


 

 
  

 
     

     
  

  
 

   

 
 

  

 
 

  
 

 
 

 
 

  
 

 

 

Database Design Using 
Entity-Relationship 

Diagrams 
Essential to database design, entity-relationship (ER) diagrams are known for their 
usefulness in data modeling and mapping out clear database designs. Tey are also well-
known for being difcult to master. With Database Design Using Entity-Relationship 
Diagrams, T ird Edition, database designers, developers, and students preparing to enter 
the feld can quickly learn the ins and outs of data modeling through ER diagramming. 
Building on the success of the bestselling frst and second editions, this accessible 

text includes a new chapter on the relational model and functional dependencies. It 
also includes expanded chapters on Enhanced Entity-Relationship  (EER)  diagrams 
and reverse mapping. It uses cutting-edge case studies and examples to help readers 
master database development basics and defnes ER and EER diagramming in terms 
of requirements (end user requests) and specifcations (designer feedback to those 
requests), facilitating agile database development. T is book 

• Describes a step-by-step approach for producing an ER diagram and developing 
a relational database from it 

• Contains exercises, examples, case studies, bibliographies, and summaries in each 
chapter 

• Details the rules for mapping ER diagrams to relational databases 
• Explains how to reverse engineer a relational database back to an entity-

relationship model 
• Includes grammar for the ER diagrams that can be presented back to the user, 

facilitating agile database development 

The updated exercises and chapter summaries provide the real-world understanding 
needed to develop ER and EER diagrams, map them to relational databases, and test 
the resulting relational database. Complete with a wealth of additional exercises 
and examples throughout, this edition should be a basic component of any database 
course. Its comprehensive nature and easy-to-navigate structure make it a resource that 
students and professionals will turn to throughout their careers. 
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Preface 

Data modeling and database design have undergone signif cant evolu-
tion in recent years. Today, the relational data model and the relational  
database system dominate business applications. Te relational model has 
allowed the database designer to focus on the logical and physical char-
acteristics of a database separately. In this book, we concentrate on tech-
niques for database design with a very strong bias for relational database 
systems using the ER (entity-relationship) approach for conceptual model-
ing (solely a logical implementation). 

INTENDED AUDIENCE

 Tis book is intended to be used for data modeling by database practitio-
ners and students. It is also intended to be used as a supplemental text in 
database courses, systems analysis and design courses, and other courses 
that design and implement databases. Many present-day database and sys-
tems analysis and design books limit their coverage of data modeling. T is 
book not only increases the exposure to data modeling concepts, but also 
presents a step-by-step approach to designing an ER diagram and devel-
oping a relational database from it. 

BOOK HIGHLIGHTS

 Tis book focuses on data modeling using entity-relationship (ER) dia-
grams, presenting (a) an Entity-Relationship (ER) design methodology for 
developing an ER diagram; (b) a  grammar for the ER diagrams that can 
be presented back to the user, facilitating agile database development; and 
(c)  mapping rules to map the ER diagram to a relational database. T e 
steps for the ER design methodology, the grammar for the ER diagrams, 
as well as the mapping rules are developed and presented in a system-
atic step-by-step manner throughout the book. Also, several examples of 
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sample data have been included with relational database mappings to give 
a “realistic” feeling. 
 Tis book is divided into 12 chapters. T e frst three chapters are back-

ground material.  Chapter 1  introduces the concepts of data, the database, 
and sofware engineering.  Chapter 2  presents diferent database mod-
els. Chapter 3  introduces the relational model and discusses functional 
dependencies used to generate third normal form databases. 
From Chapter 4, we start presenting the concept of ER diagrams.  Chapter 4 

introduces the concept of the entity, attributes, relationships, and the “one-
entity” ER diagram. Steps 1, 2, and 3 of the ER design methodology are 
developed in this chapter. Te one-entity grammar and mapping rules for 
the one-entity diagram are presented. 
Chapter 5  extends the one-entity diagram to include a second entity. 

Te concept of testing attributes for entities is discussed, and relation-
ships between the entities are developed. Steps 3a, 3b, 4, 5, and 6 of the ER 
Design Methodology are developed, and grammar for the ER diagrams 
developed up to this point is presented. 
Chapter 6  discusses structural constraints in relationships. Several exam-

ples are given of 1:1, 1:M, and N:M relationships. Step 6 of the ER design 
methodology is revised, and step 7 is developed. A grammar for the struc-
tural constraints and the mapping rules is also presented. 
Chapter 7  develops the concept of the weak entity. Tis chapter revisits 

and revises steps 3 and 4 of the ER design methodology to include the 
weak entity. Again, a grammar and the mapping rules for the weak entity 
are presented. 
Chapter 8  discusses and extends diferent aspects of binary relationships 

in ER diagrams. Tis chapter revises step 5 to include the concept of more 
than one relationship and revises step 6b to include derived and redun-
dant relationships. Te concept of the recursive relationship is introduced 
in this chapter. Te grammar and mapping rules for recursive relation-
ships are presented. 
Chapter 9  discusses ternary and other “higher-order” relationships. 

Step 6 of the ER design methodology is again revised to include ternary 
and other higher-order relationships. Several examples are given, and the 
grammar and mapping rules are developed and presented. 
Chapter 10 discusses enhanced entity-relationships (EERs): generaliza-

tions and specializations, shared subclasses, and categories or union types. 
Once again, step 6 of the ER design methodology is modifed to include 
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generalizations and specializations, and the grammar and mapping rules 
for mapping the EER are presented. 
Chapter 11 gives a summary of the mapping rules and reverse engineer-

ing from a relational database to an ER diagram. Reverse engineering is 
useful to describe existing databases that may have evolved but for which 
no documentation exists. 
Chapters 4–11 present ER and EER diagrams using a Chen-like model. 

In Chapter 12, we discuss the Barker/Oracle-like models, highlighting 
the main similarities and diferences between the Chen-like model and the 
Barker/Oracle-like model. 
In every chapter, we present numerous examples. “Checkpoint” sections 

within the chapters and end-of-chapter exercises are presented in every 
chapter, to be studied by the reader to obtain a better understanding of 
the material within the respective sections and chapters. At the end of 
Chapters 4–10, there is a running case study, with the solution (that is, 
the ER/EER diagram and the relational database with some sample data). 
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Introduction

 Tis book was written to aid students in database classes and to help 
database practitioners in understanding how to arrive at a def nite, clear 
database design using an entity-relationship (ER) diagram. In designing 
a database with an ER diagram, we recognize that this is but one way to 
arrive at the objective: the database. Tere are other design methodologies 
that also produce databases, but an ER diagram is the most common. T e 
ER diagram is a subset of what are called “semantic models.” As we go 
through this material, we occasionally point out where other models dif er 
from the ER model. 
 Te ER model is one of the best-known tools for logical database design. 

Within the database community, it is considered a natural and easy-to-
understand way of conceptualizing the structure of a database. Claims 
that have been made for it include the following: It is simple and easily  
understood by non-specialists; it is easily conceptualized, the basic con-
structs (entities and relationships) are highly intuitive and thus provide 
a natural way of representing a user’s information requirements; and it is a 
model that describes a world in terms of entities and attributes that is most 
suitable for computer-naïve end users. In contrast, many educators have 
reported that students in database courses have dif  culty grasping the 
concepts of the ER approach, particularly in applying them to real-world 
problems. 
We took the approach of starting with an entity and then developing 

from it an “inside-out strategy” (as mentioned in Elmasri and Navathe, 
2016 ). Sofware engineering involves eliciting from a (perhaps) “naïve” 
user what the user would like to have stored in an information system. 
Te process we present follows the sofware engineering paradigm of 
requirements/specifcations, with the ER diagram being the core of the 
specifcation. Designing a sofware solution depends on correct elicita-
tion. In most sofware engineering paradigms, the process starts with a 
requirements elicitation followed by a specifcation and then a feedback 
loop. In plain English, the idea is (a) “tell me what you want” (require-
ments), then (b) “this is what I think you want” (specif cation). T is pro-
cess of requirements/specif cation may (and probably should) be iterative 
so that the user understands what he or she will get from the system and 
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xxviii • Introduction 

the analyst understands what the user wants, facilitating agile database 
development. 
A methodology for producing an ER diagram is presented. T e process 

leads to an ER diagram that is then translated into plain (but meant to be 
precise) English that a user can understand. Te iterative mechanism then 
takes over to arrive at a specif cation (a revised ER diagram and English) 
that both the user and analyst understand. Te mapping of the ER dia-
gram into a relational database is presented; mapping to other logical 
database models is not covered. We feel that the relational database is the 
most appropriate to demonstrate mappings as it is the most used contem-
porary database model. Actually, the idea behind the ER diagram is to 
produce a high-level database model that has no particular logical model 
(relational, hierarchical, object oriented, or network) implied. 
We have a strong bias toward the relational model. Te “goodness” of the 

fnal relational model is testable via the idea of normal forms. T e goodness 
of the relational model produced by a mapping from an ER diagram theo-
retically should be guaranteed by the mapping process. If a diagram is “good 
enough,” then the mapping to a “good” relational model should happen  
almost automatically. In practice, the scenario will be to produce as good an 
ER diagram as possible, map it to a relational model, and then shif the dis-
cussion to discussion of “Is this a good relational model or not?” by using the 
theory of normal forms and other associated criteria of “relational goodness.”
 Te approach we take to database design is intuitive and informal. We 

do not deal with precise defnitions of set relations. We use the intuitive 
“one/many” for cardinality and “may/must” for participation constraints. 
Te intent is to provide a mechanism to produce an ER diagram that can 
be presented to a user in English and to polish the diagram into a specif -
cation that can then be mapped into a database. We then suggest testing 
the produced database by the theory of normal forms and other criteria 
(i.e., referential integrity constraints). We also suggest a reverse-mapping 
paradigm for mapping a relational database back to an ER diagram for the 
purpose of documentation. 

THE ER MODELS WE CHOSE 

We begin our venture into ER diagrams with a “Chen-like” model, and 
most of this book is written using the Chen-like model. Why did we choose 
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this model?  Chen (1976) introduced the idea of the ER diagrams.  Elmasri 
and Navathe (2016) and most database texts use some variant of the Chen 
model. Chen and others have improved the ER process over the years, and 
while there is no standard ER diagram model, the Chen-like model and 
variants thereof are common, particularly in comprehensive database texts. 
In the last chapter, we briefy introduce the “Barker/Oracle-like” model. As 
with the Chen model, we do not follow the Barker or Oracle models pre-
cisely and hence use the term Barker/Oracle-like models in this text. 
 Tere are also other reasons for choosing the Chen-like model over the 

other models. With the Chen-like model, one need not consider how the 
database will be implemented. Te Barker-like model is more intimately 
tied to the relational database paradigm. Oracle Corporation uses an ER 
diagram that is closer to the Barker model. Also, in the Barker-like and 
Oracle-like ER diagram, there is no accommodation for some of the fea-
tures we present in the Chen-like model. For example, multivalued attri-
butes, many-to-many relationships, and weak entities are not part of the 
Barker- or Oracle-like design process.
 Te process of database design follows the agile sof ware engineering 

paradigm, and during the requirements and specifcations phase, sketches 
of ER diagrams are made and remade. It is not at all unusual to arrive at 
a design and then revise it. In developing ER models, one needs to realize 
that the Chen model is developed to be independent of implementation. 
Te Chen-like model is used almost exclusively by universities in database 
instruction. Te mapping rules of the Chen model to a relational database 
are relatively straightforward, but the model itself does not represent any 
particular logical model. Although the Barker/Oracle-like model is popu-
lar, it is implementation dependent on knowledge of the relational data-
base. Te Barker/Oracle-like model maps directly to a relational database; 
there are no real mapping rules for that model. 

BIBLIOGRAPHY 

Chen, P. P. 1976. Te entity-relationship model-toward a unifed view of data,  ACM 
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1 
Data, Databases, and the 
Software Engineering Process 

1.1 INTRODUCTION 

In this chapter, we introduce some concepts and ideas that are funda-
mental to our presentation of the design of a database. We def ne data, 
describe the notion of a database, and explore a process of how to design 
a database. 

1.2 DATA 

Data, as we use the term, are facts about something or someone. For 
example, a person has a name, an address, and a gender. Some data 
(facts) about a specifc person might be “Mary Jo Davis,” “123 4th St.,” 
“Female.” If we had a list of several people’s names, addresses, and gen-
ders, we would have a set of facts about several people. A  database is a 
collection of related data. For this “set of facts about several people” to be 
a database, we would expect the people in the database had something in 
common—that is, they were “related” in some way. Here related does not 
imply a familial relationship, but rather something more like “people who 
play golf,” “people who have dogs,” or “people I interviewed on the street 
today.” In a “database of people,” one expects the people to have some 
common characteristic tying them together. A “set of facts about some 
people” is not a database until the common characteristic is also def ned. 
To put it another way: Why are these people’s names and addresses being 
kept in one list? 
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2 • Database Design Using ER Diagrams 

Checkpoint 1.1 

1. A tree is classifed as a “large oak tree about 100 years old.” What 
are three facts about this tree? 

2. Another tree has the following characteristics: pine, small, 15 
years old. If I write the information about the oak and pine trees 
on a piece of paper, could you consider this a database? Why or 
why not? 

3. Why is the piece of paper not a database of trees? 

1.3 BUILDING A DATABASE 

How do we construct a database? Suppose you were asked to put together 
a database of items one keeps in a pantry. How would you go about doing 
this? You might grab a piece of paper and begin listing items you see. 
When you are done, you should have a database of items in the pantry. 
Simple enough—you have a collection of related data. But take this a step 
further—Is this a good database? Was your approach to database con-
struction a good methodology? Te answer to these questions depends 
in part on why and how you constructed the list and who will use the list 
and for what. Also, will whoever uses the database be able to fnd a fact 
easily? If you are more methodical, you might frst ask yourself how best to 
construct this database before you grab the paper and begin a list of items. 
A bit of pre-thinking will save time in the long run because you plan how 
the list is to be used and by whom. 
When dealing with sofware and computer-related activity like data-

bases, there exists a science of “how to” called sofware engineering (SE). 
SE is a process of specifying systems and writing sofware. To design a 
good database, we will use some ideas from SE. 
In this chapter, we present a brief description of SE as it pertains to plan-

ning our database. Afer this background/overview of SE, we explore data-
base models and in particular the  relational database model. While there 
are historically many kinds of database models, most of the databases in 
use today use a model known as “relational database.” Our focus in this 
book is to put forward a methodology based on SE to design a sound rela-
tional database. 



  

  

  

   
   
    
   

    
 

      
  

  
  

 
      

 
 

   
  

 
  

 
 
 

 
  

   
 

Data, Databases, and Sofware Engineering  • 3 

Checkpoint 1.2 

You have a set of books on bookshelves in your house. Someone asks 
you to create a list of all the books you have. 

1. Who is going to use this list? 
2. When the list is completed, will it be a database? 
3. What questions should be asked before you begin? 
4. What is the question-and-answer procedure in question 3 going 

to accomplish? 

1.4 WHAT IS THE SOFTWARE 
ENGINEERING PROCESS?

 Te term sof ware engineering refers to a process of specifying, designing, 
writing, delivering, maintaining, and fnally retiring sof ware. Sof ware 
engineers ofen refer to the “life cycle” of sof ware; sofware has a begin-
ning and an ending. Tere are many excellent references on the topic of 
SE. Some are referenced at the end of this chapter. 
Some authors use the term sof ware engineering synonymously with 

“systems analysis and design,” but the underlying point is that any infor-
mation system requires some process to develop it correctly. SE spans a 
wide range of information system tasks. Te task we are primarily inter-
ested in here is specifying and designing a database. “Specifying a data-
base” means documenting what the database is supposed to contain and 
how to go about the overall design task itself. 
A basic idea in SE is to build sofware correctly; a series of steps or 

phases is required to progress through a “life cycle.” Tese steps ensure 
that a process of thinking precedes action—thinking through “what 
is needed”  precedes “what sof ware is written.” Further, the “thinking 
before action” necessitates that all parties involved in sof ware devel-
opment understand and communicate with one another. A common 
version of presenting the “thinking before acting” scenario may be 
called a “waterfall” model; the sofware development process is sup-
posed to fow in a directional way without retracing. Like a waterfall, 
once a decision point is passed, it is at best difcult to back up and  
revisit it. 



 

  
 

  
   

 
 

 
 

  

  
 

    

  
  

  
 

 
 

   
  

 
 

  
  

  
 

  
     

 

 
  

4 • Database Design Using ER Diagrams 

Generally, the frst step in the SE process involves formally specifying 
what is to be done. We can break this frst step down into two steps: (a) 
requirement elucidation and (b) agreeing upon a specif cation document. 
Te waterfall idea implies that once the specifcation of the sof ware is 
written and accepted by a user, it is not changed or revisited, but rather 
used as a basis for design. One may liken the overall SE exercise to build-
ing a house. Te elucidation is where you tell a builder what you want. T e 
specifcation document is a formal statement of your wishes. 
To amplify our example, suppose you approach a builder. You say you 

want a three bedroom, two bath house. Te builder then asks questions— 
one or two stories, brick or siding, where do you want a light switch, of -
grade or slab, etc. Te builder then gathers all notes about your wishes, 
organizes the information, and presents the notes for your approval. T e 
builder asking questions is called “elucidation.” Once the builder pres-
ents you with the what the builder thinks are your wishes, the “f nal, 
negotiated wish list,” you have a  specif cation. Tere must be a dialog 
between you and the builder. At some point you and the builder under-
stand what you want, and your wishes are fnalized so the builder can 
move on with the process of designing the house. T e development 
of sofware and databases works the same way as the house example. 
Making the house-process formal ensures the builder does not waste 
time designing something you do not want. Te same is true for design-
ing databases. 
Once the specifcation is agreed upon, the next step is to design the house 

to the specifcation. As the house is designed and the blueprint (design) is 
drawn up, it is not acceptable to revisit the specifcation except for minor 
alterations. Tere must be a “meeting of the minds” at the end of the speci-
fcation phase to move along with the design (blueprint) of the house to 
be constructed. So it is with sofware and database development. Sof ware 
production is a life-cycle process—sofware (a database) is created, used, 
maintained, and eventually retired.
 Te “players” in the sofware development life cycle may be placed 

into two camps, ofen referred to as the user and the  analyst. Sof ware is 
designed by the analyst for the user according to the user’s specif cation. In 
our presentation, we will think of ourselves as the analyst trying to enun-
ciate what the users think they want. Recall the example in this chapter 
about the list of books in the home library. Here, the person requesting the 
list is the user; the person drawing up the list of books is the analyst (a.k.a., 
the sofware writer, the builder or the designer). 



  

  
 

  
 

      
   

      
 
 

  
  

 
 

       
  

  
        

 

 
    

    
 

    
  

  
 

   
 

 

  
 

Data, Databases, and Sofware Engineering  • 5

 Tere is no general agreement among sofware engineers regarding the 
exact number of steps or phases in a sofware development model. Models 
vary depending on the interest of the SE-researcher in one part or another 
in the process. A very brief description of the sofware process follows: 
(Sofware in the following may be taken to mean a database) 

Step 1 (or Phase 1): Requirements. Find out what the user wants/needs. 
T e “fnding-out procedure” is ofen called “elucidation.” 

Step 2: Specif cation. Write out the user’s wants/needs as precisely as 
possible. In this step, the user and analyst document not only what is 
desired but also how much it will cost and how long it will take to go 
into use. A basic principle of SE is to generate sofware on time and on 
budget. Terefore, in addition to making each other understand  
what is wanted/needed, a very essential step is to defne a budget and 
timeline for creating the product. 

Step 2a: Feedback the specifcation to the user. A formal review of the 
specifcation document is performed to see if the (a) the user agrees 
the analyst has correctly enunciated what the user wants, and (b) the 
analyst is satisfed that the user’s requirements are clearly def ned. 

Step 2b: Redo the specifcation as necessary and return to step 2a until 
the analyst and the user both understand one another and agree to 
move on. Remember the waterfall model—once the end of the speci-
fcation phase is reached, one does not go back up stream. 

Step 3: Design—Sofware or a database is designed to meet the speci-
fcation from step 2. As in-house building, now the analyst (the 
builder) knows what is required, so the plan for the sofware is for-
malized—a blueprint is drawn up. 

Step 3a: Sofware design is independently checked against the speci-
f cation. Independent checking of the design indicates the analyst 
has clearly met the specifcation. Note the sense of agreement in 
step 2 and the use of step 2 as a basis for further action. When step 3 
begins, going backward is difcult at best; it is supposed to be that 
way. Perhaps minor specifcation details might be revisited, but the 
idea is to move on once each step is fnished. Once step 3a is com-
pleted, both the user and the analyst know what is to be done. In the 
building-a-house analogy, the blueprint is now drawn up. 

 One fnal point here: In the specifcation, a budget and timeline are pro-
posed by the analyst and accepted by the user. In the design phase, this 



 

  

 

    
     

   
  

  

   

   

 
 

 
 

     
 

  
 

  
 
 

 

 
    

  
 

 

    
  

 

6 • Database Design Using ER Diagrams 

budgetary part of the overall design is sometimes refned. All sof ware 
development takes money and time. Not only is it vital to correctly pro-
duce a given product, but it is also necessary to make clear to all parties 
the expenditure of time and money. 

Step 4: Development. Sofware is written; a database is created. 
Step 4a: In the development phase , sofware, as written, is checked 

against the design until the analyst has clearly met the design. Note, 
the specifcation in step 2 is long past, and only minor modif cations of 
the design would be tolerated here or in Step3. Te point of step 4 is to 
build the sofware according to the design (the blueprint) from step 3. 
In our case, the database is created and populated in this phase. 

Step 5: Implementation. Sofware is turned over to the user to be used 
in the application. 

Step 5a: User tests the sof ware and accepts or rejects it. T e ques-
tion is, “Was the database created correctly? Did it meet the speci-
fcation and design? In our case, the database is queried, data are 
added or deleted, and the user accepts what was created. A person 
may think this is the end of the sofware life cycle, but there are two 
more important steps. 

Step 6: Maintenance. Maintenance is performed on the sofware until it 
is retired. No matter how well specif ed, designed, and written, some 
parts of the sofware may fail. In databases, some data item may need 
to be added or deleted. Perhaps some ancillary tables will need to be 
created. Some parts of the database may need to be modifed over time 
to suit the user or to enhance performance. Times change; demands 
and needs change. Maintenance is a very time-consuming and an 
expensive part of the sofware process—particularly if the SE process 
has not been done well. Maintenance involves correcting hidden sof -
ware faults as well as enhancing the functionality of the sof ware. 

In databases, new data items are ofen required; some old data may no 
longer be needed. Hardware changes. Operating systems change. 
Te database engine itself, which is sofware, is of en upgraded— 
new versions are imposed on the market. Te data in the database 
must conform to change, and a procedure for changing the data in 
the database must be in place. 

Step 7: Retirement. Eventually, whatever sofware is written becomes 
outdated. Tink of old video games that were once state-of-the-art 
and have become old-fashioned and outdated. Database engines, 
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computers, and technology in general are all evolving. Te old sof -
ware package you used on some old personal computer does not 
work any longer because the operating system has been updated, the 
computer is obsolete, and the old sofware must be retired. Basically, 
the SE process must start all over with new specif cations. T e same 
is true with databases and designed systems. At times, the most cost-
efective thing to do is to start anew. 

Checkpoint 1.3 

1. In what phase is the database created? 
2. Which person tests the database? 
3. In what phase does the user say what is wanted in the database? 
4. When you are recording facts about a database, what phase is 

that? 

1.5 ENTITY-RELATIONSHIP DIAGRAMS AND 
THE SOFTWARE ENGINEERING LIFE CYCLE

 Tis text concentrates on steps 1 through 3 of the sof ware life cycle for 
databases. A database is a collection of related data. Te concept of related 
data means a database stores information about one enterprise: a business, 
an organization, a grouping of related people or processes. For example, a 
database might contain data about Acme Plumbing and involve customers 
and service calls. A diferent database might be about the members and 
activities of a church group in town. It would be inappropriate to have data 
about the church group and Acme Plumbing in the same database because 
the two organizations are not related. Again, a database is a collection of 
related data. To keep a database about each of the above entities is f ne, but 
not in the same database. 
Database systems are ofen modeled using an entity-relationship (ER) 

diagram as the blueprint from which the actual database is created; the 
fnalized blueprint is the output of the design phase. Te ER diagram is 
an analyst’s tool to diagram the data to be stored in a database system. 
Phase 1, the requirements phase, can be quite frustrating as the analyst 
has to elicit needs and wants from the user. Te user may or may not be 



 

 
    

 
 

  

 

 
  

 

 

  

    
 

 
  

 
 

  

  

 

      

8 • Database Design Using ER Diagrams 

“computer savvy” and may or may not know the capabilities of a sof ware 
system. Te analyst ofen has a difcult time deciphering a user’s needs 
and wants to create a specifcation that (a) makes sense to both parties 
(user and analyst) and (b) allows the analyst to design ef  ciently. 
In the real world, the user and the analyst may each be committees of 

professionals, but users (or user groups) must convey their ideas to an ana-
lyst (or team of analysts). Users must express what they want and what 
they think they need; analysts must elicit these wants and needs, docu-
ment them, and create a plan to realize the user’s requirements. 
User descriptions may seem vague and unstructured. Typically, users 

are successful at a business. Tey know the business; they understand the 
business model. Te computer person is typically ignorant of the busi-
ness but understands the computer end of the problem. To the computer-
oriented person, the user’s description of the business is as new to the 
analyst as the computer jargon is to the user. We present a methodology 
designed to make the analyst’s language precise so the user is comfortable 
with the to-be-designed database but still provides the analyst with a tool 
to facilitate mapping directly into the database. 
In brief, next we review the early steps in the SE life cycle as it applies to 

database design. 

1.5.1 Phase 1: Get the Requirements for 
the Database 

In phase 1, we listen and ask questions about what facts (data) the user 
wants to organize into a database retrieval system. Tis step of en involves 
letting users describe how they intend to use the data. You, the analyst, 
will eventually provide a process for loading data into and retrieving data 
from a database. Tere is ofen a “learning curve” necessary for the analyst 
as the user explains the system. 

1.5.2 Phase 2: Specify the Database 

Phase 2 involves grammatical descriptions and diagrams of what the 
analyst thinks the user wants. Database design is usually accomplished 
with an ER diagram functioning as the blueprint for the to-be-designed 
database. Since most users are unfamiliar with the notion of an ER dia-
gram, our methodology will supplement the ER diagram with grammati-
cal descriptions of what the database is supposed to contain and  how the 
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parts of the database relate to one another. Te technical description of a 
database can be dry and uninteresting to a user; however, when the ana-
lysts put what they think they heard into English statements, the users and 
the analysts have a better meeting of the minds. For example, if the analyst 
makes statements such as, “all employees must generate invoices,” the user 
may then afrm, deny, or modify the declaration to ft the actual case. As 
we will see, it makes a big diference in the database if “all employees  must 
generate invoices” versus “some employees  may generate invoices.” 

1.5.3 Phase 3: Design the Database 

Once the database has been diagrammed and agreed upon, the ER dia-
gram becomes the fnalized blueprint for construction of the database in 
phase 3. Moving from the ER diagram to the actual database is akin to 
asking a builder of a house to take a blueprint and begin construction. 
As we have seen, there may be more steps in the SE process, but this 

book is about database design and hence the remaining steps of any SE 
model are not emphasized. 

Checkpoint 1.4 

1. Briefy describe the major steps of the SE life cycle as it applies to 
databases. 

2. Who are the two main players in the sofware development life 
cycle? 

3. Why is written communication between the parties in the design 
process important? 

4. What is the blueprint from which the actual database is created 
called? 

5. What are the three important phases of designing a database? 

1.6 CHAPTER SUMMARY

 Tis chapter serves as a background chapter. Te chapter brief y describes 
data, databases, and the SE process. Te SE process is presented as it 
applies to ER diagrams—the database design blueprint. 



  

  

 

   
   

    

     
 

   

     
     

  
 

 
    

  
 

  

    
  

  

10 • Database Design Using ER Diagrams 

CHAPTER 1 EXERCISES 

David operates a golf shop with golf equipment and many customers; his 
primary business is selling retail goods to customers. David wants to keep 
track of everything on a computer. He approaches Kaitlin, who is knowl-
edgeable about computers, and asks her what to do. 

1. In our context, David is a  ; Kaitlin is a  . 
2. When David explains to Kaitlin what he wants, Kaitlin begins writ-

ing what? 
3. When David says, “Kaitlin, this specifcation is all wrong,” what hap-

pens next? 
4. If David says, “Kaitlin, this specifcation is acceptable,” what happens 

next? 
5. If, during the design, Kaitlin realizes David forgot to tell her about 

something he wants, what is Kaitlin to do? 
6. How does Kaitlin get David’s specifcations in the f rst place? 
7. Step 3a from above suggests: “Sofware design is independently checked 
against the specifcation.” What does this mean? How is it do be 
done? 

A good idea here would be for both David and Kaitlin to have someone 
review the database design. In the chapter, we suggested an independent 
evaluation of the database. Perhaps both Kaitlin and David have co-
workers who could and  should review the design of the database before 
proceeding. 

BIBLIOGRAPHY 
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2 
Data and Data Models 

2.1 INTRODUCTION 

In this chapter, we look at the evolution of databases and show how the 
relational database model for designing and using databases came to 
be. Historically, there were many approaches to storing and retrieving 
data, and some older systems may still be used. However, most of the 
databases in use today are based on the relational model. Our objective 
in this book is to design a good relational database. We introduce rela-
tional database as it evolved from historical approaches to data storage 
and retrieval. 
In the next chapter, we introduce the concept of functional dependencies 

to defne what is a good (and a not-so-good) relational database. While the 
aim of this chapter is to acquaint you with a relational database, we will 
explore the evolution of databases because it engenders an appreciation for 
the simplicity and power of the relational model. 

2.2 FILES, RECORDS, AND DATA ITEMS 

Data must be stored in an orderly fashion in a fle of some kind to be use-
ful. Suppose there were no computers—think back to a time when all f les 
were paper documents for a business to keep track of its customers and 
products. A doctor’s ofce kept track of patients. A sports team kept sta-
tistics on its players. In these cases, data was recorded on paper and likely 
kept in a fling cabinet. T e fles with data in them could be referred to as 
a “database.” A database is most simply a repository of data about some 
specifc entity. A customer fle might be as plain and minimal as a list of 
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12 • Database Design Using ER Diagrams 

people who did business with a merchant. Tere are two aspects to f ling: 
storage and retrieval. Some method of storing data to facilitate retrieval is 
most desirable. 
In a fle of customer records, the whole fle might be called the customer 

f le, whereas the individual customer’s information is kept in a customer 
record. Files consist of records. More than likely, more information than 
a list of just customer’s names would be recorded. At the very least, a cus-
tomer’s name, address, and phone number could constitute a customer 
record. Each of these components of the record is called a data item or  
f eld. Te customer  f le contains customer records consisting of f elds of 
data. 
Table 2.1  presents an example of some data (you can imagine each line 

as a 3 × 5 card, with the three cards [three records] making up a f le).
   T is fle contains three records with one record for each customer. T e 

records each consist of four felds: record number, name, address, and 
city. As more customers are added, their data will be recorded on a new 
3 × 5 card (a new record) and placed in the customer fle. Several inter-
esting questions and observations arise for the merchant keeping this 
information: 

1. Te merchant may well want to add information, such as a telephone 
number, in the future. Would you add a phone number to all 3 × 5 
cards, or would the adding be done “as necessary”? If it were done 
“as necessary,” then some customers would have telephone numbers, 
and some would not. If a customer had no phone number on the 
record, then the phone number for that customer would be “null.” 
(We use the term “null” to mean “unknown.”) 

2. How will the fle be organized? Imagine not three customers, but 300 
or 3,000. Would the 3 × 5 cards be put in alphabetical order? Perhaps, 
but what happens if you get another A. McDonald or S. Claud? Or, 
what if you wanted to fnd addresses more ofen than you wanted to 

TABLE 2.1 

Sample Data for aaaaaaaaAaaaa. 
Record 1 McDonald, A 123 4th St Mobile, AL 

Record 2 Claud, S 452 Main St Pensacola, FL 

Record 3 Jarzin, D 92 Adams Lane Elberta, AL 



  

   
  

   
 

    

 
 

    
  

  
 

  
  

     

    
  

   
  

   

    
 

 

  

   
  

 
  

 

 

Data and Data Models • 13 

fnd names? T e feld on which the fle is organized is called a  key. 
Perhaps the fle should be organized by telephone number or address 
rather than name. Te key is a handle with which to fnd data. Keys 
should be unique, but what if there exists a duplicate value for a key? 

3. Suppose the fle were organized by telephone number. What if the 
telephone number for a customer were not recorded because you 
either didn’t know the number or the customer didn’t have a phone? 
If there were no telephone number, the common terminology is to 
say the telephone feld for that record is null. It would make no sense 
to have the fle organized by telephone number if some values were 
null. Clearly, the key of a fle cannot be null. Also, note if telephone 
number were the key to the customer fle, then the person seeking a 
customer record in the fle would have to know the phone number to 
fnd the appropriate record ef  ciently. 

4. Te format of the fle above is: 

AaaaaaaaaaaaaaaaaaaaaaaaAaaaaaAaaaaaaaaAaaaaaA

 Te format of the fle dictates the order of the felds in any record. In this 
record, record number is frst, followed by a name, and so on. T e f le 
design could have the felds in some other order, but once def ned, the 
order of the felds stays constant. 
If a telephone number feld were added, then the fle format could be: 

AaaaaaaaaaaaaaaaaaaaaaaaAaaaaaAaaaaaaaaAaaaaaAaaaaaaaaaaA

 Tis illustrated shorthand format notation is called a  f le design. If the f le 
were set up to f nd data by name and name were the key, then the name 
would be underlined, as follows: 

aaaaaaaaaaaaaaaaaaaaaaaAAaaaaaAaaaaaaaaAaaaaaAaaaaaaaaaaA 

5. You might ask, “Why not use the record number to organize the 
fle?” On one hand, it is unique (which is desirable for a key), but on 
the other hand, you would have to know the record number to f nd 
a customer. Te example is organized by record number; however, 
imagine 300 or more customers. You want to fnd Claud’s address— 
you would have to know the record number. It makes more sense 
to organize this fle of 3 × 5 cards by name. Taking some of these 



  

    
 

   
    
   
     
       
    

      
 

  

    
 

   
 

     
 

  
 

  

  

 
 

 
  

    

 
     
     
     
     
     
     

     

14 • Database Design Using ER Diagrams 

TABLE 2.2 

Sample Data for Enhanced aaaaaaaaAaaaa. 
Record 1 Adams, A 77 A St Pensacola, FL 555-5847 
Record 2 Charles, X 365 Broad St Mobile, AL 555-8214 
Record 3 Jarzin, H 92 Adams Lane Elberta, AL 555-1234 
Record 4 McDonald, A 22 Pine Forest Pensacola, FL null 
Record 5 McDonald, J 123 4th St Mobile, AL 555-9978 
Record 6 Richard, E 932 Dracena Gulf Breeze, 555-1111 

Way FL 
Record 7 Claud, S 452 Main St Pensacola, FL 555-0003 

points into consideration, Table 2.2 presents an enhanced version of 
the customer fle in which each line represents a 3 × 5 card. 

Checkpoint 2.1 
1. What does it mean to say a feld has unique values? 
2. Why is it desirable to have a key be unique? 
3. Why does a fle have to be organized by a key f eld? 
4. What does null mean? 
5. Consider this customer f le: 

Record 1 77 A St Adams, A Pensacola, 555-5847 
FL 

Record 2 Charles, 365 Broad 555-8214 Mobile, 
X St AL 

Record 3 555-1234 Jarzin, H 92 Adams Elberta, 
Lane AL 

What is wrong here? 

2.3 MOVING FROM 3 × 5 CARDS TO COMPUTERS 

Let us return to our example of a merchant who maintained a customer 
fle on 3 × 5 cards. As time passed, the customer base grew and the mer-
chant desired to keep more information about customers. From a data-
processing standpoint, we would say the enhancement techniques for 
storage and retrieval led to better organized cards, more felds, and per-
haps better ways to store and fnd individual records. 



