be associated with one and only one person” versus
“Books may be associated with one and only one person.”

2.4.1.3 Drawbacks of the Hierarchical Model

All relationships between records in a hierarchical model have a cardi-
nality of one-to-many or one-to-one, but never many-to-one or many-to-
many. So, for a hierarchical model of employee and dependent, we can
only have the employee-to-dependent relationship as one-to-many or one-
to-one; an employee may have zero or more dependents. In the hierarchi-
cal model, you could not have dependents with multiple parent-employees.
As we illustrated, the original way hierarchical databases were imple-

mented involved choosing some way of physically “connecting” the parent
and the child records. Tink about a paper database and imagine that you
have looked up information on an employee in an employee f ling cabinet.
Ten, you want to fnd the dependent records for that employee in a depen-
dent f ling cabinet. One way to implement the employee-dependent rela-
tionship would be to have an employee record point to a dependent record
and have that dependent record point to the next dependent (a linked list
of child records). For example, you fnd employee named McDonald. In
McDonald’s record, there is a notation that McDonald’s f rst dependent
is found in the dependent fling cabinet, fle drawer 2, record 17. T e “f le
drawer 2, record 17” is called a pointer and is the connection or relation-
ship between the employee and the dependent. Now, to take this example
further, suppose the record of the dependent in fle drawer 2, record 17,
points to the next dependent in fle drawer 3, record 38. Ten that depen-
dent points to the next dependent in fle drawer 1, record 82.

28 • Database Design Using ER Diagrams

As pointed out in the discussion of hierarchical models, the linked
list approach to connecting parent and child records has advantages
and disadvantages. For example, some advantages would be that each
employee has to maintain only one pointer and the size of the linked
list of dependents is theoretically unbounded. Drawbacks would include
the fragility of the system, that is, if one dependent record is destroyed,
then the chain is broken. Further, if you wanted information about only
one of the child records, you might have to look through many records
before you f nd it.
 Te point here is that some system must be chosen to be implemented

in the underlying database sofware. Once the linking system is chosen, it
is fxed by the sofware implementation. Te way the link is done must be
used to link all child records to parents regardless of how ef cient or inef-
fcient it might be for one situation.
 Tere are three major drawbacks to the hierarchical model:

1. Not all situations fall into the one-to-many, parent-child format.
2. Te choice of the way in which the fles are linked has an impact on

performance and storage both positively and negatively.
3. Te linking of parents and child records is done physically. If the

dependent fle were reorganized, then all pointers would have to be
reset.

2.5 THE NETWORK MODEL

Each of the methods presented for the hierarchical database has advan-
tages and disadvantages. Te network model allows M:N (many-to-many)
relationships. For example, if we embellished the above database to make
it M:N, we would want to implement a system of pointers for multiple par-
ents for each child record. How would this be handled? You would most
likely have to have multiple child-forward links with either a linked list
or an MCP system in the parent, and parent pointers in the child records
(perhaps more than one). Te network model alleviated a major concern
of the hierarchical model because in the network model, one was not
restricted to having one parent per child; a many-to-many relationship or
a many-to-one relationship was acceptable.
To give an example of a network approach, let us revisit the PERSON-

SPORTS example but now allow a sports record to be connected to more

Data and Data Models • 29

than one person. Sample data with more persons and more sports and
using an MCP system in both directions follow:

First, the data:

Brenda: tennis, city courts; golf, municipal
links

Richard: golf, municipal links; snorkeling,
Pensacola Bay; running, UWF track

Abbie: downhill skiing, Ski Beech
David: snorkeling, Pensacola Bay; golf, munici-

pal links
Kaitlyn: curling, Joe’s Skating Rink; downhill

skiing, Ski Beech
Chrissy: cheerleading, Mountain Breeze High;

running, UWF track

Now, we diagram this conglomeration of data with pointers (we use
record numbers in each “f le”):

AaaaaaaaaaaaaaaaaaaaaaAaaaaaAaaaaaaaaaA
AaaaaaaaaaaaaaaaaaaaaaAaaaaaaAaaaaaaaaaAaaaaAaaaaaaaA

In each case, the part of the fle description in parentheses such as (who
plays) is called a repeating group, meaning it can have multiple values. Our
small, albeit perplexing, database looks like this:

AaaaaaaaaaaaaaaaaaaaaaAaaaaaAaaaaaaaaaA
 With data:

1 Kaitlyn, (107, 106)
2 Abbie, (106)
3 Brenda, (102, 101)
4 Chrissy, (108, 105)
5 Richard, (103, 104, 105)
6 David, (104, 102)

AaaaaaaaaaaaaaaaaaaaaaAaaaaaaAaaaaaaaaaAaaaaAaaaaaaaA
 With data:

101 tennis, city courts, (3)
102 golf, municipal links, (3, 6)
103 golf, municipal links, (5)

30 • Database Design Using ER Diagrams

104 snorkeling, Pensacola Bay, (5, 6)
105 running, UWF track, (4, 5)
106 downhill skiing, Ski Beech, (2, 1)
107 curling, Joe’s Skating Rink, (1)
108 cheerleading, Mountain Breeze High, (4)

 Te network with pointers in both directions is illustrated in Figure 2.4.
 Te complexity of the network database is exponentially greater than

that of the hierarchical one. Te database just illustrated could have been
implemented as a series of linked child/parents or some other combina-
tion of links and pointers. Te second and third drawbacks of hierarchical
databases spill over to network databases. If one were to design a f le-based
database system from scratch, one would have to choose some method of
physically connecting or linking records. Tis choice of record connection
then locks us into the same problem as before—a hardware-implemented
connection has an impact on performance both positively and negatively.
Further, as the database becomes more complicated, the paths of connec-
tions and the maintenance problems become exponentially more dif cult
to manage.
As a project, you could create the PERSON-SPORTS database with a

few more records than given in the example using linked lists. At f rst, you
might think this is a daunting exercise, but one of the most popular data-
base systems in the 1970s used a variant of this system. Te parent and
child records were all linked with linked lists going in two directions—
forward and backward. Te forward/backward idea was to speed up f nd-
ing child records so one could search for children by going either way. An
enhancement of this system is to use forward-pointing linked lists with a
backward-pointing chain of links, but with the backward chain skipping
every n record, where the optimal n turns out to be the square root of the
number of entries in the chain. We now conclude the historical database
tour by eliminating all the pointers all together.

FIGURE 2.4
A Network of Persons and Sports with MCP and Parent Pointers.

Data and Data Models • 31

2.6 THE RELATIONAL MODEL

Codd (1970) introduced the relational model to describe a database not
sufering the drawbacks of the hierarchical and network models (i.e.,
physical links and hardware-bound restrictions). Codd’s premise was that
if we ignore the way data fles are connected and arrange our data into
simple two-dimensional, unordered tables, we can develop a calculus for
queries (questions posed to the database) and focus on the data as data,
not as a physical realization of a logical model. Codd’s idea was truly logi-
cal because one was no longer concerned with how data was physically
stored. Rather, data sets were simply unordered, two-dimensional tables
of data. To arrive at a workable way of deciding which pieces of data went
into which table, Codd proposed “normal forms.” To understand normal
forms, we must frst introduce the notion of functional dependencies. Af er
we understand functional dependencies, normal forms follow.
As a historical note, when Codd introduced his relational model, it was

deemed by many people as “theoretical only.” At the time, a typical main-
frame computer might have 64K of internal memory, and a really good set
of hard disks might have as much as several megabytes of storage. To top
that of, the computer typically took up a large room requiring separate air
handling, special architectural features like raised foors, and enhanced
power grids. All the “computing power” was shared by everyone who had
to have computing. In a company, users might include accounting, pur-
chasing, personnel, f nance, and so on. For even one of those units to be
able to run the relational model in the early 1970s would have required vast
dedicated resources. As computers became more ubiquitous, less expen-
sive, smaller, and so on, the amount of memory available both internally
and externally became cheaper and had far greater capacity. T e relational
model “grew up” with the evolution of computers in the 1980s. We expand
the notion of relational database in the next chapter.

Checkpoint 2.3

1. What are the three main data models we have discussed?
2. Which data model is mostly used today? Why?
3. What are some of the disadvantages of the hierarchical data

model?
4. What are some of the disadvantages of the network data model?

32 • Database Design Using ER Diagrams

5. How are all relationships (mainly the cardinalities) described in
the hierarchical data model? How can these be a disadvantage of
the hierarchical data model?

6. How are all relationships (mainly the cardinalities) described in
the network data model? Would you treat these as advantages or
disadvantages of the network data model?

7. What are structural constraints?
8. Why was Codd’s promise of the relational model better?

2.7 CHAPTER SUMMARY

In this chapter, we covered concepts essential to the understanding
and design of a database. We also covered data models from a historical
perspective—the hierarchical and network models and the introduction
of the relational model. Tis chapter should serve as a historical back-
ground to the material for the rest of the book.

BIBLIOGRAPHY

Codd, E.F. (1970). A relational model of data for large, shared data banks. Communications
of the ACM, 13(6): 377–387.

AAAA AA AA AA AA AA AA A

3
The Relational Model and
Functional Dependencies

3.1 INTRODUCTION

As discussed in Chapter 2, Edgar Codd’s idea for a relational database was
for data to be arranged in simple two-dimensional, unordered tables. By
properly arranging data in this fashion, we can ask questions about the
contents of the database (generate queries) in a straightforward way and
essentially ignore the physical way data is actually stored. To begin, we
explore the “proper table” idea and then look at functional dependencies
(FDs). As Codd suggested, we will not create our database with physically
linked records but rather ensure the data is in a suitable form. Tis means
the data is normalized, which is achieved by following the notion of FDs.

3.2 FUNDAMENTALS OF RELATIONAL DATABASE

We begin our discussion of the relational database with the most funda-
mental idea: the two-dimensional table. Tis means the data is arranged in
rows and columns with one piece of data in each cell, as shown in Table 3.1a.
Table 3.1b is an example of a aaaaaaaa table.

TABLE 3.1A

Two-Dimensional Table of Relational Data.

A AaaaaaaaA AaaaaaaaA AaaaaaaaA AaAaAAaA

row1 data-cell data-cell data-cell
row2 data-cell data-cell data-cell
row3 data-cell data-cell data-cell

DOI: 10.1201/9781003314455-3 33

https://doi.org/10.1201/9781003314455-3

AA A AA A AA A

AA A AA A AA A

34 • Database Design Using ER Diagrams

TABLE 3.1B

Two-Dimensional View of aaaaaaaa Table.
AaaaaAA AaaaaaaaaAA AaaaaaaaAA

Jones 222-3333 123 4th St
Smith 333-2154 55 Main St
Adams 555-8888 3145 Euclid Ct

TABLE 3.2

Two-Dimensional Arrangement Where Each Column Does Not Contain Same Type of
Data.

AaaaaAA AaaaaaaaaAA AaaaaaaaAA

Jones 222–3333 123 4th St
55 Main St Smith 333–2154
Adams 3145 Euclid Ct 555–8888

Te columns are given titles: name, phone_no, address.
Te rows are horizontal arrangements of data cells under each column.

Row 1 contains
AaaaaaA aaaaaaaaA aaaAaaaAaaA
 Ofen, when discussing a row in a table, it is denoted like this:
AaaaaaaaAaaaaaaaaaAaaaAaaaAaaaA

 Te data cells contain facts. For example, you have a customer named
Smith, Smith’s address is 55 Main St, and so on. In the two-dimensional
table, each column contains the same kind of data—the same data type
with the same semantics (same meaning). Table 3.2 is a two-dimensional
arrangement, but it violates the sense of “each column contains the same
kind of data.”
All the same data is there, but it is jumbled around, and the column

headings make no sense. In an arrangement like this, we would say the
data was “inconsistent.”
In relational databases, the data cell is supposed to be atomic. Te char-

acteristic of atomicity means the cell contains one fact and only one fact. If
Adams had two phone numbers and if they were entered on the same row,
it would not be a valid table of data for a relational database. You would
have to design the tables some other way.

AA A AA A AA A

AA AA AA AA AA AA

Te Relational Model • 35

TABLE 3.3

Arrangement Containing Nonatomic Cells.

AaaaaAA AaaaaaaaaAA AaaaaaaaAA

Jones 222-3333 123 4th St
Smith 333-2154 55 Main St
Adams 555-8888, 555-8889 3145 Euclid Ct

As can be seen in Table 3.3, the phone_no for Adams is nonatomic. Te
data cell containing the two phone numbers is said to contain a repeat-
ing group. If a two-dimensional arrangement of data cells contains only
atomic data, it is said to be a table. Tis data arrangement with a nonatomic
cell is not a table, unlike the previous example (Table 3.2) with all atomic
cells. In Codd’s terminology of database, if you have a table (i.e., a two-
dimensional arrangement of atomic data), then your data is in the frst
normal form (1NF).
In relational database theory, there is a shorthand notation for talking

about rows and columns in tables. We will call populated tables, “tables,”
and we will call columns, “attributes.” For shorthand, Tables are generally
abbreviated with a capital letter like R and the attributes as A, B, C,. . . .
We can say:

AaaaaAaaAaaAaaA

is in 1NF, whereas

AaaaaAaaAaaAaaaaA

is not 1NF as aaa represents a repeating group. Te curly brackets mean
“repeating group.”

Checkpoint 3.1

1. Is the following arrangement of data a table?

AaaaaaaaaaaA
12345
54321

AaaaaA
Honda
Ford

AaaaaaA
Grey
Green, White

AA AA AA AA AA AA

AA AA AA AA AA AA

AA AA AA AA AA AA

AA AA AA AA AA AA

36 • Database Design Using ER Diagrams

2. Is the following arrangement of data a table?

AaaaaaaaaaaA
12345
54321

AaaaaA
Honda
Green

AaaaaaA
Grey
Ford

3. Is the following arrangement of data a table?

AaaaaaaaaaaA
12345
54321

AaaaaA
Honda
Ford

AaaaaaA
Grey
Green

4. Is the following arrangement of data a table?

AaaaaA
Honda
Ford

AaaaaaaaaaaA
12345
54321

AaaaaaA
Grey
Ford

5. Is the following arrangement of data a table?

AaaaaaaaaaaA
12345
54321

AaaaaA
null
Green

AaaaaaA
Grey
null

6. What does aaaaAaaAaaAaaAaaAaa mean?

3.3 RELATIONAL DATABASE AND SETS

In mathematics, we defne sets as an unordered collection of unique objects.
Codd viewed and defned a relational database as: All tables contain sets
of rows, and all data are atomic in two-dimensional tables. Te notion of
“sets of rows” is a powerful one because it implies two things:

(a) Tere are no duplicate rows.
(b) Tere is no order among the rows. (Rows are not presumed to be sorted

in any way).

AA A AA AA

AA A AA AA

AA A AA AA

Te Relational Model • 37

Mathematical sets are not in sorted order and do not contain duplicates.
If I had a set of apparel, it might contain shoes, socks, shirt, pants, and
hats. Te same set could be written as (pants, shirt, socks, hats, shoes). Te
order of the items in the set is not defned. An item either is in the set or
not in the set. As far as the set is concerned, the set (pants, shirt, socks,
hat, pants, shirt, shoes, socks, hats) is the same as before. Te duplication
of items has no sense in sets.
When we look at some rows of data in a relational database, we think of

the tables as sets of rows. Consider the Table 3.4.
Set-wise, Table 3.5 shows the same table as Table 3.4.
Te order of the rows is unimportant. If we had a duplicate row, as shown

in Table 3.6, we would not have a valid relational table. Since a relational

TABLE 3.4

Set of Rows.

AaaaaAA AaaaA

Rich Carpenter
Beryl Dentist
Mary Jo Programmer

TABLE 3.5

Table Showing Tat Order of
Rows is Unimportant.

AaaaaAA AaaaA

Beryl Dentist
Mary Jo Programmer
Rich Carpenter

TABLE 3.6

Table With Duplicate Rows.

AaaaaAA AaaaA

Rich Carpenter
Beryl Dentist
Mary Jo Programmer
Rich Carpenter

38 • Database Design Using ER Diagrams

database is a “set of rows,” the extra row is unnecessary for the extrac-
tion of information in the database. Also, from a practical standpoint the
duplicate row would violate the sense of being able to identify one and
only one row from a primary key.
As with sets, we may ask the question, Is <Lindsey, Cook> in the data-

base? In this case, Lindsey is not there. Te point is that the particular row
is either there or not—it is in the set of rows, or it is not.

3.4 FUNCTIONAL DEPENDENCY

A functional dependency (FD) is a relationship of one attribute in a
table to another. In a database, we often have the case where one attri-
bute defines the other. For example, we can say Social Security number
(SSN) defines or identifies a name. What does this mean? It means if
I have a database with SSNs and names, and if I know someone’s SSN,
then I can find the person’s name. Further, since we used the word
defines, we are saying that for every SSN we will have one and only one
name. We will say we have classified name as functionally dependent
on SSN.
 Te idea of a FD is to defne one feld as an anchor from which one can

always fnd a single value for another f eld. If this sounds familiar, it is—
this is the idea of the primary key we discussed previously. Te main idea
in FDs is to fnd primary keys such that all data in a record depends on the
primary key alone.
In a database, the designer makes choices def ning data with FDs. It is

the designer’s responsibility to elicit FD information from the user. T e
user tells us whether a project has one location or multiple locations. T e user
tells us whether a person can have one and only one phone number or not.
Also, working backward from data, one cannot examine a database and
“prove” some attribute is functionally dependent on another. Te idea of a
FD is one of defnition, and it goes with the table design just like the def -
nition of a column and data type.
As another example, suppose a company assigned each employee

a unique employee number. Just consider the employee number and
name for a moment. Each employee has one employee number and one
name. Names might be the same for two diferent employees, but their

A A

A A

A

Te Relational Model • 39

employee numbers would always be diferent and unique because the
company defned them that way. It would be inconsistent in the database
if there were two occurrences of the same employee number with difer-
ent names.
We write an FD with an arrow like this:

AaaaAAaAAaaaaA

 or

AaaaaaAAaAAaaaaA

 Te expression aaaaaAAaAAaaaa is read “empno defnes name” or “empno
implies name.”

Checkpoint 3.2

1. In the following table, does all the data conform to aaaaaAAaA
Aaaaa?
aaaaaA aaaaAA
123 Beryl
456 Mary Jo

2. Does the fact that the data conforms to the proposed FD prove
the FD is in fact true?

3. In the following table, does all the data conform to aaaaaAAaA
Aaaaa?
aaaaaA aaaaAA
123 Beryl
456 Mary Jo, Mary, MJ

4. In the following table, does all the data conform to aaaaaAAaA
AaaaaA?
<123, Beryl>
<MJ, 456>

5. In the following table, does aaaaaAAaAAaaaa?
AaaaaaA aaaaAA
123 Beryl
456 Mary Jo

40 • Database Design Using ER Diagrams

3.5 NON-1NF TO 1NF

Let us consider the arrangement of data in Table 3.7.
What have we learned so far about data like this? T e aaaaaaaaaaa is

likely to be unique. Why? Because whoever created this table of customers
most likely would use aaaaaaaaaaa as a unique identifer for custom-
ers. Does the data prove that aaaaaaaaaaa’s are unique? Data cannot
“prove” anything. It would be proper to say that this example suggests aaaa
aaaaaaaa’s are unique identifers, but the designation of aaaaaaaaaaa as
a unique, primary key for this table is a matter of def nition.
 T e aaaaaaaa for Adams is nonatomic. Te data cell containing the

two phone numbers is said to contain a “repeating group.” T is arrange-
ment of data makes sense to us, but it needs to be rearranged to conform
to the defnition of a 1NF table. Symbolically, R(A, B, {C}, D) is not 1NF as
{C} represents a repeating group.
Before handling the non-1NF problem, it is best to defne a primary

key in R if possible. A primary key is an attribute that always uniquely
identifes a row in a table. Suppose the primary key is attribute A (here,
aaaaaaaaaAaaA), which we will assume is unique for each customer by def -
nition. Ten, the way the repeating group is handled is through a process
called decomposition. Te original table, R(A, B, {C}, D), will be decom-
posed into two tables:

aaaAaAaAaaAaaA aaaaAaaaAaaAaa

 and

AaaaAaaAaAaA aaaaAaaaAaaAaaaaAaAaaaAaaaAaaaaaaaaaaaaAaaaaA

TABLE 3.7

Sample Data for aaaaaaaa.

customer_no name phone_no address

101 Jones 222-3333 123 4th St
102 Smith 333-2154 55 Main St
107 Adams 555-8888, 555-8889 3145 Euclid Ct

A A

A A

A AA A

Te Relational Model • 41

Going back to the aaaaaaaa example, if we defned AaaaaaaaaaaaA
as the primary key, the decomposition would go like this:

AaaaaaaaaAaAaaaaaaaaAaaAaAAaaaaAaAaAaaaaaaaaAaaAAaaaaaaaAaA

will become (will decompose into two tables):

AaaaaaaaaaAaAaaaaaaaaAaaAaAAaaaaAaAAaaaaaaaAaA aaaaAaaAA aaaaaaaaaaaaA

 and

aaaaaaaaaAaAaaaaaaaaaaaAaAAaaaaaaaaAaAaaaaAaaAAaaaaaaaaaaaAAaA
AaaaaaaaaAaA

 Te notation AaaaaaaaaaaaAaAaaaaaaaa is called a concatenation. Te
new populated tables will look like Tables 3.8 and 3.9.
All data is now atomic in both tables—both tables are in 1NF. Te pri-

mary key of the frst table, aaaaaaaaaaa in aaaaaaaaa, is referenced
in the second table. aaaaaaaaaaa in aaaaaaaaa is called a foreign
key as it references a primary key in another table. In aaaaaaaaa, the
key is Aaaaaaaaaaaa, which is unique and hence serves to identify a row.

TABLE 3.8

Sample Data for aaaaaaaaa.
customer_no name address

101 Jones 123 4th St
102 Smith 55 Main St
107 Adams 3145 Euclid Ct

TABLE 3.9

Sample Data for aaaaaaaaa.
customer_no phone_no

101 222-3333
102 333-2154
107 555-8888
107 555-8889

42 • Database Design Using ER Diagrams

TABLE 3.10

Sample Data for Original aaaaaaaa Table.
name phone_no address

Jones 222-3333 123 4th St
Smith 333-2154 55 Main St
Adams 555-8888, 555-8889 3145 Euclid Ct

ATABLE 3.11
CUSTOMER with no obvious Primary Key.

name phone_no address

Jones 222-3333 123 4th St
Smith 333-2154 55 Main St
Adams 555-8888, 555-8889 3145 Euclid Ct

In aaaaaaaaa, there is no one attribute identifying a row; hence, the
entire row is considered a primary key. Te row consists of the concatena-
tion of aaaaaaaaaaa and aaaaaaaa.
Let us consider another example. Suppose there were no customer num-

ber, no obvious key. Suppose the original data looked like Table 3.10.
 Neither aaaa nor aaaaaaaA would be considered a reliable row identi-

f er; now, we have no obvious key, and we have a repeating group. What
do we do? We take the repeating group values and combine them with
all the other attributes and call the whole row a key. Is this the best key
you can choose? Perhaps; ways to determine the worth of all attributes
concatenated together as a key are determined further in this chapter
as we defne the other normal forms. Here, we have taken a non-1NF
arrangement of data and made it 1NF. Further, this technique always
works because you end up with atomic data in each column in a two-
dimensional table (1NF). Table 3.11 is the decomposition in which we
have no obvious primary key:

AaaaaaaaaAaAaaaaAaAaA aaaaaaaAaAAaaaaaaaaAaaAA

Table 3.11 is made into one table with aaaa and aaaaaaaaA as the key
(Table 3.12):

AaaaaaaaaAaAaaaaaAaaaaaaaaAaAaaaaaaaa

A A

Te Relational Model • 43

TABLE 3.12

Sample Data for aaaaaaaa With aaaaAand aaaaaaaa as Key.
name phone_no address

Jones 222-3333 123 4th St
Smith 333-2154 55 Main St
Adams 555-8888 3145 Euclid Ct
Adams 555-8889 3145 Euclid Ct

TABLE 3.13

Sample Data for aaaaaaaa Resolved to 1NF.

customer_no name phone_no address city

101 Jones 222-3333 123 4th St Pensacola
102 Smith 333-2154 55 Main St Alpharetta
107 Adams 555-8888 3145 Euclid Ct Two Egg
107 Adams 555-8889 3145 Euclid Ct Two Egg

In this transformed table, we now have 1NF, unique rows, and a pri-
mary key. Notice in the case of aaaaaaaa with a unique aaaaaaaaaaa
added, it could be resolved to 1NF easily like this:

aaaaaaaaAaAaaaaaaaaaaaAaAAaaaaAaAAaaaaaaaaAaAAaaaaaaaAaAAaaaaA)

But, since we have a primary key in aaaaaaaaaaa, this decomposition
(Table 3.13) is a bit severe. As we take up other normal forms, this problem
will be resolved.

Checkpoint 3.3

1. What would you suppose is the key of this table?

color make year
Red Honda 2018
Green Ford 2020
Blue Ford 2018

 Red Buick 2019

44 • Database Design Using ER Diagrams

2. Put this arrangement of data into 1NF:

name homephone cellphone
Jones 111-1111, 222-2222 333-3333
Smith 444-4444 555-5555, 666-6666
Adams 777-7777, 888-8888 112-1212, 113-1313

3.6 THE SECOND NORMAL FORM

Usually, the second normal form (2NF) is addressed when we have verif ed
a table is in the frst normal form (1NF). If you look at a table for the f rst
time, you must f rst decide whether it is in fact a table (i.e., in 1NF) and,
beyond the data in the table, ask what the design is. Consider the following
arrangement of data in Table 3.14.
 Te data looks like it is in the 1NF, so we must ask, “What is the table

design?” Te small amount of data shown seems to contain atomic cells
and no duplicate rows. But, what is not stated are the intended FDs. T e
appropriate question is, “Are aaaa and aaaaa functionally dependent on
aaaaaaaaaa?” Semantically, they appear to be, but whoever produced this
table of data should also furnish an accompanying table design.
Now, let us consider this table of data with no FD defned as yet (Table 3.15).

TABLE 3.14

Arrangement of Data.

license_no make color

12345 Honda Grey
54321 Green Ford

TABLE 3.15

Sample Data for aaaaaaaa.
Empno name

101 Kaitlyn
102 Brenda
103 Beryl
104 Wallace
105 Wallace

A

A
A

A

A A A

A

Te Relational Model • 45

Does it appear to be a valid table? Yes, it is consistent and it contains
atomic data and no duplicate rows. Now, suppose we defne the data like
this: Te table name is aaaaaaaa. aaaaaaaa has two attributes:
aaaaa and aaaa. Te data types of the attributes are as follows:

aaaaaaaaAaAaaaaaAAaaaaaaaaaaaAAaaaaAaaaaaaaaaaaa

VARCHAR is a very common data type meaning “variable number of
characters,” and VARCHAR(20) means that data in the name attribute
will be from zero to 20 characters. So far, so good, but is anything missing?
We have stated nothing about FDs. If no FDs are defned with the table,
the only ones we may assume are refexive:

AaaaaaAAaAAaaaaaAaA
AaaaaAAaAAaaaaAa

 and

AaaaaaAaAAaaaaAAaAAaaaaaAaAAaaaa

 Tese refexive FDs are always true; they exist for the sense of math-
ematical completeness. If you put these FDs in words, they would say, “If I
know a person’s aaaa, I can tell you the aaaa.” Also note combinations
of attributes can be FDs. Te expression AaaaaaAaAAaaaaAAaAAaaaaaAaAAaaaa
means that if I know an aaaaa and aaaa combination, I can tell you the
aaaaa and aaaa (a refexive FD).
As we look at the table, it appears we have the FD, aaaaa → aaaa, but

unless it is explicitly defned as such, we can only say, “It appears that. . . .”
Wait! Tere are two people named Wallace. Is this a problem with FDs?
Not at all. You expect that aaaa will not be unique, and it is common-
place for two people to have the same frst name. However, no two people
have the same empno, and for each empno, there is one and only one name
value.
A proper defnition for this table would be:

AaaaaaaaaAaAaaaaaAAaaaaaaaaaaaAAaaaaAaaaaaaaaaaaa

 given

aaaaaAAaAAaaaaA

A A A

A

46 • Database Design Using ER Diagrams

 Te underlined aaaaa indicates aaaaa is the primary key in this
table. If a primary key is defned, it is always on the lef-hand side (LHS)
of an FD. Primary keys imply FDs and are defned. Te primary key does
not have to be the frst column in the table, but it is conventional to put it
there. FDs do not necessarily defne primary keys; but, as we shall see, a
command of the FD calculus will lead us to conclude what may be a pri-
mary key and what may not.
Let us look at another example. Suppose you are given this table with

aaaaa defned as the primary key:

aaaaaaaaaAaAaaaaaAAaaaaaaaaaaaAAaaaAAaaaaaaaaaaaaAAaaaaA
aaaaaaaaaaaaA

What does this tell us? Te table defnition tells us the frst column will
be aaaaa, the second column is aaa, and the third column is aaaa. It says
all the aaaaa’s will be numbers up to three digits long. aaa and aaaa
will be character strings up to 20 characters each. Te underlined aaaaa
tells us that aaaaa is a primary key; hence, two FDs are defned, aaaaa
→ aaa and aaaaa → aaaa. Te FDs say that if you know the aaaaa, you
can fnd the aaa and the aaaa for that aaaaa; aaa and aaaa are func-
tionally defned by aaaaa. Table 3.16 shows some sample data.
Every time we fnd aaaaa = 104, we fnd the aaaa = Wallace. Every

time we fnd aaaaa 103, we know the aaa of 103 is Designer.
Let us now consider this table:

aaaaAaAaaaaaaAAaaaaaaaaaaaAAaaaaaaaaaaaAaaaaaaaAAaaaaaaA
aaaaaaaaaaaa

FDs are forthcoming.
Table 3.17 shows some sample data.

TABLE 3.16

Sample Data for aaaaaaaaa.
empno job name

101 President Kaitlyn
104 Programmer Wallace
103 Designer Beryl

A A A

A

A A
A

A

Te Relational Model • 47

TABLE 3.17

Sample Data for aaaa Table.
cab_no date_driven driver

101 2/4/2023 Rich
102 2/4/2023 Gen
103 2/5/2023 John
102 2/5/2023 Steph

While we cannot defne FDs by looking at the data, we can eliminate
them. Can we say aaaaaa → aaaaaa? Clearly, we cannot because aaaaaa
102 has two diferent drivers; we have two rows with data to contradict
the FD, aaaaaa → aaaaaa: <102, Gen>, <102, Steph>. Can we say, aaaaa
aaaaaa → aaaaaa? Again, the answer is no because we fnd information
to the contrary (see 2/4/2023). How about aaaaaaaaaaa → aaaaaa? No.
According to this table, it takes both the aaaaaa and the aaaaaaaaaaa
to defne a aaaaaa. Given this data, we can ask the table designer whether
the combination of aaaaaa and aaaaaaaaaaa will form the FD, aaaaaa,
aaaaaaaaaaa → aaaaaa? Assuming this is the intention, the complete def-
nition of the table would be:

AaaaaAaAaaaaaaAAaaaaaaaaaaaAAAaaaaaaaaaaaAAAaaaaaaaAAaaaaaaA
aaaaaaaaaaaaA

given the FD

AaaaaaaAaAAaaaaaaaaaaaAAaAAaaaaaa

 Te AaaaaaaAand aaaaaaaaaaa attributes are both underlined. It is the
concatenation of these two attributes defning a primary key for this
table.
Now suppose we expand our aaaa table a little and include information

about the cab itself—the color of the cab. Let us propose this design:

AaaaaaAAAaaaaaaAAaaaaaaaaaaaAAAaaaaaaaaaaaAAAaaaaaaaAAaaaaaaA
aaaaaaaaaaaaAAAAaaaaaAaaaaaaaaaaaa

 with FD

Aaaaaaa, aaaaaaaaaaa → aaaaaa, aaaaa

48 • Database Design Using ER Diagrams

TABLE 3.18

Sample Data for Ref ned aaaa Table.
cab_no date_driven driver color

101 2/4/2023 Rich Yellow
102 2/4/2023 Gen Green
103 2/5/2023 John Yellow
102 2/5/2023 Steph Green

TABLE 3.19

aaaa Table With Redundancy.

cab_no date_driven driver color

101 2/4/2023 Rich Yellow
102 2/4/2023 Gen Red
103 2/5/2023 John Yellow
102 2/5/2023 Steph Red

Suppose the data now appears as in Table 3.18.
Now this table seems to be okay, but there is a hidden problem with

it. Te design says aaaaaa, aaaaaaaaaaa is the primary key. It is true
with this little bit of data—if we know the combination of aaaaaa and
aaaaaaaaaaa, we can identify the aaaaaa and the aaaaa of the cab. If I know
(102, 2/4/2023), then I can f nd the driver (Gen) and the aaaaa of the cab
(Green). You may detect a problem here; however, let us keep going and see
if you see it. To illustrate the problem, suppose aaaaaa 102 is painted red.
You can change the data in the table to refect this, but notice what you
have to do (as illustrated in Table 3.19).
You had to make two changes. Imagine this table is thousands of rows

and you change the color of a cab. You have to change each row to ref ect
the new cab color for that cab. T e color of the cab is recorded redundantly.
When such redundancy appears, it is a symptom of a design problem.
Here, we say that the table is not in the 2NF.

3.6.1 Anomalies

 Te update we just proposed is called an update anomaly because the
change of cab color is not a simple update to a table, but rather it requires

A

Te Relational Model • 49

multiple updates due to the redundancy. Tere are other problems with
this table of data—other anomalies. Anomalies come in three forms:
update, insert, and delete.
An example of an insert anomaly in the preceding ill-designed table

would be as follows: Suppose you wanted to insert cab and color data
into the table without identifying a driver or a date driven. You can-
not do this because you would have to include a row like this: <105,
null, null, Blue>. Tis is an invalid row because you cannot have
part of the primary key as null. In a relational database, there is a rule
called the entity integrity constraint that applies to all tables and prohib-
its any part of a primary key from being null. Tis makes sense because
if a primary key or any part of it is null, it means you cannot know the
primary key to identify a row, and hence your defnition of a primary
key is contradictory.
An example of a delete anomaly would be the following: Suppose you

wanted to delete a cab from the database. Suppose aaaaaa 102 was
wrecked and taken out of the feet. You cannot delete aaaaaa 102 in
the table without deleting all the rows where aaaaaa 102 appears, and
this deletion would also delete the other information, such as <102,
2/5/2023, Steph, Red> where we know Steph drove on 2/5/2023. A
delete anomaly causes data to be deleted beyond what was intended.

3.6.2 Non-2NF to 2NF

In terms of FDs, the problem in our non-2NF table is that the aaaaa of cab
depends on the aaaaaa and not the aaaaaaaaaaa. Te correct FDs in this
table are as follows:

AaaaaaaAaAAaaaaaaaaaaa → aaaaaa
aaaaaa → aaaaa

You need only the aaaaaa to identify the color. Since you have a concat-
enated key and an attribute in the table is dependent on only part of the
key, this is said to be a partial dependency. Tables with partial dependen-
cies are said to be not in the second normal form. A second normal form
(2NF) table has a primary key with no partial dependencies. For a table to
not be in the 2NF, there has to be a concatenated key with some attribute
not dependent on the whole key.

A A A A
A

A A A A

A A

A A A

A A

50 • Database Design Using ER Diagrams

In this non-2NF Cab situation, the symbolic discussion of the problem
would be like this:

We have a table, aaAaaA aaA AaaA aa, with the FDs aaAaAa and aAaAa.
Hence, the table is not in the 2NF because you have a partial depen-
dency, aAaAa, when aa is the key of the table; attribute a depends
on part of the key aa, not the whole key.

What are you supposed to do with tables not in 2NF? Te answer is
decomposition. Te non-2NF table is decomposed into two tables; each
table contains data dependent only on the primary key (the whole key and
nothing but the key). Symbolically, aaAaaAaaAAaaAaa with FDs aaAaAa and
aAaAa (non-2NF) will be decomposed into two tables, aaaAaaAaaAAaa and
aaaAaaAAaa, both of which are in 2NF because all non-key attributes depend
only on the primary key. Going back to the Cab problem, the original table
will be decomposed into two tables.

aaaaAaAaaaaaaAAaaaaaaaaaaaAAAaaaaaaaaaaaAAaaaaaaaAAaaaaaaA
aaaaaaaaaaaaAAaaaaaAaaaaaaaaaaaa

 with FDs

aaaaaaAaAAaaaaaaaaaaaAAaAAaaaaaaAaAAaaaaaaAAaAAaaaaa

 becomes . . .

AaaaaaaAaAaaaaaaAAaaaaaaaaaaaAAAaaaaaaaaaaaAAaaaaaaaAAaaaaaaA
aaaaaaaaaaaa

 with FD

AaaaaaaAaAAaaaaaaaaaaaAAaAAaaaaaaA

with sample data as shown in Table 3.20.
And

AaaaAaAaaaaaaAAaaaaaaaaaaaAAaaaaaAaaaaaaaaaaaaA

 with FD

AaaaaaaAAaAAaaaaaA

A A A

Te Relational Model • 51

TABLE 3.20

Sample Data for aaaaaa Table.
cab_no date_driven driver

101 2/4/2023 Rich
102 2/4/2023 Gen
103 2/5/2023 John
102 2/5/2023 Steph

TABLE 3.21

Sample Data for aaa Table.
cab_no color

101 Yellow
102 Green
103 Yellow

TABLE 3.22

New Decomposed aaa Table.
cab_no color

101 Yellow
102 Red
103 Yellow

With sample data as shown in Table 3.21.
We give the new aaaa table a slightly diferent name (aaaaaa) to distin-

guish it from the original. Reconsider the update we proposed. With the
decomposed tables, suppose aaaaaa 102 was painted red. Te only row to
change in this new decomposed table is the second row in the aaa table,
which would now look like Table 3.22.
Tere is one change, one row updated. With the tables in their decom-

posed 2NF form, there is no redundancy, and all non-key data depends on
the primary key of each table:

aaaaaaaAAAaaaaaaAAaaaaaaaaaaaAAAaaaaaaaaaaaAAaaaaaAAaaaaaaA
aaaaaaaaaaaa

A

A A A

A

A A A
A

A A

52 • Database Design Using ER Diagrams

 with FD

aaaaaaAaAAaaaaaaaaaaaAAaAAaaaaaaA

 And

aaaAaAaaaaaaAAaaaaaaaaaaaAAaaaaaAaaaaaaaaaaaa

 with FD

AaaaaaaAAaAAaaaaa

 Te other anomalies are gone when the tables are decomposed. You can
insert a aaa and aaaaa into the CAB table without disturbing aaaaaa. A
aaa does not need a aaaaaa or aaaaaaaaaaa to be added to the database.
You can delete a aaaaAaaaaaAcombination without losing the information
about the aaaaaa or aaaaaaaaaaa. You will delete only the aaaaa of the cab.

Checkpoint 3.4

1. Given aaAaAaaa, is aaAaaAaaAAaaAaaAaa in 2NF?
2. Given aAaAaaaa, is aaaaAAaAaAaaAaaAaa in 2NF?
3. Given aaAaAaa and aAaAa, is aaAaaAaaAAaaAaaAaa in 2NF?
4. If a table is in the 1NF and you have no concatenated key, you do

not have to worry about 2NF problems (True/False)?

3.7 THE THIRD NORMAL FORM

Let us now consider another example of a table with a defned key:

aaaaaaaaA aAaaaaaAAaaaaaaaaaaaA AaaaaA aaaaaaaaaaaaA Aaaaaaa
aaAAaaaaaaaaaaaAAaaaaaaaaaaAaaaaaaaaaaaa

 with FD

AaaaaaAAaAAaaaaAaAAaaaaaaaaAaAAaaaaaaaaaaA

A

A

Te Relational Model • 53

Or, in shorthand

AaaAaaAAaaAaaAaaA

 with FD

AaA aAaaaA

Table 3.23 shows some sample data of aaaaaaaa.
Is this table in 1NF and 2NF? Yes, it is. It contains all atomic attributes,

there are no concatenated keys, and hence no chance of partial dependen-
cies. Yet, there is still a problem here. Can you see it? For aaaaaaaaA= aaaa,
we have a aaaaaaaaaa = aaaaaaaaaa. Seems like we have redundancy in
the database.
As we illustrated, redundancy is a “red fag”—it suggests a design prob-

lem. We have a primary key in aaaaa; knowing that the aaaaa allows us
to identify a row. Since aaaaa is the primary key, it identifes all the con-
tents of the row; hence, we can legally say that aaaaaAAaAAaaaaAaAAaaaaaaaa,
aaaaaaaaaa. Te problem is aaaaaaaaaa is better defned by aaaaaaaa than by
aaaaa; because of this defnition, we see aaaaaaaaaa is functionally depen-
dent on skill_ID more so than aaaaa. We have a transitive dependency of
aaaaaAAaAAaaaaaaaa and aaaaaaaaAAaAAaaaaaaaaaa. Tis transitive dependency
causes redundancy, which provokes anomalies (update, insert, and delete).
What would be an update anomaly in the aaaaaaaa table? Suppose
we wanted to change the description aaaaaaaaaa of aaaaaaaa = Prog to
aaaaaaaaaa = Programmer/analyst? Tere would be two row changes
in this small table of only four rows. An insert anomaly arises when we try
to insert new data into the table. Suppose we wanted to put the fact that we
have a aaaaaaaa = Cart and aaaaaaaaaa = Cartographer in the table.
We would have Table 3.24.

TABLE 3.23

Sample Data for aaaaaaaa Table.
empno name skill_ID skill_desc

101 Adams Prog Programmer
102 Baker Brick Bricklayer
103 Charles PR Public Relations
107 Davis Prog Programmer

A A A A
A

A A

A

A

54 • Database Design Using ER Diagrams

TABLE 3.24

Sample Data for aaaaaaaa Table With Cartographer.

empno name skill_ID skill_desc

101 Adams Prog Programmer
102 Baker Brick Bricklayer
103 Charles PR Public Relations
107 Davis Prog Programmer
null null Cart Cartographer

But, this will not work because we violated the entity integrity rule. A
delete anomaly would occur if we deleted a row and lost more informa-
tion than we planned. Suppose we decided to delete the employee Charles.
Charles has the aaaaaaaa of PR, and you not only lose the row with Charles,
but also lose the fact that aaaaaaaa = PR means aaaaaaaaaa = Public
Relations.
Now, let us return to the original EMPLOYEE table and resolve the

problem:

AaaaaaaaaAaAaaaaaAAaaaaaaaaaaaAAaaaaAaaaaaaaaaaaaAAaaaaaaaaA
aaaaaaaaaaaAAaaaaaaaaaaAaaaaaaaaaaaa

 with FD

AaaaaaAAaAAaaaaAaAAaaaaaaaaAaAAaaaaaaaaaaA

 or

AaaAaaAAaaAaaAaaA

 with FD

AaA aAaaaA

 Te problem is the aaaaaaaaaa is functionally dependent on aaaaaaaa and
not aaaaa. Te corrected FDs should be:

aaaaaAAaAAaaaaAaAAaaaaaaaaA

 and

A A

A

A

A A A

Te Relational Model • 55

AaaaaaaaaAAaAAaaaaaaaaaaA

 or

AaaAaaAAaaAaaAaaA

 with FDs

AaAaAaaaAaAaAaA

 Tis illustrates a transitive dependency as A → C and C → D. Te third
normal form (3NF) demands no transitive dependencies. As with the par-
tial dependencies in non-2NF, non-3NF arrangements cause anomalies:

1. Possible multiple changes when you update a aaaaaaaaaa (an update
anomaly)

2. Inability to add a row with just a aaaaaaaa and its aaaaaaaaaa (an
insert anomaly)

3. Losing information when deleting a row (remember losing a aaaaaaaa
when Charles was deleted)—a delete anomaly.

 Tese anomalies are caused by the transitive dependency. How do we fx
this problem? As before, we decompose the non-3NF table into two tables
in which the attributes will depend only on the key of the table:

AaaAaaAAaaAaaAaa with FDs aaaa and aAaAa becomes
aaaAaaAAaaAaa and aaaAaaAAaa.

With our aaaaaaaa data, we decompose into two tables like this:

aaaaaaaaaaAAAaaaaaAAaaaaaaaaaaaAAaaaaAAaaaaaaaaaaaaAAaaaaaa
aaAAaaaaaaaaaaa

 with FD

aaaaaAAaAAaaaaAaAAaaaaaaaaA

 and

AaaaaaAaAaaaaaaaaAAaaaaaaaaaaaAAaaaaaaaaaaAaaaaaaaaaaaaA

A

56 • Database Design Using ER Diagrams

TABLE 3.25

Sample Data for aaaaaaaaa Table.
empno name skill_ID

101 Adams Prog
102 Baker Brick
103 Charles PR
107 Davis Prog

TABLE 3.26

Sample Data for aaaaa Table.
skill_ID skill_desc

Prog Programmer
Brick Bricklayer
PR Public Relations

with FD

aaaaaaaaAAaAaaaaaaaaaaA

 Te populated tables will look like Tables 3.25 and 3.26.
Tese two tables represent a database in 3NF. Te redundancy is now

gone. If you want to change a aaaaaaaaaa, you make one change. If you
want to delete an employee, you do not lose the aaaaaaaa-aaaaaaaaaa, and
if you want to insert a new aaaaaaaa with no employee yet defned, you can
do so. Te anomalies are gone.

Checkpoint 3.5

1. Consider this table:

aaaaaaaaAaAaaaaaAaAAaaaaAaAAaaaaaaaaaaAaAAaaaaaaaaaaaaaaaaAaA

with FDs

aaaaaAAaAAaaaaaAaAAaaaaAaAAaaaaaaaaaa

and

aaaaaaaaaaAAaAAaaaaaaaaaaaaaaaaAA

Is this table in 1NF, 2NF, 3NF? Decompose the table if necessary.

A

A A
A A

Te Relational Model • 57

2. Consider this table:

aaaaAaaAaaAaaAaaAaaA

with FDs

aaAaAaaaAaAaAaaAaAaAa

Is this table in 1NF, 2NF, 3NF? Decompose the table if necessary.

3.8 THE EQUIJOIN OPERATION

In a relational database, we ofen decompose non-3NF tables to 3NF.
Managers and users may complain, “My table of data has been spread all
over the place,” or “Te normalization process removed my primary infor-
mation table.” While tables are decomposed, they can be reconstituted eas-
ily with the equijoin operation of relational calculus, which is realized in
SQL (Structured Query Language). SQL is the de facto query language of the
relational database. A discussion of relational calculus and SQL are beyond
the scope of this chapter; many excellent references to the query language
exist (Bagui and Earp, 2011; Earp and Bagui, 2021). Te point here is that
while a normalized table may have been decomposed, the original table can
be re-formed from the decomposed ones with a simple SQL query. As an
example, suppose we have a table like the one in the previous section:

aaaaaaaaAaAaaaaaAaAAaaaaAaAAaaaaaaaaaaAaAAaaaaaaaaaaaaaaaaAa

 with FDs

aaaaaAAaAAaaaaaAaAAaaaaAaAAaaaaaaaaaaAaAAaaaaaaaaaaaaaaaaAA

 and

AaaaaaaaaaaAAaAAaaaaaaaaaaaaaaaaAA

We recognize the transitive dependency and decompose aaaaaaaa
into these two tables:

aaaaaaaaaAaAaaaaaAaAAaaaaAaAAaaaaaaaaaaAa
AaaaaaaaAaAaaaaaaaaaaAaAAaaaaaaaaaaaaaaaaAaA

A A

A A

A A

58 • Database Design Using ER Diagrams

 Te aaaaaaaa table can be reconstructed by joining aaaaaaaaa
and aaaaaaa by the common attribute, aaaaaaaaaa. aaaaaaaaaa is the
primary key of aaaaaaa and is a foreign key referencing aaaaaaaaa.
If aaaaAaaAaa is decomposed into aaaaAaa and aaaaAaa, the equijoin opera-
tion can reconstruct a combining tables a and a on rows where the values
of common attribute a are equal. If aAaAaaaaaaaaaAaAaAaaaaaaaaaaA
aAaAaaaaaaa, and aA= aaaaaaaaaa, the equijoin would proceed like this:

aaaaaaaaAaAaaaaaAaAAaaaaAaAAaaaaaaaaaaAaAAaaaaaaaaaaaaaaaaAa

 with data

<101, Adams, P1, Pensacola>
<102, Baker, P1, Pensacola>
<103, Charles, P2, Mobile>
<104, Davis, P2, Mobile>

 decomposes to

aaaaaaaaaAaAaaaaaAaAAaaaaAaAAaaaaaaaaaaAaA

 with data

<101, Adams, P1>
<102, Baker, P1>
<103, Charles, P2>
<104, Davis, P2>

and

AaaaaaaaAaAaaaaaaaaaaAaAAaaaaaaaaaaaaaaaaAaA

 with data

<P1, Pensacola>
<P2, Mobile>

 Te equijoin operation J gives us aaaaaaAaAaaaaaaaaaaAAaAAaaaaaaaa
on aaaaaaaaaa, resulting in

Te Relational Model • 59

<101, Adams, P1> joins with <P1, Pensacola> to give <101,
Adams, P1, Pensacola>

<102, Baker, P1> joins with <P1, Pensacola> to give <102,
Baker, P1, Pensacola>

<103, Charles, P2> joins with <P2, Mobile> to give <103,
Charles, P2, Mobile>

<104, Davis, P2> joins with <P2, Mobile> to give <104,
Davis, P2, Mobile>

 T e aaaaaa table contains the same data as the original aaaaaaaa
table. Te join operation can use operators other than equality, but the
other join varieties are uncommon and beyond the scope of this book. T e
recombining of decomposed tables during the normalization process uses
the equijoin operation.

3.9 SOME FUNCTIONAL DEPENDENCY RULES

We now introduce a set of FD rules to aid in fnding normal forms. We
do not approach this subject with great mathematical rigor, but rather
appeal to common sense and logic. Tere are far more rigorous treat-
ments of this subject (Elmasri and Navathe, 2016). Before we can deter-
mine normal forms, we deal with f nding a minimal key in a table and
then work from that key to the normal forms. We designate a table with
letters aaAa, or a (usually a). We depict attributes as aaAaaAa,. . . . For
example, if we have a table a with three attributes aaA a, and aa we
abbreviate this aaaaAaaAaa. Now, consider a problem consisting of a set
of attributes and some FDs to see how a set of FD rules will allow us to
organize the database:
We are given some data, which we put in a table aaaaAaaAaaAaa, and we

are given some FDs: aAaAaaaAaAaAa. Te process of bringing this data to
3NF goes like this: (a) Find a minimal key of a; (b) determine whether R
is in 3NF; and if not, decompose it until it is.
 To fnd the key, we want to propose some rules for dealing with the FDs

we are given. If aAaAaa, the attribute a def nes a and a, or put another
way, a and a are functionally dependent on a. Here is an example: Let

a be aaaaaaaa

A
A
A

60 • Database Design Using ER Diagrams

a be aaaaaaaaaaaAA
a be AaaaaA
a be aaaaA
a be AaaaaaA

If we say aAaAaaa in a, we are saying if you know the aaaaaaaaaAaa,
you then can fnd the aaaaAaAAaaaa, and aaaaa for a given aaaaaaaaaaa in
the table a. When writing FDs, we are dealing with aaaa of attributes. Sets
have no order, and duplication of attributes on either side of an FD adds
no information. Some of the notions about sets are ofen expressed as FD
rules. If we view the FD as a set relation among attributes, we can say all of
the following are the same as aAaAaaa:

AaAaAaaaaAaAaAaaaaAaaAaAaaaaAaAaAaaaaaaaaaAaaaaaAaA
aaaaaaaaaaaa.

In the aaaaaaaa table, since aA aAaaaaaaaaaaaAa defnes the other
attributes, we designate a as a primary key. Hence, writing the table in
shorthand looks like this: aaAaAaAaaAaaAaa, where the underlined a is the
primary key. Now, here are some rules:

i. Te refexive rule: aA aA a. In this chapter, we profered this rule,
which is trivially obvious; it simply means if I know a, then I can tell
you a. Since we treat the attributes as sets, the refexive rule also tells
us aaAaAa and aAaAaa.

ii. Te augmentation rule: If aAaAa, then aaAaAa. If you are given aAaA
a, then this means if you know a value for A, you can fnd a value for
B. If a isAAaaaaaaaaaaa and a is a Aaaaa, aAaAa says if you give me a
value for aaaaaaaaaaa, then I can fnd a aaaa for that aaaaaaaaa
aa. Te augmentation rule says if I augment the LHS (Lef Hand
Side) of the defning expression (A), I can still correctly fnd the RHS
(Right Hand Side). Adding information to the LHS really does noth-
ing to enhance the FD. Suppose we take an example: employee_no =
101 implies aaaa is Jones. Now, if we add information to the LHS,
like aaaaaaaaaaa = 101, Date of Birth = 21 Nov 1958, what is the
name? It is Jones, and the added information of birthday on the LHS
is superfuous. Still, the rule is valid, and it will help us when deriv-
ing a key.

iii. Te decomposition rule: If aAaAaaaa then aAaAaaAaAaAaa and aAaAa.
(Please do not confuse this FD rule with the decomposition of tables

Te Relational Model • 61

to gain normal forms. Unfortunately, the names are the same, but the
meaning is overloaded.) Again, we appeal to intuition to understand
this rule. If aaaaaaaaaaa defnes a aaaa, aaaaaaa, and aaaa, then it
is valid to say aaaaaaaaaaa defnes a aaaa, aaaaaaaaaaa def nes
an aaaaaaa, and aaaaaaaaaaa defnes a aaaa. If you give me a valid
aaaaaaaaaaa, I can tell you a person’s aaaa, the person’s aaaaaaa,
and the person’s phone number as one unit or piece by piece.

iv. Te union rule: If aAaAa and aAaAa, then aAaAaa. Te reverse of the
decomposition rule is the aaaaaAaaaa, which says the same thing as
the decomposition rule, backward. As an example, if aaaaaaaaaaa
defnes a aaaa and aaaaaaaaaaa defnes a aaaa, then aaaaaaaaaaa
defnes a aaaa and a aaaa.

v. Te transitive rule: If aAaAa and aAaAa, then aAaAa. T is rule
seems to fy in the face of the 3NF, but for f nding keys in a jum-
ble of attributes, it is quite useful. Tink of the rule in terms of a
table of aaaaaaaaaaaAaA AaaaA, and aaaaaaaaaaaaaaAa. You are given
AaaaaaaaaaaaAAaAAaaa. You are given AaaaAAaAAaaaaaaaaaaaaaa. T e rule
says AaaaaaaaaaaaAAaAAaaaaaaaaaaaaaa. Give me an aaaaaaaaaaa,
and I’ll tell you the aaa that person does because I can look up the
aaa and then fnd the aaaaaaaaaaaaaa.

vi. Te subset rule: A is a subset of some group of attributes a, then aAaAa.
For example, if aAaAaa, then a is a subset of aa and aaAaAa. If
aa is aaaaaaaaaaa and aaaa, then given an aaaaaaaaaaa and
aaaa, I can tell you either aaaa or aaaaaaaaaaa.