  

  
 

  

  
 

  
 

 
 
 
 

  
   

  
   

 
   

 
  

 
  

 
 

 
 
 

  
 

 
  

 

 

Data and Data Models • 15 

Some questions arise: Were customer records kept in name-alphabetical 
order? Were the records stored by telephone number or record number 
(which might also be a customer number)? What happens if a feld not on 
existing forms or cards were required? If data is added or changed, how 
much will the record formats change? Such were data-processing dilem-
mas of the past. 
When computers began to be used for businesses, data was stored on 

magnetic media. Te magnetic media were mostly disks and tapes. T e 
way data was stored and retrieved on a computer started out like the 3 
× 5 cards, but the magnetic data was virtual. It did not physically exist 
where you could touch it or see it without some kind of sof ware to 
load and fnd records. Further, a display device to see what the “3 × 5 
card” had on it was required. Prior to about 1975, the most common 
way data was fed into a computer was via punched cards. Punched card 
systems for handling data were in use as early as the 1930s; sorters were 
capable of scanning and arranging a pile of cards. Using punched cards to 
input data into computers was common in the 1960s because it was known 
technology. Te output or “display device” was typically a line printer. 
As data was placed on a computer, sofware was developed to handle the 

data and fling techniques evolved. In the very early days of databases, the 
fles kept on computers basically replicated the 3 × 5 cards. Tere were many 
problems with computers and databases in the “early days.” (Generally, 
early days in terms of computers and databases means roughly early-to-mid 
1960s.) Some problems involved input (how the data got into the computer), 
output (how the data was to be displayed), and fle maintenance (how the 
data was to be stored and kept up to date, how records were to be added and 
deleted, and how felds were to be added, deleted, or changed). A person 
using a computer for keeping track of data could buy a computer and hire 
programmers, computer operators, and data entry personnel. 
In the early days, computers were expensive and large. Most small busi-

nesses did not have the resources to acquire a computer, much less hire 
people whose jobs were solely “on the computer.” Because of the cost of 
computers and the physical storage demands, early attempts at f ling and 
retrieving data was the purview of large businesses and large organizations. 
If a company bought a computer and all the necessary infrastruc-

ture, the departments within the company would want to keep fles 
of various types on the computer. Suppose the company made some 
product and had several departments (e.g., sales, accounting, and pro-
duction). Each department wanted to keep data about customers. Each 



  

   
 

 
 
 
 
 
 

 
  

  
 

   

 

  

 

  
    

 
      

    

     

     

     

     

     

     

     

16 • Database Design Using ER Diagrams 

department had a diferent view of customers. Te sales department 
wanted to know the name, address, telephone number, and some data 
related to the propensity to buy the product. Te accounting depart-
ment wanted to know roughly the same information but wanted to 
keep track of billing and payments. Production also wanted some of the 
same information but wanted to know what the customer needed in the 
product and how many products they should make. Each department 
wanted roughly similar things, but each approached the problem in a 
dif erent way. 
What actually happened in the early days was each department shared 

the expensive computer but hired its own programming staf to keep “its 
database.” While the sense of sharing the expensive computer was there, 
the sense of sharing data was not. Te idea of a “sofware package” to 
store and retrieve data was not there either. Programmers used computer 
languages like COBOL, RPG, ALGOL, PL/1, and FORTRAN to store and 
retrieve data. Each department created its own records and its own stor-
age and retrieval methods, kept its own programs, and had its own data 
entry groups. 
 Te earliest databases were fling systems maintained by programmers 

using a computer language (typically COBOL). For example, a program-
mer wrote a COBOL program to gather input data on punched cards and 
store the data in a computer f le. Ten, the programmer wrote another 
set of programs to retrieve the data and display it in whatever way a user 
wanted to see it. Early computer fling systems were simple sequential f les. 
Te data on punched cards was read and stored. In Table 2.3, we recon-
sider the customer fle we introduced previously. 
If you could look at the data on a disk, it would look like  Table 2.4. 

TABLE 2.3 

Sample Data for aaaaaaaaAaaaa. 
Record 1 Adams, A 77 A St Pensacola, FL 555-5847 

Record 2 Charles, X 365 Broad St Mobile, AL 555-8214 

Record 3 Jarzin, H 92 Adams Lane Elberta, AL 555-1234 

Record 4 McDonald, A 22 Pine Forest Pensacola, FL null 

Record 5 McDonald, J 123 4th St Mobile, AL 555-9978 

Record 6 Richard, E 932 Dracena Way Gulf Breeze, FL 555-1111 

Record 7 Claud, S 452 Main St Pensacola, FL 555-0003 



  

 

  
 

 
 

    
  

  
 

 
 

 
   

  
  

 

  
 

  
   

 

    

    
    
    
    
    
    

    

Data and Data Models • 17 

TABLE 2.4 

Appearance of Sample Data on Disk. 
Adams, A 77 A St Pensacola, FL 555-5847 
Charles, X 365 Broad St Mobile, AL 555-8214 
Jarzin, H 92 Adams Lane Elberta, AL 555-1234 
McDonald, A 22 Pine Forest Pensacola, FL null 
McDonald, J 123 4th St Mobile, AL 555-9978 
Richard, E 932 Dracena Gulf Breeze, 555-1111 

Way FL 
Claud, S 452 Main St Pensacola, FL 555-0003 

Te records as addressed by COBOL had a structure like this: 

   01 CUSTOMER
 05 NAME  CHARACTER(20) 
 05 ADDRESS  CHARACTER(20) 
 05 CITY-STATE  CHARACTER(25) 
 05 PHONE  CHARACTER(7)

  Te depicted fle above was referred to as a “sequential fle.” If a person 
wanted to see a listing of data by address rather than name, the f le had 
to be sorted and the data redisplayed. If data were added to the fle, it had to 
be put in its proper place according to the sequential key, which in this 
example is the name feld. Early thinking revolved about punched cards 
and lots of sorting—frst sorting punched cards and then techniques for 
sorting data on disks or tapes. 
To fx the drawbacks of sorting and more sorting to retrieve data, 

two other principal fling systems evolved in the 1960s: indexed and the 
direct access fling systems. Tapes were sequential devices capable of  
storing a lot of data. Disks, on the other hand, could store data just like 
tapes but with lower capacity. Disks provided random access capabil-
ity, whereas tapes could not. Hence, sofware systems evolved to take 
advantage of disk storage with non-sequential data access. In the late 
1960s, sofware packages called “database systems” began to emerge. 
Database systems were purchasable programs to store and retrieve data 
as well as perform maintenance (adding, deleting, and modifying f elds 



  

 

 

 
 
 

   
 

 
  

  
 

 
 

    
 

 
  

 
 

 
  

 
 
 
 

 
   

  

18 • Database Design Using ER Diagrams 

and records). With a database system, one did not have to write COBOL 
programs to handle data directly but rather relied on the database pro-
gram to handle data. Programmers used a combination of COBOL and 
some proprietary database languages to maintain data. With these sys-
tems, each department could share data and resources. As databases 
evolved, instead of each department having its own programmers and 
perhaps its own computer, there could be one central computer to store 
data, one programming staf, and one database sofware package. Data 
could and should be shared, with each department having its own view 
of the data. 
All this sounds great, but in reality it took several years to break away 

from the “my data” mold. In addition, hybrid systems emerged focusing 
mainly on retrieval of data. Tis delayed the move to a totally relational 
environment because of the investment companies had in sof ware and 
programmers. 
Why was sharing data a good thing? Sharing not only used expensive 

resources more efciently but also reduced redundancy.  Redundancy 
means storing the same information in diferent places. If each depart-
ment stored its own version of data, its own view of customers, then the 
customer’s name, address, telephone number, and so on were recorded by 
each department. Suppose the customer moved. Ten, each department 
changed its data when it found out that the customer had moved, and 
repeated moves by a customer could easily lead to a customer’s address 
being stored inconsistently—the accounting department might have one 
address, the sales department might have another, etc. Te root problem 
here is the lack of data sharing, and sharing was a central goal of the early 
database systems. 
The early database software evolved into two main data models: the 

hierarchical and the network models. Although the relational model 
for a database was recognized as a desirable technique in the early 
1970s, the relational model was treated as a really good theoretical 
technique for which computers were not fast enough to implement at 
that point.
 Te database models (hierarchical, network, and relational) were logi-

cal models—ways of logically perceiving the arrangement of data in a f le 
structure. One perceived how the data was to be logically stored, and the 
database physically implemented the logical model. As we shall see, there 
is a close relationship between the logical and physical implementations 
of the hierarchical and network models. Since there were no practical 
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relational implementations other than what was then supercomputers at 
research centers, the world of commercial databases in the 1970s involved 
choosing between the hierarchical and network models. T e next sections 
give a little insight into each of these three main models and an introduc-
tion to the relational model. 

Checkpoint 2.2 

1. What is a sequential f le? 
2. What is COBOL? 
3. Why is ordering important in a sequential f ling system? 
4. What is a database program? 
5. In the early days, how was data put into a f le? 

2.4 DATABASE MODELS 

We now take a look back at database models as they were before the  
relational database was practical. Te look back shows why the “old sys-
tems” are considered obsolete and why the relational model is the  de facto 
standard in databases today. Te old systems were classif ed as two main 
database models: hierarchical and network. Tese two models were the 
backbone of database sofware before the 1980s. Although these legacy 
systems might be considered “old fashioned,” there are some systems still 
in use today dependent on these models. 
In this section, we present some versions of the hierarchical model for 

several reasons: 

(a) To illustrate how older models were constructed from f le systems 
(b) To show why these fle-based databases became outdated when rela-

tional databases became practical 
(c) To see the evolution of f le-based systems 

 T e fle systems discussed below are actual ways some database systems 
were written prior to the availability of relational database. Te point here 
is to illustrate the good and bad points of older database systems and to 
show why relational database was and is such an improvement in database 
design and use. 



  

  

  

     

   

   
 

   
  

 

   
  

 
    

   
 
 

 

 

  
 
 

 

 
 
 
 
 
 

20 • Database Design Using ER Diagrams 

2.4.1 The Hierarchical Model 

In hierarchical database models, all data are arranged in a top-down  
fashion in which some records have one or more “dependent” or “child” 
records, and each child record is tied to one and only one “parent.” T e 
parent-child relationship is not meant to infer a human familial relation-
ship. T e terms parent and child are historical and are meant to conjure 
up a picture of one type of data as dependent on another. Another ter-
minology for the parent-child relationship is owner and  objects owned, 
but parent-child terminology is more common. As is illustrated here, the 
“child” records will be sports played by a “parent” person. 
We begin with an example of a hierarchical fle situation. Suppose you 

have a database of people who play a sport at some location. Suppose we 
have a person,  Brenda, who plays  tennis at city courts and who plays  golf at 
the municipal links. Te person, Brenda, would be at the top of the hierarchy, 
and the sport location would be in the second tier. Usually, the connection 
between the layers in the hierarchy is a parent-child relationship. Each par-
ent-person may be related to many child sport locations, but each sport loca-
tion (each child record) is tied back to the  one person (one parent record) 
who plays that particular sport. A way to store this hierarchical database 
could be to have two fles, one fle for person, one fle for sport locations. For 
the two-fle model to make sense (i.e., to have the fles “related” and hence 
be a database), there would have to be pointers or references of some kind 
from one f le to the other. One way to implement a pointer scheme would 
be to have a pointer from the sport (child) to the person (parent) like this: 

AaaaaaaaaaaaaaaaaaaaaaAaaaaaA
 With data: 

1 Brenda 
2 Richard 
3 Abbie 

AaaaaaaaaaaaaaAaaaaaaaaaAaaaaaaaaaAaaAaaaaaaaaAaaaaaaAaaaaaaaA
 With data: 

tennis, city courts, 1 
golf, municipal links, 1 
golf, municipal links, 2 
snorkeling, Pensacola Bay, 2 
running, UWF track, 2 
downhill skiing, Ski Beech, 3 
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FIGURE 2.1 
A Hierarchy of Persons and Sports with Parent Pointers. 

A diagram of this relationship is shown in Figure 2.1. 
 Te actual location of the records on a disk need not be known. T e 

sense of the data is not lost if the locations are disk addresses and if you 
imagine there are thousands of persons and sports. Here, suppose we 
assume the “record address” is a four letter alphanumeric string: 

AaaaaaaaaaaaaaaaaaaaaaaAaaaaaA
 With data: 

A45C, Brenda 
C333, Abbie 
B259, Richard 

aaaaaaaaaaaaaAaaaaaaaaaAaaaaaaaaaAaaAaaaaaaaA
 With data: 

golf, municipal links, B259 
running, UWF track, B259 
downhill skiing, Ski Beech, C333 
snorkeling, Pensacola Bay, B259 
tennis, city courts, A45C 
golf, municipal links, A45C 

This system has a parent-child link—the pointer from child to par-
ent creates a relationship. The “reference to person” in the SPORTS file 
refers to the primary key of the PERSON file and is called a  foreign key 
(FK) because the “reference to person” is a primary key of another file. 
The FK references a primary key, hence completing the relationship of 
one file to the other. If there were no relationship, then you would have 
two independent files with no connection—the system would make 
no sense. 



 

 
 

 

  
 

  
 
 

  
  

   
 

 
 

 
 

 

 

  
  
  

 

 
 
 
 
 
 

   

22 • Database Design Using ER Diagrams 

While we have established the relationship of child to parent in the dis-
cussion, the database has some drawbacks. Te point here is that in any 
database, data should be stored in such a way that the database can be 
queried. Does this mean the database designer has to ask the user what 
questions they are likely to ask? You bet it does. 
To answer a question in this database, “Who plays golf at municipal links?,” 

you start looking at the SPORTS fle, look for “golf at municipal links,” 
and see what parent records there are. Tis question and answer are easy 
enough because you start with the object of the search—a sport. Now if 
your question were, “What sports does Richard play?,” you would have 
to f rst fnd Richard in the PERSON fle to get his record address, then 
look through the SPORTS fle to fnd the links back to Richard. Since the 
SPORTS fle is not organized in a way to facilitate fnding an answer to 
your question, you must look at all instances of all sports to see which, if 
any, pointed to Richard. 
If you were actually implementing this database model, you could 

enhance the system a bit to answer questions starting with the parent. An 
improvement to this model could be to reference each sport from within 
each parent record (let us go back to simple numbers for this): 

AaaaaaaaaaaaaaAaaaaaaaaAaaaaaAaaaaaaAaaaaaaaaaaaA
 With data: 

1 Brenda, (101, 102) 
2 Richard, (103, 104, 105) 
3 Abbie, (106) 

AaaaaaaaaaaaaaAaaaaaaaaaAaaaaaaaaaAaaAaaaaaaaA
 With data: 

101, tennis, city courts, 1 
102, golf, municipal links, 1 
103, golf, municipal links, 2 
104, snorkeling, Pensacola Bay, 2 
105, running, UWF track, 2 
106, downhill skiing, Ski Beech, 3 

Figure 2.2  depicts the relationship between parent and child records in 
both directions. When viewed from the parent, these child-pointer links 
are called a multiple-child pointer (MCP) system. Richard has three point-
ers to child records because in this database he plays three sports. 



  

   
 

 

 

  
   

  

  

   

 
 

 
  

 
 

  

    
 

    
 

     

Data and Data Models • 23 

FIGURE 2.2 
A Hierarchy of Persons and Sports with Parent and Child Pointers. 

When viewed from the child fle, the backward link is called a parent 
pointer. In the SPORTS fle, if a record is examined like: 

106, downhill skiing, Ski Beech, 3 

the pointer-reference to person (3) would be called a parent pointer. T e 3 
points to the parent, Abbie. 
In this model, the relationship between parent and child records is done 

two ways. Te “reference to person” in the SPORTS fle is a link (the FK) 
from child to parent. Te reference to multiple children in the parent 
records is called an MCP (multiple child pointer) scheme. While it is true 
that the MCP is redundant to the relationship, it does two practical things: 

(a) It allows questions to be asked of the system that are easier to answer 
than with just parent pointers. 

(b) It allows the system to be queried without looking at the child records. 

For example, if you ask the question—how many sports does Richard 
play?—you need only look at the person fle and count MCP references. 
We have illustrated two ways to construct a relationship between two 

fles: the FK parent pointer and the MCP. Both of the linking techniques 
are viable database implementations. Te second one, the MCP system, 
was implemented more ofen than the FK system. 
What have we learned so far about hierarchical databases? 

1. Te pointers in the database dictate the ease with which the database 
is queried. 

2. While the child to parent pointers implement the relationship, they 
fall short of being able to easily answer some questions. 

3. Te simple child to parent scheme can be enhanced to better answer 
some questions by adding an MCP system to the plan. 
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4. Te notion of one parent for each child is still in place. We will look 
presently at a system that allows us to go from multiple parents to 
multiple children. However, if you think having parent records link-
ing to multiple child records and vice versa will be complicated, you 
are correct. It will take a lot of pointers. 

5. Staying with just the system presented above with both a parent 
pointer and multiple child pointers, the system is limited in that only 
so many children can be addressed by an MCP system. In an MCP 
system, each parent must have enough predefned pointer spaces for 
as many child records there may be. In the next section, we will see a 
system where the parent-to-child pointer scheme is limitless. 

2.4.1.1 The Hierarchical Model with a Linked List 

Having used the MCP/FK system to construct a hierarchical database, 
we now present a second hierarchical model. Let us look again at the 
above database with child pointers in the parent record (MCP). Now sup-
pose there were more child records than were originally planned. Suppose 
the system was not a person and sports, but students at a school and 
absences. Te student would be the parent record, and the absence records 
would be the child. Now, suppose you designed this system with an MCP 
relationship so a student could have up to 20 absences. What happens when 
the student is absent for the 21st time? One of two things must happen: 

(a) Te MCP system would have to be modifed to include some kind of 
overf ow. 

(b) Some other hierarchical system would have to be used. 

We could, of course, implement this as an FK system and ignore the MCP 
part entirely. But, what happens if you don’t have an MCP component in 
your database? Would not some queries be harder to answer? 
We could implement a diferent system to allow limitless children for a 

parent without using an MCP. Te following fle system uses a “linked list” 
or “chain” system to implement the relationship between parent and child. 
With the same data, the records would set up like this: 

Parent(link to 1st child) 

And, within the child records: 
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Child(link to next child) 

Here is the data from above with this type of arrangement: 

AaaaaaaaaaaaaaaaaaaaaaaAaaaaaAaAaaaAaaaaaaA
 With data: 

1 Brenda (101) 
2 Richard (103) 
3 Abbie (106) 

AaaaaaaaaaaaaaA  aaaaaaaaaA  aaaaA aaA  aaaaA aaaaaA aaaA aaaaA  aaaaaaaaA aA  
aaaaaaaaAaaaaAaaaaaaaaaAaaaAaaaAaaAaaaAaaaaaAaaAaaaaaAaaaaaaaaA

 With data: 

101, tennis, city courts, 102 
102, golf, municipal links, 999 
103, golf, municipal links, 104 
104, snorkeling, Pensacola Bay, 105 
105, running, UWF track, 999 
106, downhill skiing, Ski Beech, 999 

Here, 999 means “no next link.” 
Figure 2.3  illustrates a linked list parent-to-child pointing scheme. In 

this system, we have a link from parent to child that we did not have with 
the FK system alone. Furthermore, the records in both the parent and the 
child are uniform in size. Both the parent and the child records contain 
only one pointer. Also in this system, it would not matter whether a person 
played 1 sport or 100—the system works well if the number of child records 
is unknown or highly variable. If you would argue that fnding a specif c 
child record among 200,000 sport records might be time consuming, you 

FIGURE 2.3 
A Hierarchy of Persons and Sports with a Parent-to-Child Linked List. 
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are 100% correct. If you argue that the system is fragile and if one link is 
lost, the whole thing goes down, you are correct again. While this linked 
list system may look somewhat fragile, it formed the basis for several of 
the most successful commercial databases. As you might expect, the basic 
linked list included enhancements such as direct links back to the parent, 
forward and backward links, and links that skipped along the chain in one 
direction and not in the other (coral rings). All these enhancements were 
the fodder of database design in the 1970s. 

2.4.1.2 Relationship Terminology 

Having seen how to implement relationships in hierarchical databases, 
we need to tighten some language about how relationships are formed. 
Relationships in all database models have what are called  structural con-
straints. A structural constraint consists of two notions: cardinality and 
optionality. Cardinality is a description of how many of one record type 
relate to the other and  vice versa. 
Suppose we implement a database about a person and their books. We 

have a person (parent record) and books (children records). In our data-
base, if a person can own multiple books and each specifc book can have 
only one named person-parent, we would say the cardinality of the rela-
tionship is one-to-many: One person relates to one or more books and 
a specifc book has only one person-owner in the database. T is one-to-
many relationship is abbreviated 1:M; the  cardinality of the relationship 
of person-to-book is said to be 1:M. 
If the situation were such that a person might have multiple books and 

a book might be claimed by more than one person, then the cardinality 
would be many-to-many: Many persons relate to many books. Many to 
many is abbreviated M:N (as in M of one side relates to N on the other side, 
and M and N are generally not equal). 

Optionality refers to whether one record may or must have a correspond-
ing record in the other fle. If a person may or may not have books, then 
the optionality of the person to book relationship is optional or partial. If 
the books in the database  must be “related to” or “assigned to” somebody, 
then the optionality of book to person is mandatory or full. 
Further, relationships are always stated in both directions in a database 

description. We would say, for example, 

People may have zero or more books, 
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 and 

Books must be associated with one and only one person. 

Note the person to book, one-to-many cardinality and the optional/ 
mandatory nature of the relationship. We will return to this language, 
but it is easy to see that the way a database is designed depends on the 
description of it. If the description is clear and unambiguous, then the 
likely outcome of database design is far more predictable. Hopefully, this 
clarifes why such pains are taken in the elucidation/specifcation phase of 
database design to carefully express how each relationship is to be imple-
mented. It will make a diference in the implementation of the database 
whether “Books must be associated with one and only one person” versus 
“Books may be associated with one and only one person.” 

2.4.1.3 Drawbacks of the Hierarchical Model 

All relationships between records in a hierarchical model have a cardi-
nality of one-to-many or one-to-one, but never many-to-one or many-to-
many. So, for a hierarchical model of employee and dependent, we can 
only have the employee-to-dependent relationship as one-to-many or one-
to-one; an employee may have zero or more dependents. In the hierarchi-
cal model, you could not have dependents with multiple parent-employees. 
As we illustrated, the original way hierarchical databases were imple-

mented involved choosing some way of physically “connecting” the parent 
and the child records. Tink about a paper database and imagine that you 
have looked up information on an employee in an employee f ling cabinet. 
Ten, you want to fnd the dependent records for that employee in a depen-
dent f ling cabinet. One way to implement the employee-dependent rela-
tionship would be to have an employee record point to a dependent record 
and have that dependent record point to the next dependent (a linked list 
of child records). For example, you fnd employee named McDonald. In 
McDonald’s record, there is a notation that McDonald’s f rst dependent 
is found in the dependent fling cabinet, fle drawer 2, record 17. T e “f le 
drawer 2, record 17” is called a pointer and is the connection or relation-
ship between the employee and the dependent. Now, to take this example 
further, suppose the record of the dependent in fle drawer 2, record 17, 
points to the next dependent in fle drawer 3, record 38. Ten that depen-
dent points to the next dependent in fle drawer 1, record 82. 
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As pointed out in the discussion of hierarchical models, the linked 
list approach to connecting parent and child records has advantages 
and disadvantages. For example, some advantages would be that each 
employee has to maintain only one pointer and the size of the linked 
list of dependents is theoretically unbounded. Drawbacks would include 
the fragility of the system, that is, if one dependent record is destroyed, 
then the chain is broken. Further, if you wanted information about only 
one of the child records, you might have to look through many records 
before you f nd it. 
 Te point here is that some system must be chosen to be implemented 

in the underlying database sofware. Once the linking system is chosen, it 
is fxed by the sofware implementation. Te way the link is done must be 
used to link all child records to parents regardless of how ef  cient or inef-
fcient it might be for one situation. 
 Tere are three major drawbacks to the hierarchical model: 

1. Not all situations fall into the one-to-many, parent-child format. 
2. Te choice of the way in which the fles are linked has an impact on 

performance and storage both positively and negatively. 
3. Te linking of parents and child records is done physically. If the 

dependent fle were reorganized, then all pointers would have to be 
reset. 

2.5 THE NETWORK MODEL 

Each of the methods presented for the hierarchical database has advan-
tages and disadvantages. Te network model allows M:N (many-to-many) 
relationships. For example, if we embellished the above database to make 
it M:N, we would want to implement a system of pointers for multiple par-
ents for each child record. How would this be handled? You would most 
likely have to have multiple child-forward links with either a linked list 
or an MCP system in the parent, and parent pointers in the child records 
(perhaps more than one). Te network model alleviated a major concern 
of the hierarchical model because in the network model, one was not 
restricted to having one parent per child; a many-to-many relationship or 
a many-to-one relationship was acceptable. 
To give an example of a network approach, let us revisit the PERSON-

SPORTS example but now allow a sports record to be connected to more 
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than one person. Sample data with more persons and more sports and 
using an MCP system in both directions follow: 

First, the data: 

Brenda: tennis, city courts; golf, municipal 
links 

Richard: golf, municipal links; snorkeling, 
Pensacola Bay; running, UWF track 

Abbie: downhill skiing, Ski Beech 
David: snorkeling, Pensacola Bay; golf, munici-

pal links 
Kaitlyn: curling, Joe’s Skating Rink; downhill 

skiing, Ski Beech 
Chrissy: cheerleading, Mountain Breeze High; 

running, UWF track 

Now, we diagram this conglomeration of data with pointers (we use  
record numbers in each “f le”): 

AaaaaaaaaaaaaaaaaaaaaaAaaaaaAaaaaaaaaaA 
AaaaaaaaaaaaaaaaaaaaaaAaaaaaaAaaaaaaaaaAaaaaAaaaaaaaA 

In each case, the part of the fle description in parentheses such as (who 
plays) is called a repeating group, meaning it can have multiple values. Our 
small, albeit perplexing, database looks like this: 

AaaaaaaaaaaaaaaaaaaaaaAaaaaaAaaaaaaaaaA
 With data: 

1 Kaitlyn, (107, 106) 
2 Abbie, (106) 
3 Brenda, (102, 101) 
4 Chrissy, (108, 105) 
5 Richard, (103, 104, 105) 
6 David, (104, 102) 

AaaaaaaaaaaaaaaaaaaaaaAaaaaaaAaaaaaaaaaAaaaaAaaaaaaaA
 With data: 

101 tennis, city courts, (3) 
102 golf, municipal links, (3, 6) 
103 golf, municipal links, (5) 
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104 snorkeling, Pensacola Bay, (5, 6) 
105 running, UWF track, (4, 5) 
106 downhill skiing, Ski Beech, (2, 1) 
107 curling, Joe’s Skating Rink, (1) 
108 cheerleading, Mountain Breeze High, (4)

 Te network with pointers in both directions is illustrated in Figure 2.4.
 Te complexity of the network database is exponentially greater than 

that of the hierarchical one. Te database just illustrated could have been 
implemented as a series of linked child/parents or some other combina-
tion of links and pointers. Te second and third drawbacks of hierarchical 
databases spill over to network databases. If one were to design a f le-based 
database system from scratch, one would have to choose some method of 
physically connecting or linking records. Tis choice of record connection 
then locks us into the same problem as before—a hardware-implemented 
connection has an impact on performance both positively and negatively. 
Further, as the database becomes more complicated, the paths of connec-
tions and the maintenance problems become exponentially more dif  cult 
to manage. 
As a project, you could create the PERSON-SPORTS database with a 

few more records than given in the example using linked lists. At f rst, you 
might think this is a daunting exercise, but one of the most popular data-
base systems in the 1970s used a variant of this system. Te parent and 
child records were all linked with linked lists going in two directions— 
forward and backward. Te forward/backward idea was to speed up f nd-
ing child records so one could search for children by going either way. An 
enhancement of this system is to use forward-pointing linked lists with a 
backward-pointing chain of links, but with the backward chain skipping 
every  n record, where the optimal  n turns out to be the square root of the 
number of entries in the chain. We now conclude the historical database 
tour by eliminating all the pointers all together. 

FIGURE 2.4 
A Network of Persons and Sports with MCP and Parent Pointers. 



  

  

   
  

 
  

 
 
 

   

 

 
 

 
 

 

  

    
    
    

   

Data and Data Models • 31 

2.6 THE RELATIONAL MODEL 

Codd (1970) introduced the relational model to describe a database not 
sufering the drawbacks of the hierarchical and network models (i.e., 
physical links and hardware-bound restrictions). Codd’s premise was that 
if we ignore the way data fles are connected and arrange our data into 
simple two-dimensional, unordered tables, we can develop a calculus for 
queries (questions posed to the database) and focus on the data as data, 
not as a physical realization of a logical model. Codd’s idea was truly logi-
cal because one was no longer concerned with how data was physically 
stored. Rather, data sets were simply unordered, two-dimensional tables 
of data. To arrive at a workable way of deciding which pieces of data went 
into which table, Codd proposed “normal forms.” To understand normal 
forms, we must frst introduce the notion of functional dependencies. Af er 
we understand functional dependencies, normal forms follow. 
As a historical note, when Codd introduced his relational model, it was 

deemed by many people as “theoretical only.” At the time, a typical main-
frame computer might have 64K of internal memory, and a really good set 
of hard disks might have as much as several megabytes of storage. To top 
that of, the computer typically took up a large room requiring separate air 
handling, special architectural features like raised foors, and enhanced 
power grids. All the “computing power” was shared by everyone who had 
to have computing. In a company, users might include accounting, pur-
chasing, personnel, f nance, and so on. For even one of those units to be 
able to run the relational model in the early 1970s would have required vast 
dedicated resources. As computers became more ubiquitous, less expen-
sive, smaller, and so on, the amount of memory available both internally 
and externally became cheaper and had far greater capacity. T e relational 
model “grew up” with the evolution of computers in the 1980s. We expand 
the notion of relational database in the next chapter. 

Checkpoint 2.3 

1. What are the three main data models we have discussed? 
2. Which data model is mostly used today? Why? 
3. What are some of the disadvantages of the hierarchical data 

model? 
4. What are some of the disadvantages of the network data model? 
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5. How are all relationships (mainly the cardinalities) described in 
the hierarchical data model? How can these be a disadvantage of 
the hierarchical data model? 

6. How are all relationships (mainly the cardinalities) described in 
the network data model? Would you treat these as advantages or 
disadvantages of the network data model? 

7. What are structural constraints? 
8. Why was Codd’s promise of the relational model better? 

2.7 CHAPTER SUMMARY 

In this chapter, we covered concepts essential to the understanding  
and design of a database. We also covered data models from a historical 
perspective—the hierarchical and network models and the introduction 
of the relational model. Tis chapter should serve as a historical back-
ground to the material for the rest of the book. 
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3 
The Relational Model and 
Functional Dependencies 

3.1 INTRODUCTION 

As discussed in Chapter 2, Edgar Codd’s idea for a relational database was 
for data to be arranged in simple two-dimensional, unordered tables. By 
properly arranging data in this fashion, we can ask questions about the 
contents of the database (generate queries) in a straightforward way and 
essentially ignore the physical way data is actually stored. To begin, we 
explore the “proper table” idea and then look at functional dependencies 
(FDs). As Codd suggested, we will not create our database with physically 
linked records but rather ensure the data is in a suitable form. Tis means 
the data is normalized, which is achieved by following the notion of FDs. 

3.2 FUNDAMENTALS OF RELATIONAL DATABASE 

We begin our discussion of the relational database with the most funda-
mental idea: the two-dimensional table. Tis means the data is arranged in 
rows and columns with one piece of data in each cell, as shown in Table 3.1a. 
Table 3.1b is an example of a aaaaaaaa table. 

TABLE 3.1A 

Two-Dimensional Table of Relational Data. 

A AaaaaaaaA AaaaaaaaA AaaaaaaaA AaAaAAaA 

row1 data-cell data-cell data-cell 
row2 data-cell data-cell data-cell 
row3 data-cell data-cell data-cell 

DOI: 10.1201/9781003314455-3  33 
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TABLE 3.1B 

Two-Dimensional View of aaaaaaaa Table. 
AaaaaAA AaaaaaaaaAA AaaaaaaaAA 

Jones 222-3333 123 4th St 
Smith 333-2154 55 Main St 
Adams 555-8888 3145 Euclid Ct 

TABLE 3.2 

Two-Dimensional Arrangement Where Each Column Does Not Contain Same Type of 
Data. 

AaaaaAA AaaaaaaaaAA AaaaaaaaAA 

Jones 222–3333 123 4th St 
55 Main St Smith 333–2154 
Adams 3145 Euclid Ct 555–8888 

Te columns are given titles: name, phone_no, address. 
Te rows are horizontal arrangements of data cells under each column. 

Row 1 contains 
AaaaaaA aaaaaaaaA aaaAaaaAaaA
 Ofen, when discussing a row in a table, it is denoted like this: 
AaaaaaaaAaaaaaaaaaAaaaAaaaAaaaA

 Te data cells contain facts. For example, you have a customer named 
Smith, Smith’s address is 55 Main St, and so on. In the two-dimensional 
table,  each column contains the same kind of data—the same data type 
with the same semantics (same meaning). Table 3.2 is a two-dimensional 
arrangement, but it violates the sense of “each column contains the same 
kind of data.” 
All the same data is there, but it is jumbled around, and the column 

headings make no sense. In an arrangement like this, we would say the 
data was “inconsistent.” 
In relational databases, the data cell is supposed to be atomic. Te char-

acteristic of atomicity means the cell contains one fact and only one fact. If 
Adams had two phone numbers and if they were entered on the same row, 
it would not be a valid table of data for a relational database. You would 
have to design the tables some other way. 
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TABLE 3.3 

Arrangement Containing Nonatomic Cells. 

AaaaaAA AaaaaaaaaAA AaaaaaaaAA 

Jones 222-3333 123 4th St 
Smith 333-2154 55 Main St 
Adams 555-8888, 555-8889 3145 Euclid Ct 

As can be seen in Table 3.3, the phone_no for Adams is nonatomic. Te 
data cell containing the two phone numbers is said to contain a repeat-
ing group. If a two-dimensional arrangement of data cells contains only 
atomic data, it is said to be a table. Tis data arrangement with a nonatomic 
cell is not a table, unlike the previous example (Table 3.2) with all atomic 
cells. In Codd’s terminology of database, if you have a table (i.e., a two-
dimensional arrangement of atomic data), then your data is in the frst 
normal form (1NF). 
In relational database theory, there is a shorthand notation for talking 

about rows and columns in tables. We will call populated tables, “tables,” 
and we will call columns, “attributes.” For shorthand, Tables are generally 
abbreviated with a capital letter like R and the attributes as A, B, C,. . . . 
We can say: 

AaaaaAaaAaaAaaA 

is in 1NF, whereas 

AaaaaAaaAaaAaaaaA 

is not 1NF as aaa represents a repeating group. Te curly brackets mean 
“repeating group.” 

Checkpoint 3.1 

1. Is the following arrangement of data a table? 

AaaaaaaaaaaA 
12345 
54321 

AaaaaA 
Honda 
Ford 

AaaaaaA 
Grey 
Green, White 
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2. Is the following arrangement of data a table? 

AaaaaaaaaaaA 
12345 
54321 

AaaaaA 
Honda 
Green 

AaaaaaA 
Grey 
Ford 

3. Is the following arrangement of data a table? 

AaaaaaaaaaaA 
12345 
54321 

AaaaaA 
Honda 
Ford 

AaaaaaA 
Grey 
Green 

4. Is the following arrangement of data a table? 

AaaaaA 
Honda 
Ford 

AaaaaaaaaaaA 
12345 
54321 

AaaaaaA 
Grey 
Ford 

5. Is the following arrangement of data a table? 

AaaaaaaaaaaA 
12345 
54321 

AaaaaA 
null 
Green 

AaaaaaA 
Grey 
null 

6. What does aaaaAaaAaaAaaAaaAaa mean? 

3.3 RELATIONAL DATABASE AND SETS 

In mathematics, we defne sets as an unordered collection of unique objects. 
Codd viewed and defned a relational database as: All tables contain sets 
of rows, and all data are atomic in two-dimensional tables. Te notion of 
“sets of rows” is a powerful one because it implies two things: 

(a) Tere are no duplicate rows. 
(b) Tere is no order among the rows. (Rows are not presumed to be sorted 

in any way). 
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Mathematical sets are not in sorted order and do not contain duplicates. 
If I had a set of apparel, it might contain shoes, socks, shirt, pants, and 
hats. Te same set could be written as (pants, shirt, socks, hats, shoes). Te 
order of the items in the set is not defned. An item either is in the set or 
not in the set. As far as the set is concerned, the set (pants, shirt, socks, 
hat, pants, shirt, shoes, socks, hats) is the same as before. Te duplication 
of items has no sense in sets. 
When we look at some rows of data in a relational database, we think of 

the tables as sets of rows. Consider the Table 3.4. 
Set-wise, Table 3.5 shows the same table as Table 3.4. 
Te order of the rows is unimportant. If we had a duplicate row, as shown 

in Table 3.6, we would not have a valid relational table. Since a relational 

TABLE 3.4 

Set of Rows. 