EXAMPLE 3.1
Let us consider the following problem: We are given some data in a table:
aaaaAaaAaaAaaAaa; we are given some FDs: aAaAaaaAaAaAaaAaaAaAa. What
we want to find is one set of attributes to define all the others, a key to this
table, a. After we find the key, we will work on normal forms.
Step 1. Find a LHS (Left Hand Side) (of an FD) that is a minimal key for a.

You can always start with the refl exive property and use all the attributes on
the LHS. aaaaaAaAaaaaaaAaaaaa is a key, but what we want to fi nd is
some subset of all attributes to define the others—a minimal key (if it exists).
A good way to find a minimal LHS is to first look for a FD with a concat-
enated LHS (if there is one). If there is no concatenated key, then choose an
attribute to define as many other attributes as possible. Admittedly, this is a
subjective choice, but if you choose incorrectly, you only need to try again
with a different or enhanced LHS. After choosing some LHS, we look at the
FD rules and see if we can define the other attributes from our chosen LHS.

A

A
A

62 • Database Design Using ER Diagrams

In this case, we have aaAaAa. We will see if we can show aaAaAaaaaa
and hence let aa be a minimal key of the original a. Notice we start with
the largest concatenated LHS because we will need at least aaAto define
whatever is functionally dependent on it.
Step 2. Use the rules to find as many RHS attributes as possible with the

candidate LHS. Since aaAaAa, we know by the reflexive rule aaAaAaa; and
then by the union rule, we combine these two:

Union rule: aaAaAaA(given), aaAaAaa (reflexive), then aaAaAaaaa

Use the other given FDs to find other attributes that depend on the chosen
LHS from step 1.

We have established that aaAaAaaa. We were given aAaAaa.

Subset rule: aaAaAaaa (derived previously), then aaAaAaaAA
Transitive rule: aaAaAaaAaAaAaa (given), then aaAaAaaa
Union rule: aaAaAaaaaAaaAaAaa, then aaAaAaaaaaa and since we are

dealing with sets of attributes, aaAaAaaaa.

Step 3. Repeat step 2 as necessary to get all attributes on the RHS from
the chosen LHS if you can.

We have all attributes on the RHS except a. The other FD we are given is
aAaAa. Using the same line of thought and we have established aaAaAaaaa:

Subset rule: aaAaAaaaa, then aaAaAaaAA
Transitive rule: aaAaAaaAaAaAa (given), then aaAaAaaAA
Union rule: aaAaAaaaaaAaaAaAa, then aaAaAaaaaa.

The process of using FD rules to find a minimal key is not an exact algo-
rithm. Some people will see a transitive rule first, then a union rule; others
will see decomposition rules first. The order of rule application is not as
important as clearly defining a valid path from a LHS to define all attributes
(aaaaaAaAaaaaa) to some minimal key (here, aaAaAaaaaa).

Since our LHS defines all the other attributes, we have a minimal key aa.
Now, the question: Is this in 1NF, 2NF, or 3NF? No repeating groups were
indicated; hence, we have 1NF with aaAaaAaaAAaaAaaAaa. The best tactic here is
to remove transitive dependencies first. We have aAaAa, so we can decom-
pose a as follows:

aAaAaaAaaAAaaAaaAaa becomes aaAaAaaAaaAAaaAaa and aaAaAaAaAaa.

When all transitive FDs have been removed, look for partial dependen-
cies. While aa is the key of a, we have a aaaAaAaAaa (a partial depen-
dency) because aa has aaAaAaa.

A

A
A
A

AA

A
A

Te Relational Model • 63

aaAaAaaAaaAAaaAaa decomposes to
aaAaAaAaAaaAaa and aaAaAaaAaaAAaaAA

The final version of the database is

aaAaAaAaAaaAA
AaaAaAaAaAaaAaaAA
AaaAaAaaAaaAAaaAA

We suggested the better technique in decomposing was to remove the
transitive dependencies first. The decomposition could be done by remov-
ing the partial dependencies first, but the FD with the transitive dependency
has to be kept with its LHS. Consider the following:

aAaAaaAaaAAaaAaaAaa becomes aaAaAaaAAaaAaa (partial dependency removed)
and aaAaAaaAaaAAaaAaa. But, now there is a problem. You still have aAaA
a, and you do not have a and a together in either aa or aa.

You have to keep a and a together and hence decompose like this:

AaAaAaaAaaAAaaAaaAaaAbecomes aaAaAaaAAaaAaaAaa and aaAaAaaAaaAAaaAand then
handle the transitive dependency.

aaAaAaaAAaaAaaAaa decomposes to aaAaAaaAAaaAaa and aaAaAaaAAaaaA

The final version is

aaAaAaaAaaAAaaAA
AaaAaAaaAAaaAaaAA
AaaAaAaaAAaa

Regardless of how the decomposition is done, the final result has to be
checked to see if all FDs are still there. If so, then you should have a 3NF
database.

EXAMPLE 3.2
Let us give one more example of a decomposition and key choice that is a
little less straightforward. Suppose we have aAaaaAaaAaaAaaAaaAaa and aaAaA
aa and aAaAa. Your first mission is to find a minimal key for R. From the
previous discussion, we suggested you choose the largest LHS of a given FD
and then see if you can use the rules to show it is a key. Here, you would
choose aa to start and then see if you can show aaAaAaaaaaa. Using our
rules, we can show:

64 • Database Design Using ER Diagrams

 1. aaAaAaa (refl exive rule)
2. aaAaAaa (given)
3. aaAaAaaaa (union rule of 1 and 2)

 4. aaAaAa (subset rule)
5. aAaAa (given)
6. aaAaAa (transitive rule on 4 and 5)
7. aaAaAaaaaa (union rule on 3 and 6)

What about F? You may have recognized this as a problem already.
However, when you look at the given aas, you see a does not appear on
either an LHS or a RHS. You can see the choice of AB as a starting key was
good, but not complete. To handle this, you can do this:

8. aaaAaAaaaaa (augmentation rule and 7)
9. aaaAaAa (subset rule)

 10. aaaAaAaaaaaaA(union rule of 8 and 9).

 Tis last discussion and example suggest two things: (a) our basic algo-
rithm of “start with the largest concatenated key as the LHS” is good, but
the augmentation rule allows us to include attributes on the LHS as neces-
sary to get to a minimal key; and (b) you can derive new FD rules. Our use
of the rules in steps 8, 9, and 10 suggest we can profer this rule:

vii. Te double augmentation rule: You are given or have derived aaAaA
a, then aaaAaAaa. You can add an attribute to both the LHS and
the RHS at the same time as we did to go from step 7 to step 10.

 Tere are many theories and algorithms about how to decompose and
how to choose minimal keys. For example, to fnd a minimal key, there
are proposed algorithms starting with all attributes → all attributes and
then remove attributes from the LHS—a top-down approach. In terms of
decomposition, it seems easier to handle transitive dependencies f rst. We
have presented what we feel is a practical workable approach to going from
a jumbled set of attributes to 3NF. Here is the summary of the approach
we illustrated:

Find the minimal key (MK):

MK1. Lump all attributes into one table R and choose the largest LHS
FD as the minimal key K.

Te Relational Model • 65

MK2. Use FD rules to fnd out whether K can in fact defne all the
attributes in R.

MK3. If K cannot defne all the attributes, then augment K with another
“well-chosen” attribute and return to step MK2 with K now K’ (K
plus some other attribute). With practice, the well-chosen attribute
will be some attribute from the original set defning whatever other
attributes are missing in step MK2.

 Decompose (D):

D1. Remove all transitive dependencies to a separate table.
D2. Remove all partial dependencies to a separate table.

Check to see if the fnal product still retains all given FDs.

Checkpoint 3.6

For each of the following, fnd a minimal key and decompose as neces-
sary to reach the 3NF. Show decomposed tables with keys.

1. aaaaAaaAaaAaaAaaAaa and aAaAaaaaaA
2. aaaaAaaAaaAaa and aaAaAaaaAaAaAaA
3. aaaaAaaAaaAaa and aaAaAaaAaAaaA
4. aaaaAaaAaaAaaAaaAand aaaAaAaaAaAaAaA
5. aaaaAaaAaaAaaAaa and aaAaAaaAaAaAaaAaAaaA
6. aaaaAaaAaaAaaAand aaaAaAaA
7. aaaaAaaaaaa and aaa and aaaa (a has multiple occurrences
of a)

8. aaaaAaaAaaAaaAaaAand aAaAaaaaA

3.10 THE BOYCE–CODD NORMAL FORM

We have suggested all databases be placed in 3NF. When all the tables are
in 3NF, there is likely to be no redundancy, no anomalies. Tere is one situ-
ation for which 3NF may not be “quite good enough.” We placed this last
in the chapter because it is somewhat unusual but possible, and database
designers should be aware of it. Some authors suggest this is a “stronger

A AA

66 • Database Design Using ER Diagrams

form than 3NF,” but there is still a difculty with tables normalized to
Boyce–Codd normal form (BCNF), as we shall discuss. Here is the problem:
Suppose you had a table with three attributes, aaaaAaaAaa. Suppose fur-

ther aaAaAa, but add the aaaAaAaAa. Te table with its primary key would
be aaAaaAaaAAaa; it is in 3NF because there are no partial dependencies and
no transitive dependencies of the type aAaAaaAaAaAa. But, there is still a
slight problem. Tere is that odd transitive aaaAaAaAa; hence, there will
be redundancy and anomalies.
Here is an example of this situation: Suppose we have a local ballpark

where there are children who play sports. Some children play for more
than one team. Each team may have multiple coaches, and a player is
assigned a coach on each team. We have a database of players, teams, and
coaches, and we omit some player, team, and coach details for simplicity.
So, we have a PARK table: AaaaaAaAaaaaaaAaAAaaaaAaAAAaaaaaAa, as shown in

Table 3.27.

AaaaaaaAaAAaaaaAAaAAaaaaa. Note aaaaaa does not → aaaaAaAAaaaa does not →
aaaaa (look at the data to disprove these FDs). On the other hand,
aaaaa → aaaa. While this data is in 3NF, you have redundancy
because aaaaa → aaaa.

Te normalization to BCNF denies any transitive dependencies and
works like this:

aaAaaAaaAAaa, with FDs aaAaAaaAaAaAa can be normalized into aaaAaaAAaaA
and aaaAaaAaAa. Te problem is that one of the FDs has vanished aaaA
aAaa, so have we the anomalies. Te ballpark example normalized to
BCNF looks like Tables 3.28 and 3.29.

aaAaaaaaaaaAaaaaaa and aaaaaaaaaAaaaaa

TABLE 3.27

Sample Data for aaaaATable.
player team coach

Walsh Tigers Adams
Smith Pirates Baker
Walsh Spiders Davis
Smith Tigers Edwards
Philips Pirates Baker

A

Te Relational Model • 67

TABLE 3.28

Sample Data for aa Table.
player coach

Walsh Adams
Smith Baker
Walsh Davis
Smith Edwards
Philips Baker

TABLE 3.29

Sample Data for CT Table.

coach team

Adams Tigers
Baker Pirates
Davis Spiders
Edwards Tigers

In the aa table, both attributes are a concatenated key (aaaaaaAaAAaaaaaA
→ aaaaaaAaA AaaaaaA). Since there can be no partial or transitive dependen-
cies, PC is in 3NF and BCNF. aa is also in 3NF and BCNF (aaaaaAAaA
Aaaaa). Te decomposition problem is that we lost the FD: aaaaaaAaAAaaaaA→
aaaaa. Te original table can be reconstructed with an equijoin operation
by joining aa and aa on aaaaa, but the BCNF version allows updates
with no redundancy, whereas the original aaaa table does not. Consider
adding a coach to the original aaaa table; it can only be done if a player
is assigned, or else there would be a null in the key. In the BCNF version,
a coach can be added to CT with no player assigned. Te other anomalies
will be lef as exercises.
BCNF is a little more complicated than the 1NF, 2NF, and 3NF. In the

frst three normal forms, there is no issue regarding whether the decom-
position is a “good idea.” All databases should be reduced to at least 3NF.
BCNF presents a quandary. What is more annoying to the person using
the database? Is the loss of a FD worse than some anomalies? In a non-
BCNF situation, if the occurrence of anomaly-producing redundancy is
low, then it may well be better just to leave the tables as is—in 3NF but not
BCNF. If the redundancy is pervasive, then normalization to BCNF may
be in order. One option never acceptable is to keep both versions because
that is total redundancy.

68 • Database Design Using ER Diagrams

3.11 CHAPTER SUMMARY

 Tis chapter was meant to introduce relational database. Relational tables
are sets of rows. As sets, the rows have no implied order among them, and
in a correct table, there are no duplicate rows. Normal forms are introduced
along with (a) why the normal forms are desirable; (b) why nonnormal-
ized tables generate anomalies; and (c) how to move from nonnormalized
tables to normal form tables.
Anomalies are abnormal table maintenance operations (delete, insert,

and update) that are abnormal because of redundancy and bad table
design. Te equijoin operation was introduced to show how decomposed
tables can be reconstructed. A FD calculus was introduced to show how
to determine keys and decompositions on an aggregate of data. Finally,
BCNF was covered. Decomposing non-BCNF tables removes redundan-
cies and anomalies but hides FDs.

CHAPTER 3 EXERCISES

Exercise 3.1

 If aAaAa, can you say aAaAa? Why or why not ?

Exercise 3.2

Decompose the following data into 1NF tables:

Khanna, 123 4th St., Columbus, Ohio {Delhi University, Calcutta Uni-
versity, Ohio State}

Ray, 4 Moose Lane, Pensacola, Florida {Zambia University, University
of West Florida}

Ali, 88 Tiger Circle, Gulf Breeze, Florida {University of South Alabama,
University of West Florida}

Sahni, 283 Penny Street, North Canton, Ohio {Wooster College, Mount
Union College}

A

Te Relational Model • 69

Exercise 3.3

Consider the data in Table 3.30.

TABLE 3.30

Exercise 3.3 Table.

name address city state car color year

Smith 123 4th St Pensacola FL Mazda Blue 2019
Smith 123 4th St Pensacola FL Nissan Red 2018
Jones 4 Moose Lane Santa Clive CA Lexus Red 2019
Katie 5 Rain Circle Fort Walton FL Taurus White 2019

and the following FDs:

aaaaAAaAAaaaaaaaAaAaAaaaaAaaaaaaAaaaAaAAaaaaaAaAAaaaaAand aaaAAaAAaaaaaAaAAaaaaA

Decompose as necessary to achieve 3NF.

BIBLIOGRAPHY

Armstrong, W. (1974 August 5–10). Dependency structures of data base relationships.
Proceedings of the IFIP Congress. Stockholm, Sweden.

Bagui, S., and Earp, R. (2011). Essentials of SQL Using SQL Server 2008. Burlington, MA:
Jones and Bartlett.

Chen, P.P. (1976). Te entity-relationship model—toward a unifed view of data. ACM
Transactions on Database Systems, 1(1), 9–36.

Codd, E. (1970). A relational model for large, shared data banks. Communications of the
ACM, 13(6), 377–387.

Codd, E. (1972). Further Normalization of the Data Base Relational Model. Republished in
Randall J. Rustin (ed.), Database Systems: Courant Computer Science Symposia Series
6. Hoboken, NJ: Prentice-Hall.

Codd, E. (1974 August 5–10). Recent investigations in relational database system. Proceedings
of the IFIP Congress. Stockholm, Sweden.

Date, C. (2003). An Introduction to Database Systems. Reading, MA: Addison-Wesley.
Earp, R., and Bagui, S. (2021). A Practical Guide to Using SQL in Oracle, 3rd ed. Redding,

CA: BVT Publishing.
Elmasri, R., and Navathe, S.B. (2016). Fundamentals of Database Systems. Reading, MA:

Addison-Wesley.
Maier, D. (1983). Te Teory of Relational Databases. New York, NY. Computer Science Press.
Norman, R.J. (1996). Object-Oriented Systems Analysis and Design. Upper Saddle River, NJ:

Prentice Hall.
Schach, S.R. (2011). Object-Oriented and Classical Sofware Engineering. New York, NY:

McGraw-Hill.

http://taylorandfrancis.com

4
The Basic ER Diagram: A
Data Modeling Schema

4.1 INTRODUCTION

 Tis chapter begins by describing a data modeling approach and then
introduces entity-relationship (ER) diagrams. Te concepts of entities,
attributes, relationships, and keys are introduced. T e frst three steps
in an ER design methodology are developed. Step 1 begins by building
a one-entity diagram. Step 2 concentrates on using structured English
to describe a database. Step 3, the last section in this chapter, discusses
mapping the ER diagram to a relational database. T ese concepts—the
diagram, structured English, and mapping—evolve together as the book
progresses. At the end of this chapter, we also begin a running case study,
which is continued in the following chapters.

4.2 WHAT IS A DATA MODELING SCHEMA?

 A data modeling schema is a method that allows us to model or illustrate a
database. Tis is ofen in the form of a graphic diagram, but other means
of communication are also desirable. Tose not in the computer f eld may
be unfamiliar with diagrams and graphics. Te ER diagram is a graphic
tool to facilitate data modeling. ER diagrams are a subset of “semantic
models” in database parlance. Semantic models refer to models intended
to elicit meaning from arrangements of data. ER diagrams are not the only
semantic modeling tools, but they are common and popular.
When we discuss the contents of a database, the data model helps us

decide which piece of data goes with which other piece(s) of data on a

DOI: 10.1201/9781003314455-4 71

https://doi.org/10.1201/9781003314455-4

72 • Database Design Using ER Diagrams

conceptual level. An early concept concerning the subject of database is
to recognize there are levels of abstraction we can use in discussing data-
bases. For example, if we were to discuss the f ling of “names,” we could
discuss:

(a) Abstractly, “We will fle names of people we know.”
(b) Concretely, “We will f le frst, middle, and last names (20 characters

each) of people we know, so we can retrieve the names in alphabeti-
cal order by last name; and we will put this data in a spreadsheet
format in package x.”

If a person is designing a database, the frst step is to abstract, then ref ne
the abstraction. Te longer one stays away from the concrete details of
logical models (relational, hierarchical, network) and physical realizations
(felds [how many characters, the data type, . . .] and fles [relative, spread-
sheet, . . .]), the easier it is to change the model and decide how the data
will eventually be physically realized (stored). When we use the term f eld
or f le, we are referring to physical data as opposed to conceptual data.

Mapping is the process of choosing a logical model and then moving to
a physical database fle system from a conceptual model (the ER diagram).
A physical fle loaded with data is necessary to actually obtain data from a
database. Mapping is the bridge between the design concept and physical
reality. In this book, we focus on the relational database model where the
database sofware allows us to virtually ignore how the data is physically
stored.

4.2.1 What Is an Entity-Relationship Diagram?

 T e ER diagram is a semantic data modeling tool used to accomplish the
goal of abstractly describing or portraying data. Abstractly described
data is called a conceptual model. Our conceptual model will lead us to a
“schema.” A schema implies a permanent, f xed description of the struc-
ture of the data. Terefore, when we agree we have captured the correct
depiction of reality within our conceptual model, our ER diagram, we can
call it a schema.
An ER diagram could also be used to document an existing database by

reverse engineering it. In introducing the subject, we focus on the idea of
using an ER diagram to model a to-be-created database, and we deal with
reverse engineering later.

Te Basic ER Diagram • 73

4.3 DEFINING A DATABASE—SOME DEFINITIONS:
ENTITY, RELATIONSHIP, AND ATTRIBUTE

As the name implies, an entity-relationship diagram models data as enti-
ties and relationships. An entity is a thing about which we store data (e.g.,
a person, a bank account, a building). In the original presentation, Chen
(1976) described an entity as a “thing which can be distinctly identif ed.”
An entity may be a person, place, object, event, or concept about which
we wish to store data. A relationship is a connection between entities. An
attribute is the name of the data contained within an entity or relationship.
An entity represents a type or class of something and should be named

accordingly. Te following are some examples of entities:

• Examples of a person entity would be aaaaaaaaaAaaa, orAaaaaaaaaA
• Examples of a place entity would be aaaaa or aaaaaaa.
• Examples of an object entity would be aaaaaaaa, aaaa, or
aaaaaaa.

• Examples of an event entity would be aaaaa, aaaaaaa, or
aaaaaaaaaaaa.

• Examples of a concept entity would be aaaaaaa or aaaaaaaaaa.

 Te name of an entity should be generic. Te name should be able to
accommodate changes “over time.” For example, if we were modeling a
donut business, we might consider creating an entity called aaaaa. But,
how long will it be before this business evolves into making more generic
pastry? If it is anticipated the business will involve pastry of all kinds
rather than just donuts, perhaps it would be better to create an entity
called aaaaaa, which may be more applicable over time. In this case,
an entity “business” is too generic because you want to record data about
donuts or pastry—components of the business.
In older data-processing circles, we would have referred to an entity as a

“record,” but the term record is too physical and too conf ning. “Record”
gives us a mental picture of a physical thing, and to work at the conceptual
level, we want to avoid device-oriented terms. In a database context, it is
unusual to store information about one entity, so we think of storing col-
lections of data about entities; such collections are called entity sets. Entity
sets correspond to the older concept of “a set of fles,” but “sets of f les”
usually implies physical things, and hence we abstract the concept of the

74 • Database Design Using ER Diagrams

fle-set (entity set) as well as the concept of a record (entity). As an exam-
ple, suppose we have a company with customers. You would imagine the
company had a customer entity set with individual customer entities in it.
An entity may be very broad (e.g., a PERSON), or it may be narrowed

by the application for which data is being prepared (a STUDENT or a
CUSTOMER). “Broad” entities, which cover a whole class of objects, are
sometimes called generalizations (e.g., PERSON), and “narrower” entities
are sometimes called specializations (e.g., STUDENT). In further dia-
grams (in this book), we revisit generalizations and specializations, but for
now, we concern ourselves with an application level at which there are no
subgroups (specializations) or supergroups (generalizations) of entities.
When we speak of capturing data about a particular entity, we refer to

this as an instance. An entity instance is a single occurrence of an entity.
For example, if we create an entity called aaaa, and if we choose to record
data about a screwdriver, then the screwdriver “record” is an instance of
aaaa. Each instance of an entity must be uniquely identifable, so each
instance is separate and distinctly identifable from all other instances of
that type of entity. In a customer entity set, you might imagine the com-
pany would assign a unique customer number, for example. T is unique
identifer is called a key.
A relationship is a link or association between entities. Relationships are

usually denoted by verb phrases. We begin by expanding the notion of an
entity (in this chapter and the next), and then we come back to the notion
of a relationship (in Chapter 6) once we are comfortable with the concept
of an entity.
An attribute is a property or characteristic of an entity. For example, an

entity, aaaaaaaaaa, has attributes aaaaAaAAaaaaaAaAAaaaaaaaaaa, and so on.

4.3.1 A Beginning Methodology

Database modeling begins with a description of “what is to be stored.” Such
a description is normally elicited from the “user.” For example, Ms. Smith
of Acme Parts Company asks you to design a database of parts for her com-
pany. Ms. Smith is the user. You are the database designer. What Ms. Smith
tells you about the parts the company sells, manufacturers, or buys will be
part of the database description.
As a starting point in dealing with a to-be-created database, we iden-

tify a central “primary” entity—a category about which we will store data.
For example, if we wanted to create a database about students and their

Te Basic ER Diagram • 75

environment, then one entity would be aaaaaaa. (Our characteriza-
tion of an entity will always be in the singular.) Having chosen one f rst
primary entity, aaaaaaa, we then search for information (attributes)
to be recorded about our aaaaaaa. Tis methodology of selecting one
primary entity from a data description is our frst step in drawing an ER
diagram and hence the beginning of the requirements phase of sof ware
engineering for our database.
Once the primary entity has been chosen, we then ask what informa-

tion we want to record about our entity. In our aaaaaaa example,
we add some details about the aaaaaaa—details to qualify, identify,
classify, or express the state of the entity (in this case, the aaaaaaa
entity). Tese details or contents of entities are called attributes.1 Some
example attributes of aaaaaaa would be information about the
student—name, student number, major, address, and so on. In this pro-
cess of selecting attributes, the user should be able to tell you what data
should be stored.

4.3.2 ER Design Methodology

Step 1. Select one primary entity from the database requirements
description and show attributes to be recorded for that entity.

Requirements def nition is the frst phase of sofware engineering in which
the systems analyst tries to fnd out what a user wants. Now having chosen
a primary entity and some attributes, the task will be to

(a) Draw a diagram of our frst impression entity (our primary entity).
(b) Translate the diagram into English.
(c) Present the English (and the diagram) back to the user to see if the

database designer and user understand one another. If we do, we
then progress on.

Step c is called feedback in sofware engineering. Te process of ref n-
ing via feedback is a normal process in the requirements/specif cation
phases. Te feedback loop is essential in arriving at the reality of what one
wants to depict from both the user and analyst viewpoints. First, we show
how to draw the entity, and then we present guidelines on converting our
diagram into English.

76 • Database Design Using ER Diagrams

Checkpoint 4.1

1. Of the following items, determine which could be an entity and
state why: automobile, college class, student, name of student,
book title, number of dependents.

2. Why are entities not called fles or records?
3. What are entity sets?
4. Why do we need entity-relationship diagrams?
5. What are attributes? List attributes of the entities you found in

question 1?
6. What is a relationship?

4.4 A FIRST “ENTITY-ONLY” ER DIAGRAM:
AN ENTITY WITH ATTRIBUTES

To recap our example, we have chosen an example with a primary entity
from a student information database: aaaaaaa. Again, “a student” is
something we want to store information about (the defnition of an entity).
In this chapter, we will not concern ourselves with any other entities but
rather add them in later chapters.
Let us think about some attributes of the entity aaaaaaa. T at is,

what are some attributes a student might have? A student has a name , an
address, and an educational connection. We call the educational connec-
tion a school. We have picked three attributes for the entity aaaaaaa
and have also chosen a generic label for each: aaaaAaAAaaaaaaaAaAAaaaaaaAaA
We begin our frst venture into ER diagrams with a “Chen-like” model.

Chen (1976) introduced the idea of the ER diagrams. Chen and others
have improved the ER process over the years. While there is no standard
ER diagram model, the Chen-like model and variants thereof are com-
mon. Afer the Chen-like model, we will consider other models. We brief y
discuss the Barker/Oracle-like model in Chapter 12. Chen-like models
have the advantage that one need not know the underlying logical model
to understand the design. Barker models and some other models require a
full understanding of the relational model, and the diagrams are af ected
by relational concepts.
To begin, in the Chen-like model, we will do as Chen originally did and

put the entities in boxes and show attributes nearby. One way to depict

Te Basic ER Diagram • 77

attributes is to put them in circles or ovals appended to the boxes (refer to
Figure 4.1a and Figure 4.1b). Figure 4.1c is an alternative style of depicting
attributes. Te alternative attribute style (Figure 4.1c) is not as descrip-
tive but is more compact and may be used if Chen-like diagrams become
cluttered.

FIGURE 4.1A
Chen-like Model: Entity with Attributes.

FIGURE 4.1B
STUDENT Entity with T ree Attributes.

FIGURE 4.1C
Alternative ER Model.

78 • Database Design Using ER Diagrams

We have illustrated the model of an “attribute in an oval” (Chen-like
model) because it is common and useful. Refer to Figure 4.2A, 4.2B,
and 4.2C for more alternate models for attributes. Tere are benef ts to
alternate forms for depicting attributes. Te standard form of the Chen-
like model with ovals and boxes is good for conceptualizing; it is easily
changed and very clear regarding which attribute goes where. T e concise
forms (Figure 4.1C and other variants shown in Figure 4.2A, 4.2B, and
4.2C) are easily created from the standard form and are sometimes more
useful for documentation when space is a concern.

FIGURE 4.2A
Second Alternative Model for ER Diagram.

FIGURE 4.2B
 Tird Alternative Model for ER Diagram.

FIGURE 4.2C
Fourth Alternative Model for ER Diagram.

Te Basic ER Diagram • 79

FIGURE 4.3
 T e aaaaaaa Entity with Five Attributes.

Figures 4.1B and 4.1C show an ER diagram with one entity, aaaaaaa,
and three attributes: aaaaaAaaaaaaaAa and aaaaaa. If more attributes were
added to our conceptual model, such as aaaaa and aaaaa, they would be
appended to the entity (aaaaaaa is the only entity we have so far), as
can be seen in Figure 4.3.

4.5 MORE ABOUT ATTRIBUTES

Attributes are characteristics of entities providing descriptive detail about
the entities. Tere are several diferent kinds of attributes: simple or atomic,
composite, multivalued, and derived. Te properties of an attribute are
its name, description, format, and size, in addition to its atomicity. Some
attributes may be considered as unique identifers for an entity. In this
section, we also introduce the idea of a key attribute, a unique identif er
for an entity.

4.5.1 The Simple or Atomic Attribute

Simple or atomic attributes cannot be broken down further or subdivided—
hence the notion “atomic.” One may examine the domain of values2 of

80 • Database Design Using ER Diagrams

an attribute to elicit whether an attribute is simple or not. An example of
a simple or atomic attribute would be Social Security number; a person
would be expected to have only one, undivided Social Security number.
Other tests of whether an attribute is simple or atomic will depend

entirely on the circumstances the database designer encounters as well as
the desire of the user for which the database is being built. For example,
a phone number attribute could be treated as a simple nine-digit number
in a particular database design, but in another scenario we may want to
divide the phone number into two distinct parts: area code and the seven-
digit number.
Another example of when the use of the attribute in the database will

determine if the attribute is simple or atomic is a birthdate attribute. If
we are setting up a database for a veterinary hospital, it may make sense
to break a aaaaaaaaa feld up into month, day, and year since it will make
a diference in treatment if a young animal is 5 days old versus if it is 5
months or 5 years old. Hence, in this case aaaaaaaaa would be a compos-
ite attribute. For a database of aaaaaaaaaa as used by handicap-
pers, it may not be necessary to break up a birthdate feld into month/
day/year since all racing horses are dated only by the year in which they
are born. In this case, aaaaaaaaa, consisting of only the year, would be
atomic.
If an attribute is nonatomic, it needs to be depicted as such on the

ER diagram. Te following sections deal with these more complicated,
nonatomic attribute ideas: the composite attribute and the multivalued
attribute.

4.5.2 The Composite Attribute

 A composite attribute, sometimes called a group attribute, is an attribute
formed by combining or aggregating related attributes. Te names chosen
for composite attributes should be descriptive and general. T e concept
of name is adequate for a general description, but it may be desirable to
be more specifc about the parts of this attribute. Most data-processing
applications divide the name into component parts. In this case, aaaa is
called a composite attribute or an aggregate because it is usually composed
of aAAaAaaaAaaaaAa a AaaaaAaaaa, and a aaaaaaAaaaaaaa—sub-attributes, if you
will. Te way composite attributes are shown in ER diagrams in the Chen-
like model is illustrated in Figure 4.4. Te sub-attributes, like aAaaaAaaaa,

Te Basic ER Diagram • 81

FIGURE 4.4
aaaaaaa Entity with a Composite Attribute—Name.

aaaaaaA aaaaA, and aaaaA aaaa, are called simple, atomic, or elementary
attributes. Te word aggregate is used in a diferent sense in some database
query languages—and to avoid confusion, we do not call composite attri-
butes aggregates; we use the word composite.
 Te test of whether an attribute will be composite (or not) will depend

entirely on the circumstances the database designer encounters—the
desire of the user requesting the database. For example, in one database
it may not be important to know exactly which city, state, or zip code a
PERSON comes from, so an address attribute in that database may not
be broken up into its component parts; it simply may be called address.
In another database, it may be important to know which city and state a
PERSON is from, so in this second database we would have to break up
the address attribute into street address, city, state, and zip code, making the
address attribute a composite attribute.

4.5.3 The Multivalued Attribute

Another type of non-simple attribute to be managed is called a multival-
ued attribute. Te multivalued attribute, as the name implies, may take

82 • Database Design Using ER Diagrams

on more than one value for a given occurrence of an entity. For example,
the attribute school could easily be multivalued if a person attends (or has
attended, depending on the context of the database) more than one school.
As a counter example, most people go by only one name; hence, the name
is not multivalued.
 Te multivalued attribute called aaaaaa is depicted in Figure 4.5A

(Chen-like model) as a double oval; this illustrates the situation for which
a database will store data about students who may have attended more
than one aaaaaa. Although we have chosen to illustrate aaaaaa as a mul-
tivalued attribute, we do not mean to imply this will always be the case
in all databases. In fact, the attribute aaaaaa may well be single valued in
some databases. Te idea of aaaaaa may mean the current (or just pre-
vious) aaaaaa as opposed to all schools attended. If the subjects about
whom we are storing data can attend only one aaaaaa at a time (and that
is what we want to depict), then the attribute aaaaaa may well be a single
valued attribute.
Again, the test of single versus multivalued will depend entirely on the

circumstances the database designer encounters—the desire of the user
of the to-be-built database. It is recommended if the sense of the database
is the attribute aaaaaa means “current school,” then the attribute should
be called “current school” and illustrated as a single-valued attribute. We
show a multivalued attribute in Figure 4.5A. Tis diagram implies mul-
tiple schools may be recorded for each student.

4.5.4 The Derived Attribute

Derived attributes are those the user may envision but may not be recorded
per se. Tese derived attributes may be calculated from other data in the
database. An example of a derived attribute would be an aaa, which could
be calculated once a birth date is stored. In the Chen-like model, a derived
attribute is shown in a dashed oval (Figure 4.5B).

4.5.5 Keys

A database is used to store data for retrieval. An attribute used to f nd a
particular entity occurrence is called a key. As we model our database with
the ER models, we may fnd some attributes naturally seem to be keys.

Te Basic ER Diagram • 83

FIGURE 4.5A
aaaaaaa Entity with a Multivalued Attribute.

FIGURE 4.5B
aaaaaaa Entity with a Derived Attribute: Age.

84 • Database Design Using ER Diagrams

If an attribute may be thought of as a unique identifer for an entity, it is
called a candidate key. When a candidate key is chosen to be the unique
identifer, it becomes the primary key for the entity.
As an example of keys, suppose we add an attribute called aaaaaaaa

aaaaaa to our aaaaaaa entity example. We might well consider a
aaaaaaaaaaaaaaA to be a unique identifer for the entity—a candidate key
because of uniqueness. A aaaa is ofen unique, but not necessarily so.
Members of the same class ofen share last names. aaaaaaa may or may
not be a unique identifer and hence is not a likely candidate key. Siblings
who take classes together could easily have the same aaaaaaa. Schools
ofen choose to assign a unique student number to each student to be able
to fnd student records. Te idea of a key is to provide a unique way to f nd
an entity instance (a particular record).
 Some aaaaaaAa also choose to record a aaaaaaAaaaaaaaaAaaaaaaAaAaaaAa as

an attribute. An aaa is also unique and hence a candidate key along with
aaaaaaaaaaaaaa. If both aaa and aaaaaaaaaaaaaa were recorded, then
the designer would have to choose which candidate key would be the primary
key. In our case, we choose not to record an aaa. T e aaaaaaa entity
with the unique identif er aaaaaaaaaaaaaa, added as a aaa, is depicted in
 Figure 4.6 .
In the Chen-like ER model unique identif ers (candidate keys), are usu-

ally underlined (as shown in Figure 4.6). A unique identifer may be an
attribute or a combination of attributes. It is not necessary to choose
which candidate key will be the primary key at this point, but one could
do so. When there is only one candidate key, we will generally speak
of it as the primary key simply because it is obvious the primary key is a
candidate key. In Figure 4.6, we also depict a short form of the ER diagram
(at the bottom of the fgure) with composite attributes and multivalued
attributes as well as primary keys. Te composite attributes are listed with
its component parts, and the multivalued attributes are enclosed in paren-
theses in the abbreviated form.
Finally, while on the subject of keys, we will have situations in the ER

diagram (in the Chen-like model) for which no key is obvious or intended.
Entities having at least one identifed key are called strong entities. In
Chen’s (1976) original article, strong entities were called regular entities.
Some entities will be discovered dependent on other entities for their being
(and hence their identifcation). Chen called those entities relying on other
entities for their existence weak entities.

Te Basic ER Diagram • 85

FIGURE 4.6
aaaaaaa Entity with a Primary Key or Unique Identif er Attribute.

 We can ofen recognize these weak entities because they may not have
candidate keys, although the actual meaning of a weak entity is “one
depending on another for existence.” As Chen did, we follow the Chen-
like ER notation and call such entities weak entities—weak because they
will have to depend on some other entity to furnish a unique identif er to
give the entity a reason to be recorded.
Although a weak entity may have a candidate key, it would not be a

strong entity. We depict weak entities in the Chen-like ER diagrams with
double boxes (see Figure 4.7). For now, we concentrate on those entities
having keys, the strong entities, and will reconsider situations for which
no key is obvious, the weak entities, later.

86 • Database Design Using ER Diagrams

FIGURE 4.7
A Strong and a Weak aaaaaaaaaa Entity.

Checkpoint 4.2

1. Describe the basic types of data representation schemas used in
ER modeling.

2. What notation is used to diagrammatically show an entity in the
Chen-like ER model?

3. How do we diagrammatically show attributes in the Chen-like
ER model?

4. How do we show composite attributes in the Chen-like ER model?
5. Draw an entity representation for the entity BUILDING with the

following attributes: aaaaaaaaA aaaa, aaaaaaaaa, and whether
or not it has an aaaaaaaa (yes/no).

6. Embellish the BUILDING entity to include the building super-
intendent’s name (f rst, middle, and last). Does this have to be a
composite attribute? Why or why not?

Te Basic ER Diagram • 87

7. Embellish the BUILDING entity to include the address of the
building, which will be the primary key.

8. Again, embellish the BUILDING entity to include names (and
only names) of the janitorial staf.

9. Add a multivalued attribute to the BUILDING entity.
10. How many attributes can an entity have?

4.6 ENGLISH DESCRIPTION OF THE ENTITY

We now have an entity with attributes and want to prepare the f rst feedback
to the user: the English description. Users will not likely want to study the
entity diagram, but they might want to hear what you, the analyst, think you
heard. For an English description, we use a “structured” English grammar
and substitute the appropriate information from the entity diagram.

4.6.1 The Method

 Te template for the structured English for single entities is as follows: Let
ENTITY be the name of the entity and att(j) be the attributes. Te order of
the attributes is not important, so j = 1, 2, . . . is assigned arbitrarily, albeit
once an order is chosen it does not change. Suppose there are n attributes
so far. Te generalized English equivalent of our diagram is presented next.

4.6.1.1 The Entity

Tis database records data about Entity. For each ENTITY in the
database, we record att(1), att(2), att(3), . . . att(n).

4.6.1.2 The Attributes

 For atomic attributes, att(j):

For each ENTITY, there always will be one and only one att(j). T e
value for att(j) will not be subdivided.

 For composite attributes, att(j):

For each ENTITY, we will record att(j), which is composed of x, y,
z, . . . (x, y, z) are the component parts of att(j).

88 • Database Design Using ER Diagrams

 For multivalued attributes, att(j):

For each ENTITY, we will record att(j)’s. Tere may be more than
one att(j) recorded for each ENTITY.

 For derived attributes, att(j):

For each ENTITY, there may exist att(j)’s, which will be derived
from the database.

4.6.1.3 The Keys

For the key(s):

(a) More than one candidate key (strong entity):

For each ENTITY, we will have the following candidate keys:
att(j), att(k), . . . (where j, k are candidate key attributes).

(b) One candidate key (strong entity):

For each ENTITY, we will have the following primary key: att(j).

(c) No candidate keys (weak entity):

For each ENTITY, we do not assume any attribute will be unique
enough to identify individual entities without the accompanying
reference to owner- ENTITY (i.e., some other entity.)3

(d) No candidate keys (intersecting entity): Tis is discussed next.

4.6.2 ER Design Methodology

Step 2. Use structured English for entities, attributes, and keys to
describe the elicited database.

Step 3. Show some sample data.

Sample data usually helps describe the database to the user as it is per-
ceived by the analyst.

4.6.3 Examples

We now revisit each of our fgures and add an English description to each.

Te Basic ER Diagram • 89

4.6.3.1 Figure 4.3 Example

First, reconsider Figure 4.3. Tere are no multivalued or composite attri-
butes. aaaaaa = aaaaaaa, att(1) = name, att(2) = aaaaaa, and so on (j
assigned arbitrarily). Te English “translation” of the entity diagram using
the templates is discussed next.

4.6.3.1.1 The Entity

 Tis database records data about aaaaaaas. For each aaaaaaa in the data-
base, we record a aaaa, a aaaaaa, an aaaaaaaAaAaAAaaaaaAaaaaaaAa and a aaaaa.

4.6.3.1.2 The Attributes

 For each aaaaaaa, there will be one and only one aaaa. T e value
for aaaa will not be subdivided (note that in Figure 4.3 we did not
divide name).

 For each aaaaaaa, there will be one and only one aaaaa. T e value
for aaaaa will not be subdivided.

 For each aaaaaaa, there will be one and only one aaaaaaa. T e value
for aaaaaaa will not be subdivided.

 For each aaaaaaa, there will be one and only one aaaaaa. T e value
for aaaaaa will not be subdivided.

 For each aaaaaaa, there will be one and only one aaaaa. T e value
for aaaaa will not be subdivided.

4.6.3.1.3 The Keys

 For each aaaaaaa, we do not assume any attribute will be unique enough
to identify individual entities. (Remember we are describing Figure 4.3.)

4.6.3.1.4 Sample Data

In addition to these descriptions, some sample data is ofen helpful in
showing the user what you have proposed. Sample data for Figure 4.3 is
shown in Table 4.1.

TABLE 4.1

Initial Sample Data for Figure 4.3.

name major address school phone

Smith Cosc 123 4th St St. Helens 222–2222
Jones Acct 222 2nd St PS 123 333–3333
Saha Eng 284 3rd St Canton 345–3546
Kapoor Math 20 Living Cr High 435–4534

90 • Database Design Using ER Diagrams

As you read these descriptions, they all seem repetitive and somewhat
overly structured. Please bear with us as we are simply trying to be unam-
biguous and still be clearly understood by a user who most likely would
not like to interpret a diagram.

4.6.3.2 Figure 4.4 Example

Now, consider Figure 4.4. T is fgure has a composite attribute, aaaa. T e
English description of this entity diagram is next.

4.6.3.2.1 The Entity

 Tis database records data about aaaaaaas. For each aaaaaaa in the
database, we record a aaaa, a aaaaaa, and an aaaaaaa.

4.6.3.2.2 The Attributes

 For each aaaaaaa, there will be one and only one aaaa. T e value
for aaaa will be subdivided into AaAaaaAaaaaAaAAaaaaAaaaa, and aaaa
aaa aaaaaaaAa

 For each aaaaaaa, there will be one and only one aaaaaaa. T e value
for aaaaaaa will not be subdivided.

 For each aaaaaaa, there will be one and only one aaaaaa. T e value
of the aaaaaa will not be subdivided.

4.6.3.2.3 The Keys

 For each aaaaaaa, we do not assume any attribute will be unique
enough to identify individual entities.

4.6.3.2.4 Sample Data

Sample data for Figure 4.4 is shown in Table 4.2.

TABLE 4.2

Initial Sample Data for Figure 4.4.

name.fi rst name.last name.mi school address

Richard Earp W U. Alabama 222 2nd St
Boris Backer Heidelberg 333 Dreistrasse
Helga Hogan H U. Hoover 8 8 Half Moon Ave
Arpan Bagui K Northern School 33 Bloom Ave
Hema Malini South Bend 100 Livingstone

Te Basic ER Diagram • 91

4.6.3.3 Figure 4.5A Example

Next consider Figure 4.5A. T is fgure has a composite as well as a mul-
tivalued attribute. Te English translation of this entity diagram is given
next.

4.6.3.3.1 The Entity

For the entity, this database records data about aaaaaaas. For each
aaaaaaa in the database, we record a AaaaaAaAAaaaaaaAaa and an aaaaaaaA.

4.6.3.3.2 The Attributes

 For each aaaaaaa, there will be one and only one aaaa. T e value
for aaaa will be subdivided into aAaaaAaaaaAaAAaaaaAaaaa, and aaaa
aaa aaaaaaa. In dividing name, we use the dot notation to show where
the parts of the attribute came from, hence aaaaaaAaaaaAaaaaaaaaaaA
aaaaaaaAa

 For each aaaaaaa, there will be one and only one aaaaaaa. T e value
for aaaaaaa will not be subdivided.

 For each aaaaaaa, we will record aaaaaaAa. Tere may be more than
one aaaaaa recorded for each student.

4.6.3.3.3 The Keys

 For each aaaaaaa, we do not assume any attribute will be unique
enough to identify individual entities.

4.6.3.3.4 Sample Data

Sample data for Figure 4.5a is shown in Table 4.3.

4.6.3.4 Figure 4.6 Example

 Consider Figure 4.6 . T is fgure has composite, multivalued, and key attri-
butes. Te English translation of this entity diagram is as follows.

TABLE 4.3

Initial Sample Data for Figure 4.5A.
name.fi rstname.lastname.mischool address
Richard Earp W U. Alabama, Mountain 222 2nd St
Boris Backer Heidelberg, Volcano 333 Dreistrasse
Helga Hogan H U. Hoover, St. Helens 88 Half Moon Ave
Arpan Bagui K Northern School 33 Bloom Ave
Hema Malini South Bend 100 Livingstone

92 • Database Design Using ER Diagrams

4.6.3.4.1 The Entity

 Tis database records data about aaaaaaas. For each aaaaaaa
in the database, we record a aaaaAaA AaaaaaaAa, an aaaaaaa, and a
aaaaaaaaaaaaaa.

4.6.3.4.2 The Attributes

 For each aaaaaaa, there will be one and only one aaaa. T e value
for aaaa will be subdivided into aaaaaaAaaaaAaaaaaaaaaaAaaaaaaaA.

 For each aaaaaaa, there will be one and only one aaaaaaa. T e value
for aaaaaaa will not be subdivided.

 For each aaaaaaa, we will record aaaaaaAa. Tere may be more than
one aaaaaa recorded for each student.

4.6.3.4.3 The Keys

 For each aaaaaaa, there is an attribute—aaaaaaaaaaaaaa —unique
enough to identify individual entities.

4.6.3.5 Figure 4.7 Example

Finally, consider Figure 4.7 (top f gure). T is fgure shows a strong entity.
We combine the grammar to keep the methodology from being overly
repetitive. Te English translation of this entity diagram follows.

4.6.3.5.1 The Entity

 Tis database records data about aaaaaaaaaas. For each aaaaaaaaaa
in the database, we record a aaaa, aaaaaaaaaa, aaaa, aaaaa, and aaaaaaaaaa.

4.6.3.5.2 The Attributes

Each AUTOMOBILE will have one and only one AaaaaaA aaaaaaaaaaaA
aaaaAaAAaaaaaAaAand aaaaaaaaaa. None of these attributes will be subdivided.

4.6.3.5.3 The Keys

 For each aaaaaaaaaa, the attribute, aaaaaaaaaa, will be unique enough
to identify individual entities.
 Te bottom of Figure 4.7 shows a weak entity. Te only dif erence

between the strong and weak entity description involves the phrase about
a key, which may not exist in the weak entity.
Before leaving this introductory chapter on ER diagrams, we show the

other major component of ER diagrams. Figure 4.8 shows a relationship

Te Basic ER Diagram • 93

FIGURE 4.8
An ER Diagram of a aaaaaaa-aaaaaaaaaa Database.

between two entities: an aaaaaaaaaa and a aaaaaaa. T e concept
of relationships is discussed elaborately in Chapter 6. A relationship adds
action to the diagram. For example, the relationship in Figure 4.8 might
be that aaaaaaas drive aaaaaaaaaas.

94 • Database Design Using ER Diagrams

Our ER design methodology has evolved to the following so far:

Step 1. Select one primary entity from the database requirements
description and show attributes to be recorded for that entity.
Label keys if appropriate.

Step 2. Use structured English for entities, attributes, and keys to
describe the elicited database.

Step 3. Show some sample data.

4.7 MAPPING THE ENTITY DIAGRAM
TO A RELATIONAL DATABASE

Having illustrated the idea of the entity and the attribute, we now turn to a
semi-physical realization of the concepts. We say semi-physical because we
are not concerned with the actual physical fle stored in memory; rather,
we are concerned with placing data into relational tables we will visualize
as a physical organization of data. Basically, a relational database is a data-
base of two-dimensional tables called relations. Te tables are composed
of rows and columns. Te rows are sometimes called tuples; the columns
are attributes. In a relational database, all attributes (table columns) must
be atomic, and keys must not be null. In addition, in relational databases,
it is not necessary to know the actual physical location of the data on a
magnetic device like a disk.
 Te process of converting an ER diagram into a database is called map-

ping. We concern ourselves only with the relational model; hence, as the
chapters in this book develop, we will develop mapping rules to turn ER
diagrams into relational databases.
We start with a rule to map strong entities.

Mapping rule 1—Mapping strong entities. Develop a new table (rela-
tion) for each strong entity and make the indicated key of the
strong entity the primary key of the table. If more than one can-
didate key is indicated on the ER diagram, choose one for the pri-
mary key. Call this table, TABLE1.

Next, we must map the attributes into the strong entity’s table, TABLE1.
Mapping rules are diferent for atomic attributes, composite attributes,

Te Basic ER Diagram • 95

and multivalued attributes. First, we present the mapping rule for map-
ping atomic attributes.

Mapping rule 2—Mapping atomic attributes. For entities with atomic
attributes, map the entities to a table and form columns for each
atomic attribute. Here we’d map the atomic attributes associated
with TABLE1 into it.4

In discussing relational tables, it is common to abbreviate the diagram
with a notation like this:

AaaaaaaaaaaAaaaaaaaaaaaAaaaaaaaaaaAaaAaAaAaaA

A relational database realization of the entity diagram in Figure 4.3 would
look like this:

AaaaaaaaaAaaaaaAaaaaaAaAAaaaaaaAaAAaaaaaaaAaAAaaaaaAaA

And with some sample data, as shown in Table 4.4.
aaaaaaa would be the name of this relation (table). Te attributes in

the entity diagram become the column headings. Te actual table with
sample data, a realization of a relation, is provided as an example of the
type of data you might expect in such a table. Te ordering of the col-
umns is irrelevant to the relational database as long as once the ordering is
chosen, we stay with it. Te point of this example is for you, the database
analyst, to communicate to the user what you think the database should
look like.

TABLE 4.4

Sample Data for Figure 4.3.

name phone school address major

Jones 932-5100 U. Alabama 123 4th St Chemistry
Smith 932-5101 U. Mississippi 123 5th St Math
Adams 932-5102 LSU 123 6th St Agriculture
Sumon 435-0997 UWF 11000 Univ Cyber Sec
Mala 877-0982 Mount Union U Alliance History

96 • Database Design Using ER Diagrams

What about the composite and multivalued attributes? As we men-
tioned, it is an axiom of the relational database that all columns be
atomic. If we have a nonatomic attribute on our diagram, we must
force it to be atomic for the mapping to the relational database. For
composite attributes, we achieve atomicity by recording only the com-
ponent parts of the attribute. Our next mapping rule maps composite
attributes.

Mapping rule 3—Mapping composite attributes. For entities with
composite attributes, map entities to a table and form columns of
each elementary (atomic) part of the composite attributes.

Refer to Figure 4.4. A relational database, which corresponds to the
entity diagram in Figure 4.4, would be:

aaaaaaaaAaaaaaaAaaaaAaaaaaaaaaaAaaaaaaaAaAAaaaaaaAaAAaaaaaaaAaA

In this shorthand notation of a relational database, the composite
attribute (aaaa) is often included with a dot notation (e.g., aaaaa
aAaaaA). Here, aaaa is called a qualifier for the composite parts of the
attribute.
With some sample data for Figure 4.4 in Table 4.5.
A multivalued attribute is depicted in Figure 4.5A. In this entity dia-

gram, the aaaaaaa entity has a composite attribute, aaaa, and a mul-
tivalued attribute, aaaaaa. Tis means students may have more than one
aaaaaa recorded for their row. Data represented by Figure 4.5A might look
like Table 4.6 .

TABLE 4.5

Sample Data for Figure 4.4.

name.fi rst name.last name.mi school address

Richard Earp W U. Alabama 222 2nd St
Boris Backer Heidelberg 333 Dreistrasse
Helga Hogan H U. Hoover 88 Half Moon Ave
Arpan Bagui K Cambridge 33 Bloom Ave
Hema Malini Fashion U 100 Livingstone

A

A AA A

Te Basic ER Diagram • 97

TABLE 4.6

Sample Data for Figure 4.5A.

name.first name.last name.mi address school

Richard Earp W 222 2nd St U. Alabama, St
Helens, Mountain,
Volcano

Boris Backer 333 Dreistrasse Heidelberg, Manatee
U, UCF, UWF

Helga Hogan H 88 Half Moon U. Hoover, Mount
Ave Union U, Manatee U

Arpan Bagui K 33 Bloom Ave Cambridge, USF,
Harvard

Hema Malini 100 Livingstone Fashion U, Milan U

Tis is not considered a relational table because the aaaaaa attribute is not
atomic. To be a relational table, every attribute has to be atomic. To map this
multivalued attribute atomically, we follow the following mapping rule:

Mapping rule 4—Mapping multivalued attributes. Form a separate
table for the multivalued attribute. Record a row for each value
of the multivalued attribute together with the key from the origi-
nal table. Te key of the new table will be the concatenation of the
multivalued attribute plus the key of the owner entity. Remove the
multivalued attribute from the original table.

As per mapping rule 4, we require a key to map multivalued attributes;
hence, we use Figure 4.6 to correctly map the multivalued attribute. Figure
4.6 would be mapped into the following two relations:

aaaaaaaaAaaaaaaaaaaaaaaAaA aaaaaaAaaaaA aaaaaaaaaaA aaaaaaaAaA
AaaaaaaaAaA

 and

AaaaaaaaaaaaaaaaAaaaaaaaaaaaaaaAaAAaaaaaaAaA

Some sample data would be as shown in Tables 4.7A and 4.7B.

98 • Database Design Using ER Diagrams

TABLE 4.7A

Sample Data for aaaaaaa.
student_number name.fi rst name.last name.mi address

111–11–2222 Richard Earp W 222 2nd St
222–11–2222 Boris Backer 333 Dreistrasse
234–45–4567 Helga Hogan H 88 Half Moon Ave
888–77–9990 Arpan Bagui K 33 Bloom Ave
123–45–4321 Hema Malini 100 Livingstone

TABLE 4.7B

Sample Data for aaaaaaaaaaaaaa.
student_number school

111-11-2222
111-11-2222
111-11-2222
111-11-2222
222-11-2222
222-11-2222
222-11-2222
222-11-2222
234-45-4567
234-45-4567
234-45-4567
888-77-9990
888-77-9990
888-77-9990
123-45-4321
123-45-4321

U. Alabama
St. Helens
Mountain
Volcano
Heidelberg
Manatee U
UCF
UWF
U. Hoover
Mount Union U
Manatee U
Cambridge
USF
Harvard
Fashion U
Milan U

 In relational databases, every row of a table contains atomic attributes,
and every row is unique. Terefore, a candidate key in any table is always
all of the attributes taken together. Usually, a subset of “all of the attri-
butes” can be found to be a key, but since no two rows are ever the same,
it is always true that one candidate key is the collection of all attributes.

Checkpoint 4.3

1. How do you map multivalued attributes?
2. How do you map composite attributes?
3. What is a unique identifer? Is it a candidate key? Is it “the” pri-

mary key? Discuss.

Te Basic ER Diagram • 99

4.8 CHAPTER SUMMARY

 Te main focus in this chapter was on developing the concept of the entity
and developing a one-entity diagram using the Chen-like model. T e con-
cept of attributes was also discussed, and the last section focused on how
a one-entity diagram could be mapped to a relational database. T e gram-
mar for a one-entity diagram and its attributes was also developed. T is
grammar is further developed in the following chapters. Te next chapter
discusses developing a second entity and the relationship between this
second entity and the primary entity.

CHAPTER 4 EXERCISES

Note: Te user should clarify the assumptions made when reporting their
work.

Exercise 4.1

You want to create a database about businesses. Each business will have a
aaaa, aaaaaaa, the aaaaaaaaAaaaaaAaaaaaa, the aaaaaaaAaaaaaAaaaa
aaa, and the frst names of the employees who work at the business. Draw
the ER diagram using the Chen-like model and then write the English
description for your diagrams. Compare the English to your diagrams
and state any assumptions you made when drawing the diagrams. Map
your diagrams to a relational database.
Which attributes would you consider composite attributes in this data-

base? Which attributes would you consider multivalued attributes in this
database? Could there be any derived attributes? What would be good
keys?

Exercise 4.2

You want to create a database about the books on your shelf. Each book has
aaaaaaa (only the last name is needed), aaaaaaAaaaaaaaaaaAaaaaaaa used in
(course number only). Draw the ER diagram using the Chen-like model,
and then write the English description for your diagrams. Compare the

100 • Database Design Using ER Diagrams

English to your diagrams and state any assumptions you made when
drawing the diagrams.
Which attributes would you consider composite attributes in this data-

base? Which attributes would you consider multivalued attributes in this
database? Could there be any derived attributes? What would be good
keys? Map your diagram to a relational database.

CASE STUDY

West Florida Mall

A new mall, West Florida Mall, just had its grand opening three weeks
ago in Pensacola, Florida. Tis new mall is attracting a lot of customers
and stores. West Florida Mall, which is part of a series of malls owned by
a parent company, now needs a database to keep track of the management
of the mall in terms of all its stores as well as the owners and workers in
the stores. Before we build a database for this system of malls, the f rst step
will be to design an ER diagram for the mall owner. We gathered the fol-
lowing initial user specif cations about the mall, with which we can start
creating the ER diagram:

1. We need to record information about the mall and each store in the
mall. We need to record the mall’s name and address. A mall, at any
point in time, must contain one or more stores.

2. For each store we will need to keep the following information: store
number (which will be unique), the name of the store, location of
store (room number), departments, the owner of the store, and man-
ager of the store. Each store may have more than one department
with each department having a manager. Each store will have only
one manager. Each store is owned by only one owner. Each store is
located in one and only one mall.

3. A store manager can manage only one store. We must record infor-
mation on the store manager—the name, Social Security number,
which store he or she is working for, and the salary.

4. Te store owner is a person. We will record name, address, and of ce
phone about the store owner. A store owner must own at least one
store and may own more than one.

Te Basic ER Diagram • 101

Developing The Case Study

As per step 1 in designing the ER diagram, we have to select our primary
entity and then the attributes for our primary entity (step 1 is shown
next):

Step 1. Select one primary entity from the database requirements
description and show attributes to be recorded for that entity.

We will choose aaaa as our primary entity.
Our next step is to translate the diagram into English:

Step 2. Use structured English for entities, attributes, and keys to
describe the database that has been elicited.

The Entity

 Tis database records data about a aaaa.
 For each aaaa in the database, we record a aaaa, an aaaaaaa, and

aaaaaaaaaaAa.

The Attributes for MALL

 For each aaaa, there will be one and only one aaaa. Te value for
aaaa will not be subdivided.

 For each aaaa, there will be one and only one aaaaaaa. Te value for
aaaaaaa will not be subdivided.

 For each aaaa, record aaaaaaaaaaAa. Tere may be more than one
aaaaaaaaaa recorded for each aaaa. Te value of each aaaaaa
aaaa will not be subdivided.

The Keys

 For each aaaa, we assume the mall aaaa will be unique.
 T e aaaa entity is shown in Figure 4.9.
So far, for this case study, we selected one primary entity, aaaa,

showed its known attributes, and used structured English to describe the
entity and its attributes. Next, we map this entity diagram to a relational
database.

102 • Database Design Using ER Diagrams

FIGURE 4.9
T e aaaa entity.

Mapping the Entity to a Relational Database

aaaa is a strong entity, so we use mapping rule 1, which states:

Develop a new table (relation) for each strong entity and make the
indicated key of the strong entity the primary key of the table.
If more than one candidate key is indicated on the ER diagram,
choose one for the primary key.

We develop a new relation for the entity, aaaa (as shown in Figure 4.9),
and aaaa will be our primary key. Data represented by Figure 4.9 might
look like Table 4.8.
We can see that aaaa has a multivalued attribute, Aaaaaaaaaaa. T is

does not make the table a relational table because aaaaaaaaaa is not
atomic; it is multivalued. For multivalued attributes, the mapping rule is:

Form a separate table for the multivalued attribute. Record a row
for each value of the multivalued attribute together with the

TABLE 4.8

Sample Data for Figure 4.9.

name address store_name

West Florida N Davis Hwy, Pensacola, FL Penney’s, Sears,
Mall Dollar Store, Rex
Cordova Mall 9th Avenue, Pensacola, FL Dillards, Parisian,

Circuit City
Navy Mall Navy Blvd, Pensacola, FL Belks, Wards, Pearl

Vision
BelAir Mall 10th Avenue, Mobile, AL Dillards, Sears,

Penney’s

A A

Te Basic ER Diagram • 103

key from the original table. Te key of the new table will be the
concatenation of the multivalued attribute plus the key of the
owner entity. Remove the multivalued attribute from the origi-
nal table.

Using this mapping rule, two relations or relational tables would
be developed (and note that the key of aaaaaaaaaa, the table with
the multivalued attribute, has both aaaa as well as aaaaaaaaaaA
underlined):

Aaaaaaaaaaa aaaaaaa)
Aaaaaaaaaaa(aaaaAaAAAaaaaaaaaaaA)

And data would look like Table 4.9.
And the table with the multivalued attribute, Table 4.10.

TABLE 4.9

Sample Data for aaaa.
name address

West Florida Mall 1234 N Davis Hwy, Pensacola, FL
Cordova Mall 613 9th Avenue, Pensacola, FL
Navy Mall 31458 Navy Blvd, Pensacola, FL
BelAir Mall 12 10th Avenue, Mobile, AL

TABLE 4.10

Sample Data for aaaaaaaaaa.
name store_name

West Florida Mall Phillip’s
West Florida Mall Sikha’s
West Florida Mall Popcorn Store

West Florida Mall Richard’s
Cordova Mall Darnley’s
Cordova Mall Pensacola’s Finest
Cordova Mall TV City
Navy Mall Bell Bottoms
Navy Mall Waverly

(Continued)

104 • Database Design Using ER Diagrams

TABLE 4.10 (Continued)

Sample Data for aaaaaaaaaa.
name store_name
Navy Mall Pearl Divers
BelAir Mall Darnley’s
BelAir Mall Sikha’s
BelAir Mall Phillip’s

 Tis case study is continued at the end of the next chapter.

NOTES

 1 C. J. Date (1995), An Introduction to Database Systems, 6th edition, preferred the
word “property” to “attribute” because it is more generic and because attribute is
used in other contexts. We use attribute because we believe it to be more commonly
used.

 2 Te domain of values is the set of values that a given attribute may take on. T e
domain consists of all the possible legal values that are permitted on an attribute.
A data type is a broader term used to describe attributes, but data type includes the
idea of which operations are allowable. Since people creating a database are usually
more concerned about storage and retrieval, database data types usually just focus
on the domain of values.

3 Te details of the weak entity/strong entity-relationship will become clearer as we
introduce relationships in Chapter 5.

 4 Tese mapping rules are adapted from Elmasri and Navathe (2016).

BIBLIOGRAPHY

Batini, C., Ceri, S., and Navathe, S.B. (1992). Conceptual Database Design. Redwood City,
CA: Benjamin Cummings.

Chen, P.P. (1976). Te entity-relationship model—toward a unifed view of data. ACM
Transactions on Database Systems, 1(1): 9–37.

Chen, P.P (1977). Te entity-relationship model: A basis for the enterprise view of data.
Proceedings IFIPS NCC, 46: 76–84.

Codd, E. (1990). Relational Model for Data Management—Version 2. Reading, MA:
Addison-Wesley.

Date, C.J. (1995). An Introduction to Database Systems, 6th ed. Reading, MA: Addison-Wesley.
Date, C.J. (2003). An Introduction to Database Systems. Reading, MA: Addison-Wesley.
Earp, R., and Bagui, S. (2000). Building an entity-relationship diagram: A sof ware engi-

neering approach. Database Management Journal, 22–10–41: 1–16.

Te Basic ER Diagram • 105

Elmasri, R., and Navathe, S.B. (2016). Fundamentals of Database Systems. Reading, MA:
Addison-Wesley.

 Jef ry, A., Hofer, V., and Heikki, T. (2011). Modern Database Management. Upper Saddle
River, NJ: Prentice Hall.

Navathe, S., and Cheng, A. (1983). A methodology for database schema mapping from
extended entity-relationship models into the hierarchical model. In T e Entity-
Relationship Approach to Sof ware Engineering, G.C. Davis et al. (editors). Amsterdam:
Elsevier, North-Holland, 223–248.

Scheuermann, P., Schefner, G., and Weber, H. (1980). Abstraction capabilities and invariant
properties modeling within the entity-relationship approach. In Entity-Relationship
Approach to System Analysis and Design, P. Chen (editor). Amsterdam: Elsevier,
North-Holland, 121–140.

Teorey, T.J., Yang, D., and Fry, J.P. (1986). A logical design methodology for relational data-
bases using the extended entity-relationship model. ACM Computing Surveys , 18(2):
197–222.

Valacich, J.S., George, J.F., and Hofer, J.A. (2009). Essentials of Systems Analysis and Design.
Upper Saddle River, NJ: Prentice Hall.

http://taylorandfrancis.com

5
Beyond the First Entity Diagram

5.1 INTRODUCTION

Now that we have devised a process for drawing, interpreting, and ref n-
ing one primary entity, we need to move to more complex databases. To
progress from here, we continue with our primary entity and look for
other information associated with (related to) that entity.
 T e frst technique employed in this chapter is methodical: We test our

primary entity to see whether our attributes ought to be entities them-
selves. We then look for other pieces of information in our description,
add them to:

(a) An existing entity and examine the existing entity-relationship (ER)
diagram

(b) Create a new entity directly

 Afer creating the new entities, we look to see what relationships exist
between the two entities. A database is a collection of related data; hence,
new entities may be added as long as there is a way to connect the new
entity to existing ones. Tis chapter develops steps 3 through 5 of the ER
design methodology presented in this book. Step 3 examines the attri-
butes of the primary entity; step 4 discusses what to do if another entity is
needed; and step 5 discusses developing the relationship between the two
entities.
Although the concept of relationships is introduced in this chapter, we

do not include any new mapping rules in this chapter since they can be
better understood afer the development of structural constraints on rela-
tionships, discussed in Chapter 6. At the end of this chapter, we continue
with the case started in Chapter 4.

DOI: 10.1201/9781003314455-5 107

https://doi.org/10.1201/9781003314455-5

108 • Database Design Using ER Diagrams

5.2 EXAMINING AN ENTITY: CHANGING
AN ATTRIBUTE TO BE AN ENTITY

Consider Figure 5.1. In this fgure, we have a aaaaaaa entity with the
following attributes: aaaa (a composite attribute), Aaaaaaaaaaaaaaa (an
atomic attribute and key), aaaaaa (a multivalued attribute), and aaaaaaa
(an atomic attribute). Suppose during our frst session with the user, we show
the diagram, the English, and the sample data, and the user says, “Wait a
minute. I want to record all schools a student attended, and I want to record
not only the name of the school, but also the location (city and state) and
school type (community college, university, high school, etc.).”
What the user just told us was that the attribute aaaaaa should really

be an entity. Remember, the def nition of an entity was something about
which we wanted to record information. Our original thought was we
were recording schools-attended, but now we are told we want to record
information about the schools. T e frst indicator an attribute should be
considered an entity is we need to store information about the attribute.
What we do then is to migrate from Figure 5.1 to Figure 5.2. In Figure 5.2,
aaaaaa is now an entity by itself, so we have two separate entities,
aaaaaa and aaaaaaa. We assume aaaaaaaaaaaA to be unique and
choose that as the key for the entity aaaaaa.
 Te next step would be to defne a relationship between the two entities.

FIGURE 5.1
aaaaaaa Entity with a Multivalued Attribute.

Beyond the First Entity Diagram • 109

FIGURE 5.2
Two ER Diagrams: One of aaaaaaa and one of aaaaaa.

5.3 DEFINING A RELATIONSHIP FOR OUR
NEW ENTITY

Databases are designed to store related data. For example, it would ordinar-
ily make no sense to record data about students and foreign currencies or
about airline fights and employees at a tennis ball factory listed in the same

110 • Database Design Using ER Diagrams

FIGURE 5.3
T e aaaaaaa Entity with a Relationship to the aaaaaa Entity.

database. Tese concepts are not related. In a database, we should be creat-
ing a collection of related data. Following our method, we clearly have a
situation for which an attribute was part of an entity (school was considered
“part of” student), but now school has become an entity by itself. What we
must do now is relate the aaaaaa entity to the aaaaaaa entity.
In Figure 5.2, we have two entities, but they appear as though they are

independent. To make the aaaaaa entity and the aaaaaaa entity

Beyond the First Entity Diagram • 111

function as a database, we have to add something: the relationship the
entity aaaaaa has to the entity aaaaaaa.
A relationship in an ER diagram is a connection between two or more

entities or between one entity and itself. Te latter kind of relationship,
between one entity and itself, is known as a recursive relationship , which
we discuss in Chapter 8. A relationship name is usually a verb or verb
phrase denoting the connection between entities. Once we have under-
stood how the relationship is denoted, we have a “tool” to draw a database
description in the form of an ER diagram.
In the Chen-like model, a relationship is depicted by a diamond on the

line joining the two entities together, as shown in Figure 5.3.
In Figure 5.3, the relationship is depicted as aaaaaa. Te sense of the

relationship is a verb connecting two nouns (entities). All relationships
are two-way. As we will see, it is necessary to state all relationships from
both directions. For example, in the Chen-like model we would infor-
mally say, “A aaaaaaa aaaaaaaa a aaaaaa” or “aaaaaaaa aaaaaa
aaaaaaa.”
 Te degree of a relationship refers to the number of entities participat-

ing in the relationship. In Figure 5.3, two entities are participating in the
relationship, aaaaaa, so this is called a binary relationship.
We now have a tool to draw a database description in the form of ER

diagrams. In ER diagrams, we record information about x and y (x and y
are entities) and then express the relationship of x to y.
Our growing and amended methodology is discussed next.

5.3.1 ER Design Methodology

Step 1. Select one primary entity from the database requirements
description and show the attributes to be recorded for that entity.
Label keys if appropriate and show some sample data.

Step 2. Use structured English for entities, attributes, and keys to
describe the elicited database.

Step 3. Examine attributes in the primary entity (possibly with user
assistance) to fnd out if information about one of the attributes is
to be recorded.

Step 3a. If information about an attribute is needed, then make the
attribute an entity, and then

Step 3b. Defne the relationship back to the original entity.
Step 4. Show some sample data.

112 • Database Design Using ER Diagrams

5.4 A PRELIMINARY GRAMMAR FOR ER DIAGRAMS

In Chapter 4, we outlined a grammar to describe an entity. We have now
added a relationship to our diagram and need to embellish our English
description of the proposed database. We also want to show the user some
sample data to solidify the understanding of the path we are taking. We
want to add the following to our list of grammatical expressions:
For each relationship, we add the following comment (in loose English

[for now]):

A(n) Entityl Relationship Entityvn2 (active voice) and a(n) Entity2
Relationship Entityl (passive voice).

A discussion of this follows.

5.4.1 The Relationship

 A aaaaaaa attends a aaaaaa, and a aaaaaa is attended by a
aaaaaaa.

 Te user may be the ultimate judge of the appropriateness of the expres-
sion we use, but we will add to this grammar soon. Te user may prefer a
diferent tense for the verb and may choose a verb they think more appro-
priately assesses the situation. For example, the user may choose to por-
tray the relationship as “aaaaaaas will matriculate at aaaaaaa.” As
an exercise, you will be asked to provide a complete description of the ER
diagram in Figure 5.3, with all entities, attributes, keys, and relationships.

5.5 DEFINING A SECOND ENTITY

Having examined the original primary entity for “suspicious” attributes,
we may now begin to add more data. Let us presume the user wants to add
information about automobiles the students own or drive. Ignoring the
aaaaaa entity for the moment, let us suppose this time we have devel-
oped the following additional description:
We want to record information about students—their name and student

numbers. In addition to information about students, we want to record

Beyond the First Entity Diagram • 113

information about their automobiles—the vehicle identif cation number,
make of the car, body style, color, and year of the model. Let us further
suppose we made the decision to choose aaaaaaa as the primary entity
and want to add the automobile information.
 Te automobile is clearly an entity—it is something about which we

want to record information. If we add the automobile into the database,
we could have included it in step 1 of our methodology by adding an
attribute called aaaaaaaaaa, only later to perform step 3 of the method-
ology and migrate Automobile and school to the status of entities. T e
depiction of automobile as an attribute of the aaaaaaa entity is shown
in Figure 5.4 in the Chen-like model. (We ignore the aaaaaa entity for
the moment.)
If we added the aaaaaaaaaa attribute to the aaaaaaa entity and then

recognized that aaaaaaaaaa should have been an entity, we would then
create the aaaaaaaaaa entity and add the relationship to the model.
Figure 5.4 could be sufcient if the user did not want to store information
about the automobiles themselves.
Of course, we could have recognized the attribute aaaaaaaaaa was

going to be an entity all along and simply recorded it as such in our diagram
in the frst place. By recognizing aaaaaaaaaa as an entity, we would
draw the two entities aaaaaaa and aaaaaaaaaa and then look for
a relationship between the two—Figure 5.5 with two entities, aaaaaaa
and aaaaaaaaaa, and some relationship between the two entities.

FIGURE 5.4
A aaaaaaa Entity with an Attribute Called aaaaaaaaaa.

114 • Database Design Using ER Diagrams

FIGURE 5.5
An ER Diagram of the aaaaaaaaaaaaaaaaaa Database.

In the Chen-like notation, we now choose some verb to describe the rela-
tionship between the two entities (aaaaaaa and aaaaaaaaaa); in
this case, we choose drive (shown in the diamond in Figure 5.5). Later the
user may choose to identify the relationship as something else, but with
no other information, we assume the user means, “A student drives an
automobile.” Other candidates for a relationship between the aaaaaaa
and aaaaaaaaaa entities might be “register,” “own,” and so on. T e
relationship between these two entities is a binary relationship.
Relationships in ER diagrams are usually given names depicting how the

entities are related. Sometimes, a relationship is difcult to describe (or is
unknown); in this case, a two-letter code for the relationship is used. T is
two-letter relationship is shown in Figure 5.6. We have given the relation-
ship the name SA to indicate we understand that a relationship exists, but we

Beyond the First Entity Diagram • 115

FIGURE 5.6
An ER Diagram of the aaaaaaaaaaaaaaaaaa Database with an “Unknown,” “Yet-
to-Be-Determined” Relationship.

are not clear on exactly what to call it (aaAaAaaaaaaaaAaaaaaaaaaa).
Of course, if we were confdent of “drive” as the relationship, we would use
drive.
 Te English description of the entities and relationships implies the enti-

ties are nouns (N) and relationships are verbs (V). Using the drive rela-
tionship (as shown in Figure 5.6), Students (N) drive (V) Automobiles (N).
If the “unknown” relationship is really unknown, we might say “Students
(N) are related to (V) Automobiles (N)” or “A student (N) is related to (V)
an Automobile (N).” In the next chapter, we develop further this English
description as well as the relationship part of the diagram.
At this point, we have introduced the aaaaaaaaAaaaaaaaaaa, and

aaaaaa entities. With all three entities, the aaaaaaaaaaaaaaaaaaa
aaaaaa database would look like Figure 5.7.

116 • Database Design Using ER Diagrams

FIGURE 5.7
An ER Diagram of the aaaaaaaaaaaaaaaaaaaaaaaaa Database.

Checkpoint 5.1

1. Can the nature of an entity change over time? Explain.
2. What is a relationship?
3. What are the diferences between an entity and a relationship?
4. When would it be preferable to consider an attribute an entity?
5. Does it make sense to have an entity with one attribute? Why or

why not?

Beyond the First Entity Diagram • 117

5.6 DOES A RELATIONSHIP EXIST?

Some situations may unfold for which a relationship might be unclear. For
example, consider this user description of a desired database:

Create a database for aaaaaaaaa and aaaaaaaaaaAaaaaaaaaa
will have a AaaaaAaA AaaaaaaaAaA AaaaaaA aaaaaa, and aaaaaaaaA aaaaaa.
aaaaaaaaa will have a aaaaaaaaAaaaaaaAaAAaaaa, and aaaaaaa.

In this database, we clearly have two entities: aaaaaaaa and aaaaaaaa.
We want to store information about customer s (name, address, . . .) and
 supplier s (supplier number, supplier name, . . .). But, what is the connection
between the two?
What we have here is an incomplete, vague user description from which

to design our database. Te connection for the company wanting the data-
base is they have both customers and suppliers; however, what they may
not realize is that the relationship from aaaaaaaa to aaaaaaaa is
via a company or a vendor, and not a direct relationship. So, what we have
so far in this description is two diferent parts of a company database—
one for customer s and one for supplier s. If we later have some other entity
like aaaaaaaaa or aaaaaa, which is related to aaaaaaaas and
to aaaaaaaas, there may be linking entities and relationships. For now,
with just two unrelated ideas (customer and supplier), there is no appar-
ent relationship—so the thing to do would be to leave any relationship of
the overall diagram until more information is elicited from the user. Two
unrelated databases may need to be developed.

5.7 ATTRIBUTE OR RELATIONSHIP?

Sometimes, it may be unclear whether something is an attribute or a rela-
tionship. Both attributes and relationships express something about an
entity. Te attributes of an entity express qualities in terms of properties
or characteristics. Relationships express associations with other entities.
Suppose we are constructing a library database and we create another

primary entity, aaaa, which has an attribute Aaaaaaaaaaaaaa. In some
cases, an attribute construct is likely inappropriate for expressing an
optional association that really ought to be a relationship between two

118 • Database Design Using ER Diagrams

entities. As a side issue, aaaaaaaa would require the use of a null
value for those aaaa entities not on loan. In reality, only a fraction of
the books in a library is on loan at any given time. Tus, the “borrower”
attribute would be null for some of the aaaa entities. Tis recurrence of
many nulls might indicate that the attribute, Aaaaaaaaaaaaaa, could be
an attribute of an entity. If a aaaaaaaa entity were created and the
association between the entities aaaa and aaaaaaaa was explicitly
stated as a relationship, the database designer would likely be closer to
putting attributes and entities in their correct places. It is important to
understand the distinction between the types of information expressed as
attributes and those treated as relationships and entities.

Checkpoint 5.2

1. Are relationships between two entities permanent, or can the
nature of this relationship change over time?

2. Are attributes of an entity permanent?
3. Does there always exist a relationship between two entities?
4. What is a binary relationship?

Our ER elicitation and design methodology is described next.

5.7.1 ER Design Methodology

Step 1. Select one primary entity from the database requirements
description and show attributes to be recorded for that entity.
Label keys if appropriate and show some sample data.

Step 2. Use structured English for entities, attributes, and keys to
describe the elicited database.

Step 3. Examine attributes in the primary entity (possibly with user
assistance) to fnd out if information about one of the attributes is
to be recorded.

Step 3a. If information about an attribute is needed, then make the
attribute an entity, and then

Step 3b. Defne the relationship back to the original entity.
Step 4. If another entity is appropriate, draw the second entity with its

attributes. Repeat step 2 to see if this entity should be further split
into more entities.

Beyond the First Entity Diagram • 119

Step 5. Connect entities with relationships if relationships exist.
Step 6. Show some sample data.

5.8 CHAPTER SUMMARY

Entities, attributes, and relationships were defned in Chapter 4. However,
in real life, while trying to design databases, it is of en dif cult to deter-
mine whether something should be an attribute, entity, or relationship.
Tis chapter discussed ways (techniques) to determine whether something
should be an entity, attribute, or relationship.
 Tis chapter also introduced the concept of binary relationships. Real-

life databases will have more than one entity, so this chapter developed
the ER diagram from a one-entity diagram to a two-entity diagram and
showed how to determine and depict binary relationships between the two
entities using the Chen-like model. Since the concept of relationships was
only introduced and structural constraints of relationships have not yet
been discussed (Chapter 6), we have not included mapping rules in this
chapter.

CHAPTER 5 EXERCISES

Exercise 5.1

Draw an ER diagram (using the Chen-like model) for an entity called
aaaaa and include no fewer than fve attributes for the entity. Of the f ve
attributes, include at least one composite attribute and one multivalued
attribute.

Exercise 5.2

Suppose we reconsider our aaaaaaa example, and the only attributes of
student are aaaaaaaAaaaaaa and aaaa. Let us suppose we have another
entity called aaaaAaaaaaa—the high school from which the student
graduated. For the aaaaAaaaaaa entity, we will record the high school
name and the location (meaning city and state). Draw the ER diagram

120 • Database Design Using ER Diagrams

using the concise form (as in Figure 4.1c). What would you name the rela-
tionship here? Write out the grammar for the relationship between the
two entities.

Exercise 5.3

Suppose a college had one dormitory with many rooms. T e aaaaaaaaa
entity, which is actually a “dormitory room” entity since there is only one
dorm. Dormitory has the attributes aaaaA aaaaaa and aaaaaaaaaaaaa
(meaning there are private rooms and double rooms). Let us suppose the
aaaaaaa entity in this case contains the attributes aaaaaaaAaaaaaaaA
aaaaaaaAaaaa, and aaaaAaaaaaaaaaAaaaaaaA. Draw the ER diagram in the
Chen-like model linking the two entities. Name your relationships. Write
the grammar for the relationship between the two entities.

Exercise 5.4

If we have two entities, a aaaaa and a aaaaa, and describe the relation-
ship between the two entities as

 “A aaaaa f ies a aaaaa.”

What should the relationship read from the side of the other entity?

Exercise 5.5

Complete the methodology by adding sample data to Figures 5.3, 5.5, and
Exercises 5.1, 5.2, 5.3, and 5.4.

CASE STUDY

West Florida Mall (continued)

In Chapter 4, we chose our primary entity, aaaa, used structured English
to describe it, its attributes, and keys, and mapped aaaa to a relational
database (with some sample data). In this chapter, we continue to develop
this case study by looking at steps 3, 4, and 5 of the ER design methodology.

Beyond the First Entity Diagram • 121

Step 3 says:

Step 3. Examine attributes in the primary entity (with user assistance)
to fnd out if information about one of the attributes is to be recorded.

On reexamining the attributes of the primary entity aaaa, it appears we
need to store information about the attribute aaaaa. So, we look at step 3a,
which says

Step 3a. If information about an attribute is needed, then make the
attribute an entity, and then proceed to step 3b.

So, turning the attribute store into an entity, we have the following (repeat-
ing step 2):

The Entity

 Tis database records data about a aaaaa.

For each aaaaa in the database, we record a store name (aaaaa), a
store number (aaaa), a store location (aaaa), and departments (aaaa).

The Attributes for aaaaa

 For each aaaaa, there will be one and only one aaaaa (store name).
Te value for aaaaa will not be subdivided.

 For each aaaaa, there will be one and only one aaaa (store number).
Te value for aaaa will be unique and will not be subdivided.

 For each aaaaa, we will record a aaaa (store location). Tere will be one
aaaa recorded for each aaaaa. Te value for aaaa will not be subdivided.

 For each aaaaa, we will record aaaa (departments). Tere will be
more than one aaaa recorded for each aaaaa. Te value for aaaa
will not be subdivided.

The Keys

 For each aaaaa, we will assume the aaaa will be unique.
Note: Once aaaaa is made into an entity, the attribute store is removed

from the entity aaaa, as shown in Figure 5.8.

122 • Database Design Using ER Diagrams

FIGURE 5.8
ER diagram of the mall database so far.

 Having def ned aaaaa, we now need to follow step 3b, which says

Step 3b. Defne the relationship back to the original entity.

 Tere is a relationship, located_in , between aaaaa and aaaa. T is is
shown in Figure 5.8.
Next, step 4 says

Step 4. If another entity is appropriate, draw the second entity with its
attributes. Repeat step 2 to see if this entity should be further split
into more entities.

We select another entity, aaaaaaaaaaaaa.
Now, repeating step 2 for aaaaaaaaaaaaa:

The Entitys

 Tis database records data about a aaaaaaaaaaaaa.

 For each aaaaaaaaaaaaa in the database, we record a store man-
ager name (aaaaaaa), store manager Social Security number (aaa
aaaA), and store manager salary (aaaaaaaaa).

Beyond the First Entity Diagram • 123

The Attributes for STORE_MANAGER

 For each aaaaaaaaaaaaa, there will be one and only one aaaaaaa
(store manager name). Te value for aaaaaaa will not be subdivided.

 For each aaaaaaaaaaaaa, there will be one and only one aaa
aaa (store manager Social Security number). Te value for aaaaaa
will be unique and will not be subdivided.

 For each aaaaaaaaaaaaa, we will record a Aaaaaaaaaa (store
manager salary). Tere will be one and only one Aaaaaaaaaa recorded
for each aaaaaaaaaaaaa. Te value for aaaaaaaaa will not be
subdivided.

The Keys

 For each aaaaaaaaaaaaa, we will assume the aaaaaa will be unique.
 Having def ned aaaaaaaaaaaaa, we now follow step 5, which says

Step 5. Connect entities with relationships if relationships exist.

There is a relationship, manages, between aaaaa and aaaaaa
aaaaaaa. Tis is shown in Figure 5.9.
 Ten, we select our next primary entity, aaaaa.
Now, repeating step 2 for aaaaa:

FIGURE 5.9
An ER Diagram of West Florida Mall Database Developing.

124 • Database Design Using ER Diagrams

The Entity

 Tis database records data about an aaaaa.

For each aaaaa in the database, we record a store owner name
(aaaaaaa), store owner Social Security number (aaaaaa), store
owner of ce phone (AaaaaaAaaaaaa), and store owner address (Aaaa
aaaaaaa).

The Attributes for OWNER

 For each aaaaa, there will be one and only one aaaaaaaA (store
owner name). Te value for Aaaaaaaa will not be subdivided.

 For each aaaaa, there will be one and only one aaaaaaA (store owner
Social Security number). Te value for aaaaaa will be unique and
will not be subdivided.

 For each aaaaa, there will be one and only one A Aaaaaaa (store aaaaa
owner of ce phone). Te value for aaaaaAaaaaaaA will be unique and
will not be subdivided.

 For each aaaaa, we will record a aaaaaaaaaa (store owner address).
Tere will be one and only one aaaaaaaaaa recorded for each
aaaaa. Te value for aaaaaaaaaa will not be subdivided.

The Keys

 For each aaaaa, we will assume the aaaaaa will be unique.
 Having def ned aaaaa, we now follow step 5, which says:

Step 5. Connect entities with relationships if relationships exist.

 Tere is a relationship, owns , between aaaaa and aaaaa. T is is
shown in Figure 5.10.

Mapping to a Relational Database

Having described the entities, attributes, and keys, the next step would
be to map to a relational database. We will also show some data for the

Beyond the First Entity Diagram • 125

FIGURE 5.10
An ER diagram of West Florida Mall with four entities.

entities developed in this part of the case study. (Te mappings of the rela-
tionships are shown at the end of Chapter 6.)

Relation for the MALL Entity

 Te relation for the aaaa entity with some sample data is shown in
 Table 5.1.

TABLE 5.1

Sample Data for aaaa.
name address

West Florida Mall N Davis Hwy, Pensacola, FL
Cordova Mall 9th Avenue, Pensacola, FL
Navy Mall Navy Blvd, Pensacola, FL
BelAir Mall 10th Avenue, Mobile, AL

126 • Database Design Using ER Diagrams

Note, we do not need the aaaaaAaaaaa mapping presented in Chapter 4
since aaaaa has changed from a multivalued attribute to an entity.

Relation for the STORE entity

 Te entity STORE has a multivalued attribute aaaa, so we have to again
use mapping rule 4 to map this entity. First, we will show the relation with
the multivalued attribute excised, and then we will show the relation
with the multivalued attribute.

aaaaa (with some sample data) is shown in Table 5.2.
Aaaaaaaaaaa Entity (using mapping rule 1 and mapping rule 2) with

some sample data is shown in Table 5.3.

TABLE 5.2

Sample Data for aaaaa.
sloc sname snum

Rm 101 Penneys 1
Rm 102 Sears 2
Rm 109 Dollar Store 3
Rm 110 Rex 4

TABLE 5.3

Sample Data for aaaaaaaaaa.
snum dept

1 Tall men’s clothing
1 Women’s clothing
1 Children’s clothing
1 Men’s clothing
.
.
.
2 Men’s clothing
2 Women’s clothing
2 Children’s clothing
.
.
.

A

aaaa
name address

aaaaa
sloc sname snum

aaaaaaaaaaA
snum dept

aaaaa
so _ ssn so _ name so _ off _ phone so _ address

Beyond the First Entity Diagram • 127

TABLE 5.4

Sample Data for aaaaaAaaaaaaa.
sm_ssn sm_name sm_salary

234-87-0988 Saha 45,900
456-89-0987 Becker 43,989
928-82-9882 Ford 44,000
283-72-0927 Raja 38,988

TABLE 5.5

Sample Data for aaaaa.
so_ssn so_name so_off_phone so_address

879-87-0987 Earp (850)474-2093 1195 Gulf Breeze Pkwy,
Pensacola, FL

826-89-0877 Sardar (850)474-9873 109 Navy Blvd,
Pensacola, FL

928-88-7654 Bagui (850)474-9382 89 Highland Heights,
Tampa, FL

982-76-8766 Bush (850)474-9283 987 Middle Tree,
Mobile, AL

Sample data for aaaaaAaaaaaaa is shown in Table 5.4.

Te aaaaa Entity (using mapping rule 1 and mapping rule 2) with
some sample data is shown in Table 5.5.

So far, our relational database has developed into the following:

128 • Database Design Using ER Diagrams

aaaaaAaaaaaaa
sm _ ssn sm _ name sm _ salary

 Tis case study is continued at the end of the next chapter.

BIBLIOGRAPHY

Elmasri, R., and Navathe, S.B. (2016). Fundamentals of Database Systems. Reading, MA:
Addison-Wesley.

 Hofer, J., Ramesh, V., and Topi, H. (2022). Modern Database Management. New York City,
NY: Pearson Education.

6
 Extending Relationships/
Structural Constraints

6.1 INTRODUCTION

In Chapters 4 and 5 , we introduced some components of entity-relationship
(ER) diagrams: entities, attributes, and relationships. It is insuf cient
for requirement elicitation to defne relationships without also def ning
structural constraints—information about how two (or more) entities are
related to one another. Tere are two types of structural constraints: car-
dinality and participation.
In this chapter, in addition to the structural constraints of relation-

ships, we introduce a grammar to describe what we have drawn. T e gram-
mar will help with the requirement elicitation process as we will specify
a template for the English that can be imposed on a diagram, which will
in turn makes us say exactly what the diagram means. Tis chapter devel-
ops steps 6 and 7 of the ER design methodology. Step 6 states the nature
of a relationship in English, and step 7 discusses presenting the database
(designed so far) to the user.
Mapping rules for relationships are also developed and discussed with

examples and sample data. At the end of the chapter, we continue the run-
ning case study we began in Chapter 4 and continued in Chapter 5.

6.2 THE CARDINALITY RATIO OF A RELATIONSHIP

Cardinality is a rough measure of the number of entities (one or more)
related to another entity (or entities). For example, as shown in Figure 6.1,

DOI: 10.1201/9781003314455-6 129

https://doi.org/10.1201/9781003314455-6

130 • Database Design Using ER Diagrams

FIGURE 6.1A
 One-to-One Relationship aaaaaaaaaaaaaaaaaaaaaaa

FIGURE 6.1B
Many-to-One Relationship aaaaaaaaaaaaaaaaaaaaaaa

FIGURE 6.1C
 One-to-Many Relationship aaaaaaaaaaaaaaaaaaaaaaa

FIGURE 6.1D
 Many-to-Many Relationship aaaaaaaaaaaaaaaaaaaaaaaA

Extending Relationships • 131

there are four ways in which the entities aaaaaaaaaa and aaaaaaa
can be “numerically involved” in a relationship: one to one (1:1), many to
one (M:1), one to many (1:M), and many to many (M:N). Te most com-
mon relationships are 1:M and M:N.

6.2.1 One-to-One (1:1)

In the one-to-one (1:1) type relationship, one entity is associated with one
other entity and vice versa. For example, if in our drive relationship (see
Figure 6.2), we stated one automobile is driven by one student and one
student drives one automobile, then the student/automobile relationship
would be one-to-one, symbolically:

aaaaaaaaaaaaaaaaaaaaaaa

Diagrammatically, we can represent a 1:1 relationship as shown in
 Figure 6.1A .

6.2.2 Many-to-One (M:1)

If the SA (aaaaaaaaaaaaaaaaaa) relationship (shown in Figure 5.6)
were many to one, we would be saying many students are associated with
one automobile, and one automobile is associated with many students;
that is,

aaaaaaaaaaaaaaaaaaaaaaa

We have intentionally used the verb phrase “is associated with” in
place of drive here because the statement “many students drive one
automobile” may be taken in a variety of ways. Also, using a specif c
verb for a relationship is not always the best when the diagram is f rst
drawn unless the analyst is absolutely sure the verb correctly describes
the user’s intention. We could have also used the verb phrase “is related
to” instead of “is associated with” if we wanted to be uncommitted about the
exact verb to use.
We will tighten the language used to describe relationships, but what

does a aaaaaaaaaaaaaaaaaaaaaaa relationship imply? It would rep-
resent a situation in which perhaps a family owned one car and that car
was driven by multiple people in the family.

132 • Database Design Using ER Diagrams

Diagrammatically, we can represent an M:1 relationship as shown in
 Figure 6.1B .

6.2.3 One-to-Many (1:M)

A one-to-many SA (aaaaaaaaaaaaaaaaaa) relationship (shown in
Figure 5.6) would imply one student is associated with many automobiles
and an automobile is associated with one student. If we defne a relation-
ship as 1:M (or M:1), then we need to be very clear about which entity is 1
and which is M. Here,

aaaaaaaaaaaaaaaaaaaaaaa

Diagrammatically, we can represent a 1:M relationship as shown in
 Figure 6.1C .

6.2.4 Many-to-Many (M:N)

In many-to-many relationships, many occurrences of one entity are
associated with many occurrences of the other entity. Many-to-many is
depicted as M:N as in M of one thing related to N of another thing.
If our SA relationship were many to many, a student would be associated

with many automobiles and an automobile with many students:

AaaaaaaaaaaaaaaaaaaaaaaaA

In this case, if we assumed SA = drive, as shown in Figure 5.6, multiple
students may drive multiple cars (it is hoped not all drive at the same
time), and multiple cars may be driven by multiple students. Or, a student
may drive multiple cars, and a car may be driven by multiple students.
Picture, for example, a family with multiple cars, and any one family
member may drive any of the cars and any car may be driven by any fam-
ily member.

Diagrammatically, we can represent an M:N relationship as shown in
 Figure 6.1D .

In expressing cardinality, this x:x ratio, where x = 1 or M or N, is called
a cardinality ratio.

Extending Relationships • 133

Which way do we depict the actual situation for our students and auto-
mobiles? Tis is an interesting question. Te answer is that we have to
model reality as defned by our user. We listen to the user, make some
assumptions, and draw the model. We then pass our model back to the
user by using structured English, which the user then approves or corrects.
A trap in ER design is to try to model every situation for every possibility.

Tis cannot be done. Te point of creating a database is normally a local
situation governed by the systems analysis (sofware engineering) process.
In classical systems analysis, the analyst hears a user, creates a specif ca-
tion, and then presents the result back to the user. Here, the analyst (the
database analyst/designer) models the reality the user experiences—not
what every database in the world should look like. If the user disagrees,
then the analyst can easily modify the conceptual model; but there has to
be a meeting of the minds on what the model is to depict.
In our aaaaaaaaaaaaaaaaaa example, the choice we will make

is one student is associated with (drives) one automobile. While clearly
one can think of exceptions to this case, we are going to adopt a model to
choose how we will identify the relationship between the entities as well as
the information we intend to put in the entities themselves. Bear in mind,
we are dealing with a conceptual model that could change depending on
the reality of the situation; however, we have to choose some sort of model
to begin with, and the one we are choosing is a one-to-one relationship
between students and automobiles.
In the Chen-like model, we will depict the one-to-oneness of this rela-

tionship by adding the cardinality numbers to the lines on the ER diagram
connecting the relationships and the entities (see Figure 6.2).
In Figure 6.2, we put a “1” on the line between the entity box for the

aaaaaaa and the diamond box for the relationship. We put another “1”
on the line between the diamond relationship and the entity box for the
aaaaaaaaaa. Tese 1’s loosely mean a student is related to one auto-
mobile, and an automobile is related to one student. We must be quite
careful in saying exactly what this relationship means. It does not mean
that one student owns one automobile, or that a student pays insurance
for an automobile. In our model, we mean a student will drive at most one
automobile on a college campus. Further, we are saying an automobile will
be driven by one and only one student. Since we are clarifying (ref ning)
the database, we try to settle on the name of the relationship to include
the concept we are modeling, driving, by naming the relationship drive.
Again, see Figure 6.2 for the renamed model with 1:1 cardinality.

134 • Database Design Using ER Diagrams

FIGURE 6.2
ER Diagram of a aaaaaaaaaaaaaaaaaa Database with a Relationship Named drive
and Cardinality Ratios.

6.3 PARTICIPATION: FULL/PARTIAL

It is likely on any campus not all students will drive an automobile. For our
model, we could normally assume all of the automobiles on the campus

Extending Relationships • 135

are associated with a student. (We are for the moment excluding faculty
and staf driving by only modeling the student/automobile relationship.)
To show every automobile is driven by a student, but not every stu-

dent drives an automobile, we enhance our Chen-like models of ER dia-
grams by putting a double line between the relationship diamond and the
aaaaaaaaaa entity to indicate every automobile is driven by a student.
Put another way, every automobile in the database participates in the rela-
tionship. From the student side, we leave the line between the aaaaaaa
entity and the relationship as a single line to indicate that not every stu-
dent drives an automobile. Some students will not participate in the drive
relationship because they do not drive a car on campus. T e single/double
lines are called participation constraints (also known as optionality con-
straints) and are depicted in Figure 6.3.
 Te double line indicates full participation. Some designers prefer to call

this participation mandatory. Te point is if part of a relationship is man-
datory or full, you cannot have a null value (a missing value) for that attri-
bute in the relationship. In our case, if an automobile is in the database, it
has to be related to some student.
 Te single line, partial participation, is also called optional participa-

tion. Te sense of partial or optional participation is there could be stu-
dents who do not have a relationship to an automobile.

Checkpoint 6.1

1. What are structural constraints?
2. What kind of information does the cardinality ratio give us?
3. In how many diferent ways can two entities be involved in a car-

dinality relationship? Give examples.
4. What kind of information does the participation constraint give

us?
5. Is it always necessary to have cardinality ratios as well as partici-

pation constraints in the same ER diagram? Why? Explain.

6.4 ENGLISH DESCRIPTIONS

We now tighten the English grammar to describe how a relationship
afects entities using our structural constraints and adopt a standard way
of stating the relationship. Te standard language should appear on the

136 • Database Design Using ER Diagrams

FIGURE 6.3
An ER Diagram of the aaaaaaaaaaaaaaaaaa Database with the Relationship
Named drive, Cardinality Ratios, and Participation.

model, or at least with it. Further, using a standard language approach to
describe the ER diagrams allows us to not only close the loop with the user
in the systems analysis process, but also to facilitate feedback and “nail
down” the exact meaning of the relationship.

Extending Relationships • 137

In the Chen-like model, the double lines defne full participation as in,
“Automobiles fully participate in the drive relationship.” Better yet, the
double lines invite us to state the relationship as:

Automobiles must be driven by one (and only one) student.

 T e must comes from the full (mandatory) participation and the one from
the cardinality.
 Te grammar for describing the partial or optional relationship for the

aaaaaaa entity to the aaaaaaaaaa entity would be:

Students may drive one and only one automobile.

 T e may comes from the single line leaving the aaaaaaa entity box
and the one and only one comes from the cardinality. Te point is that
when expressing the sense of the ER diagrams, one uses the language
that conveys what the relationship really means (i.e., a student may
drive one automobile, and an automobile must be driven by one and
only one student). A graphic on how to read an ER diagram is presented
in Figure 6.4.

6.5 TIGHTER ENGLISH

We strongly recommend an English sentence accompany each diagram
to reinforce the meaning of the fgure (refer to Figure 6.4). English is of en
an ambiguous language. T e statement:

Automobiles must be driven by one and only one student.

 actually means:

Automobiles, which are in the database, must be driven by one and only
one student.

 Te relationship should not be stated loosely, as in:

A student drives an automobile.

 Tis could be vaguely interpreted.

138 • Database Design Using ER Diagrams

FIGURE 6.4
T e aaaaaaaaaaaaaaaaaa Database: Translating the Diagram into English

Another way to put this is:

Every automobile must be driven by one and only one student. Students
may drive one and only one automobile.

To relieve ambiguity in the statement of the relationship, we will take
the English statement from the relationship as we have illustrated and
defne four pattern possibilities for expressing our relationship. All
binary relationships must be stated in two ways from both sides. As

Extending Relationships • 139

you will see, we try to stick to the exact pattern match in the following
examples, but common sense and reasonable grammar should prevail
when the pattern does not quite f t. Tere is nothing wrong with restat-
ing the precise language to make it clearer, but you have to say the same
thing.

6.5.1 Pattern 1—x:y::k:1

From the k side, full participation (k =1 or M) : Te x’s, recorded in the
database, must be related to one and only one y. No x is related to more
than one y.

EXAMPLE 6.1 STUDENT:ADVISOR::M:1,
FULL PARTICIPATION

Students must be advised by one advisor.

or,

Students, recorded in the database, must be advised by one and only
one advisor. No student is advised by more than one advisor.

The phrase, recorded in the database, has proven helpful because some
database designers tend to generalize beyond the problem at hand. For
example, one could reasonably argue there might be a case where thus-
and-so are true/not true, but the point is, will that case ever be encountered
in this particular database? The negative statement is often helpful to solidify
the meaning of the relationship.

6.5.2 Pattern 2—x:y::k:1

From the k side, partial participation (k = 1 or M): x, but not necessarily
all x recorded in the database, may be related to one and only one y. Some
x’s are not related to a y. T e x’s may not be related to more than one y.

EXAMPLE 6.2 STUDENT:FRATERNITY::M:1

Some students join a fraternity.
which becomes:

140 • Database Design Using ER Diagrams

Students, but not necessarily all students (recorded in the database), may
join a fraternity. Some students may not join a fraternity. Students may
not join more than one fraternity.

6.5.3 Pattern 3—x:y::k:M

From the k side, full participation (k = 1 or M): T e x’s, recorded in
the database, must be related to many (one or more) y’s. Sometimes, it
is helpful to include a phrase like: “No x is related to a non-y” or “Non-
x’s are not related to a y .” Te negative will depend on the sense of the
statement.

EXAMPLE 6.3 AUTOMOBILE:STUDENT::M:N

Automobiles are driven by (registered to) many students.

which means:

Automobiles, recorded in our database, must be driven by many (one or
more) students.

There are several ideas implied here.
First, we are only talking about vehicles registered at this school.
Second, in this database, only student cars are registered in this database.
Third, if an automobile from this database is driven, it has to be registered

and driven by a student (at least one).
Fourth, the “one or more” comes from the cardinality constraint.
Fifth, there is a strong temptation to say something about the y, the M

side back to the x. This should be avoided as this is covered elsewhere in
another pattern and because we discourage inferring other relationships
from the one covered. For example, one might try to say here that all stu-
dents drive cars or all students are related to a vehicle—and neither state-
ment is true.

6.5.4 Pattern 4—x:y::k:M

From the k side, partial participation (k = 1 or M): x, but not necessarily
all x (recorded in the database), may be related to many (zero or more) y ’s.
Some x may not be related to a y.

Extending Relationships • 141

EXAMPLE 6.4 COURSE:BOOK::K:M
Some courses may require (use) many books.

which restated becomes:

Courses, but not necessarily all courses (recorded in the database), may use
many (zero or more) textbooks. Some courses may not require textbooks.

Note, due to partial participation (the single lines), the phrase, zero or more,
is used for cardinality. If a relationship is modeled with the patterns we have
used and the English sounds incorrect, it may be that the wrong model has
been chosen. Generally, the grammatical expression will be most useful in
(a) restating the designed database to a “naive user” and (b) checking the
meaning on the designed database among the designers. The complete
version of the English may eventually prove tiresome to a database designer.
However, one should never lose track of the fact that a statement like “x are
related to one y” can be interpreted in several ways unless it is nailed down
with constraints stated in an unambiguous way. Furthermore, a negation
statement may be useful to elicit requirement definitions, although at times
the negation is so cumbersome it may be omitted. What we are saying is to
add the negative or other noncontradictory grammar if it makes sense and
helps with requirement elicitation. The danger in adding sentences is that
we may end up with contradictory or confusing remarks.

6.5.5 Summary of the Patterns and Relationships

6.5.5.1 Pattern 1

 Te relationship is:

x:y::1(full):1

and is diagrammatically shown by Figure 6.5.

6.5.5.2 Pattern 1

 Te relationship is:

x:y::M(full):1

and is diagrammatically shown by Figure 6.6.

142 • Database Design Using ER Diagrams

FIGURE 6.5
Chen Model of 1(full):1 Relationship: Pattern 1.

FIGURE 6.6
Chen Model of M(full):1 Relationship: Pattern 1.

 Tis pattern implies an instance of aaaaaaa must participate in a
relationship with aaaaaaa and can only exist for one (and only one) of
aaaaaaa.

6.5.5.3 Pattern 2

 Te relationship is:

x:y::1(partial):1

Extending Relationships • 143

FIGURE 6.7
Chen Model of 1(partial):1 Relationship: Pattern 2.

and is diagrammatically shown by Figure 6.7.

6.5.5.4 Pattern 2

 Te relationship is:

x:y::M(partial):1

and is diagrammatically shown by Figure 6.8.
In this pattern, some instances in aaaaaaa may exist without a rela-

tionship to aaaaaaa; but when aaaaaaa is related to aaaaaaa, it can
only be related to one and only one of aaaaaaa.

6.5.5.5 Pattern 3

 Te relationship is:

x:y::1(full):M

and is diagrammatically shown by Figure 6.9.

6.5.5.6 Pattern 3

 Te relationship is:

x:y::M(full):N

144 • Database Design Using ER Diagrams

FIGURE 6.8
Chen Model of M(partial):1 Relationship: Pattern 2.

FIGURE 6.9
Chen Model of 1(full):M Relationship: Pattern 3.

and is diagrammatically shown by Figure 6.10.
 Tis pattern implies an instance of aaaaaaa must participate in a rela-

tionship with aaaaaaa and can exist for more than one of aaaaaaa.

6.5.5.7 Pattern 4

 Te relationship is:

x:y::1(partial):M

and is diagrammatically shown by Figure 6.11.

Extending Relationships • 145

FIGURE 6.10
Chen Model of M(full):N Relationship: Pattern 3.

FIGURE 6.11
Chen Model of 1(partial):M Relationship: Pattern 4.