AaaaaAA AaaaA 

Rich Carpenter 
Beryl Dentist 
Mary Jo Programmer 

TABLE 3.5 

Table Showing Tat Order of 
Rows is Unimportant. 

AaaaaAA AaaaA 

Beryl Dentist 
Mary Jo Programmer 
Rich Carpenter 

TABLE 3.6 

Table With Duplicate Rows. 

AaaaaAA AaaaA 

Rich Carpenter 
Beryl Dentist 
Mary Jo Programmer 
Rich Carpenter 
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database is a “set of rows,” the extra row is unnecessary for the extrac-
tion of information in the database. Also, from a practical standpoint the 
duplicate row would violate the sense of being able to identify one and 
only one row from a primary key. 
As with sets, we may ask the question, Is <Lindsey, Cook> in the data-

base? In this case, Lindsey is not there. Te point is that the particular row 
is either there or not—it is in the set of rows, or it is not. 

3.4 FUNCTIONAL DEPENDENCY 

A functional dependency (FD) is a relationship of one attribute in a 
table to another. In a database, we often have the case where one attri-
bute defines the other. For example, we can say Social Security number 
(SSN) defines or identifies a name. What does this mean? It means if 
I have a database with SSNs and  names, and if I know someone’s  SSN, 
then I can find the person’s name. Further, since we used the word 
defines, we are saying that for every  SSN we will have one and only one 
name. We will say we have classified  name as functionally dependent 
on SSN. 
 Te idea of a FD is to defne one feld as an anchor from which one can 

always fnd a single value for another f eld. If this sounds familiar, it is— 
this is the idea of the primary key we discussed previously. Te main idea 
in FDs is to fnd primary keys such that all data in a record depends on the 
primary key alone. 
In a database, the designer makes choices def ning data with FDs. It is 

the designer’s responsibility to elicit FD information from the user. T e 
user tells us whether a project has one location or multiple locations. T e user 
tells us whether a person can have one and only one phone number or not. 
Also, working backward from data, one cannot examine a database and 
“prove” some attribute is functionally dependent on another. Te idea of a 
FD is one of defnition, and it goes with the table design just like the def -
nition of a column and data type. 
As another example, suppose a company assigned each employee 

a unique  employee number. Just consider the  employee number and 
name for a moment. Each employee has one  employee number and one 
name. Names might be the same for two diferent employees, but their 
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employee numbers would always be diferent and unique because the 
company defned them that way. It would be inconsistent in the database 
if there were two occurrences of the same employee number with difer-
ent names. 
We write an FD with an arrow like this: 

AaaaAAaAAaaaaA

 or 

AaaaaaAAaAAaaaaA

 Te expression aaaaaAAaAAaaaa is read “empno defnes name” or “empno 
implies name.” 

Checkpoint 3.2 

1. In the following table, does all the data conform to aaaaaAAaA 
Aaaaa? 
aaaaaA aaaaAA 
123 Beryl 
456 Mary Jo 

2. Does the fact that the data conforms to the proposed FD prove 
the FD is in fact true? 

3. In the following table, does all the data conform to aaaaaAAaA 
Aaaaa? 
aaaaaA aaaaAA 
123 Beryl 
456 Mary Jo, Mary, MJ 

4. In the following table, does all the data conform to aaaaaAAaA 
AaaaaA? 
<123, Beryl> 
<MJ, 456> 

5. In the following table, does aaaaaAAaAAaaaa? 
AaaaaaA aaaaAA 
123 Beryl 
456 Mary Jo 
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3.5 NON-1NF TO 1NF 

Let us consider the arrangement of data in Table 3.7. 
What have we learned so far about data like this? T e aaaaaaaaaaa is 

likely to be unique. Why? Because whoever created this table of customers 
most likely would use  aaaaaaaaaaa as a unique identifer for custom-
ers. Does the data prove that aaaaaaaaaaa’s are unique? Data cannot 
“prove” anything. It would be proper to say that this example suggests  aaaa 
aaaaaaaa’s are unique identifers, but the designation of aaaaaaaaaaa as 
a unique, primary key for this table is a matter of def nition. 
 T e aaaaaaaa for Adams is nonatomic. Te data cell containing the 

two phone numbers is said to contain a “repeating group.” T is arrange-
ment of data makes sense to us, but it needs to be rearranged to conform 
to the defnition of a 1NF table. Symbolically, R(A, B, {C}, D) is not 1NF as 
{C} represents a repeating group. 
Before handling the non-1NF problem, it is best to defne a primary 

key in R if possible. A primary key is an attribute that always uniquely 
identifes a row in a table. Suppose the primary key is attribute A (here, 
aaaaaaaaaAaaA), which we will assume is unique for each customer by def -
nition. Ten, the way the repeating group is handled is through a process 
called decomposition. Te original table, R(A, B, {C}, D), will be decom-
posed into two tables: 

aaaAaAaAaaAaaA aaaaAaaaAaaAaa

 and 

AaaaAaaAaAaA aaaaAaaaAaaAaaaaAaAaaaAaaaAaaaaaaaaaaaaAaaaaA 

TABLE 3.7 

Sample Data for aaaaaaaa. 

customer_no name phone_no address 

101 Jones 222-3333 123 4th St 
102 Smith 333-2154 55 Main St 
107 Adams 555-8888, 555-8889 3145 Euclid Ct 
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Going back to the aaaaaaaa example, if we defned AaaaaaaaaaaaA 
as the primary key, the decomposition would go like this: 

AaaaaaaaaAaAaaaaaaaaAaaAaAAaaaaAaAaAaaaaaaaaAaaAAaaaaaaaAaA 

will become (will decompose into two tables): 

AaaaaaaaaaAaAaaaaaaaaAaaAaAAaaaaAaAAaaaaaaaAaA aaaaAaaAA aaaaaaaaaaaaA

 and 

aaaaaaaaaAaAaaaaaaaaaaaAaAAaaaaaaaaAaAaaaaAaaAAaaaaaaaaaaaAAaA 
AaaaaaaaaAaA

 Te notation AaaaaaaaaaaaAaAaaaaaaaa is called a concatenation. Te 
new populated tables will look like Tables 3.8 and 3.9. 
All data is now atomic in both tables—both tables are in 1NF. Te pri-

mary key of the frst table, aaaaaaaaaaa in aaaaaaaaa, is referenced 
in the second table. aaaaaaaaaaa in aaaaaaaaa is called a foreign 
key as it references a primary key in another table. In aaaaaaaaa, the 
key is Aaaaaaaaaaaa, which is unique and hence serves to identify a row. 

TABLE 3.8 

Sample Data for aaaaaaaaa. 
customer_no name address 

101 Jones 123 4th St 
102 Smith 55 Main St 
107 Adams 3145 Euclid Ct 

TABLE 3.9 

Sample Data for aaaaaaaaa. 
customer_no phone_no 

101 222-3333 
102 333-2154 
107 555-8888 
107 555-8889 
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TABLE 3.10 

Sample Data for Original aaaaaaaa Table. 
name phone_no address 

Jones 222-3333 123 4th St 
Smith 333-2154 55 Main St 
Adams 555-8888, 555-8889 3145 Euclid Ct 

ATABLE 3.11 
CUSTOMER with no obvious Primary Key. 

name phone_no address 

Jones 222-3333 123 4th St 
Smith 333-2154 55 Main St 
Adams 555-8888, 555-8889 3145 Euclid Ct 

In aaaaaaaaa, there is no one attribute identifying a row; hence, the 
entire row is considered a primary key. Te row consists of the concatena-
tion of aaaaaaaaaaa and  aaaaaaaa. 
Let us consider another example. Suppose there were no customer num-

ber, no obvious key. Suppose the original data looked like  Table 3.10. 
 Neither aaaa nor aaaaaaaA would be considered a reliable row identi-

f er; now, we have no obvious key, and we have a repeating group. What 
do we do? We take the repeating group values and combine them with 
all the other attributes and call the whole row a key. Is this the best key 
you can choose? Perhaps; ways to determine the worth of all attributes 
concatenated together as a key are determined further in this chapter 
as we defne the other normal forms. Here, we have taken a non-1NF 
arrangement of data and made it 1NF. Further, this technique always  
works because you end up with atomic data in each column in a two-
dimensional table (1NF). Table 3.11 is the decomposition in which we 
have no obvious primary key: 

AaaaaaaaaAaAaaaaAaAaA aaaaaaaAaAAaaaaaaaaAaaAA 

Table 3.11 is made into one table with aaaa and  aaaaaaaaA as the key 
(Table 3.12 ): 

AaaaaaaaaAaAaaaaaAaaaaaaaaAaAaaaaaaaa 



  

 
   

  

    
 

 

  

    
  

                  
  
    
      

 

    

     

                  

 
 
 
 

    

  

                              

  
  
  
  

A A

Te Relational Model • 43 

TABLE 3.12 

Sample Data for aaaaaaaa With aaaaAand aaaaaaaa as Key. 
name phone_no address 

Jones 222-3333 123 4th St 
Smith 333-2154 55 Main St 
Adams 555-8888 3145 Euclid Ct 
Adams 555-8889 3145 Euclid Ct 

TABLE 3.13 

Sample Data for aaaaaaaa Resolved to 1NF. 

customer_no name phone_no address city 

101 Jones 222-3333 123 4th St Pensacola 
102 Smith 333-2154 55 Main St Alpharetta 
107 Adams 555-8888 3145 Euclid Ct Two Egg 
107 Adams 555-8889 3145 Euclid Ct Two Egg 

In this transformed table, we now have 1NF, unique rows, and a pri-
mary key. Notice in the case of aaaaaaaa with a unique aaaaaaaaaaa 
added, it could be resolved to 1NF easily like this: 

aaaaaaaaAaAaaaaaaaaaaaAaAAaaaaAaAAaaaaaaaaAaAAaaaaaaaAaAAaaaaA) 

But, since we have a primary key in aaaaaaaaaaa, this decomposition 
(Table 3.13) is a bit severe. As we take up other normal forms, this problem 
will be resolved. 

Checkpoint 3.3 

1. What would you suppose is the key of this table? 

color make year 
Red Honda 2018 
Green Ford 2020 
Blue Ford 2018

 Red Buick 2019 
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2. Put this arrangement of data into 1NF: 

name homephone cellphone 
Jones  111-1111, 222-2222 333-3333 
Smith  444-4444 555-5555, 666-6666 
Adams  777-7777, 888-8888 112-1212, 113-1313 

3.6 THE SECOND NORMAL FORM 

Usually, the second normal form (2NF) is addressed when we have verif ed 
a table is in the frst normal form (1NF). If you look at a table for the f rst 
time, you must f rst decide whether it is in fact a table (i.e., in 1NF) and, 
beyond the data in the table, ask what the design is. Consider the following 
arrangement of data in Table 3.14. 
 Te data looks like it is in the 1NF, so we must ask, “What is the table 

design?” Te small amount of data shown seems to contain atomic cells 
and no duplicate rows. But, what is not stated are the intended FDs. T e 
appropriate question is, “Are aaaa and  aaaaa functionally dependent on 
aaaaaaaaaa?” Semantically, they appear to be, but whoever produced this 
table of data should also furnish an accompanying table design. 
Now, let us consider this table of data with no FD defned as yet ( Table 3.15). 

TABLE 3.14 

Arrangement of Data. 

license_no make color 

12345 Honda Grey 
54321 Green Ford 

TABLE 3.15 

Sample Data for aaaaaaaa. 
Empno name 

101 Kaitlyn 
102 Brenda 
103 Beryl 
104 Wallace 
105 Wallace 



  

  
 

    
    

  

  
   

 
  

 

 

  

 

     
   

    
    
  

  
  

   
  

      

  

 

 

  

A

A
A

A

A A A

A

Te Relational Model • 45 

Does it  appear to be a  valid table?  Yes,  it  is  consistent  and it  contains 
atomic data and no duplicate rows. Now, suppose we defne the data like 
this: Te table name is aaaaaaaa. aaaaaaaa has two attributes: 
aaaaa and aaaa. Te data types of the attributes are as follows: 

aaaaaaaaAaAaaaaaAAaaaaaaaaaaaAAaaaaAaaaaaaaaaaaa 

VARCHAR is a very common data type meaning “variable number of 
characters,” and VARCHAR(20) means that data in the name attribute 
will be from zero to 20 characters. So far, so good, but is anything missing? 
We have stated nothing about FDs. If no FDs are defned with the table, 
the only ones we may assume are refexive: 

AaaaaaAAaAAaaaaaAaA 
AaaaaAAaAAaaaaAa

 and 

AaaaaaAaAAaaaaAAaAAaaaaaAaAAaaaa

 Tese refexive FDs are always true; they exist for the sense of math-
ematical completeness. If you put these FDs in words, they would say, “If I 
know a person’s aaaa, I can tell you the aaaa.” Also note combinations 
of attributes can be FDs. Te expression AaaaaaAaAAaaaaAAaAAaaaaaAaAAaaaa 
means that if I know an aaaaa and aaaa combination, I can tell you the 
aaaaa and aaaa (a refexive FD). 
As we look at the table, it appears we have the FD, aaaaa → aaaa, but 

unless it is explicitly defned as such, we can only say, “It appears that. . . .” 
Wait! Tere are two people named Wallace. Is this a problem with FDs? 
Not at all. You expect that aaaa will not be unique, and it is common-
place for two people to have the same frst name. However, no two people 
have the same empno, and for each empno, there is one and only one name 
value. 
A proper defnition for this table would be: 

AaaaaaaaaAaAaaaaaAAaaaaaaaaaaaAAaaaaAaaaaaaaaaaaa

 given 

aaaaaAAaAAaaaaA 
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 Te underlined aaaaa indicates aaaaa is the primary key in this 
table. If a primary key is defned, it is always on the lef-hand side (LHS) 
of an FD. Primary keys imply FDs and are defned. Te primary key does 
not have to be the frst column in the table, but it is conventional to put it 
there. FDs do not necessarily defne primary keys; but, as we shall see, a 
command of the FD calculus will lead us to conclude what may be a pri-
mary key and what may not. 
Let us look at another example. Suppose you are given this table with 

aaaaa defned as the primary key: 

aaaaaaaaaAaAaaaaaAAaaaaaaaaaaaAAaaaAAaaaaaaaaaaaaAAaaaaA 
aaaaaaaaaaaaA 

What does this tell us? Te table defnition tells us the frst column will 
be aaaaa, the second column is aaa, and the third column is aaaa. It says 
all the aaaaa’s will be numbers up to three digits long. aaa and aaaa 
will be character strings up to 20 characters each. Te underlined aaaaa 
tells us that aaaaa is a primary key; hence, two FDs are defned, aaaaa 
→ aaa and aaaaa → aaaa. Te FDs say that if you know the aaaaa, you 
can fnd the aaa and the aaaa for that aaaaa; aaa and aaaa are func-
tionally defned by aaaaa. Table 3.16 shows some sample data. 
Every time we fnd aaaaa = 104, we fnd the aaaa = Wallace. Every 

time we fnd aaaaa 103, we know the aaa of 103 is Designer. 
Let us now consider this table: 

aaaaAaAaaaaaaAAaaaaaaaaaaaAAaaaaaaaaaaaAaaaaaaaAAaaaaaaA 
aaaaaaaaaaaa 

FDs are forthcoming. 
Table 3.17 shows some sample data. 

TABLE 3.16 

Sample Data for aaaaaaaaa. 
empno job name 

101 President Kaitlyn 
104 Programmer Wallace 
103 Designer Beryl 
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TABLE 3.17 

Sample Data for aaaa Table. 
cab_no date_driven driver 

101 2/4/2023 Rich 
102 2/4/2023 Gen 
103 2/5/2023 John 
102 2/5/2023 Steph 

While we cannot defne FDs by looking at the data, we can eliminate 
them. Can we say aaaaaa → aaaaaa? Clearly, we cannot because aaaaaa 
102 has two diferent drivers; we have two rows with data to contradict 
the FD, aaaaaa → aaaaaa: <102, Gen>, <102, Steph>. Can we say, aaaaa 
aaaaaa → aaaaaa? Again, the answer is no because we fnd information 
to the contrary (see 2/4/2023). How about aaaaaaaaaaa → aaaaaa? No. 
According to this table, it takes both the aaaaaa and the aaaaaaaaaaa 
to defne a aaaaaa. Given this data, we can ask the table designer whether 
the combination of aaaaaa and aaaaaaaaaaa will form the FD, aaaaaa, 
aaaaaaaaaaa → aaaaaa? Assuming this is the intention, the complete def-
nition of the table would be: 

AaaaaAaAaaaaaaAAaaaaaaaaaaaAAAaaaaaaaaaaaAAAaaaaaaaAAaaaaaaA 
aaaaaaaaaaaaA 

given the FD 

AaaaaaaAaAAaaaaaaaaaaaAAaAAaaaaaa

 Te AaaaaaaAand aaaaaaaaaaa attributes are both underlined. It is the 
concatenation of these two attributes defning a primary key for this 
table. 
Now suppose we expand our aaaa table a little and include information 

about the cab itself—the color of the cab. Let us propose this design: 

AaaaaaAAAaaaaaaAAaaaaaaaaaaaAAAaaaaaaaaaaaAAAaaaaaaaAAaaaaaaA 
aaaaaaaaaaaaAAAAaaaaaAaaaaaaaaaaaa

 with FD 

Aaaaaaa, aaaaaaaaaaa → aaaaaa, aaaaa 
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TABLE 3.18 

Sample Data for Ref ned aaaa Table. 
cab_no date_driven driver color 

101 2/4/2023 Rich Yellow 
102 2/4/2023 Gen Green 
103 2/5/2023 John Yellow 
102 2/5/2023 Steph Green 

TABLE 3.19 

aaaa Table With Redundancy. 

cab_no date_driven driver color 

101  2/4/2023 Rich Yellow 
102  2/4/2023 Gen  Red 
103  2/5/2023 John Yellow 
102  2/5/2023 Steph  Red 

Suppose the data now appears as in Table 3.18. 
Now this table seems to be okay, but there is a hidden problem with 

it. Te design says aaaaaa, aaaaaaaaaaa is the primary key. It is true  
with this little bit of data—if we know the combination of aaaaaa and 
aaaaaaaaaaa, we can identify the  aaaaaa and the  aaaaa of the cab. If I know 
(102, 2/4/2023), then I can f nd the driver (Gen) and the  aaaaa of the cab 
(Green). You may detect a problem here; however, let us keep going and see 
if you see it. To illustrate the problem, suppose  aaaaaa 102 is painted red. 
You can change the data in the table to refect this, but notice what you 
have to do (as illustrated in Table 3.19). 
You had to make two changes. Imagine this table is thousands of rows 

and you change the  color of a cab. You have to change each row to ref ect 
the new cab  color for that cab. T e color of the cab is recorded redundantly. 
When such redundancy appears, it is a symptom of a design problem.  
Here, we say that the table is not in the 2NF. 

3.6.1 Anomalies

 Te update we just proposed is called an  update anomaly because the 
change of cab  color is not a simple update to a table, but rather it requires 



  

  
 

  
   

 
  

 
   

    
 

  
 

  
 

   
 

  

  

   
   

 

   
     

     

     
 

 

A

Te Relational Model • 49 

multiple updates due to the redundancy. Tere are other problems with 
this table of data—other anomalies. Anomalies come in three forms: 
update, insert, and delete. 
An example of an insert anomaly in the preceding ill-designed table 

would be as follows: Suppose you wanted to insert cab and color data 
into the table without identifying a driver or a date driven. You can-
not do this because you would have to include a row like this: <105, 
null, null, Blue>. Tis is an invalid row because you cannot have 
part of the primary key as null. In a relational database, there is a rule 
called the entity integrity constraint that applies to all tables and prohib-
its any part of a primary key from being null. Tis makes sense because 
if a primary key or any part of it is null, it means you cannot know the 
primary key to identify a row, and hence your defnition of a primary 
key is contradictory. 
An example of a delete anomaly would be the following: Suppose you 

wanted to delete a cab from the database. Suppose aaaaaa 102 was 
wrecked and taken out of the feet. You cannot delete aaaaaa 102 in 
the table without deleting all the rows where aaaaaa 102 appears, and 
this deletion would also delete the other information, such as <102, 
2/5/2023, Steph, Red> where we know Steph drove on 2/5/2023. A 
delete anomaly causes data to be deleted beyond what was intended. 

3.6.2 Non-2NF to 2NF 

In terms of FDs, the problem in our non-2NF table is that the aaaaa of cab 
depends on the aaaaaa and not the aaaaaaaaaaa. Te correct FDs in this 
table are as follows: 

AaaaaaaAaAAaaaaaaaaaaa → aaaaaa 
aaaaaa → aaaaa 

You need only the aaaaaa to identify the color. Since you have a concat-
enated key and an attribute in the table is dependent on only part of the 
key, this is said to be a partial dependency. Tables with partial dependen-
cies are said to be not in the second normal form. A second normal form 
(2NF) table has a primary key with no partial dependencies. For a table to 
not be in the 2NF, there has to be a concatenated key with some attribute 
not dependent on the whole key. 
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In this non-2NF Cab situation, the symbolic discussion of the problem 
would be like this: 

We have a table, aaAaaA aaA AaaA aa, with the FDs aaAaAa and aAaAa. 
Hence, the table is not in the 2NF because you have a partial depen-
dency, aAaAa, when aa is the key of the table; attribute a depends 
on part of the key aa, not the whole key. 

What are you supposed to do with tables not in 2NF? Te answer is 
decomposition. Te non-2NF table is decomposed into two tables; each 
table contains data dependent only on the primary key (the whole key and 
nothing but the key). Symbolically, aaAaaAaaAAaaAaa with FDs aaAaAa and 
aAaAa (non-2NF) will be decomposed into two tables, aaaAaaAaaAAaa and 
aaaAaaAAaa, both of which are in 2NF because all non-key attributes depend 
only on the primary key. Going back to the Cab problem, the original table 
will be decomposed into two tables. 

aaaaAaAaaaaaaAAaaaaaaaaaaaAAAaaaaaaaaaaaAAaaaaaaaAAaaaaaaA 
aaaaaaaaaaaaAAaaaaaAaaaaaaaaaaaa

 with FDs 

aaaaaaAaAAaaaaaaaaaaaAAaAAaaaaaaAaAAaaaaaaAAaAAaaaaa

 becomes . . . 

AaaaaaaAaAaaaaaaAAaaaaaaaaaaaAAAaaaaaaaaaaaAAaaaaaaaAAaaaaaaA 
aaaaaaaaaaaa

 with FD 

AaaaaaaAaAAaaaaaaaaaaaAAaAAaaaaaaA 

with sample data as shown in Table 3.20. 
And 

AaaaAaAaaaaaaAAaaaaaaaaaaaAAaaaaaAaaaaaaaaaaaaA

 with FD 

AaaaaaaAAaAAaaaaaA 
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TABLE 3.20 

Sample Data for aaaaaa Table. 
cab_no date_driven driver 

101 2/4/2023 Rich 
102 2/4/2023 Gen 
103 2/5/2023 John 
102 2/5/2023 Steph 

TABLE 3.21 

Sample Data for aaa Table. 
cab_no color 

101 Yellow 
102 Green 
103 Yellow 

TABLE 3.22 

New Decomposed aaa Table. 
cab_no color 

101 Yellow 
102 Red 
103 Yellow 

With sample data as shown in Table 3.21. 
We give the new aaaa table a slightly diferent name (aaaaaa) to distin-

guish it from the original. Reconsider the update we proposed. With the 
decomposed tables, suppose aaaaaa 102 was painted red. Te only row to 
change in this new decomposed table is the second row in the aaa table, 
which would now look like Table 3.22. 
Tere is one change, one row updated. With the tables in their decom-

posed 2NF form, there is no redundancy, and all non-key data depends on 
the primary key of each table: 

aaaaaaaAAAaaaaaaAAaaaaaaaaaaaAAAaaaaaaaaaaaAAaaaaaAAaaaaaaA 
aaaaaaaaaaaa 
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 with FD 

aaaaaaAaAAaaaaaaaaaaaAAaAAaaaaaaA

 And 

aaaAaAaaaaaaAAaaaaaaaaaaaAAaaaaaAaaaaaaaaaaaa

 with FD 

AaaaaaaAAaAAaaaaa

 Te other anomalies are gone when the tables are decomposed. You can 
insert a aaa and aaaaa into the CAB table without disturbing aaaaaa. A 
aaa does not need a aaaaaa or aaaaaaaaaaa to be added to the database. 
You can delete a aaaaAaaaaaAcombination without losing the information 
about the aaaaaa or aaaaaaaaaaa. You will delete only the aaaaa of the cab. 

Checkpoint 3.4 

1. Given aaAaAaaa, is aaAaaAaaAAaaAaaAaa in 2NF? 
2. Given aAaAaaaa, is aaaaAAaAaAaaAaaAaa in 2NF? 
3. Given aaAaAaa and aAaAa, is aaAaaAaaAAaaAaaAaa in 2NF? 
4. If a table is in the 1NF and you have no concatenated key, you do 

not have to worry about 2NF problems (True/False)? 

3.7 THE THIRD NORMAL FORM 

Let us now consider another example of a table with a defned key: 

aaaaaaaaA aAaaaaaAAaaaaaaaaaaaA AaaaaA aaaaaaaaaaaaA Aaaaaaa 
aaAAaaaaaaaaaaaAAaaaaaaaaaaAaaaaaaaaaaaa

 with FD 

AaaaaaAAaAAaaaaAaAAaaaaaaaaAaAAaaaaaaaaaaA 
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Or, in shorthand 

AaaAaaAAaaAaaAaaA

 with FD 

AaA aAaaaA 

Table 3.23 shows some sample data of aaaaaaaa. 
Is this table in 1NF and 2NF? Yes, it is. It contains all atomic attributes, 

there are no concatenated keys, and hence no chance of partial dependen-
cies. Yet, there is still a problem here. Can you see it? For aaaaaaaaA= aaaa, 
we have a aaaaaaaaaa = aaaaaaaaaa. Seems like we have redundancy in 
the database. 
As we illustrated, redundancy is a “red fag”—it suggests a design prob-

lem. We have a primary key in aaaaa; knowing that the aaaaa allows us 
to identify a row. Since aaaaa is the primary key, it identifes all the con-
tents of the row; hence, we can legally say that aaaaaAAaAAaaaaAaAAaaaaaaaa, 
aaaaaaaaaa. Te problem is aaaaaaaaaa is better defned by aaaaaaaa than by 
aaaaa; because of this defnition, we see aaaaaaaaaa is functionally depen-
dent on skill_ID more so than aaaaa. We have a transitive dependency of 
aaaaaAAaAAaaaaaaaa and aaaaaaaaAAaAAaaaaaaaaaa. Tis transitive dependency 
causes redundancy, which provokes anomalies (update, insert, and delete). 
What would be an update anomaly in the aaaaaaaa table? Suppose 
we wanted to change the description aaaaaaaaaa of aaaaaaaa = Prog to 
aaaaaaaaaa = Programmer/analyst? Tere would be two row changes 
in this small table of only four rows. An insert anomaly arises when we try 
to insert new data into the table. Suppose we wanted to put the fact that we 
have a aaaaaaaa = Cart and aaaaaaaaaa = Cartographer in the table. 
We would have Table 3.24. 

TABLE 3.23 

Sample Data for aaaaaaaa Table. 
empno name skill_ID skill_desc 

101 Adams Prog Programmer 
102 Baker Brick Bricklayer 
103 Charles PR Public Relations 
107 Davis Prog Programmer 
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TABLE 3.24 

Sample Data for aaaaaaaa Table With Cartographer. 

empno name skill_ID skill_desc 

101 Adams Prog Programmer 
102 Baker Brick Bricklayer 
103 Charles PR Public Relations 
107 Davis Prog Programmer 
null null Cart Cartographer 

But, this will not work because we violated the entity integrity rule. A 
delete anomaly would occur if we deleted a row and lost more informa-
tion than we planned. Suppose we decided to delete the employee Charles. 
Charles has the aaaaaaaa of PR, and you not only lose the row with Charles, 
but also lose the fact that aaaaaaaa = PR means aaaaaaaaaa = Public 
Relations. 
Now, let us return to the original EMPLOYEE table and resolve the 

problem: 

AaaaaaaaaAaAaaaaaAAaaaaaaaaaaaAAaaaaAaaaaaaaaaaaaAAaaaaaaaaA 
aaaaaaaaaaaAAaaaaaaaaaaAaaaaaaaaaaaa

 with FD 

AaaaaaAAaAAaaaaAaAAaaaaaaaaAaAAaaaaaaaaaaA

 or 

AaaAaaAAaaAaaAaaA

 with FD 

AaA aAaaaA

 Te problem is the aaaaaaaaaa is functionally dependent on aaaaaaaa and 
not aaaaa. Te corrected FDs should be: 

aaaaaAAaAAaaaaAaAAaaaaaaaaA

 and 



  

 

 

  

 

    
 

       
 

     
 

 
 

 

 

 
 

  

  

 

A A

A

A

A A A

Te Relational Model • 55 

AaaaaaaaaAAaAAaaaaaaaaaaA

 or 

AaaAaaAAaaAaaAaaA

 with FDs 

AaAaAaaaAaAaAaA

 Tis illustrates a transitive dependency as A → C and C → D. Te third 
normal form (3NF) demands no transitive dependencies. As with the par-
tial dependencies in non-2NF, non-3NF arrangements cause anomalies: 

1. Possible multiple changes when you update a aaaaaaaaaa (an update 
anomaly) 

2. Inability to add a row with just a aaaaaaaa and its aaaaaaaaaa (an 
insert anomaly) 

3. Losing information when deleting a row (remember losing a aaaaaaaa 
when Charles was deleted)—a delete anomaly.

 Tese anomalies are caused by the transitive dependency. How do we fx 
this problem? As before, we decompose the non-3NF table into two tables 
in which the attributes will depend only on the key of the table: 

AaaAaaAAaaAaaAaa with FDs aaaa and aAaAa becomes 
aaaAaaAAaaAaa and aaaAaaAAaa. 

With our aaaaaaaa data, we decompose into two tables like this: 

aaaaaaaaaaAAAaaaaaAAaaaaaaaaaaaAAaaaaAAaaaaaaaaaaaaAAaaaaaa 
aaAAaaaaaaaaaaa

 with FD 

aaaaaAAaAAaaaaAaAAaaaaaaaaA

 and 

AaaaaaAaAaaaaaaaaAAaaaaaaaaaaaAAaaaaaaaaaaAaaaaaaaaaaaaA 
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TABLE 3.25 

Sample Data for aaaaaaaaa Table. 
empno name skill_ID 

101 Adams Prog 
102 Baker Brick 
103 Charles PR 
107 Davis Prog 

TABLE 3.26 

Sample Data for aaaaa Table. 
skill_ID skill_desc 

Prog Programmer 
Brick Bricklayer 
PR Public Relations 

with FD 

aaaaaaaaAAaAaaaaaaaaaaA

 Te populated tables will look like Tables 3.25 and 3.26. 
Tese two tables represent a database in 3NF. Te redundancy is now 

gone. If you want to change a aaaaaaaaaa, you make one change. If you 
want to delete an employee, you do not lose the aaaaaaaa-aaaaaaaaaa, and 
if you want to insert a new aaaaaaaa with no employee yet defned, you can 
do so. Te anomalies are gone. 

Checkpoint 3.5 

1. Consider this table: 

aaaaaaaaAaAaaaaaAaAAaaaaAaAAaaaaaaaaaaAaAAaaaaaaaaaaaaaaaaAaA 

with FDs 

aaaaaAAaAAaaaaaAaAAaaaaAaAAaaaaaaaaaa 

and 

aaaaaaaaaaAAaAAaaaaaaaaaaaaaaaaAA 

Is this table in 1NF, 2NF, 3NF? Decompose the table if necessary. 
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2. Consider this table: 

aaaaAaaAaaAaaAaaAaaA 

with FDs 

aaAaAaaaAaAaAaaAaAaAa 

Is this table in 1NF, 2NF, 3NF? Decompose the table if necessary. 

3.8 THE EQUIJOIN OPERATION 

In a relational database, we ofen decompose non-3NF tables to 3NF. 
Managers and users may complain, “My table of data has been spread all 
over the place,” or “Te normalization process removed my primary infor-
mation table.” While tables are decomposed, they can be reconstituted eas-
ily with the equijoin operation of relational calculus, which is realized in 
SQL (Structured Query Language). SQL is the de facto query language of the 
relational database. A discussion of relational calculus and SQL are beyond 
the scope of this chapter; many excellent references to the query language 
exist (Bagui and Earp, 2011; Earp and Bagui, 2021). Te point here is that 
while a normalized table may have been decomposed, the original table can 
be re-formed from the decomposed ones with a simple SQL query. As an 
example, suppose we have a table like the one in the previous section: 

aaaaaaaaAaAaaaaaAaAAaaaaAaAAaaaaaaaaaaAaAAaaaaaaaaaaaaaaaaAa

 with FDs 

aaaaaAAaAAaaaaaAaAAaaaaAaAAaaaaaaaaaaAaAAaaaaaaaaaaaaaaaaAA

 and 

AaaaaaaaaaaAAaAAaaaaaaaaaaaaaaaaAA 

We recognize the transitive dependency and decompose aaaaaaaa 
into these two tables: 

aaaaaaaaaAaAaaaaaAaAAaaaaAaAAaaaaaaaaaaAa 
AaaaaaaaAaAaaaaaaaaaaAaAAaaaaaaaaaaaaaaaaAaA 
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 Te aaaaaaaa table can be reconstructed by joining aaaaaaaaa 
and aaaaaaa by the common attribute, aaaaaaaaaa. aaaaaaaaaa is the 
primary key of aaaaaaa and is a foreign key referencing aaaaaaaaa. 
If aaaaAaaAaa is decomposed into aaaaAaa and aaaaAaa, the equijoin opera-
tion can reconstruct a combining tables a and a on rows where the values 
of common attribute a are equal. If aAaAaaaaaaaaaAaAaAaaaaaaaaaaA 
aAaAaaaaaaa, and aA= aaaaaaaaaa, the equijoin would proceed like this: 

aaaaaaaaAaAaaaaaAaAAaaaaAaAAaaaaaaaaaaAaAAaaaaaaaaaaaaaaaaAa

 with data 

<101, Adams, P1, Pensacola> 
<102, Baker, P1, Pensacola> 
<103, Charles, P2, Mobile> 
<104, Davis, P2, Mobile>

 decomposes to 

aaaaaaaaaAaAaaaaaAaAAaaaaAaAAaaaaaaaaaaAaA

 with data 

<101, Adams, P1> 
<102, Baker, P1> 
<103, Charles, P2> 
<104, Davis, P2> 

and 

AaaaaaaaAaAaaaaaaaaaaAaAAaaaaaaaaaaaaaaaaAaA

 with data 

<P1, Pensacola> 
<P2, Mobile>

 Te equijoin operation J gives us aaaaaaAaAaaaaaaaaaaAAaAAaaaaaaaa 
on aaaaaaaaaa, resulting in 
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<101, Adams, P1> joins with <P1, Pensacola> to give <101, 
Adams, P1, Pensacola> 

<102, Baker, P1> joins with <P1, Pensacola> to give <102, 
Baker, P1, Pensacola> 

<103, Charles, P2> joins with <P2, Mobile> to give <103, 
Charles, P2, Mobile> 

<104, Davis, P2> joins with <P2, Mobile> to give <104, 
Davis, P2, Mobile> 

 T e aaaaaa table contains the same data as the original aaaaaaaa 
table. Te join operation can use operators other than equality, but the 
other join varieties are uncommon and beyond the scope of this book. T e 
recombining of decomposed tables during the normalization process uses 
the equijoin operation. 

3.9 SOME FUNCTIONAL DEPENDENCY RULES 

We now introduce a set of FD rules to aid in fnding normal forms. We 
do not approach this subject with great mathematical rigor, but rather 
appeal to common sense and logic. Tere are far more rigorous treat-
ments of this subject (Elmasri and Navathe, 2016). Before we can deter-
mine normal forms, we deal with f nding a minimal key in a table and 
then work from that key to the normal forms. We designate a table with 
letters aaAa, or a (usually a). We depict attributes as aaAaaAa,. . . . For 
example, if we have a table  a with three attributes aaA a, and aa we 
abbreviate this aaaaAaaAaa. Now, consider a problem consisting of a set 
of attributes and some FDs to see how a set of FD rules will allow us to 
organize the database: 
We are given some data, which we put in a table aaaaAaaAaaAaa, and we 

are given some FDs: aAaAaaaAaAaAa. Te process of bringing this data to 
3NF goes like this: (a) Find a minimal key of a; (b) determine whether R 
is in 3NF; and if not, decompose it until it is. 
 To fnd the key, we want to propose some rules for dealing with the FDs 

we are given. If aAaAaa, the attribute a def nes a and a, or put another 
way, a and a are functionally dependent on a. Here is an example: Let 

a be aaaaaaaa 
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a be aaaaaaaaaaaAA 
a be AaaaaA 
a be aaaaA 
a be AaaaaaA 

If we say aAaAaaa in a, we are saying if you know the aaaaaaaaaAaa, 
you then can fnd the aaaaAaAAaaaa, and aaaaa for a given aaaaaaaaaaa in 
the table a. When writing FDs, we are dealing with aaaa of attributes. Sets 
have no order, and duplication of attributes on either side of an FD adds 
no information. Some of the notions about sets are ofen expressed as FD 
rules. If we view the FD as a set relation among attributes, we can say all of 
the following are the same as aAaAaaa: 

AaAaAaaaaAaAaAaaaaAaaAaAaaaaAaAaAaaaaaaaaaAaaaaaAaA 
aaaaaaaaaaaa. 

In the aaaaaaaa table, since aA aAaaaaaaaaaaaAa defnes the other 
attributes, we designate a as a primary key. Hence, writing the table in 
shorthand looks like this: aaAaAaAaaAaaAaa, where the underlined a is the 
primary key. Now, here are some rules: 

i. Te refexive rule: aA aA a. In this chapter, we profered this rule, 
which is trivially obvious; it simply means if I know a, then I can tell 
you a. Since we treat the attributes as sets, the refexive rule also tells 
us aaAaAa and aAaAaa. 

ii. Te augmentation rule: If aAaAa, then aaAaAa. If you are given aAaA 
a, then this means if you know a value for A, you can fnd a value for 
B. If a isAAaaaaaaaaaaa and a is a Aaaaa, aAaAa says if you give me a 
value for aaaaaaaaaaa, then I can fnd a aaaa for that aaaaaaaaa 
aa. Te augmentation rule says if I augment the LHS (Lef Hand 
Side) of the defning expression (A), I can still correctly fnd the RHS 
(Right Hand Side). Adding information to the LHS really does noth-
ing to enhance the FD. Suppose we take an example: employee_no = 
101 implies aaaa is Jones. Now, if we add information to the LHS, 
like aaaaaaaaaaa = 101, Date of Birth = 21 Nov 1958, what is the 
name? It is Jones, and the added information of birthday on the LHS 
is superfuous. Still, the rule is valid, and it will help us when deriv-
ing a key. 

iii. Te decomposition rule: If aAaAaaaa then aAaAaaAaAaAaa and aAaAa. 
(Please do not confuse this FD rule with the decomposition of tables 
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to gain normal forms. Unfortunately, the names are the same, but the 
meaning is overloaded.) Again, we appeal to intuition to understand 
this rule. If aaaaaaaaaaa defnes a  aaaa, aaaaaaa, and  aaaa, then it 
is valid to say  aaaaaaaaaaa defnes a  aaaa, aaaaaaaaaaa def nes 
an aaaaaaa, and  aaaaaaaaaaa defnes a  aaaa. If you give me a valid 
aaaaaaaaaaa, I can tell you a person’s aaaa, the person’s aaaaaaa, 
and the person’s phone number as one unit or piece by piece. 

iv. Te union rule: If aAaAa and aAaAa, then aAaAaa. Te reverse of the 
decomposition rule is the  aaaaaAaaaa, which says the same thing as 
the decomposition rule, backward. As an example, if aaaaaaaaaaa 
defnes a  aaaa and aaaaaaaaaaa defnes a  aaaa, then  aaaaaaaaaaa 
defnes a  aaaa and a  aaaa. 

v. Te transitive rule: If aAaAa and aAaAa, then aAaAa. T is rule 
seems to fy in the face of the 3NF, but for f nding keys in a jum-
ble of attributes, it is quite useful. Tink of the rule in terms of a 
table of aaaaaaaaaaaAaA AaaaA, and  aaaaaaaaaaaaaaAa. You are given 
AaaaaaaaaaaaAAaAAaaa. You are given AaaaAAaAAaaaaaaaaaaaaaa. T e rule 
says AaaaaaaaaaaaAAaAAaaaaaaaaaaaaaa. Give me an aaaaaaaaaaa, 
and I’ll tell you the  aaa that person does because I can look up the 
aaa and then fnd the  aaaaaaaaaaaaaa. 

vi. Te subset rule: A is a subset of some group of attributes a, then aAaAa. 
For example, if aAaAaa, then a is a subset of aa and aaAaAa. If 
aa is aaaaaaaaaaa and  aaaa, then given an aaaaaaaaaaa and 
aaaa, I can tell you either  aaaa or aaaaaaaaaaa. 

EXAMPLE 3.1 
Let us consider the following problem: We are given some data in a table: 
aaaaAaaAaaAaaAaa; we are given some FDs: aAaAaaaAaAaAaaAaaAaAa. What 
we want to find is one set of attributes to define all the others, a key to this 
table, a. After we find the key, we will work on normal forms. 
Step 1. Find a LHS (Left Hand Side) (of an FD) that is a minimal key for a. 

You can always start with the refl exive property and use all the attributes on 
the LHS. aaaaaAaAaaaaaaAaaaaa is a key, but what we want to fi nd is 
some subset of all attributes to define the others—a minimal key (if it exists). 
A good way to find a minimal LHS is to first look for a FD with a concat-
enated LHS (if there is one). If there is no concatenated key, then choose an 
attribute to define as many other attributes as possible. Admittedly, this is a 
subjective choice, but if you choose incorrectly, you only need to try again 
with a different or enhanced LHS. After choosing some LHS, we look at the 
FD rules and see if we can define the other attributes from our chosen LHS. 
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In this case, we have aaAaAa. We will see if we can show aaAaAaaaaa 
and hence let aa be a minimal key of the original a. Notice we start with 
the largest concatenated LHS because we will need at least aaAto define 
whatever is functionally dependent on it. 
Step 2. Use the rules to find as many RHS attributes as possible with the 

candidate LHS. Since aaAaAa, we know by the reflexive rule aaAaAaa; and 
then by the union rule, we combine these two: 

Union rule: aaAaAaA(given), aaAaAaa (reflexive), then aaAaAaaaa 

Use the other given FDs to find other attributes that depend on the chosen 
LHS from step 1. 

We have established that aaAaAaaa. We were given aAaAaa. 

Subset rule: aaAaAaaa (derived previously), then aaAaAaaAA 
Transitive rule: aaAaAaaAaAaAaa (given), then aaAaAaaa 
Union rule: aaAaAaaaaAaaAaAaa, then aaAaAaaaaaa and since we are 

dealing with sets of attributes, aaAaAaaaa. 

Step 3. Repeat step 2 as necessary to get all attributes on the RHS from 
the chosen LHS if you can. 

We have all attributes on the RHS except a. The other FD we are given is 
aAaAa. Using the same line of thought and we have established aaAaAaaaa: 

Subset rule: aaAaAaaaa, then aaAaAaaAA 
Transitive rule: aaAaAaaAaAaAa (given), then aaAaAaaAA 
Union rule: aaAaAaaaaaAaaAaAa, then aaAaAaaaaa. 

The process of using FD rules to find a minimal key is not an exact algo-
rithm. Some people will see a transitive rule first, then a union rule; others 
will see decomposition rules first. The order of rule application is not as 
important as clearly defining a valid path from a LHS to define all attributes 
(aaaaaAaAaaaaa) to some minimal key (here, aaAaAaaaaa). 

Since our LHS defines all the other attributes, we have a minimal key aa. 
Now, the question: Is this in 1NF, 2NF, or 3NF? No repeating groups were 
indicated; hence, we have 1NF with aaAaaAaaAAaaAaaAaa. The best tactic here is 
to remove transitive dependencies first. We have aAaAa, so we can decom-
pose a as follows: 

aAaAaaAaaAAaaAaaAaa becomes aaAaAaaAaaAAaaAaa and aaAaAaAaAaa. 

When all transitive FDs have been removed, look for partial dependen-
cies. While aa is the key of a, we have a aaaAaAaAaa (a partial depen-
dency) because aa has aaAaAaa. 
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aaAaAaaAaaAAaaAaa decomposes to 
aaAaAaAaAaaAaa and aaAaAaaAaaAAaaAA 

The final version of the database is 

aaAaAaAaAaaAA 
AaaAaAaAaAaaAaaAA 
AaaAaAaaAaaAAaaAA 

We suggested the better technique in decomposing was to remove the 
transitive dependencies first. The decomposition could be done by remov-
ing the partial dependencies first, but the FD with the transitive dependency 
has to be kept with its LHS. Consider the following: 

aAaAaaAaaAAaaAaaAaa becomes aaAaAaaAAaaAaa (partial dependency removed) 
and aaAaAaaAaaAAaaAaa. But, now there is a problem. You still have aAaA 
a, and you do not have a and a together in either aa or aa. 

You have to keep a and a together and hence decompose like this: 

AaAaAaaAaaAAaaAaaAaaAbecomes aaAaAaaAAaaAaaAaa and aaAaAaaAaaAAaaAand then 
handle the transitive dependency. 

aaAaAaaAAaaAaaAaa decomposes to aaAaAaaAAaaAaa and aaAaAaaAAaaaA 

The final version is 

aaAaAaaAaaAAaaAA 
AaaAaAaaAAaaAaaAA 
AaaAaAaaAAaa 

Regardless of how the decomposition is done, the final result has to be 
checked to see if all FDs are still there. If so, then you should have a 3NF 
database. 

EXAMPLE 3.2 
Let us give one more example of a decomposition and key choice that is a 
little less straightforward. Suppose we have aAaaaAaaAaaAaaAaaAaa and aaAaA 
aa and aAaAa. Your first mission is to find a minimal key for R. From the 
previous discussion, we suggested you choose the largest LHS of a given FD 
and then see if you can use the rules to show it is a key. Here, you would 
choose aa to start and then see if you can show aaAaAaaaaaa. Using our 
rules, we can show: 
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 1. aaAaAaa (refl exive rule) 
2. aaAaAaa (given) 
3. aaAaAaaaa (union rule of 1 and 2)

 4. aaAaAa (subset rule) 
5. aAaAa (given) 
6. aaAaAa (transitive rule on 4 and 5) 
7. aaAaAaaaaa (union rule on 3 and 6) 

What about F? You may have recognized this as a problem already. 
However, when you look at the given aas, you see a does not appear on 
either an LHS or a RHS. You can see the choice of AB as a starting key was 
good, but not complete. To handle this, you can do this: 

8. aaaAaAaaaaa (augmentation rule and 7) 
9. aaaAaAa (subset rule) 

 10. aaaAaAaaaaaaA(union rule of 8 and 9). 

 Tis last discussion and example suggest two things: (a) our basic algo-
rithm of “start with the largest concatenated key as the LHS” is good, but 
the augmentation rule allows us to include attributes on the LHS as neces-
sary to get to a minimal key; and (b) you can derive new FD rules. Our use 
of the rules in steps 8, 9, and 10 suggest we can profer this rule: 

vii. Te double augmentation rule: You are given or have derived aaAaA 
a, then aaaAaAaa. You can add an attribute to both the LHS and 
the RHS at the same time as we did to go from step 7 to step 10. 

 Tere are many theories and algorithms about how to decompose and 
how to choose minimal keys. For example, to fnd a minimal key, there 
are proposed algorithms starting with all attributes → all attributes and 
then remove attributes from the LHS—a top-down approach. In terms of 
decomposition, it seems easier to handle transitive dependencies f rst. We 
have presented what we feel is a practical workable approach to going from 
a jumbled set of attributes to 3NF. Here is the summary of the approach 
we illustrated: 

Find the minimal key (MK): 

MK1. Lump all attributes into one table R and choose the largest LHS 
FD as the minimal key K. 



  

   
 

  
 

  
 

 

 
 

   

  

  

   
   
   
    
   
    
     

 
    

   

 
 

Te Relational Model  • 65 

MK2. Use FD rules to fnd out whether K can in fact defne all the 
attributes in R. 

MK3. If K cannot defne all the attributes, then augment K with another 
“well-chosen” attribute and return to step MK2 with K now K’ (K 
plus some other attribute). With practice, the well-chosen attribute 
will be some attribute from the original set defning whatever other 
attributes are missing in step MK2.

 Decompose (D): 

D1. Remove all transitive dependencies to a separate table. 
D2. Remove all partial dependencies to a separate table. 

Check to see if the fnal product still retains all given FDs. 

Checkpoint 3.6 

For each of the following, fnd a minimal key and decompose as neces-
sary to reach the 3NF. Show decomposed tables with keys. 

1. aaaaAaaAaaAaaAaaAaa and aAaAaaaaaA 
2. aaaaAaaAaaAaa and aaAaAaaaAaAaAaA 
3. aaaaAaaAaaAaa and aaAaAaaAaAaaA 
4. aaaaAaaAaaAaaAaaAand aaaAaAaaAaAaAaA 
5. aaaaAaaAaaAaaAaa and aaAaAaaAaAaAaaAaAaaA 
6. aaaaAaaAaaAaaAand aaaAaAaA 
7. aaaaAaaaaaa and aaa and aaaa  (a has multiple occurrences 
of a) 

8. aaaaAaaAaaAaaAaaAand aAaAaaaaA 

3.10 THE BOYCE–CODD NORMAL FORM 

We have suggested all databases be placed in 3NF. When all the tables are 
in 3NF, there is likely to be no redundancy, no anomalies. Tere is one situ-
ation for which 3NF may not be “quite good enough.” We placed this last 
in the chapter because it is somewhat unusual but possible, and database 
designers should be aware of it. Some authors suggest this is a “stronger 
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form than 3NF,” but there is still a difculty with tables normalized to 
Boyce–Codd normal form (BCNF), as we shall discuss. Here is the problem: 
Suppose you had a table with three attributes, aaaaAaaAaa. Suppose fur-

ther aaAaAa, but add the aaaAaAaAa. Te table with its primary key would 
be aaAaaAaaAAaa; it is in 3NF because there are no partial dependencies and 
no transitive dependencies of the type aAaAaaAaAaAa. But, there is still a 
slight problem. Tere is that odd transitive aaaAaAaAa; hence, there will 
be redundancy and anomalies. 
Here is an example of this situation: Suppose we have a local ballpark 

where there are children who play sports. Some children play for more 
than one team. Each team may have multiple coaches, and a player is 
assigned a coach on each team. We have a database of players, teams, and 
coaches, and we omit some player, team, and coach details for simplicity. 
So, we have a PARK table: AaaaaAaAaaaaaaAaAAaaaaAaAAAaaaaaAa, as shown in 

Table 3.27. 

AaaaaaaAaAAaaaaAAaAAaaaaa. Note aaaaaa does not → aaaaAaAAaaaa does not → 
aaaaa (look at the data to disprove these FDs). On the other hand, 
aaaaa → aaaa. While this data is in 3NF, you have redundancy 
because aaaaa → aaaa. 

Te normalization to BCNF denies any transitive dependencies and 
works like this: 

aaAaaAaaAAaa, with FDs aaAaAaaAaAaAa can be normalized into aaaAaaAAaaA 
and aaaAaaAaAa. Te problem is that one of the FDs has vanished aaaA 
aAaa, so have we the anomalies. Te ballpark example normalized to 
BCNF looks like Tables 3.28 and 3.29. 

aaAaaaaaaaaAaaaaaa  and aaaaaaaaaAaaaaa 

TABLE 3.27 

Sample Data for aaaaATable. 
player team coach 

Walsh Tigers Adams 
Smith Pirates Baker 
Walsh Spiders Davis 
Smith Tigers Edwards 
Philips Pirates Baker 
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TABLE 3.28 

Sample Data for aa Table. 
player coach 

Walsh Adams 
Smith Baker 
Walsh Davis 
Smith Edwards 
Philips Baker 

TABLE 3.29 

Sample Data for CT Table. 

coach team 

Adams Tigers 
Baker Pirates 
Davis Spiders 
Edwards Tigers 

In the aa table, both attributes are a concatenated key (aaaaaaAaAAaaaaaA 
→ aaaaaaAaA AaaaaaA). Since there can be no partial or transitive dependen-
cies, PC is in 3NF and BCNF. aa  is  also  in  3NF and  BCNF (aaaaaAAaA  
Aaaaa). Te decomposition problem is that we lost the FD: aaaaaaAaAAaaaaA→ 
aaaaa. Te original table can be reconstructed with an equijoin operation 
by joining aa and aa on aaaaa, but the BCNF version allows updates 
with no redundancy, whereas the original aaaa table does not. Consider 
adding a coach to the original aaaa table; it can only be done if a player 
is assigned, or else there would be a null in the key. In the BCNF version, 
a coach can be added to CT with no player assigned. Te other anomalies 
will be lef as exercises. 
BCNF is a little more complicated than the 1NF, 2NF, and 3NF. In the 

frst three normal forms, there is no issue regarding whether the decom-
position is a “good idea.” All databases should be reduced to at least 3NF. 
BCNF presents a quandary. What is more annoying to the person using 
the database? Is the loss of a FD worse than some anomalies? In a non-
BCNF situation,  if  the occurrence of  anomaly-producing redundancy is 
low, then it may well be better just to leave the tables as is—in 3NF but not 
BCNF. If the redundancy is pervasive, then normalization to BCNF may 
be in order. One option never acceptable is to keep both versions because 
that is total redundancy. 



  

   

  
   

 

 

 

 

 

  

  

 

  

 

 
 

  
 

  
 

 
 

68 • Database Design Using ER Diagrams 

3.11 CHAPTER SUMMARY

 Tis chapter was meant to introduce relational database. Relational tables 
are sets of rows. As sets, the rows have no implied order among them, and 
in a correct table, there are no duplicate rows. Normal forms are introduced 
along with (a) why the normal forms are desirable; (b) why nonnormal-
ized tables generate anomalies; and (c) how to move from nonnormalized 
tables to normal form tables. 
Anomalies are abnormal table maintenance operations (delete, insert, 

and update) that are abnormal because of redundancy and bad table 
design. Te equijoin operation was introduced to show how decomposed 
tables can be reconstructed. A FD calculus was introduced to show how 
to determine keys and decompositions on an aggregate of data. Finally, 
BCNF was covered. Decomposing non-BCNF tables removes redundan-
cies and anomalies but hides FDs. 

CHAPTER 3 EXERCISES 

Exercise 3.1

 If aAaAa, can you say aAaAa? Why or why not ? 

Exercise 3.2 

Decompose the following data into 1NF tables: 

Khanna, 123 4th St., Columbus, Ohio {Delhi University, Calcutta Uni-
versity, Ohio State} 

Ray, 4 Moose Lane, Pensacola, Florida {Zambia University, University 
of West Florida} 

Ali, 88 Tiger Circle, Gulf Breeze, Florida {University of South Alabama, 
University of West Florida} 

Sahni, 283 Penny Street, North Canton, Ohio {Wooster College, Mount 
Union College} 
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Exercise 3.3 

Consider the data in Table 3.30. 

TABLE 3.30 

Exercise 3.3 Table. 

name address city state car color year 

Smith 123 4th St Pensacola FL Mazda Blue 2019 
Smith 123 4th St Pensacola FL Nissan Red 2018 
Jones 4 Moose Lane Santa Clive CA Lexus Red 2019 
Katie 5 Rain Circle Fort Walton FL Taurus White 2019 

and the following FDs: 

aaaaAAaAAaaaaaaaAaAaAaaaaAaaaaaaAaaaAaAAaaaaaAaAAaaaaAand aaaAAaAAaaaaaAaAAaaaaA 

Decompose as necessary to achieve 3NF. 
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4 
The Basic ER Diagram:  A 
Data Modeling Schema 

4.1 INTRODUCTION

 Tis chapter begins by describing a data modeling approach and then 
introduces entity-relationship (ER) diagrams. Te concepts of entities, 
attributes, relationships, and keys are introduced. T e frst three steps 
in an ER design methodology are developed. Step 1 begins by building 
a one-entity diagram. Step 2 concentrates on using structured English 
to describe a database. Step 3, the last section in this chapter, discusses 
mapping the ER diagram to a relational database. T ese concepts—the 
diagram, structured English, and mapping—evolve together as the book 
progresses. At the end of this chapter, we also begin a running case study, 
which is continued in the following chapters. 

4.2 WHAT IS A DATA MODELING SCHEMA?

 A data modeling schema is a method that allows us to model or illustrate a 
database. Tis is ofen in the form of a graphic diagram, but other means 
of communication are also desirable. Tose not in the computer f eld may 
be unfamiliar with diagrams and graphics. Te ER diagram is a graphic 
tool to facilitate data modeling. ER diagrams are a subset of “semantic  
models” in database parlance. Semantic models refer to models intended 
to elicit meaning from arrangements of data. ER diagrams are not the only 
semantic modeling tools, but they are common and popular. 
When we discuss the contents of a database, the data model helps us 

decide which piece of data goes with which other piece(s) of data on a 
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conceptual level. An early concept concerning the subject of database is 
to recognize there are levels of abstraction we can use in discussing data-
bases. For example, if we were to discuss the f ling of “names,” we could 
discuss: 

(a) Abstractly, “We will fle names of people we know.” 
(b) Concretely, “We will f le frst, middle, and last names (20 characters 

each) of people we know, so we can retrieve the names in alphabeti-
cal order by last name; and we will put this data in a spreadsheet 
format in package  x.” 

If a person is designing a database, the frst step is to abstract, then ref ne 
the abstraction. Te longer one stays away from the concrete details of 
logical models (relational, hierarchical, network) and physical realizations 
(felds [how many characters, the data type, . . .] and fles [relative, spread-
sheet, . . .]), the easier it is to change the model and decide how the data 
will eventually be physically realized (stored). When we use the term f eld 
or f le, we are referring to physical data as opposed to conceptual data. 

Mapping is the process of choosing a logical model and then moving to 
a physical database fle system from a conceptual model (the ER diagram). 
A physical fle loaded with data is necessary to actually obtain data from a 
database. Mapping is the bridge between the design concept and physical 
reality. In this book, we focus on the relational database model where the 
database sofware allows us to virtually ignore how the data is physically 
stored. 

4.2.1 What Is an Entity-Relationship Diagram?

 T e ER diagram is a semantic data modeling  tool used to accomplish the 
goal of abstractly describing or portraying data. Abstractly described  
data is called a conceptual model. Our conceptual model will lead us to a 
“schema.” A  schema implies a permanent, f xed description of the struc-
ture of the data. Terefore, when we agree we have captured the correct 
depiction of reality within our conceptual model, our ER diagram, we can 
call it a schema. 
An ER diagram could also be used to document an existing database by 

reverse engineering it. In introducing the subject, we focus on the idea of 
using an ER diagram to model a to-be-created database, and we deal with 
reverse engineering later. 
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4.3 DEFINING A DATABASE—SOME DEFINITIONS: 
ENTITY, RELATIONSHIP, AND ATTRIBUTE 

As the name implies, an entity-relationship diagram models data as enti-
ties and  relationships. An entity is a thing about which we store data (e.g., 
a person, a bank account, a building). In the original presentation,  Chen 
(1976) described an entity as a “thing which can be distinctly identif ed.” 
An entity may be a person, place, object, event, or concept about which 
we wish to store data. A  relationship is a connection between entities. An 
attribute is the name of the data contained within an entity or relationship. 
An entity represents a type or class of something and should be named 

accordingly. Te following are some examples of entities: 

• Examples of a person entity would be aaaaaaaaaAaaa, orAaaaaaaaaA 
• Examples of a place entity would be aaaaa or aaaaaaa. 
•  Examples of an object entity would be  aaaaaaaa, aaaa, or 
aaaaaaa. 

• Examples of an event entity would be aaaaa, aaaaaaa, or 
aaaaaaaaaaaa. 

• Examples of a concept entity would be aaaaaaa or aaaaaaaaaa. 

 Te name of an entity should be generic. Te name should be able to 
accommodate changes “over time.” For example, if we were modeling a 
donut business, we might consider creating an entity called aaaaa. But, 
how long will it be before this business evolves into making more generic 
pastry? If it is anticipated the business will involve pastry of all kinds 
rather than just donuts, perhaps it would be better to create an entity 
called aaaaaa, which may be more applicable over time. In this case, 
an entity “business” is too generic because you want to record data about 
donuts or pastry—components of the business. 
In older data-processing circles, we would have referred to an entity as a 

“record,” but the term record is too physical and too conf ning. “Record” 
gives us a mental picture of a physical thing, and to work at the conceptual 
level, we want to avoid device-oriented terms. In a database context, it is 
unusual to store information about one entity, so we think of storing col-
lections of data about entities; such collections are called  entity sets. Entity 
sets correspond to the older concept of “a set of fles,” but “sets of f les” 
usually implies physical things, and hence we abstract the concept of the 
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fle-set (entity set) as well as the concept of a record (entity). As an exam-
ple, suppose we have a company with customers. You would imagine the 
company had a customer entity set with individual customer entities in it. 
An entity may be very broad (e.g., a PERSON), or it may be narrowed 

by the application for which data is being prepared (a STUDENT or a 
CUSTOMER). “Broad” entities, which cover a whole class of objects, are 
sometimes called generalizations (e.g., PERSON), and “narrower” entities 
are sometimes called  specializations (e.g., STUDENT). In further dia-
grams (in this book), we revisit generalizations and specializations, but for 
now, we concern ourselves with an application level at which there are no 
subgroups (specializations) or supergroups (generalizations) of entities. 
When we speak of capturing data about a particular entity, we refer to 

this as an instance. An entity instance is a single occurrence of an entity. 
For example, if we create an entity called aaaa, and if we choose to record 
data about a screwdriver, then the screwdriver “record” is an instance of 
aaaa. Each instance of an entity must be uniquely identifable, so each 
instance is separate and distinctly identifable from all other instances of 
that type of entity. In a customer entity set, you might imagine the com-
pany would assign a unique customer number, for example. T is unique 
identifer is called a  key. 
A relationship is a link or association between entities. Relationships are 

usually denoted by verb phrases. We begin by expanding the notion of an 
entity (in this chapter and the next), and then we come back to the notion 
of a relationship (in  Chapter 6) once we are comfortable with the concept 
of an entity. 
An attribute is a property or characteristic of an entity. For example, an 

entity, aaaaaaaaaa, has attributes aaaaAaAAaaaaaAaAAaaaaaaaaaa, and so on. 

4.3.1 A Beginning Methodology 

Database modeling begins with a description of “what is to be stored.” Such 
a description is normally elicited from the “user.” For example, Ms. Smith 
of Acme Parts Company asks you to design a database of parts for her com-
pany. Ms. Smith is the user. You are the database designer. What Ms. Smith 
tells you about the parts the company sells, manufacturers, or buys will be 
part of the database description. 
As a starting point in dealing with a to-be-created database, we iden-

tify a central “primary” entity—a category about which we will store data. 
For example, if we wanted to create a database about students and their 
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environment, then one entity would be aaaaaaa. (Our characteriza-
tion of an entity will always be in the singular.) Having chosen one f rst 
primary entity, aaaaaaa, we then search for information (attributes) 
to be recorded about our aaaaaaa. Tis methodology of selecting one 
primary entity from a data description is our frst step in drawing an ER 
diagram and hence the beginning of the requirements phase of sof ware 
engineering for our database. 
Once the primary entity has been chosen, we then ask what informa-

tion we want to record about our entity. In our aaaaaaa example, 
we add some details about the aaaaaaa—details to qualify, identify, 
classify, or express the state of the entity (in this case, the aaaaaaa 
entity). Tese details or contents of entities are called  attributes.1 Some 
example attributes of aaaaaaa would be information about the 
student—name, student number, major, address, and so on. In this pro-
cess of selecting attributes, the user should be able to tell you what data 
should be stored. 

4.3.2 ER Design Methodology 

Step 1. Select one primary entity from the database requirements 
description and show attributes to be recorded for that entity. 

Requirements def nition is the frst phase of sofware engineering in which 
the systems analyst tries to fnd out what a user wants. Now having chosen 
a primary entity and some attributes, the task will be to 

(a) Draw a diagram of our frst impression entity (our primary entity). 
(b) Translate the diagram into English. 
(c) Present the English (and the diagram) back to the user to see if the 

database designer and user understand one another. If we do, we  
then progress on. 

Step c is called feedback in sofware engineering. Te process of ref n-
ing via feedback is a normal process in the requirements/specif cation 
phases. Te feedback loop is essential in arriving at the reality of what one 
wants to depict from both the user and analyst viewpoints. First, we show 
how to draw the entity, and then we present guidelines on converting our 
diagram into English. 
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Checkpoint 4.1 

1. Of the following items, determine which could be an entity and 
state why: automobile, college class, student, name of student, 
book title, number of dependents. 

2. Why are entities not called fles or records? 
3. What are entity sets? 
4. Why do we need entity-relationship diagrams? 
5. What are attributes? List attributes of the entities you found in 

question 1? 
6. What is a relationship? 

4.4 A FIRST “ENTITY-ONLY” ER DIAGRAM: 
AN ENTITY WITH ATTRIBUTES 

To recap our example, we have chosen an example with a primary entity 
from a student information database: aaaaaaa. Again, “a student” is  
something we want to store information about (the defnition of an entity). 
In this chapter, we will not concern ourselves with any other entities but 
rather add them in later chapters. 
Let us think about some attributes of the entity aaaaaaa. T at is, 

what are some attributes a student might have? A student has a  name , an 
address, and an educational connection. We call the  educational connec-
tion a school. We have picked three attributes for the entity aaaaaaa 
and have also chosen a generic label for each:  aaaaAaAAaaaaaaaAaAAaaaaaaAaA 
We begin our frst venture into ER diagrams with a “Chen-like” model. 

Chen (1976) introduced the idea of the ER diagrams. Chen and others 
have improved the ER process over the years. While there is no standard 
ER diagram model, the Chen-like model and variants thereof are com-
mon. Afer the Chen-like model, we will consider other models. We brief y 
discuss the Barker/Oracle-like model in Chapter 12. Chen-like models 
have the advantage that one need not know the underlying logical model 
to understand the design. Barker models and some other models require a 
full understanding of the relational model, and the diagrams are af ected 
by relational concepts. 
To begin, in the Chen-like model, we will do as Chen originally did and 

put the entities in boxes and show attributes nearby. One way to depict 
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attributes is to put them in circles or ovals appended to the boxes (refer to 
Figure 4.1a and Figure 4.1b). Figure 4.1c is an alternative style of depicting 
attributes. Te alternative attribute style (Figure 4.1c) is not as descrip-
tive but is more compact and may be used if Chen-like diagrams become 
cluttered. 

FIGURE 4.1A 
Chen-like Model: Entity with Attributes. 

FIGURE 4.1B 
STUDENT Entity with T ree Attributes. 

FIGURE 4.1C 
Alternative ER Model. 
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We have illustrated the model of an “attribute in an oval” (Chen-like  
model) because it is common and useful. Refer to Figure 4.2A,  4.2B, 
and  4.2C for more alternate models for attributes. Tere are benef ts to 
alternate forms for depicting attributes. Te standard form of the Chen-
like model with ovals and boxes is good for conceptualizing; it is easily 
changed and very clear regarding which attribute goes where. T e concise 
forms (Figure 4.1C and other variants shown in Figure 4.2A,  4.2B, and 
4.2C) are easily created from the standard form and are sometimes more 
useful for documentation when space is a concern. 

FIGURE 4.2A 
Second Alternative Model for ER Diagram. 

FIGURE 4.2B
 Tird Alternative Model for ER Diagram. 

FIGURE 4.2C 
Fourth Alternative Model for ER Diagram. 
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FIGURE 4.3
 T e aaaaaaa Entity with Five Attributes. 

Figures 4.1B and  4.1C show an ER diagram with one entity, aaaaaaa, 
and three attributes:  aaaaaAaaaaaaaAa and  aaaaaa. If more attributes were 
added to our conceptual model, such as aaaaa and  aaaaa, they would be 
appended to the entity (aaaaaaa is the only entity we have so far), as 
can be seen in Figure 4.3. 

4.5 MORE ABOUT ATTRIBUTES 

Attributes are characteristics of entities providing descriptive detail about 
the entities. Tere are several diferent kinds of attributes: simple or atomic, 
composite, multivalued, and derived. Te properties of an attribute are 
its name, description, format, and size, in addition to its atomicity. Some 
attributes may be considered as unique identifers for an entity. In this 
section, we also introduce the idea of a key attribute, a unique identif er 
for an entity. 

4.5.1 The Simple or Atomic Attribute 

Simple or atomic attributes cannot be broken down further or subdivided— 
hence the notion “atomic.” One may examine the domain of values2 of 
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an attribute to elicit whether an attribute is simple or not. An example of 
a simple or atomic attribute would be  Social Security number; a person 
would be expected to have only one, undivided  Social Security number. 
Other tests of whether an attribute is simple or atomic will depend 

entirely on the circumstances the database designer encounters as well as 
the desire of the user for which the database is being built. For example, 
a phone number attribute could be treated as a simple nine-digit number 
in a particular database design, but in another scenario we may want to 
divide the  phone number into two distinct parts: area code and the seven-
digit  number. 
Another example of when the use of the attribute in the database will 

determine if the attribute is simple or atomic is a birthdate attribute. If 
we are setting up a database for a veterinary hospital, it may make sense 
to break a  aaaaaaaaa feld up into  month, day, and  year since it will make 
a diference in treatment if a young animal is 5 days old versus if it is 5 
months or 5 years old. Hence, in this case aaaaaaaaa would be a compos-
ite attribute. For a database of aaaaaaaaaa as used by handicap-
pers, it may not be necessary to break up a birthdate feld into month/ 
day/year since all racing horses are dated only by the year in which they 
are born. In this case, aaaaaaaaa, consisting of only the  year, would be 
atomic. 
If an attribute is nonatomic, it needs to be depicted as such on the  

ER diagram. Te following sections deal with these more complicated, 
nonatomic attribute ideas: the composite attribute and the multivalued 
attribute. 

4.5.2 The Composite Attribute

 A composite attribute, sometimes called a  group attribute, is an attribute 
formed by combining or aggregating related attributes. Te names chosen 
for composite attributes should be descriptive and general. T e concept 
of name is adequate for a general description, but it may be desirable to 
be more specifc about the parts of this attribute. Most data-processing 
applications divide the  name into component parts. In this case, aaaa is 
called a  composite attribute or an aggregate because it is usually composed 
of aAAaAaaaAaaaaAa a AaaaaAaaaa, and a  aaaaaaAaaaaaaa—sub-attributes, if you 
will. Te way composite attributes are shown in ER diagrams in the Chen-
like model is illustrated in Figure 4.4. Te sub-attributes, like  aAaaaAaaaa, 
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FIGURE 4.4 
aaaaaaa Entity with a Composite Attribute—Name. 

aaaaaaA aaaaA, and  aaaaA aaaa, are called  simple, atomic, or elementary 
attributes. Te word aggregate is used in a diferent sense in some database 
query languages—and to avoid confusion, we do not call composite attri-
butes aggregates; we use the word composite. 
 Te test of whether an attribute will be composite (or not) will depend 

entirely on the circumstances the database designer encounters—the 
desire of the user requesting the database. For example, in one database 
it may not be important to know exactly which  city, state, or zip code a 
PERSON comes from, so an address attribute in that database may not 
be broken up into its component parts; it simply may be called address. 
In another database, it may be important to know which  city and  state a 
PERSON is from, so in this second database we would have to break up 
the  address attribute into street address, city, state, and  zip code, making the 
address attribute a composite attribute. 