6.5.5.8 Pattern 4

 Te relationship is:

x:y::M(partial):N

and is diagrammatically shown by Figure 6.12.
In this pattern, some instances in aaaaaaa may exist without a rela-

tionship to aaaaaaa; but when aaaaaaa is related to aaaaaaa, it can
be related to more than one of aaaaaaa.

146 • Database Design Using ER Diagrams

FIGURE 6.12
Chen Model of M(partial):N Relationship: Pattern 4.

Checkpoint 6.2

1. Sketch an ER diagram showing the participation ratios (full/
partial) and cardinalities for the following:

a. Students must be advised by one advisor, and an advisor can
advise many students.

b. Students, but not necessarily all students, may join a frater-
nity. Some students may not join a fraternity. Students may
not join more than one fraternity. A fraternity may have many
students (in its membership).

 Our refned methodology may now be restated with the relationship
information added.

6.5.6 ER Design Methodology

Step 1. Select one primary entity from the database requirements
description and show attributes to be recorded for that entity.
Label keys, if appropriate, and show some sample data.

Step 2. Use structured English for entities, attributes, and keys to
describe the elicited database.

Step 3. Examine attributes in the primary entity (possibly with user
assistance) to fnd out if information about one of the attributes is
to be recorded.

Extending Relationships • 147

Step 3a. If information about an attribute is needed, then make the
attribute an entity, and then

Step 3b. Defne the relationship back to the original entity.
Step 4. If another entity is appropriate, draw the second entity with its

attributes. Repeat step 2 to see if this entity should be further split
into more entities.

Step 5. Connect entities with relationships if relationships exist.
Step 6. State the exact nature of the relationships in structured

English from all sides; for example, if a relationship is A:B::1:M,
then there is a relationship from A(1) to B(M) and from B(M) back
to A(1).

Step 7. Present the “as designed” database to the user complete with
the English for entities, attributes, keys, and relationships. Ref ne
the diagram as necessary.

Step 8. Show some sample data.

6.6 SOME EXAMPLES OF OTHER RELATIONSHIPS

In this section, we consider three other examples of relationships—two
1:M relationships and an M:N relationship—in more detail to practice and
further clarify the process we have presented. As stated, the 1:M and M:N
relationships are common in a database.

6.6.1 An Example of the One-to-Many Relationship (1:M)

1:M or M:1 relationships are really relative views of the same problem.
When specifying 1:M or M:1, we need to be especially careful to specify
which entity is 1 and which is M. Te designation is which view is more
natural for the database designer. As an example of a 1-to-M relationship,
consider dorm rooms and students. One dorm room may have many stu-
dents living in it, and many students can live in one dorm room. So, the
relationship between dorm room and students would be considered a one-
to-many (aaaaaaaaaaaaaaaaa) situation and would be depicted as in
Figure 6.13 (without attributes). We will let the term aaaa mean dorm
room.
In Figure 6.13 (the Chen-like model), the name we chose for the aaaaa

aaaaaaa relationship was occupy.

148 • Database Design Using ER Diagrams

FIGURE 6.13
An ER Diagram (without Attributes) of a 1:M Relationship.

Note, not all dorms have students living in them; hence, the participa-
tion of dorms in the relationship is partial. Informally:

Dorms may be occupied by many students.

Furthermore, all students may not reside in dorms, so the relationship
of aaaaaaa to aaaa is also partial:

Students may occupy a dorm room.

Now, let us restate the relationships in the short and long English forms.
 T e frst statement, dorms may be occupied by many students, f ts pattern

4 , x:y::1(partial):M.

6.6.1.1 Pattern 4–1:M, From the 1 Side, Partial Participation

 “Some x are related to many y.”

Extending Relationships • 149

 Terefore, the more precise statement is:

x, but not necessarily all x, (recorded in the database) may be related to
many (zero or more) y’s. Some x’s are not related to a y . . .

or

Dorms, but not necessarily all dorms, (recorded in the database) may be
occupied by many (zero or more) students.

For the inverse relation:

Students may occupy a dorm room.

 T is f ts pattern 2 , M(partial):1.

6.6.1.2 Pattern 2—M(Partial):1, From M Side, Optional Participation

 “Some x’s are related to one y.”

 Terefore, the long “translation” of the statement is

x, but not necessarily all x (recorded in the database), may be related to
one and only one y. Some x may not be related to y. (No x is related
to more than one y.) [.] indicates optional clarif cation.

 T is x and y notation resolves into x = students, y = dorms, and hence:

Students, but not necessarily all students (recorded in the database), may
occupy one and only one dorm. Some students may not occupy a dorm
room. No student occupies more than one dorm.

Or stated another way:

A student may occupy a (one and only one) dorm and a dorm may be
occupied by many students.

150 • Database Design Using ER Diagrams

FIGURE 6.14
An ER Diagram (without Attributes) of an M:1 Relationship.

6.6.2 An Example of the Many-to-One Relationship (M:1)

For another database, a school we are modeling has student parking lots
and every student is assigned to park his or her car in some (one) specif c
parking lot. We have an entity called aaaaaaaaaaa describing parking
locations by some descriptive notation such as East Lot 7, North Lot 28, and
so on. In this case, if we viewed many automobiles as assigned to one park-
ing lot and a parking lot as containing many automobiles, we could depict
this relationship as a many-to-one, aaaaaaaaaaaaaaaaaaaaaaaa
aaaaATis diagram is shown in Figure 6.14 (again without attributes).
We have depicted participation of the relationship between aaaaaaaaaaA

and PaaaaaaaaaaA as full in both instances—meaning all automo-
biles have one parking lot and all parking lots are assigned to students’
automobiles.
 Te grammatical expressions of this relationship are discussed next.

6.6.2.1 Pattern 1—M:1, From the M Side, Full Participation

 T e x, recorded in the database, must be related to one and only one y. No
x is related to more than one y.

Extending Relationships • 151

x = automobile, y = parking lot, relationship = park
Automobiles, recorded in the database, must be parked in one and only

one parking lot. No automobiles may be parked in more than one
parking lot. An automobile must park in only one parking lot.

 Te inverse is discussed next.

6.6.2.2 Pattern 3–1:M, From the 1 Side, Full Participation

 T e x, recorded in the database, must be related to many (one or more) y ’s.
(No x is related to a non-y” or “Non-x’s are not related to a y— the negative
will depend on the sense of the statement.)

Parking lots, recorded in the database, must park many (one or more)
automobiles.

 Te negative in this case seems misleading, so we will omit it. Te point is
recorded parking lots must have students parking there.
Or stated another way:

An automobile must be parked in a (one and only one) parking lot, and
a parking lot must have at least one automobile parked in it (and can
have many automobiles parked in it).

6.6.3 An Example of the Many-to-Many Relationship (M:N)

The classic example of the M:N relationship we study here is students
taking courses. At the outset, we know students take (enroll in) many
courses and any course is populated by many students. The basic dia-
gram for the aaaaaaaaaaaaaa relationship is shown in Figure
6.15.
We have chosen the word enroll to depict the relationship. T e partici-

pation of students in enroll is depicted as full (mandatory); course enroll-
ment is depicted as partial. Tis choice was arbitrary as both could be
full or partial, depending on user needs and desires. Look carefully at the
exact grammatical expressions and note the impact of choosing full in one
case and partial in the other. Te grammatical expressions of this relation-
ship are discussed next.

152 • Database Design Using ER Diagrams

FIGURE 6.15
An ER Diagram (without Attributes) of an M:N Relationship.

6.6.3.1 Pattern 3—M:N, From the M Side, Full Participation

 T e x, recorded in the database, must be related to many (one or more) y.
(“No x is related to a non-y” or “Non-x’s are not related to a y” or “No x is
not related to a y”—the negative will depend on the sense of the statement.)

x = students, y = courses, relationship = enroll
Students, recorded in the database, must be enrolled in many (one or

more) courses.

 Te inverse is explained next.

6.6.3.2 Pattern 4—N:M, From the N Side, Partial Participation

 T e x, but not necessarily all x (recorded in the database), may be related
to many (one or more) y. Some x may not be related to y.

x = course, y = student, relationship = enroll
Courses, but not necessarily all courses (recorded in the database), may enroll

many (one or more) students. Some courses may not enroll students.

Extending Relationships • 153

Or stated another way:

A student must enroll in one or more courses, and a course may have one
or more students enrolled in it.

 Tis “course partiality” likely refects courses in the database but not
currently enrolling students. It could mean potential courses or courses
no longer ofered. Of course, if the course is in the database only if stu-
dents are enrolled, then the participation constraint becomes full—and
the sense of the entity-relationship changes.
Also, this database tells us that while we can have courses without stu-

dents, we only store information about active students. Obviously, we
could make the student connection partial and hence store all students—
even inactive ones. We chose to represent the relationships in this manner
to make the point that the participation constraint is supposed to depict
reality—the reality of what the user might want to store data about.
Note, all the examples in this chapter deal with only two entities, that is,

they are binary relationships. Te example in the following section is also
another example of a binary relationship.

Checkpoint 6.3

1. Give an example of a 1(full):1 relationship? Does such a relation-
ship always have to be mandatory? Explain with examples.

2. Give an example of a 1(partial):1 relationship? Does such a rela-
tionship always have to be optional? Explain with examples.

3. Give an example of a M(full):N relationship? Would such a
relationship always be optional or mandatory? Explain with
examples.

4. Give an example of a M(partial):N relationship? Would such a
relationship always be optional or mandatory? Explain with
examples.

6.7 ONE FINAL EXAMPLE

As a fnal example to conclude the chapter, we present one more prob-
lem and then our methodology.1 Consider a model for a simplif ed airport

154 • Database Design Using ER Diagrams

where aaaaaaaaaa and aaaaaaa are to be recorded. Suppose the
attributes of aaaaaaaaa are aaaaAaAAaaaaaaaaaaaaaaAa and aaaaaaaaa
aAaaaaaaA. Suppose the attributes for aaaaaa areA AaAaaaaaaaAaA AaaaaaaaaaaaAaA
AaaaaaaaaaaaA, and aaaaaaaaaaa. Draw the ER diagram.

Note: We are leaving out many attributes we could consider. Assume
this is all of the information we choose to record.
 Te solution is given next.

6.7.1 ER Design Methodology

Step 1. Select one primary entity from the database requirements
description and show attributes to be recorded for that entity.
Label keys if appropriate and show some sample data.

Suppose we choose aaaaaaaaa as our primary entity. aaaaaaaaa
has the following attributes: AaaaaaaaaaAaAaaaaaaAaAAaaaa [frst, middle, last],
aaaaaaaaaaaaaaA.
We draw this much of the diagram, choosing aaaaaaaaaaAaaaaaa as a

key and noting the composite attribute aaaa. Tis diagram is shown in
 Figure 6.16 .

Step 2. Use structured English for entities, attributes, and keys to
describe the elicited database.

FIGURE 6.16
Te PASSENGER Entity Diagram.

Extending Relationships • 155

6.7.1.1 The Entity

 Tis database records data about aaaaaaaaaa. For each passenger, we
record AaaaaaaaaaaAaaaaaaAaA AaaaaA [frst, middle, last], pieces_of_luggage
(aaaaaaaaaaaaaa).

6.7.1.1.1 The Attributes

For atomic attributes, att(j):

 For each aaaaaaaaa, there will be one and only one aaaaaaaaa
aAaaaaaa. Te value for aaaaaaaaaaAaaaaaa will not be subdivided.

For each aaaaaaaaa, there will be one and only one recording of
laaaaaaaaaaaaa. Te value for aaaaaaaaaaaaaaA will not be subdivided.

For composite attributes, att(j):

 For each aaaaaaaaa, we will record their aaaa, which is com-
posed of f aaaaaAaaaaaa, and aaaa. AaAaaaaAaaaaaa, and aaaa are the com-
ponent parts of name.

6.7.1.1.2 The Keys

 For each aaaaaaaaa, we will have the following primary key:
aaaaaaaaaaAaaaaaaAaA

Note, we have chosen aaaaaaaaaaAaaaaaa as a primary key for aaaaaaaaa.
If this were not true, another means of unique identifcation would be
necessary. Here, this is all the information we are given.

Step 3. Examine attributes in the primary entity (possibly with user
assistance) to fnd out if information about one of the attributes is
to be recorded.

No further information is suggested.

Step 4. If another entity is appropriate, draw the second entity with its
attributes. Repeat step 2 to see if this entity should be further split
into more entities.

 Te other entity in this problem is aaaaaa, with attributes AaAaaaaaaa,
aaaaaaaaaaaAaAAaaaaaaaaaaaAaAAaaaaaaaAaaaaAa

156 • Database Design Using ER Diagrams

Again, we use structured English as in the following.

6.7.1.2 The Entity

 Tis database records data about Flights. For each aaaaaa, we record
aAaaaaaaa, aaaaaaaaaaa, aaaaaaaaaaa, and aaaaaaaaaaa.

6.7.1.2.1 The Attributes

For atomic attributes, att(j):

 For each aaaaaa, there will be one and only one aAaaaaaaa. T e value
for aAaaaaaaa will not be subdivided.

 For each aaaaaa, there will be one and only one recording of aaaaaaaa
aaaa. Te value for aaaaaaaaaaa will not be subdivided.

 For each aaaaaa, there will be one and only one recording of aaaaaaaA
aaaa. Te value for aaaaaaaaaaa will not be subdivided.

 For each aaaaaa, there will be one and only one recording of aaaaaaaA
aaaa. Te value for aaaaaaaaaaa will not be subdivided.

6.7.1.2.2 The Keys

For the key(s): One candidate key (strong entity):

 For each aaaaaa, we will have the following primary key: aAaaaaaaa.

We are assuming aAaaaaaaa is unique.

Step 5. Connect entities with relationships if relationships exist.

What relationship is there between fights and passengers?
All passengers will fy on one fight. All fights will have multiple pas-

sengers. Te diagram for this problem is illustrated in Figure 6.17 and
 Figure 6.18 .
Note, we have again made a choice: We will depict one fight per passen-

ger in this database. T e specif cations do not tell us whether this should
be 1 or M, so we chose 1. We also chose full participation on both sides.
It would seem illogical to record data about passengers who did not f y on
a fight and fights for which there were no passengers. But again, if the
database called for storing information about potential passengers who
might not book a specif c fight or fights not involving passengers, then
we would have to change the conceptual design. Figure 6.17 is good for

Extending Relationships • 157

FIGURE 6.17
ER Diagram for aaaaaaaaaaaaaaaa Database.

displaying just the entities and the attributes. Figure 6.18 uses the concise
form of describing attributes and includes some of the preceding steps
and some sample data. For conceptualizing, Figure 6.17 may be used and
later converted into Figure 6.18 style for documentation. Either f gure
requires an accompaniment of structured English (step 6).
As designers, we make a choice and then present our choice to the user.

If the user decided to store information about all fights and all passen-
gers over a period of time, that would be a diferent database (an M:N
relationship and perhaps partial participations for non-passenger f ights
and nonfying passengers). Te point is this is eventually a user’s choice,
and at this point we are trying to generate a model to present to the user
to validate.

158 • Database Design Using ER Diagrams

FIGURE 6.18
Sample Problem—Alternate Presentation of Attributes with Explanation and Sample
Data.

Step 6. State the exact nature of the relationships in structured English
from all sides, such as, if a relationship is A:B::1:M, then there is a
relationship from A(1) to B(M) and from B(M) back to A(1).

6.7.2 Pattern 1—M:1, From the M Side, Full Participation

 T e x, recorded in the database, must be related to one and only one y. No
x are related to more than one y.

Extending Relationships • 159

x = passenger, y = fight, relationship = f y
Passengers, recorded in the database, must fy on one and only one f ight.

No passenger fies on more than one f ight.

6.7.3 Pattern 3–1:M, From the 1 Side, Full Participation

 T e x, recorded in the database, must be related to many (one or more) y ’s.

x = f ight, y = passenger, relationship = f y
Flights, recorded in the database, must fy many (one or more) passengers.

Or, stated another way:

A passenger must fy on a fight, and a f ight must have at least one (and
can have many) passengers on it.

Attribute descriptions follow previous patterns and are lef to the exercises.

Step 7. Present the “as designed” database to the user complete with
the English for entities, attributes, keys, and relationships. Ref ne
the diagram, as necessary.

Step 8. Show some sample data.

 See Figure 6.18 .

6.8 MAPPING RELATIONSHIPS TO A
RELATIONAL DATABASE

In this section, we continue with the mapping rules we began at the end
of Chapter 4. In Chapter 4, we learned how to map entities—entities with
composite attributes and entities with multivalued attributes. In this
chapter, having covered structural constraints of relationships, we learn
how to map relationships.

6.8.1 Mapping Binary M:N Relationships

For mapping binary M:N relationships, we present mapping rule 5.

160 • Database Design Using ER Diagrams

Mapping rule 5—Mapping binary M:N relationships. For each M:N
relationship, create a new table (relation) with the primary keys
of each of the two entities (owner entities) related in the M:N rela-
tionship. Te primary key of this new table will be the concate-
nated keys of the owner entities. Include any attributes the M:N
relationship may have in this new table.

For example, refer to Figure 6.15. If the aaaaaaa and aaaaaa tables
have the data shown in Tables 6.1 and 6.2.
Before performing mapping rule 5, one must frst ensure the primary

keys of the entities involved have been established. If aaaaaaaa and aaaaaaaa
aaaaaa are the primary keys of aaaaaa and aaaaaaa, respectively,
then to map the M:N relationship, we create a relation called aaaaaa as
shown in Table 6.3.

TABLE 6.1

Sample Data for aaaaaaa Table in Figure 6.15.
name.fi rst name.last name.mi student_number address

Richard Earp W 589 222 2nd St
Boris Backer 909 333 Dreistrasse
Helga Hogan H 384 88 Half Moon Ave
Arpan Bagui K 876 33 Bloom Ave
Hema Malini 505 100 Livingstone

TABLE 6.2

Sample Data for aaaaaa Table in Figure 6.15.
cname c_number credit_hrs

Database COP4710 4
Visual Basic CGS3464 3
Elements of Stats STA3023 3
Indian History HIST2022 4

TABLE 6.3

Sample Data for aaaaaa in Figure 6.15.
c_number student_number

COP4710 589
CGS3464 589

(Continued)

Extending Relationships • 161

TABLE 6.3 (Continued)

Sample Data for ENROLL in Figure 6.15.

c_number student_number
CGS3464 909
STA3023 589
HIST2022 384
STA3023 505
STA3023 876
HIST2022 876
HIST2022 505

 Both aaaaaaaa and aaaaaaaaaaaaaa together are the primary key of
the relation, aaaaaa.
 Te relational mapping for Figure 6.15 would be as follows:

aaaaaaa(aaaa.aAaaa, aaaa.aaaa, aaaa.aa, aaaaaaaaaaaaaa,
aaaaaaa)

aaaaaa (aaaaa, aaaaaaaa, aaaaaaaaaa)
aaaaaa(aaaaaaaa, aaaaaaaaaaaaaa)

 What ofen happens in M:N relationships is data arises that f ts better
with the relationship than with either entity. Relationship attributes are
covered in Chapter 8, but should a relationship attribute arise, it will be
mapped with the primary keys.

6.8.2 Mapping Binary 1:1 Relationships

To map binary a 1:1 relationship, include the primary key of aaaaaaa
into aaaaaaa as the foreign key. Te question is, which is aaaaaaa
and which is aaaaaaa? Tis question is answered in the mapping rules
presented in this section.

Mapping rule 6—Mapping a binary 1:1 relationship when one side
of the relationship has full participation and the other has partial
participation. When one of the sides of the relationship has full
participation and the other has partial participation, then store
the primary key of the side with the partial participation con-
straint on the side with the full participation constraint as a foreign
key. Include any attributes on the relationship on the same side to
which the key was added. (We cover attributes of relationships in
Chapter 8 and then embellish the mapping rules accordingly.)

162 • Database Design Using ER Diagrams

For example, refer to Figure 6.3. It says:

An automobile, recorded in the database, must be driven by one and only
one student.

 and

A student may drive one and only one automobile.

Here, the full participation is on the aaaaaaaaaa side since “An auto-
mobile ‘must’ be driven by a student.”
So, we take the primary key from the partial participation constraint

side aaaaaaa and include it in the aaaaaaaaaa table. T e primary
key of aaaaaaa is aaaaaaaaaaaaaa, so this will be included in the
aaaaaaaaaa relation as the foreign key. A relational database realiza-
tion of the ER diagram in Figure 6.3 will look like

aaaaaaaaaa(aaaaaaaaaa, aaaa, aaaaaaaaaa, aaaaa, aaaa,
aaaaaaaaaaaaaa)

aaaaaaa(aaaa.aAaaa, aaaa.aaaa, aaaa.aa, aaaaaaaaaaaaaa,
aaaaaaa)

and with some data, it would look like Tables 6.4 and 6.5.

TABLE 6.4

Sample Data for aaaaaaaaaa in Figure 6.3.
vehicle_id make body_style color year student_number

A39583 Ford Compact Blue 1999 589
B83974 Chevy Compact Red 1989 909
E98722 Mazda Van Green 2002 876
F77665 Ford Compact White 1998 384

TABLE 6.5

Sample Data for aaaaaaa in Figure 6.3.
name.fi rst name.last name.mi student_number address

Richard Earp W 589 222 2nd St
Boris Backer 909 333 Dreistrasse
Helga Hogan H 384 8 8 Half Moon Ave
Arpan Bagui K 876 33 Bloom Ave
Hema Malini 505 100 Livingstone

Extending Relationships • 163

TABLE 6.6

Sample Data for Multivalued Attribute in Figure 6.3.

student_number school

589 St. Helens
589 Mountain
589 Volcano
909 Manatee U
909 Everglades High
384 PCA
384 Pensacola High
876 UWF
505 Cuttington
505 UT

 Since aaaaaaa has a multivalued attribute school, we need to map
the multivalued attribute to its own table (as per mapping rule 4, mapping
multivalued attributes), as shown in Table 6.6.
In this case, if the relationship had any attributes, they would be included

in the aaaaaaaaaa relation since that is where the key went.

Mapping rule 7—Mapping a binary 1:1 relationship when both sides
have partial participation constraints.

When both sides have partial participation constraints in a binary 1:1
relationship, the relationships can be mapped in one of two ways. For the
f rst option:

Mapping rule 7A. Select either one of the relations to store the key of
the other (and live with some null values).

Again, refer to Figure 6.2. Te participation constraints are partial from
both sides (and let us assume for the time being there is no school attri-
bute). Ten, Figure 6.2 would read:

An automobile may be driven by one and only one student.

 and

A student may drive one and only one automobile.

164 • Database Design Using ER Diagrams

A relational realization could be the following: T e aaaaaaaaaa (primary
key of aaaaaaaaaa) should be stored in aaaaaaa as follows:

aaaaaaaaaa(aaaaaaaaaa, aaaa, aaaaaaaaaa, aaaaa, aaaa)
aaaaaaa(aaaa.aAaaa, aaaa.aaaa, aaaa.aa, aaaaaaaaaaaaaa,
aaaaaaa, aaaaaaaaaa)

and with some sample data as shown in Tables 6.7 and 6.8.
 In the aaaaaaa relation, aaaaaaaaaaA is a foreign key.
For the second option:

Mapping rule 7B. Depending on the semantics of the situation, you
can create a new relation to house the relationship to contain the
key of the two related entities (as is done in mapping rule 5). In this
case, if there were any null values, these would be lef out of the link-
ing table.

TABLE 6.7

Sample Data for aaaaaaaaaa in Figure 6.2.
vehicle_id make body_style color year

A39583 Ford Compact Blue 1999
B83974 Chevy Compact Red 1989
E98722 Mazda Van Green 2002
F77665 Ford Compact White 1998
G99999 Chevy Van Grey 1989

TABLE 6.8

Sample Data for aaaaaaa in Figure 6.2.
name.fi rst name.last name.mi student_ address vehicle_id

number

Richard Earp W 589 222 2nd St. A39583
Boris Backer 909 333 Dreistrasse B83974
Helga Hogan H 384 88 Half Moon Ave. F77665
Arpan Bagui K 876 33 Bloom Ave E98722
Hema Malini 505 100 Livingstone

A

A A

Extending Relationships • 165

We illustrate the mapping of Figure 6.2 using this rule. Te relational
realization would be

aaaaaaaaaaaAaaaaaaaaaaAaAaaaaaAaaaaaaaaaaaAaaaaaaAaaaaAa
aaaaaaaaAaaaaaaAaaaaAaaaaaaaaaaAaaaaaaaaAAaaaaaaaaaaaaaaAaAaaaaaaaAa
aaaaaaaaaaaaaaaaaaaAaaaaaaaaaaaAaaaaaaaaaaaaaaAa

and with some data as shown in Table 6.9.
In this case, the two relations, aaaaaaa and aaaaaaaaaa, would

remain as shown in Tables 6.10 and 6.11.

TABLE 6.9

Sample Data for Alternative Representation
of aaaaaaaaaaaaaaaaaa in Figure 6.2.
vehicle_id student_number

A39583 589
B83974 909
E98722 876
F77665 384

TABLE 6.10

Sample Data for Alternative Representation of aaaaaaa in Figure 6.2.
name.first name.last name.mi student_ address

number

Richard Earp W 589 222 2nd St
Boris Backer 909 333 Dreistrasse
Helga Hogan H 384 8 8 Half Moon Ave
Arpan Bagui K 876 33 Bloom Ave
Hema Malini 505 100 Livingstone

TABLE 6.11

Sample Data for Alternative Representation of aaaaaaaaaa in Figure 6.2.
vehicle_id make body_style color year

A39583 Ford Compact Blue 1999
B83974 Chevy Compact Red 1989
E98722 Mazda Van Green 2002
F77665 Ford Compact White 1998
G99999 Chevy Van Grey 1989

A

166 • Database Design Using ER Diagrams

Mapping rule 8—Mapping a binary 1:1 relationship when both sides
have full participation constraints. Use the semantics of the rela-
tionship to select which of the relations should contain the key of
the other. If this choice is unclear, then use mapping rule 7B.

Now, assuming full participation on both sides of Figure 6.2, the two
tables aaaaaaa and aaaaaaaaaa could be:

aaaaaaaaAaaaaaaAaaaaAaaaaaaaaaaAaaaaaaaaAAaaaaaaaaaaaaaaAaAaaaaaaaa
aaaaaaaaaaaAaaaaaaaaaaAaAaaaaaAaaaaaaaaaaaAaaaaaaAaaaaaAaaaaaaaaaaaaaaAa

and with some sample data as shown in Tables 6.12 and 6.13,
In this case, Aaaaaaaaaaaaaaa was included in aaaaaaaaaa, making

aaaaaaaaaaaaaa a foreign key in aaaaaaaaaa. We could have also
taken the primary key, aaaaaaaaaa, from aaaaaaaaaa and included
that in the aaaaaaa table. But it would be inappropriate to include for-
eign keys in both tables as that would be introducing redundancy into the
database.

TABLE 6.12

Sample Data for Figure 6.2 With Full Participation on Both Sides: aaaaaaa Table.
name.first name.last name.mi student_number address

Richard Earp W 589 222 2nd St
Boris Backer 909 333 Dreistrasse
Helga Hogan H 384 88 Half Moon Ave
Arpan Bagui K 876 33 Bloom Ave
Hema Malini 505 100 Livingstone

TABLE 6.13

Sample Data for Figure 6.2 With Full Participation on Both Sides: aaaaaaaaaa
Table.

vehicle_id make body_style color year student_number

A39583 Ford Compact Blue 1999 589
B83974 Chevy Compact Red 1989 909
E98722 Mazda Van Green 2002 876
F77665 Ford Compact White 1998 384
G99999 Chevy Van Grey 1989 505

Extending Relationships • 167

6.8.3 Mapping Binary 1:N Relationships

Next, we develop mapping rules to map binary 1:N relationships. T ese
mappings will depend on what kind of participation constraint the N side
of the relationship has.

Mapping rule 9—Mapping binary 1:N relationships when the N side
has full participation. Include the key of the entity on the 1 side of
the relationship as a foreign key on the N side.

For example, in Figure 6.13, if we assume full participation on the stu-
dent side, we will have

Dorm rooms may have zero or more students.

 and

Students must live in only and only one dorm room.

 Te “1 side” is aaaa; the “N side” is aaaaaaa. So, a reference to
aaaa (aaaaa, the key of aaaa) is included in aaaaaaa.
And, if we had the following sample data as shown in Tables 6.14 and 6.15,

TABLE 6.14

Sample Data for aaaaaaa in Figure 6.13.
name.fi rst name.last name.mi student_number dname

Richard Earp W 589 A
Boris Backer 909 C
Helga Hogan H 384 A
Arpan Bagui K 876 A
Hema Malini 505 B

TABLE 6.15

Sample Data for aaaa in Figure 6.13.

dname supervisor

A Saunders
B Backer
C Hogan
D Eisenhower

168 • Database Design Using ER Diagrams

the relational mapping would be

aaaaaaaaAaaaaaaAaaaaAaaaaaaaaaaAaaaaaaaaAAaaaaaaaaaaaaaaAaAaaaaaa
aaaaaAaaaaaAaAaaaaaaaaaaAa

Mapping rule 10—Mapping binary 1:N relationships when the N side
has partial participation. Tis situation would be handled just
like a binary M:N relationship with a separate table for the rela-
tionship. Te key of the new relation would consist of a concatena-
tion of the keys of the related entities. Include any attributes on
the relationship on this new table.

Checkpoint 6.4

1. State the mapping rule(s) that would be used to map Figure 6.14.
Map Figure 6.14 to a relational database and show some sample
data.

2. State the mapping rule(s) that would be used to map Figure 6.17.
Map Figure 6.17 to a relational database and show some sample
data.

6.9 CHAPTER SUMMARY

 Tis chapter discussed the cardinality and participation ratios in ER diagrams.
Several examples and diagrams of binary relationships with structural con-
straints (developed in the Chen-like model) were discussed. Tighter English
grammar was presented for each of the diagrams, and steps 7 and 8 of the ER
design methodology were def ned. T e fnal section of the chapter discussed
mapping relationships. As our model becomes more complex, we will revisit
the mapping rules to accommodate this complexity in further chapters.

CHAPTER 6 EXERCISES

Exercise 6.1

Let us reconsider our student example in Exercise 5.2 in which the only
attributes of student are aaaaaaaaaaaaaaAand aaaa. Now we have another

Extending Relationships • 169

entity called HIGH SCHOOL, which is going to be the high school from
which the student graduated. For the HIGH SCHOOL entity, we will
record the high school’s name and the location (meaning city and state).
Draw the ER diagram using the Chen-like model. Follow the methodol-
ogy and include all English descriptions of your diagrams. Map the ER
diagram to a relational database.

Exercise 6.2

Suppose that a college had one dormitory with many rooms. The dor-
mitory entity, which is a DORMITORY ROOM entity since there is
only one dorm, has the attributes aaaaA aaaaaa and aaaaaaaaaaaaa
(meaning there are private rooms and double rooms). Let us suppose
the STUDENT entity in this case contains the attributes aaaaaaaAaaaa
aaa, aaaaaaaAaaaa, and aaaaAaaaaaaaaaAaaaaaa. Draw the ER dia-
gram using the Chen-like model. Follow the methodology and include
all English descriptions of your diagram. Map the ER diagram to a
relational database.

Exercise 6.3

Consider a STUDENT database with students and campus organiza-
tions. Students will have the attributes of aaaaaaaAaaaaaaA and aaaaaaaA
aaaa. ORGANIZATIONS will have the attributes aaaaaaaaaaaaAaaaaA
and aaaaaaaaaaaaAaaaa. Draw the ER diagram using the Chen-like model.
Follow the methodology and include all English descriptions of your dia-
gram. Map the ER diagram to a relational database and include some
sample data.

Exercise 6.4

Consider a STUDENT and ADVISOR database. Students have a aaaaaaaA
aaaaaaA and aaaaaaaAaaaa. Advisors have names, of ce numbers, and
advise in some major. Te major the advisor advises in is designated by
a major code (e.g., Chemistry, CHEM; Biology, BIOL; Computer Science,
COMPSC; . . .). Draw the ER diagram using the Chen-like model. Follow
the methodology and include all English descriptions of your diagram.
Map the ER diagram to a relational database and include some sample
data.

170 • Database Design Using ER Diagrams

Exercise 6.5

You want to record the following data in a database: restaurant name and
location, employee names and IDs, capacity of restaurant, smoking or
nonsmoking area in restaurant, hours of operation for restaurant (assume
same hours every day), employee salaries and titles. An employee can
work for only one restaurant. A restaurant must have at least one employee
working for it. Draw the ER diagram using the Chen-like model. Follow
the methodology and include all English descriptions of your diagram.
Map the ER diagram to a relational database and include some sample
data.

Exercise 6.5a

Adjust exercise 6.5 to: An employee may work for a restaurant and
can work for many restaurants, but a restaurant must have at least one
employee working for it, and can have many employees working for it.
Show the Chen-like ER model and relational mapping for this (you do not
have to include data).

Exercise 6.5b

Adjust exercise 6.5 to: An employee must work for at least one restaurant
and can only work for one restaurant. A restaurant may have employees
working for it. Show the Chen-like ER model and relational mapping for
this (you do not have to include data).

Exercise 6.6

Record the following data in a database: business name, owner,
location(s), telephone numbers, delivery truck number, truck capacity,
usual route description (e.g., North, West, Central, Lake, . . .). Draw the
ER diagram using the Chen-like model. Present the relational mapping.
Follow the methodology and include all English descriptions of your
diagram.

Exercise 6.7

Refer to Figure 6.19. What are the English language statements you can
make about the f gure?

Extending Relationships • 171

FIGURE 6.19
ER Diagram of West Florida Mall with Four Entities and Structural Constraints.

Exercise 6.8

Refer to Figure 6.18. Complete the diagram by adding a precise English
description of each attribute. Map Figure 6.18 to a relational database.

172 • Database Design Using ER Diagrams

Exercise 6.9

What is the cardinality of the following?

a. Each student must own a car and can own only one car. A car may be
owned by only one student.

b. Each student may drive a car and can drive more than one car. A car
can be driven by one student and can only be driven by one student.

c. Each student may rent many cars and cars may be rented by many
students.

Which of these cardinality rules are optional? Which rules are manda-
tory? Show these relationships diagrammatically using the Chen-like ER
notation.

CASE STUDY

West Florida Mall (Continued)

In the last couple of chapters, we selected our primary entities (as per the
specifcations from the user so far) and defned the relationships between
the primary entities. In this chapter, we proceed with the ER diagram for
this case study by looking at steps 6 and 7 of the ER design methodology,
and we map the ER diagram to a relational database (with some sample
data) as we proceed.
Step 6 develops the structural constraints of binary relationships.

Step 6. State the exact nature of the relationships in structured English
from all sides; for example, when a relationship is A:B::1:M, there
is a relationship from A(1) to B(M) and from B(M) back to A(1).

 Refer to Figure 6.20 .
First, for the relationship located_in:

From MALL to STORE, this fts pattern 3, 1(full):N:
A mall must have at least one store and can have many stores.
 Or,

Extending Relationships • 173

FIGURE 6.20
ER Diagram of West Florida Mall with Four Entities and Structural Constraints.

Malls, recorded in the database, must have many (one or more) stores
located in them.

 From aaaaa to aaaa, this fts pattern 1, M(full):1:
Many stores (one or more) must be in one mall.
 Or,
Stores, recorded in the database, must be in one mall.

 T e aaaa entity is mapped as mapped in Chapter 5, as shown in Table
6.16.

174 • Database Design Using ER Diagrams

TABLE 6.16

Sample Data for aaaa.
name address

West Florida Mall N Davis Hwy, Pensacola, FL
Cordova Mall 9th Avenue, Pensacola, FL
Navy Mall Navy Blvd, Pensacola, FL
BelAir Mall 10th Avenue, Mobile, AL

TABLE 6.17

Sample Data for aaaaa.
sloc sname snum mall_name

Rm 101 Penneys 1 West Florida Mall
Rm 102 Sears 2 West Florida Mall
Rm 109 Dollar Store 3 West Florida Mall
Rm 110 Rex 4 West Florida Mall

Next, we have to map the relationship between the aaaa entity and the
aaaaa entity. Tis is a binary 1:N relationship; hence, we use mapping
rule 9, which states:

Include the key of the entity on the 1 side of the relationship to the N
side as a foreign key.

So, the key from the 1 side, the aaaa side, will be included in the N side,
aaaaa side, as the foreign key. We show this next with some sample
data, presented in Table 6.17.
Due to the multivalued attribute dept in aaaaa, we will keep the rela-

tion with the multivalued attribute (as developed in Chapter 5). It is shown
next with some sample data in Table 6.18.
 Ten, for the relationship owns:

 From aaaaa to aaaaa, this fts pattern 3, 1(full):M:
Owners, recorded in the database, must own one or more stores.
 Or,
One owner must own at least one store and may own many stores.

Extending Relationships • 175

TABLE 6.18

Sample Data for aaaaaaaaaa.
snum dept

1 Tall men’s clothing
1 Women’s clothing

1 Children’s clothing
1 Men’s clothing

.

.

.

.

TABLE 6.19

Sample Data for aaaaa With Foreign Key.

sloc sname snum mall_name so_ssn

Rm 101 Penneys 1 West Florida Mall 879-987-0987
Rm 102 Sears 2 West Florida Mall 928-088-7654
Rm 109 Dollar Store 3 West Florida Mall 826-098-0877
Rm 110 Rex 4 West Florida Mall 982-876-8766

 From aaaaa to aaaaa, this fts pattern 1, M(full):1:
Stores, recorded in the database, must have one and only one owner.
 Or,
Many stores can have one owner.

For the relationship owns , from aaaaa to aaaaa, a 1:N relationship:
Again, using mapping rule 9, we will take the key from the 1 side, aaaaaa,

and include this as the foreign key in the N side, aaaaaaAaaaaa, with
some sample data, is now as shown in Table 6.19.
And, the relation for the aaaaa entity remains as developed in

Chapter 5. With some sample data, it is shown in Table 6.20.

176 • Database Design Using ER Diagrams

TABLE 6.20

Sample Data for aaaaa in Figure 6.13.

so_ssn so_name so_off_phone so_address

879-987-0987 Earp (850)474-2093 1195 Gulf Breeze
Pkwy, Pensacola, FL

826-098-0877 Sardar (850)474-9873 109 Navy Blvd,
Pensacola, FL

928-088-7654 Bagui (850)474-9382 89 Highland Heights,
Tampa, FL

982-876-8766 Bush (850)474-9283 987 Middle Tree,
Mobile, AL

For the relationship manages:

 From aaaaa to aaaaaaaaaaaaa, this fts pattern 1, 1(full):1:
Stores, recorded in the database, must have one store manager.

 Or,
Stores must have one store manager and can only have one and only one

store manager.

 From aaaaaaaaaaaaa to aaaaa, this also fts pattern 1, 1(full):1:
Store managers, recorded in the database, must manage one and only one

store.

 Or,
Store managers must manage at least one store and can manage only one

store.

 Te relationship between aaaaa and aaaaaaaaaaaaa is a binary
1:1 relationship; hence, using mapping rule 8, the relation aaaaa would
develop into the following with some sample data (we are taking the key
from aaaaaa aaaaaaa and including it in aaaaa as the foreign
key), as shown in Table 6.21.

 Te relation for the aaaaaaaaaaaaa entity remains as developed
in Chapter 5. We show this with some sample data, as shown in Table 6.22.

Our next step is step 7, which is

Step 7. Present the “as designed” database to the user complete with
the English for entities, attributes, keys, and relationships. Ref ne
the diagram, as necessary.

A

A

Extending Relationships • 177

TABLE 6.21

Sample Data for aaaaa With Foreign Key.

sloc sname snum mall_name so_ssn sm_ssn

Rm 101 Penneys 1 West Florida 879-987-0987 283-972-0927
Mall

Rm 102 Sears 2 West Florida 928-088-7654 456-098-0987
Mall

Rm 109 Dollar 3 West Florida 826-098-0877 234-987-0988
Store Mall

Rm 110 Rex 4 West Florida 982-876-8766 928-982-9882
Mall

TABLE 6.22

Sample Data for aaaaaaaaaaaaa.
sm_ssn sm_name sm_salary

234-987-0988 Saha 45,900
456-098-0987 Becker 43,989
928-982-9882 Ford 44,000
283-972-0927 Raja 38,988

In summary, our relational database has so far been mapped to (without
the data) (note, the primary keys are underlined):

aaaa
name address

aaaaa
sloc sname snum mall _ name so _ ssn sm _ ssn

AaaaaaaaaaaA
snum dept

aaaaa
so _ ssn so _ name so _ off _ phone so _ address

AaaaaaAaaaaaaaA
sm _ ssn sm _ name sm _ salary

178 • Database Design Using ER Diagrams

We continue the development of this case study at the end of the next
chapter.

NOTE

 1 Modeled afer Elmasri and Navathe (2016).

BIBLIOGRAPHY

Batini, C., Ceri, S., and Navathe, S.B. (1992). Conceptual Database Design. Redwood City,
CA: Benjamin Cummings.

Earp, R., and Bagui, S. (2001). Extending relationships in the entity-relationship diagram.
Data Base Management Journal, 22–10–42: 1–14.

Elmasri, R., and Navathe, S.B. (2016). Fundamentals of Database Systems. Reading, MA:
Addison-Wesley.

Kroenke, D.M. (2010). Database Processing. Upper Saddle River, NJ: Prentice Hall.
McFadden, F.R., and Hofer, J.A. (2007). Modern Database Management. Upper Saddle

River, NJ: Pearson Education.
Ramakrishnan, R., and Gehrke, J. (2003). Database Management Systems. New York:

McGraw Hill.

7
The Weak Entity

7.1 INTRODUCTION

Chapters 4 and 5 introduced the concepts of the entity, the attribute, and
the relationship. Chapter 6 dealt with structural constraints, that is, how
two entities are related to one another. In this chapter, we discuss the con-
cept of the “weak” entity, which is used in the Chen-like model. Weak
entities may not have a key attribute of their own as they are dependent on
a strong or regular entity for their existence. Strong entities always have a
primary key. Te weak entity has some restrictions on its use and gener-
ates some interesting diagrams. Tis chapter revisits and redef nes steps
3 and 4 of the entity-relationship (ER) design methodology to include the
concept of the weak entity. Grammar and mapping rules for the weak
entity are also developed.

7.2 STRONG AND WEAK ENTITIES

As mentioned in Chapter 4, there are situations for which fnding a key for
an entity is difcult. So far, we have concentrated on examples with strong
(regular) entities—entities with easily identifable keys. Strong entities almost
always have a unique identifer that is a subset of all the attributes; however, a
unique identifer may be an attribute or a group of attributes. For example, a
student number, an automobile vehicle identifcation number (vin), a driver’s
license number, and so on may be unique identifers of strong entities.
A weak entity clearly will be an entity but will depend on another entity

for its existence. As we mentioned, a weak entity will not necessarily have a
unique identifer. A classic example of this kind of entity is a aaaaaaaaa
as related to an aaaaaaaa entity. If one were constructing a database

DOI: 10.1201/9781003314455-7 179

https://doi.org/10.1201/9781003314455-7

180 • Database Design Using ER Diagrams

FIGURE 7.1
aaaaaaaa Entity Showing Dependents as a Multivalued Attribute.

about employees and their dependents, an instance of a dependent would
depend entirely on some instance of an employee or else the dependent
would not be kept in the database. T e aaaaaaaa entity is called the
owner entity or identifying entity for the weak entity aaaaaaaaa.
How can a weak entity come about in our diagrams? In the creation

of a database, we might have a dependent name shown as a multivalued
attribute as in Figure 7.1. An example of data for a diagram like Figure 7.1
would be as shown in Table 7.1.
Suppose in our conversations with the user, we discover more

information is supposed to be gathered about the dependents. Following

TABLE 7.1

Sample Data for aaaaaaaa in Figure 7.1.
fname minit lname emp ID dependents
John J Jones 0001 John, Jr; Dumas; Sally
Sam S Smith 0004 Brenda; Richard
Adam A Adams 0007 John; Quincy; Maude
Santosh C Saha 0009 Ranu; Pradeep; Mala

Te Weak Entity • 181

our methodology, this is an acknowledgment that the dependents should
be entities—they ft the criteria for “entity,” where we are recording infor-
mation about “something” (the dependent). Hence, we would be describ-
ing an entity called aaaaaaaaa. If we make aaaaaaaaa an entity,
we would embellish the diagram in Figure 7.1 to Figure 7.2.
As a sidenote, when designing a database, the attributes are normally

named as singular nouns. Here, we used the word, dependent, as a plu-
ral (dependents). Tis is evidence that we have designed an entity with
a multi-valued attribute. Not to get too far ahead of ourselves, but as we
shall see, in the ultimate, realized database, multi-valued attributes will be

FIGURE 7.2
T e aaaaaaaaaaaaaaaaaaAER Diagram, First Pass.

182 • Database Design Using ER Diagrams

a problem. At this early stage of database design and elicitation of wants
and needs of a user, the multi-valued attribute may stay in the diagram as
we have presented it. As we shall see later, we will resolve the multivalued
attribute difculty in the normalization process afer mapping the ER dia-
gram to a relational database.
Figure 7.2 poses a problem: T e aaaaaaaaa entity is dependent on

the aaaaaaaa for its being. Also, it has no clear unique identif er. T is
dependence on aaaaaaaa makes aaaaaaaaa a weak entity. As is
ofen the case with weak entities, aaaaAaAAaaaaaaaaaa, and aaaaaaaaa are
not candidate keys by themselves. None of these attributes would have
unique values. Tere is no single attribute candidate key.
In the Chen-like model, for weak entities, we enclose the entity in

a double box and the corresponding relationship to the owner in a
double diamond. Refer to Figure 7.3. Te weak entity in Figure 7.3, the
aaaaaaaaa, is said to be identifed by the entity aaaaaaaa. T e
aaaaaaaa is called the identifying entity or owner entity for the
weak entity aaaaaaaaa.
Attributes are handled the same way for weak entities as for strong

entities (except there may be no primary keys for weak entities). We have
included some attributes in Figure 7.3 so the f gure depicts the following
(in loose grammar):

A dependent must be related to one employee, and an employee may
have many dependents.

Since the weak entity depends on a strong entity, the participation con-
straint will always be must and the cardinality will be one in the f rst part
of the grammatical description.
 T e aaaaaaaaa entity has the attributes aaaaaaA aaaaaaaaaa, and

aaaaaaaaa.
In dealing with weak entities, it is appropriate to consider how each

instance of the entity would be identifed. Since the owner of the weak
entity, aaaaaaaaa, is the strong entity aaaaaaaa, the identif ca-
tion process would involve the key of aaaaaaaa plus some information
from the weak entity aaaaaaaaa. Te attribute aaaaa is a likely can-
didate as an identif er for aaaaaaaaa and will be called a partial key.
In Figure 7.3 , we underlined aaaaa with dashes. Te attribute aaaaa

is a partial key as it identifes dependents, but not uniquely. T is assumes
all dependents have unique names. We did not “name” the relationship

Te Weak Entity • 183

FIGURE 7.3
T e aaaaaaaaaaaaaaaaaaAER Diagram

and lef it as ED for aaaaaaaaaaaaaaaaaa. Suitable names for the
relationship might be “have” as in:

Employees may have many dependents.

or “dependent on” as in:

Employees may have many dependents dependent on them.

184 • Database Design Using ER Diagrams

We could also have used “related to” as in:

Employees are related to many dependents.

Each of these verb phrases seems to have a redundancy (dependent on)
or perhaps misleading (related to) air about them. So, probably the best
thing to do is to leave the relationship unnamed (aa). If the user chooses
to use a relationship verb characterization, then the analyst can rename the
relationship.

7.3 WEAK ENTITIES AND STRUCTURAL CONSTRAINTS

Weak entities always have full or mandatory participation from the weak
side toward the owner. If the weak entity did not have total participation,
then we would have a data item in the database not uniquely identif ed and
not tied to a strong entity. In our aaaaaaaaaaaaaaaaaa example,
this would be like keeping track of a dependent not related in any way to
an employee. Te cardinality of the relationship between the weak and
strong entity will usually be 1:M, but not necessarily so.

7.4 WEAK ENTITIES AND THE IDENTIFYING OWNER

 Tere are situations for which a weak entity may be connected to an owner
entity while other relationships exist apart from the “owner” relationship. For
example, consider Figure 7.4. In this fgure, we show two relationships—owns
and drives—connecting the two entities aaaaaaaa and aaaaaaaaaa.
Here, the aaaaaaaaaa entity is considered a weak entity; that is, if there
is no employee, there will be no automobile (the automobile has to have an
employee to exist in the database). Further, the automobile is identifed by the
owner; note the double diamond on the owns relationship and the full par-
ticipation of the aaaaaaaaaa entity in the owns relationship.
In Figure 7.4, we also have a “drives” relationship. T e automobile

may be driven by employees other than the owner. All automobiles are
driven by some employee; hence, the participation is full in drives from
aaaaaaaaaa toward aaaaaaaa. Te driver-employee may not

Te Weak Entity • 185

FIGURE 7.4
A Weak Entity with Two Relationships

necessarily be the actual owner. To identify aaaaaaaaaa, we are saying
we need the owns relationship, but other non-owner drivers may exist.
According to Figure 7.4, one employee may own many automobiles. To

answer the question of which automobiles an employee owns, in addition
to the employee’s ID, we need to know the make, model, and color of the
automobiles. T e aaaa, aaaaa, and aaaaa attributes of the aaaaaaaaaa
entity are partial keys (dotted underlined in Figure 7.4). Why are they dotted-
underlined? Because these three attributes will not uniquely identify an
automobile.

186 • Database Design Using ER Diagrams

 One fnal point about the aaaaaaaaaaaaaaaaaaa situation: It
could be the vehicle identifcation number (aaa) of the aaaaaaaaaa
could be recorded. aaaa are unique; hence, the weak entity aaaaaaaaaa
could have a primary key. In this case, although aaaaaaaaaa would
have a primary key, it could still be lef as weak because it would not be in
the database without the owner or driver employee. Having a primary key
does not necessarily make an entity “strong.”

Checkpoint 7.1

1. What is a weak entity?
2. How would you identify a strong entity?
3. How would you identify a weak entity?
4. What kind of a relationship line (single or double) would be leading

up to the weak entity in a Chen-like diagram?
5. What is a partial key?
6. What would the structural constraints of a weak entity generally be?
7. What would the cardinality of a weak entity generally be?

7.4.1 Another Example of a Weak Entity
and the Identifying Owner

As another example of a weak entity in an ER diagram and the identify-
ing owner, consider Figure 7.5. In Figure 7.5, we have two strong entities:
aaaaaa and aaa. Tere is one weak entity, aaa. Figure 7.5 illustrates
the aaaaaa owns the aaa, but the aaaAtreats the aaa. In the dia-
gram, aaaaaa is the identifying or controlling entity for aaa; hence,
the relationship owns has a double diamond to aaaaaa. Here, owns is
a weak relationship. aaa is a weak entity related to aaaaaa.
 Te relationship treats does not have a double diamond because aaa

is not the owner of aaa. Here, treats is not a weak relationship, and aaa
is not a weak entity in relation to aaa.

7.5 WEAK ENTITIES CONNECTED TO
OTHER WEAK ENTITIES

We would like to make a fnal point regarding weak entities. Just because
an entity is weak does not preclude it from being an owner of another weak

Te Weak Entity • 187

FIGURE 7.5
T e aaaaaaaaaaaaaaAaa Diagram

entity. For example, consider Figure 7.6. In this f gure, the aaaaaaaaa
aaaaaaaaa relationship has been enhanced to include hobbies of the
dependents. (Never mind why one would want to record this information
but let us suppose the user insists.)
aaaaaaaaa is a weak entity. T e entity aaaaa is also weak. Hobbies

might be identifed by their type (stamp collecting, baseball, tying knots,

188 • Database Design Using ER Diagrams

FIGURE 7.6
T e aaaaaaaaaaaaaaaaaaaaaaaa ER Diagram.

observing trains, etc.). T e aaaa attribute of aaaaa is a partial key for
aaaaa.
 T e entity aaaaaaaaa is the owner of the weak entity aaaaa, and

the entity aaaaaaaa is the owner of the weak entity aaaaaaaaa.
 Te reason this situation is brought up here is to show it can exist. In

further discussion, when we map this situation, we will want to treat this
special situation carefully.

Te Weak Entity • 189

Checkpoint 7.2

1. Can a weak entity be dependent on another weak entity?
2. Can a weak entity have a relationship that is not “weak” with the

identifying entity?
3. Can a weak entity be related to more than one entity (strong or

weak)?

7.6 REVISITING THE METHODOLOGY

 Te inclusion of a weak entity in an ER diagram causes us to revisit our meth-
odology and make some adjustments. We might discover the weak entity in
one of two places: One would be as we illustrated with the evolution of the
multivalued attribute, the “dependent”; this would occur in steps 3a and 3b:

Step 3. Examine attributes in the primary entity (possibly with user
assistance) to find out if information about one of the attributes
is to be recorded.

Step 3a. If information about an attribute is needed, then make the
attribute an entity, and then

Step 3b. Define the relationship back to the original entity.

So, we add

Step 3c. If the new entity depends entirely on another entity for its
existence, then draw the entity as weak (double boxed) and show
the connection to the identifying entity as a double diamond.
The participation of the weak entity in the relationship is full.
Dash underline the partial key identifier(s) in the weak entity.

 Te second place a weak entity might appear would be as part of step 4
when new entities are considered:

Step 4. If another entity is appropriate, draw the second entity
with its attributes. Repeat step 2 to see if any attributes should
be further split into more entities.

190 • Database Design Using ER Diagrams

So, we add:

Step 4a. If the additional entity or entities do not have candidate
keys, then draw them as weak entities (as explained in step 3c) and
show the connection to an identifying entity. The participation of
the weak entity in the relationship is full or mandatory. Dash or
dot underline the partial key identifier(s) in the weak entity.

Again, a weak entity cannot exist without an identifying entity. If the
weak entity is “discovered” independent of an identifying entity, the rela-
tionship connection should be made immediately.

7.7 WEAK ENTITY GRAMMAR

Previously we covered some grammar associated with weak entities. Now
we want to revise and enhance the idea when we have no primary key
for the weak entity. It is possible for a weak entity to have a primary key;
therefore, it might appear in item (b), so we add part (c) to the grammar
for the keys, given next.