4.5.3 The Multivalued Attribute 

Another type of non-simple attribute to be managed is called a  multival-
ued attribute. Te multivalued attribute, as the name implies, may take 
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on more than one value for a given occurrence of an entity. For example, 
the attribute  school could easily be multivalued if a person attends (or has 
attended, depending on the context of the database) more than one  school. 
As a counter example, most people go by only one  name; hence, the  name 
is not multivalued.
 Te multivalued attribute called  aaaaaa is depicted in  Figure 4.5A  

(Chen-like model) as a double oval; this illustrates the situation for which 
a database will store data about students who may have attended more 
than one aaaaaa. Although we have chosen to illustrate aaaaaa as a mul-
tivalued attribute, we do not mean to imply this will always be the case 
in all databases. In fact, the attribute  aaaaaa may well be single valued in 
some databases. Te idea of aaaaaa may mean the current (or just pre-
vious) aaaaaa as opposed to all  schools attended. If the subjects about 
whom we are storing data can attend only one  aaaaaa at a time (and that 
is what we want to depict), then the attribute aaaaaa may well be a single 
valued attribute. 
Again, the test of single versus multivalued will depend entirely on the 

circumstances the database designer encounters—the desire of the user 
of the to-be-built database. It is recommended if the sense of the database 
is the attribute  aaaaaa means “current school,” then the attribute should 
be called “current school” and illustrated as a single-valued attribute. We 
show a multivalued attribute in Figure 4.5A. Tis diagram implies mul-
tiple  schools may be recorded for each student. 

4.5.4 The Derived Attribute 

Derived attributes are those the user may envision but may not be recorded 
per se. Tese derived attributes may be calculated from other data in the 
database. An example of a derived attribute would be an aaa, which could 
be calculated once a birth date is stored. In the Chen-like model, a derived 
attribute is shown in a dashed oval (Figure 4.5B). 

4.5.5 Keys 

A database is used to store data for retrieval. An attribute used to f nd a 
particular entity occurrence is called a key. As we model our database with 
the ER models, we may fnd some attributes naturally seem to be keys.  
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FIGURE 4.5A 
aaaaaaa Entity with a Multivalued Attribute. 

FIGURE 4.5B 
aaaaaaa Entity with a Derived Attribute: Age. 
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If an attribute may be thought of as a unique identifer for an entity, it is 
called a  candidate key. When a candidate key is chosen to be the unique 
identifer, it becomes the  primary key for the entity. 
As an example of keys, suppose we add an attribute called  aaaaaaaa 

aaaaaa to our aaaaaaa entity example. We might well consider a 
aaaaaaaaaaaaaaA to be a unique identifer for the entity—a candidate key 
because of uniqueness. A  aaaa is ofen unique, but not necessarily so. 
Members of the same class ofen share  last names. aaaaaaa may or may 
not be a unique identifer and hence is not a likely candidate key. Siblings 
who take classes together could easily have the same aaaaaaa. Schools 
ofen choose to assign a unique student number to each student to be able 
to fnd student records. Te idea of a key is to provide a unique way to f nd 
an entity instance (a particular record).
 Some aaaaaaAa also choose to record a aaaaaaAaaaaaaaaAaaaaaaAaAaaaAa as 

an attribute. An aaa is also unique and hence a candidate key along with 
aaaaaaaaaaaaaa. If both aaa and aaaaaaaaaaaaaa were recorded, then 
the designer would have to choose which candidate key would be the primary 
key. In our case, we choose not to record an aaa. T e aaaaaaa entity 
with the unique identif er aaaaaaaaaaaaaa, added as a aaa, is depicted in 
 Figure 4.6 . 
In the Chen-like ER model  unique identif ers (candidate keys), are usu-

ally underlined (as shown in Figure 4.6). A unique identifer may be an 
attribute or a combination of attributes. It is not necessary to choose 
which candidate key will be the primary key at this point, but one could 
do so. When there is only one candidate key, we will generally speak 
of it as the primary key simply because it is obvious the primary key is a 
candidate key. In Figure 4.6, we also depict a short form of the ER diagram 
(at the bottom of the fgure) with composite attributes and multivalued 
attributes as well as primary keys. Te composite attributes are listed with 
its component parts, and the multivalued attributes are enclosed in paren-
theses in the abbreviated form. 
Finally, while on the subject of keys, we will have situations in the ER 

diagram (in the Chen-like model) for which no key is obvious or intended. 
Entities having at least one identifed key are called  strong entities. In 
Chen’s (1976) original article, strong entities were called regular entities. 
Some entities will be discovered dependent on other entities for their being 
(and hence their identifcation). Chen called those entities relying on other 
entities for their existence  weak entities. 
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FIGURE 4.6 
aaaaaaa Entity with a Primary Key or Unique Identif er Attribute.

  We can ofen recognize these weak entities because they may not have 
candidate keys, although the actual meaning of a weak entity is “one 
depending on another for existence.” As Chen did, we follow the Chen-
like ER notation and call such entities weak entities—weak because they 
will have to depend on some other entity to furnish a unique identif er to 
give the entity a reason to be recorded. 
Although a weak entity may have a candidate key, it would not be a 

strong entity. We depict weak entities in the Chen-like ER diagrams with 
double boxes (see Figure 4.7). For now, we concentrate on those entities 
having keys, the strong entities, and will reconsider situations for which 
no key is obvious, the weak entities, later. 
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FIGURE 4.7 
A Strong and a Weak aaaaaaaaaa Entity. 

Checkpoint 4.2 

1. Describe the basic types of data representation schemas used in 
ER modeling. 

2. What notation is used to diagrammatically show an entity in the 
Chen-like ER model? 

3.  How do we diagrammatically show attributes in the Chen-like  
ER model? 

4. How do we show composite attributes in the Chen-like ER model? 
5. Draw an entity representation for the entity BUILDING with the 

following attributes:  aaaaaaaaA aaaa, aaaaaaaaa, and whether 
or not it has an aaaaaaaa (yes/no). 

6. Embellish the BUILDING entity to include the building  super-
intendent’s name (f rst, middle, and last). Does this have to be a 
composite attribute? Why or why not? 
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7. Embellish the BUILDING entity to include the  address of the 
building, which will be the primary key. 

8. Again, embellish the BUILDING entity to include names (and 
only names) of the  janitorial staf. 

9. Add a multivalued attribute to the BUILDING entity. 
10. How many attributes can an entity have? 

4.6 ENGLISH DESCRIPTION OF THE ENTITY 

We now have an entity with attributes and want to prepare the f rst feedback 
to the user: the English description. Users will not likely want to study the 
entity diagram, but they might want to hear what you, the analyst, think you 
heard. For an English description, we use a “structured” English grammar 
and substitute the appropriate information from the entity diagram. 

4.6.1 The Method

 Te template for the structured English for single entities is as follows: Let 
ENTITY be the name of the entity and  att(j) be the attributes. Te order of 
the attributes is not important, so  j = 1, 2, . . . is assigned arbitrarily, albeit 
once an order is chosen it does not change. Suppose there are  n attributes 
so far. Te generalized English equivalent of our diagram is presented next. 

4.6.1.1 The Entity 

Tis database records data about  Entity. For each  ENTITY in the 
database, we record att(1), att(2), att(3), . . . att(n). 

4.6.1.2 The Attributes

 For atomic attributes,  att(j): 

For each  ENTITY, there always will be one and only one att(j). T e 
value for  att(j) will not be subdivided. 

 For composite attributes,  att(j): 

For each  ENTITY, we will record att(j), which is composed of x, y, 
z, . . . (x, y, z ) are the component parts of att(j). 
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 For multivalued attributes,  att(j): 

For each  ENTITY, we will record att(j)’s. Tere may be more than 
one  att(j) recorded for each  ENTITY.

 For derived attributes,  att(j): 

For each  ENTITY, there may exist  att(j)’s, which will be derived 
from the database. 

4.6.1.3 The Keys 

For the key(s): 

(a) More than one candidate key (strong entity): 

For each ENTITY, we will have the following candidate keys: 
att(j), att(k), . . . (where j, k are candidate key attributes). 

(b) One candidate key (strong entity): 

For each  ENTITY, we will have the following primary key: att(j). 

(c) No candidate keys (weak entity): 

For each  ENTITY, we do not assume any attribute will be unique 
enough to identify individual entities without the accompanying 
reference to owner- ENTITY (i.e., some other entity.)3 

(d) No candidate keys (intersecting entity): Tis is discussed next. 

4.6.2 ER Design Methodology 

Step 2. Use structured English for entities, attributes, and keys to 
describe the elicited database. 

Step 3. Show some sample data. 

Sample data usually helps describe the database to the user as it is per-
ceived by the analyst. 

4.6.3 Examples 

We now revisit each of our fgures and add an English description to each. 
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4.6.3.1 Figure 4.3 Example 

First, reconsider Figure 4.3. Tere are no multivalued or composite attri-
butes. aaaaaa = aaaaaaa, att(1) = name, att(2) = aaaaaa, and so on (j 
assigned arbitrarily). Te English “translation” of the entity diagram using 
the templates is discussed next. 

4.6.3.1.1 The Entity

 Tis database records data about aaaaaaas. For each aaaaaaa in the data-
base, we record a  aaaa, a aaaaaa, an aaaaaaaAaAaAAaaaaaAaaaaaaAa and a  aaaaa. 

4.6.3.1.2 The Attributes

 For each aaaaaaa, there will be one and only one  aaaa. T e value 
for  aaaa will not be subdivided (note that in Figure 4.3  we did not 
divide name).

 For each aaaaaaa, there will be one and only one  aaaaa. T e value 
for  aaaaa will not be subdivided. 

 For each aaaaaaa, there will be one and only one  aaaaaaa. T e value 
for  aaaaaaa will not be subdivided. 

 For each aaaaaaa, there will be one and only one  aaaaaa. T e value 
for  aaaaaa will not be subdivided. 

 For each aaaaaaa, there will be one and only one  aaaaa. T e value 
for  aaaaa will not be subdivided. 

4.6.3.1.3 The Keys

 For each aaaaaaa, we do not assume any attribute will be unique enough 
to identify individual entities. (Remember we are describing  Figure 4.3.) 

4.6.3.1.4 Sample Data 

In addition to these descriptions, some sample data is ofen helpful in 
showing the user what you have proposed. Sample data for  Figure 4.3  is 
shown in Table 4.1. 

TABLE 4.1 

Initial Sample Data for  Figure 4.3. 

name major address school phone 

Smith Cosc 123 4th St St. Helens 222–2222 
Jones Acct 222 2nd St PS 123 333–3333 
Saha Eng 284 3rd St Canton 345–3546 
Kapoor Math 20 Living Cr High 435–4534 
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As you read these descriptions, they all seem repetitive and somewhat 
overly structured. Please bear with us as we are simply trying to be unam-
biguous and still be clearly understood by a user who most likely would 
not like to interpret a diagram. 

4.6.3.2 Figure 4.4 Example 

Now, consider Figure 4.4. T is fgure has a composite attribute, aaaa. T e 
English description of this entity diagram is next. 

4.6.3.2.1 The Entity

 Tis database records data about aaaaaaas. For each aaaaaaa in the 
database, we record a  aaaa, a aaaaaa, and an aaaaaaa. 

4.6.3.2.2 The Attributes

 For each aaaaaaa, there will be one and only one  aaaa. T e value 
for  aaaa will be subdivided into AaAaaaAaaaaAaAAaaaaAaaaa, and  aaaa 
aaa aaaaaaaAa

 For each aaaaaaa, there will be one and only one  aaaaaaa. T e value 
for  aaaaaaa will not be subdivided. 

 For each aaaaaaa, there will be one and only one  aaaaaa. T e value 
of the  aaaaaa will not be subdivided. 

4.6.3.2.3 The Keys

 For each aaaaaaa, we do not assume any attribute will be unique 
enough to identify individual entities. 

4.6.3.2.4 Sample Data 

Sample data for  Figure 4.4  is shown in Table 4.2. 

TABLE 4.2 

Initial Sample Data for  Figure 4.4. 

name.fi rst name.last name.mi school address 

Richard Earp W U. Alabama 222 2nd St 
Boris Backer Heidelberg 333 Dreistrasse 
Helga Hogan H U. Hoover 8 8 Half Moon Ave 
Arpan Bagui K Northern School 33 Bloom Ave 
Hema Malini South Bend 100 Livingstone 
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4.6.3.3 Figure 4.5A Example 

Next consider Figure 4.5A. T is fgure has a composite as well as a mul-
tivalued attribute. Te English translation of this entity diagram is given 
next. 

4.6.3.3.1 The Entity 

For the entity, this database records data about aaaaaaas. For each 
aaaaaaa in the database, we record a AaaaaAaAAaaaaaaAaa and an aaaaaaaA. 

4.6.3.3.2 The Attributes

 For each aaaaaaa, there will be one and only one  aaaa. T e value 
for  aaaa will be subdivided into aAaaaAaaaaAaAAaaaaAaaaa, and  aaaa 
aaa aaaaaaa. In dividing name, we use the dot notation to show where 
the parts of the attribute came from, hence  aaaaaaAaaaaAaaaaaaaaaaA 
aaaaaaaAa

 For each aaaaaaa, there will be one and only one  aaaaaaa. T e value 
for  aaaaaaa will not be subdivided. 

 For each aaaaaaa, we will record aaaaaaAa. Tere may be more than 
one  aaaaaa recorded for each student. 

4.6.3.3.3 The Keys

 For each aaaaaaa, we do not assume any attribute will be unique 
enough to identify individual entities. 

4.6.3.3.4 Sample Data 

Sample data for  Figure 4.5a  is shown in Table 4.3. 

4.6.3.4 Figure 4.6 Example

 Consider  Figure 4.6 . T is fgure has composite, multivalued, and key attri-
butes. Te English translation of this entity diagram is as follows. 

TABLE 4.3 

Initial Sample Data for  Figure 4.5A. 
name.fi rstname.lastname.mischool address 
Richard Earp W U. Alabama, Mountain 222 2nd St 
Boris Backer Heidelberg, Volcano 333 Dreistrasse 
Helga Hogan H U. Hoover, St. Helens 88 Half Moon Ave 
Arpan Bagui K Northern School 33 Bloom Ave 
Hema Malini South Bend 100 Livingstone 
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4.6.3.4.1 The Entity

 Tis database records data about aaaaaaas. For each aaaaaaa 
in the database, we record a aaaaAaA AaaaaaaAa, an aaaaaaa, and a 
aaaaaaaaaaaaaa. 

4.6.3.4.2 The Attributes

 For each aaaaaaa, there will be one and only one  aaaa. T e value 
for  aaaa will be subdivided into aaaaaaAaaaaAaaaaaaaaaaAaaaaaaaA. 

 For each aaaaaaa, there will be one and only one  aaaaaaa. T e value 
for  aaaaaaa will not be subdivided. 

 For each aaaaaaa, we will record aaaaaaAa. Tere may be more than 
one  aaaaaa recorded for each student. 

4.6.3.4.3 The Keys

 For each aaaaaaa, there is an attribute—aaaaaaaaaaaaaa —unique 
enough to identify individual entities. 

4.6.3.5 Figure 4.7 Example 

Finally, consider Figure 4.7 (top f gure). T is fgure shows a strong entity. 
We combine the grammar to keep the methodology from being overly 
repetitive. Te English translation of this entity diagram follows. 

4.6.3.5.1 The Entity

 Tis database records data about aaaaaaaaaas. For each aaaaaaaaaa 
in the database, we record a  aaaa, aaaaaaaaaa, aaaa, aaaaa, and  aaaaaaaaaa. 

4.6.3.5.2 The Attributes 

Each AUTOMOBILE will have one and only one AaaaaaA aaaaaaaaaaaA 
aaaaAaAAaaaaaAaAand  aaaaaaaaaa. None of these attributes will be subdivided. 

4.6.3.5.3 The Keys

 For each aaaaaaaaaa, the attribute, aaaaaaaaaa, will be unique enough 
to identify individual entities.
 Te bottom of Figure 4.7  shows a weak entity. Te only dif erence 

between the strong and weak entity description involves the phrase about 
a key, which may not exist in the weak entity. 
Before leaving this introductory chapter on ER diagrams, we show the 

other major component of ER diagrams.  Figure 4.8  shows a  relationship 
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FIGURE 4.8 
An ER Diagram of a aaaaaaa-aaaaaaaaaa Database. 

between two entities: an aaaaaaaaaa and a aaaaaaa. T e concept 
of relationships is discussed elaborately in Chapter 6. A relationship adds 
action to the diagram. For example, the relationship in Figure 4.8  might 
be that aaaaaaas drive aaaaaaaaaas. 
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Our ER design methodology has evolved to the following so far: 

Step 1. Select one primary entity from the database requirements 
description and show attributes to be recorded for that entity. 
Label keys if appropriate. 

Step 2. Use structured English for entities, attributes, and keys to 
describe the elicited database. 

Step 3. Show some sample data. 

4.7 MAPPING THE ENTITY DIAGRAM 
TO A RELATIONAL DATABASE 

Having illustrated the idea of the entity and the attribute, we now turn to a 
semi-physical realization of the concepts. We say semi-physical because we 
are not concerned with the actual physical fle stored in memory; rather, 
we are concerned with placing data into relational tables we will visualize 
as a physical organization of data. Basically, a relational database is a data-
base of two-dimensional tables called relations. Te tables are composed 
of rows and columns. Te rows are sometimes called  tuples; the columns 
are  attributes. In a relational database, all attributes (table columns) must 
be atomic, and keys must not be null. In addition, in relational databases, 
it is not necessary to know the actual physical location of the data on a 
magnetic device like a disk. 
 Te process of converting an ER diagram into a database is called  map-

ping. We concern ourselves only with the relational model; hence, as the 
chapters in this book develop, we will develop mapping rules to turn ER 
diagrams into relational databases. 
We start with a rule to map strong entities. 

Mapping rule 1—Mapping strong entities. Develop a new table (rela-
tion) for each strong entity and make the indicated key of the 
strong entity the primary key of the table. If more than one can-
didate key is indicated on the ER diagram, choose one for the pri-
mary key. Call this table, TABLE1. 

Next, we must map the attributes into the strong entity’s table, TABLE1. 
Mapping rules are diferent for atomic attributes, composite attributes, 
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and multivalued attributes. First, we present the mapping rule for map-
ping atomic attributes. 

Mapping rule 2—Mapping atomic attributes. For entities with atomic 
attributes, map the entities to a table and form columns for each 
atomic attribute. Here we’d map the atomic attributes associated 
with  TABLE1 into it.4 

In discussing relational tables, it is common to abbreviate the diagram 
with a notation like this: 

AaaaaaaaaaaAaaaaaaaaaaaAaaaaaaaaaaAaaAaAaAaaA 

A relational database realization of the entity diagram in Figure 4.3  would 
look like this: 

AaaaaaaaaAaaaaaAaaaaaAaAAaaaaaaAaAAaaaaaaaAaAAaaaaaAaA 

And with some sample data, as shown in Table 4.4. 
aaaaaaa would be the name of this relation (table). Te attributes in 

the entity diagram become the column headings. Te actual table with 
sample data, a realization of a relation, is provided as an example of the 
type of data you might expect in such a table. Te ordering of the col-
umns is irrelevant to the relational database as long as once the ordering is 
chosen, we stay with it. Te point of this example is for you, the database 
analyst, to communicate to the user what you think the database should 
look like. 

TABLE 4.4 

Sample Data for  Figure 4.3. 

name phone school address major 

Jones 932-5100 U. Alabama 123 4th St Chemistry 
Smith 932-5101 U. Mississippi 123 5th St Math 
Adams 932-5102 LSU 123 6th St Agriculture 
Sumon 435-0997 UWF 11000 Univ Cyber Sec 
Mala 877-0982 Mount Union U Alliance History 
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What about the composite and multivalued attributes? As we men-
tioned, it is an axiom of the relational database that all columns be 
atomic. If we have a nonatomic attribute on our diagram, we must 
force it to be atomic for the mapping to the relational database. For 
composite attributes, we achieve atomicity by recording only the com-
ponent parts of the attribute. Our next mapping rule maps composite 
attributes. 

Mapping rule 3—Mapping composite attributes. For entities with 
composite attributes, map entities to a table and form columns of 
each elementary (atomic) part of the composite attributes. 

Refer to Figure 4.4. A relational database, which corresponds to the 
entity diagram in Figure 4.4, would be: 

aaaaaaaaAaaaaaaAaaaaAaaaaaaaaaaAaaaaaaaAaAAaaaaaaAaAAaaaaaaaAaA 

In this shorthand notation of a relational database, the composite 
attribute (aaaa) is often included with a dot notation (e.g., aaaaa 
aAaaaA). Here, aaaa is called a qualifier for the composite parts of the 
attribute. 
With some sample data for  Figure 4.4  in Table 4.5. 
A multivalued attribute is depicted in Figure 4.5A. In this entity dia-

gram, the aaaaaaa entity has a composite attribute, aaaa, and a mul-
tivalued attribute, aaaaaa. Tis means students may have more than one 
aaaaaa recorded for their row. Data represented by Figure 4.5A might look 
like  Table 4.6 .  

TABLE 4.5 

Sample Data for  Figure 4.4. 

name.fi rst name.last name.mi school address 

Richard Earp W U. Alabama 222 2nd St 
Boris Backer Heidelberg 333 Dreistrasse 
Helga Hogan H U. Hoover 88 Half Moon Ave 
Arpan Bagui K Cambridge 33 Bloom Ave 
Hema Malini Fashion U 100 Livingstone 
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TABLE 4.6 

Sample Data for Figure 4.5A. 

name.first name.last name.mi address school 

Richard Earp W 222 2nd St U. Alabama, St 
Helens, Mountain, 
Volcano 

Boris Backer 333 Dreistrasse Heidelberg, Manatee 
U, UCF, UWF 

Helga Hogan H 88 Half Moon U. Hoover, Mount 
Ave Union U, Manatee U 

Arpan Bagui K 33 Bloom Ave Cambridge, USF, 
Harvard 

Hema Malini 100 Livingstone Fashion U, Milan U 

Tis is not considered a relational table because the aaaaaa attribute is not 
atomic. To be a relational table, every attribute has to be atomic. To map this 
multivalued attribute atomically, we follow the following mapping rule: 

Mapping rule 4—Mapping multivalued attributes. Form a separate 
table for the multivalued attribute. Record a row for each value 
of the multivalued attribute together with the key from the origi-
nal table. Te key of the new table will be the concatenation of the 
multivalued attribute plus the key of the owner entity. Remove the 
multivalued attribute from the original table. 

As per mapping rule 4, we require a key to map multivalued attributes; 
hence, we use Figure 4.6 to correctly map the multivalued attribute. Figure 
4.6 would be mapped into the following two relations: 

aaaaaaaaAaaaaaaaaaaaaaaAaA aaaaaaAaaaaA aaaaaaaaaaA aaaaaaaAaA 
AaaaaaaaAaA

 and 

AaaaaaaaaaaaaaaaAaaaaaaaaaaaaaaAaAAaaaaaaAaA 

Some sample data would be as shown in Tables 4.7A and 4.7B. 
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TABLE 4.7A 

Sample Data for aaaaaaa. 
student_number name.fi rst name.last name.mi address 

111–11–2222 Richard Earp W 222 2nd St 
222–11–2222 Boris Backer 333 Dreistrasse 
234–45–4567 Helga Hogan H 88 Half Moon Ave 
888–77–9990 Arpan Bagui K 33 Bloom Ave 
123–45–4321 Hema Malini 100 Livingstone 

TABLE 4.7B 

Sample Data for aaaaaaaaaaaaaa. 
student_number school 

111-11-2222 
111-11-2222 
111-11-2222 
111-11-2222 
222-11-2222 
222-11-2222 
222-11-2222 
222-11-2222 
234-45-4567 
234-45-4567 
234-45-4567 
888-77-9990 
888-77-9990 
888-77-9990 
123-45-4321 
123-45-4321 

U. Alabama 
St. Helens 
Mountain 
Volcano 
Heidelberg 
Manatee U 
UCF 
UWF 
U. Hoover 
Mount Union U 
Manatee U 
Cambridge 
USF 
Harvard 
Fashion U 
Milan U 

 In relational databases, every row of a table contains atomic attributes, 
and every row is unique. Terefore, a candidate key in any table is always 
all of the attributes taken together. Usually, a subset of “all of the attri-
butes” can be found to be a key, but since no two rows are ever the same, 
it is always true that one candidate key is the collection of all attributes. 

Checkpoint 4.3 

1. How do you map multivalued attributes? 
2. How do you map composite attributes? 
3. What is a unique identifer? Is it a candidate key? Is it “the” pri-

mary key? Discuss. 
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4.8 CHAPTER SUMMARY

 Te main focus in this chapter was on developing the concept of the entity 
and developing a one-entity diagram using the Chen-like model. T e con-
cept of attributes was also discussed, and the last section focused on how 
a one-entity diagram could be mapped to a relational database. T e gram-
mar for a one-entity diagram and its attributes was also developed. T is 
grammar is further developed in the following chapters. Te next chapter 
discusses developing a second entity and the relationship between this 
second entity and the primary entity. 

CHAPTER 4 EXERCISES 

Note: Te user should clarify the assumptions made when reporting their 
work. 

Exercise 4.1 

You want to create a database about businesses. Each business will have a 
aaaa, aaaaaaa, the aaaaaaaaAaaaaaAaaaaaa, the aaaaaaaAaaaaaAaaaa 
aaa, and the frst names of the employees who work at the business. Draw 
the ER diagram using the Chen-like model and then write the English 
description for your diagrams. Compare the English to your diagrams 
and state any assumptions you made when drawing the diagrams. Map 
your diagrams to a relational database. 
Which attributes would you consider composite attributes in this data-

base? Which attributes would you consider multivalued attributes in this 
database? Could there be any derived attributes? What would be good 
keys? 

Exercise 4.2 

You want to create a database about the books on your shelf. Each book has 
aaaaaaa (only the last name is needed), aaaaaaAaaaaaaaaaaAaaaaaaa used in 
(course number only). Draw the ER diagram using the Chen-like model, 
and then write the English description for your diagrams. Compare the 
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English to your diagrams and state any assumptions you made when 
drawing the diagrams. 
Which attributes would you consider composite attributes in this data-

base? Which attributes would you consider multivalued attributes in this 
database? Could there be any derived attributes? What would be good 
keys? Map your diagram to a relational database. 

CASE STUDY 

West Florida Mall 

A new mall, West Florida Mall, just had its grand opening three weeks 
ago in Pensacola, Florida. Tis new mall is attracting a lot of customers 
and stores. West Florida Mall, which is part of a series of malls owned by 
a parent company, now needs a database to keep track of the management 
of the mall in terms of all its stores as well as the owners and workers in 
the stores. Before we build a database for this system of malls, the f rst step 
will be to design an ER diagram for the mall owner. We gathered the fol-
lowing initial user specif cations about the mall, with which we can start 
creating the ER diagram: 

1. We need to record information about the mall and each store in the 
mall. We need to record the mall’s name and address. A mall, at any 
point in time, must contain one or more stores. 

2. For each store we will need to keep the following information: store 
number (which will be unique), the name of the store, location of  
store (room number), departments, the owner of the store, and man-
ager of the store. Each store may have more than one department 
with each department having a manager. Each store will have only 
one manager. Each store is owned by only one owner. Each store is 
located in one and only one mall. 

3. A store manager can manage only one store. We must record infor-
mation on the store manager—the name, Social Security number, 
which store he or she is working for, and the salary. 

4. Te store owner is a person. We will record name, address, and of  ce 
phone about the store owner. A store owner must own at least one 
store and may own more than one. 
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Developing The Case Study 

As per step 1 in designing the ER diagram, we have to select our primary 
entity and then the attributes for our primary entity (step 1 is shown 
next): 

Step 1. Select one primary entity from the database requirements 
description and show attributes to be recorded for that entity. 

We will choose aaaa as our primary entity. 
Our next step is to translate the diagram into English: 

Step 2. Use structured English for entities, attributes, and keys to 
describe the database that has been elicited. 

The Entity

 Tis database records data about a aaaa. 
 For each aaaa in the database, we record a aaaa, an aaaaaaa, and 

aaaaaaaaaaAa. 

The Attributes for MALL

 For each aaaa, there will be one and only one  aaaa. Te value for 
aaaa will not be subdivided. 

 For each aaaa, there will be one and only one  aaaaaaa. Te value for 
aaaaaaa will not be subdivided. 

 For each aaaa, record aaaaaaaaaaAa. Tere may be more than one 
aaaaaaaaaa recorded for each aaaa. Te value of each  aaaaaa 
aaaa will not be subdivided. 

The Keys

 For each aaaa, we assume the mall aaaa will be unique. 
 T e aaaa entity is shown in Figure 4.9. 
So far, for this case study, we selected one primary entity, aaaa, 

showed its known attributes, and used structured English to describe the 
entity and its attributes. Next, we map this entity diagram to a relational 
database. 
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FIGURE 4.9 
T e aaaa entity. 

Mapping the Entity to a Relational Database 

aaaa is a strong entity, so we use mapping rule 1, which states: 

Develop a new table (relation) for each strong entity and make the 
indicated key of the strong entity the primary key of the table. 
If more than one candidate key is indicated on the ER diagram, 
choose one for the primary key. 

We develop a new relation for the entity, aaaa (as shown in Figure 4.9), 
and  aaaa will be our primary key. Data represented by Figure 4.9  might 
look like  Table 4.8. 
We can see that aaaa has a multivalued attribute, Aaaaaaaaaaa. T is 

does not make the table a relational table because  aaaaaaaaaa is not 
atomic; it is multivalued. For multivalued attributes, the mapping rule is: 

Form a separate table for the multivalued attribute. Record a row 
for each value of the multivalued attribute together with the 

TABLE 4.8 

Sample Data for  Figure 4.9. 

name address store_name 

West Florida N Davis Hwy, Pensacola, FL Penney’s, Sears, 
Mall Dollar Store, Rex 
Cordova Mall 9th Avenue, Pensacola, FL Dillards, Parisian, 

Circuit City 
Navy Mall Navy Blvd, Pensacola, FL Belks, Wards, Pearl 

Vision 
BelAir Mall 10th Avenue, Mobile, AL Dillards, Sears, 

Penney’s 
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key from the original table. Te key of the new table will be the 
concatenation of the multivalued attribute plus the key of the 
owner entity. Remove the multivalued attribute from the origi-
nal table. 

Using this mapping rule, two relations or relational tables would 
be  developed (and note  that  the  key of aaaaaaaaaa, the table with 
the multivalued attribute, has both aaaa as well as aaaaaaaaaaA 
underlined): 

Aaaaaaaaaaa aaaaaaa) 
Aaaaaaaaaaa(aaaaAaAAAaaaaaaaaaaA) 

And data would look like Table 4.9. 
And the table with the multivalued attribute, Table 4.10. 

TABLE 4.9 

Sample Data for aaaa. 
name address 

West Florida Mall 1234 N Davis Hwy, Pensacola, FL 
Cordova Mall 613 9th Avenue, Pensacola, FL 
Navy Mall 31458 Navy Blvd, Pensacola, FL 
BelAir Mall 12 10th Avenue, Mobile, AL 

TABLE 4.10 

Sample Data for aaaaaaaaaa. 
name store_name 

West Florida Mall Phillip’s 
West Florida Mall Sikha’s 
West Florida Mall Popcorn Store 

West Florida Mall Richard’s 
Cordova Mall Darnley’s 
Cordova Mall Pensacola’s Finest 
Cordova Mall TV City 
Navy Mall Bell Bottoms 
Navy Mall Waverly 

(Continued) 
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TABLE 4.10 (Continued) 

Sample Data for aaaaaaaaaa. 
name store_name 
Navy Mall Pearl Divers 
BelAir Mall Darnley’s 
BelAir Mall Sikha’s 
BelAir Mall Phillip’s 

 Tis case study is continued at the end of the next chapter. 

NOTES

 1 C. J.  Date (1995 ), An Introduction to Database Systems, 6th edition, preferred the 
word “property” to “attribute” because it is more generic and because attribute is 
used in other contexts. We use attribute because we believe it to be more commonly 
used.

 2 Te domain of values is the set of values that a given attribute may take on. T e 
domain consists of all the possible legal values that are permitted on an attribute. 
A data type is a broader term used to describe attributes, but data type includes the 
idea of which operations are allowable. Since people creating a database are usually 
more concerned about storage and retrieval, database data types usually just focus 
on the domain of values. 

3 Te details of the weak entity/strong entity-relationship will become clearer as we 
introduce relationships in Chapter 5.

 4 Tese mapping rules are adapted from  Elmasri and Navathe (2016). 
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5 
Beyond the First Entity Diagram 

5.1 INTRODUCTION 

Now that we have devised a process for drawing, interpreting, and ref n-
ing one primary entity, we need to move to more complex databases. To 
progress from here, we continue with our primary entity and look for 
other information associated with (related to) that entity. 
 T e frst technique employed in this chapter is methodical: We test our 

primary entity to see whether our attributes ought to be entities them-
selves. We then look for other pieces of information in our description, 
add them to: 

(a) An existing entity and examine the existing entity-relationship (ER) 
diagram 

(b) Create a new entity directly 

 Afer creating the new entities, we look to see what relationships exist 
between the two entities. A database is a collection of related data; hence, 
new entities may be added as long as there is a way to connect the new 
entity to existing ones. Tis chapter develops steps 3 through 5 of the ER 
design methodology presented in this book. Step 3 examines the attri-
butes of the primary entity; step 4 discusses what to do if another entity is 
needed; and step 5 discusses developing the relationship between the two 
entities. 
Although the concept of relationships is introduced in this chapter, we 

do not include any new mapping rules in this chapter since they can be 
better understood afer the development of structural constraints on rela-
tionships, discussed in Chapter 6. At the end of this chapter, we continue 
with the case started in Chapter 4. 
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5.2 EXAMINING AN ENTITY: CHANGING 
AN ATTRIBUTE TO BE AN ENTITY 

Consider Figure 5.1. In this fgure, we have a aaaaaaa entity with the 
following attributes:  aaaa (a composite attribute), Aaaaaaaaaaaaaaa (an 
atomic attribute and key),  aaaaaa (a multivalued attribute), and  aaaaaaa 
(an atomic attribute). Suppose during our frst session with the user, we show 
the diagram, the English, and the sample data, and the user says, “Wait a 
minute. I want to record all schools a student attended, and I want to record 
not only the name of the school, but also the location (city and state) and 
school type (community college, university, high school, etc.).” 
What the user just told us was that the attribute  aaaaaa should really 

be an entity. Remember, the def nition of an entity was something about 
which we wanted to record information. Our original thought was we 
were recording schools-attended, but now we are told we want to record 
information about the schools. T e frst indicator an attribute should be 
considered an entity is we need to store information about the attribute. 
What we do then is to migrate from Figure 5.1 to Figure 5.2. In Figure 5.2, 
aaaaaa is now an entity by itself, so we have two separate entities,  
aaaaaa and aaaaaaa. We assume aaaaaaaaaaaA to be unique and 
choose that as the key for the entity aaaaaa. 
 Te next step would be to defne a relationship between the two entities. 

FIGURE 5.1 
aaaaaaa Entity with a Multivalued Attribute. 
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FIGURE 5.2 
Two ER Diagrams: One of aaaaaaa and one of aaaaaa. 

5.3 DEFINING A RELATIONSHIP FOR OUR 
NEW ENTITY 

Databases are designed to store  related data. For example, it would ordinar-
ily make no sense to record data about students and foreign currencies or 
about airline fights and employees at a tennis ball factory listed in the same 
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FIGURE 5.3 
T e aaaaaaa Entity with a Relationship to the aaaaaa Entity. 

database. Tese concepts are not related. In a database, we should be creat-
ing a collection of related data. Following our method, we clearly have a 
situation for which an attribute was part of an entity (school was considered 
“part of”  student), but now  school has become an entity by itself. What we 
must do now is relate the aaaaaa entity to the aaaaaaa entity. 
In Figure 5.2, we have two entities, but they appear as though they are 

independent. To make the  aaaaaa entity and the aaaaaaa entity 
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function as a database, we have to add something: the relationship the 
entity aaaaaa has to the entity aaaaaaa. 
A relationship in an ER diagram is a connection between two or more 

entities or between one entity and itself. Te latter kind of relationship, 
between one entity and itself, is known as a recursive relationship , which 
we discuss in Chapter 8. A relationship name is usually a verb or verb 
phrase denoting the connection between entities. Once we have under-
stood how the relationship is denoted, we have a “tool” to draw a database 
description in the form of an ER diagram. 
In the Chen-like model, a relationship is depicted by a diamond on the 

line joining the two entities together, as shown in Figure 5.3. 
In Figure 5.3, the relationship is depicted as aaaaaa. Te sense of the 

relationship is a verb connecting two nouns (entities). All relationships 
are two-way. As we will see, it is necessary to state all relationships from 
both directions. For example, in the Chen-like model we would infor-
mally say, “A aaaaaaa aaaaaaaa a aaaaaa” or “aaaaaaaa aaaaaa 
aaaaaaa.”
 Te degree of a relationship refers to the number of entities participat-

ing in the relationship. In Figure 5.3, two entities are participating in the 
relationship,  aaaaaa, so this is called a binary relationship. 
We now have a tool to draw a database description in the form of ER 

diagrams. In ER diagrams, we record information about  x and  y (x and  y 
are entities) and then express the relationship of x to y. 
Our growing and amended methodology is discussed next. 

5.3.1 ER Design Methodology 

Step 1. Select one primary entity from the database requirements 
description and show the attributes to be recorded for that entity. 
Label keys if appropriate and show some sample data. 

Step 2. Use structured English for entities, attributes, and keys to 
describe the elicited database. 

Step 3. Examine attributes in the primary entity (possibly with user 
assistance) to fnd out if information about one of the attributes is 
to be recorded. 

Step 3a. If information about an attribute is needed, then make the 
attribute an entity, and then 

Step 3b. Defne the relationship back to the original entity. 
Step 4. Show some sample data. 
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5.4 A PRELIMINARY GRAMMAR FOR ER DIAGRAMS 

In Chapter 4, we outlined a grammar to describe an entity. We have now 
added a relationship to our diagram and need to embellish our English 
description of the proposed database. We also want to show the user some 
sample data to solidify the understanding of the path we are taking. We 
want to add the following to our list of grammatical expressions: 
For each relationship, we add the following comment (in loose English 

[for now]): 

A(n) Entityl Relationship Entityvn2 (active voice) and a(n) Entity2 
Relationship Entityl (passive voice). 

A discussion of this follows. 

5.4.1 The Relationship

 A aaaaaaa attends a aaaaaa, and a aaaaaa is attended by a 
aaaaaaa. 

 Te user may be the ultimate judge of the appropriateness of the expres-
sion we use, but we will add to this grammar soon. Te user may prefer a 
diferent tense for the verb and may choose a verb they think more appro-
priately assesses the situation. For example, the user may choose to por-
tray the relationship as “aaaaaaas will matriculate at aaaaaaa.” As 
an exercise, you will be asked to provide a complete description of the ER 
diagram in Figure 5.3, with all entities, attributes, keys, and relationships. 

5.5 DEFINING A SECOND ENTITY 

Having examined the original primary entity for “suspicious” attributes, 
we may now begin to add more data. Let us presume the user wants to add 
information about automobiles the students own or drive. Ignoring the 
aaaaaa entity for the moment, let us suppose this time we have devel-
oped the following additional description: 
We want to record information about students—their name and student 

numbers. In addition to information about students, we want to record 
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information about their automobiles—the vehicle identif cation number, 
make of the car, body style, color, and year of the model. Let us further 
suppose we made the decision to choose aaaaaaa as the primary entity 
and want to add the automobile information. 
 Te automobile is clearly an entity—it is something about which we 

want to record information. If we add the automobile into the database, 
we could have included it in step 1 of our methodology by adding an  
attribute called aaaaaaaaaa, only later to perform step 3 of the method-
ology and migrate  Automobile and  school to the status of entities. T e 
depiction of automobile as an attribute of the aaaaaaa entity is shown 
in Figure 5.4  in the Chen-like model. (We ignore the aaaaaa entity for 
the moment.) 
If we added the  aaaaaaaaaa attribute to the aaaaaaa entity and then 

recognized that aaaaaaaaaa should have been an entity, we would then 
create the aaaaaaaaaa entity and add the relationship to the model. 
Figure 5.4  could be sufcient if the user did not want to store information 
about the automobiles themselves. 
Of course, we could have recognized the attribute  aaaaaaaaaa was 

going to be an entity all along and simply recorded it as such in our diagram 
in the frst place. By recognizing aaaaaaaaaa as an entity, we would 
draw the two entities aaaaaaa and aaaaaaaaaa and then look for 
a relationship between the two—Figure 5.5  with two entities, aaaaaaa 
and aaaaaaaaaa, and some relationship between the two entities. 

FIGURE 5.4 
A aaaaaaa Entity with an Attribute Called aaaaaaaaaa. 
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FIGURE 5.5 
An ER Diagram of the aaaaaaaaaaaaaaaaaa Database. 

In the Chen-like notation, we now choose some verb to describe the rela-
tionship between the two entities (aaaaaaa and aaaaaaaaaa); in 
this case, we choose drive (shown in the diamond in Figure 5.5). Later the 
user may choose to identify the relationship as something else, but with 
no other information, we assume the user means, “A student  drives an 
automobile.” Other candidates for a relationship between the aaaaaaa 
and aaaaaaaaaa entities might be “register,” “own,” and so on. T e 
relationship between these two entities is a  binary relationship. 
Relationships in ER diagrams are usually given names depicting how the 

entities are related. Sometimes, a relationship is difcult to describe (or is 
unknown); in this case, a two-letter code for the relationship is used. T is 
two-letter relationship is shown in Figure 5.6. We have given the relation-
ship the name SA to indicate we understand that a relationship exists, but we 
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FIGURE 5.6 
An ER Diagram of the aaaaaaaaaaaaaaaaaa Database with an “Unknown,” “Yet-
to-Be-Determined” Relationship. 

are not clear on exactly what to call it (aaAaAaaaaaaaaAaaaaaaaaaa). 
Of course, if we were confdent of “drive” as the relationship, we would use 
drive. 
 Te English description of the entities and relationships implies the enti-

ties are nouns (N) and relationships are verbs (V). Using the  drive rela-
tionship (as shown in Figure 5.6), Students (N) drive (V) Automobiles (N). 
If the “unknown” relationship is really unknown, we might say “Students 
(N) are related to (V) Automobiles (N)” or “A student (N) is related to (V) 
an Automobile (N).” In the next chapter, we develop further this English 
description as well as the relationship part of the diagram. 
At this point, we have introduced the aaaaaaaaAaaaaaaaaaa, and 

aaaaaa entities. With all three entities, the aaaaaaaaaaaaaaaaaaa 
aaaaaa database would look like  Figure 5.7. 
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FIGURE 5.7 
An ER Diagram of the aaaaaaaaaaaaaaaaaaaaaaaaa Database. 

Checkpoint 5.1 

1. Can the nature of an entity change over time? Explain. 
2. What is a relationship? 
3. What are the diferences between an entity and a relationship? 
4. When would it be preferable to consider an attribute an entity? 
5. Does it make sense to have an entity with one attribute? Why or 

why not? 
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5.6 DOES A RELATIONSHIP EXIST? 

Some situations may unfold for which a relationship might be unclear. For 
example, consider this user description of a desired database: 

Create a database for aaaaaaaaa and aaaaaaaaaaAaaaaaaaaa 
will have a AaaaaAaA AaaaaaaaAaA AaaaaaA aaaaaa, and aaaaaaaaA aaaaaa. 
aaaaaaaaa will have a  aaaaaaaaAaaaaaaAaAAaaaa, and  aaaaaaa. 

In this database, we clearly have two entities: aaaaaaaa and aaaaaaaa. 
We want to store information about  customer s (name, address, .  .  .) and 
 supplier s (supplier number, supplier name, . . .). But, what is the connection 
between the two? 
What we have here is an incomplete, vague user description from which 

to design our database. Te connection for the company wanting the data-
base is they have both customers and suppliers; however, what they may 
not realize is that the relationship from aaaaaaaa to aaaaaaaa is 
via a company or a vendor, and not a direct relationship. So, what we have 
so far in this description is two diferent parts of a company database— 
one for  customer s and one for  supplier s. If we later have some other entity 
like aaaaaaaaa or aaaaaa, which is related to aaaaaaaas and 
to aaaaaaaas, there may be linking entities and relationships. For now, 
with just two unrelated ideas (customer and supplier), there is no appar-
ent relationship—so the thing to do would be to leave any relationship of 
the overall diagram until more information is elicited from the user. Two 
unrelated databases may need to be developed. 

5.7 ATTRIBUTE OR RELATIONSHIP? 

Sometimes, it may be unclear whether something is an attribute or a rela-
tionship. Both attributes and relationships express something about an 
entity. Te attributes of an entity express qualities in terms of properties 
or characteristics. Relationships express associations with other entities. 
Suppose we are constructing a library database and we create another 

primary entity, aaaa, which has an attribute Aaaaaaaaaaaaaa. In some 
cases, an attribute construct is likely inappropriate for expressing an 
optional association that really ought to be a relationship between two 
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entities. As a side issue, aaaaaaaa would require the use of a null 
value for those aaaa entities not on loan. In reality, only a fraction of 
the books in a library is on loan at any given time. Tus, the “borrower” 
attribute would be null for some of the aaaa entities. Tis recurrence of 
many nulls might indicate that the attribute, Aaaaaaaaaaaaaa, could be 
an attribute of an entity. If a aaaaaaaa entity were created and the 
association between the entities aaaa and aaaaaaaa was explicitly 
stated as a relationship, the database designer would likely be closer to 
putting attributes and entities in their correct places. It is important to 
understand the distinction between the types of information expressed as 
attributes and those treated as relationships and entities. 

Checkpoint 5.2 

1. Are relationships between two entities permanent, or can the 
nature of this relationship change over time? 

2. Are attributes of an entity permanent? 
3. Does there always exist a relationship between two entities? 
4. What is a binary relationship? 

Our ER elicitation and design methodology is described next. 

5.7.1 ER Design Methodology 

Step 1. Select one primary entity from the database requirements 
description and show attributes to be recorded for that entity. 
Label keys if appropriate and show some sample data. 

Step 2. Use structured English for entities, attributes, and keys to 
describe the elicited database. 

Step 3. Examine attributes in the primary entity (possibly with user 
assistance) to fnd out if information about one of the attributes is 
to be recorded. 

Step 3a. If information about an attribute is needed, then make the 
attribute an entity, and then 

Step 3b. Defne the relationship back to the original entity. 
Step 4. If another entity is appropriate, draw the second entity with its 

attributes. Repeat step 2 to see if this entity should be further split 
into more entities. 
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Step 5. Connect entities with relationships if relationships exist. 
Step 6. Show some sample data. 

5.8 CHAPTER SUMMARY 

Entities, attributes, and relationships were defned in Chapter 4. However, 
in real life, while trying to design databases, it is of en dif  cult to deter-
mine whether something should be an attribute, entity, or relationship. 
Tis chapter discussed ways (techniques) to determine whether something 
should be an entity, attribute, or relationship. 
 Tis chapter also introduced the concept of binary relationships. Real-

life databases will have more than one entity, so this chapter developed 
the ER diagram from a one-entity diagram to a two-entity diagram and 
showed how to determine and depict binary relationships between the two 
entities using the Chen-like model. Since the concept of relationships was 
only introduced and structural constraints of relationships have not yet 
been discussed (Chapter 6), we have not included mapping rules in this 
chapter. 

CHAPTER 5 EXERCISES 

Exercise 5.1 

Draw an ER diagram (using the Chen-like model) for an entity called 
aaaaa and include no fewer than fve attributes for the entity. Of the f ve 
attributes, include at least one composite attribute and one multivalued 
attribute. 

Exercise 5.2 

Suppose we reconsider our aaaaaaa example, and the only attributes of 
student are  aaaaaaaAaaaaaa and  aaaa. Let us suppose we have another 
entity called aaaaAaaaaaa—the high school from which the student 
graduated. For the aaaaAaaaaaa entity, we will record the  high school 
name and the  location (meaning city and  state). Draw the ER diagram 
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using the concise form (as in Figure 4.1c). What would you name the rela-
tionship here? Write out the grammar for the relationship between the 
two entities. 

Exercise 5.3 

Suppose a college had one dormitory with many rooms. T e aaaaaaaaa 
entity, which is actually a “dormitory room” entity since there is only one 
dorm.  Dormitory  has the attributes aaaaA aaaaaa and  aaaaaaaaaaaaa 
(meaning there are private rooms and double rooms). Let us suppose the 
aaaaaaa entity in this case contains the attributes  aaaaaaaAaaaaaaaA 
aaaaaaaAaaaa, and  aaaaAaaaaaaaaaAaaaaaaA. Draw the ER diagram in the 
Chen-like model linking the two entities. Name your relationships. Write 
the grammar for the relationship between the two entities. 

Exercise 5.4 

If we have two entities, a aaaaa and a aaaaa, and describe the relation-
ship between the two entities as

 “A aaaaa f ies a aaaaa.” 

What should the relationship read from the side of the other entity? 

Exercise 5.5 

Complete the methodology by adding sample data to Figures 5.3,  5.5, and 
Exercises 5.1, 5.2, 5.3, and 5.4. 

CASE STUDY 

West Florida Mall (continued) 

In Chapter 4, we chose our primary entity, aaaa, used structured English 
to describe it, its attributes, and keys, and mapped aaaa to a relational 
database (with some sample data). In this chapter, we continue to develop 
this case study by looking at steps 3, 4, and 5 of the ER design methodology. 
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Step 3 says: 

Step 3. Examine attributes in the primary entity (with user assistance) 
to fnd out if information about one of the attributes is to be recorded. 

On reexamining the attributes of the primary entity aaaa, it appears we 
need to store information about the attribute  aaaaa. So, we look at step 3a, 
which says 

Step 3a. If information about an attribute is needed, then make the 
attribute an entity, and then proceed to step 3b. 

So, turning the attribute store into an entity, we have the following (repeat-
ing step 2): 

The Entity

 Tis database records data about a aaaaa. 

For each aaaaa in the database, we record a store name (aaaaa), a 
store number (aaaa), a store location (aaaa), and departments (aaaa). 

The Attributes for aaaaa

 For each aaaaa, there will be one and only one  aaaaa (store name). 
Te value for  aaaaa will not be subdivided. 

 For each aaaaa, there will be one and only one  aaaa (store number). 
Te value for  aaaa will be unique and will not be subdivided. 

 For each aaaaa, we will record a aaaa (store location). Tere will be one 
aaaa recorded for each aaaaa. Te value for  aaaa will not be subdivided.

 For each aaaaa, we will record aaaa (departments). Tere will be 
more than one  aaaa recorded for each aaaaa. Te value for  aaaa 
will not be subdivided. 

The Keys

 For each aaaaa, we will assume the  aaaa will be unique. 
Note: Once aaaaa is made into an entity, the attribute store is removed 

from the entity aaaa, as shown in Figure 5.8. 
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FIGURE 5.8 
ER diagram of the mall database so far.

 Having def ned aaaaa, we now need to follow step 3b, which says 

Step 3b. Defne the relationship back to the original entity.

 Tere is a relationship,  located_in , between aaaaa and aaaa. T is is 
shown in Figure 5.8. 
Next, step 4 says 

Step 4. If another entity is appropriate, draw the second entity with its 
attributes. Repeat step 2 to see if this entity should be further split 
into more entities. 

We select another entity, aaaaaaaaaaaaa. 
Now, repeating step 2 for aaaaaaaaaaaaa: 

The Entitys

 Tis database records data about a aaaaaaaaaaaaa. 

 For each aaaaaaaaaaaaa in the database, we record a store man-
ager name (aaaaaaa), store manager Social Security number (aaa 
aaaA), and store manager salary (aaaaaaaaa). 



    

    
   

    

    
    

  

    

   
  

      

  
      

 
 

  
 

Beyond the First Entity Diagram • 123 

The Attributes for STORE_MANAGER

 For each aaaaaaaaaaaaa, there will be one and only one  aaaaaaa 
(store manager name). Te value for  aaaaaaa will not be subdivided.

 For each aaaaaaaaaaaaa, there will be one and only one  aaa 
aaa (store manager Social Security number). Te value for  aaaaaa 
will be unique and will not be subdivided. 

 For each aaaaaaaaaaaaa, we will record a Aaaaaaaaaa (store 
manager salary). Tere will be one and only one Aaaaaaaaaa recorded 
for each aaaaaaaaaaaaa. Te value for  aaaaaaaaa will not be 
subdivided. 

The Keys

 For each aaaaaaaaaaaaa, we will assume the  aaaaaa will be unique.
 Having def ned aaaaaaaaaaaaa, we now follow step 5, which says 

Step 5. Connect entities with relationships if relationships exist. 

There is a relationship,  manages, between aaaaa and aaaaaa 
aaaaaaa. Tis is shown in Figure 5.9.
 Ten, we select our next primary entity, aaaaa. 
Now, repeating step 2 for aaaaa: 

FIGURE 5.9 
An ER Diagram of West Florida Mall Database Developing. 
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The Entity

 Tis database records data about an aaaaa. 

For each aaaaa in the database, we record a store owner name 
(aaaaaaa), store owner Social Security number (aaaaaa), store 
owner of  ce phone (AaaaaaAaaaaaa), and store owner address (Aaaa 
aaaaaaa). 

The Attributes for OWNER

 For each aaaaa, there will be one and only one  aaaaaaaA (store 
owner name). Te value for Aaaaaaaa will not be subdivided. 

 For each aaaaa, there will be one and only one  aaaaaaA (store owner 
Social Security number). Te value for  aaaaaa will be unique and 
will not be subdivided. 

 For each aaaaa, there will be one and only one A Aaaaaaa (store aaaaa 
owner of  ce phone). Te value for  aaaaaAaaaaaaA will be unique and 
will not be subdivided. 

 For each aaaaa, we will record a aaaaaaaaaa (store owner address). 
Tere will be one and only one  aaaaaaaaaa recorded for each 
aaaaa. Te value for  aaaaaaaaaa will not be subdivided. 

The Keys

 For each aaaaa, we will assume the  aaaaaa will be unique. 
 Having def ned aaaaa, we now follow step 5, which says: 

Step 5. Connect entities with relationships if relationships exist.

 Tere is a relationship,  owns , between aaaaa and aaaaa. T is is 
shown in Figure 5.10. 

Mapping to a Relational Database 

Having described the entities, attributes, and keys, the next step would 
be to map to a relational database. We will also show some data for the 
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FIGURE 5.10 
An ER diagram of West Florida Mall with four entities. 

entities developed in this part of the case study. (Te mappings of the rela-
tionships are shown at the end of Chapter 6.) 

Relation for the MALL Entity

 Te relation for the aaaa entity with some sample data is shown in
 Table 5.1. 

TABLE 5.1 

Sample Data for aaaa. 
name address 

West Florida Mall N Davis Hwy, Pensacola, FL 
Cordova Mall 9th Avenue, Pensacola, FL 
Navy Mall Navy Blvd, Pensacola, FL 
BelAir Mall 10th Avenue, Mobile, AL 
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Note, we do not need the aaaaaAaaaaa mapping presented in Chapter 4 
since  aaaaa has changed from a multivalued attribute to an entity. 

Relation for the STORE entity

 Te entity STORE has a multivalued attribute  aaaa, so we have to again 
use mapping rule 4 to map this entity. First, we will show the relation with 
the multivalued attribute excised, and then we will show the relation 
with the multivalued attribute. 

aaaaa (with some sample data) is shown in Table 5.2. 
Aaaaaaaaaaa Entity (using mapping rule 1 and mapping rule 2) with 

some sample data is shown in Table 5.3. 

TABLE 5.2 

Sample Data for aaaaa. 
sloc sname snum 

Rm 101 Penneys 1 
Rm 102 Sears 2 
Rm 109 Dollar Store 3 
Rm 110 Rex 4 

TABLE 5.3 

Sample Data for aaaaaaaaaa. 
snum dept 

1 Tall men’s clothing 
1 Women’s clothing 
1 Children’s clothing 
1 Men’s clothing 
. 
. 
. 
2 Men’s clothing 
2 Women’s clothing 
2 Children’s clothing 
. 
. 
. 
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TABLE 5.4 

Sample Data for aaaaaAaaaaaaa. 
sm_ssn sm_name sm_salary 

234-87-0988 Saha 45,900 
456-89-0987 Becker 43,989 
928-82-9882 Ford 44,000 
283-72-0927 Raja 38,988 

TABLE 5.5 

Sample Data for aaaaa. 
so_ssn so_name so_off_phone so_address 

879-87-0987 Earp (850)474-2093 1195 Gulf Breeze Pkwy, 
Pensacola, FL 

826-89-0877 Sardar (850)474-9873 109 Navy Blvd, 
Pensacola, FL 

928-88-7654 Bagui (850)474-9382 89 Highland Heights, 
Tampa, FL 

982-76-8766 Bush (850)474-9283 987 Middle Tree, 
Mobile, AL 

Sample data for aaaaaAaaaaaaa is shown in Table 5.4. 

Te aaaaa Entity (using mapping rule 1 and mapping rule 2) with 
some sample data is shown in Table 5.5. 

So far, our relational database has developed into the following: 
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aaaaaAaaaaaaa 
sm _ ssn sm _ name sm _ salary 

 Tis case study is continued at the end of the next chapter. 
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6 
 Extending Relationships/ 
Structural Constraints 

6.1 INTRODUCTION 

In Chapters 4 and 5 , we introduced some components of entity-relationship 
(ER) diagrams: entities, attributes, and relationships. It is insuf  cient 
for requirement elicitation to defne relationships without also def ning 
structural constraints—information about how two (or more) entities are 
related to one another. Tere are two types of structural constraints:  car-
dinality and  participation. 
In this chapter, in addition to the structural constraints of relation-

ships, we introduce a grammar to describe what we have drawn. T e gram-
mar will help with the requirement elicitation process as we will specify 
a template for the English that can be imposed on a diagram, which will 
in turn makes us say exactly what the diagram means. Tis chapter devel-
ops steps 6 and 7 of the ER design methodology. Step 6 states the nature 
of a relationship in English, and step 7 discusses presenting the database 
(designed so far) to the user. 
Mapping rules for relationships are also developed and discussed with 

examples and sample data. At the end of the chapter, we continue the run-
ning case study we began in Chapter 4  and continued in Chapter 5. 

6.2 THE CARDINALITY RATIO OF A RELATIONSHIP 

Cardinality is a rough measure of the number of entities (one or more) 
related to another entity (or entities). For example, as shown in Figure 6.1, 
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FIGURE 6.1A
 One-to-One Relationship aaaaaaaaaaaaaaaaaaaaaaa 

FIGURE 6.1B 
Many-to-One Relationship aaaaaaaaaaaaaaaaaaaaaaa 

FIGURE 6.1C
 One-to-Many Relationship aaaaaaaaaaaaaaaaaaaaaaa 

FIGURE 6.1D
 Many-to-Many Relationship aaaaaaaaaaaaaaaaaaaaaaaA 



   
 

 
     

  

 
   

 
 

  

  
 

  

     
 

  

  
 

 
 
 
 

 
  

 

Extending Relationships •  131 

there are four ways in which the entities aaaaaaaaaa and aaaaaaa 
can be “numerically involved” in a relationship: one to one (1:1), many to 
one (M:1), one to many (1:M), and many to many (M:N). Te most com-
mon relationships are 1:M and M:N. 

6.2.1 One-to-One (1:1) 

In the one-to-one (1:1) type relationship, one entity is associated with one 
other entity and vice versa. For example, if in our  drive relationship (see 
Figure 6.2), we stated one automobile is driven by one student and one 
student drives one automobile, then the student/automobile relationship 
would be one-to-one, symbolically: 

aaaaaaaaaaaaaaaaaaaaaaa 

Diagrammatically, we can represent a 1:1 relationship as shown in
 Figure 6.1A . 

6.2.2 Many-to-One (M:1) 

If the SA (aaaaaaaaaaaaaaaaaa) relationship (shown in Figure 5.6) 
were many to one, we would be saying many students are associated with 
one automobile, and one automobile is associated with many students; 
that is, 

aaaaaaaaaaaaaaaaaaaaaaa 

We have intentionally used the verb phrase “is associated with” in 
place of drive here because the statement “many students drive one 
automobile” may be taken in a variety of ways. Also, using a specif c 
verb for a relationship is not always the best when the diagram is f rst 
drawn unless the analyst is absolutely sure the verb correctly describes 
the user’s intention. We could have also used the verb phrase “is related 
to” instead of “is associated with” if we wanted to be uncommitted about the 
exact verb to use. 
We will tighten the language used to describe relationships, but what  

does a aaaaaaaaaaaaaaaaaaaaaaa relationship imply? It would rep-
resent a situation in which perhaps a family owned one car and that car 
was driven by multiple people in the family. 
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Diagrammatically, we can represent an M:1 relationship as shown in
 Figure 6.1B . 

6.2.3 One-to-Many (1:M) 

A one-to-many SA (aaaaaaaaaaaaaaaaaa) relationship (shown in 
Figure 5.6) would imply one student is associated with many automobiles 
and an automobile is associated with one student. If we defne a relation-
ship as 1:M (or M:1), then we need to be very clear about which entity is 1 
and which is M. Here, 

aaaaaaaaaaaaaaaaaaaaaaa 

Diagrammatically, we can represent a 1:M relationship as shown in
 Figure 6.1C . 

6.2.4 Many-to-Many (M:N) 

In many-to-many relationships, many occurrences of one entity are 
associated with many occurrences of the other entity. Many-to-many is 
depicted as M:N as in M of one thing related to N of another thing. 
If our SA relationship were many to many, a student would be associated 

with many automobiles and an automobile with many students: 

AaaaaaaaaaaaaaaaaaaaaaaaA 

In this case, if we assumed SA = drive, as shown in Figure 5.6, multiple 
students may drive multiple cars (it is hoped not all drive at the same 
time), and multiple cars may be driven by multiple students. Or, a student 
may drive multiple cars, and a car may be driven by multiple students. 
Picture, for example, a family with multiple cars, and any one family 
member may drive any of the cars and any car may be driven by any fam-
ily member. 

Diagrammatically, we can represent an M:N relationship as shown in
 Figure 6.1D . 

In expressing cardinality, this x:x ratio, where x = 1 or M or N, is called 
a cardinality ratio. 
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Which way do we depict the actual situation for our students and auto-
mobiles? Tis is an interesting question. Te answer is that we have to 
model reality as defned by our user. We listen to the user, make some 
assumptions, and draw the model. We then pass our model back to the 
user by using structured English, which the user then approves or corrects. 
A trap in ER design is to try to model every situation for every possibility. 

Tis cannot be done. Te point of creating a database is normally a local 
situation governed by the systems analysis (sofware engineering) process. 
In classical systems analysis, the analyst hears a user, creates a specif ca-
tion, and then presents the result back to the user. Here, the analyst (the 
database analyst/designer) models the reality the user experiences—not 
what every database in the world should look like. If the user disagrees, 
then the analyst can easily modify the conceptual model; but there has to 
be a meeting of the minds on what the model is to depict. 
In our aaaaaaaaaaaaaaaaaa example, the choice we will make 

is one student is associated with (drives) one automobile. While clearly 
one can think of exceptions to this case, we are going to adopt a model to 
choose how we will identify the relationship between the entities as well as 
the information we intend to put in the entities themselves. Bear in mind, 
we are dealing with a conceptual model that could change depending on 
the reality of the situation; however, we have to choose some sort of model 
to begin with, and the one we are choosing is a one-to-one relationship 
between students and automobiles. 
In the Chen-like model, we will depict the one-to-oneness of this rela-

tionship by adding the cardinality numbers to the lines on the ER diagram 
connecting the relationships and the entities (see Figure 6.2). 
In Figure 6.2, we put a “1” on the line between the entity box for the 

aaaaaaa and the diamond box for the relationship. We put another “1” 
on the line between the diamond relationship and the entity box for the 
aaaaaaaaaa. Tese 1’s loosely mean a student is related to one auto-
mobile, and an automobile is related to one student. We must be quite 
careful in saying exactly what this relationship means. It does not mean 
that one student owns one automobile, or that a student pays insurance 
for an automobile. In our model, we mean a student will drive at most one 
automobile on a college campus. Further, we are saying an automobile will 
be driven by one and only one student. Since we are clarifying (ref ning) 
the database, we try to settle on the name of the relationship to include 
the concept we are modeling, driving, by naming the relationship drive. 
Again, see  Figure 6.2  for the renamed model with 1:1 cardinality. 
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FIGURE 6.2 
ER Diagram of a aaaaaaaaaaaaaaaaaa Database with a Relationship Named  drive 
and Cardinality Ratios. 

6.3 PARTICIPATION: FULL/PARTIAL 

It is likely on any campus not all students will drive an automobile. For our 
model, we could normally assume all of the automobiles on the campus 
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are associated with a student. (We are for the moment excluding faculty 
and staf driving by only modeling the student/automobile relationship.) 
To show every automobile is driven by a student, but not every stu-

dent drives an automobile, we enhance our Chen-like models of ER dia-
grams by putting a double line between the relationship diamond and the 
aaaaaaaaaa entity to indicate every automobile is driven by a student. 
Put another way, every automobile in the database participates in the rela-
tionship. From the student side, we leave the line between the aaaaaaa 
entity and the relationship as a single line to indicate that not every stu-
dent drives an automobile. Some students will not participate in the drive 
relationship because they do not drive a car on campus. T e single/double 
lines are called  participation constraints (also known as optionality con-
straints) and are depicted in Figure 6.3. 
 Te double line indicates  full participation. Some designers prefer to call 

this participation  mandatory. Te point is if part of a relationship is man-
datory or full, you cannot have a null value (a missing value) for that attri-
bute in the relationship. In our case, if an automobile is in the database, it 
has to be related to some student.
 Te single line,  partial participation, is also called  optional participa-

tion. Te sense of partial or optional participation is there could be stu-
dents who do not have a relationship to an automobile. 

Checkpoint 6.1 

1. What are structural constraints? 
2. What kind of information does the cardinality ratio give us? 
3. In how many diferent ways can two entities be involved in a car-

dinality relationship? Give examples. 
4. What kind of information does the participation constraint give 

us? 
5. Is it always necessary to have cardinality ratios as well as partici-

pation constraints in the same ER diagram? Why? Explain. 

6.4 ENGLISH DESCRIPTIONS 

We now tighten the English grammar to describe how a relationship 
afects entities using our structural constraints and adopt a standard way 
of stating the relationship. Te standard language should appear on the 
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FIGURE 6.3 
An ER Diagram of the aaaaaaaaaaaaaaaaaa Database with the Relationship 
Named  drive, Cardinality Ratios, and Participation. 

model, or at least with it. Further, using a standard language approach to 
describe the ER diagrams allows us to not only close the loop with the user 
in the systems analysis process, but also to facilitate feedback and “nail 
down” the exact meaning of the relationship. 
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In the Chen-like model, the double lines defne full participation as in, 
“Automobiles fully participate in the drive relationship.” Better yet, the 
double lines invite us to state the relationship as: 

Automobiles  must be driven by one (and only one) student. 

 T e must comes from the full (mandatory) participation and the  one from 
the cardinality.
 Te grammar for describing the partial or optional relationship for the 

aaaaaaa entity to the aaaaaaaaaa entity would be: 

Students may drive one and only one automobile. 

 T e may comes from the single line leaving the aaaaaaa entity box 
and the  one and only one comes from the cardinality. Te point is that 
when expressing the sense of the ER diagrams, one uses the language 
that conveys what the relationship really means (i.e., a student  may 
drive one automobile, and an automobile must be driven by one and  
only one student). A graphic on how to read an ER diagram is presented 
in Figure 6.4. 

6.5 TIGHTER ENGLISH 

We strongly recommend an English sentence accompany each diagram 
to reinforce the meaning of the fgure (refer to Figure 6.4). English is of en 
an ambiguous language. T e statement: 

Automobiles  must be driven by one and only one student. 

 actually means: 

Automobiles, which are in the database,  must be driven by one and only 
one student. 

 Te relationship should not be stated loosely, as in: 

A student drives an automobile. 

 Tis could be vaguely interpreted. 
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FIGURE 6.4 
T e aaaaaaaaaaaaaaaaaa Database: Translating the Diagram into English 

Another way to put this is: 

Every automobile must be driven by one and only one student. Students 
may drive one and only one automobile. 

To relieve ambiguity in the statement of the relationship, we will take 
the English statement from the relationship as we have illustrated and 
defne four pattern possibilities for expressing our relationship. All 
binary relationships must be stated in two ways from both sides. As  
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you will see, we try to stick to the exact pattern match in the following 
examples, but common sense and reasonable grammar should prevail 
when the pattern does not quite f t. Tere is nothing wrong with restat-
ing the precise language to make it clearer, but you have to say the same 
thing. 

6.5.1 Pattern 1—x:y::k:1 

From the k side, full participation (k =1 or M) : Te x’s, recorded in the 
database,  must be related to one and only one  y. No x is related to more 
than one  y. 

EXAMPLE 6.1 STUDENT:ADVISOR::M:1, 
FULL PARTICIPATION 

Students must be advised by one advisor. 

or, 

Students, recorded in the database,  must be advised by one and only 
one advisor. No student is advised by more than one advisor. 

The phrase, recorded in the database, has proven helpful because some 
database designers tend to generalize beyond the problem at hand. For 
example, one could reasonably argue there might be a case where thus-
and-so are true/not true, but the point is, will that case ever be encountered 
in this particular database? The negative statement is often helpful to solidify 
the meaning of the relationship. 

6.5.2 Pattern 2—x:y::k:1 

From the k side, partial participation (k = 1 or M): x, but not necessarily 
all  x recorded in the database,  may be related to one and only one  y. Some 
x’s are not related to a  y. T e x’s may not be related to more than one  y. 

EXAMPLE 6.2 STUDENT:FRATERNITY::M:1 

Some students join a fraternity. 
which becomes: 
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Students, but not necessarily all students (recorded in the database), may 
join a fraternity. Some students may not join a fraternity. Students may 
not join more than one fraternity. 

6.5.3 Pattern 3—x:y::k:M 

From the k side, full participation (k = 1 or M): T e x’s, recorded in 
the database,  must be related to many (one or more) y’s. Sometimes, it 
is helpful to include a phrase like: “No  x is related to a non-y” or “Non-
x’s are not related to a y .” Te negative will depend on the sense of the 
statement. 

EXAMPLE 6.3 AUTOMOBILE:STUDENT::M:N 

Automobiles are driven by (registered to) many students. 

which means: 

Automobiles, recorded in our database,  must be driven by many (one or 
more) students. 

There are several ideas implied here. 
First, we are only talking about vehicles registered at this school. 
Second, in this database, only student cars are registered in this database. 
Third, if an automobile from this database is driven, it has to be registered 

and driven by a student (at least one). 
Fourth, the “one or more” comes from the cardinality constraint. 
Fifth, there is a strong temptation to say something about the  y, the M 

side back to the x. This should be avoided as this is covered elsewhere in 
another pattern and because we discourage inferring other relationships 
from the one covered. For example, one might try to say here that all stu-
dents drive cars or all students are related to a vehicle—and neither state-
ment is true. 

6.5.4 Pattern 4—x:y::k:M 

From the k side, partial participation (k = 1 or M): x, but not necessarily 
all  x (recorded in the database), may be related to many (zero or more)  y ’s. 
Some x may not be related to a  y. 
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EXAMPLE 6.4 COURSE:BOOK::K:M 
Some courses may require (use)  many books. 

which restated becomes: 

Courses, but not necessarily all courses (recorded in the database), may use 
many (zero or more) textbooks. Some courses  may not require textbooks. 

Note, due to partial participation (the single lines), the phrase, zero or more, 
is used for cardinality. If a relationship is modeled with the patterns we have 
used and the English sounds incorrect, it may be that the wrong model has 
been chosen. Generally, the grammatical expression will be most useful in 
(a) restating the designed database to a “naive user” and (b) checking the 
meaning on the designed database among the designers. The complete 
version of the English may eventually prove tiresome to a database designer. 
However, one should never lose track of the fact that a statement like “x are 
related to one y” can be interpreted in several ways unless it is nailed down 
with constraints stated in an unambiguous way. Furthermore, a negation 
statement may be useful to elicit requirement definitions, although at times 
the negation is so cumbersome it may be omitted. What we are saying is to 
add the negative or other noncontradictory grammar if it makes sense and 
helps with requirement elicitation. The danger in adding sentences is that 
we may end up with contradictory or confusing remarks. 

6.5.5 Summary of the Patterns and Relationships 

6.5.5.1 Pattern 1

 Te relationship is: 

x:y::1(full):1 

and is diagrammatically shown by Figure 6.5. 

6.5.5.2 Pattern 1

 Te relationship is: 

x:y::M(full):1 

and is diagrammatically shown by Figure 6.6. 
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FIGURE 6.5 
Chen Model of 1(full):1 Relationship: Pattern 1. 