7.7.1 The Keys

For the key(s):

(a) More than one candidate key (strong entity):

One key is chosen as the primary key . . . (covered previously).

(b) One candidate key (strong or weak entity):

Te primary key is the candidate key. For each weak entity, it is
assumed no weak entity will be recorded without a corresponding
owner (strong) entity.

For each weak entity with a primary key, we also must record the pri-
mary key of the owner entity.

(c) No candidate keys (weak entity):

Te Weak Entity • 191

For each (weak) entity, we do not assume any attribute will be unique
enough to identify individual entities.
In this case, the aaaaaaaaa entity would be depicted as:

 For each aaaaaaaaa entity, we do not assume any attribute will be
unique enough to identify individual entities.

We now enhance this description to include the identifying entity:

Since the weak entity does not have a candidate key, each weak entity
will be identifed by key(s) belonging to its strong entity. For each
aaaaaaaaa, entities will be identifed by the concatenation of
its partial key and the owner primary key: (DEPENDENT. DEP_
NAME+EMPLOYEE.EMPLOYEE_ID).

In this case, the aaaaaaaaa entity is identifed by the aaaaaaaa
entity, and this second statement becomes:

 Since the aaaaaaaaa entity does not have a candidate key, each
aaaaaaaaa entity will be identifed by key(s) belonging to the
aaaaaaaa entity plus aaaaa in the aaaaaaaaa entity.

7.8 MAPPING WEAK ENTITIES TO A
RELATIONAL DATABASE

In this section, we develop the mapping rules for mapping weak entities to
a relational database.

Mapping Rule 11—Mapping weak entities. Develop a new table
(relation) for each weak entity. As is the case with the strong entity,
include any atomic attributes from the weak entity in the table.
If there is a composite attribute, include only the atomic parts of
the composite attribute and be sure to qualify the atomic parts in
order not to lose information. To relate the weak entity to its owner,
include the primary key of the owner entity in the weak relation.
Te primary key of the weak relation will be the partial key of the
weak entity concatenated to the primary key of the owner entity.

A

192 • Database Design Using ER Diagrams

If a weak entity owns other weak entities, then the weak entity
connected to the strong entity must be mapped frst. Te key of
the weak owner-entity has to be defned before the “weaker” entity
(the one furthest from the strong entity) can be mapped.

For example, refer to Figure 7.3. Te aaaaaaaa relation and
aaaaaaaaa relation would be mapped as

aaaaaaaaaAaaaaaAaAAaaaaaAaAAaaaaaAaAAAaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaAAaaaaaAa aaaaaaaaaAaAAaaaaaaaaaaAa

and with data shown in Tables 7.2 and 7.3.
Here, aaaaaaaaaaa is the primary key of aaaaaaaa. Te aaaaaaaaa

aa from the owner relation aaaaaaaa is included in the weak relation
aaaaaaaaa. Te aaaaaaaaaaa now becomes part of the primary key of
aaaaaaaaa. Since aaaaa is the partial key of the aaaaaaaaa rela-
tion, the primary key of the aaaaaaaaa relation now fnally becomes
aaaaa and aaaaaaaaaaa concatenated together.
Now, refer to Figure 7.6. Here, the aaaaaaaaa entity is dependent

on the aaaaaaaa entity, and the aaaaa entity is dependent on the

TABLE 7.2

Sample Data of aaaaaaaa in Figure 7.3.
fname lname minit employee_id
Richard Earp W 589
Boris Backer 909
Helga Hogan H 384
Arpan Bagui K 876
Hema Malini 505

TABLE 7.3

Sample Data of aaaaaaaaa in Figure 7.3.
dname birth_date insurance employee_id
Beryl 1/1/94 Vista 589

Kaityln 2/25/07 Vista 909
David 3/4/05 BlueCross 589
Dumas 3/7/08 BlueCross 589
Abbie 5/6/08 SE 384

A

Te Weak Entity • 193

TABLE 7.4

Sample Data of aaaaa in Figure 7.6.
dname employee_id type years_involved
Beryl 589 swimming 3
Kaityln 909 reading 5
David 589 hiking 1
Dumas 589 fishing 2
Abbie 384 singing 4

aaaaaaaaa entity. Te aaaaaaaa relation and aaaaaaaaa rela-
tion would be mapped as shown, and then the aaaaa relation would be
mapped as:

aaaaaaaaaaaaAAaaaaaaaaaaaAaAAaaaaAa aaaaaaaaaaaaaaa

And, with some sample data as shown in Table 7.4.
Te partial key of aaaaa was aaaa. Te primary key of the aaaaa

relation now becomes aaaaaAaAAaaaaaaaaaaa, and aaaa all together.

Checkpoint 7.3

1. What are the rules for mapping weak entities? Map Figure 7.5
and show some sample data.

2. When mapping weak entities, what becomes their new primary
key?

3. How would you map multivalued attributes in a weak entity?
Explain with an example.

4. How are weak entities generally identifed?

7.9 CHAPTER SUMMARY

 Tis chapter discussed and developed the concept of the weak entity. Te
grammar for the weak entity was enhanced, along with the ER design
methodology. Te mapping rules for mapping the weak entity were also
developed. Tis concept of the weak entity is available in the Chen-like
model but is treated diferently in other ER models.

194 • Database Design Using ER Diagrams

CHAPTER 7 EXERCISES

Exercise 7.1

Construct an ER diagram (a Chen-like model) for a database to con-
tain employee name, employee number, employee address, skill(s). An
employee may have more than one skill. Ten, enhance the diagram to
include level of skill, the date you became skill certifed (if certif ed), date
you began using the skill. Are there any weak entities in this database?
Map this ER diagram to a relational database.

Exercise 7.2

Construct an ER diagram for sports and players. Attributes of SPORT are
sport name, type of sport, timed or untimed. Attributes of PLAYERS are
name, person ID, date of birth. Players may play multiple sports. Which
entity/entities would you consider weak? Write out the grammar for the
ER diagram. Map this ER diagram to a relational database.

Exercise 7.3

What mapping rules would be used to map Figure 7.4? Map Figure 7.4 to a
relational database and show some sample data.

Exercise 7.4

Map Figure 7.6 to a relational database (Note: make sure you show the
keys). I do not need to see sample data here, just the tables and attributes,
for example: TABLE1(attribute1, attribute2, attribute3).

Exercise 7.5

“Write out” the cardinality and the participation for Figures 6.3 and 7.5
Make sure that the cardinality and participation ratios are written out
from both sides.

CASE STUDY

West Florida Mall (continued)

In the previous chapters, we selected our primary entities, defned the attri-
butes and relationships for this case study, and mapped it to a relational

Te Weak Entity • 195

database (with some sample data). In Chapter 6, we also determined the
structural constraints of the relationships and adjusted some of the map-
pings accordingly. Ten step 7 says:

Step 7. Present the “as designed” database to the user complete
with the English for entities, attributes, keys, and relationships.
Refine the diagram as necessary.

Suppose we obtained some additional input from the user:
A store must have one or more departments. A department will not exist

without a store. For each department we will store the department name,
department number, and department manager. Each department has at
least one employee working for it.
We have to record information about the employees in the store. For

each employee in a store, we will have to keep an employee’s name,
Social Security number, and the department where the employee works.
Employees must work in one and only one department.
In Chapter 5, we determined that departments was a multivalued attri-

bute of aaaaa (that is, one store had many departments). But, on review-
ing these additional specifcations, we can now see that aaaaaaaaaa
needs to be an entity on its own since we have to record information
about a aaaaaaaaaa. Also, we can see that we have to record infor-
mation about another new entity, aaaaaaaa. So, these current specif -
cations add two new entities, aaaaaaaaaa and aaaaaaaa. Notice,
in adding these two entities, we can make them strong entities with keys,
aaaaaaaaaaaaaaaaa and aaaaaaaaaaa , respectively .
First, we select an entity, aaaaaaaaaa.
Now, repeating step 2 for aaaaaaaaaa:

The Entity

 Tis database records data about a aaaaaaaaaa.

 For each aaaaaaaaaa in the database, we record a department
name (aaaaa) and department number (aaaa).

The Attributes for DEPARTMENT

 For each aaaaaaaaaa there will be one and only one aaaaa. T e
value for aaaaa will not be subdivided.

196 • Database Design Using ER Diagrams

 For each aaaaaaaaaa, there will be one and only one aaaa. T e
value for aaaa will not be subdivided.

The Keys

 For each aaaaaaaaaa, we will need to tie the department num-
ber to the owner-entity using the key of the owner entity, aaaaaaaa.
Terefore, the key of aaaaaaaaaa will be store_ID+dnum.

Note, the language leads you to think of aaaaaaaaaa as a weak entity.
Next, we select our next entity, aaaaaaaa.
Now, repeating step 2 for aaaaaaaa:

The Entity

 Tis database records data about an aaaaaaaa.

 For each aaaaaaaa in the database, we record an employee name
(aaaaa) and employee Social Security number (aaaa).

The Attributes for EMPLOYEE

 For each aaaaaaaa, there will be one and only one aaaaa. T e
value for aaaaa will not be subdivided.

 For each aaaaaaaa, there will be one and only one aaaa. T e value
for aaaa will not be subdivided.

The Keys

 For each aaaaaaaa, we will assume the aaaa will be unique (so
aaaaaaaa will be a strong entity).

 Tese entities have been added to the diagram in Figure 7.7.
Using step 6 to determine the structural constraints of relationships, we get:

First, for the relationship, dept_of:
 From aaaaa to aaaaaaaaaa, this fts pattern 3, 1(full):N:

Stores, recorded in the database, must have many (one or more) departments.

Te Weak Entity • 197

FIGURE 7.7
ER Diagram of West Florida Mall Developed So Far.

 From aaaaaaaaaa to aaaaa, this fts pattern 1, M(full):1:

Many departments (one or more) must be in one store.

To Map this Relationship

 Te relationship between aaaaa and aaaaaaaaaa is a strong/
weak relationship, so using mapping rule 11, we will take the key from
the owner, aaaa, and include this as part of the key on the weak side,
aaaaaaaaaa, so the aaaaaaaaaa relation becomes:

aaaaaaaaaaaaaaaaAaAAaaaaAaAAaaaaa.

And, with some data as shown in Table 7.5.

A

198 • Database Design Using ER Diagrams

TABLE 7.5

Sample Data for aaaaaaaaaa in Figure 7.7.
dname dnum snum
Tall Men’s Clothing 501 1
Men’s Clothing 502 1
Women’s Clothing 503 1
Children’s Clothing 504 1
Men’s Clothing 601 2
.
.
.

The aaaaa table will be the same as it was in Chapter 6, but we
will not need the relation store_depts. (In Chapter 6, aaaaaaaaaaa
were still a multivalued attribute of STORE, so we had the aaaaa
and store_depts relations.) From the specifications at the begin-
ning of the case study in this chapter, it is apparent aaaaaaaaaa
is an entity on its own, so the store_depts relation is replaced by the
aaaaaaaaaa table.
 Ten, for the relationship works_for:

From aaaaaaaa to aaaaaaaaaa, this fts pattern 1, 1(full):1:
Employees, recorded in the database, must work for one and only one

department.

From aaaaaaaaaa to aaaaaaaa, this fts pattern 3, 1(full):N:
Departments, recorded in the database, must have one or more employ-

ees working for it.

To Map this Relationship:

 From aaaaaaaa to aaaaaaaaaa, the relationship is 1:1. Because
both sides have full participation, using mapping rule 8 we may select which
side may store the key of the other. But, since the relationship between
aaaaaaaaaa and aaaaaaaa is a binary 1(full):N relationship, using
mapping rule 9, we will take the key from the 1 side (aaaaaaaaaa side),
aaaa and aaaa, and include this concatenated key as the foreign key in
the N side (aaaaaaaa side), so the relation aaaaaaaa becomes:
aaaaaaaaaaaaaaAaAAAaaaaAaAAaaaaAaAAaaaaAa

AA AA A A

A A A A AA AA A A AA AA

AA AA A A A A

AAA

A AA AA A A A A

aaaa
AaaaaA AaaaaaaaA

aaaaa
AaaaaA AaaaaaA AaaaaA AaaaaaaaaaAA AAaaaaaaaaA AaaaaaaA

aaaaa
AaaaaaaA AaaaaaaaAA AaaaaaAaaaaaaA AaaaaaaaaaaAA

AaaaaaAaaaaaaaA
AAAaaaaaaAAA AAaaaaaaaAA AAaaaaaaAA

AaaaaaaaaaaA
AAaaaaaAA AAAaaaaAAA AAaaaaAA

aaaaaaaa
AaaaaaAA AaaaaA AaaaaA AaaaaA

We continue the development of this case study at the end of the next
chapter.

Te Weak Entity • 199

TABLE 7.6

Sample Data for aaaaaaaa in Figure 7.7.
ename essn dnum snum
Kaitlyn 987-754-9865 501 1

Dumas 276-263-9182 502 1

Katie 98-928-2726 503 1

Seema 837-937-9373 501 1

Raju 988-876-3434 601 2

.

.

.

And, with some sample data, as shown in Table 7.6.
In summary, our relational database has so far been mapped to (without

the data)

200 • Database Design Using ER Diagrams

BIBLIOGRAPHY

Chen, P.P. (1976). Te entity-relationship model—toward a unifed view of data. ACM
Transactions on Database Systems , 1(1).

Connolly, E., and Begg, C. (2009). Database Systems, a Practical Approach to Design,
Implementation, and Management. Reading, MA: Addison-Wesley.

Elmasri, R., and Navathe, S.B. (2016). Fundamentals of Database Systems. Reading, MA:
Addison-Wesley.

Ramakrishnan, R., and Gehrke, J. (2003). Database Management Systems. New York:
McGraw Hill.

8
Further Extensions for ER Diagrams
with Binary Relationships

8.1 INTRODUCTION

Having developed the basic entity-relationship (ER) model in Chapters 4
through 7, this chapter deals with some extensions to the basic model. We
introduce a new concept—attributes of relationships and present several
examples. We then revisit step 6 of the ER design methodology to include
attributes of relationships. Next, the chapter looks at how more entities
and relationships are added to the ER model and how attributes and rela-
tionships evolve into entities, all the while refning our ER design meth-
odology. Relationships may develop into entities, creating an intersection
entity. Te grammar and structured English for the intersection entity are
presented, and the concept of recursive relationships is introduced.
Also, in previous chapters we mostly looked at cases in which two enti-

ties had a (one) relationship between them. In this chapter, we present
additional scenarios of how two entities can have more than one relation-
ship between them. Step 5 of the ER design methodology is also redef ned
to include more than one relationship between two entities. T is chapter
discusses derived and redundant relationships, and the ER design meth-
odology is again refned; step 6b is included to deal with these structures.
Finally, in this chapter we include an optional section to look at an alter-
native ER notation for specifying structural constraints on relationships.

8.2 ATTRIBUTES OF RELATIONSHIPS

In Chapter 6, we considered the M:N relationship aaaaaaaaaaaaaa.
T e aaaaaaaaaaaaaa relationship is M:N because students take many

DOI: 10.1201/9781003314455-8 201

https://doi.org/10.1201/9781003314455-8

202 • Database Design Using ER Diagrams

courses and courses are taken by many students. Now, consider adding the
attribute aaaaa to the ER diagram. If we tried to put the attribute, aaaaa,
with the aaaaaaa entity, we would have a multivalued attribute that had
to somehow be related to the aaaaaa entity to make sense. Similarly, if
we tried to put the aaaaa attribute with the aaaaaa entity, the aaaaaa
entity would then have a multivalued attribute. Te correct place for aaaaa
in the diagram would be on the relationship enroll because aaaaa requires
both a aaaaaaa and a aaaaaa to make sense. See Figure 8.1 for the
placement of the aaaaa attribute in an M:N, full:full participation model.
A few other attributes have been added to Figure 8.1 to show the rela-

tive position of the attributes. Again, since aaaaa is identifed by both
aaaaaaa and aaaaaa, it cannot reside with either entity by itself.
An attribute like aaaaa is called a relationship attribute or intersection
attribute.
An intersection attribute may arise frst as a multivalued attribute on

some entity during the design process only later to be questioned; that
is, why is this attribute here when it requires another entity to identify it?
When it is recognized that the attribute must be identifed by more than
one entity, the attribute is moved to the relationship between the two (or
more) entities identifying it.
Relationship attributes may occur with an ER diagram containing any

cardinality, but one will most of en fnd relationship attributes in the
binary, M:N model. We now need to revisit our methodology to add a
guideline for the attributes of a relationship:

Step 6. State the exact nature of the relationships in structured
English from all sides, for example, if a relationship is A:B::1:M,
then there is a relationship from A to B, 1 to Many, and from B
back to A, Many to 1.

And, we add:

Step 6a. Examine the list of attributes and determine whether
any of them need to be identified by two (or more) entities. If
so, place the attribute on the appropriate relationship joining
the two entities.

 Te grammar to describe the attribute of a relationship is discussed next.

Further Extensions for ER Diagrams • 203

FIGURE 8.1
M:N Relationship Showing a Relationship Attribute

8.2.1 The Attributes

For atomic attributes, att(j): . . . (same as in previous chapters)
For composite attributes, att(j): . . . (same as in previous chapters)
For multivalued attributes, att(j): . . . (same as in previous chapters)
For attributes of relationships att(j):

For the relationship between ENTITY1 and ENTITY2, we will record
an att(j). T e att(j) depends on both entities ENTITY1 and ENTITY2
for identif cation.

204 • Database Design Using ER Diagrams

EXAMPLE 8.1
For the relationship between the aaaaaaa entity and the aaaaaa entity,
we will record a aaaaa attribute. The aaaaa attribute depends on both
aaaaaaa and aaaaaa entities for identifi cation.

8.3 RELATIONSHIPS DEVELOPING INTO ENTITIES:
THE M:N RELATIONSHIP REVISITED

We previously defned the M:N relationship and ofen noted that an attri-
bute appears that should really be associated with the relationship and not
with one entity. Te example was aaaaa, which would clearly not f t with
either the aaaaaaa or the aaaaaa entity. In a sense, it appears the
relationship has itself taken on an “entity quality.”
 Tere are two options in depicting this relationship-attribute situation.

One option is to leave the attribute where it is, as we have shown it, on
the relationship. If the number of attributes is small (one or two), then the
sense of the diagram will still be intact, and the grammar representing the
diagram will be understandable to the user.
 Te other option for relationship attributes would be to make

the relationship an entity and tie both of the “identifying enti-
ties” to it. Tis option is shown in Figure 8.2 . In this fgure, the mid-
dle entity, aaaaaaaaaaaaaa, is depicted as weak because
aaaaaaaaaaaaaa depends entirely on the aaaaaaa and
aaaaaa entities. Note, the participations are always full between the
new, weak “intersection entity” and the relationship joining it to the
strong owners. Why? Because the weak entity must have a corresponding
strong entity, or it would not be there. Te participation on the strong
relationship side (between aaaaaaa and aaaa [short for relationship
1] or between aaaaaa and aaaa [again, short for relationship 2]) can
be partial or full depending on whether it was partial or full originally.
What would a partial aaaaaaaaaaa connection mean? It would indi-
cate that classes existed in the database that are not ofered, and hence
there are no students in them.
Now, with a aaaaaaaaaaaaaa entity (an intersecting entity), our gram-

matical description of this intersecting entity would be as discussed next.

Further Extensions for ER Diagrams • 205

FIGURE 8.2
M:N Relationship Tat Has Been Replaced with by 1:M Relationships

8.3.1 The Entity

 Tis database records data about aaaaaaaaaaaaaa combinations:
aaaaaaaaaaaaaa. For each aaaaaaaaaaaaaa in the database,
we record a aaaaa.

206 • Database Design Using ER Diagrams

8.3.1.1 The Attributes

 For each aaaaaaaaaaaaaa combination, there will be one and
only one aaaaa. Te value for aaaaa will not be subdivided.

8.3.1.2 The Keys

(d) Intersecting entity: Te key of the intersection entity will consist of
the concatenation of the foreign keys of the owner entities.

In the aaaaaaaaaaaaaa example, the intersection entity will con-
tain a aaaaaaaaaa and a aaaaaaaaa—both foreign keys; hence, the key
of this entity will be aaaaaaaaaaAaAaaaaaaaaa (the plus sign here means
concatenation). Both attributes are necessary to identify a unique row in
the database.
 Te last statement is very close (and for a user, it is hoped to be indistin-

guishable) from the key statements found in the “attribute on a relation-
ship” grammar given:

For the relationship between aaaaaaa and aaaaaa, we will
record a aaaaa. T e aaaaa depends on both entities aaaaaaa and
aaaaaa for identif cation.

8.4 MORE ENTITIES AND RELATIONSHIPS

In the handling of a database, we have to model the information pre-
sented. We will likely have situations calling for more than two entities
and more than one binary relationship. Again, a binary relationship is
a relationship between two entities. (In Chapter 9, we look at ternary
and higher relationship combinations.) Tis section deals with situa-
tions for which the information about the database indicates that we
must expand our diagrams with more entities, but all the connections
will be binary.

8.4.1 More Than Two Entities

Let us again reconsider the aaaaaaaaaaaaaa ER diagram (Figure
8.1). If this database were oriented toward a college, the courses would

Further Extensions for ER Diagrams • 207

have instructors, and the instructors would be related to the courses. We
may add aaaaaaaaaa to our database per our methodology steps 4
and 5, which say:

Step 4. If another entity is appropriate, draw the second entity
with its attributes. Repeat step 2 to see if this entity should be
further split into more entities.

Step 5. Connect entities with relationships (one or more) if rela-
tionships exist.

If we added instructors to Figure 8.1, we arrive at Figure 8.3 (attri-
butes other than the primary keys are intentionally lef of to unclutter
the diagram). Te relationship between aaaaaaaaaa and aaaaaa
is teach; instructors teach many courses, and a course is taught by an
instructor. Te participation would be determined by the actual situa-
tion, but we will choose one for our example. Stated more precisely, we
would say it as follows:

8.4.1.1 Pattern 4—x:y::1:M, From the 1 Side, Partial Participation

Short version: An instructor may teach many courses.

which actually means:

Longer version: An instructor, but not necessarily all instructors (recorded
in the database), may teach many (one or more) courses. Some instruc-
tors may not teach courses.

8.4.1.2 Pattern 1—x:y::M:1, From the M Side, Full Participation

Short: Courses must be taught by instructors.

 which means:

Long: Courses, recorded in the database, must be taught by one and only
one instructor. No course is taught by more than one instructor.

In this diagram (Figure 8.3), the aaaaaaaaaa entity is related
to the aaaaaa entity. Tere could be a relationship between the

208 • Database Design Using ER Diagrams

FIGURE 8.3
An ER Diagram (with Only Primary Keys) Showing a aaaaaaaaaaaaaaa
aaaaaaaaaaADatabase.

aaaaaaaaaa and aaaaaaa entities, but the relationships in Figure
8.3 are assumed to be the only ones that exist. One could argue the other
possible relationships are advisor, mentor, counselor, coach , etc.,
but remember that we are modeling only what exists and not what might

Further Extensions for ER Diagrams • 209

be. We assume the diagram represents the information given by a user to
an analysist and only the information given.

8.4.2 Adding More Attributes That Evolve into Entities

Now, consider adding a building to each of the entities. Students live in
buildings (dorms), courses are taught in buildings (classrooms and labs),
and instructors have ofces in buildings. “Building” may be added as an
attribute of each of the three entities and not considered as an entity unto
itself. Why is it not an entity? At this stage, we have not expressed the
desire to record information about buildings. If buildings (dorm rooms,
classrooms, ofce rooms) were considered as attribute items for appro-
priate entities, then we would have the ER diagram as in Figure 8.4.
Now, we have added buildings to our database (Figure 8.4). Suppose

we evolve yet again to where we now decide that we want to record more
information about buildings—or put another way, we want to make
aaaaaaaa an entity. We would then have to connect other entities to
aaaaaaaa with appropriate relationships. Such a design is depicted in
Figure 8.5 (only key attributes are shown). Whether we begin with the idea
of aaaaaaaa as an entity or evolve to it by starting with aaaaaaaa,
aaaaaaa, and aaaaaaaaaaa, we need to constantly ask the ques-
tion, “Is this item in the ER diagram one we want to record information
about or not?” Should this be an entity? In Figure 8.5, we have depicted
aaaaaaaa as an entity with only key attributes. In the evolution of our
database, we will add attributes to entities once the frame-like diagram is
clear. For an embellished ER diagram with more attributes and cardinali-
ties, see Figure 8.6.

210 • Database Design Using ER Diagrams

FIGURE 8.4
An ER Diagram (with Only Primary Keys) Showing a aaaaaaaaaaaaaaaaaaaaaaaaa
Database with Building Attributes.

Further Extensions for ER Diagrams • 211

FIGURE 8.5
ER Diagram (with Only Primary Keys) Showing a aaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaa database

212 • Database Design Using ER Diagrams

FIGURE 8.6
ER Diagram Showing a aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa Database.

Checkpoint 8.1

1. In Figure 8.6, why is aaaaaaaa an entity and not an attribute of
another entity?

2. Why is the aaaaaaaaaaa attribute attached to the lives_in
relationship rather than the aaaaaaa entity?

3. What will make you decide whether an attribute should be
connected to aaaaaaa or aaaaaaa or on the relationship con-
necting aaaaaaa and aaaaaaa?

4. Why are all the lines leaving aaaaaaaa (on Figure 8.6) single
lines (partial participation)?

5. According to Figure 8.6, does a student have to enroll in a course?
6. According to Figure 8.6, how many courses can an instructor teach?

Further Extensions for ER Diagrams • 213

7. According to Figure 8.6, does an instructor have to teach a course?
8. According to Figure 8.6, does a course have to be taught by an

instructor?
9. According to Figure 8.6, a course can be taught by how many
instructors?

8.5 MORE EVOLUTION OF THE DATABASE

Let us reconsider the ER diagram in Figure 8.6. As the diagram is ana-
lyzed, the user may ask: Why is a aaaaaaaaaaa attribute not included in
the cla ss relationship? Why is there not an A AAaaAaaaaaa for the officeaa
relationship? Tere may be several reasons for the omission:

(a) Tis information was not mentioned in the analysis stage.
(b) Te data is not necessary (there may be only one classroom per build-

ing, or ofce numbers may not be recorded for advisors).
(c) It was an oversight, and the data should be added.

Suppose now it is decided aaaaaaaaaaa is important for all the relation-
ships or entities. Suppose we want to identify the room number associated
with instructors and buildings, courses and buildings, and students and
buildings. We might “evolve” the diagram to Figure 8.7.
In Figure 8.7, we have room number as a relationship attribute. In this

case, we have also added information attached to aaaaaaaaa aaaaa
aaaaaaaAaaaaaaaaaaAaaaaaaaaaaaAaaaaaaaaaaaAandAaaaAaaA.

8.6 ATTRIBUTES THAT EVOLVE INTO ENTITIES

In this section, we illustrate one more time the idea to model “what is” and
not necessarily “what might be.” Also, we again see how an attribute might
become an entity. Suppose in the design process, you are given some data by
a user and told to design the database. Suppose the following is suggested:
Here, you have a course name, a course number, credit hours, an ins-

tructor, and a book. Te beginning ER diagram might look like Figure 8.8 .
Why “might look like . . .”? Te answer lies in eliciting correct require-
ments from our user.

214 • Database Design Using ER Diagrams

FIGURE 8.7
ER Diagram Showing a aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa Database
with room_number Added to the Relationships Where Needed.

If all the information ever to be recorded about this data were men-
tioned, then this single-entity ER diagram could describe part of the data-
base. However, one could realistically argue things we have described as
attributes could themselves be entities. Both the instructor and the book
should be candidates for being diagrammed as entities if the envisioned
database called for it. We have already concluded instructor should be an
entity.
Suppose we adjust the database to include more information about

instructors. If this were the case, we might want to go beyond recording
the aaaaaaaaaaaaa and aaaaaaaaaaaaaaa and include such attributes as the
aaaaaaaaaaaaA aaaaaaaaaaA, aaaaaaaaaa, the aaaaaa where the instructor

Further Extensions for ER Diagrams • 215

FIGURE 8.8
COURSE Entity with Attributes.

received the terminal degree. With the additional information about the
aaaaaaaaaa, the part of the ER diagram with aaaaaaaaaa and
COURSE would have two entities and would look like Figure 8.9.
In Figure 8.9, we have depicted the aaaaaaaaaa entity as weak

because of the dependence on aaaaaa. Also, it is presumed instructor
names may not be unique. If the instructor were identifed uniquely with
an attribute like aaaaaaaaaaaaa or aaaaaaaaaaaaaaa (Social Security num-
ber) and instructors could exist independent of course, then the entity
could become strong and would look like Figure 8.10. Te point of this
section is to show an entity is not an entity just because one might want
to record information “someday.” Tere would have to be some planned
intent to include the data that would be identifed by the entity. Further,
the defnition of weak or strong entity would depend on the information
provided. Te user should be asked: how will instructors be uniquely
identif ed?
Finally, if no information about instructors were ever planned, then

Figure 8.8 could well describe the database. We will leave as an exercise
the extension of Figure 8.10 to include aaaa as an entity.

216 • Database Design Using ER Diagrams

FIGURE 8.9
ER Diagram of the aaaaaaaaaaaaaaaaa Database with aaaaaaaaaa as a Weak
Entity.

8.7 RECURSIVE RELATIONSHIPS

In a recursive relationship, the same entity participates more than once in
diferent roles. Recursive relationships are also sometimes called unary
relationships.
Consider a human resources department in a company. Personnel are

likely to have an employee number, a name, and so on. In addition to exist-
ing as an entity for all employees of an organization, there are relation-
ships between individuals of the entity set, personnel. Te most obvious

Further Extensions for ER Diagrams • 217

FIGURE 8.10
ER Diagram of the aaaaaaaaaaaaaaaaa Database with aaaaaaaaaa as a Strong
Entity.

relationship is that of employee-supervisor. How would we depict the
employee-supervisor relationship when we have only one entity? T e
answer is shown in Figure 8.11.
 Figure 8.11 shows the aaaaaaaaa entity with some attributes. T en,

the relationship supervise is added and connected to aaaaaaaaa
on both ends. Te cardinality of the relationship is 1:N with some employ-
ee’s supervisor supervising many other employees and employees hav-
ing one supervisor. We use partial participation from the supervisor side

218 • Database Design Using ER Diagrams

FIGURE 8.11
A Classic Recursive Relationship: aaaaaaaaaaaaaaaaaaa

as not all personnel are supervisors—an employee may supervise many
other employees. Te participation of supervised employee is also partial.
Although most employees are supervised by one supervisor, some employee
will be at the top of the hierarchy with no supervisor. In recursive relation-
ships, we are representing a hierarchy. All hierarchies have a top spot with
no “supervision” (as far as the database is concerned). All hierarchies are
always partial-partial.
So, when a relationship between individuals arises within the same

entity set, it would be improper to have two entities since most of the

Further Extensions for ER Diagrams • 219

information in the entities is basically the same. If we created two entities,
we would have redundancy in the database. Using the example given, if
we used two diferent entities rather than a recursive relationship, then an
employee would be recorded in two dif erent places.

8.7.1 Recursive Relationships and Structural Constraints

Recursive relationships can only have partial participation, but the cardi-
nality can be one to one, one to many, and many to many. Full participa-
tion in a recursive relationship would mean every instance of an entity
participates in a relationship with itself, which would not make sense.
Next, we look at some examples of cardinalities as interpreted in recur-

sive relationships using our human resources database example.

8.7.1.1 One-to-One Recursive Relationship (Partial
Participation on Both Sides)

Figure 8.12 presents an example of an entity, aaaaaaaaa, related to
itself through a married_to relationship. Tis means a person in this
database may be married to one other person in this same database. In
this example, we have a relationship that is not a hierarchy.
Some instances of this relationship are shown in Figure 8.13. From

Figure 8.13, we can see that Seema is married to Dev Anand, Arpan is
married to Rekha, and so on.

FIGURE 8.12
One-to-One Recursive Relationship (Partial Participation on Both Sides).

220 • Database Design Using ER Diagrams

FIGURE 8.13
Instances of One-to-One Recursive Relationship (Partial Participation on Both Sides).

8.7.1.2 One-to-Many Recursive Relationship
(Partial Participation on Both Sides)

 Te one-to-many recursive relationship (partial participation on both
sides) is the most common recursive relationship cardinality. An example
of this relationship may be if one employee may supervise many other
employees (as shown in Figure 8.14). As we mentioned, this is a hierarchi-
cal relationship and is always partial-partial.
Instances of this relationship are shown in Figure 8.15. From Figure 8.15,

we can see Tom Smith supervises Sudip Bagui and Tim Vaney, Rishi
Kapoor supervises Mala Saha and Korak Gupta, Korak Gupta supervises
Roop Mukerjee, and so on.

8.7.1.3 Many-to-Many Recursive Relationship
(Partial on Both Sides)

In the example of the many-to-many recursive relationship (partial on
both sides), we could say courses may be prerequisites to zero or more
other courses. Tis relationship is depicted in Figure 8.16. Te sense of
prerequisite here is not hierarchical, but more like a situation for which
there are many interrelated courses.

Further Extensions for ER Diagrams • 221

FIGURE 8.14
One-to-Many Recursive Relationship (Partial Participation on Both Sides).

FIGURE 8.15
Instances of One-to-Many Recursive Relationship (Partial Participation on Both Sides).

222 • Database Design Using ER Diagrams

FIGURE 8.16
Many-to-Many Recursive Relationship (Partial Participation on Both Sides).

8.8 MULTIPLE RELATIONSHIPS

So far, we have mostly discussed two entities with one relationship.
Tis section discusses how two entities can have more than one binary
relationship.
Consider a diagram with two entities: aaaaaaa and aaaaaaa.

Suppose we have no other entities in the database. Suppose further the
aaaaaaa entity has the following attributes: aaaaAaAAaaaaaaaaAaaAaAAaaaaaa
aaaa, and aaaaaaaaaaa from which the student graduated. T e aaaaaaa
entity could have the following attributes: aaaaAaA AaaaaA (Social Security
number), aaaaaaaaaaAaA AaaAAaaaaaaaaaA. In developing the diagram, we
fnd two distinct verbs to describe the connection between aaaaaaa
and aaaaaaa. aaaaaaaa are instructed by aaaaaaa, and aaaaaaa
advise aaaaaaaa. Tere are two distinct relationships we need to add to
our diagram: instruct and advise. Each distinct relationship is given its
own diamond. Te ER diagram for this situation is shown in Figure 8.17A.
In this diagram, all relationships are arbitrarily shown as partial; that is,

there will be some faculty who do not advise students, and some students
who are not instructed by faculty. In constructing ER diagrams, one has
to include however many distinct relationships exist. It would be incorrect
to try to make a relationship do “double duty” and stand for two dif erent
relationship ideas.

Further Extensions for ER Diagrams • 223

FIGURE 8.17A
ER Diagram with Two Entities and Two Relationships

In this example, an embellishment might include intersection data for
the instruct relationship (a aaaaa in a course, for example). Intersection
data for the advise relationship could be aaaaaaaaaaaaaAaAAaaaaaaaaaaaa,
and so on, as shown in Figure 8.17B .
 Te placing of relationships in the ER diagram is covered in our ER

design methodology in step 5, which we redef ne here:
 Te original step 5 was:

Step 5. Connect entities with relationships as they are elicited.

224 • Database Design Using ER Diagrams

FIGURE 8.17B
ER Diagram with Two entities and Two Relationships and Some Intersection Attributes.

We may add to this guideline that if multiple relationships are present,
they are added to the diagram; however, this is likely redundant, so we will
simply append the phrase (one or more):

Step 5. Connect entities with relationships (one or more) as rela-
tionships are elicited.

8.9 THE DERIVED OR REDUNDANT RELATIONSHIP

Many authors describe a redundant or derived relationship arising in a
relationship “loop” as in Figure 8.18. Te loop notion comes from the

Further Extensions for ER Diagrams • 225

FIGURE 8.18
ER Diagram Showing a aaaaaaaaaaaaaaaaaaaaaaaaa Database with a “Redundant”
Relationship

pictorial idea that the lines form a closed graph (which is more like a rect-
angle, but we are going to call it a loop). Te idea of redundancy is since
students take courses and each course is taught by an instructor, you do
not need a taught_by relationship because you can get that information
without the extra relationship. If such a relationship exists, then it should
be excised, but there are caveats.

226 • Database Design Using ER Diagrams

First, one has to be sure the redundant relationship is truly redundant.
If the added relation were advised_by instead of taught_by, then the
relationship should stay because it has a completely diferent sense than
taught_by.
Second, if the relationship loop is present, it may mean only one of the

two redundant relationships should be kept, and the semantics should
point to which one. In Figure 8.18, the aaaaaaaaaa is more likely
related to a aaaaaa than to a aaaaaaa. So, the better choice of which
relationship to keep would be the original one: teach. A designer might
have included the taught_by relationship f rst, only later to include the
teach relationship. Ten, by examining the diagram for loops, one could
deduce taught_by was redundant.
 Tird, one or both relationships may have an intersection attribute to

suggest which relationship (or both) should be kept. In Figure 8.19, we
included the aaaa attribute, which was put with the teach relationship as
an instructor teaches a course at a particular time.
 Te idea of derived or redundant relationships causes us to suggest one

more step in our methodology:

Step 6b. Examine the diagram for loops that might indicate redun-
dant relationships. If a relationship is truly redundant, excise
the redundant relationship.

Further Extensions for ER Diagrams • 227

FIGURE 8.19
ER Diagram Showing a aaaaaaaaaaaaaaaaaaaaaaaaa Database with a “Redundant”
Relationship and a Time Attribute

Checkpoint 8.2

1. What is a recursive relationship?
2. What would you look for if you are trying to see if a relationship

is recursive?
3. What kinds of structural constraints can recursive relationships

have?

228 • Database Design Using ER Diagrams

4. Can recursive relationships have full participation? Why or why
not?

5. How is the recursive relationship denoted diagrammatically in
the Chen-like ER model?

6. Can the same two entities have more than one relationship?
7. How would you determine if a relationship is redundant?

8.10 OPTIONAL: AN ALTERNATIVE ER
NOTATION FOR SPECIFYING STRUCTURAL
CONSTRAINTS ON RELATIONSHIPS

We call Section 8.10 an “optional section” because it adds information to
the ER diagram; however, the information added is not necessary to map
the diagram to a functional database. Some may fnd this section usefully
descriptive; others may fnd it unwarranted.
So far, we have discussed cardinality ratios in terms of their upper bounds

(the maximum cardinality), shown by the M or N in the ER diagrams
(shown in this and previous chapters). You will recall (from Chapter 6)
cardinality is a rough measure of the number of entity instances in one
entity set that can be related to instances in another entity set.
In this section, we describe an alternative ER notation for specifying

structural constraints on relationships. Tis notation will associate a pair
of numbers (min, max) with each structural constraint of a relationship.
T is min and max may provide more information about the entities and
how they are related.
 T e min is the minimum number of instances in one entity set related to

an instance of another entity. T e min can be between zero and max , the
maximum. If the min is zero, it implies every instance of an entity does
not have to participate in the relationship. If min is zero it implies partial
participation. If the min is greater than zero, it implies full participation.
We now present an ER diagram with (min, max) in place of 1 and M.
First, let us start with the recursive relationship shown in Figure 8.20.
 T e (min, max) of (0, 1) means each person in the aaaaaaaaa entity

may or may not be married (shown by the zero for the min) and can only
be married to at most one other person (shown by the max).
Next, look at Figure 8.21. From this fgure, we can say a student may

not be advised by any faculty member and may be advised by up to two

Further Extensions for ER Diagrams • 229

FIGURE 8.20
Recursive Relationship with (min, max) Ratios.

FIGURE 8.21
ER Diagram Showing an Alternative ER Notation for Specifying Structural Constraints.

230 • Database Design Using ER Diagrams

faculty members (shown by the minimum of zero and maximum of
two). A faculty member may advise between 0 and 30 students and may
instruct between 0 and 40 students. And a student must be instructed
by one faculty member and can be instructed by up to two faculty mem-
bers in this database. With the min/max notation, it is optional (albeit
redundant) to keep the single-/double-line participation constraint.
Since the single-/double-line notation is so common, we suggest keep-
ing it.

Checkpoint 8.3 (Optional)

1. What lower bound of cardinality does full participation imply?
2. What does a min/max ratio of (1, 1) between two entities imply?
3. What kind of participation ratio (full participation or partial

participation) does a min/max ratio of (0, 1) imply?

8.11 REVIEW OF THE METHODOLOGY

To review, our methodology for designing ER diagrams has now evolved to:

8.11.1 ER Design Methodology

Step 1. Select one primary entity from the database requirements
description and show attributes to be recorded for that entity.
Label keys if appropriate and show some sample data.

Step 2. Use structured English for entities, attributes, and keys
to describe the elicited database.

Step 3. Examine attributes in the existing (primary) entities (pos-
sibly with user assistance) to find out if information about one
of the entities is to be recorded.

(We change “primary” to “existing” because we redo step 3 as we add new
entities.)

Step 3a. If information about an attribute is needed, then make the
attribute an entity, and then

Step 3b. Define the relationship back to the original entity.

Further Extensions for ER Diagrams • 231

Step 4. If another entity is appropriate, draw the second entity
with its attributes. Repeat steps 2 and 3 to see if this entity
should be further split into more entities.

Step 5. Connect entities with relationships (one or more) if rela-
tionships exist.

Step 6. State the exact nature of the relationships in structured English
from all sides. For example, if a relationship is A:B::1:M, then there
is a relationship from A(1) to B(M) and from B(M) back to A(1).

Step 6a. Examine the list of attributes and determine whether any
of them need to be identified by two (or more) entities. If so,
place the attribute on an appropriate relationship that joins the
two entities.

Step 6b. Examine the diagram for loops that might indicate redun-
dant relationships. If a relationship is truly redundant, excise
the redundant relationship.

Step 7. Show some sample data.
Step 8. Present the “as designed” database to the user complete

with the English for entities, attributes, keys, and relationships.
Refine the diagram as necessary.

 Te grammar to describe our entities, attributes, and keys has evolved
as discussed next.

8.11.2 The Entity

 Tis database records data about aaaaaa. For each aaaaaa in the data-
base, we record att(1), att(2), att(3), . . . att(n).

8.11.2.1 The Attributes

For atomic attributes, att(j):
 For each aaaaaa, there will be one and only one att(j). Te value for

att(j) will not be subdivided.
For composite attributes, att(j):
 For each aaaaaa, we will record att(j), which is composed of x, y, z,

(x, y, z) are the component parts of att(j).
For multivalued attributes, att(j):
 For each aaaaaa, we will record att(j) ’s. Tere may be more than one

att(j) recorded for each aaaaaa.
For attributes of relationships, att(j):

232 • Database Design Using ER Diagrams

For the relationship between aaaaaaa and aaaaaaa, we will record
a(n) att(j). T e att(j) depends on both entities aaaaaaa and
aaaaaaa for identif cation.

8.11.2.2 The Keys

For the key(s):

(a) More than one candidate key (strong entity):
 For each aaaaaa, we will have the following candidate keys: att(j),

att(k), . . . (where j, k are candidate key attributes).
(b) One candidate key (strong entity):

 For each aaaaaa, we will have the following primary key: att(j)
(c) No candidate keys (perhaps a weak entity):

 For each aaaaaa, we do not assume any attribute will be unique
enough to identify individual entities.

(d) No candidate keys (perhaps an intersecting entity):
 For each aaaaaa, we do not assume any attribute will be unique

enough to identify individual entities.

8.12 MAPPING RULES FOR RECURSIVE
RELATIONSHIPS

Recursive relationships are binary 1:1, 1:N, or M:N relationships. We dis-
cussed the mapping rules for these types of relationships in Chapter 6.
Normally, the cardinality is 1:N.
In Chapter 6, the mapping rule was discussed for two entities. If there

is only one entity (as in a recursive relationship), the rules basically stay
the same, but the single entity is viewed as two entities, aaaaaaaa and
aaaaaaaa. Te primary key is re-recorded in the same table with a dif-
ferent connotation or role. Two types of mapping rules can be developed
to map recursive entities.

Mapping Rule 12—Mapping 1:N recursive relationships. Re-include
the primary key of the table with the recursive relationship in the
same table, giving it some other role name.

For example, Figure 8.11 will be mapped to

A

Further Extensions for ER Diagrams • 233

aaaaaaaaaaAAaaaaaAaAAaaaaaAaAAaaaaaAaAAAaaaaaaaaaaaAaAAaaaaaaaaaA

 Te aaaaaaaaaaa is the primary key of the aaaaaaaaa relation. Te
aaaaaaaa is also an aaaaaaaaaaa, but its role and its connotation are dif-
ferent. Table 8.1 provides some sample data.

Mapping Rule 13—Mapping M:N recursive relationships. Create a
separate table for the relationship (as in mapping rule 5).

Suppose we consider the course-prerequisite recursion where courses
have many prerequisites, and a course may be a prerequisite for many
courses. Here, the simplest thing to do is to create a separate table just for
the relationship. Table 8.2 shows an example of a recursive relationship.

Checkpoint 8.4

1. Map the recursive relationship shown in Figure 8.14 to a rela-
tional database and show some sample data.

2. If Figure 8.14 was an M:N relationship, how would you map this
recursive relationship to a relational database? Show the map-
ping with some sample data.

TABLE 8.1

Sample Data for aaaaaaaaa in Figure 8.11.
fname lname minit employee_id super_id

Richard Earp W 8945 9090
Boris Yelsen 9090 null
Helga Hogan H 3841 9090
Sudip Bagui K 8767 9090
Tina Tanner 5050 8945

TABLE 8.2

Mapping Recursive Relationship of Figure 8.16.

Course Prerequisite

COP2222 COP1111
COP2223 COP1111
COP3333 COP2222
COP1111 null
COP2222 COP1112
COP1112 COP1111

234 • Database Design Using ER Diagrams

8.13 CHAPTER SUMMARY

 Tis chapter looked at diferent aspects of binary relationships in ER dia-
grams and refned several steps in the ER design methodology. T e ref n-
ing of the ER design methodology means a continuous assessment and
reassessment of the ER diagram drawn afer discussion with the users.
Te idea that relationships could have attributes, how attributes evolve
into entities, recursive relationships, and derived and redundant relation-
ships was discussed with examples and diagrams. Te ER design meth-
odology steps were refned to include all of this information into the new
and evolving methodology. Toward the end of the chapter, an alternative
ER notation for specifying structural constraints on relationships was pre-
sented. On completing this chapter, the reader or database creator should
be able to efciently design a database with binary relationships. T e next
chapter deals with ternary and other higher-order relationships.

CHAPTER 8 EXERCISES

In each of the following exercises, the admonition to “construct an ER dia-
gram” implies not only the diagram but also the structured grammatical
description of the diagram.

Exercise 8.1

 Defne and state in precise terms the cardinality and participation in
Figure 8.6, the student/course/instructor/building database. Discuss the
structural constraints of Figure 8.6. What are the participations? What are
the cardinalities? Under which circumstances would the ones depicted be
correct or incorrect?

Exercise 8.2

Consider the following data: horse name, race, owner, odds at post, post
position, date of race, order of f nish, year to date earnings, owner name
and address. Construct an ER diagram and use structured grammar to
rationalize your constraints.

Further Extensions for ER Diagrams • 235

Exercise 8.3

In the chapter, we described a database with two entities, aaaaaa and
aaaaaaaaaa (refer to Figure 8.10). Book was lef as an attribute of
aaaaaa. Extend the database to include aaaa as an entity. Attributes
of aaaa might include aaaaAaaaaaaAaaaaaaaAaaaaaaAaaaaaaaaAaaaaaaaaaA.

Exercise 8.4

Refer to Figure 8.7. Change Figure 8.7 to include the following informa-
tion: One building can have a maximum of 99 students living in it. A stu-
dent has to enroll in at least one class and can enroll in a maximum of f ve
classes. A class has to enroll at least 5 students and can enroll a maximum
of 35 students. An instructor may or may not teach a class and can teach
up to three classes. A course must have one instructor teaching it, and only
one instructor can teach a particular course. An instructor may or may not
have an ofce and can have up to two ofces. A building may or may not have
an ofce and can have up to 15 ofces. A course has to be of ered in one
classroom and can only be ofered in one classroom.

CASE STUDY

West Florida Mall (continued)

So far in our case study, we have developed the major entities and relation-
ships and mapped these to a relational database (with some sample data).
Ten, on reviewing step 7, which says:

Step 7. Present the “as designed” database to the user complete
with the English for entities, attributes, keys, and relationships.
Refine the diagram as necessary.

Suppose we got some additional input from the user:

An employee can also be a department manager, and a department
manager can manage at most one department. We must store infor-
mation on the department manager: the name, Social Security num-
ber, which store he or she is working for, and which department he

A

AA AA A A

A A A A AA AA A A A A A A

A A A A

or she is working for. A department manager supervises at least one
employee and may manage several employees.

On reviewing these additional specifcations, we can see we have a
recursive relationship developing since an employee can be a department
manager supervising other employees.
So, using mapping rule 12, we will reinclude the primary key of the

aaaaaaaa entity in itself, giving us the following aaaaaaaa relation:

aaaaaaaaaaaaaaAaAAAaaaaAaAAaaaaAaAAaaaaAaAAaa

And, with some sample data as shown Table 8.3.
Tis recursive relationship is also shown in Figure 8.22.
So, in summary our relational database has now developed to (without

the data)

aaaa
AaaaaA AaaaaaaaA

aaaaa
AaaaaA AaaaaaA AaaaaA AaaaaaaaaaA AaaaaaaA AaaaaaaA

aaaaa
AaaaaaaA AaaaaaaaAA AaaaaaAaaaaaaAA AAaaaaaaaaaaAA

aaaaaaaaaaaaa
AAAaaaaaaAAA AAaaaaaaaAA AAaaaaaaAA

236 • Database Design Using ER Diagrams

TABLE 8.3

Sample Data for aaaaaaaa.
ename essn dnum snum dm_ssn

Kaitlyn 987-754-9865 501 1 276-263-9182
Fred 276-263-9182 502 1 null
Katie 982-928-2726 503 1 987-754-9865
Seema 837-937-9373 501 1 276-263-9182
.
.
.

aaaaaaaaaa
AAaaaaaAA AAAaaaaAAA AAAaaaaAAA

aaaaaaaa
AAaaaaaAA AAAaaaaAAA AAaaaaAA AAaaaaaaAA AAaaaaAA

We continue the development of this case study at the end of the next chapter.

Further Extensions for ER Diagrams • 237

FIGURE 8.22
ER Diagram of West Florida Mall Developed So Far.

238 • Database Design Using ER Diagrams

BIBLIOGRAPHY

Earp, R., and Bagui, S. (2000). Binary relationships in entity-relationships in entity-relationship
(ER) diagrams. Data Base Management Journal, 22: 10–43.

Elmasri, R., and Navathe, S.B. (2016). Fundamentals of Database Systems. Reading, MA:
Addison-Wesley.

Sanders, L. (1995). Data Modeling. Danvers, MA: Boyd & Fraser.
Teorey, T.J., Nadeau, T., and Lightstone, S.S. (2005). Database Modeling and Design: Logical

Design. San Francisco, CA: Morgan Kaufman.

9
Ternary and Higher-Order ER Diagrams

9.1 INTRODUCTION

All relationships we have dealt with so far have been binary relationships.
Although binary relationships seem natural to most of us, in reality it is
sometimes necessary to connect three or more entities. If a relationship
connects three entities, it is called a ternary or 3-ary relationship. If a rela-
tionship connects more than three entities (n entities), it is called an n-ary
relationship, where n equals the number of entities participating in the rela-
tionship. T e n-ary relationships (n ≥ 3) are also referred to as higher-order
relationships.
In this chapter, we consider relationships to connect three or more enti-

ties. First, we look at ternary (3-ary) relationships arising for three main
reasons:

(a) If we have intersection attributes requiring three diferent entities to
identify an intersection attribute

(b) If we have a relationship of a relationship
(c) If we are reverse engineering

Since we discuss reverse engineering in Chapter 11, we do not discuss
the development of ternary relationships from reverse engineering in this
chapter.
In this chapter, we frst discuss how intersection attributes create ternary

relationships and then look at structural constraints. Next, we discuss how
ternary and other n-ary relationships do not preclude binary relationships
with the same entities and how some ternary diagrams may be resolved
into binary relationships. Te development of ternary relationships from

DOI: 10.1201/9781003314455-9 239

https://doi.org/10.1201/9781003314455-9

240 • Database Design Using ER Diagrams

relationships of relationships is also introduced. Step 6 of the entity-rela-
tionship (ER) design methodology is redef ned in this chapter to include
ternary and other higher-order relationships.

9.2 BINARY OR TERNARY RELATIONSHIP?

Ternary relationships are required when binary relationships are not suf-
fcient to accurately describe the semantics of an association among three
entities. In this section, we explain the diference between a binary and a
ternary relationship with the help of an example and show how an inter-
section attribute necessitates a ternary relationship.
Where binary relationships exist between entities, these relationships

have structural constraints (cardinality and participation). Further,
we found attributes of relationships were also possible. In particular, we
found the M:N relationship ofen spawned an attribute we called an inter-
section attribute (recall the aaaaaaaaaaaaa M:N relationship and the
intersection attribute aaaaa as shown in Figure 8.1). In the binary rela-
tionship case, we made the point that an attribute like aaaaa would infer
an M:N binary relationship must exist.
 Te usual case where n-ary relationships arise is where there exists

data that must be related to more than two entities. Consider this example:
You have a database for a company containing the entities aaaaaaa,
aaaaaaaa, and aaaaaaaa. Te usual relationships might be
aaaaaaaaaaaaaaaa; the company buys products from a supplier—
a normal binary relationship. Te intersection attribute for aaaaaaaa
aaaaaaaa is aaaaaaaaaaaaaaa (as shown in Figure 9.1A). Now, consider
the aaaaaaaa entity and the customer buys products. If all custom-
ers buy products irrespective of supplier, you have a simple, binary rela-
tionship between aaaaaaaa and aaaaaaa. For the aaaaaaaaa
aaaaaaa relationship, the intersection attribute is aaaaaaaaaaaa (as
shown in Figure 9.1B).
Some sample data for Figure 9.1A would be as shown in Table 9.1.
Some sample data for Figure 9.1B would be as shown in Table 9.2.
Now consider a diferent scenario. Suppose the customer buys products,

but the price depends not only on the product but also on the supplier.
Suppose you needed a customerID, a productID, and a supplierIDA to
identify a price. You then have an attribute depending on three entities;

Ternary and Higher-Order ER Diagrams • 241

FIGURE 9.1A
Binary Relationship between aaaaaaa and aaaaaaaa and an Intersection Attribute,
aaaaaaaaaaaaaaa.

FIGURE 9.1B
Binary Relationship between aaaaaaa and aaaaaaaa and an Intersection Attribute,
aaaaaaaaaaaa.

242 • Database Design Using ER Diagrams

TABLE 9.1

Sample Data for Figure 9.1A.

productID supplierID wholesale_price

Beans Acme Bean Co 1.4
Beans Baker Bean Co 1.57
Carrots Joe’s Carrots 0.89

TABLE 9.2

Sample Data for Figure 9.1B.

customerID productID retail_price

Jones Beans 2.67
Smith Beans 2.67
Jones Carrots 1.57

FIGURE 9.2
ER Diagram (with Only Primary Keys) Showing a T ree-Way Relationship.

hence, you have a relationship between three entities (a ternary relation-
ship) with an intersection attribute, aaaaa. Tis situation is depicted in
 Figure 9.2 .
Figure 9.2 represents the entities aaaaaaa, aaaaaaaa, and

aaaaaaaa and a relationship, buy, among all three entities, shown
by a single relationship diamond attached to all three entities.

Ternary and Higher-Order ER Diagrams • 243

TABLE 9.3

Sample Data for Figure 9.2.

customerID productID supplierID price

Jones Beans Acme 2.65
Jones Beans Baker 2.77
Jones Carrots Joe’s 1.57

Some sample data for Figure 9.2 would be as shown in Table 9.3.
 Tis ternary case is more realistic as customers generally pay dif erent

prices for the same product by diferent manufacturers or suppliers. For
diferent suppliers, one may also assume diferent prices for a product at
diferent points in time. Also, for customers, one may assume some items
are bought on sale, some not. Another intersection attribute (in Figure 9.2)
could be aaaa, which could be the date of the sale of a product to a cus-
tomer supplied by a specif c supplier.
Next, we look at the structural constraints of ternary relationships.

9.3 STRUCTURAL CONSTRAINTS FOR
TERNARY RELATIONSHIPS

Ternary relationships can have the following types of structural con-
straints: x:y:z where x, y and/or z each may be 1 or “M.” “M” for each x,
y or z need not be the same letter. Examples: 1:1:1, 1:M:N, M1:M2:M3,
M:1:N, etc. Each relationship may be full or partial participation on each
one of the sides. Following is an example of the M1:M2:M3 relationship
with partial participation on all sides.

9.3.1 Many to Many to Many (M1:M2:M3)

Figure 9.3 shows an example of a M1:M2:M3 relationship using the three
entities aaaaaaa, aaaaaaaa, and aaaaaaaa, all with partial par-
ticipation. T is fgure shows many customers may buy many products
from many suppliers, at dif erent prices.
Instances of this relationship can be illustrated as shown in Figure 9.4.

244 • Database Design Using ER Diagrams

FIGURE 9.3
ER Diagram Showing a Ternary Many-to-Many-to-Many Relationship (Partial Participation
on All Sides).

FIGURE 9.4
Instances of a ternary many-to-many-to-many relationship for aaaaaaaaaaaaaaaaa
aaaaaaaaA

Ternary and Higher-Order ER Diagrams • 245

Checkpoint 9.1

1. What is a ternary relationship?
2. What is an n -ary relationship?
3. What are higher-order relationships?
4. Using the three entities presented (aaaaaaa, aaaaaaaa,

and aaaaaaaa), draw an ER diagram that depicts the follow-
ing: A customer must buy one and only one product from a sup-
plier at a particular price on a particular date.

5. Using the three entities presented (aaaaaaa, aaaaaaaa,
and aaaaaaaa), draw an ER diagram depicting the follow-
ing: A supplier must supply many products to many customers at
diferent prices on dif erent dates.

6. Tink of some more intersection attributes for the aaaaaaa,
aaaaaaaa, and aaaaaaaa ternary example presented in
 Figure 9.3 .

7. What situations might create each of the following structural
constraints?
a. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa, partial par-

ticipation on all sides
b. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa, partial par-

ticipation on all sides
c. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa, full participa-

tion on all sides

9.4 AN EXAMPLE OF AN N-ARY RELATIONSHIP

 An n-ary relationship describes the association among n entities. For
our ternary example, we said the price was dependent on a aaaaaaaaA
aaaaaaaaa and aaaaaaaa. If we have a situation for which the price
is dependent on a aaaaaaaaAaaaaaaaaaAaaaaaaaaa as well as
aaaaaa then price is dependent on four entities; hence, it is an n -ary
(in this case, a 4-ary) relationship. In an n-ary (or, in this case, 4-ary)
relationship, a single relationship diamond connects the n (4) entities,
as shown in Figure 9.5. Te intersection attribute is aaaaa. (More non-
intersection attributes on the entities could occur but were not included
in the diagram.)

246 • Database Design Using ER Diagrams

FIGURE 9.5
ER Diagram Showing n -ary Relationship

9.5 N-ARY RELATIONSHIPS DO NOT PRECLUDE
BINARY RELATIONSHIPS

Just because there is a ternary relationship does not mean binary rela-
tionships among the entities may not exist. Using the example of
aaaaaaaaaaAaaaaaaaa and aaaaaaaaa suppose retail vendors
and suppliers of products have a special relationship not involving cus-
tomers, such as wholesaling with an entirely diferent price structure. T is
binary relationship may be shown separately from, and in addition to,
the ternary relationship. See Figure 9.6 for a basic version of this two-way
(binary) relationship and three-way (ternary) relationship ER diagram in
the same database.
Figure 9.6 tells us we have a binary relationship between aaaaaaa

and aaaaaaa with all aaaaaaaa and aaaaaaa participating.
Both the aaaaaa and the aaaaaaaa buy the aaaaaaaa but in

aaaaa a aa
a

aaaaa

Ternary and Higher-Order ER Diagrams • 247

FIGURE 9.6
ER Diagram (with Only Primary Keys) Showing a Tree-Way and a Two-Way Relationship.

the aaaaaaaaaaaaaa binary relationship, the action is wholesale
buying; hence, the relationship is labeled aaaaaaaaaaaaaa aaaa and does not
involve the customer. We changed the ternary relationship to read aaaaaaa
aaaaaaa to distinguish the two relationships.

9.6 METHODOLOGY AND GRAMMAR
FOR THE N-ARY RELATIONSHIP

We need to revisit step 6 in the ER design methodology to cover the pos-
sibility of the n-ary relationship. Te old version was:

248 • Database Design Using ER Diagrams

Step 6. State the exact nature of the relationships in structured
English from all sides, for example, if a relationship is A:B::1:M,
then there is a relationship from A to B, 1 to Many, and from B
back to A, Many to 1.

We add the following sentence to step 6:

For ternary and higher-order (n-ary) relationships, state the relation-
ship in structured English, being careful to mention all entities for
the n-ary relationship. State the structural constraints as they exist.

 Te grammar for the n-ary relationship must involve all the entities linked
to it. Terefore, a suitable informal sentence would go something like this:

aaaaaaa Relationship (from/to/by) aaaaaaa (and) (from/to/by)
aaaaaaa. It is understood that attribute will necessitate naming all
n entities to identify it.

Here, if we choose some combination for Entity1, . . . Entityn , this process
resolves into

 Entity1:aaaaaaaa
 Relationship: aaaaaa
Relationship attribute: aaaaaaaaaaaa

 Entity2: aaaaaaa
 Entity3: aaaaaa
aaaaaaaaa buy aaaaaaaa from aaaaaaaa It is understood
aaaaaaaaaaaa will necessitate referencing all three entities to identify it.

With a binary relationship, we have to state two relationships. One
would think with ternary relationships, we would be bound to state three.
Since the relationship attribute has already been stated, let us look at the
other possibilities:

Suppose

 Entity1: aaaaaaa
 Entity2: aaaaaaaa

Ternary and Higher-Order ER Diagrams • 249

 Entity3: aaaaaa
aaaaaaaa are bought by aaaaaaaaa from aaaaaaaa

In the informal version of the statement from the diagram, little infor-
mation is gained by repetition. It is suggested other combinations be tried;
however, in the informal statement, it seems likely one statement, inferred
from the semantics of the situation, would sufce to informally declare the
nature of the relationship.

9.6.1 A More Exact Grammar

A more exact grammar for the n-ary relationship would be an extension
of that developed for the binary relationship. Unlike the informal case,
in a more formal grammatical presentation, it would be necessary to
make three statements for a ternary relationship, one starting with each
entity. In the binary relationship, M:N full participation case, we used the
description of the relationship given next.

9.6.1.1 Pattern 3—M:N, From the M Side, Full Participation

Short: x must be related to many y .

which actually means

Long: x, recorded in the database, must be related to many (one or more)
y. No x is related to a non- y (or) Non-x are not related to a y . (T e
negative will depend on the sense of the statement.)

We could generalize the structural constraint patterns to the pattern
given next.

9.6.1.2 Pattern 3—k:M, from the k Side, Full
Participation (k = 1 or N)

Short: Same as in Section 9.6.1.1.
Long: Same as in Section 9.6.1.1.

For the n-ary relationship, we extend the notation of the generalized state-
ment using the Boolean operator “and” as shown next.

250 • Database Design Using ER Diagrams

9.6.1.3 Pattern 5 (n-ary)—x:y:z::a:b:c, From the
a Side, Full/Partial Participation

Short: x must/may be related to many y and many z .

 Te “must” represents full participation; “may” represents a partial one.
T e a cardinality will not matter. T e b and c force us to say “one” or
“many” in the statement. So, for example, for x as full:

Long: x , recorded in the database, must be related to
b = m [many (one or more)] y
b = 1 one and only one y

and(or other appropriate linking word [from, by, to , . . .])

c = m [many (one or more)] z
c = 1 one and only one z

No x is related to more than one z .
No x is related to more than one y .

EXAMPLE 9.1
For aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa full participation
all around:

Short: aaaaaaaaa must buy many aaaaaaaa from many
aaaaaaaa

Long: aaaaaaaaaa recorded in the database, must buy many (one or
more) aaaaaaaa from many (one or more) aaaaaaaa

Other grammatical expressions are derived similarly.

Products, recorded in the database, must be bought by many (one or
more) customers from many (one or more) vendors.

Vendors, recorded in the database, must sell many (one or more) prod-
ucts to many (one or more) customers.

A negative could be:No customer (in this database) buys products from
nonvendors.

As with the binary cases, the negative statements would be optional, if
they make sense.

Ternary and Higher-Order ER Diagrams • 251

9.6.2 Grammar in a Partial Participation, Ternary
Relationship with an M1:1:M2 Relationship

Let us consider Figure 9.7 . In this fgure, we are trying to represent a
database about a graduation ceremony with some students and some fac-
ulty attending. Roughly, we are trying to say some aaaaaaaa attend a
given aaaaaaaaaa with some aaaaaaa; some aaaaaaa attend a
aaaaaaaaaa with some aaaaaaaa, and all aaaaaaaaaas are
attended by some aaaaaaaa and some aaaaaaa. T e intersection
attribute is aaaaaaaaaaaaaaaaaa.
Here, we have partial participation on the M cardinality relationships

and a one-relationship with full participation. Using the grammar pre-
sented, we have this outcome:

aaaaaaaaaaaaaaaaaaaaaaaaaa ::M1:1:M2
Short: Students may attend one graduation with many faculty.

FIGURE 9.7
ER Diagram (with Only Primary Keys) Showing Tree-Way Relationship with Partial
Participations and a One-Relationship

a aa

a aa

a aa

252 • Database Design Using ER Diagrams

Long: Students, recorded in the database, may attend (b = 1) one and
only one graduation

with
(c = m) [many (one or more)] faculty.

No student attends more than one graduation [with many faculty].

We put the [with many faculty] in square brackets because it is not really
needed to make sense of the diagram.
Similarly:

Faculty, recorded in the database, may attend one graduation with
many students. Some faculty do not attend graduation [with many
students]. Graduations must be attended by some students and some
faculty. No graduation takes place without some students and some
faculty.

9.7 TERNARY RELATIONSHIPS FROM RELATIONSHIP-
RELATIONSHIP SITUATIONS

Another scenario for which ternary relationships become necessary is
if a scenario develops resulting in a relationship of a relationship. Chen-
like ER diagrams do not allow relationships of relationships; there-
fore, to represent this situation correctly we need to develop a ternary
relationship.
For example, let us start with two entities: aaaaaaaaaaaaaa and

aaaaaaaaaa. We can initially relate the two entities as shown in Figure
9.8A. A aaaaaaaaaaaaaa may review many aaaaaaaaaaa.
At a later stage, if some aaaaaaaaaa results in a aaaa afer being

reviewed, this calls for a relationship of a relationship, as shown in Figure
9.8B. Tis relationship of a relationship becomes necessary here because
the aaaaaaaaaaaaaa, a aaaaaaaaaa, and aaaaaaaaaa taken together
results-in a aaaa, as shown in Figure 9.8C.
In Figure 9.8C, the aaaaaaaaaaaaaa, the a aaaaaaaaaa relationship, and

aaaaaaaaaa taken together are like creating a higher-level aggregate
class composed of aaaaaaaaaaaaaa, a aaaaaaaaaa, and aaaaaaaaaa.

Ternary and Higher-Order ER Diagrams • 253

FIGURE 9.8A
A Binary Relationship between aaaaaaaaaaaaaa and aaaaaaaaaa.

Tis aggregate class (of the two entities and a relationship) then needs to
be related to aaaa, as shown in Figure 9.8C.
Since we cannot show a relationship of a relationship to represent

this situation, we need to create a weak entity aaaaaa and relate it
to aaaaaaaaaaaaaaaA aaaaaaaaaa, and aaaa as shown in
 Figure 9.8D . T e relationship aaa connects aaaaaaaaaaaaaaaA
aaaaaaaaaa, and aaaaaa. Tis review may result in a aaaa (as
shown in Figure 9.8D).

254 • Database Design Using ER Diagrams

FIGURE 9.8B
A Relationship of a Relationship.

In Figure 9.8D, we give priority to the weak aaaaaa entity because
without a review, there is no book; the manuscript and the publisher
must both contribute to the review. If we tried to connect the book to
the manuscript without the publisher, we would not depict the real
situation.

9.8 N-ARY RELATIONSHIPS THAT MAY BE
RESOLVED INTO BINARY RELATIONSHIPS

Just because three entities are related does not necessarily imply a ternary
relationship. In this section, we show how some ternary relationships can
and cannot be resolved into binary relationships.

a aa

Ternary and Higher-Order ER Diagrams • 255

FIGURE 9.8C
A Relationship of a Relationship with a Higher-Level Aggregate Class Composed of
aaaaaaaaaaaaaaaAa aaaaaaaaaa and aaaaaaaaaa.

Just as the binary M:N relationship may be decomposed into two 1:M
relationships, so may many n-ary relationships be decomposed. First, note
the decomposition of the M:N into two 1:M relationships in Figure 9.9.
Te idea is to make the relationship an entity and hence form two simpler
binary relationships.
Next, let us look again at Figure 9.7. If we decompose Figure 9.7 into

three binary relationships, we have Figure 9.10. In Figure 9.10, the new
entity aaaaaaaaaa is weak and depends on the three entities
aaaaaaaaAaaaaaaa and aaaaaaaaaa for its existence. Te sense
of aaaaaaaaaaa would be a roll of attendees for a aaaaaaaaaa
ceremony event.

256 • Database Design Using ER Diagrams

FIGURE 9.8D
A Relationship of a Relationship Resolved into a Ternary Relationship.

Ternary and Higher-Order ER Diagrams • 257

FIGURE 9.9
ER Diagram of an M:N Relationship Replaced with Two 1:M Relationships.

258 • Database Design Using ER Diagrams

FIGURE 9.10
ER Diagram (with Only Primary Keys) Showing a Tree-Way Relationship “Decomposed”
into Tree Binary Relationships.

Checkpoint 9.2

1. Can all ternary relationships be expressed in the form of binary
relationships? Explain.

2. Come up with some attributes and entities of a relationship you
think could be a ternary relationship. Can this relationship be
expressed in the form of a binary relationship?

A

AA A AA A AA A AA A

A A

Ternary and Higher-Order ER Diagrams • 259

9.9 MAPPING N-ARY RELATIONSHIPS
TO A RELATIONAL DATABASE

In this section, we develop mapping rules to map n-ary relationships to a
relational database.

Mapping Rule 14—Mapping n-ary relationships. For each n-ary rela-
tionship, create a new relation. In the new relation, include the
keys of the connected entities and any attributes of the relation-
ship. Make the keys of the connected entities the concatenated pri-
mary key of the new relation.

For example, refer to Figure 9.2; you have a ternary relationship called
aaaaaa relating aaaaaaaaA aaaaaaaa, and aaaaaaaa. Tere is an
intersection attribute, price. Te mapped relations would be:

aaaaaaaaaaAAaaaaaaaaaaAaaaaaaaaaaaAaaaaaaaaaaAa
aaaaaaaaaaaaaaaaaAaAaAaAaaA
aaaaaaaaaaaaaaaaaaaAaAAaAaAaaA
aaaaaaaaaAaaaaaaaaaaAaAaAaAaaA

And, some sample data would as shown in Tables 9.4–9.7.

TABLE 9.4

Sample Data for aaa in Figure 9.2.
AaaaaaAA AaaaaaaaaaAA AaaaaaaaaaaAA AaaaaaaaaaaAA
$87.10 TAG1 F1 PENS
$83.98 TAG2 G25 MOB
$95.25 TAG3 G20 DEL
$99.10 TAG4 F4 GULF

TABLE 9.5

Sample Data for aaaaaaa
in Figure 9.2.

AaaaaaaaaaAA AaAaAAaA

TAG1

TAG2

TAG3

. . .

A A

A A

260 • Database Design Using ER Diagrams

TABLE 9.6

Sample Data for aaaaaaaa
in Figure 9.2.

AaaaaaaaaaaAA AaAaAAaA

F1

G25

G20

. . .

TABLE 9.7

Sample Data for aaaaaaaa
in Figure 9.2.

AaaaaaaaaaaAA AaAaAAaA

PENS

MOB

DEL

. . .

Checkpoint 9.3

1. Could Figure 9.5 be described in the form of binary relation-
ships? Discuss.

2. What mapping rules would you follow to map Figure 9.5?
3. Map Figure 9.5 to a relational database and show some sample

data.

9.10 REVIEW OF THE METHODOLOGY

Our ER design methodology has now fnally evolved to the following
presentation:

9.10.1 ER Design Methodology

Step 1. Select one primary entity from the database requirements
description and show the attributes to be recorded for that
entity. Label keys if appropriate and show some sample data.

Step 2. Use structured English for entities, attributes, and keys to
describe the elicited database.

Ternary and Higher-Order ER Diagrams • 261

Step 3. Examine attributes in the existing entities (possibly with
user assistance) to find out if information about one of the enti-
ties is to be recorded.

(We change primary to existing because we redo step 3 as we add new
entities.)

Step 3a. If information about an attribute is needed, then make the
attribute an entity, and then

Step 3b. Define the relationship back to the original entity.
Step 4. If another entity is appropriate, draw the second entity

with its attributes. Repeat steps 2 and 3 to see if this entity
should be further split into more entities.

Step 5. Connect entities with relationships (one or more) if rela-
tionships exist.

Step 6. State the exact nature of the relationships in structured English
from all sides, for example, if a relationship is A:B::1:M, then there
is a relationship from A(1) to B(M) and from B(M) back to A(1).

For ternary and higher-order (n-ary) relationships, state the rela-
tionship in structured English being careful to mention all enti-
ties for the n-ary relationship. State the structural constraints as
they exist.

Step 6a. Examine the list of attributes and determine whether any of
them need to be identified by two (or more) entities. If so, place the
attribute on an appropriate relationship joining the two entities.

Step 6b. Examine the diagram for loops indicating redundant rela-
tionships. If a relationship is truly redundant, excise the redun-
dant relationship.

Step 7. Show some sample data.
Step 8. Present the “as designed” database to the user complete

with the English for entities, attributes, keys, and relationships.
Refine the diagram as necessary.

9.11 CHAPTER SUMMARY

Binary relationships are the most commonly occurring relationships.
Some ER diagram notations do not have expressions for ternary or other
higher-order relationships; that is, everything is expressed in terms of a

262 • Database Design Using ER Diagrams

binary relationship. In this chapter, we showed how the need for ternary
relationships comes about from unique situations. For example, intersec-
tion attributes arise needing all three entities taken together for their iden-
tifcation. Ternary relationships can also be developed through reverse
engineering, and this is discussed in Chapter 11. Also, in this chapter we
discussed the structural constraints of ternary relationships and their
grammar in detail and showed how some ternary or n -ary relationships
may be resolved into binary relationships. T e fnal section of this chapter
discussed mapping rules for n- ary relationships.

CHAPTER 9 EXERCISES

Exercise 9.1

In Chapter 8, we described a database with two entities, aaaaaa and
aaaaaaaaaa. “Book” was lef as an attribute of aaaaaa. Extend the
database to include book as an entity. Attributes of book might include
book title, author, price, edition, and publisher. Explore the relationships
that might exist here: use “in” or “by,” “write,” “teach,” and so on. Draw
an ER diagram with at least two relationships, one of them ternary. What
would be some attributes of the relationships?

Exercise 9.2

Construct an ER diagram for a broker, a security, and a buyer. Include
in the diagram the price of the security, the commission paid, the broker
name and address, the buyer name and address, and the security exchange,
symbol, and price. Include in the diagram the number of shares of the
security held by a buyer (you may choose to include this by broker or not).

Exercise 9.3

Using three entities—aaaaaaaaaaaA aaaaa, and aaaa—draw an
ER diagram to depict the following: Each aaaaa in a aaaa has one
aaaaaaaaaa, but each aaaaaaaaaa in a aaaa may have many
aaaaaes, and each aaaaaaaaaa of a aaaaa occupy many aaaas.
Include the cardinalities in the diagram.

Ternary and Higher-Order ER Diagrams • 263

Exercise 9.4

Come up with an ER diagram with a ternary relationship. Draw the ER
diagram and write out it’s cardinalities. Can this ER diagram also be
drawn out as binary relationships? Why or why not?

BIBLIOGRAPHY

Elmasri, R., and Navathe, S.B. (2016). Fundamentals of Database Systems. Reading, MA:
Addison-Wesley.

Teorey, T.J., Nadeau, T., and Lightstone, S.S. (2005). Database Modeling and Design: Logical
Design. San Francisco, CA: Morgan Kaufman.

Teorey, T.J., Yang, D., and Fry, J.P. (1986). A logical design methodology for relational data-
bases using the extended entity-relationship model. ACM Computing Surveys , 18(2):
197–222.

http://taylorandfrancis.com

10
The Enhanced Entity-
Relationship (EER) Model

10.1 INTRODUCTION

In the frst several chapters of this book, we presented the entity-relation-
ship (ER) diagram as a conceptual database tool. Te approach we took
in developing an ER diagram was to model reality for a user. Although
we worked on the basics of the ER diagram, there are situations for which
the basic model fails to completely describe the reality of the data to be
stored. With the increase in the types of database applications, the basic
concepts of ER modeling (as originally developed by Chen) were not suf-
fcient to represent the requirements of more complex applications like
generalizations and specializations (class hierarchies). An ER model sup-
porting these additional semantic concepts is called the enhanced entity-
relationship (EER) model (Elmasri and Navathe, 2016). In this chapter, we
discuss generalizations and specializations in the EER model and develop
a methodology and grammar for this extension. We also discuss shared
subclasses and categories or union types. We present a methodology to
map the EER diagram to a relational database.

10.2 WHAT IS A GENERALIZATION OR
SPECIALIZATION?

 Te EER model includes all the concepts of the original ER model and
additional concepts of generalizations/specializations (class hierarchies).
Generalizations and specializations are associated with the idea of super-
classes, subclasses, and attribute inheritance. As an example of a class

DOI: 10.1201/9781003314455-10 265

https://doi.org/10.1201/9781003314455-10

266 • Database Design Using ER Diagrams

hierarchy, suppose we have this aaaaaaaa entity within a database for
a store selling sports equipment:

aaaaaaaaaaaaaaaaaaaaaaaaAaAAaaaaAaAAaaaaaaaAaA

Now, suppose the database evolves to a situation for which we want to
keep information pertinent to specifc sports for some customers:

aaaaaAaaaaaaaaaaaaaaaaAAaaaaaaaaAaAAaaaaaaaaaaaaaaaaaaa
aaaaaaaaaAaaaaaaaaaaaaaaaaAAaaaaaaaaAaAAaaaaaaaaaaaaaaaaaaA

 T e aaaa and aaaaaaaa entities are subclasses (specializations) within
the aaaaaaaa (a generalization). Tis example illustrates a hierarchy
in which aaaaaaaa is at the top of the class hierarchy and the specif c
sports are subclasses.
In an object-oriented setting, we might designate the entities like this:

aaaaaaaaaAaaaaaaaaaaaaaaaAaAAaaaaAaAAaaaaaaaAa
aaaaaaaaaaaaaaA aAA aaaaaaaaaA aaaaaaaaaaaaaaaaaaA
aaaaaaaaaaaaaaaaaaaaaaaaaaaAaaaaaaaaaaaaaaaaaAa

 Te inference in object-oriented programming is aaaa, which is a sub-
class of aaaaaaaa. Although not specif cally stated, aaaaaaaa.
aaaa inherits all the attributes of aaaaaaaa plus has attributes perti-
nent to aaaa. Te example is one of specialization—the thinking process
started with a class, aaaaaaaa, and then specialized to specif c sports.
 Te idea of classes in a database infers the ability to describe subclasses

and superclasses with inheritance features.
As an example of a generalization, suppose we have a aaaaaaa entity

containing information about students. But suppose we wanted to store
information about all the people at an institution—not only students, but
also staf and faculty. We might think of a superclass called aaaaaa
containing a subclass for aaaaaaa, another subclass for aaaaa, and yet
another subclass for aaaaaaa. Clearly, information about each of these
subclasses of aaaaaa contains information pertinent to that subclass.
Yet, the aaaaaa superclass entity would contain information common
to all of these subclasses. aaaaaa may contain a aaaaAaAAaaaaaaa, and
aaaaaAaaaaaaA. When the aaaaa subclass was defned, it would inherit
those attributes of the superclass and def ne more attributes pertinent to

AAAAA aaa AAAA AAAAA AAAAAAAAA a AAAA AAAAAa a AAAAAAA AA

Te Enhanced Entity-Relationship (EER) Model • 267

aaaaa. Te superclass in a database is called a generalization, and the sub-
classes (aaaaaaaaAaaaaa, and aaaaaaa) are called specializations.
Te concept of classes includes the use of simple attributes, as we have

seen. In object-oriented programming, the concept of a class also includes
actions performed by members of the class. As with data typing, databases
tend to focus more on attributes than procedural action.

10.3 VARIANTS

One way programmers in the past solved the problem of specializations
was to create variants. Variants are record pieces varying according to
other parts of the record. To illustrate variants and their use in ER dia-
grams, consider this problem:
Suppose we have an entity with values varying according to “the situ-

ation.” For example, suppose we are modeling student-athletes, and each
athlete plays some sport. We would, of course, record information about
the student or athlete—a name, a unique identifer like a student number,
and perhaps some other information. But then, we would like to record
some information about the sport the student-athlete may play. Let us sup-
pose we have an aaaaaaa table (Table 10.1) with this type of data.
Te aaaa attribute has diferent values for diferent sports. Tese diferent

values are called variants. While the introduction of variants in records
seems to solve a problem of representing data, it causes database problems
with storage and retrieval. In a database, one expects all the information
in a column of a table to be consistent. Student numbers might contain
nine digits; hence, all values in the aaaaaaaaaa column would contain a
nine-digit number. With variants, this is not the case. Te aaaaaaa table
contains inconsistent columnar information in the aaaa column. Tis vari-
ant problem in a database has been solved in various ways over the years.

TABLE 10.1

aaaaaaa Table.
aaaaaaa aaaaaaaAaaaaaaaaaaAA a aa aAaaaaaAA AaaaaAAAaaaaaaaAA aa AaaaaaAA a aaaa

Baker 123456789 . . . tennis 220, state rank 14
Adams 123456788 . . . football tackle, neck brace
Jones 123455676 . . . golf handicap 3

268 • Database Design Using ER Diagrams

A solution to the problem of variants in records and varying attributes
in entities in the ER diagrams is to excise the variant and reference it back
to the primary key of the “parent” information piece. We attack the prob-
lem in this way:
In ER diagrams, we recognize we are storing information about two dif-

ferent, but related, things: a generalization called aaaaaaas, who have
a aaaaAaA Aaa, and so on, and specializations, which are aaaaaa (ten-
nis, football, golf, etc.), each with its own diferent attributes. Since we
are storing information about two things, why not create an entity called
aaaaaa and then relate the aaaaaaa to the aaaaaa entity? One
aaaaaa entity would not work because the aaaaaa entity would be
too general; we would want to store diferent information about dif erent,
specifc sports. Furthermore, we want to store information about a sport
as it pertains to each individual student-athlete.
Why then would we not create a series of weak entities—one for each

sport—depending on the aaaaaaa? Te answer is we could do this, but
there is a better way to look at this problem, which, as it turns out, will
result in the same database as using a weak entity/relationship but gives
us an alternative way to present the ER information with more expressive
diagrams to include the concept of inheritance.

10.4 EXAMPLES OF GENERALIZATIONS
OR SPECIALIZATIONS

Generalizations and specializations are categorizations of entities for
which the specialization entity may result from generalizations contain-
ing variants. Tese variants are most easily handled by removing the vari-
ant from the generalization, treating it as a subclass entity, and leaving
the original, “fxed part” of the entity as a superclass or parent type. If we
referred to the superclass as a parent class, we would call the variant parts
the subclasses, the child classes.
Pursuing the parent-child superclass/subclass idea a bit further, we can

imagine the child class inheriting the characteristics of the parent class.
Inheritance in this context means the child class will have defned in it
whatever attributes are defned in the parent class. In a relational database,
the tying of the child to the parent (hence placing parent and child infor-
mation together) is done using table combination operators called joins.
In our aaaaaa example, we would consider the aaaaaaa as a parent

Te Enhanced Entity-Relationship (EER) Model • 269

class and aaaaaa as a child class so when we defne information about a
sport, it is done in the context of maintaining the possibility of inheriting
information from the parent, aaaaaaa, via a join operation.
If we were designing the database for student-athletes and recognized that

we would want to record a aaaa, a personal identif er (aaaa), aaaaaaa , and
so on, we could be starting with the generalization (or parent or superclass).
Ten, we would decide to record a player in a sport and some information
about the sport itself. Te player-sport is said to be a specialization of the
aaaaaaa class. Tis design approach may be characterized as top down.
If we had been designing the database and started with sports, we might

have had a aaaaaa entity, a aaaaaaaa entity, and so on for each ath-
lete, only to recognize these entities may be generalized into an aaaaaaa
entity (a superclass) with individual sports as subclass entities. T is design
approach might be characterized as bottom up. A generalization relation-
ship specifes several types of entities with certain common attributes can
be generalized into a higher-level entity class, a generic or superclass entity.
Either way (bottom up or top down), we end up with one entity being a

superclass (a parent) and the other being a subclass (a child) of the parent.
Whether one needs to specialize or generalize in design depends on where
one recognizes the problem.
To illustrate how we might handle this generalization-specialization,

parent-child class situation, suppose we have defned our entity, aaaaaaa,
like this:

 Entity: aaaaaaa
 Attributes: aaaaaAaaaaaAaaaaaaaaAaaaaaaaAaaaaaaaAaaaaaa.

 Te ER diagram for this entity is simple and straightforward. T en, in
the course of database design, we decide to add information about sports
the athletes play. We might attempt to draw a diagram like Figure 10.1
with a variant sports f ag.
What is wrong with Figure 10.1? Te problem is we have attributes with

attributes with attributes. sports f ag is not a composite attribute—it does
not have component parts. So, instead of creating attributes with attri-
butes, we will create entities for each specifc sport and then relate these
entities back to the aaaaaaa.
Now, refer to Figure 10.2. Here, we created weak entities for each

sport rather than use attributes of attributes. We must make the sports
weak entities because they have no primary key per se—they depend on
aaaaaaa. Tis diagram still does not tell the whole story because sports

270 • Database Design Using ER Diagrams

FIGURE 10.1
T e aaaaaaa with an Attempt to Add a Variant Attribute.

are not just weak entities, but rather they are in a sense “choices.” If the
sports were simply weak entities, you would expect all superclass entities
to be related to each subclass. Tis is not really the case. Plus, we want to
honor the concept of inheritance.
 Te process of specialization is intended as a process by which the sub-

class inherits all the properties of the superclass. In EER terminology, the
aaaaaaa entity is called a superclass, and the SPORTS entities are called

Te Enhanced Entity-Relationship (EER) Model • 271

FIGURE 10.2
T e aaaaaaa Shown as a Strong-Weak Relationship Variant Attribute.

subclasses. Te attributes like aaaaaaaa may be termed specif c attributes
as they are specifc to the particular subclass.
 Te sports entities, specializations, are depicted in the EER scheme as

illustrated in Figure 10.3. In Figure 10.3, we made three sports entities
unto themselves—information pieces we will store information about.

272 • Database Design Using ER Diagrams

FIGURE 10.3
aaaaaaa with Superclass/Subclass Overlap Relationship.

First, in the aaaaaaa entity, we include an attribute called aaaaa.
aaaaa is called a def ning predicate as it defnes our specialization(s). To
this point, we have assumed athletes play one sport, and the one sport has
variant information in it. If an athlete were to play multiple sports, then
the defning predicate must be multivalued. Referring to Figure 10.3, the
defning predicate may be written on the line to join the aaaaaaa entity
to the circle with an o in it. Te circle with an o describes an “overlapping”
constraint. Overlapping means the subclass entities joined to the super-
class may overlap; that is, a superclass entity may contain more than one
subclass or specialization for a given aaaaaaa. Te overlap (o) in Figure
10.3 means an athlete may participate in more than one sport.
If there were a d in the circle (in place of the o) in Figure 10.3, then the enti-

ties would not overlap—they would be disjoint. A d would indicate athletes

Te Enhanced Entity-Relationship (EER) Model • 273

FIGURE 10.4
An Ofce Database with Specialization Entities, Full Participation, and Disjoint Relationship.

would participate in only one sport; that is, the athletes would play only golf,
only tennis, or only football (but not any of the two together). If this were
the case, then the small o would be replaced by a d, and aaaaa, the def ning
predicate, would be single valued. As a fnal note on this diagram, the par-
ticipation of the superclass in the subclasses is optional. Tere is a single line
joining the o/d designation meaning an athlete may participate in a sport—
some athletes (or potential athletes) do not participate in a sport or sports.
An example of a disjoint constraint is shown in Figure 10.4. According

to Figure 10.4, all the furniture in the database is a chair, a desk, or a table.
In this case, there is no sense of overlapping subclasses. Tere is a full
participation designation from the aaaaaaaaa entity to the o/d circle.
Each piece of furniture must participate in a subclass. Contrast this to the
partial participation in the aaaaaaa example. Te disjoint constraint

274 • Database Design Using ER Diagrams

specifes if the subclasses of a generalization are disjoint, then an entity
may be a member of only one of the subclasses or specializations. Further,
the defning predicate for disjoint subclasses will be single valued.
In Figure 10.4, the name of the specialization is the name of the entity

itself. If this is not the case, then the defning predicate may be repeated in
the diagram for clarity.
Figure 10.3 shows a subclass symbol (a) between the predicate-def ned

entities and the disjoint/overlapping (o/d) constraint circle. “Tennis,”
“Golf,” and “Football” belong to the def ning predicate “Sport.” T e enti-
ties aaaaaa,Aaaaa, and aaaaaaaa are subclasses of aaaaaaa. T e
subclass symbol on each line connecting a subclass to the circle indicates
the direction of the superclass/subclass or parent-child, inheritance rela-
tionship. In Figure 10.3, the subclass aaaaaa,Aaaaa, or aaaaaaaa
(the specializations) would inherit from the parent, aaaaaaa.

Checkpoint 10.1

1. What is a specialization? Give an example of a specialization.
2. What is a generalization? Give an example of a generalization.
3. What is a disjoint constraint? What symbol shows the disjoint

constraint in EER diagrams?
4. What is an overlapping constraint? What symbol shows the over-

lapping constraint in EER diagrams?
5. What does the subclass symbol signify?
6. Why would you create a generalization/specialization relation-

ship rather than creating a “weak entity”?
7. How does “inheritance” play into the superclass/subclass rela-
tionship? Discuss.

8. What is the diference between a generalization entity and regu-
lar entity as described in the previous chapters?

10.5 METHODOLOGY AND GRAMMAR
FOR GENERALIZATION/
SPECIALIZATION RELATIONSHIPS

We need to revisit step 6 in the ER design methodology to include gener-
alization/specialization relationships. Te previous version of step 6 was:

Te Enhanced Entity-Relationship (EER) Model • 275

Step 6. State the exact nature of the relationships in structured
English from all sides; for example, if a relationship is A:B::1:M,
then there is a relationship from A to B, 1 to Many, and from B
back to A, Many to 1.

For ternary and higher-order (n-ary) relationships, state the rela-
tionship in structured English, being careful to mention all enti-
ties for the n-ary relationship. State the structural constraints as
they exist.

We add the following sentence to step 6:

For specialization/generalization relationships, state the relation-
ship in structured English, being careful to mention all entities
(subclasses or specializations). State the structural constraints
as they exist.

 Te grammar we propose for specialization/generalization relationships
is similar to what we used in weak relationships. We add to the grammar
to include the participation and the overlapping/disjoint (o/d) constraints:
 Te grammatical description for weak entities was:

For each weak entity, we do not assume any attribute will be unique
enough to identify individual entities. Since the weak entity does not
have a candidate key, each weak entity will be identifed by key(s)
belonging to the strong entity.

In the case of the subclasses of aaaaaaa, a frst attempt to describe the
subclass identifed by a superclass becomes:

For each sport, we do not assume any sport attribute will be unique
enough to identify individual sport entities. Since sport does not
have a candidate key, each sport will be identifed by inheriting
key(s) belonging to aaaaaaa.

So, a more complete EER diagram grammatical pattern would say:

For each specialization, we do not assume any attribute will be unique
enough to identify individual entities. Since the specialization does
not have a candidate key, each specialization will be identif ed by

276 • Database Design Using ER Diagrams

key(s) inherited from the generalization. Further, specializations
overlap [or are disjoint]. [Explain the overlapping/disjoint situation.]
Te individual specialization is identifed by a def ning predicate,
attribute name, which will be contained in generalization. If the spe-
cializations overlap, the defning predicate will be multivalued.

For Figure 10.3, the pattern becomes:

For each sport, we do not assume any attribute will be unique enough to
identify individual entities. Since the sport does not have a candidate
key, each sport will be identifed by key(s) inherited from aaaaaaa.
Further, the sports overlap. Athletes may play more than one sport.
Te individual sport is identifed by a defning predicate attribute,
aaaaa, which will be contained in aaaaaaa. Since a person may play
more than one sport, the defning predicate is a multivalued attribute.
Te sports we will record are aaaa,Aaaaaaa, and aaaaaaaa.

10.6 MAPPING RULES FOR GENERALIZATIONS
AND SPECIALIZATIONS

In this section, we present mapping rules to map generalizations and spe-
cializations to relational databases. Generalizations and specializations
can be mapped in several diferent ways, and rules to map generaliza-
tions and specializations to a relational database depend on several factors
(Elmasri and Navathe, 2016):

(a) Te total/partial constraints of the generalization/specialization
relationships

(b) Te overlapping/disjoint constraints of the generalization/special-
ization relationships

(c) Te number of attributes on the specializations
(d) Whether the specializations are predicate def ned
(e) How many specializations exist

Table 10.2 provides a summary of the mapping rules for mapping gener-
alizations and specializations and the situations in which they work best.
Mapping rules 15 and 16 create multiple relations, and mapping rules 17

Te Enhanced Entity-Relationship (EER) Model • 277

TABLE 10.2

Where Each Mapping Rule Works Best.

 Mapping Rule Relations Created Works Best with

Mapping rule 15 Multiple • Total or partial participation
• Disjoint or overlapping relationships

 Mapping rule 16 Multiple • Disjoint relationships
• Total participation

Mapping rule 17 Single • Only disjoint relationships
• Can be total or partial participation
• Not many attributes on specialization
• Single type attribute

Mapping rule 18 Single • Better for overlapping relationships but can be
used for disjoint relationships

• Many type felds—one for each subclass

and 18 create single relations. In each case, there are relational database
trade-ofs with regard to the result.
In the next few sections, we explain each of the mapping rules and the

resulting trade-of s.

10.6.1 Mapping Rule 15
As per Table 10.2, mapping rule 15 works well for either disjoint or over-
lapping scenarios. Tis rule would also work well if the specializations
have many attributes.

Mapping Rule 15—Mapping generalizations and specializations with
disjoint or overlapping subclasses and with total or partial par-
ticipation constraints (with few or many attributes on the special-
izations). For each generalization/specialization entity situation,
create one relation (table) for the generalization entity (if you have
not done so already per the prior steps) and create one relation
(table) for each specialization. Add the attributes for each entity
to their respective relations. Include the primary key of the gener-
alization entity in the specialization relations. Te primary key of
the specialization relations will be the same as the primary key of
the generalization relation.

So, using mapping rule 15, we create a separate table for the generaliza-
tion (superclass) as well as for each of the specializations (subclasses). Refer to

A

A
A

A

Figure 10.3. Te generalization/specialization relationship between aaaa
aaaa and aaaaaa, aaaa, and aaaaaaaa would be mapped as follows:

aaaaaaaaAaaaaaAaaaaaaaAaaaaaAaaaaaaaAaaaaaaAaAAaaaaaaaAa
aaaaaaaaaaaAaAaaaaaaaaaaaaaa
aaaaaaaaaAaAAaaaaaaaaAaA
aaaaaaaaaAaaaaAaAaaaaaaaaAa

 Since aaaaaaa in Figure 10.3 contains a multivalued attribute, aaaa
aaaa now becomes

aaaaaaaaaAaaaaAaAaaaaaaaAaaaaaAaaaaaaaAaaaaaaAaA

 and

Aaaaaaaaaaaaaa aAAaaaaaAaaaaaa

 Te key of the generalization entity aaaa is added to the specialization
entities aaaaaa, aaaa, and aaaaaaaa as the primary key. And, since
ATHLETE in Figure 10.3 contains a multivalued attribute, aaaaaaaa
aaaaaAmaps the multivalued attribute.

AAAAAa aaAAAAA AAAAAa aa AAAA AAAAA AAAA AAAAA AAAA AAAAA AAAA AAAAA aaa AAAA

a aaaa aa

278 • Database Design Using ER Diagrams

TABLE 10.3

Sample Data for aaaaaaa in Figure 10.3.
AaaaaAa AaaaaaaAAa aa AaaaaAA AaaaaaaAA AaaaaaaAA a aaaaa aaaaaa aaaaaa AaaaaaAA

239–92–0983 140 Kumar M 5.95 golf
398–08–0928 200 Kelvin M 6.02 football
322–00–1234 135 Sarah F 5.6 tennis
873–97–9877 165 Arjun M 6.01 golf
876–09–9873 145 Deesha F 5.5 tennis, golf

TABLE 10.4

Sample Data for aaaaaaaa in Figure 10.3.
a aaaaaaa aaaa aaaaaa aaaaaaaaaa a aaaa aaaaaa aaaaaa

239-92-0983 140 Kumar M 5.95
398-08-0928 200 Kelvin M 6.02
322-00-1234 135 Sarah F 5.6
873-97-9877 165 Arjun M 6.01
876-09-9873 145 Deesha F 5.5

AAAAAa aaAAAAA AAAAA aaa AAAA

AAAAAa aaAAAAA AAAAAa aaaa AAAA

AAAAAa aaAAAAA AAAAA AAAA

AAAAAa aaAAAAA AAAAA a AAAAA

Te Enhanced Entity-Relationship (EER) Model • 279

Showing some sample data, the table would look like Table 10.3.
which would resolve to Tables 10.4–10.8.

TABLE 10.5

Sample Data for aaaaaaaaaaaaaA
in Figure 10.3.

AaaaaAa aAaaaaaAAa

239-92-0983 golf
398-08-0928 football
322-00-1234 tennis
873-97-9877 golf
876-09-9873 tennis
876-09-9873 golf

TABLE 10.6

Sample Data for aaaaaa in
Figure 10.3.

AaaaaAa AaaaaaaaaaaaaaAAaaaa aaaa

322-00-1234 23
876-09-9873 47

TABLE 10.7

Sample Data for aaaa in
Figure 10.3.

AaaaaAa aaaaaaaaAaaaaaaaaAA

239-92-0983 3
873-97-9877 1

TABLE 10.8

Sample Data for aaaaaaaa in
 Figure 10.3.

AaaaaAa aaa aaaaAaaaaaaaaA

398-08-0928 tackle
239-92-0983 quarterback
398-08-0928 full back

280 • Database Design Using ER Diagrams

 Te only difculty with this mapping is that it generates tables some-
what atypical in a relational database. In an ordinary relational database,
one expects a table with a joining attribute. Here, the joining attribute is
a table name rather than an attribute value. If the o/d constraint were d
(disjoint), then the sport defning predicate would be single valued, the
original aaaaaaa table would have only one value for sport, and the
decomposition of aaaaaaa into aaaaaaaa and aaaaaaaaaaaaaA
would be unnecessary.

10.6.2 Mapping Rule 16

Mapping rule 16 works best with disjoint subclasses and when the rela-
tionship is total between the generalization and specializations.

Mapping Rule 16—Mapping generalizations and specializations with
disjoint relationship constraints and total participation between
generalizations and specializations. Create a separate (subclass)
relation for each specialization entity. Include the attributes for
each specialization entity in their respective subclass relations. Also
include the primary key and other attributes of the generalization
entity in all the subclass relations. Te primary key of the subclass
relations will be the primary key of the generalization entity.

To illustrate this rule, we map Figure 10.4 as follows:

aaaaaaaaaaaaaaaaaaa aaAAaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaa
aaaaa

aaaaaaaaaaaaaaaaaa aaAAaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaa
aaaaaaaa

aaaaaaaaaaaaaaaaaaa aaAAaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaa
aaaaaa aaaaaaaaaaa

Using this mapping rule 16, we create separate relations for each sub-
class, but we do not have a separate relation for the superclass entity. T is
rule works best with the disjoint relationship scenario in which the num-
ber of subclasses is very small and fxed. If this rule were used in the
overlap relationship scenario, it would create redundancy in the database
since all the attributes from the generalization entity would be rerecorded
several times over. In the tables presented, we included the attribute
aaaaaaaaaaaaaa, which is redundant to the name of the table itself. T is

Te Enhanced Entity-Relationship (EER) Model • 281

was done to mirror the diagram and should be excised to produce the
following:

aaaaaaaaaaaaaaaaaaa aaAAaaaaaa aaaaaaaaaaaaaaaa aaaaa
aaaaaaaaaaaaaaaaaa aaAAaaaaaa aaaaaaaaaaaaaaaa aaaaaaaa
aaaaaaaaaaaaaaaaaaa aaAAaaaaaa aaaaaaaaaaaaaaaa aaaaaa aaaaaaaaaaa

Also, this is a good rule to use if the subclasses have too many attributes.

10.6.3 Mapping Rule 17

Although mapping rule 17 will work for both total and partial participa-
tion, it will work only for disjoint relationships and,

(a) If the specializations do not have many attributes
(b) If the specializations are predicate def ned

Using this mapping rule, if the specializations have many attributes, then
this mapping will create many null values. And, if mapping rule 17 were used
with overlapping relationships, redundancy would be created in the database.

Mapping Rule 17—Mapping generalizations and specializations with
disjoint relationships, total or partial participation constraints,
and predicate defned with single type attributes. Create a single
relation to include the attributes of the generalization (superclass)
as well as the attributes of the specializations (subclasses) in one
relation. Te primary key of the relation will be the primary key
of the generalization (superclass).

In Figure 10.4, if we assume aaaaaaaaaaaaaa is the def ning predicate,
for example, a condition of membership is specifed on aaaaaaaaaaA aaaaAA
as follows: aaaaaaaaaaaaaa aAaaaaaaaa then this is a defning predicate of
this specialization. In the EER diagram, the predicate-defned subclass is
shown by writing the predicate condition next to the arc connecting the
subclass to the relationship constraint circle. Also, the def ning predicate
name is placed on the arc from the superclass to the relationship constraint
circle. So, we would map Figure 10.4 as per mapping rule 17 as follows:

aaaaaaaaaaAaaaaaaaaaaaaaAAaaAAaaaaaAaAAaaaaaaaaaaaaaaaAaAAaaaaaaaaaa
aaaaAaAAaaaaAaAAaaaaaaaAaAAaaaaaAaAAaaaaaaaaaaAa

282 • Database Design Using ER Diagrams

 Tis mapping rule will generate nulls for the nonparticipating attributes.
For example, chairs do not have drawers; hence, if the furniture type is “chair,”
there will be a null for the drawers attribute. Nulls are generally undesir-
able. Tere is a trade-of in the relational database here because on one hand
nulls may be tolerated to reduce the number of tables, but the purist approach
would dictate each furniture type to have its own table per mapping rule 15
or 16. Also, while this table confguration looks plausible, it is not in the third
normal form (3NF) and hence represents another database trade-of .

10.6.4 Mapping Rule 18

Mapping rule 18 will work for overlapping relationships but can also be
used for disjoint relationships. Tis mapping rule again uses the predicate
or fag for each specialization and assumes such predicates or f ags are
unique to the specialization. Tis rule would be used if there were numer-
ous overlaps within each generalization.

Mapping Rule 18—Mapping overlapping relationships and general-
izations/specializations with more than one f ag. Create a single
relation to include the attributes of the generalization (superclass)
and the attributes of the specializations (subclasses) and the sub-
class f ag. Te primary key of the relation is the primary key of the
superclass.

With disjoint relationships, mapping rule 18 would create many null
values when the entity is not a member of a particular specialization (sub-
class). Hence, this rule works best if there are many overlaps. Tis rule is
also not recommended if the subclasses have many attributes since this
will also cause many null values when these subclasses are not be used.
So, mapping Figure 10.3 as per mapping rule 18 and using f ag predi-

cates, we would have:

aaaaaaaaaaaaa aaaaaaAaAAaaaaAaAAaaaaaaAaAAaaaaaaAaAAaaaaaAaAAaaAaaaAaaaaaa
aaaaaaaaAaaAaaAaAAaaaaaaaaAaAAaAAaaAaAAaaaaaaaaAa

Again, the problem with this arrangement is the resulting table is not in
3NF. Tere are clearly transitive functional dependencies in the table with
aaAaaAaAaaaaaaaaaaaaaAAaaaAAaaAaaAaAaaaaaaaa and so forth. A normaliza-
tion of this table would also generate the result as per mapping rule 15.

Te Enhanced Entity-Relationship (EER) Model • 283

Checkpoint 10.2

1. How are the mapping rules for generalizations/specializations
diferent from the mapping rules for weak entities?

2. Would it be wise to map Figure 10.3 using mapping rule 17? Why
or why not?

3. Which mapping rules are good to use if there are too many attri-
butes on the subclasses?

4. Which mapping rule or rules will not work well for overlapping
subclasses?

5. When would you create an overlapping relationship?
6. When would you create a disjoint relationship?
7. Does mapping rule 15 create relations in 3NF? Discuss.
8. Does mapping rule 16 create relations in 3NF? Discuss.

10.7 SUBCLASSES OF SUBCLASSES

So far in this chapter, we have presented scenarios of one generalization
class—only one superclass. Tis superclass has had one or more sub-
classes. Te subclasses could have one or more attributes. It is possible
for subclasses to have subclasses and for there to be more than one set of
subclasses. Here, we give examples of a specialization hierarchy, a special-
ization lattice, and shared subclass parents.
Subclasses of subclasses are shown in Figure 10.5. In Figure 10.5, the

subclasses aaaaa and aaaaaaaaaaaa are “part of” or “subclasses”
of aaaaaaaa. aaaaa and aaaaaaaaaaaa would inherit attri-
butes from aaaaaaaa, which would inherit attributes from aaaaaaa.
(To simplify the EER diagram, attributes of the subclasses in the foot-
ball tree are omitted.) So, of the athletes, some athletes play football, and
of those who play football, some play football as a hobby, and some are
professionals. Every instance of aaaaa will inherit from the subclass
aaaaaaaa; likewise, every instance of aaaaaaaaaaaa will also
inherit from aaaaaaaa. In this case, every subclass is inheriting from
only one other subclass. When a subclass inherits from only one subclass,
that is, if a subclass has only one subclass as a parent, it is referred to as a
specialization hierarchy. Figure 10.5 shows a specialization hierarchy with
aaaaaaaa as an example.

284 • Database Design Using ER Diagrams

FIGURE 10.5
Specialization Hierarchy.

Another possible EER diagram could have more than one set of special-
izations. Suppose we have an athlete who plays various sports but is also
viewed as having professional or hobbyist specializations. Also suppose
both sets of subclasses are overlapping. If a subclass has more than one
subclass as its parent, it is referred to as a specialization lattice. Figure 10.6
illustrates such a specialization lattice. In Figure 10.6, we have the subclass
aaaaaaaaaaaaAaaaaaaaaAaaaaaa inheriting information from
both the aaaaaaaa subclass and the aaaaaaaaaaaa aaaaaaaa.
A shared subclass is a subclass with more than one subclass for its parents.

aaaaaaaaaaaaAaaaaaaaaAaaaaaa is a subclass of aaaaaaaa as
well as aaaaaaaaaaaa and hence inherits from multiple subclasses. Every
instance of a shared subclass inherits all the attributes of all its superclasses.

Te Enhanced Entity-Relationship (EER) Model • 285

FIGURE 10.6
Specialization Lattice, Shared Subclass.