FIGURE 6.6 
Chen Model of M(full):1 Relationship: Pattern 1. 

 Tis pattern implies an instance of aaaaaaa must participate in a 
relationship with aaaaaaa and can only exist for one (and only one) of 
aaaaaaa. 

6.5.5.3 Pattern 2

 Te relationship is: 

x:y::1(partial):1 
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FIGURE 6.7 
Chen Model of 1(partial):1 Relationship: Pattern 2. 

and is diagrammatically shown by Figure 6.7. 

6.5.5.4 Pattern 2

 Te relationship is: 

x:y::M(partial):1 

and is diagrammatically shown by Figure 6.8. 
In this pattern, some instances in aaaaaaa may exist without a rela-

tionship to aaaaaaa; but when aaaaaaa is related to aaaaaaa, it can 
only be related to one and only one of aaaaaaa. 

6.5.5.5 Pattern 3

 Te relationship is: 

x:y::1(full):M 

and is diagrammatically shown by Figure 6.9. 

6.5.5.6 Pattern 3

 Te relationship is: 

x:y::M(full):N 
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FIGURE 6.8 
Chen Model of M(partial):1 Relationship: Pattern 2. 

FIGURE 6.9 
Chen Model of 1(full):M Relationship: Pattern 3. 

and is diagrammatically shown by Figure 6.10. 
 Tis pattern implies an instance of aaaaaaa must participate in a rela-

tionship with aaaaaaa and can exist for more than one of aaaaaaa. 

6.5.5.7 Pattern 4

 Te relationship is: 

x:y::1(partial):M 

and is diagrammatically shown by Figure 6.11. 
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FIGURE 6.10 
Chen Model of M(full):N Relationship: Pattern 3. 

FIGURE 6.11 
Chen Model of 1(partial):M Relationship: Pattern 4. 

6.5.5.8 Pattern 4

 Te relationship is: 

x:y::M(partial):N 

and is diagrammatically shown by Figure 6.12. 
In this pattern, some instances in aaaaaaa may exist without a rela-

tionship to aaaaaaa; but when aaaaaaa is related to aaaaaaa, it can 
be related to more than one of aaaaaaa. 



 

  

   

  

  

 
 

  
 

  

    

   
   

   
    

  
   

  
 

 

146 • Database Design Using ER Diagrams 

FIGURE 6.12 
Chen Model of M(partial):N Relationship: Pattern 4. 

Checkpoint 6.2 

1. Sketch an ER diagram showing the participation ratios (full/ 
partial) and cardinalities for the following: 

a. Students must be advised by one advisor, and an advisor can 
advise many students. 

b. Students, but not necessarily all students, may join a frater-
nity. Some students may not join a fraternity. Students may 
not join more than one fraternity. A fraternity may have many 
students (in its membership).

 Our refned methodology may now be restated with the relationship 
information added. 

6.5.6 ER Design Methodology 

Step 1. Select one primary entity from the database requirements 
description and show attributes to be recorded for that entity. 
Label keys, if appropriate, and show some sample data. 

Step 2. Use structured English for entities, attributes, and keys to 
describe the elicited database. 

Step 3. Examine attributes in the primary entity (possibly with user 
assistance) to fnd out if information about one of the attributes is 
to be recorded. 
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Step 3a. If information about an attribute is needed, then make the 
attribute an entity, and then 

Step 3b. Defne the relationship back to the original entity. 
Step 4. If another entity is appropriate, draw the second entity with its 

attributes. Repeat step 2 to see if this entity should be further split 
into more entities. 

Step 5. Connect entities with relationships if relationships exist. 
Step 6. State the exact nature of the relationships in structured 

English from all sides; for example, if a relationship is A:B::1:M, 
then there is a relationship from A(1) to B(M) and from B(M) back 
to A(1). 

Step 7. Present the “as designed” database to the user complete with 
the English for entities, attributes, keys, and relationships. Ref ne 
the diagram as necessary. 

Step 8. Show some sample data. 

6.6 SOME EXAMPLES OF OTHER RELATIONSHIPS 

In this section, we consider three other examples of relationships—two 
1:M relationships and an M:N relationship—in more detail to practice and 
further clarify the process we have presented. As stated, the 1:M and M:N 
relationships are common in a database. 

6.6.1 An Example of the One-to-Many Relationship (1:M) 

1:M or M:1 relationships are really relative views of the same problem. 
When specifying 1:M or M:1, we need to be especially careful to specify 
which entity is 1 and which is M. Te designation is which view is more 
natural for the database designer. As an example of a 1-to-M relationship, 
consider dorm rooms and students. One dorm room may have many stu-
dents living in it, and many students can live in one dorm room. So, the 
relationship between dorm room and students would be considered a one-
to-many (aaaaaaaaaaaaaaaaa) situation and would be depicted as in 
Figure 6.13 (without attributes). We will let the term aaaa mean dorm 
room.  
In Figure 6.13 (the Chen-like model), the name we chose for the aaaaa 

aaaaaaa relationship was  occupy. 
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FIGURE 6.13 
An ER Diagram (without Attributes) of a 1:M Relationship. 

Note, not all dorms have students living in them; hence, the participa-
tion of dorms in the relationship is partial. Informally: 

Dorms  may be occupied by many students. 

Furthermore, all students may not reside in dorms, so the relationship 
of aaaaaaa to aaaa is also partial: 

Students may occupy a dorm room. 

Now, let us restate the relationships in the short and long English forms.
 T e frst statement, dorms may be occupied by many students, f ts pattern 

4 , x:y::1(partial):M. 

6.6.1.1 Pattern 4–1:M, From the 1 Side, Partial Participation

 “Some x are related to many y.” 
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 Terefore, the more precise statement is: 

x, but not necessarily all  x, (recorded in the database)  may be related to 
many (zero or more)  y’s. Some x’s are not related to a  y . . . 

or 

Dorms, but not necessarily all dorms, (recorded in the database)  may be 
occupied by many (zero or more) students. 

For the inverse relation: 

Students may occupy a dorm room. 

 T is f ts pattern 2 , M(partial):1. 

6.6.1.2 Pattern 2—M(Partial):1, From M Side, Optional Participation

 “Some x’s are related to one  y.”

 Terefore, the long “translation” of the statement is 

x, but not necessarily all  x (recorded in the database), may be related to 
one and only one  y. Some x may  not be related to y. (No  x is related 
to more than one  y.) [.] indicates optional clarif cation.

 T is x and y notation resolves into x = students,  y = dorms, and hence: 

Students, but not necessarily all students (recorded in the database), may 
occupy one and only one dorm. Some students may not occupy a dorm 
room. No student occupies more than one dorm. 

Or stated another way: 

A student  may occupy a (one and only one) dorm and a dorm may be 
occupied by many students. 
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FIGURE 6.14 
An ER Diagram (without Attributes) of an M:1 Relationship. 

6.6.2 An Example of the Many-to-One Relationship (M:1) 

For another database, a school we are modeling has student parking lots 
and every student is assigned to park his or her car in some (one) specif c 
parking lot. We have an entity called aaaaaaaaaaa describing parking 
locations by some descriptive notation such as East Lot 7, North Lot 28, and 
so on. In this case, if we viewed many automobiles as assigned to one park-
ing lot and a parking lot as containing many automobiles, we could depict 
this relationship as a many-to-one, aaaaaaaaaaaaaaaaaaaaaaaa 
aaaaATis diagram is shown in Figure 6.14 (again without attributes). 
We have depicted participation of the relationship between aaaaaaaaaaA 

and PaaaaaaaaaaA as full in both instances—meaning all automo-
biles have one parking lot and all parking lots are assigned to students’ 
automobiles.
 Te grammatical expressions of this relationship are discussed next. 

6.6.2.1 Pattern 1—M:1, From the M Side, Full Participation

 T e x, recorded in the database,  must be related to one and only one  y. No 
x is related to more than one  y. 
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x = automobile,  y = parking lot, relationship = park 
Automobiles, recorded in the database,  must be parked in one and only 

one parking lot. No automobiles may be parked in more than one 
parking lot. An automobile must park in only one parking lot. 

 Te inverse is discussed next. 

6.6.2.2 Pattern 3–1:M, From the 1 Side, Full Participation

 T e x, recorded in the database,  must be related to many (one or more) y ’s. 
(No  x is related to a non-y” or “Non-x’s are not related to a  y— the negative 
will depend on the sense of the statement.) 

Parking lots, recorded in the database,  must park many (one or more)  
automobiles. 

 Te negative in this case seems misleading, so we will omit it. Te point is 
recorded parking lots must have students parking there. 
Or stated another way: 

An automobile must be parked in a (one and only one) parking lot, and 
a parking lot  must have at least one automobile parked in it (and can 
have many automobiles parked in it). 

6.6.3 An Example of the Many-to-Many Relationship (M:N) 

The classic example of the M:N relationship we study here is students 
taking courses. At the outset, we know students take (enroll in) many 
courses and any course is populated by many students. The basic dia-
gram for the aaaaaaaaaaaaaa relationship is shown in Figure 
6.15. 
We have chosen the word enroll to depict the relationship. T e partici-

pation of students in enroll is depicted as full (mandatory); course enroll-
ment is depicted as partial. Tis choice was arbitrary as both could be 
full or partial, depending on user needs and desires. Look carefully at the 
exact grammatical expressions and note the impact of choosing full in one 
case and partial in the other. Te grammatical expressions of this relation-
ship are discussed next. 
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FIGURE 6.15 
An ER Diagram (without Attributes) of an M:N Relationship. 

6.6.3.1 Pattern 3—M:N, From the M Side, Full Participation

 T e x, recorded in the database, must be related to many (one or more)  y. 
(“No x is related to a non-y” or “Non-x’s are not related to a  y” or “No  x is 
not related to a  y”—the negative will depend on the sense of the statement.) 

x = students,  y = courses, relationship = enroll 
Students, recorded in the database,  must be enrolled in many (one or  

more) courses. 

 Te inverse is explained next. 

6.6.3.2 Pattern 4—N:M, From the N Side, Partial Participation

 T e x, but not necessarily all  x (recorded in the database), may be related 
to many (one or more)  y. Some x may not be related to y. 

x = course,  y = student, relationship = enroll 
Courses, but not necessarily all courses (recorded in the database), may enroll 

many (one or more) students. Some courses  may not enroll students. 
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Or stated another way: 

A student  must enroll in one or more courses, and a course may have one 
or more students enrolled in it. 

 Tis “course partiality” likely refects courses in the database but not 
currently enrolling students. It could mean potential courses or courses 
no longer ofered. Of course, if the course is in the database only if stu-
dents are enrolled, then the participation constraint becomes full—and 
the sense of the entity-relationship changes. 
Also, this database tells us that while we can have courses without stu-

dents, we only store information about active students. Obviously, we 
could make the student connection partial and hence store all students— 
even inactive ones. We chose to represent the relationships in this manner 
to make the point that the participation constraint is supposed to depict 
reality—the reality of what the user might want to store data about. 
Note, all the examples in this chapter deal with only two entities, that is, 

they are binary relationships. Te example in the following section is also 
another example of a binary relationship. 

Checkpoint 6.3 

1. Give an example of a 1(full):1 relationship? Does such a relation-
ship always have to be mandatory? Explain with examples. 

2. Give an example of a 1(partial):1 relationship? Does such a rela-
tionship always have to be optional? Explain with examples. 

3. Give an example of a M(full):N relationship? Would such a 
relationship always be optional or mandatory? Explain with  
examples. 

4. Give an example of a M(partial):N relationship? Would such a 
relationship always be optional or mandatory? Explain with  
examples. 

6.7 ONE FINAL EXAMPLE 

As a fnal example to conclude the chapter, we present one more prob-
lem and then our methodology.1 Consider a model for a simplif ed airport 
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where aaaaaaaaaa and aaaaaaa are to be recorded. Suppose the 
attributes of aaaaaaaaa are  aaaaAaAAaaaaaaaaaaaaaaAa and  aaaaaaaaa 
aAaaaaaaA. Suppose the attributes for aaaaaa areA AaAaaaaaaaAaA AaaaaaaaaaaaAaA 
AaaaaaaaaaaaA, and  aaaaaaaaaaa. Draw the ER diagram. 

Note: We are leaving out many attributes we could consider. Assume 
this is all of the information we choose to record. 
 Te solution is given next. 

6.7.1 ER Design Methodology 

Step 1. Select one primary entity from the database requirements 
description and show attributes to be recorded for that entity. 
Label keys if appropriate and show some sample data. 

Suppose we choose aaaaaaaaa as our primary entity. aaaaaaaaa 
has the following attributes: AaaaaaaaaaAaAaaaaaaAaAAaaaa [frst, middle, last], 
aaaaaaaaaaaaaaA. 
We draw this much of the diagram, choosing  aaaaaaaaaaAaaaaaa as a 

key and noting the composite attribute  aaaa. Tis diagram is shown in
 Figure 6.16 . 

Step 2. Use structured English for entities, attributes, and keys to 
describe the elicited database. 

FIGURE 6.16 
Te PASSENGER Entity Diagram. 
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6.7.1.1 The Entity

 Tis database records data about aaaaaaaaaa. For each passenger, we 
record AaaaaaaaaaaAaaaaaaAaA AaaaaA [frst, middle, last], pieces_of_luggage 
(aaaaaaaaaaaaaa). 

6.7.1.1.1 The Attributes 

For atomic attributes, att(j): 

 For each aaaaaaaaa, there will be one and only one  aaaaaaaaa 
aAaaaaaa. Te value for  aaaaaaaaaaAaaaaaa will not be subdivided. 

For each aaaaaaaaa, there will be one and only one recording of 
laaaaaaaaaaaaa. Te value for  aaaaaaaaaaaaaaA will not be subdivided. 

For composite attributes, att(j): 

 For each aaaaaaaaa, we will record their  aaaa, which is com-
posed of f aaaaaAaaaaaa, and  aaaa. AaAaaaaAaaaaaa, and  aaaa are the com-
ponent parts of name. 

6.7.1.1.2 The Keys

 For each aaaaaaaaa, we will have the following primary key: 
aaaaaaaaaaAaaaaaaAaA 

Note, we have chosen aaaaaaaaaaAaaaaaa as a primary key for aaaaaaaaa. 
If this were not true, another means of unique identifcation would be 
necessary. Here, this is all the information we are given. 

Step 3. Examine attributes in the primary entity (possibly with user 
assistance) to fnd out if information about one of the attributes is 
to be recorded. 

No further information is suggested. 

Step 4. If another entity is appropriate, draw the second entity with its 
attributes. Repeat step 2 to see if this entity should be further split 
into more entities.

 Te other entity in this problem is aaaaaa, with attributes AaAaaaaaaa, 
aaaaaaaaaaaAaAAaaaaaaaaaaaAaAAaaaaaaaAaaaaAa 
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Again, we use structured English as in the following. 

6.7.1.2 The Entity

 Tis database records data about Flights. For each aaaaaa, we record 
aAaaaaaaa, aaaaaaaaaaa, aaaaaaaaaaa, and  aaaaaaaaaaa. 

6.7.1.2.1 The Attributes 

For atomic attributes, att(j): 

 For each aaaaaa, there will be one and only one  aAaaaaaaa. T e value 
for  aAaaaaaaa will not be subdivided. 

 For each aaaaaa, there will be one and only one recording of aaaaaaaa 
aaaa. Te value for  aaaaaaaaaaa will not be subdivided. 

 For each aaaaaa, there will be one and only one recording of aaaaaaaA 
aaaa. Te value for  aaaaaaaaaaa will not be subdivided. 

 For each aaaaaa, there will be one and only one recording of aaaaaaaA 
aaaa. Te value for  aaaaaaaaaaa will not be subdivided. 

6.7.1.2.2 The Keys 

For the key(s): One candidate key (strong entity):

 For each aaaaaa, we will have the following primary key: aAaaaaaaa. 

We are assuming  aAaaaaaaa is unique. 

Step 5. Connect entities with relationships if relationships exist. 

What relationship is there between fights and passengers? 
All passengers will fy on one fight. All fights will have multiple pas-

sengers. Te diagram for this problem is illustrated in Figure 6.17 and 
 Figure 6.18 . 
Note, we have again made a choice: We will depict one fight per passen-

ger in this database. T e specif cations do not tell us whether this should 
be 1 or M, so we chose 1. We also chose full participation on both sides. 
It would seem illogical to record data about passengers who did not f y on 
a fight and fights for which there were no passengers. But again, if the 
database called for storing information about potential passengers who 
might not book a specif c fight or fights not involving passengers, then 
we would have to change the conceptual design.  Figure 6.17 is good for 
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FIGURE 6.17 
ER Diagram for aaaaaaaaaaaaaaaa Database. 

displaying just the entities and the attributes.  Figure 6.18 uses the concise 
form of describing attributes and includes some of the preceding steps  
and some sample data. For conceptualizing, Figure 6.17 may be used and 
later converted into Figure 6.18 style for documentation. Either f gure 
requires an accompaniment of structured English (step 6). 
As designers, we make a choice and then present our choice to the user. 

If the user decided to store information about all fights and all passen-
gers over a period of time, that would be a diferent database (an M:N 
relationship and perhaps partial participations for non-passenger f ights 
and nonfying passengers). Te point is this is eventually a user’s choice, 
and at this point we are trying to generate a model to present to the user 
to validate. 
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FIGURE 6.18 
Sample Problem—Alternate Presentation of Attributes with Explanation and Sample 
Data. 

Step 6. State the exact nature of the relationships in structured English 
from all sides, such as, if a relationship is A:B::1:M, then there is a 
relationship from A(1) to B(M) and from B(M) back to A(1). 

6.7.2 Pattern 1—M:1, From the M Side, Full Participation

 T e x, recorded in the database,  must be related to one and only one  y. No 
x are related to more than one  y. 
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x = passenger, y = fight, relationship = f y 
Passengers, recorded in the database,  must fy on one and only one f ight. 

No passenger fies on more than one f ight. 

6.7.3 Pattern 3–1:M, From the 1 Side, Full Participation

 T e x, recorded in the database, must be related to many (one or more)  y ’s. 

x = f ight, y = passenger, relationship = f y 
Flights, recorded in the database,  must fy many (one or more) passengers. 

Or, stated another way: 

A passenger  must fy on a fight, and a f ight must have at least one (and 
can have many) passengers on it. 

Attribute descriptions follow previous patterns and are lef to the exercises. 

Step 7. Present the “as designed” database to the user complete with 
the English for entities, attributes, keys, and relationships. Ref ne 
the diagram, as necessary. 

Step 8. Show some sample data.

 See  Figure 6.18 . 

6.8 MAPPING RELATIONSHIPS TO A 
RELATIONAL DATABASE 

In this section, we continue with the mapping rules we began at the end 
of Chapter 4. In Chapter 4, we learned how to map entities—entities with 
composite attributes and entities with multivalued attributes. In this 
chapter, having covered structural constraints of relationships, we learn 
how to map relationships. 

6.8.1 Mapping Binary M:N Relationships 

For mapping binary M:N relationships, we present mapping rule 5. 
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Mapping rule 5—Mapping binary M:N relationships. For each M:N 
relationship, create a new table (relation) with the primary keys 
of each of the two entities (owner entities) related in the M:N rela-
tionship. Te primary key of this new table will be the concate-
nated keys of the owner entities. Include any attributes the M:N 
relationship may have in this new table. 

For example, refer to Figure 6.15. If the aaaaaaa and aaaaaa tables 
have the data shown in Tables 6.1 and 6.2. 
Before performing mapping rule 5, one must frst ensure the primary 

keys of the entities involved have been established. If aaaaaaaa and aaaaaaaa 
aaaaaa are the primary keys of aaaaaa and aaaaaaa, respectively, 
then to map the M:N relationship, we create a relation called aaaaaa as 
shown in Table 6.3. 

TABLE 6.1 

Sample Data for aaaaaaa Table in Figure 6.15. 
name.fi rst name.last name.mi student_number address 

Richard Earp W 589 222 2nd St 
Boris Backer 909 333 Dreistrasse 
Helga Hogan H 384 88 Half Moon Ave 
Arpan Bagui K 876 33 Bloom Ave 
Hema Malini 505 100 Livingstone 

TABLE 6.2 

Sample Data for aaaaaa Table in Figure 6.15. 
cname c_number credit_hrs 

Database COP4710 4 
Visual Basic CGS3464 3 
Elements of Stats STA3023 3 
Indian History HIST2022 4 

TABLE 6.3 

Sample Data for aaaaaa in Figure 6.15. 
c_number student_number 

COP4710 589 
CGS3464 589 

(Continued) 
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TABLE 6.3 (Continued) 

Sample Data for ENROLL in Figure 6.15. 

c_number student_number 
CGS3464 909 
STA3023 589 
HIST2022 384 
STA3023 505 
STA3023 876 
HIST2022 876 
HIST2022 505 

 Both aaaaaaaa and  aaaaaaaaaaaaaa together are the primary key of 
the relation, aaaaaa. 
 Te relational mapping for  Figure 6.15 would be as follows: 

aaaaaaa(aaaa.aAaaa, aaaa.aaaa, aaaa.aa, aaaaaaaaaaaaaa, 
aaaaaaa) 

aaaaaa (aaaaa, aaaaaaaa, aaaaaaaaaa) 
aaaaaa(aaaaaaaa, aaaaaaaaaaaaaa) 

 What ofen happens in M:N relationships is data arises that f ts better 
with the relationship than with either entity. Relationship attributes are 
covered in Chapter 8, but should a relationship attribute arise, it will be 
mapped with the primary keys. 

6.8.2 Mapping Binary 1:1 Relationships 

To map binary a 1:1 relationship, include the primary key of aaaaaaa 
into aaaaaaa as the foreign key. Te question is, which is aaaaaaa 
and which is aaaaaaa? Tis question is answered in the mapping rules 
presented in this section. 

Mapping rule 6—Mapping a binary 1:1 relationship when one side 
of the relationship has full participation and the other has partial 
participation. When one of the sides of the relationship has full 
participation and the other has partial participation, then store 
the primary key of the side with the partial participation con-
straint on the side with the full participation constraint as a foreign 
key. Include any attributes on the relationship on the same side to 
which the key was added. (We cover attributes of relationships in 
Chapter 8  and then embellish the mapping rules accordingly.) 
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For example, refer to Figure 6.3. It says: 

An automobile, recorded in the database,  must be driven by one and only 
one student. 

 and 

A student  may drive one and only one automobile. 

Here, the full participation is on the aaaaaaaaaa side since “An auto-
mobile ‘must’ be driven by a student.” 
So, we take the primary key from the partial participation constraint 

side aaaaaaa and include it in the aaaaaaaaaa table. T e primary 
key of aaaaaaa is aaaaaaaaaaaaaa, so this will be included in the  
aaaaaaaaaa relation as the foreign key. A relational database realiza-
tion of the ER diagram in Figure 6.3  will look like 

aaaaaaaaaa(aaaaaaaaaa, aaaa, aaaaaaaaaa, aaaaa, aaaa, 
aaaaaaaaaaaaaa) 

aaaaaaa(aaaa.aAaaa, aaaa.aaaa, aaaa.aa, aaaaaaaaaaaaaa, 
aaaaaaa) 

and with some data, it would look like  Tables 6.4 and 6.5. 

TABLE 6.4 

Sample Data for aaaaaaaaaa in Figure 6.3. 
vehicle_id make body_style color year student_number 

A39583 Ford Compact Blue 1999 589 
B83974 Chevy Compact Red 1989 909 
E98722 Mazda Van Green 2002 876 
F77665 Ford Compact White 1998 384 

TABLE 6.5 

Sample Data for aaaaaaa in Figure 6.3. 
name.fi rst name.last name.mi student_number address 

Richard Earp W 589 222 2nd St 
Boris Backer 909 333 Dreistrasse 
Helga Hogan H 384 8 8 Half Moon Ave 
Arpan Bagui K 876 33 Bloom Ave 
Hema Malini 505 100 Livingstone 
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TABLE 6.6 

Sample Data for Multivalued Attribute in Figure 6.3. 

student_number school 

589 St. Helens 
589 Mountain 
589 Volcano 
909 Manatee U 
909 Everglades High 
384 PCA 
384 Pensacola High 
876 UWF 
505 Cuttington 
505 UT 

   Since aaaaaaa has a multivalued attribute school, we need to map 
the multivalued attribute to its own table (as per mapping rule 4, mapping 
multivalued attributes), as shown in Table 6.6. 
In this case, if the relationship had any attributes, they would be included 

in the aaaaaaaaaa relation since that is where the key went. 

Mapping rule 7—Mapping a binary 1:1 relationship when both sides 
have partial participation constraints. 

When both sides have partial participation constraints in a binary 1:1 
relationship, the relationships can be mapped in one of two ways. For the 
f rst option: 

Mapping rule 7A. Select either one of the relations to store the key of 
the other (and live with some null values). 

Again, refer to Figure 6.2. Te participation constraints are partial from 
both sides (and let us assume for the time being there is no school attri-
bute). Ten,  Figure 6.2  would read: 

An automobile may be driven by one and only one student. 

 and 

A student may drive one and only one automobile. 
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A relational realization could be the following: T e aaaaaaaaaa (primary 
key of aaaaaaaaaa) should be stored in aaaaaaa as follows: 

aaaaaaaaaa(aaaaaaaaaa, aaaa, aaaaaaaaaa, aaaaa, aaaa) 
aaaaaaa(aaaa.aAaaa, aaaa.aaaa, aaaa.aa, aaaaaaaaaaaaaa, 
aaaaaaa, aaaaaaaaaa) 

and with some sample data as shown in Tables 6.7 and 6.8. 
   In the aaaaaaa relation,  aaaaaaaaaaA is a foreign key. 
For the second option: 

Mapping rule 7B. Depending on the semantics of the situation, you 
can create a new relation to house the relationship to contain the 
key of the two related entities (as is done in mapping rule 5). In this 
case, if there were any null values, these would be lef out of the link-
ing table. 

TABLE 6.7 

Sample Data for aaaaaaaaaa in Figure 6.2. 
vehicle_id make body_style color year 

A39583 Ford Compact Blue 1999 
B83974 Chevy Compact Red 1989 
E98722 Mazda Van Green 2002 
F77665 Ford Compact White 1998 
G99999 Chevy Van Grey 1989 

TABLE 6.8 

Sample Data for aaaaaaa in Figure 6.2. 
name.fi rst name.last name.mi student_ address vehicle_id 

number 

Richard Earp W 589 222 2nd St. A39583 
Boris Backer 909 333 Dreistrasse B83974 
Helga Hogan H 384 88 Half Moon Ave. F77665 
Arpan Bagui K 876 33 Bloom Ave E98722 
Hema Malini 505 100 Livingstone 
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We illustrate the mapping of Figure 6.2 using this rule. Te relational 
realization would be 

aaaaaaaaaaaAaaaaaaaaaaAaAaaaaaAaaaaaaaaaaaAaaaaaaAaaaaAa 
aaaaaaaaAaaaaaaAaaaaAaaaaaaaaaaAaaaaaaaaAAaaaaaaaaaaaaaaAaAaaaaaaaAa 
aaaaaaaaaaaaaaaaaaaAaaaaaaaaaaaAaaaaaaaaaaaaaaAa 

and with some data as shown in Table 6.9. 
In this case, the two relations, aaaaaaa and aaaaaaaaaa, would 

remain as shown in Tables 6.10 and 6.11. 

TABLE 6.9 

Sample Data for Alternative Representation 
of aaaaaaaaaaaaaaaaaa in Figure 6.2. 
vehicle_id student_number 

A39583 589 
B83974 909 
E98722 876 
F77665 384 

TABLE 6.10 

Sample Data for Alternative Representation of aaaaaaa in Figure 6.2. 
name.first name.last name.mi student_ address 

number 

Richard Earp W 589 222 2nd St 
Boris Backer 909 333 Dreistrasse 
Helga Hogan H 384 8 8 Half Moon Ave 
Arpan Bagui K 876 33 Bloom Ave 
Hema Malini 505 100 Livingstone 

TABLE 6.11 

Sample Data for Alternative Representation of aaaaaaaaaa in Figure 6.2. 
vehicle_id make body_style color year 

A39583 Ford Compact Blue 1999 
B83974 Chevy Compact Red 1989 
E98722 Mazda Van Green 2002 
F77665 Ford Compact White 1998 
G99999 Chevy Van Grey 1989 
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Mapping rule 8—Mapping a binary 1:1 relationship when both sides 
have full participation constraints. Use the semantics of the rela-
tionship to select which of the relations should contain the key of 
the other. If this choice is unclear, then use mapping rule 7B. 

Now, assuming full participation on both sides of Figure 6.2, the two 
tables aaaaaaa and aaaaaaaaaa could be: 

aaaaaaaaAaaaaaaAaaaaAaaaaaaaaaaAaaaaaaaaAAaaaaaaaaaaaaaaAaAaaaaaaaa 
aaaaaaaaaaaAaaaaaaaaaaAaAaaaaaAaaaaaaaaaaaAaaaaaaAaaaaaAaaaaaaaaaaaaaaAa 

and with some sample data as shown in Tables 6.12 and 6.13, 
In this case, Aaaaaaaaaaaaaaa was included in aaaaaaaaaa, making 

aaaaaaaaaaaaaa a foreign key in aaaaaaaaaa. We could have also 
taken the primary key, aaaaaaaaaa, from aaaaaaaaaa and included 
that in the aaaaaaa table. But it would be inappropriate to include for-
eign keys in both tables as that would be introducing redundancy into the 
database. 

TABLE 6.12 

Sample Data for Figure 6.2 With Full Participation on Both Sides: aaaaaaa Table. 
name.first name.last name.mi student_number address 

Richard Earp W 589 222 2nd St 
Boris Backer 909 333 Dreistrasse 
Helga Hogan H 384 88 Half Moon Ave 
Arpan Bagui K 876 33 Bloom Ave 
Hema Malini 505 100 Livingstone 

TABLE 6.13 

Sample Data for Figure 6.2 With Full Participation on Both Sides: aaaaaaaaaa 
Table. 

vehicle_id make body_style color year student_number 

A39583 Ford Compact Blue 1999 589 
B83974 Chevy Compact Red 1989 909 
E98722 Mazda Van Green 2002 876 
F77665 Ford Compact White 1998 384 
G99999 Chevy Van Grey 1989 505 
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6.8.3 Mapping Binary 1:N Relationships 

Next, we develop mapping rules to map binary 1:N relationships. T ese 
mappings will depend on what kind of participation constraint the N side 
of the relationship has. 

Mapping rule 9—Mapping binary 1:N relationships when the N side 
has full participation. Include the key of the entity on the 1 side of 
the relationship as a foreign key on the N side. 

For example, in Figure 6.13, if we assume full participation on the stu-
dent side, we will have 

Dorm rooms may have zero or more students. 

 and 

Students must live in only and only one dorm room. 

 Te “1 side” is aaaa; the “N side” is aaaaaaa. So, a reference to 
aaaa (aaaaa, the key of aaaa) is included in aaaaaaa. 
And, if we had the following sample data as shown in Tables 6.14 and 6.15, 

TABLE 6.14 

Sample Data for aaaaaaa in Figure 6.13. 
name.fi rst name.last name.mi student_number dname 

Richard Earp W 589 A 
Boris Backer 909 C 
Helga Hogan H 384 A 
Arpan Bagui K 876 A 
Hema Malini 505 B 

TABLE 6.15 

Sample Data for aaaa in Figure 6.13. 

dname supervisor 

A Saunders 
B Backer 
C Hogan 
D Eisenhower 
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the relational mapping would be 

aaaaaaaaAaaaaaaAaaaaAaaaaaaaaaaAaaaaaaaaAAaaaaaaaaaaaaaaAaAaaaaaa 
aaaaaAaaaaaAaAaaaaaaaaaaAa 

Mapping rule 10—Mapping binary 1:N relationships when the N side 
has partial participation. Tis situation would be handled just 
like a binary M:N relationship with a separate table for the rela-
tionship. Te key of the new relation would consist of a concatena-
tion of the keys of the related entities. Include any attributes on 
the relationship on this new table. 

Checkpoint 6.4 

1. State the mapping rule(s) that would be used to map  Figure 6.14. 
Map Figure 6.14 to a relational database and show some sample 
data. 

2. State the mapping rule(s) that would be used to map  Figure 6.17. 
Map Figure 6.17 to a relational database and show some sample 
data. 

6.9 CHAPTER SUMMARY

 Tis chapter discussed the cardinality and participation ratios in ER diagrams. 
Several examples and diagrams of binary relationships with structural con-
straints (developed in the Chen-like model) were discussed. Tighter English 
grammar was presented for each of the diagrams, and steps 7 and 8 of the ER 
design methodology were def ned. T e fnal section of the chapter discussed 
mapping relationships. As our model becomes more complex, we will revisit 
the mapping rules to accommodate this complexity in further chapters. 

CHAPTER 6 EXERCISES 

Exercise 6.1 

Let us reconsider our student example in Exercise 5.2 in which the only 
attributes of student are  aaaaaaaaaaaaaaAand aaaa. Now we have another 
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entity called HIGH SCHOOL, which is going to be the high school from 
which the student graduated. For the HIGH SCHOOL entity, we will 
record the high school’s name and the location (meaning city and state). 
Draw the ER diagram using the Chen-like model. Follow the methodol-
ogy and include all English descriptions of your diagrams. Map the ER 
diagram to a relational database. 

Exercise 6.2 

Suppose that a college had one dormitory with many rooms. The dor-
mitory entity, which is a DORMITORY ROOM entity since there is 
only one dorm, has the attributes aaaaA aaaaaa and aaaaaaaaaaaaa 
(meaning there are private rooms and double rooms). Let us suppose 
the STUDENT entity in this case contains the attributes aaaaaaaAaaaa 
aaa, aaaaaaaAaaaa, and  aaaaAaaaaaaaaaAaaaaaa. Draw the ER dia-
gram using the Chen-like model. Follow the methodology and include 
all English descriptions of your diagram. Map the ER diagram to a 
relational database. 

Exercise 6.3 

Consider a STUDENT database with students and campus organiza-
tions. Students will have the attributes of aaaaaaaAaaaaaaA and  aaaaaaaA 
aaaa. ORGANIZATIONS will have the attributes aaaaaaaaaaaaAaaaaA 
and  aaaaaaaaaaaaAaaaa. Draw the ER diagram using the Chen-like model. 
Follow the methodology and include all English descriptions of your dia-
gram. Map the ER diagram to a relational database and include some 
sample data. 

Exercise 6.4 

Consider a STUDENT and ADVISOR database. Students have a  aaaaaaaA 
aaaaaaA and  aaaaaaaAaaaa. Advisors have names, of  ce numbers, and 
advise in some major. Te major the advisor advises in is designated by 
a major code (e.g., Chemistry, CHEM; Biology, BIOL; Computer Science, 
COMPSC; . . .). Draw the ER diagram using the Chen-like model. Follow 
the methodology and include all English descriptions of your diagram. 
Map the ER diagram to a relational database and include some sample 
data. 
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Exercise 6.5 

You want to record the following data in a database: restaurant name and 
location, employee names and IDs, capacity of restaurant, smoking or 
nonsmoking area in restaurant, hours of operation for restaurant (assume 
same hours every day), employee salaries and titles. An employee can 
work for only one restaurant. A restaurant must have at least one employee 
working for it. Draw the ER diagram using the Chen-like model. Follow 
the methodology and include all English descriptions of your diagram. 
Map the ER diagram to a relational database and include some sample 
data. 

Exercise 6.5a 

Adjust exercise 6.5 to: An employee may work for a restaurant and 
can work for many restaurants, but a restaurant must have at least one 
employee working for it, and can have many employees working for it. 
Show the Chen-like ER model and relational mapping for this (you do not 
have to include data). 

Exercise 6.5b 

Adjust exercise 6.5 to: An employee must work for at least one restaurant 
and can only work for one restaurant. A restaurant may have employees 
working for it. Show the Chen-like ER model and relational mapping for 
this (you do not have to include data). 

Exercise 6.6 

Record the following data in a database: business name, owner, 
location(s), telephone numbers, delivery truck number, truck capacity, 
usual route description (e.g., North, West, Central, Lake, . . .). Draw the 
ER diagram using the Chen-like model. Present the relational mapping. 
Follow the methodology and include all English descriptions of your 
diagram. 

Exercise 6.7 

Refer to Figure 6.19. What are the English language statements you can 
make about the f gure? 
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FIGURE 6.19 
ER Diagram of West Florida Mall with Four Entities and Structural Constraints. 