10.7.1 Mapping Rule 19

We present mapping rule 19 to map shared subclasses.

Mapping Rule 19—Mapping shared subclasses. In general, the same
criteria used to determine which rule would be best for mapping
generalizations and specializations can be applied to mapping
shared subclasses. However, the rule generating the best database
is usually mapping rule 15.

As an example of applying mapping rule 15, consider the mapping of
 Figure 10.6 :

aaaaaaaaaaaaa aaaaaaAa aaaaAaAAaaaaaaAaAAaaaaaaAaAAaaaaaaaaaaaaaaaaaaaA
aAaaaAaA

A
A

AA A

286 • Database Design Using ER Diagrams

aaaaaaaaaaaa aaaaaaaaaaaaaa
aaaaaaaaaa aaaaaaaaAaA
aaaaaaaaaaaaaa aaaaaaaaa
aaaaaaaaaaaaaaaaaa aaaaaa aAaAaaA
aaaaaaaaaaAaAAaaaaaaAaaaaaaAaAaAaAaaA
aaaaaaaaaaaaaaaaaaaaaaaaaaaa aAaaaaa aaaaaAaAaAaaA

Here, we used mapping rule 15 to map Figure 10.6. In other cases, it could
be appropriate to use one of the other mapping rules, 16–18. An important
thing to note is that, since a shared subclass ultimately has only one super-
class, the subclasses maintain the same key attribute. Also in this mapping
there are multivalued attributes, which necessitates normalization for a
relational database. To normalize these tables, there would have to be two
more tables to deal with the multivalued predicates:

aaaaaaaaaaaaa aaaaaaa aaaaa aaaaaaa aaaaaaa AaaaaaaaaaaaaaaaaaaaA
aAaaaAaA

 Becomes:

aaaaaaaaaaaaaa aaaaaaa aaaaa aaaaaaa aaaaaaa
aaaaaaaAaaaaaaaaaaa aaaaaa
aaaaaaaAaaaaaaAaaaaAaAAaaaaaaaaaaAaAaaAa

10.8 CATEGORIES OR UNION TYPES

 Tus far in this chapter, we presented examples with one superclass and
several subclasses. Suppose the design of the database results in several
superclasses, and a subclass inherits from the superclasses. Each superclass
is an entity unto itself. When a subclass has more than one superclass from
which it may inherit, it is referred to as a category or union type. Tis is
diferent from the previous section because here we are discussing inherit-
ing from more than one superclass as opposed to more than one subclass.
Whereas a shared subclass always has only one superclass in its hier-

archy, a category or union type can have more than one superclass.
A category or union type will inherit information from any one of the
superclasses; hence, the term union is used to describe the combination

Te Enhanced Entity-Relationship (EER) Model • 287

of information from whichever superclasses are the parents. Symbolically,
we show the union type with a u in the circle connecting the subclasses
to its superclasses, as shown in Figure 10.7A. Usually, the superclasses will
have diferent keys since they are diferent entities, but there may also be
scenarios for which a category or union type could inherit from two super-
classes with the same type key. For example, if we have a superclass called
aaaaaaa, another superclass called aaaaaaa, and a subclass (category
or union type) aaaaaa, as shown in Figure 10.7A, the aaaaaa cat-
egory can be a subset of the union of the superclasses, aaaaaaa and
aaaaaaa, and inherit the same key, aaa.
 Figure 10.7A says:

A player may be a student or faculty member.

A category or union type inherits all the attributes of the class or classes
to which it belongs. So, if a player belongs to the aaaaaaa class (super-
class), it inherits all the attributes of the aaaaaaa entity type. If it belongs

FIGURE 10.7A
A Category or Union Type with Same Primary Keys (Partial Participation)

288 • Database Design Using ER Diagrams

FIGURE 10.7B
A Category or Union Type with the Same Primary Keys (Full or Total Participation).

to the aaaaaaa class (superclass), it inherits all the attributes of the
aaaaaaa entity type.
As another example of a union in an ER diagram, consider Figure

10.8A. Here, we have a bill payer, but the payer may come from several
superclasses. aaaaa could inherit data from aaaaaaaaA aaaaaaaa
aaaaaaaaa, or aaaaaaaaaaaaaaaaaaaaaaa.

10.8.1 Participation Ratios in Categories or Union Types

Categories or union types can also have participation constraints. Re-
consider Figure 10.7A. Te category or union type aaaaaa has par-
tial participation (single lines) from the circle with the u to the subclass
aaaaaa. Tis partial participation would imply that aaaaaa may or
may not include student or faculty. Tere would be faculty and students
who are not players.
If a category such as aaaaaa has full participation, as shown in Figure

10.7B, this would imply the category (or union type or subclass) aaaaaa

Te Enhanced Entity-Relationship (EER) Model • 289

FIGURE 10.7C
Full Participation between aaaaaaa and aaaaaa.

FIGURE 10.8A
A Category or Union Type with Diferent Primary Keys (with Partial Participation).

290 • Database Design Using ER Diagrams

holds at least one entity from the union of its superclasses aaaaaaa and
aaaaaaa. Figure 10.7B implies aaaaaa includes at least one aaaaaaa
or aaaaaaa. Tis diagram represents one specif c school. Further, this
database is probably used to track players and not meant to track everyone
in the school. Te diagram simply says we have a database of players, all of
whom belong to either the aaaaaaa or aaaaaaa entity.
If there were double lines going from the aaaaaaa to the circle con-

taining the u, as shown in Figure 10.7C, the player entity would include
every faculty member, but not every student.
In Figure 10.8B, there is full participation between PAYOR and

the superclasses aaaaaaa, aaaaaaaaaaaaaaaaa, and aaaaaa
aaaaaaaaaaaaaaaaa. All payors are identifed as parented by one
of the superclasses. aaaaa would contain appropriate information in
aaaaaaa, aaaaaaaaaaaaaaaaa, and aaaaaaaaaaaaaaaaaa
aaaaa by inheritance.

FIGURE 10.8B
A Category or Union Type with Diferent Primary Keys (with Full or Total Participation).

Te Enhanced Entity-Relationship (EER) Model • 291

10.8.2 Mapping Categories or Union Types When
Superclasses Have the Same Primary Keys

When subclasses are inheriting from superclasses with the same primary
key, as shown in Figure 10.7B, the mapping becomes simple since this pri-
mary key is included in the subclass relation. We present mapping rule 20
to map categories or union types when superclasses have the same pri-
mary key.

Mapping Rule 20—Mapping categories or union types when super-
classes have the same primary keys. Create a new relation for
the subclass (or union type) and include the primary key of the
superclass (or superclasses) in the subclass (or union type) as the
primary key. Include the other attributes of the subclass in this
relation. Create separate relations for each of the other super-
classes. and map them as you would map regular entities.

Figure 10.7a would map to:

aaaaaaaaaaaa aaaaa aaaaaaaa
aaaaaaaaaaaa aaaaa aaaaaaaa aaaaa
aaaaaaaaaaa aaaaa aaaaaa

10.8.3 Mapping Categories or Union Types When
Superclasses Have Different Primary Keys

Since superclasses are generally diferent entity types, superclasses gener-
ally have diferent primary keys. For example, see Figures 10.8A and 10.8B .
If the superclasses have diferent primary keys, we would need to create a
common key between the superclasses. Tis common key is referred to as
the surrogate key.
We present mapping rule 21 to map categories or union types when the

superclasses have diferent primary keys.

Mapping Rule 21—Mapping categories or union types when the super-
classes have diferent primary keys. Create a new relation for the
subclass (or union type) and create a surrogate key for this rela-
tion. Te surrogate key will be the primary key for this relation.
Include any other attributes of this subclass into this relation.
Create separate relations for each of the superclasses and map

AA

292 • Database Design Using ER Diagrams

them as you would map regular entities. Add the surrogate key to
the superclass relations as a foreign key.

Figure 10.8A would map to

aaaaaaa aaaaaaaaaaaaaaaaaAaaaaaaaa aaaaaaaaa
aaaaaaaaaaaa aaaaa aaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaAaAaaaaa aaaaaaaa aaaaaaaaa
aaaaaaAaaaaaaaaa aaaaaaaaaaaa aaaaAa

In this mapping, aaaaaaaa is the surrogate key.

Checkpoint 10.3

1. Figure 10.7A says, “A player may be a student or a faculty.” We
show this as a union. Could we have shown this as a disjoint rela-
tionship? Discuss.

2. What is the diference between a disjoint relationship and a union?
3. How would you map a category or union type with the same keys

on the superclasses?
4. How would you map a category or union type with diferent keys

on the superclasses?
5. When would you create a generalization/specialization rela-

tionship, and when would you create a category or union type?
Explain with examples.

6. A shared subclass inherits attributes from ________________?
7. A category or union type inherits attributes from __________?
8. What is the diference between a shared subclass and category or

union type?

10.9 FINAL ER DESIGN METHODOLOGY

 Our fnal ER design methodology has fnally evolved to the presentation
discussed next.

Te Enhanced Entity-Relationship (EER) Model • 293

10.9.1 ER Design Methodology

Step 1. Select one primary entity from the database requirements
description and show attributes to be recorded for that entity.
Label keys if appropriate and show some sample data.

Step 2. Use structured English for entities, attributes, and keys to
describe the elicited database.

Step 3. Examine attributes in the existing entities (possibly with
user assistance) to find out if information about one of the enti-
ties is to be recorded.

(We change primary to existing because we redo step 3 as we add new
entities.)

Step 3a. If information about an attribute is needed, then make the
attribute an entity, and then

Step 3b. Define the relationship back to the original entity.
Step 4. If another entity is appropriate, draw the second entity with

its attributes. Repeat steps 2 and 3 to see if this entity should be
further split into more entities.

Step 5. Connect entities with relationships (one or more) if rela-
tionships exist.

Step 6. State the exact nature of the relationships in structured English
from all sides; for example, if a relationship is A:B::1:M, then there
is a relationship from A(1) to B(M) and from B(M) back to A(1).

For ternary and higher-order (n-ary) relationships, state the relation-
ship in structured English, being careful to mention all entities for
the n-ary relationship. State the structural constraints as they exist.

For specialization/generalization relationships, state the relationship in
structured English, being careful to mention all entities (subclasses
or specializations). State the structural constraints as they exist.

Step 6a. Examine the list of attributes and determine whether any of
them need to be identified by two (or more) entities. If so, place the
attribute on an appropriate relationship that joins the two entities.

Step 6b. Examine the diagram for loops that might indicate redun-
dant relationships. If a relationship is truly redundant, excise
the redundant relationship.

Step 7. Show some sample data.

294 • Database Design Using ER Diagrams

Step 8. Present the “as designed” database to the user complete
with the English for entities, attributes, keys, and relationships.
Refine the diagram as necessary.

10.10 CHAPTER SUMMARY

In this chapter, we have described the concepts of generalizations and
specializations, overlapping and disjoint relationships, shared subclasses
and categories or union types. Tis chapter approached EER diagrams
as discussed by Elmasri and Navathe (2016) and Connolly, Begg, and
Strachan (1998). Some authors (e.g., Sanders, 1995) use a close variation of
this model and call the specialization/generalization relationship an “IsA”
relationship.
 Tis chapter also concluded the development of the EER design meth-

odology and mapping EER diagrams into a relational database.

CHAPTER 10 EXERCISES

Exercise 10.1

Draw an ER diagram for a library for an entity called library holdings.
Include as attributes the call number, name of book, author(s), location in
library. Add a defning predicate of holding type and draw in the disjoint,
partial specializations of journals and reference books, with journals hav-
ing the attribute renewal date and reference books the attribute checkout
constraints. Map this to a relational database and show some sample data.

Exercise 10.2

Draw an ER diagram for computers at a school. Each computer is identi-
fed by an ID number, make, model, date acquired, and location. Each
computer is categorized as a student computer or a staf computer. If it is
a student computer, an attribute is hours available. If it is a staf computer,
an attribute is responsible party (owner, if you will). Map this to a rela-
tional database and show some sample data.

Te Enhanced Entity-Relationship (EER) Model • 295

Exercise 10.3

Present an EER diagram that has a union type, a disjoint relationship, and an
overlapping relationship. Also include shared subclasses with dif erent keys.
Include primary keys and a minimal set of attributes and fnally map this to a
relational database. Write out the structured English to explain your diagram.

CASE STUDY

West Florida Mall (continued)

So far in our case study, we have developed the major entities and relation-
ships and mapped these to a relational database (with some sample data).
Ten, on reviewing step 7, which says:

Step 7. Present the “as designed” database to the user complete
with the English for entities, attributes, keys, and relationships.
Refine the diagram as necessary.

Suppose we obtained some additional input from the user:

A aaaaaa may be an owner, employee, or manager. For each aaaaaa,
we will record the aaaaAaAaAaaaaaAaaaaaaaaAaaaaaaAaAAaaaaaaa, and aaaaaA
aaaaaaA.

On reviewing these additional specifcations, we came up with one new
entity, aaaaaa.
Now, repeating step 2 for aaaaaa, we obtain the information as

described next.

The Entity

 Tis database records data about a aaaaaa.

 For each aaaaaa in the database, we record a person’s name (aaaaa),
person’s Social Security number (aaaa), person’s phone (aaaaaa),
and person’s address (aaaa).

The Attributes for PERSON

 For each aaaaaa, there will be one and only one aaaaa (person’s
name). Te value for aaaaa will not be subdivided.

296 • Database Design Using ER Diagrams

 For each aaaaaa, there will be one and only one aaaa (person’s
Social Security number). Te value for aaaa will not be subdivided.

 For each aaaaaa, there will be one and only one aaaaaa (person’s
phone). Te value for aaaaaa will not be subdivided.

 For each aaaaaa, there will be one and only one aaaa (person’s
 address). Te value for aaaa will not be subdivided.

The Keys

 For each aaaaaa, we will assume that the aaaa will be unique.
 Tese entities have been added to the diagram in Figure 10.9.
Using step 6 to determine the structural constraints of relationships, we

obtain the following:

FIGURE 10.9
Final ER Diagram of West Florida Mall.

AA AA A A

A A A AA AA A A A A

AA AA A A A A

A A A A A A A A A A

AAA
AA AA A A A

AAAA

aaaa
AaaaaA AaaaaaaaA

aaaaa
AaaaaA AaAaaaaA AaaaaA AaaaaaaaaaA AaaaaaaA AaaaAaaaAA

aaaaa
AaaaaaaA AaaaaaAaaaaaaA AaaaaA

aaaaaaaaaa
AAaaaaaAA AAAaaaaAAA AAaaaaAAAAaaaaAA

aaaaaaaa
AaAaaaAA AaaaaA AaaaaA AaaaaaaA AaaaaA

AaaaaaaA
AaaaaA AaaaaaAA AaaaaAA AaaaaaaAA

AaaaaaaaaaaaaaA
AAAaaaaaaAAA AAaaaaAA AaAaAaA

Te Enhanced Entity-Relationship (EER) Model • 297

As shown in Figure 10.9, there is a disjoint relationship between aaaaaa
and aaaaaaaaaaaaa, aaaaa, and aaaaaaaa.

Tis means a person may be an owner, store manager, or an employee (a
disjoint generalization/specialization relationship).
To map this relationship, we would normally have:

 Because aaaaaa has the felds of Social Security number (aaaa),
name (aaaaa), address (aaaa), and phone number (aaaaaa) and may
be an owner, store manager, or an employee (a disjoint) generalization/
specialization relationship, we removed some of the attributes from the
original entities. For example, in the aaaaaaaa entity, we no longer
need to keep the aaaaa feld since this can be obtained from aaaaaa
as long as we have the ssno of the employee. Also, because aaaa is actu-
ally the same feld as aaaa in aaaaaaaa, aaAaAaaa in aaaaa, and
aaaaaa in aaaaaaaaaaaaa, we do not need to include aaaa in
aaaaaaaa, aaaaa, or aaaaaaaaaaaaa again.

AA A A

A A AA A A A

AA A A

AAA

AAA
AA A A A A

AA A A A A

AAA
AA A A

So, in summary, our relational database would fnally develop to (with-
out the data):

aaaa
AaaaaAA AaaaaaaaAA

aaaaa
AaaaaAA AaaaaaAA AaaaaAA AaaaaaaaaaAA AaaaaaaAA AAaaaaaaAA

aaaaa
AaaaaaaAA A AaaaaaaAAaaaaa

AaaaaaaaaaaA
AAaaaaaAA AAAaaaaAAA AAaaaaAA

AaaaaaaaaA
AaaaaAA AaaaaAA AaaaaAA AaaAaAaaaAA

aaaaaa
AaaaaAA AaaaaaAA AaaaaAA AaaaaaaAA

AaaaaaAaaaaaaaA
AaaaaaaAA aAaAaAAaAaAaA

 Tis ends our case study.

298 • Database Design Using ER Diagrams

BIBLIOGRAPHY

Connolly, T., Begg, C., and Strachan, A. (1998). Database Systems, a Practical Approach to
Design, Implementation, and Management. Harlow, UK: Addison-Wesley.

Elmasri, R., and Navathe, S.B. (2016). Fundamentals of Database Systems. Reading, MA:
Addison-Wesley.

Sanders, L. (1995). Data Modeling. Danvers, MA: Boyd and Fraser.
Teorey, T.J., Nadeau, T., and Lightstone, S.S. (2005). Database Modeling and Design: Logical

Design. San Francisco, CA: Morgan Kaufman.

11
Relational Mapping and Reverse
Engineering ER/EER Diagrams

11.1 INTRODUCTION

Throughout this book, we have developed rules for mapping entity-
relationship (ER) and enhanced entity-relationship (EER) diagrams
to a relational database. In this chapter, we present a summary of the
mapping rules and then discuss reverse engineering—starting with
the database and working backward to an ER/EER diagram. We of en
fnd databases exist without an ER/EER diagram to accompany them.
Te ER/EER diagram is documentation—just as computer programs
require documentation, so do databases. Terefore, we have included a
chapter on reverse engineering. As we did previously, for reverse engi-
neering we present a series of steps to develop an ER/EER diagram from
tables and data.

11.2 STEPS USED TO MAP ER/EER DIAGRAMS
TO RELATIONAL DATABASES

In this section, we present a summary of the steps we have developed
to map an ER/EER diagram to a relational database. In following these
steps, the resulting relational tables should be close to the third normal
form (3NF). Tese rules do not preclude the usual exercise of checking
the resulting database to be absolutely sure it is normalized. If databases
are not normalized, redundancy will likely be present. As much as pos-
sible, the steps should be followed in the order presented to promote

DOI: 10.1201/9781003314455-11 299

https://doi.org/10.1201/9781003314455-11

300 • Database Design Using ER Diagrams

correct mapping to result in tables as close to 3NF as possible. Here are
the steps:

Step 1: Map all the strong entities in the ER diagram.

We start with mapping rule 1 to map strong entities:

Mapping Rule 1—Mapping strong entities. Develop a new table (rela-
tion) for each strong entity and make the indicated key of the
strong entity the primary key of the table. If more than one can-
didate key is indicated on the ER diagram, choose one for the pri-
mary key.

Next, we have to check the mapping of the attributes in the strong entity.
Since the mapping rules are diferent for atomic attributes, composite
attributes, and multivalued attributes, we present each of the mapping
rules separately. First is the mapping rule for mapping atomic attributes:

Mapping Rule 2—Mapping atomic attributes. For entities with atomic
attributes, map the entities to a table and form columns for each
atomic attribute.

In a relational database, all columns have to be atomic. If we have non-
atomic attributes on our diagram, we must make them atomic for map-
ping to the relational database.
For composite attributes, we achieve atomicity by recording only the

component parts of the attribute. Our next mapping rule concerns com-
posite attributes.

Mapping Rule 3—Mapping composite attributes. For entities with
composite attributes, map entities to a table and form columns of
each elementary (atomic) part of the composite attribute.

 Te mapping rule for multivalued attributes is:

Mapping Rule 4—Mapping multivalued attributes. Form a separate
table for the multivalued attribute. Record a row for each value of
the multivalued attribute together with the key from the original
table. Te key of the new table will be the concatenation of the

Relational Mapping and Reverse Engineering • 301

multivalued attribute plus the key of the owner entity. Remove the
multivalued attribute from the original table.

At the end of this step, all the strong entities should be mapped.

Step 2. Map all the weak entities in the ER diagram.

For weak entities, we use mapping rule 11.

Mapping Rule 11—Mapping weak entities. Develop a new table (rela-
tion) for each weak entity. As is the case with the strong entity,
include any atomic attributes from the weak entity in the table.
If there is a composite attribute, include only the atomic parts of
the composite attribute and be sure to qualify the atomic parts
in order not to lose information. To relate the weak entity to its
owner, include the primary key of the owner entity in the weak
entity table. Te primary key of the weak entity table will be the
partial key in the weak entity concatenated to the primary key of
the owner entity.

If the weak entity owns other weak entities, then the weak
entity connected to the strong entity must be mapped f rst. T e
key of the weak owner entity has to be defned before the “weaker”
entity (the one furthest from the strong entity) can be mapped.

 Af er the strong entities are mapped (as per step 1), it is important for
the weak entities to be mapped next since the key of the weak entity is the
key of the strong (owner) entity plus the partial key of the weak entity.
Once all the strong entities and weak entities have been mapped, the

next step is to map the relationships.

Step 3. Map the relationships.

 Te relationships can be mapped in any order. It is most convenient to
begin by mapping binary M:N relationships. At this point, we should have
tables for all the strong and weak entities. Te next section involves add-
ing attributes to these tables or creating new tables to house relationships.

Mapping Rule 5—Mapping M:N relationships. For each M:N rela-
tionship, create a new table (relation) with the primary keys of

302 • Database Design Using ER Diagrams

each of the two entities (owner entities) that are being related in
the M:N relationship. Te primary key of this new table will be
the concatenated keys of the owner entities. Include any attributes
that the M:N relationship may have in this new table.

Next, we will map the binary 1:1 relationships. Mapping 1:M or 1:1 rela-
tionships depends on participation constraints. Most of the rules that fol-
low involve either:

(a) Adding an attribute (a foreign key) to a table created by a previous
mapping rule

(b) Adding a new table in a process similar to mapping M:N relationships

Mapping Rule 6—Mapping binary 1:1 relationships when one side
of the relationship has full participation and the other has par-
tial participation. When one of the sides of the relationship has
full participation and the other has partial participation, then
store the primary key of the side with the partial participation
constraint on the side with the full participation constraint; this
attribute is a foreign key (it is not underlined). Include any attri-
butes on the relationship in the same table to which the key was
added.

Mapping Rule 7—Mapping binary 1:1 relationships when both sides
have partial participation constraints.

When both sides have partial participation constraints in binary 1:1
relationships, the relationships can be mapped in one of two ways:

 Option 1:

Mapping Rule 7A. Select either one of the tables to store the key of
the other as a foreign key.

 Tis choice depends on semantics. Perhaps a safer choice for mapping
this type of relationship is rule 7B:

 Option 2:

Mapping Rule 7B. Depending on semantics, you can create a new
table to house the relationship that would contain the key of the
two related entities.

Relational Mapping and Reverse Engineering • 303

Mapping Rule 8—Mapping binary 1:1 relationships when both sides
have full participation constraints. Use the semantics of the rela-
tionship to select which of the tables should contain the key of the
other. If this choice is unclear, then use mapping rule 7B: create a
separate table to house the relationship.

Now that the M:N relationships and binary 1:1 relationships have been
mapped, the next step will be to map the common binary 1:N relationships.

Mapping Rule 9—Mapping binary 1:N relationships when the N side
has full participation. Include the key of the entity on the 1 side of
the relationship as a foreign key on the N side.

Mapping Rule 10—Mapping binary 1:N relationships when the N side
has partial participation. Tis situation would be handled just
like a binary M:N relationship with a separate table for the rela-
tionship. Te key of the new table would consist of a concatenation
of the keys of the related entities. Include any attributes on the
relationship on this new table.

Partial participation is a problem because it leads to null values. If we
put the key from the 1 side into the N-side table and if the participation is
partial (not every row on the N side has a relationship to the 1 side), then
there will be nulls in the database when it is populated. Terefore, it is bet-
ter to create a separate table for the 1:N relationship and avoid nulls.
Finally, on the subject of 1:N relationships, we should look at Figure 8.2,

where an M:N relationship was converted into two 1:N relationships. T e
result of converting the M:N into two 1:N relationships will result in the
same set of tables from 1:N mappings.
Our next step would be to map recursive relationships.

Mapping Rule 12—Mapping 1:N recursive relationships. Reinclude
the primary key of the table with the recursive relationship in the
same table, giving it some other role name.

Mapping Rule 13—Mapping M:N recursive relationships. Create a
separate table for the relationship (as in mapping rule 5).

We will use mapping rule 14 to map n -ary relationships.

Mapping Rule 14—Mapping n-ary relationships. For each n -ary
relationship, create a new table. In the new table, include the keys

304 • Database Design Using ER Diagrams

of the connected entities and any attributes of the relationship.
Make the keys of the connected entities the concatenated primary
key of the new table.

Next, we map the EER diagram.

Step 4. Mapping generalizations/specializations.
Mapping Rule 15—Mapping generalizations and specializations

with disjoint or overlapping subclasses and with total or partial
participation constraints (with few or many attributes on the spe-
cializations). For each generalization/specialization entity situa-
tion, create one table for the generalization entity (if you have not
done so already per the previous steps) and create one table for
each specialization. Add the attributes for each specialization to
their respective tables (relations). Include the primary key of the
generalization entity in the specialization tables. Te primary key
of the specialization tables will be the same primary key as the
generalization table.

Mapping Rule 16—Mapping generalizations and specializations with
disjoint relationship constraints and total participation between
generalizations and specializations. Create a separate (subclass)
table for each specialization entity. Include the attributes for
each specialization entity in their respective subclass tables. Also
include the primary key and other attributes of the generalization
entity in all the subclass tables. Te primary key of the subclass
tables will be the primary key of the generalization entity.

Mapping Rule 17—Mapping generalizations and specializations with
disjoint relationships, total or partial participation constraints,
and predicate defned with single type attributes. Create a single
table that includes the attributes of the generalization (superclass)
as well as the attributes of the specializations (subclasses). T e pri-
mary key of the table will be the primary key of the generalization
(superclass).

Mapping Rule 18—Mapping overlapping relationships and general-
izations/specializations with more than one f ag. Create a single
table that includes the attributes of the generalization (superclass)
and the attributes of the specializations or subclasses (including
the subclass f ags). Te primary key of the table is the primary key
of the superclass.

Relational Mapping and Reverse Engineering • 305

Mapping Rule 19—Mapping shared subclasses. Te same criteria
used to determine which rule would be best for mapping gener-
alizations and specializations can be applied to mapping shared
subclasses. Tat is, any of the mapping rules 15–18 can be used to
map a shared subclass.

Mapping Rule 20—Mapping categories or union types when super-
classes have same primary keys. Create a new table for the subclass
(or union type) and include the primary key of the superclass (or
superclasses) in the subclass (or union type) as the primary key.
Include the other attributes (if any) of the subclass in this table.
Create separate tables for each of the other superclasses and map
them as you would map regular entities.

Mapping Rule 21—Mapping categories or union types when the
superclasses have diferent primary keys. Create a new table for
the subclass (or union type). Create a surrogate key for this table.
Tis will be the primary key for this table. Include any other
attributes (if any) of this subclass in this table. Create separate
tables for each of the superclasses and map them as you would
map regular entities. Include the surrogate key in the superclass
tables as a foreign key.

Checkpoint 11.1

1. What is the frst mapping rule?
2. Why is it good to frst map strong entities and then map the weak

entities?
3. What would you map afer you map the weak entities?
4. How would you map weak entities of weak entities?
5. While mapping a binary 1:N relationship when the N side has full

participation, why do we include the key of the 1 side of the table
in the N side of the table? What would be wrong if we included
the key of the N side of the table in the 1 side of the table?

6. Why would it be reasonable to map a 1:N binary relationship
with partial participation on the N side like an M:N relationship?

If the rules are followed, the resulting relational database should be at
or close to 3NF. Te next phase of mapping is “checking your work” by
reviewing the table to be sure you are at least in 3NF (refer to Chapter 3).
In brief, checking for 3NF consists of the following steps:

306 • Database Design Using ER Diagrams

1. 1NF—Check that there are no nonatomic attributes in any table.
Nonatomic attributes were dealt with in mapping rule 3 for compos-
ite attributes and mapping rule 4 for multivalued attributes.

2. 2NF—Check that all attributes in all tables depend on the full pri-
mary key. Ask yourself, “Will I always get the same value for attri-
bute Y when I have value X when X is the primary key?” X in this
case could be a concatenated key, and you would be looking for par-
tial dependencies.

3. 3NF—Check for situations for which an attribute is in a table, but
that attribute is better def ned by some attribute that is not the pri-
mary key. Recall that if the primary key in a table is X and X → YZW,
then if Z → W is clearer than X → W, you likely have a transitive
dependency and you would need to normalize.

11.3 REVERSE ENGINEERING

Having developed a methodology to develop ER/EER diagrams and map
them to a relational database, we now turn our attention to the reverse
engineering problem—the issue of taking a relational database and devis-
ing an ER/EER diagram. Ofen, in real-world situations, we f nd ourselves
with a database and have no diagram to show how it was developed. T ere
are several reasons why a reverse engineered diagram (RED) paradigm is
useful.
 Te reversed engineered diagram provides us with a grammatical and

diagrammatic description of the database. Ofen people use databases but
do not understand them because there is no “big picture.” By reverse engi-
neering from the data and tables to the diagram, we can more easily express
the meaning of the database in words. By having the ER/EER diagram of
the relational database and the grammatical expression of the diagram, we
can embellish the database and maintain meaning. Te ER diagram can
also aid greatly in the development of queries on the database.
While the expression reverse engineering might imply we reverse the

steps to create a diagram, we have found it easier to repeat the steps from
the top (more or less) to discover which diagram could have been used to
create the relational database. Te process of reverse engineering is most
easily approached by fnding strong entities and then f lling in the other
parts of the database. Tere is one caveat here in that the steps presented

Relational Mapping and Reverse Engineering • 307

assume the database is in 3NF. If it is not in 3NF, then reverse engineering
may aid in discovering why redundancy exists in the database and hence
suggest some changes.
With ER diagrams and the elucidation process, we proposed drawing

the diagram, adding English descriptions, and presenting the result to
the user. Here, afer this process of reverse engineering is completed, it is
expected that the resulting diagram would be accompanied by an English
version and presented to the users as well. Te sense of this reverse engi-
neering process is much like the original elucidation in that one proceeds
and checks with users to be sure the analysts have it correct. Te rules are
provided as a guideline to move from no ER diagram to a more complete,
documented database. Te following rules are not to be considered rigid
but rather a starting point toward “negotiating” a documented database.
It is likely the ER diagram will evolve, the database may change, and the
users will govern the fnal product. For example, superclasses and sub-
classes can be mapped in several ways. It may be discovered that another
mapping may have been better than the existing one. With no original ER
diagram, many scenarios are possible once the big picture is presented.
We suggest the following rules to afect reverse engineering (Figure 11.1).

11.3.1 Reverse Engineering Rule 1. Develop Strong Entities

For tables with a one-attribute key, draw a strong entity R for that table and
include all the attributes of that table in the entity R on the ER diagram.
For example, if you have a table R(aaAaaAaaAaaAa), a is the key. Create a strong

entity called R and show aaAaaAaaAaAa and a as attributes with a as the key.

FIGURE 11.1
Reverse Engineering Strong Entities.

AA AA A

308 • Database Design Using ER Diagrams

a
AaA AaAA AAaAA AAaAA AAaAA

11.3.2 Reverse Engineering Rule 2. Look for
1:1 and 1:N (1:x) Relationships

As second, third, and additional strong entities are discovered, look for
foreign keys in the tables. Excise the foreign keys from the previous entity
diagram and create a relationship between the entities. Finding foreign
keys in a strong entity most likely indicates a 1:x relationship (and x is
most likely N).
For example, suppose you have two tables that are strong entities.

Suppose you have R as in the previous section and another table, S, S(aAaA
aaAa). a is the key of S. Now, you observe that the key of S, attribute a, is
also in table R. a is a foreign key in R. For the purpose of creating an ER
diagram, remove a from the diagram for R and connect R and S by a 1:N or
1:1 relationship. Te side with the foreign key will be the N side of a 1:N
relationship (see Figure 11.2A).
Here is another example of this situation:

A database has a list of items ordered by some customer:
ITEM(aaaaaaaAaAaaaaaaaaaaaaAaaaaaaAaaaaaaaaA).

And, you have another table for orders like this:
ORDER(aaaaaaaaAaAaaaaaAaaaaaaaaaaa).

 Te aaaaaaaa in the ITEM table is a foreign key since it is the key of
the ORDER table. In this example, we assume aaaaaaa is a unique
identifer for the ITEM table. Te ER diagram for this database is
illustrated in Figure 11.2B.

In all cases of relationships, we must determine the cardinality and the
participation constraints from the semantics of the database as well as
the data itself. Sometimes the way the tables are formed gives a clue. For
example, reverting to the R and S tables, if the R and S tables are as the case
suggests, then it is likely the relationship is N:1, with the N side being R
since R contained a, a foreign key. Te data can be examined to determine
the number of child entries occurring with parent entries that would indi-
cate partial or full participation. Looking for nulls in the data is another
clue to indicating the cardinality and participation constraints. We must

Relational Mapping and Reverse Engineering • 309

FIGURE 11.2A
Reverse Engineering 1:N Relationships.

310 • Database Design Using ER Diagrams

FIGURE 11.2B
Another Example of Reverse Engineering 1:N Relationships.

Relational Mapping and Reverse Engineering • 311

use the word indicate because only the true (albeit unknown) semantics
and the data itself would “prove” the full/partial participation.

11.3.3 Reverse Engineering Rule 2a. Check for
Attributes of the 1:x Relationship

In the ER diagram, if a foreign key is excised from an entity R because
it is the key of S, you have to check to see whether any of the remaining
attributes in R should stay with the entity R. Or should they be placed on a
relationship RS, or be placed with S? Since step 2 is reverse mapping a 1:x
relationship, it may be that an attribute from the 1:x relationship itself was
placed with the foreign key when the original ER diagram was mapped, or
that an attribute was on the relationship itself.
You have to judge where a remaining attribute is more likely to belong. If

it is likely the attribute was defned by the key of an entity, put the attribute
with the entity containing the key. If the attribute requires both keys for its
identity, the attribute should be placed on the relationship RS.

EXAMPLE 11.2
In the case discussed, we removed d from R in the ER diagram because
d was the key of S. Suppose after we create S, we determine that e only
makes sense if we define it in terms of both a and d, the keys of R and S.
This would imply that e was an intersection attribute on the relationship
between R and S and hence would be depicted as such, as shown in
Figure 11.3A.

Reconsider the ORDER database example. If, in our ORDER database, the
items_ordered were uniquely identifi ed by item_no, but the situation was
that items were ordered repeatedly, then the date attribute would have to be
identifi ed by both the item_no and the order_no. In this case, Figure 11.2B
would become Figure 11.3B.

 Tis concludes the reverse mapping of obviously strong tables. We now
look for weak tables and multivalued attributes.

11.3.4 Reverse Engineering Rule 3. Look for Weak
Entities and Multivalued Attributes

Examine the tables for any concatenated keys to see whether they contain
any of the keys of the strong entities. If they do, this could indicate a weak

312 • Database Design Using ER Diagrams

FIGURE 11.3A
Reverse Engineering a Relationship Attribute.

Relational Mapping and Reverse Engineering • 313

FIGURE 11.3B
Reverse Engineering 1:N Relationships with Relationship Attributes.

314 • Database Design Using ER Diagrams

entity, a multivalued attribute, or a table resulting from M:N or higher-
order relationship. Which of these it is may depend on non-key attributes.

11.3.5 Reverse Engineering Rule 3a. Checking for Weak Entities

If there is a table in which there are attributes other than the concate-
nated key (which consists of a foreign key from a strong entity and another
attribute—the partial key), then you probably have a weak entity.
For example, if you have a table:

 SKILL(aaaaaaaAaaaaaaaaaaAaAaaaaaaaaaaaAaa)

 Te concatenated key is aaaaaa and aaaaaaaaaa. Here, aaaaaa is a for-
eign key, and aaaaaaaaaa is not; hence, aaaaaaaaaa would likely be a partial
key of a weak entity. Why a weak entity? Tis is because there is another
attribute, aaaaaaaaaaaAaa, which means we are storing information about
skills for that employee. Here, aaaaaaaaaa is not a unique identifer for the
information presented.
Place the weak entity on the ER diagram along with a relationship to

its owner entity (Figure 11.4). Te relationship is likely to be 1:N::strong
(owner):weak(dependent)::partial:full. Examine the attributes in the weak
entity to determine whether they would have come from the weak entity
or the relationship between the weak entity and its owner. Here, SKILL
is the weak entity, aaaaaaaaaAa is the partial key, and aaaaaaaaaaaAaa is an
attribute of the weak entity SKILL.

11.3.6 Reverse Engineering Rule 3b. Checking
for Multivalued Attributes

 If

(a) Tere are no other attributes other than a concatenated key in a table.
(b) Part of the key is a foreign key from a strong entity.
(c) Te other attribute is not a foreign key.

then it is likely this a multivalued attribute situation. T e multivalued
attribute would have been connected to the strong entity referenced by
the foreign key. Place the multivalued attribute on the entity to which it
belongs as a multivalued attribute (Figure 11.5).

AA

Relational Mapping and Reverse Engineering • 315

FIGURE 11.4
Reverse Engineering Weak Entities.

FIGURE 11.5
Reverse Engineering Multivalued Attributes.

For example, if we have the table:

INSTRUCTOR (aaaaAaAAaaaaaa)

Here, we have a concatenated key and no other attributes. Since aaaa is
likely the key of another entity, (say) PERSON and since aaaaaa is not a

316 • Database Design Using ER Diagrams

likely key, then aaaaaa must be a multivalued attribute. Why not a weak
entity? If it were a weak entity, there would probably be more attributes—
for example, we would be recording information about the degrees for that
person, but we are not doing so in this case.

11.3.7 Reverse Engineering Rule 4. Check for
M:N and n-ary Relationships

Examine the database tables with concatenated keys for multiple occur-
rences of primary keys.

11.3.8 Reverse Engineering Rule 4a. Check for the Binary Case

If there are two foreign keys in the concatenated key of a table, this is likely to
be a table that occurred because of an M:N relationship. In the multivalued
attribute case given, only one of the concatenated key attributes was deemed
to be a foreign key. If the two foreign keys occur along with other attributes
in a table, it is even more than likely that an M:N relationship exists. Place
an M:N relationship between the two owner entities with foreign keys and
include other attributes as relationship attributes (Figure 11.6).
For example, suppose you discover a table called PURCHASE that looks

like this:

 PURCHASE (aaaaaaaaaaAaaaaaaa, aaaaa)

 Suppose aaaaaaaaa is the primary key of an entity called VENDOR, and
aaaaaAaaA is the key of an entity called PART. PARTS are purchased from
 VENDORS. Tese two foreign keys (primary keys of other entities) are a
clear message this is a table formed from an M:N relationship. It is possible
the cardinality could be 1:x, but the M:N relationship is most likely; the
relationship can be deduced from the data. If, for example, there are mul-
tiple occurrences of parts for vendors and multiple vendors for parts, this
is an M:N relationship. If for every part there are several vendors, but every
vendor supplies only one part, then this would be VENDOR:PART::N:1.

11.3.9 Reverse Engineering Rule 4b. Check for the n-ary Case

If there are more than two foreign keys in a table participating as the con-
catenated primary key of the table, this is likely a table occurring because

Relational Mapping and Reverse Engineering • 317

FIGURE 11.6
Reverse Engineering M:N Relationship.

of an n-ary relationship. Tere may well be other attributes in the table
with three or more foreign keys. Place an n-ary relationship (n = number
of foreign keys) between the n entities with foreign keys and include other
attributes as relationship attributes.
For example, if you have the table:

 PURCHASE (aaaaaaaaaaAaaaaaaaaAaaaaaaa, aaaaa)

 Te three foreign keys aaaaaaaaaaAaaaaaaa, and aaaaaaa imply a ter-
nary relationship. Te attribute aaaaa is likely an intersection attribute on
the relationship. In this case, we would say all three keys would be neces-
sary to identify a aaaaa, as shown in Figure 11.7.

318 • Database Design Using ER Diagrams

FIGURE 11.7
Reverse Engineering the n -ary Case.

11.3.10 Reverse Engineering Rule 5. Check for
Generalization/Specialization Relationships

 Tere are several situations to indicate a generalization/specialization
relationship. From Chapter 10 we recall there are a number of ways a given

Relational Mapping and Reverse Engineering • 319

EER diagram with generalization/specialization characteristics can be
mapped to a relational database.

11.3.11 Reverse Engineering Rule 5a. Check for
Generalization/Specialization Relationships
with Disjoint or Overlap Relationships with
Total or Partial Participation Constraints

If the primary key of a larger table with a one-attribute primary key
appears on other (probably smaller) tables as a one-attribute primary key,
there is probably a generalization/specialization relationship. However,
this could also be a category or union type relationship—refer to reverse
engineering rule 7 for reverse engineering the category or union type
relationships. Te larger table is most likely a superclass, so make this a
strong entity/superclass (with the primary key). Te smaller tables are the
subclasses. Te subclass entities will not have a primary key in the EER
diagram but will be shown as overlapping or disjoint subclasses.
For example, if we had the following set of tables in a database:

 M (m, a, b, c, f)
 N (m, d, n)
 O (m, o)
 P (m, p, e)

we can see a is the primary key in all the tables. Since M is the larger table,
it is probably the superclass and N, O, P are subclasses to inherit from M.
Tis set of tables would map to Figure 11.8.
Next, we should try to determine if the subclasses are disjoint or over-

lapping. We do this by looking at the data. If the primary key appears on
one subclass table at a time, that is, if a record or object appears to be in
only one table at a time, then this is probably a disjoint relationship. So we
would place a d in the circle joining the superclass entity to the subclass
entities. If the primary key appears on more than one subclass table at a
time; that is, if a record or object appears to be in more than one subclass
table simultaneously, then this is probably an overlapping subclass situ-
ation. So, we would place an o on the circle joining the superclass entity to
the subclass entities. If the subclasses overlap, then a multivalued attribute
will be necessary in the superclass entity.
To try to determine if the relationship is total or partial, we need to exam-

ine some data. If every primary key (or object or record) in the superclass

320 • Database Design Using ER Diagrams

FIGURE 11.8
Reverse Engineering a Generalization/Specialization Relationship.

table appears on at least one of the subclass tables, this is probably a total
participation subclass/superclass relationship. But, if every primary key
(or object or record) in the superclass table does not appear on at least one
of the subclass tables, this is likely a partial participation relationship.

11.3.12 Reverse Engineering Rule 5b. Check for Disjoint
Generalization/Specialization Relationships
with Single-Predicate-Defined Attributes

If there is a single large table appearing to have predicate-def ned attributes
and values or nulls corresponding to the predicate-defned attributes, this

Relational Mapping and Reverse Engineering • 321

is probably a disjoint generalization/specialization relationship with a
predicate-defned attribute on the superclass. Te superclass entity will
have the primary key and the attributes are not predicate def ned. T e sub-
classes will contain the attributes corresponding to the predicate-def ned
attributes.

11.3.13 Reverse Engineering Rule 5c. Check for
Overlap Generalization/Specialization
Relationship with More Than One Flag

In the case of the overlap generalization/specialization relationship with
more than one f ag, f ags are defning predicates. If there is a single large
table appearing to have more than one fag and several values correspond-
ing to the fags, it is probably an overlapping generalization/specialization
relationship. Te superclass entity will be the large table with the primary
key and the attributes do not correspond to f ags. Te subclass entities will
be composed of the attributes corresponding to the respective f ags.

11.3.14 Reverse Engineering Rule 6. Check
for Shared Subclasses

To determine whether there are shared subclass entities, we need to follow
reverse engineering rules 5a–5c, and we need data to help us determine
if the subclasses are actually shared. If from the data we observe that the
attributes have been inherited from more than one subclass, this would
suggest that this is a shared subclass entity. Te shared subclass entity
would have one primary key inherited from its subclasses.

11.3.15 Reverse Engineering Rule 7. Check
for Categories or Union Types

If the primary key of a table appears on other tables as a primary key, there
could be a category or union type of relationship in which the superclass
entities have the same primary key (but this could also be a generaliza-
tion/specialization relationship; see reverse engineering rule 5a). In this
case, it might be difcult to decipher which are the superclasses in the cat-
egory or union types. We might need the data to help us see which tables
are inheriting from which tables; this will help us determine which are the
superclasses and which are the subclasses.

322 • Database Design Using ER Diagrams

If the primary key of a table appears on other tables as a foreign key,
there could be a category or union type of relationship in which the super-
classes have diferent primary keys; hence, a surrogate key was created,
which was included in the other superclass tables as the foreign key. In this
case, the superclasses would be the tables containing the surrogate key as
the foreign key—these superclasses would have their own primary keys.
Te table containing the surrogate key as the primary key would be the
category or union type.

Checkpoint 11.2

1. What hints would you look for to determine if a relationship is
ternary?

2. What hints would you look for when you are trying to determine
whether tables have weak entities and multivalued attributes
included in them?

3. What hints would you look for to determine if there is a general-
ization/specialization relationship?

4. What hints would help you determine if a shared subclass
exists?

5. What hints would help you determine if a category or union type
of relationship exists?

6. Why is reverse engineering important?

11.4 CHAPTER SUMMARY

In this chapter, we presented a summary of the mapping rules (rules
used to map ER and EER diagrams to relational databases) we devel-
oped throughout the book and then discussed and developed a set of
rules for reverse engineering to ER and EER diagrams from a rela-
tional database.

Relational Mapping and Reverse Engineering • 323

CHAPTER 11 EXERCISES

Exercise 11.1

Come up with an ER diagram for the following relational database:

 R (a, b, c, d, w)
 S (d, e, f)
 T (c, g, h)
 U (c, d, j)
 V (d, k)
 W (aAaAaaAAaAaAa)
 X (AaaAaaAaAaAa)
 Y (a, o, s, t)

Exercise 11.2

Come up with an ER diagram for the following relational database:

 A (a, d)
 B (b, e, f, g)
 C (c, i, j, a, b)
 CL (c, l)
 AB (a, b, h)
 M (b, m, o, n)
 P (b, m, p, r, q)
 ABC (a, b, c, t)

Exercise 11.3

Come up with an EER diagram for the following relational database:

 A (a, b, o, s, t)
 C (a, c)
 D (a, d)
 E (a, e)

324 • Database Design Using ER Diagrams

Exercise 11.4

Come up with an EER diagram for the following database:

 A (a, d, e, f, n)
 B (b , g, h, n)
 C (c, i, j, n)
 D (n)

BIBLIOGRAPHY

Elmasri, R., and Navathe, S.B. (2016). Fundamentals of Database Systems. Redwood City,
CA: Benjamin Cummings.

12
A Brief Overview of the Barker/
Oracle-Like Model

12.1 INTRODUCTION

 Tere are many variations of entity-relationship ER diagrams. One such
model was introduced by Richard Barker (1990). Te Barker model was
adopted and modifed slightly by the Oracle Corporation. In this chapter,
we introduce the conventions used in the Barker/Oracle-like model as it
applies to our ER Design Methodology. We depict major concepts of the
ER diagrams of both Barker and Oracle. Our combined Barker/Oracle-
like model is not meant as a primer on the “pure model” of either party,
but the transition to the ER diagram of Barker or Oracle will be minor.
As you read this chapter, please understand that our attempt to discuss

the Barker, Oracle, or some other model is not to champion “their model”
versus the one presented in this book. Te point of models like these is to
elicit how users view their data and then map whatever model is used to a
relational database. An analyst may want to present several models to make
clear what the user wants and needs. Terefore, this chapter is looking at
the same problem from a slightly dif erent angle to shed light on what is
needed.
Why are we interested in the Barker/Oracle-like model? And why pres-

ent it here? Te Barker/Oracle-like model is common; it is used of en in
Oracle literature. Te pedantic problem with the Barker/Oracle-like model
is one must understand relational database theory fully to understand why
the Barker/Oracle-like model is done the way it is. We present the Barker/
Oracle-like model here because the way it unfolds is a bit diferent from the
Chen-like model. Te Chen-like model focuses on modeling data, whereas
the Barker/Oracle-like model adapts the data to the relational database
concurrently with the design.

DOI: 10.1201/9781003314455-12 325

https://doi.org/10.1201/9781003314455-12

326 • Database Design Using ER Diagrams

 Terefore, the ER design methodology for the Barker/Oracle-like model
will develop diferently from the Chen-like model. Further, the Barker/
Oracle-like model will not have some of the conventions used in the Chen-
like model. For example, the Barker/Oracle-like model does not directly
use the concept of composite attributes, multivalued attributes, or weak
entities, but it handles these concepts immediately in light of the rela-
tional model. Since the Barker/Oracle-like model is so close to the relational
model at the beginning, the mapping rules are trivial—the mapping
takes place in the diagram itself.

12.2 A FIRST “ENTITY-ONLY” ER DIAGRAM:
AN ENTITY WITH ATTRIBUTES

We start with developing a frst, “entity-only” ER diagram in the Barker/
Oracle-like model. To recap our example used previously in the book,
we have chosen a “primary” entity from a student information database:
STUDENT. A student is something we want to store information about
(the defnition of an entity). For the moment, we do not concern ourselves
with any other entities.
What are some initial attributes we used in the STUDENT entity? A stu-

dent has a aaaaaAaaaaaaaaAaaaaaaaAaaaaaAaaaaaa, and aaaaa. We have
picked fve attributes for the entity STUDENT and have chosen a generic
label for each: aaaaaAaaaaaaaaAaaaaaaaAaaaaa, and aaaaa.
We begin our venture into the Barker/Oracle-like model with Figure 12.1A.

A Barker/Oracle-like model uses sof boxes for entities (with the entity name
in capital letters), and there is a line separating the entity name from the
attributes (and the attribute names are in small letters). A Barker/Oracle-like

FIGURE 12.1A
Barker/Oracle-like Notation of ER Diagram with One Entity and Five Attributes.

Overview of Barker/Oracle-like Model • 327

FIGURE 12.1B
Barker/Oracle-like Notation of ER Diagram with One Entity and Five Attributes with
Datatypes Added.

model does not place the attributes in ovals (as the Chen-like model does) but
lists the attributes below the entity name, as shown in Figure 12.1A.
Figure 12.1B shows an ER diagram with one entity STUDENT, and the

attributes aaaaaAaaaaaaaaAaaaaaaaAaaaaa, and aaaaa. In the Oracle-like
version of the Barker/Oracle-like ER diagram, the datatype is also listed
(Figure 12.1B).

12.3 ATTRIBUTES IN THE BARKER/ORACLE-LIKE MODEL

All attributes in a Barker/Oracle-like model are considered simple or
atomic as in relational databases. Te Barker/Oracle-like model does not
have the concept of composite attributes. So, our Barker/Oracle-like adap-
tation will show parts of the composite attributes using a dot (.) notation,
as shown in Figure 12.2.

12.3.1 Optional versus Mandatory Attributes

When designing a database, it is necessary to know whether an entity may
contain an unknown value for an attribute. For example, in the STUDENT
entity (shown in Figure 12.1), suppose the aaaaaaa were optional. In other
words, if data were recorded for a student on a paper data entry form, we
could demand the person fll out aaaa and aaaaaaaAaaaaaa but allow the
person to leave the aaaaaaa blank (i.e., unknown). We would say aaaa
and aaaaaaaAaaaaaa were “mandatory” and aaaaaaa was “optional.”
A missing value is called a null. Hence, the mandatory attribute is said to

be not null. Not null means in no occasion would there be an instance of the

328 • Database Design Using ER Diagrams

FIGURE 12.2
Barker/Oracle-like Notation of an ER Diagram with a Composite Attribute: aaaa.

FIGURE 12.3
Barker/Oracle-like Notation of an ER Diagram with a Primary Key or Unique Identif er
Attribute and Optional and Mandatory Attributes.

entity existing without knowing the value of this mandatory attribute. In
the Barker/Oracle-like ER model, we will show the optional attribute with-
out the not null depiction and the mandatory attribute by adding the phrase
not null to the description (as shown in Figure 12.3). A mandatory attribute
could be a key, but it is not necessarily a key. Mandatory and optional attri-
butes are usually not indicated explicitly in the Chen-like model.
In our Barker model, the primary key has a # in front of the name of the

attribute (as shown in Figure 12.3). A primary key has to be a mandatory
attribute in a relational database, but again, all mandatory attributes here
are not necessarily unique identif ers.

Checkpoint 12.1

1. What do mandatory attributes (in the Barker/Oracle-like model)
translate into in the Chen-like model? Discuss with examples.

Overview of Barker/Oracle-like Model • 329

2. What do optional attributes (in the Barker/Oracle-like model)
translate into in the Chen-like model? Discuss with examples.

3. How are the primary keys shown diagrammatically in the Barker/
Oracle-like model?

12.4 RELATIONSHIPS IN THE BARKER/
ORACLE-LIKE MODEL

In the Barker/Oracle-like model, a relationship is represented by a line
joining two entities. In this model, there is no diamond denoting the
relationship as we saw in the Chen-like model. The relationship phrase
for each end of a relationship is placed near the appropriate entity-
end in lowercase, as shown in Figure 12.4. In this model, from the
STUDENT entity to the SCHOOL entity we would informally state the
relationship as:

 STUDENT s attend SCHOOL S.

And, from the other direction, from the SCHOOL entity to the STUDENT
entity, we would say,

 SCHOOL S are attend ed by STUDENT S.

12.5 STRUCTURAL CONSTRAINTS IN THE
BARKER/ORACLE-LIKE MODEL

In the Barker/Oracle-like notation, the cardinality of 1 is shown by a single
line leading to the entity. In Figure 12.5, a single line joins the two entities,
so this is a 1:1 relationship between the STUDENT and AUTOMOBILE.
Tis means one student may be related to one and only one automobile,
and one automobile can be related to one and only one student.
 Te dashed line leading to an entity signif es optional (partial) partici-

pation of an entity in a relationship. In Figure 12.5, the STUDENT entity
is participating optionally in the relationship, but the AUTOMOBILE
entity is not participating optionally (the latter relationship is mandatory).

330 • Database Design Using ER Diagrams

FIGURE 12.4
Barker/Oracle-like Notation of the STUDENT Entity with a Relationship to the SCHOOL
Entity.

An enhanced grammar from the STUDENT entity to the AUTO-
MOBILE entity would be:

 A STUDENT may drive one and only one AUTOMOBILE.

And, from the AUTOMOBILE entity to the STUDENT entity it would be:

 An AUTOMOBILE must be driven by one and only one STUDENT.

A continuous (solid) line coming from the AUTOMOBILE entity (as
shown in Figure 12.5) signifes mandatory (full) participation of that
entity in a relationship. A dashed line coming from the STUDENT entity
(as shown in Figure 12.5) signifes optional (partial) participation.
As another example, refer to Figure 12.6.

Overview of Barker/Oracle-like Model • 331

FIGURE 12.5
A 1:1 Relationship in the Barker/Oracle-like Notation.

 STUDENT s must occupy DORM s, but a DORM may be occupied by
many STUDENT s.

A cardinality of M (many) is shown by a “crow’s-foot” structure lead-
ing to the respective entity. Figure 12.6 is an example of a 1:M relation-
ship between DORM and STUDENT. Te exact grammar for Figure 12.6
would be:

A DORM may be occupied by zero or more STUDENTs.

 and

 A STUDENT must occupy one and only one DORM.

332 • Database Design Using ER Diagrams

FIGURE 12.6
A 1:M Relationship in the Barker/Oracle-like Notation

Checkpoint 12.2

1. How is the optional relationship shown diagrammatically in the
Barker/Oracle-like model?

2. How is the many relationship shown diagrammatically in the
Barker/Oracle-like model?

3. Show the following using the Barker/Oracle-like notation:

a. A movie theater must show many movies, and movies must be
shown in a movie theater.

b. A movie theater may show many movies, and movies may be
shown in a movie theater.

12.6 DEALING WITH THE CONCEPT OF THE WEAK
ENTITY IN THE BARKER/ORACLE-LIKE MODEL

 Te Barker or Oracle-like models do not have a concept of the “weak
entity,” and the weak entity notation is also not used in Oracle literature.

Overview of Barker/Oracle-like Model • 333

FIGURE 12.7
 Unique Identifer (to Include a Weak Entity-Relationship) Shown by Placing a Bar Across
the Contributing Relationship Line(s).

We extend the concept of the unique identifer in a relationship to include
the weak entity. In the Barker/Oracle-like model, the unique identif er in
a relationship may be diagrammatically shown by a bar cutting across
the contributing relationship, as shown in Figure 12.7. In Figure 12.7, to
uniquely identify a dependent, one needs the employee’s Social Security
number. Tis means the DEPENDENT entity cannot independently stand
on its own and hence is a weak entity. However, here the weak entity would
be mapped as per the mapping rules discussed in Chapter 7.

12.7 DEALING WITH THE CONCEPT OF MULTIVALUED
ATTRIBUTES IN THE BARKER/ORACLE-LIKE MODEL

 Te Barker or Oracle-like models do not have the concept of the “multi-
valued” attribute. Multivalued attributes can be shown as in Figure 12.8,
which shows a student may have attended many schools.

334 • Database Design Using ER Diagrams

FIGURE 12.8
 Te Multivalued Attribute and Te Foreign Key.

In the Barker/Oracle-like model, the foreign key is shown in the appro-
priate entity, whereas in the Chen-like model, foreign keys may not be
“discovered” until the database is mapped and normalized. In this model,
a foreign key is identifed with an asterisk (*) in front of the attribute (see

AAAAA a AAAAAAAAA AAAA

AAAAA AAAA AAAAAa a a AAAAA

Overview of Barker/Oracle-like Model • 335

TABLE 12.1

Sample Data for aaaaaaa in Figure 12.8.
aaaaa aaaaaAaaaaaaaAAAaaaaaAA a

Sumona Gupta 111 Mirabelle Circle, Pensacola, FL
Tom Smith 198 Palace Drive, Mobile, AL
Tony Jones 329 Becker Place, Montgomery, AL
Sita Pal 987 Twin Lane, North Canton, OH
Neetu Singh 109 Bombay Blvd, Calicut, CA

TABLE 12.2

Sample Data for aaaaaa in Figure 12.8.
aaaaaAaaaaaAA a a aAaaaaaaA

Sumona Gupta Ferry Pass Elementary

Sumona Gupta PCA
Sumona Gupta Pensacola High
Tom Smith Mobile Middle School
Tom Smith St. Johns
Tony Jones Montgomery Elementary
Tony Jones Montgomery Middle
Tony Jones Montgomery High
Sita Pal Tagore Primary School
Sita Pal Nehru Secondary School

Figure 12.8). An instance of this database shown in Figure 12.8 is pre-
sented in Tables 12.1 and 12.2.

Checkpoint 12.3

1. Does the Barker-like model or the Oracle-like model have the
concept of the weak entity? Discuss.

2. Show the following using the Barker/Oracle-like notation: For
a student, we are trying to store the student’s name, address,
phone, books (that is, books the student borrows from the
library). Map this to a relational database and show some sam-
ple data.

3. Does the Barker/Oracle-like notation have the concept of the
multivalued attribute? Discuss.

336 • Database Design Using ER Diagrams

12.8 TREATMENT OF FOREIGN KEYS

In the original Barker model, foreign keys were not marked but now an
asterisk is used to identify a foreign key. In the Oracle model, foreign
keys are included in the respective relations. For example, Figure 12.9
says:

 A STUDENT may drive one and only one AUTOMOBILE.

 And,

 An AUTOMOBILE must be driven by one and only one STUDENT.

 Te primary key from the STUDENT relation (the 1 side), aaaaaaaA
aaaaaaA, is included in the AUTOMOBILE relation (the N side). In our
Barker/Oracle-like model, we precede the foreign key with an asterisk (as
shown in Figure 12.9).

12.9 RECURSIVE RELATIONSHIPS IN THE
BARKER/ORACLE-LIKE MODEL

Recursive relationships in the Barker/Oracle-like model are drawn as
shown in Figure 12.10 . Again, the dotted line in the relationship shows
an optional relationship; the solid line would show a mandatory relation-
ship; a “crow’s-foot” would show a many relationship. T e relationships
are named as shown.
 Figure 12.10 shows an EMPLOYEE may supervise other EMPLOYEE s,

and an EMPLOYEE may be supervised by one and only one supervisor
EMPLOYEE. Note the foreign key aaaaaaaaa in the EMPLOYEE relation.

12.10 MAPPING M:N RELATIONSHIPS

Finally, we discuss one important aspect treated diferently in the Barker/
Oracle-like model: the M:N relationship. In the Barker/Oracle-like model,
all M:N relationships are resolved into two 1:M relationships with an

Overview of Barker/Oracle-like Model • 337

FIGURE 12.9
Barker/Oracle-like Notation Showing Foreign Key.

intersection entity in the middle. In the Chen-like model, the M:N may be
presented as two 1:M relationships.
Figure 12.11 is an example of an M:N relationship in the Chen-like format.

In the Barker/Oracle-like model, this would be shown as in Figure 12.12.

338 • Database Design Using ER Diagrams

FIGURE 12.10
Barker/Oracle-like Notation Recursive Relationship.

FIGURE 12.11
An ER Diagram of an M:N Relationship in the Chen-like Model.

Overview of Barker/Oracle-like Model • 339

FIGURE 12.12
Barker/Oracle-like Notation of an M:N Relationship Broken into Two 1:M Relationships.

340 • Database Design Using ER Diagrams

Checkpoint 12.4

1. How are recursive relationships shown in the Barker/Oracle-like
model?

2. Why is it difcult to show M:N relationships in the Barker/
Oracle-like model?

3. How are the foreign keys treated in the Barker/Oracle-like
model?

12.11 CHAPTER SUMMARY

 Tis chapter briefy discussed some of the main features of the Barker/
Oracle-like model. Te one-entity diagram with attributes was pre-
sented. Te idea of optional versus mandatory attributes was discussed.
Relationships and structural constraints were briefy discussed in the
context of the Barker/Oracle-like model. Although the Barker/Oracle-
like notation does not use the concept of the weak entity and multivalued
attributes, we showed how these concepts can be shown diagrammati-
cally in the Barker/Oracle-like notation. An example of the depiction of
the recursive relationship in the Barker/Oracle-like model is illustrated.
Finally, the chapter showed how to map an M:N relationship into two 1:M
relationships. Mapping rules were also discussed in the context of the
Barker/Oracle-like notation

CHAPTER 12 EXERCISES

Exercise 12.1

Redraw Figure 8.17a using the Barker/Oracle notation. Map this to a rela-
tional database and show some sample data.

Exercise 12.1

Redraw Figure 8.7 using the Barker/Oracle notation. Map this to a rela-
tional database and show some sample data.

Overview of Barker/Oracle-like Model • 341

BIBLIOGRAPHY

Barker, R. (1990). Case*Method, Entity-Relationship Modeling. Reading, MA: Addison
Wesley.

Hay, D.C. (1996). Data Model Patterns. New York: Dorset House.
Rodgers, Ulka. (1991). ORACLE: A Database Developer’s Guide. Englewood Clif s, NJ:

Prentice-Hall.
Siau, K. (2004). Advanced Topics in Database Research. Hershey, PA: Idea Group.

http://taylorandfrancis.com

Glossary

 Attribute: Data pertaining to an entity. For example, if an entity is
EMPLOYEE, attributes of the entity might be aaaaaAaaaaaaaaA
aaaaaaaaAaA

 Binary relationship: A relationship between two entities.
 Candidate key: An attribute or set of attributes that uniquely identif es

individual occurrences of an entity type (uniquely identifes a row
in a relational table).

 Cardinality ratio: Describes the number of one entity that is related
to another entity. Example: A dorm room may have many
occupants; the cardinality of DORM to OCCUPANT is one to
many (1:M)

 Category: A subclass of a superclass from which the subclass may inherit
attributes of the superclass; also referred to as union type of super-
class to subclass.

 Composite attribute: An attribute composed of multiple components,
each with an independent existence. Example: the composite
attribute aaaa is usually stored as a aaaaaaAaaaaA aaaaaaaaaaA
aaaaaaa. T e name. is called a “qualif er.”

 Database: A shared collection of logically associated or related data.
Degree of a relationship: Te number of participating entities in a

relationship.
 Derived attribute: An attribute where a value is calculated or derived

from other data. Example: A aaaaaaaa.aaa is derived from A
 Entity: “Something” in the real world that is of importance to a user and

that needs to be represented in a database so that information
about the entity may be recorded. An entity may have a physical
existence (such as a student or building) or it may have conceptual
existence (such as a course).

 Entity set: A collection of all entities of a particular entity type.
 Entity type: A set of entities of the same type.
First normal form (1NF): A table arrangement whereby the domain of all

attributes in the table must include only atomic (simple, indivis-
ible) values.

 343

344 • Glossary

 Foreign key: An attribute referring to a primary key of another table. A
foreign key is how relationships are implemented in relational
databases.

 Full participation: All of one entity set participates in a relationship.
 Functional dependency: A relationship between two attributes in a rela-

tion. Attribute Y is functionally dependent on attribute X if attri-
bute X identifes attribute Y. For every unique value of X, the same
value of Y will always be found.

 Generalization: Te process of minimizing the diferences between enti-
ties by identifying their common features and removing the com-
mon features into a superclass entity.

 Hierarchical model: All data are arranged in a top-down fashion. All
relationships have the cardinality one to many (1:M).

 Identifying owner: Te strong entity (the owner) on which a weak entity
is dependent.

 Identifying relationship: A relationship of a strong/weak entity where by
the weak entity is identifed by the owner entity.

 Key: An attribute that uniquely identifes a row of a table.
 Mandatory relationship: All of one entity set must participate in a rela-

tionship. Also known as full participation.
 Many to many: Many rows in one table are related to many rows in another

table. Example: Many CUSTOMERs buy many PRODUCTs. Such
a relationship ofen has intersection data such as price or date sold.

 Many to one: Many rows of one table can be related to one only one row
of another table. Example: Many PATIENTs are examined by one
 DOCTOR or many STUDENT s attend one SCHOOL .

 Mapping: Te process of taking an agreed-to conceptual model (the ER dia-
gram) and creating tables in a database based on the ER diagram.

 Multivalued attribute: An attribute that may have multiple values for a
single entity.

 One to many: A relationship where one row of a table can be related to
more than one row in another table. Example: An EMPLOYEE
may have many DEPENDENT s.

 One to one: A relationship where one row of a table can be related to only
one row of another table. Example: An EMPLOYEE possesses
one ID_CARD.

 Optional participation: A relationship structural constraint specifying a
relation may exist. Example: A PERSON may be a fan of a base-
ball TEAM .

Glossary • 345

Participation constraint (also known as optionality): Determines whether
all or some of an entity occurrence is related to another entity.
Example: A CUSTOMER in a restaurant may buy WINE .

 Primary key: A unique identifer for a row in a table in a relational data-
base; a selected candidate key of an entity.

 Recursive relationship: A relationship among entities in the same class.
Example: An EMPLOYEE is supervise d by another EMPLOYEE .

 Relation: A populated table containing single-value entries and no dupli-
cate rows. Te meaning of the columns is the same in every row,
and the order of the rows and columns is immaterial, but once
fxed never changes.

 Relationship: An association between entities.
 Reverse engineering: Te process of going from relational tables to a logi-

cal model (or ER diagram). A backward mapping process used for
documenting an existing database.

 Second normal form: A relation that is in frst normal form and in which
each non-key attribute is fully functionally dependent on the pri-
mary key.

 Shared subclass: A subclass of a superclass where the shared subclasses all
inherit the same attributes from the superclass and locally def ned
attributes are shared as well.

 Simple attribute: Attribute that will always be composed of a single value.
 Specialization: Te process of maximizing the diferences between mem-

bers of a superclass entity by identifying their distinguishing
characteristics.

 Specialization hierarchy: A subclass inheriting from only one superclass.
 Specialization lattice: A subclass having more than one subclass as its

parent.
 Strong entity: An entity that is not dependent on another entity for its

existence.
 Structural constraints: Constraints indicate how many of one entity are

related to another entity (as in one or more) and whether the enti-
ties may or must have a relationship. Te cardinality ratio and
participation constraints taken together are called, “structural
constraints.”

 Subclass: An entity type that has a distinct role and is also a member of a
superclass.

 Superclass: An entity type that includes distinct subclasses that are
required to be represented in a data model.

346 • Glossary

 Table: Same as “relation” except that a relation is a populated table; A table
is a tabular view of data that may be used to hold one or more col-
umns of data; an implementation of an entity.

 Tird normal form: A relation that is in second normal form and in
which no non-key attribute is functionally dependent on another
non-key attribute (that is, there are no transitive dependencies in
the relation).

 Union type: A subclass having more than one superclass from which it
may inherit; also referred to as a category.

 Unique identif er: Any combination of attributes or relationships that
serves to uniquely identify an occurrence of an entity (a row in
a table).

 Waterfall model: A series of steps in sofware development where each
step in the process is not repeated once agreed upon. T e process
fows one way.

 Weak entity: An entity that is dependent on some other entity for its
existence.

Index

A

abstraction, describing databases, 72
 address attribute, 81
 aggregate, 81
 analyst, 4
anomalies, in table maintenance,

48 – 49 , 55
atomic (simple) attributes

about, 79–80, 87
in Barker/Oracle-like model, 327
in classes, 267
 def ned, 34
mapping into relational database,

94–97, 300
 attributes

 address, 81
 atomic, see atomic (simple) attributes
in Barker/Oracle-like model, 326–328
 birthdate, 80
changing to be an entity, 108
columns as, 35, 94
 composite, see composite attribute
concatenated key, 41, 49, 67
 defned, 73, 74, 75
derived, 82, 88
 elementary, 81
group (composite), 80
inheritance of, 265–266, 270, 286–288
intersection, 202, 226, 240, 242
 joining, 280
mandatory and optional, in Barker/

Oracle-like model, 327–328
 multivalued, see multivalued attribute
nonatomic, 34, 96, 306
primary key, see primary key
properties of, 79
in relational database theory, 35
of relationships, 201–204, 213
 sets, 60
simple (atomic), see atomic (simple)

attributes
 specifc attributes, 271

that evolve into entities, 209–213,
214–216

as unique identif er, 79
 augmentation rule, 60 , 64

B

 Barker, Richard, 325
Barker/Oracle-like model, 325 – 341

 attributes, 326–328
cardinality in, 329–331
 exercises, 340
 frst “entity-only” ER diagram, 326–327
foreign keys, 336
mapping M:N relationships, 336–340
multivalued attributes, concept of,

333–335
null and not null, 327–328
 optional vs. mandatory attributes,

327–328
participation, mandatory and optional,

329–331
recursive relationships, 336
 relationships, 329
structural constraints, 329–332
 summary, 340
weak entity, concept of, 332–333

 BCNF (Boyce–Codd normal form), 65 – 67
 binary relationships

mapping to relational database,
159–168, 302–303, see also mapping
binary relationships to relational
database

new entity, 109
patterns of, see patterns of binary

relationships
in reverse engineering, 308–311, 316
second entity, 114
structural constraints, 172
and ternary relationships, 240,

246–247, 254–258
 birthdate attribute, 80

 347

C

348 • Index

bottom up design approach, 269
 Boyce–Codd normal form (BCNF), 65 – 67

candidate key, as unique identifer, 84 , 98
 cardinality

in Barker/Oracle-like model, 329, 331
 maximum, 228
one-to-many relationship, 26–27
ratio of relationship, 129–134
in reverse engineering, 308
structural constraints, 26–27
in weak and strong entities, 184

 cardinality ratio, 129–134
 case study

design extensions for ER diagrams
with binary relationships, 235–237

design of ER diagram, 100–104
design of ER diagram, beyond f rst

entity, 120–128
enhanced entity relationship (EER)

model, 295–298
 relationships/structural constraints,

172–178
weak entities, 194–199

 categories or union types, 286 – 292
 def ned, 286–287
inheritance of attributes, 286–288
mapping when superclasses have

diferent primary keys, 291–292,
305

mapping when superclasses have same
primary keys, 291, 305

participation ratios, 288–290
in reverse engineering, 321–322

 Chen, P. P., 73 , 76
 Chen-like model

cardinality of relationship, 133, 135,
137

compared with Barker/Oracle-like
model, 325–326

ER diagram, 76–79, 84, see also ER
diagrams

multivalued attribute, 84
relationship for new entity, 109, 114
relationships of relationships, 252
 unique identif ers, 84
weak entities, 182

child class, in parent-child hierarchical
relationship, 20 – 25 , 268 – 269

 class hierarchies, 265 – 267
 COBOL, 16 – 17
 columns, 35 , 94
 composite attributes, 80 – 81

in Barker/Oracle-like model, 327
in Chen-like model, 84
 defnition of, 80–81
grammar for, 88
mapping to relational database, 96,

300
 concatenated key, 41 , 49 , 67
 concatenation, 41 , 206
 conceptual model, 72
 coral rings, 26

D

 data
 def ned, 1
 inconsistent, 34
 related, 7
storage and retrieval, 11–12

 data and data models, 11 – 32
 customer f le, 12
customer records, 12–13
database models, 19–28, see also

database models
database systems, 17–18
 felds of data, 12–13
 fle design, 12–13
 fles, records, and data items, 11–14
foreign key, 21
history, moving from 3 × 5 cards to

computers, 14–19
 key, 13
network model, 18, 28–30
relational model, 31
 sequential f les, 16–17
 sofware packages, 16
 summary, 32

 database
 def ned, 1
 def nitions, 73–75

database, building of, with sof ware
engineering process, 1 – 10

 analyst, 4
building a database, 2

Index • 349

description of sof ware engineering
process, 3–7, see also sof ware
engineering process

design of database, 5, 9
elucidation, 4, 5
entity relationship diagrams

and sof ware engineering
life cycle, 7–9

 exercises, 10
requirements for database, 5, 8, 75
 specifcation of database, 5, 8–9
 summary, 9
 systems, 17–18
user, 4, 7–8, 74
waterfall model, 3–4

 database models , 19 – 28 , see also models
 cardinality, 26–27
hierarchical model, 18, 20–28, see also

hierarchical models
logical models, 18, 31
network model, 18, 28–30
relational model, 31, see also relational

databases
relationship terminology, 26–27

 database systems, 17 – 18
 data modeling schema, 71 – 72
 decomposition, 40 , 50 , 65 , 254 – 258
 decomposition rule, 60 – 61
 defning predicate, 272 – 274 , 320 – 321
degree of relationship, 111
 delete anomaly, 49
 derived attribute, 82 , 88
 derived relationship, 224 – 228
design approaches, top down and bottom

up, 269
design methodology steps

EER model, 274–275, 292–294
ER diagram, 75, 88, 92–94
ER diagram, beyond frst entity, 111,

118–119
ER diagram with binary relationships,

extensions in design, 202, 207, 223,
226, 230–232, 235

 relationships/structural constraints,
extending, 146–147, 154–158, 172,
176

ternary and higher-order ER diagrams,
248, 260–261

weak entities, 189–190, 195

 disjoint constraint, 272 – 274
in mapping generalizations or

specializations, 277, 280–282, 304
in reverse engineering, 319–321

double augmentation rule, 64

E

EER model, see enhanced entity
relationship (EER) model

 elementary attribute, 81
 elucidation, 4 , 5
English descriptions, see grammar

descriptions
enhanced entity-relationship (EER)

model, 265 – 298
case study, 295–298
categories or union types, 286–292,

see also categories or union types
 def ned, 265
design approaches: top down and

bottom up, 269
ER design methodology, 274–275,

292–294
 exercises, 294–295
generalizations or specializations, see

generalizations or specializations
grammar for, 275–276
subclasses of subclasses, 283–286
 summary, 294

 entity(ies)
adding more than two, 206–209
 defned, in database, 73–75
entity sets, 73–74
generalizations (broad entities), 74
 instance, 74
integrity constraint, 49
owner (identifying), 180, 182, 184–186
 primary, 74–75
regular (strong), 84, 179
relationship between entities, 73, 74
relationships developing into,

204–206
specializations (narrow entities), 74
 strong, see strong entities
that evolve from attributes, 209–213,

214–216
 weak, see weak entities

 entity integrity constraint, 49 , 54

350 • Index

“entity-only” ER diagrams with attributes,
 76 – 79 , 326 – 327

 entity-relationship (ER) diagram, 71 – 105
attributes in f rst “entity-only”

diagram, 76–79
attribute types and properties, 79–86
case study, 100–104
Chen-like model, 76–79, 84
 database def nitions, 73–75
data modeling schema, 71–72
description of, 72
ER design methodology, 75, 88, 92–94
 exercises, 99–100
grammar for, 87–94
mapping to relational database, 94–98
 sofware engineering life cycle and, 3,

7–9
 summary, 99

entity-relationship (ER) diagram, beyond
frst entity, 107 – 128

attribute or relationship?, 117–119
binary relationship, 111, 114
case study, 120–128
changing attribute to an entity, 108
 defning a relationship for new entity,

109–111
 defning of second entity, 112–116
ER design methodology, 111, 118–119
 exercises, 119–120
existence of relationship, 117
grammar for, 112, 115
mapping to relational database, 124–128
 summary, 119

entity-relationship (ER) diagrams with
binary relationships, extensions in
design, 201 – 238

alternative ER notation to specify
structural constraints on
relationships, 228–230

attributes that evolve into entities,
adding more, 209–213, 214–216

case study, 235–237
derived or redundant relationship,

224–228
ER design methodology, 202, 207, 223,

226, 230–232, 235
 exercises, 234–235
grammar for, 203–204, 206, 231–232

mapping rules for recursive
relationships, 232–233

more than two entities, 206–209
multiple relationships, 206–208,

222–224
recursive relationships, 216–222,

see also recursive Relationships
relationship attributes, 201–204, 213
relationships developing into entities,

204–206
 summary, 234

 equijoin operation, 57 – 59
 ER diagrams

 basic, see entity-relationship (ER)
diagram

 beyond frst entity, see entity-
relationship (ER) diagram, beyond
f rst entity

with binary relationships, see entity-
relationship (ER) diagrams with
binary relationships, extensions in
design

enhanced ER model, see enhanced
entity-relationship (EER) model

reverse engineering, see reverse
engineering from relational
database to ER/EER diagram

ternary and higher-order, see ternary
and higher-order ER diagrams

 exercises
Barker/Oracle-like model, 340–341
data, databases, and sof ware

engineering process, 10
design extensions for ER diagrams

with binary relationships, 234–235
design of ER diagram, 99–100
design of ER diagram, beyond f rst

entity, 119–120
enhanced ER model, 294–295
relational model and functional

dependencies, 68–69
 relationships/structural constraints,

168–172
reverse engineering and relational

mapping, 322–324
ternary and higher-order ER diagrams,

262–263
weak entities, 194

Index • 351

F

 FD, see functional dependency
 felds of data, 12, 72
 fles, 12 , 72

 sequential, 16–17
 fling systems in early computer days, 17
 frst normal form (1NF), 35 , 40 – 43 , 306
 foreign key

in Barker/Oracle-like model, 334, 336
 defned, 21, 41
in intersection entity, 206
in reverse engineering, 308, 314,

316–317
 full optionality/participation, 26 , 135
full participation, see also participation

constraints
constraints, 135, 137, 153
mapping rules, see mapping binary

relationships to relational database
pattern of grammar for, 139, 140,

150–151, 152
in ternary relationships, 249–250

functional dependencies (FD), see also
relational model and functional
dependencies

 defnition of, 38–39
and normal forms, 31
partial dependency, 49
 ref exive, 45
transitive dependency, 55

 functional dependency rules, 59 – 65
augmentation rule, 60, 64
decomposition rule, 60–61
double augmentation rule, 64
 refexive rule, 60
subset rule, 61
transitive rule, 61
union rule, 61

G

 generalizations, see also superclasses
 defnition of, 74, 265–267
 superclasses, 265–267

 generalizations or specializations, 265 – 283
 defnition of, 74, 265–267
ER design methodology, 274–275,

292–294

examples of, 266, 268–274
grammar for relationships, 275–276
join operations, 268–269
mapping rules, 276–282, 304
in reverse engineering, 318–321
 variants, 267–268

 glossary, 343 – 347
 grammar descriptions

for EER model, 275–276
for entities and relationships, 112, 115
for entity, 87–94
for extensions in design of ER

diagrams, 203–204, 206, 231–232
 for n-ary relationships (ternary and

higher-order), 247–252
for relationships and cardinality,

135–147
for weak entities, 190–191

 group attribute, 80 , see also composite
attributes

H

 heirarchy, specialization, 283
 hierarchical models, 18 , 20 – 28

drawbacks of, 27–28
with linked lists, 24–26
multiple-child pointer, 22–23
one-to-many relationships, 26, 27
parent-child relationship, 20–24
parent pointer, 23
structural constraints, 26

 hierarchies, class, 265 – 267
hierarchies in recursive relationships, 219,

 220
 higher-order relationships, 239 , see also

ternary and higher-order ER
diagrams

I

 identifying entity/owner entity, 180 , 182 ,
 184 – 186

 inheritance of attributes, 265 – 266 , 270 ,
 286 – 288

 insert anomaly, 49
instance of an entity, 74
 intersection attribute, 202 , 226 , 240 , 242

L

352 • Index

J

 joining attribute, 280
 join operations, 268 – 269

K

 keys, 13 , 82 – 86
candidate, 84, 98
concatenated, 41, 49, 67
 foreign, see foreign key
grammar for, 88
minimal, 59, 64–65
partial, 182, 191
 primary, see primary key
 surrogate, 291
as unique identif er, 74

 lattice, specialization, 284
 lef-hand side (LHS), 46
life cycle of sofware engineering, 3 – 7 ,

7 – 9
 linked lists, 24 – 26 , 28 , 30

M

magnetic media for data storage, 15, 17
 mandatory participation, 26 , 135 ,

 329 – 330
 many-to-many relationships

in Barker/Oracle-like model, 336–340
cardinality in relationships, 130, 131,

151–153
 defned, 26, 28
mapping to relational database, 160,

301–302
in recursive relationships, 220

 many-to-many-to-many relationship,
 243 – 245

 many-to-one relationship, 28 , 130 , 131 ,
 150 – 151

 mapping, 72 , see also reverse engineering
rules

in Barker/Oracle-like model,
336–340

steps to map ER/EER diagrams to
relational databases, 299–306

mapping binary relationships to relational
database, 159 – 168

rule 5, binary M:N relationships, 160,
301–302

rule 6, 1:1, one side has full
participation, other side has partial
participation, 161, 302

rule 7, 1:1, both sides have partial
participation, 163, 302

rule 7A, store the key, 163, 302
rule 7B, create new table for the key,

164, 302
rule 8, 1:1, both sides have full

participation, 166, 303
rule 9, 1:N, N side has full

participation, 167, 303
rule 10, 1:N, N side has partial

participation, 168, 303
mapping entity diagram to relational

database, 94 – 98 , 102 – 103
rule 1, strong entities, 94–95, 300
rule 2, atomic attributes, 95–96, 300
rule 3, composite attributes, 96–97, 300
rule 4, multivalued attributes, 97–98,

102–103, 300
mapping generalizations and specializations

to relational database, 276 – 282
rule 15, 277–280, 304
rule 16, 280–281, 304
rule 17, 281–282, 304
rule 18, 282, 304

 mapping n-ary relationships to relational
database

rule 14, 259–260, 303–304
mapping recursive relationships to

relational database
rule 12, 1:N, 232, 303
rule 13, M:N, 233, 303

mapping shared subclasses to relational
database

rule 19, 285–286, 305
mapping superclasses, categories or union

types
rule 20, same primary keys, 291, 305
rule 21, diferent primary keys,

291–292, 305
mapping weak entities to relational

database
rule 11, 191–192, 301

Index • 353

 MCP (multiple-child pointer), 22 – 23 , 28
 minimal key, 59 , 64 – 65
min/max notation, 228 – 230
 models

 Barker/Oracle-like, see Barker/Oracle-
like model

 Chen-like, see Chen-like model
 database, see database models
 ER, see ER diagrams
 relational, see relational model and

functional dependencies
 waterfall, 3–4

 multiple-child pointer (MCP), 22 – 23 , 28
 multivalued attributes

Chen-like model, 84
concept of, in Barker/Oracle-like

model, 333–335
 entity-relationship diagram,

81–82, 84
grammar for, 88
mapping to relational database, 97–98,

102–103, 300–301
in reverse engineering, 311–314

N

n -ary relationships, 239 , see also
ternary and higher-order
ER diagrams

negative statements, in grammar, 139, 140,
 141 , 250

 network model, 18 , 28 – 30
many-to-many relationship, 28
repeating group, 29

 nonatomic attributes, 34 , 96 , 306
 normal forms, 31

 frst (1NF), 35, 40–43, 306
second normal form (2NF), 44–52,

306
third normal form (3NF), 52–56, 282,

299–300, 305–306
normalization of tables, 286
 normalized databases, 299
 null

 attributes, 282
 f elds, 13
many nulls, 118
and not null, in Barker/Oracle-like

model, 327–328

O

 object-oriented programming, 266 – 267
 one-to-many relationship

in Barker/Oracle-like model, 331
cardinality in relationships, 130, 132,

147–150
 defned, 26, 27
mapping to relational database,

167–168, 303
in recursive relationships, 219–220
in reverse engineering, 308–311

 one-to-one relationship
cardinality in relationships, 130, 131, 133
mapping to relational database,

161–166, 302–303
in recursive relationships, 219
in reverse engineering, 308

optionality constraints, partial or full, 26,
 135

 optional participation, 135 , 149 , 329 – 330
 Oracle Corporation, 325
 overlapping relationships

 constraint def ned, 272
mapping rule, 282, 304
in reverse engineering, 319–320, 321

 owner entity/identifying entity, 180 , 182 ,
 184 – 186

P

parent-child relationship in hierarchical
model, 20 – 25 , 268 – 269

 partial dependency, 49
 partial keys, 182 , 191
 partial optionality/participation, 26 , 135
 partial participation, 135

mapping rules, see mapping binary
relationships to relational database

and null values, 303
pattern of grammar for, 139, 140, 148,

152–153
in recursive relationships, 219
in ternary relationships, 243, 251–252

 participation constraints, 129 , 134 – 135
in Barker/Oracle-like model, 329–330
for categories or union types, 288–290
full, 135, see also full participation
partial, 135, see also partial participation

354 • Index

in reverse engineering, 308, 319–320
for weak entities, 182

 patterns of binary relationships, 138 – 147
pattern 1, 139, 141–142, 150–151,

158–159, 207
pattern 2, 139–140, 142–143, 149–150
pattern 3, 140, 143–144, 151, 152, 159,

249
pattern 4, 140–141, 144–146, 148–149,

152–153, 207
pattern 5, 250

 pointers, 27 , 30
 predicate defned, 272 – 274 , 320 – 321
 primary entity, 74 – 75
 primary key

in Barker/Oracle-like model, 328
candidate key as, 84
in categories or union types, 291–292
 defning in R, 40
foreign key, 21
in functional dependency, 38, 46
mapping rule, 94–95
of weak entities, 179, 186, 190, 191

 punched cards, 15 , 16

R

 records, 12 , 73
 recursive relationships, 111 , 216 – 222

in Barker/Oracle-like model, 336
hierarchy, 219, 220
 many-to-many, 220
mapping rules, 232–233, 303
 one-to-many, 220
 one-to-one, 219
partial participation of, 219
structural constraints and, 219

RED (reverse engineered diagram), 306
 redundancy, 18 , 53
 redundant relationship, 224 – 228
 refexive functional dependencies, 45
 refexive rule, 60
 regular (strong) entities, 84 , 179
 related data, 7
 relational calculus, 57
 relational databases, 2 , 11 , 33 – 36 ,

see also mapping
mapping generalizations or

specializations, 276–282

 mapping n-ary relationships to, 259–260
mapping of entity diagram to, 94–98,

102–103
mapping recursive relationships,

232–233
mapping relationships to, 159–168
mapping weak entities to, 191–193
and sets, 36–38
steps used to map ER/EER diagrams

to, 299–306
 relational mapping , 299 – 306 , see also

 mapping
 exercises, 323–324
 summary, 322

relational model and functional
dependencies, 31 , 33 – 69

Boyce–Codd normal form, 65–67
equijoin operation, 57–59
 examples, 61–64
 exercises, 68–69
 frst normal form, 40–43
functional dependency, 59–65, see also

functional dependencies (FD)
fundamentals of relational database,

33–36
second normal form, 44–52
sets of attributes, 60
 summary, 68
third normal form, 52–56
two-dimensional tables, 33–34, 42

 relations, 37
 relationship attributes, 201 – 204 , 213
 relationships

in Barker/Oracle-like model, 329
binary, 111, 114, see also binary

relationship
cardinality ratio, 129–134
 defnition of, 73, 74
degree of, 111
derived (redundant), 224–228
developed into entities, 204–206
grammar for, 112
 higher-order, 239
multiple, with two entities, 222–224
 optionality, 26
 recursive, see recursive relationship
of relationships (ternary), 252–254
unclear if possibly is attribute, 117–119
unclear situations, 117

Index • 355

relationships, cardinality ratio of, 26
 many-to-many, see many-to-many

relationships
many-to-one, 28, 130, 131, 150–151
 one-to-many, see one-to-many

relationship
 one-to-one, see one-to-one

relationship
 relationships/structural constraints,

extending, 129 – 178
cardinality ratio of relationship, 129–134
case study, 172–178
ER design methodology, 146–147,

154–158, 172, 176
examples of other relationships,

147–153
 exercises, 168–172
 fnal example, 153–159
grammar for, 135–147
mapping relationships to relational

database, 159–168, see also mapping
binary relationships to relational
database

participation constraints (full/partial),
134–135

patterns of binary relationships,
138–146, see also patterns of binary
relationships

 summary, 168
 repeating group, 29 , 35 , 40
reverse engineered diagram (RED), 306
reverse engineering from relational

database to ER/EER diagram,
 306 – 322

 exercises, 323–324
to model a database, 72
 steps, see reverse engineering rules
 summary, 322

 reverse engineering rules, 306 – 322
rule 1: strong entities, 307
rule 2: 1:1 and 1:N (1:x) relationships,

308–311
rule 2a: attributes of 1:x relationship,

311
rule 3: weak entities and multivalued

attributes, 311–314
rule 3a: weak entities, 314
rule 3b: multivalued attributes,

314–316

rule 4: M:N and n -ary relationships,
316

rule 4a: binary case, 316
rule 4b: n-ary case, 316–318
rule 5: generalization/specialization

relationships, 318–319
rule 5a: relationships with disjoint or

overlap relationships, 319–320
rule 5b: disjoint relationships with

single-predicate-def ned attributes,
320–321

rule 5c: overlap relationships with
more than one f ag, 321

rule 6: shared subclasses, 321
rule 7: categories or union types,

321–322
 rows, 37 – 38 , 94

S

 schema, 72
 SE, see sofware engineering process
 second normal form (2NF), 44 – 52

 anomalies, 48–49
mapping diagrams to database, 306
non-2NF to 2NF, 49–52

 semantic models, 71 , 72
 sets

of attributes, 60
 of fles (entity sets), 73–74
and relational databases, 36–38

 shared subclasses
 def ned, 284
mapping generalizations and

specializations, 285, 305
in reverse engineering, 321
superclass in hierarchy, 286

simple attributes, see atomic (simple)
attributes

 Social Security Number (SSN), 38 , 80 , 84
 sofware engineering life cycle in entity-

relationship diagrams, 7 – 9
 sofware engineering process, 3 – 7

design of database, 5, 9
 development, 6
implementation and user testing, 6
 maintenance, 6
requirements (elucidation), 5, 8, 75
retirement of sof ware, 6–7

356 • Index

 specifcation (with feedback), 4, 5,
8–9, 75

 sofware packages, 16
 specialization hierarchy, 283
 specialization lattice, 284
 specializations, see also generalizations or

specializations ; Subclasses
 defnition of, 74, 265–267
examples of, 266, 268–274
mapping rules, 276–282
 subclasses, 265–267
 variants, 267–268

 specifc attributes, 271
SQL (Structured Query Language), 57
 SSN (Social Security Number), 38 , 80 , 84
 strong entities, 84 – 85

mapping into relational database,
94–95, 300

in reverse engineering, 307
weak entities and, 179–184

structural constraints, see also
 relationships/structural constraints,
extending

alternative notation to specify, on
relationships, 228–230

in Barker/Oracle-like model, 329–332
binary relationships, 240
cardinality and optionality, 26–27
cardinality and participation, 129
 def ned, 129
recursive relationships and, 219
for ternary relationships, 243–245
and weak entities, 184

Structured Query Language (SQL), 57
 subclasses

 defned as specializations, 265–267
example in database design, 268–270
inheritance of attributes, 266, 270
in reverse engineering, 319–320
 shared, see shared subclasses

 subclasses of subclasses, 283 – 286
mapping rule, 285–286
shared subclass, 284
specialization hierarchy, 283
specialization lattice, 284

 subset rule, 61
 superclasses

category or union type and, 286–287
 defned as generalizations, 265, 267
example in database design, 268–270

inheritance of attributes, 266
mapping rules, 291–292, 305
in reverse engineering, 321–322

 surrogate key, 291

T

 tables
 description, 33–35
joins, combination operations, 268–269
normalization of, 286
two-dimensional, 33–34, 42

ternary and higher-order ER diagrams,
 239 – 263

binary or ternary relationship?,
240–243

ER design methodology, 248, 260–261
 exercises, 262–263
grammar for n -ary relationships,

247–252
 mapping n-ary relationships to

relational database, 259–260,
303–304

n-ary relationship, 239
n-ary relationship, example of, 245
n-ary relationships and binary

relationships, 246–247
n-ary relationships resolving into

binary relationships, 254–258
in reverse engineering, 316–318
structural constraints, 243–245
 summary, 261–262
ternary relationships from

relationship-relationship situations,
252–254

 third normal form (3NF), 52 – 56 , 282 ,
 299 – 300 , 305 – 306

 3-ary relationships, 239 , see also ternary
and higher-order ER diagrams

top down design approach, 269
 transitive dependency, 55
 transitive rule, 61
 tuples, 94
 two-dimensional tables, 33 – 34 , 42 , 94

U

 unary relationships, 216 , see also recursive
relationships

 union rule, 61

V

Index • 357

union type, see categories or union types
 unique identif er

attributes as, 79
in Barker/Oracle-like model, 332–333
candidate key as, 84–85
Chen-like ER model, 84
 key, 74
primary key as, 84
strong entities and, 179

 update anomaly, 48 – 49
 users, 4 , 7 – 8

 VARCHAR, 45
 variants, 267 – 268

W

 waterfall model, 3 – 4
 weak entities, 84 , 179 – 200

case study, 194–199

concept of, in Barker/Oracle-like
model, 332–333

connected to other weak entities,
186–188

ER design methodology, 189–190,
195

 exercises, 194
 in generalizations/specializations,

269–270
grammar for, 190–191
identifying/owner entity, 180, 182,

184–186
mapping to relational database,

191–193, 301
in relationship of relationship,

253
in reverse engineering,

311–314
strong and weak entities,

179–184
structural constraints, 184
 summary, 193

	Cover
	Half Title
	Title
	Copyright
	Dedication
	Contents
	Preface
	Acknowledgments
	Authors
	Introduction
	Chapter 1 Data, Databases, and the Software Engineering Process
	1.1 Introduction
	1.2 Data
	1.3 Building a Database
	1.4 What Is the Software Engineering Process?
	1.5 Entity-Relationship Diagrams and the Software Engineering Life Cycle
	1.5.1 Phase 1: Get the Requirements for the Database
	1.5.2 Phase 2: Specify the Database
	1.5.3 Phase 3: Design the Database

	1.6 Chapter Summary
	Chapter 1 Exercises
	Bibliography

	Chapter 2 Data and Data Models
	2.1 Introduction
	2.2 Files, Records, and Data Items
	2.3 Moving From 3 × 5 Cards to Computers
	2.4 Database Models
	2.4.1 The Hierarchical Model
	2.4.1.1 The Hierarchical Model with a Linked List
	2.4.1.2 Relationship Terminology
	2.4.1.3 Drawbacks of the Hierarchical Model

	2.5 The Network Model
	2.6 The Relational Model
	2.7 Chapter Summary
	Bibliography

	Chapter 3 The Relational Model and Functional Dependencies
	3.1 Introduction
	3.2 Fundamentals of Relational Database
	3.3 Relational Database and Sets
	3.4 Functional Dependency
	3.5 Non-1NF to 1NF
	3.6 The Second Normal Form
	3.6.1 Anomalies
	3.6.2 Non-2NF to 2NF

	3.7 The Third Normal Form
	3.8 The Equijoin Operation
	3.9 Some Functional Dependency Rules
	3.10 The Boyce–Codd Normal Form
	3.11 Chapter Summary
	Chapter 3 Exercises
	Bibliography

	Chapter 4 The Basic ER Diagram: A Data Modeling Schema
	4.1 Introduction
	4.2 What Is a Data Modeling Schema?
	4.2.1 What Is an Entity-Relationship Diagram?

	4.3 Defining a Database—Some Definitions: Entity, Relationship, and Attribute
	4.3.1 A Beginning Methodology
	4.3.2 ER Design Methodology

	4.4 A First “Entity-Only” ER Diagram: An Entity with Attributes
	4.5 More about Attributes
	4.5.1 The Simple or Atomic Attribute
	4.5.2 The Composite Attribute
	4.5.3 The Multivalued Attribute
	4.5.4 The Derived Attribute
	4.5.5 Keys

	4.6 English Description of the Entity
	4.6.1 The Method
	4.6.1.1 The Entity
	4.6.1.2 The Attributes
	4.6.1.3 The Keys

	4.6.2 ER Design Methodology
	4.6.3 Examples
	4.6.3.1 Figure 4.3 Example
	4.6.3.2 Figure 4.4 Example
	4.6.3.3 Figure 4.5a Example
	4.6.3.4 Figure 4.6 Example
	4.6.3.5 Figure 4.7 Example

	4.7 Mapping the Entity Diagram to a Relational Database
	4.8 Chapter Summary
	Chapter 4 Exercises
	Case Study
	Notes
	Bibliography

	Chapter 5 Beyond the First Entity Diagram
	5.1 Introduction
	5.2 Examining an Entity: Changing an Attribute to Be an Entity
	5.3 Defining a Relationship for Our New Entity
	5.3.1 ER Design Methodology

	5.4 A Preliminary Grammar for ER Diagrams
	5.4.1 The Relationship

	5.5 Defining a Second Entity
	5.6 Does a Relationship Exist?
	5.7 Attribute or Relationship?
	5.7.1 ER Design Methodology

	5.8 Chapter Summary
	Chapter 5 Exercises
	Case Study
	Bibliography

	Chapter 6 Extending Relationships/Structural Constraints
	6.1 Introduction
	6.2 The Cardinality Ratio of a Relationship
	6.2.1 One to One (1:1)
	6.2.2 Many to One (M:1)
	6.2.3 One to Many (1:M)
	6.2.4 Many to Many (M:N)

	6.3 Participation: Full/Partial
	6.4 English Descriptions
	6.5 Tighter English
	6.5.1 Pattern 1—x:y::k:1
	6.5.2 Pattern 2—x:y::k:1
	6.5.3 Pattern 3—x:y::k:M
	6.5.4 Pattern 4—x:y::k:M
	6.5.5 Summary of the Patterns and Relationships
	6.5.5.1 Pattern 1
	6.5.5.2 Pattern 1
	6.5.5.3 Pattern 2
	6.5.5.4 Pattern 2
	6.5.5.5 Pattern 3
	6.5.5.6 Pattern 3
	6.5.5.7 Pattern 4
	6.5.5.8 Pattern 4

	6.5.6 ER Design Methodology

	6.6 Some Examples of Other Relationships
	6.6.1 An Example of the One-to-Many Relationship (1:M)
	6.6.1.1 Pattern 4–1:M, From the 1 Side, Partial Participation
	6.6.1.2 Pattern 2—M(Partial):1, From M Side, Optional Participation

	6.6.2 An Example of the Many-to-One Relationship (M:1)
	6.6.2.1 Pattern 1—M:1, From the M Side, Full Participation
	6.6.2.2 Pattern 3–1:M, From the 1 Side, Full Participation

	6.6.3 An Example of the Many-to-Many Relationship (M:N)
	6.6.3.1 Pattern 3—M:N, From the M Side, Full Participation
	6.6.3.2 Pattern 4—N:M, From the N Side, Partial Participation

	6.7 One Final Example
	6.7.1 ER Design Methodology
	6.7.1.1 The Entity
	6.7.1.2 The Entity

	6.7.2 Pattern 1—M:1, From the M Side, Full Participation
	6.7.3 Pattern 3–1:M, From the 1 Side, Full Participation

	6.8 Mapping Relationships to a Relational Database
	6.8.1 Mapping Binary M:N Relationships
	6.8.2 Mapping Binary 1:1 Relationships
	6.8.3 Mapping Binary 1:N Relationships

	6.9 Chapter Summary
	Chapter 6 Exercises
	Case Study
	Note
	Bibliography

	Chapter 7 The Weak Entity
	7.1 Introduction
	7.2 Strong and Weak Entities
	7.3 Weak Entities and Structural Constraints
	7.4 Weak Entities and the Identifying Owner
	7.4.1 Another Example of a Weak Entity and the Identifying Owner

	7.5 Weak Entities Connected to Other Weak Entities
	7.6 Revisiting the Methodology
	7.7 Weak Entity Grammar
	7.7.1 The Keys

	7.8 Mapping Weak Entities to a Relational Database
	7.9 Chapter Summary
	Chapter 7 Exercises
	Case Study
	Bibliography

	Chapter 8 Further Extensions for ER Diagrams with Binary Relationships
	8.1 Introduction
	8.2 Attributes of Relationships
	8.2.1 The Attributes

	8.3 Relationships Developing into Entities: The M:N Relationship Revisited
	8.3.1 The Entity
	8.3.1.1 The Attributes
	8.3.1.2 The Keys

	8.4 More Entities and Relationships
	8.4.1 More Than Two Entities
	8.4.1.1 Pattern 4—x:y::1:M, From the 1 Side, Partial Participation
	8.4.1.2 Pattern 1—x:y::M:1, From the M Side, Full Participation

	8.4.2 Adding More Attributes That Evolve into Entities

	8.5 More Evolution of the Database
	8.6 Attributes That Evolve into Entities
	8.7 Recursive Relationships
	8.7.1 Recursive Relationships and Structural Constraints
	8.7.1.1 One-to-One Recursive Relationship (Partial Participation on Both Sides)
	8.7.1.2 One-to-Many Recursive Relationship (Partial Participation on Both Sides)
	8.7.1.3 Many-to-Many Recursive Relationship (Partial on Both Sides)

	8.8 Multiple Relationships
	8.9 The Derived or Redundant Relationship
	8.10 Optional: An Alternative ER Notation for Specifying Structural Constraints on Relationships
	8.11 Review of the Methodology
	8.11.1 ER Design Methodology
	8.11.2 The Entity
	8.11.2.1 The Attributes
	8.11.2.2 The Keys

	8.12 Mapping Rules for Recursive Relationships
	8.13 Chapter Summary
	Chapter 8 Exercises
	Case Study
	Bibliography

	Chapter 9 Ternary and Higher-Order ER Diagrams
	9.1 Introduction
	9.2 Binary or Ternary Relationship?
	9.3 Structural Constraints for Ternary Relationships
	9.3.1 Many to Many to Many (M1:M2:M3)

	9.4 An Example of an n-ary Relationship
	9.5 n-ary Relationships Do Not Preclude Binary Relationships
	9.6 Methodology and Grammar for the n-ary Relationship
	9.6.1 A More Exact Grammar
	9.6.1.1 Pattern 3—M:N, From the M Side, Full Participation
	9.6.1.2 Pattern 3—k:M, from the k Side, Full Participation (k = 1 or N)
	9.6.1.3 Pattern 5 (n-ary)—x:y:z::a:b:c, From the a Side, Full/Partial Participation

	9.6.2 Grammar in a Partial Participation, Ternary Relationship with an M1:1:M2 Relationship

	9.7 Ternary Relationships From Relationship-Relationship Situations
	9.8 n-ary Relationships That May Be Resolved into Binary Relationships
	9.9 Mapping n-ary Relationships to a Relational Database
	9.10 Review of the Methodology
	9.10.1 ER Design Methodology

	9.11 Chapter Summary
	Chapter 9 Exercises
	Bibliography

	Chapter 10 The Enhanced Entity-Relationship (EER) Model
	10.1 Introduction
	10.2 What Is a Generalization or Specialization?
	10.3 Variants
	10.4 Examples of Generalizations or Specializations
	10.5 Methodology and Grammar for Generalization/Specialization Relationships
	10.6 Mapping Rules for Generalizations and Specializations
	10.6.1 Mapping Rule 15
	10.6.2 Mapping Rule 16
	10.6.3 Mapping Rule 17
	10.6.4 Mapping Rule 18

	10.7 Subclasses of Subclasses
	10.7.1 Mapping Rule 19

	10.8 Categories or Union Types
	10.8.1 Participation Ratios in Categories or Union Types
	10.8.2 Mapping Categories or Union Types When Superclasses Have the Same Primary Keys
	10.8.3 Mapping Categories or Union Types When Superclasses Have Different Primary Keys

	10.9 Final ER Design Methodology
	10.9.1 ER Design Methodology

	10.10 Chapter Summary
	Chapter 10 Exercises
	Case Study
	Bibliography

	Chapter 11 Relational Mapping and Reverse Engineering ER/EER Diagrams
	11.1 Introduction
	11.2 Steps Used to Map ER/EER Diagrams to Relational Databases
	11.3 Reverse Engineering
	11.3.1 Reverse Engineering Rule 1. Develop Strong Entities
	11.3.2 Reverse Engineering Rule 2. Look for 1:1 and 1:N (1:x) Relationships
	11.3.3 Reverse Engineering Rule 2a. Check for Attributes of the 1:x Relationship
	11.3.4 Reverse Engineering Rule 3. Look for Weak Entities and Multivalued Attributes
	11.3.5 Reverse Engineering Rule 3a. Checking for Weak Entities
	11.3.6 Reverse Engineering Rule 3b. Checking for Multivalued Attributes
	11.3.7 Reverse Engineering Rule 4. Check for M:N and n-ary Relationships
	11.3.8 Reverse Engineering Rule 4a. Check for the Binary Case
	11.3.9 Reverse Engineering Rule 4b. Check for the n-ary Case
	11.3.10 Reverse Engineering Rule 5. Check for Generalization/Specialization Relationships
	11.3.11 Reverse Engineering Rule 5a. Check for Generalization/Specialization Relationships with Disjoint or Overlap Relationships with Total or Partial Participation Constraints
	11.3.12 Reverse Engineering Rule 5b. Check for Disjoint Generalization/Specialization Relationships with Single-Predicate-Defined Attributes
	11.3.13 Reverse Engineering Rule 5c. Check for Overlap Generalization/Specialization Relationship with More Than One Flag
	11.3.14 Reverse Engineering Rule 6. Check for Shared Subclasses
	11.3.15 Reverse Engineering Rule 7. Check for Categories or Union Types

	11.4 Chapter Summary
	Chapter 11 Exercises
	Bibliography

	Chapter 12 A Brief Overview of the Barker/Oracle-Like Model
	12.1 Introduction
	12.2 A First “Entity-Only” ER Diagram: An Entity with Attributes
	12.3 Attributes in the Barker/Oracle-Like Model
	12.3.1 Optional versus Mandatory Attributes

	12.4 Relationships in the Barker/Oracle-Like Model
	12.5 Structural Constraints in the Barker/Oracle-Like Model
	12.6 Dealing with the Concept of the Weak Entity in the Barker/Oracle-Like Model
	12.7 Dealing with the Concept of Multivalued Attributes in the Barker/Oracle-Like Model
	12.8 Treatment of Foreign Keys
	12.9 Recursive Relationships in the Barker/Oracle-Like Model
	12.10 Mapping M:N Relationships
	12.11 Chapter Summary
	Chapter 12 Exercises
	Bibliography

	Glossary
	Index