Exercise 6.8 

Refer to Figure 6.18. Complete the diagram by adding a precise English 
description of each attribute. Map  Figure 6.18 to a relational database. 
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Exercise 6.9 

What is the cardinality of the following? 

a. Each student must own a car and can own only one car. A car may be 
owned by only one student. 

b. Each student may drive a car and can drive more than one car. A car 
can be driven by one student and can only be driven by one student. 

c. Each student may rent many cars and cars may be rented by many 
students. 

Which of these cardinality rules are optional? Which rules are manda-
tory? Show these relationships diagrammatically using the Chen-like ER 
notation. 

CASE STUDY 

West Florida Mall (Continued) 

In the last couple of chapters, we selected our primary entities (as per the 
specifcations from the user so far) and defned the relationships between 
the primary entities. In this chapter, we proceed with the ER diagram for 
this case study by looking at steps 6 and 7 of the ER design methodology, 
and we map the ER diagram to a relational database (with some sample 
data) as we proceed. 
Step 6 develops the structural constraints of binary relationships. 

Step 6. State the exact nature of the relationships in structured English 
from all sides; for example, when a relationship is A:B::1:M, there 
is a relationship from A(1) to B(M) and from B(M) back to A(1).

 Refer to  Figure 6.20 .  
First, for the relationship located_in: 

From MALL to STORE, this fts pattern 3, 1(full):N: 
A mall must have at least one store and can have many stores. 
 Or, 
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FIGURE 6.20 
ER Diagram of West Florida Mall with Four Entities and Structural Constraints. 

Malls, recorded in the database, must have many (one or more) stores 
located in them. 

 From aaaaa to aaaa, this fts pattern 1, M(full):1: 
Many stores (one or more) must be in one mall. 
 Or, 
Stores, recorded in the database, must be in one mall. 

 T e aaaa entity is mapped as mapped in Chapter 5, as shown in Table 
6.16. 
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TABLE 6.16 

Sample Data for aaaa. 
name address 

West Florida Mall N Davis Hwy, Pensacola, FL 
Cordova Mall 9th Avenue, Pensacola, FL 
Navy Mall Navy Blvd, Pensacola, FL 
BelAir Mall 10th Avenue, Mobile, AL 

TABLE 6.17 

Sample Data for aaaaa. 
sloc sname snum mall_name 

Rm 101 Penneys 1 West Florida Mall 
Rm 102 Sears 2 West Florida Mall 
Rm 109 Dollar Store 3 West Florida Mall 
Rm 110 Rex 4 West Florida Mall 

Next, we have to map the relationship between the aaaa entity and the 
aaaaa entity. Tis is a binary 1:N relationship; hence, we use mapping 
rule 9, which states: 

Include the key of the entity on the 1 side of the relationship to the N 
side as a foreign key. 

So, the key from the 1 side, the aaaa side, will be included in the N side, 
aaaaa side, as the foreign key. We show this next with some sample  
data, presented in Table 6.17. 
Due to the multivalued attribute dept in aaaaa, we will keep the rela-

tion with the multivalued attribute (as developed in Chapter 5). It is shown 
next with some sample data in Table 6.18. 
  Ten, for the relationship owns: 

 From aaaaa to aaaaa, this fts pattern 3, 1(full):M: 
Owners, recorded in the database, must own one or more stores. 
 Or, 
One owner must own at least one store and may own many stores. 
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TABLE 6.18 

Sample Data for aaaaaaaaaa. 
snum dept 

1 Tall men’s clothing 
1 Women’s clothing 

1 Children’s clothing 
1 Men’s clothing 

. 

. 

. 

. 

TABLE 6.19 

Sample Data for aaaaa With Foreign Key. 

sloc sname snum mall_name so_ssn 

Rm 101 Penneys 1 West Florida Mall 879-987-0987 
Rm 102 Sears 2 West Florida Mall 928-088-7654 
Rm 109 Dollar Store 3 West Florida Mall 826-098-0877 
Rm 110 Rex 4 West Florida Mall 982-876-8766 

 From aaaaa to aaaaa, this fts pattern 1, M(full):1: 
Stores, recorded in the database, must have one and only one owner. 
 Or, 
Many stores can have one owner. 

For the relationship owns , from aaaaa to aaaaa, a 1:N relationship: 
Again, using mapping rule 9, we will take the key from the 1 side,  aaaaaa, 

and include this as the foreign key in the N side, aaaaaaAaaaaa, with 
some sample data, is now as shown in Table 6.19. 
And, the relation for the aaaaa entity remains as developed in  

Chapter 5. With some sample data, it is shown in Table 6.20. 
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TABLE 6.20 

Sample Data for aaaaa in Figure 6.13. 

so_ssn so_name so_off_phone so_address 

879-987-0987 Earp (850)474-2093 1195 Gulf Breeze 
Pkwy, Pensacola, FL 

826-098-0877 Sardar (850)474-9873 109 Navy Blvd, 
Pensacola, FL 

928-088-7654 Bagui (850)474-9382 89 Highland Heights, 
Tampa, FL 

982-876-8766 Bush (850)474-9283 987 Middle Tree, 
Mobile, AL 

For the relationship manages: 

 From aaaaa to aaaaaaaaaaaaa, this fts pattern 1, 1(full):1: 
Stores, recorded in the database, must have one store manager. 

 Or, 
Stores must have one store manager and can only have one and only one 

store manager. 

 From aaaaaaaaaaaaa to aaaaa, this also fts pattern 1, 1(full):1: 
Store managers, recorded in the database, must manage one and only one 

store. 

 Or, 
Store managers must manage at least one store and can manage only one 

store. 

 Te relationship between aaaaa and aaaaaaaaaaaaa is a binary 
1:1 relationship; hence, using mapping rule 8, the relation aaaaa would 
develop into the following with some sample data (we are taking the key 
from aaaaaa aaaaaaa and including it in aaaaa as the foreign 
key), as shown in  Table 6.21. 

 Te relation for the aaaaaaaaaaaaa entity remains as developed 
in  Chapter 5. We show this with some sample data, as shown in  Table 6.22. 

Our next step is step 7, which is 

Step 7. Present the “as designed” database to the user complete with 
the English for entities, attributes, keys, and relationships. Ref ne 
the diagram, as necessary. 
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TABLE 6.21 

Sample Data for aaaaa With Foreign Key. 

sloc sname snum mall_name so_ssn sm_ssn 

Rm 101 Penneys 1 West Florida 879-987-0987 283-972-0927 
Mall 

Rm 102 Sears 2 West Florida 928-088-7654 456-098-0987 
Mall 

Rm 109 Dollar 3 West Florida 826-098-0877 234-987-0988 
Store Mall 

Rm 110 Rex 4 West Florida 982-876-8766 928-982-9882 
Mall 

TABLE 6.22 

Sample Data for aaaaaaaaaaaaa. 
sm_ssn sm_name sm_salary 

234-987-0988 Saha 45,900 
456-098-0987 Becker 43,989 
928-982-9882 Ford 44,000 
283-972-0927 Raja 38,988 

In summary, our relational database has so far been mapped to (without 
the data) (note, the primary keys are underlined): 

aaaa 
name address 

aaaaa 
sloc sname snum mall _ name so _ ssn sm _ ssn 

AaaaaaaaaaaA 
snum dept 

aaaaa 
so _ ssn so _ name so _ off _ phone so _ address 

AaaaaaAaaaaaaaA 
sm _ ssn sm _ name sm _ salary 
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We continue the development of this case study at the end of the next 
chapter. 

NOTE

 1 Modeled afer  Elmasri and Navathe (2016). 
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7 
The Weak Entity 

7.1 INTRODUCTION 

Chapters 4  and  5  introduced the concepts of the entity, the attribute, and 
the relationship.  Chapter 6  dealt with structural constraints, that is, how 
two entities are related to one another. In this chapter, we discuss the con-
cept of the “weak” entity, which is used in the Chen-like model. Weak 
entities may not have a key attribute of their own as they are dependent on 
a strong or regular entity for their existence. Strong entities always have a 
primary key. Te weak entity has some restrictions on its use and gener-
ates some interesting diagrams. Tis chapter revisits and redef nes steps 
3 and 4 of the entity-relationship (ER) design methodology to include the 
concept of the weak entity. Grammar and mapping rules for the weak 
entity are also developed. 

7.2 STRONG AND WEAK ENTITIES 

As mentioned in Chapter 4, there are situations for which fnding a key for 
an entity is difcult. So far, we have concentrated on examples with strong 
(regular) entities—entities with easily identifable keys. Strong entities almost 
always have a unique identifer that is a subset of all the attributes; however, a 
unique identifer may be an attribute or a group of attributes. For example, a 
student number, an automobile vehicle identifcation number (vin), a driver’s 
license number, and so on may be unique identifers of strong entities. 
A weak entity clearly will be an entity but will depend on another entity 

for its existence. As we mentioned, a weak entity will not necessarily have a 
unique identifer. A classic example of this kind of entity is a aaaaaaaaa 
as related to an aaaaaaaa entity. If one were constructing a database 
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FIGURE 7.1 
aaaaaaaa Entity Showing  Dependents as a Multivalued Attribute. 

about employees and their dependents, an instance of a dependent would 
depend entirely on some instance of an employee or else the dependent 
would not be kept in the database. T e aaaaaaaa entity is called the 
owner entity or identifying entity for the weak entity aaaaaaaaa. 
How can a weak entity come about in our diagrams? In the creation 

of a database, we might have a dependent name shown as a multivalued 
attribute as in Figure 7.1. An example of data for a diagram like  Figure 7.1 
would be as shown in Table 7.1. 
Suppose in our conversations with the user, we discover more 

information is supposed to be gathered about the dependents. Following 

TABLE 7.1 

Sample Data for aaaaaaaa in Figure 7.1. 
fname minit lname emp ID dependents 
John J Jones 0001 John, Jr; Dumas; Sally 
Sam S Smith 0004 Brenda; Richard 
Adam A Adams 0007 John; Quincy; Maude 
Santosh C Saha 0009 Ranu; Pradeep; Mala 
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our methodology, this is an acknowledgment that the dependents should 
be entities—they ft the criteria for “entity,” where we are recording infor-
mation about “something” (the dependent). Hence, we would be describ-
ing an entity called aaaaaaaaa. If we make aaaaaaaaa an entity, 
we would embellish the diagram in Figure 7.1  to Figure 7.2. 
As a sidenote, when designing a database, the attributes are normally 

named as singular nouns. Here, we used the word,  dependent, as a plu-
ral (dependents ). Tis is evidence that we have designed an entity with  
a multi-valued attribute. Not to get too far ahead of ourselves, but as we 
shall see, in the ultimate, realized database, multi-valued attributes will be 

FIGURE 7.2 
T e aaaaaaaaaaaaaaaaaaAER Diagram, First Pass. 
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a problem. At this early stage of database design and elicitation of wants 
and needs of a user, the multi-valued attribute may stay in the diagram as 
we have presented it. As we shall see later, we will resolve the multivalued 
attribute difculty in the normalization process afer mapping the ER dia-
gram to a relational database. 
Figure 7.2  poses a problem: T e aaaaaaaaa entity is dependent on 

the aaaaaaaa for its being. Also, it has no clear unique identif er. T is 
dependence on aaaaaaaa makes aaaaaaaaa a weak entity. As is 
ofen the case with weak entities,  aaaaAaAAaaaaaaaaaa, and  aaaaaaaaa are 
not candidate keys by themselves. None of these attributes would have 
unique values. Tere is no single attribute candidate key. 
In the Chen-like model, for weak entities, we enclose the entity in 

a double box and the corresponding relationship to the owner in a 
double diamond. Refer to Figure 7.3. Te weak entity in Figure 7.3, the 
aaaaaaaaa, is said to be identifed by the entity aaaaaaaa. T e 
aaaaaaaa is called the identifying entity or owner entity for the 
weak entity aaaaaaaaa. 
Attributes are handled the same way for weak entities as for strong 

entities (except there may be no primary keys for weak entities). We have 
included some attributes in Figure 7.3 so the f gure depicts the following 
(in loose grammar): 

A dependent  must be related to  one employee, and an employee may 
have many dependents. 

Since the weak entity depends on a strong entity, the participation con-
straint will always be  must and the cardinality will be  one in the f rst part 
of the grammatical description. 
 T e aaaaaaaaa entity has the attributes aaaaaaA aaaaaaaaaa, and 

aaaaaaaaa. 
In dealing with weak entities, it is appropriate to consider how each 

instance of the entity would be identifed. Since the owner of the weak 
entity, aaaaaaaaa, is the strong entity aaaaaaaa, the identif ca-
tion process would involve the key of aaaaaaaa plus some information 
from the weak entity aaaaaaaaa. Te attribute  aaaaa is a likely can-
didate as an identif er for aaaaaaaaa and will be called a  partial key. 
In Figure 7.3 , we underlined aaaaa with dashes. Te attribute  aaaaa 

is a  partial key as it identifes dependents, but not uniquely. T is assumes 
all dependents have unique names. We did not “name” the relationship 
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FIGURE 7.3 
T e aaaaaaaaaaaaaaaaaaAER Diagram 

and lef it as ED for aaaaaaaaaaaaaaaaaa. Suitable names for the 
relationship might be “have” as in: 

Employees may  have many dependents. 

or “dependent on” as in: 

Employees may  have many dependents dependent on them. 



 

   

 

 

  

  

 
 

  

  
 

       
     

 
 

  
 

    
       

     
  

184 • Database Design Using ER Diagrams 

We could also have used “related to” as in: 

Employees are related to many dependents. 

Each of these verb phrases seems to have a redundancy (dependent on) 
or perhaps misleading (related to) air about them. So, probably the best 
thing to do is to leave the relationship unnamed (aa). If the user chooses 
to use a relationship verb characterization, then the analyst can rename the 
relationship. 

7.3 WEAK ENTITIES AND STRUCTURAL CONSTRAINTS 

Weak entities always have full or mandatory participation from the weak 
side toward the owner. If the weak entity did not have total participation, 
then we would have a data item in the database not uniquely identif ed and 
not tied to a strong entity. In our aaaaaaaaaaaaaaaaaa example, 
this would be like keeping track of a dependent not related in any way to 
an employee. Te cardinality of the relationship between the weak and 
strong entity will usually be 1:M, but not necessarily so. 

7.4 WEAK ENTITIES AND THE IDENTIFYING OWNER

 Tere are situations for which a weak entity may be connected to an owner 
entity while other relationships exist apart from the “owner” relationship. For 
example, consider Figure 7.4. In this fgure, we show two relationships—owns 
and drives—connecting the two entities aaaaaaaa and aaaaaaaaaa. 
Here, the aaaaaaaaaa entity is considered a weak entity; that is, if there 
is no employee, there will be no automobile (the automobile has to have an 
employee to exist in the database). Further, the automobile is identifed by the 
owner; note the double diamond on the  owns relationship and the full par-
ticipation of the aaaaaaaaaa entity in the  owns relationship. 
In  Figure 7.4, we also have a “drives” relationship. T e automobile 

may be driven by employees other than the owner. All automobiles are 
driven by some employee; hence, the participation is full in drives from 
aaaaaaaaaa toward aaaaaaaa. Te driver-employee may not 
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FIGURE 7.4 
A Weak Entity with Two Relationships 

necessarily be the actual owner. To identify aaaaaaaaaa, we are saying 
we need the  owns relationship, but other non-owner drivers may exist. 
According to Figure 7.4, one employee may own many automobiles. To 

answer the question of which automobiles an employee owns, in addition 
to the employee’s ID, we need to know the make, model, and color of the 
automobiles. T e aaaa, aaaaa, and  aaaaa attributes of the aaaaaaaaaa 
entity are partial keys (dotted underlined in Figure 7.4). Why are they dotted-
underlined? Because these three attributes will not uniquely identify an 
automobile. 
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 One fnal point about the aaaaaaaaaaaaaaaaaaa situation: It 
could be the vehicle identifcation number (aaa) of the aaaaaaaaaa 
could be recorded. aaaa are unique; hence, the weak entity aaaaaaaaaa 
could have a primary key. In this case, although aaaaaaaaaa would 
have a primary key, it could still be lef as weak because it would not be in 
the database without the owner or driver employee. Having a primary key 
does not necessarily make an entity “strong.” 

Checkpoint 7.1 

1. What is a weak entity? 
2. How would you identify a strong entity? 
3. How would you identify a weak entity? 
4. What kind of a relationship line (single or double) would be leading 

up to the weak entity in a Chen-like diagram? 
5. What is a partial key? 
6. What would the structural constraints of a weak entity generally be? 
7. What would the cardinality of a weak entity generally be? 

7.4.1 Another Example of a Weak Entity 
and the Identifying Owner 

As another example of a weak entity in an ER diagram and the identify-
ing owner, consider  Figure 7.5. In Figure 7.5, we have two strong entities: 
aaaaaa and aaa. Tere is one weak entity, aaa. Figure 7.5  illustrates 
the aaaaaa owns the aaa, but the aaaAtreats the aaa. In the dia-
gram, aaaaaa is the identifying or controlling entity for aaa; hence, 
the relationship owns has a double diamond to aaaaaa. Here,  owns is 
a weak relationship. aaa is a weak entity related to aaaaaa. 
 Te relationship treats does not have a double diamond because aaa 

is not the owner of aaa. Here,  treats is not a weak relationship, and aaa 
is not a weak entity in relation to aaa. 

7.5 WEAK ENTITIES CONNECTED TO 
OTHER WEAK ENTITIES 

We would like to make a fnal point regarding weak entities. Just because 
an entity is weak does not preclude it from being an owner of another weak 
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FIGURE 7.5 
T e aaaaaaaaaaaaaaAaa Diagram 

entity. For example, consider  Figure 7.6. In this f gure, the aaaaaaaaa 
aaaaaaaaa relationship has been enhanced to include hobbies of the 
dependents. (Never mind why one would want to record this information 
but let us suppose the user insists.) 
aaaaaaaaa is a weak entity. T e entity aaaaa is also weak. Hobbies 

might be identifed by their type (stamp collecting, baseball, tying knots, 
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FIGURE 7.6 
T e aaaaaaaaaaaaaaaaaaaaaaaa ER Diagram. 

observing trains, etc.). T e aaaa attribute of aaaaa is a partial key for 
aaaaa. 
 T e entity aaaaaaaaa is the owner of the weak entity aaaaa, and 

the entity aaaaaaaa is the owner of the weak entity aaaaaaaaa. 
 Te reason this situation is brought up here is to show it can exist. In 

further discussion, when we map this situation, we will want to treat this 
special situation carefully. 
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Checkpoint 7.2 

1. Can a weak entity be dependent on another weak entity? 
2. Can a weak entity have a relationship that is not “weak” with the 

identifying entity? 
3. Can a weak entity be related to more than one entity (strong or 

weak)? 

7.6 REVISITING THE METHODOLOGY

 Te inclusion of a weak entity in an ER diagram causes us to revisit our meth-
odology and make some adjustments. We might discover the weak entity in 
one of two places: One would be as we illustrated with the evolution of the 
multivalued attribute, the “dependent”; this would occur in steps 3a and 3b: 

Step 3. Examine attributes in the primary entity (possibly with user 
assistance) to find out if information about one of the attributes 
is to be recorded. 

Step 3a. If information about an attribute is needed, then make the 
attribute an entity, and then 

Step 3b. Define the relationship back to the original entity. 

So, we add 

Step 3c. If the new entity depends entirely on another entity for its 
existence, then draw the entity as weak (double boxed) and show 
the connection to the identifying entity as a double diamond. 
The participation of the weak entity in the relationship is full. 
Dash underline the partial key identifier(s) in the weak entity.

 Te second place a weak entity might appear would be as part of step 4 
when new entities are considered: 

Step 4. If another entity is appropriate, draw the second entity  
with its attributes. Repeat step 2 to see if any attributes should 
be further split into more entities. 
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So, we add: 

Step 4a. If the additional entity or entities do not have candidate 
keys, then draw them as weak entities (as explained in step 3c) and 
show the connection to an identifying entity. The participation of 
the weak entity in the relationship is full or mandatory. Dash or 
dot underline the partial key identifier(s) in the weak entity. 

Again, a weak entity cannot exist without an identifying entity. If the 
weak entity is “discovered” independent of an identifying entity, the rela-
tionship connection should be made immediately. 

7.7 WEAK ENTITY GRAMMAR 

Previously we covered some grammar associated with weak entities. Now 
we want to revise and enhance the idea when we have no primary key 
for the weak entity. It is possible for a weak entity to have a primary key; 
therefore, it might appear in item (b), so we add part (c) to the grammar 
for the keys, given next. 

7.7.1 The Keys 

For the key(s): 

(a) More than one candidate key (strong entity): 

One key is chosen as the primary key . . . (covered previously). 

(b) One candidate key (strong or weak entity): 

Te primary key is the candidate key. For each weak entity, it is 
assumed no weak entity will be recorded without a corresponding 
owner (strong) entity. 

For each weak entity with a primary key, we also must record the pri-
mary key of the owner entity. 

(c) No candidate keys (weak entity): 



  

    

 

 

        
    

  

 

    

 
   

    
 

  

     
 
 
 
 
 
 

  

Te Weak Entity • 191 

For each  (weak) entity, we do not assume any attribute will be unique 
enough to identify individual entities. 
In this case, the aaaaaaaaa entity would be depicted as: 

 For each aaaaaaaaa entity, we do not assume any attribute will be 
unique enough to identify individual entities. 

We now enhance this description to include the identifying entity: 

Since the  weak entity does not have a candidate key, each  weak entity 
will be identifed by key(s) belonging to its  strong entity. For each 
aaaaaaaaa, entities will be identifed by the concatenation of 
its partial key and the owner primary key: (DEPENDENT. DEP_ 
NAME+EMPLOYEE.EMPLOYEE_ID). 

In this case, the aaaaaaaaa entity is identifed by the aaaaaaaa 
entity, and this second statement becomes: 

 Since the aaaaaaaaa entity does not have a candidate key, each 
aaaaaaaaa entity will be identifed by key(s) belonging to the 
aaaaaaaa entity plus aaaaa in the aaaaaaaaa entity. 

7.8 MAPPING WEAK ENTITIES TO A 
RELATIONAL DATABASE 

In this section, we develop the mapping rules for mapping weak entities to 
a relational database. 

Mapping Rule 11—Mapping weak entities. Develop a new table 
(relation) for each weak entity. As is the case with the strong entity, 
include any atomic attributes from the weak entity in the table. 
If there is a composite attribute, include only the atomic parts of 
the composite attribute and be sure to qualify the atomic parts in 
order not to lose information. To relate the weak entity to its owner, 
include the primary key of the owner entity in the weak relation. 
Te primary key of the weak relation will be the partial key of the 
weak entity concatenated to the primary key of the owner entity. 
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If a weak entity owns other weak entities, then the weak entity 
connected to the strong entity must be mapped frst. Te key of 
the weak owner-entity has to be defned before the “weaker” entity 
(the one furthest from the strong entity) can be mapped. 

For example, refer to Figure 7.3. Te aaaaaaaa relation and 
aaaaaaaaa relation would be mapped as 

aaaaaaaaaAaaaaaAaAAaaaaaAaAAaaaaaAaAAAaaaaaaaaaaaa 
aaaaaaaaaaaaaaaaaaaaaaAAaaaaaAa aaaaaaaaaAaAAaaaaaaaaaaAa 

and with data shown in Tables 7.2 and 7.3. 
Here, aaaaaaaaaaa is the primary key of aaaaaaaa. Te aaaaaaaaa 

aa from the owner relation aaaaaaaa is included in the weak relation 
aaaaaaaaa. Te aaaaaaaaaaa now becomes part of the primary key of 
aaaaaaaaa. Since aaaaa is the partial key of the aaaaaaaaa rela-
tion, the primary key of the aaaaaaaaa relation now fnally becomes 
aaaaa and aaaaaaaaaaa concatenated together. 
Now, refer to Figure 7.6. Here, the aaaaaaaaa entity is dependent 

on the aaaaaaaa entity, and the aaaaa entity is dependent on the 

TABLE 7.2 

Sample Data of aaaaaaaa in Figure 7.3. 
fname lname minit employee_id 
Richard Earp W 589 
Boris Backer 909 
Helga Hogan H 384 
Arpan Bagui K 876 
Hema Malini 505 

TABLE 7.3 

Sample Data of aaaaaaaaa in Figure 7.3. 
dname birth_date insurance employee_id 
Beryl 1/1/94 Vista 589 

Kaityln 2/25/07 Vista 909 
David 3/4/05 BlueCross 589 
Dumas 3/7/08 BlueCross 589 
Abbie 5/6/08 SE 384 
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TABLE 7.4 

Sample Data of aaaaa in Figure 7.6. 
dname employee_id type years_involved 
Beryl 589 swimming 3 
Kaityln 909 reading 5 
David 589 hiking 1 
Dumas 589 fishing 2 
Abbie 384 singing 4 

aaaaaaaaa entity. Te aaaaaaaa relation and aaaaaaaaa rela-
tion would be mapped as shown, and then the aaaaa relation would be 
mapped as: 

aaaaaaaaaaaaAAaaaaaaaaaaaAaAAaaaaAa aaaaaaaaaaaaaaa 

And, with some sample data as shown in Table 7.4. 
Te partial key of aaaaa was aaaa. Te primary key of the aaaaa 

relation now becomes aaaaaAaAAaaaaaaaaaaa, and aaaa all together. 

Checkpoint 7.3 

1. What are the rules for mapping weak entities? Map Figure 7.5 
and show some sample data. 

2. When mapping weak entities, what becomes their new primary 
key? 

3. How would you map multivalued attributes in a weak entity? 
Explain with an example. 

4. How are weak entities generally identifed? 

7.9 CHAPTER SUMMARY

 Tis chapter discussed and developed the concept of the weak entity. Te 
grammar for the weak entity was enhanced, along with the ER design 
methodology. Te mapping rules for mapping the weak entity were also 
developed. Tis concept of the weak entity is available in the Chen-like 
model but is treated diferently in other ER models. 
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CHAPTER 7 EXERCISES 

Exercise 7.1 

Construct an ER diagram (a Chen-like model) for a database to con-
tain employee name, employee number, employee address, skill(s). An 
employee may have more than one skill. Ten, enhance the diagram to 
include level of skill, the date you became skill certifed (if certif ed), date 
you began using the skill. Are there any weak entities in this database? 
Map this ER diagram to a relational database. 

Exercise 7.2 

Construct an ER diagram for sports and players. Attributes of SPORT are 
sport name, type of sport, timed or untimed. Attributes of PLAYERS are 
name, person ID, date of birth. Players may play multiple sports. Which 
entity/entities would you consider weak? Write out the grammar for the 
ER diagram. Map this ER diagram to a relational database. 

Exercise 7.3 

What mapping rules would be used to map  Figure 7.4? Map  Figure 7.4  to a 
relational database and show some sample data. 

Exercise 7.4 

Map  Figure 7.6  to a relational database (Note: make sure you show the 
keys). I do not need to see sample data here, just the tables and attributes, 
for example: TABLE1(attribute1, attribute2, attribute3). 

Exercise 7.5 

“Write out” the cardinality and the participation for  Figures 6.3  and  7.5 
Make sure that the cardinality and participation ratios are written out 
from both sides. 

CASE STUDY 

West Florida Mall (continued) 

In the previous chapters, we selected our primary entities, defned the attri-
butes and relationships for this case study, and mapped it to a relational 
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database (with some sample data). In Chapter 6, we also determined the 
structural constraints of the relationships and adjusted some of the map-
pings accordingly. Ten step 7 says: 

Step 7. Present the “as designed” database to the user complete 
with the English for entities, attributes, keys, and relationships. 
Refine the diagram as necessary. 

Suppose we obtained some additional input from the user: 
A store must have one or more departments. A department will not exist 

without a store. For each department we will store the department name, 
department number, and department manager. Each department has at 
least one employee working for it. 
We have to record information about the employees in the store. For 

each employee in a store, we will have to keep an employee’s name,  
Social Security number, and the department where the employee works. 
Employees must work in one and only one department. 
In Chapter 5, we determined that departments was a multivalued attri-

bute of aaaaa (that is, one store had many departments). But, on review-
ing these additional specifcations, we can now see that aaaaaaaaaa 
needs to be an entity on its own since we have to record information  
about a aaaaaaaaaa. Also, we can see that we have to record infor-
mation about another new entity, aaaaaaaa. So, these current specif -
cations add two new entities, aaaaaaaaaa and aaaaaaaa. Notice, 
in adding these two entities, we can make them strong entities with keys, 
aaaaaaaaaaaaaaaaa and  aaaaaaaaaaa , respectively . 
First, we select an entity, aaaaaaaaaa. 
Now, repeating step 2 for aaaaaaaaaa: 

The Entity

 Tis database records data about a aaaaaaaaaa. 

 For each aaaaaaaaaa in the database, we record a department 
name (aaaaa) and department number (aaaa). 

The Attributes for DEPARTMENT

 For each aaaaaaaaaa there will be one and only one  aaaaa. T e 
value for  aaaaa will not be subdivided. 
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 For each aaaaaaaaaa, there will be one and only one  aaaa. T e 
value for  aaaa will not be subdivided. 

The Keys

 For each aaaaaaaaaa, we will need to tie the department num-
ber to the owner-entity using the key of the owner entity,  aaaaaaaa. 
Terefore, the key of aaaaaaaaaa will be store_ID+dnum. 

Note, the language leads you to think of aaaaaaaaaa as a weak entity. 
Next, we select our next entity, aaaaaaaa. 
Now, repeating step 2 for aaaaaaaa: 

The Entity

 Tis database records data about an aaaaaaaa. 

 For each aaaaaaaa in the database, we record an employee name 
(aaaaa) and employee Social Security number (aaaa). 

The Attributes for EMPLOYEE

 For each aaaaaaaa, there will be one and only one  aaaaa. T e 
value for  aaaaa will not be subdivided. 

 For each aaaaaaaa, there will be one and only one  aaaa. T e value 
for  aaaa will not be subdivided. 

The Keys

 For each aaaaaaaa, we will assume the  aaaa will be unique (so  
aaaaaaaa will be a strong entity).

 Tese entities have been added to the diagram in Figure 7.7. 
Using step 6 to determine the structural constraints of relationships, we get: 

First, for the relationship,  dept_of: 
 From aaaaa to aaaaaaaaaa, this fts pattern 3, 1(full):N: 

Stores, recorded in the database, must have many (one or more) departments. 
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FIGURE 7.7 
ER Diagram of West Florida Mall Developed So Far.

 From aaaaaaaaaa to aaaaa, this fts pattern 1, M(full):1: 

Many departments (one or more) must be in one store. 

To Map this Relationship

 Te relationship between aaaaa and aaaaaaaaaa is a strong/ 
weak relationship, so using mapping rule 11, we will take the key from 
the owner, aaaa, and include this as part of the key on the weak side, 
aaaaaaaaaa, so the aaaaaaaaaa relation becomes: 

aaaaaaaaaaaaaaaaAaAAaaaaAaAAaaaaa. 

And, with some data as shown in Table 7.5. 
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TABLE 7.5 

Sample Data for aaaaaaaaaa in Figure 7.7. 
dname dnum snum 
Tall Men’s Clothing 501 1 
Men’s Clothing 502 1 
Women’s Clothing 503 1 
Children’s Clothing 504 1 
Men’s Clothing 601 2 
. 
. 
. 

The aaaaa table will be the same as it was in Chapter 6, but we 
will not need the relation store_depts. (In Chapter 6, aaaaaaaaaaa 
were still a multivalued attribute of STORE, so we had the aaaaa 
and store_depts relations.) From the specifications at the begin-
ning  of  the  case  study  in  this  chapter,  it  is  apparent aaaaaaaaaa 
is an entity on its own, so the store_depts relation is replaced by the 
aaaaaaaaaa table.
 Ten, for the relationship works_for: 

From aaaaaaaa to aaaaaaaaaa, this fts pattern 1, 1(full):1: 
Employees, recorded in the database, must work for one and only one 

department. 

From aaaaaaaaaa to aaaaaaaa, this fts pattern 3, 1(full):N: 
Departments, recorded in the database, must have one or more employ-

ees working for it. 

To Map this Relationship:

 From aaaaaaaa to aaaaaaaaaa, the relationship is 1:1. Because 
both sides have full participation, using mapping rule 8 we may select which 
side may store the key of the other. But, since the relationship between 
aaaaaaaaaa and aaaaaaaa is a binary 1(full):N relationship, using 
mapping rule 9, we will take the key from the 1 side (aaaaaaaaaa side), 
aaaa and aaaa, and include this concatenated key as the foreign key in 
the N side (aaaaaaaa side), so the relation aaaaaaaa becomes: 
aaaaaaaaaaaaaaAaAAAaaaaAaAAaaaaAaAAaaaaAa 
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A A A A AA AA A A AA AA

AA AA A A A A

AAA

A AA AA A A A A

aaaa 
AaaaaA AaaaaaaaA 

aaaaa 
AaaaaA AaaaaaA AaaaaA AaaaaaaaaaAA AAaaaaaaaaA AaaaaaaA 

aaaaa 
AaaaaaaA AaaaaaaaAA AaaaaaAaaaaaaA AaaaaaaaaaaAA 

AaaaaaAaaaaaaaA 
AAAaaaaaaAAA AAaaaaaaaAA AAaaaaaaAA 

AaaaaaaaaaaA 
AAaaaaaAA AAAaaaaAAA AAaaaaAA 

aaaaaaaa 
AaaaaaAA AaaaaA AaaaaA AaaaaA 

We continue the development of this case study at the end of the next 
chapter. 
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TABLE 7.6 

Sample Data for aaaaaaaa in Figure 7.7. 
ename essn dnum snum 
Kaitlyn 987-754-9865 501 1 

Dumas 276-263-9182 502 1 

Katie 98-928-2726 503 1 

Seema 837-937-9373 501 1 

Raju 988-876-3434 601 2 

. 

. 

. 

And, with some sample data, as shown in Table 7.6. 
In summary, our relational database has so far been mapped to (without 

the data) 
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8 
Further Extensions for ER Diagrams 
with Binary Relationships 

8.1 INTRODUCTION 

Having developed the basic entity-relationship (ER) model in Chapters 4 
through  7, this chapter deals with some extensions to the basic model. We 
introduce a new concept—attributes of relationships and present several 
examples. We then revisit step 6 of the ER design methodology to include 
attributes of relationships. Next, the chapter looks at how more entities 
and relationships are added to the ER model and how attributes and rela-
tionships evolve into entities, all the while refning our ER design meth-
odology. Relationships may develop into entities, creating an intersection 
entity. Te grammar and structured English for the intersection entity are 
presented, and the concept of recursive relationships is introduced. 
Also, in previous chapters we mostly looked at cases in which two enti-

ties had a (one) relationship between them. In this chapter, we present 
additional scenarios of how two entities can have more than one relation-
ship between them. Step 5 of the ER design methodology is also redef ned 
to include more than one relationship between two entities. T is chapter 
discusses derived and redundant relationships, and the ER design meth-
odology is again refned; step 6b is included to deal with these structures. 
Finally, in this chapter we include an optional section to look at an alter-
native ER notation for specifying structural constraints on relationships. 

8.2 ATTRIBUTES OF RELATIONSHIPS 

In Chapter 6, we considered the M:N relationship aaaaaaaaaaaaaa. 
T e aaaaaaaaaaaaaa relationship is M:N because students take many 
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courses and courses are taken by many students. Now, consider adding the 
attribute aaaaa to the ER diagram. If we tried to put the attribute, aaaaa, 
with the aaaaaaa entity, we would have a multivalued attribute that had 
to somehow be related to the aaaaaa entity to make sense. Similarly, if 
we tried to put the  aaaaa attribute with the aaaaaa entity, the aaaaaa 
entity would then have a multivalued attribute. Te correct place for  aaaaa 
in the diagram would be on the relationship enroll because  aaaaa requires 
both a aaaaaaa and a aaaaaa to make sense. See Figure 8.1 for the 
placement of the  aaaaa attribute in an M:N, full:full participation model. 
A few other attributes have been added to Figure 8.1  to show the rela-

tive position of the attributes. Again, since  aaaaa is identifed by both 
aaaaaaa and aaaaaa, it cannot reside with either entity by itself.  
An attribute like  aaaaa is called a relationship attribute or intersection 
attribute. 
An intersection attribute may arise frst as a multivalued attribute on 

some entity during the design process only later to be questioned; that 
is, why is this attribute here when it requires another entity to identify it? 
When it is recognized that the attribute must be identifed by more than 
one entity, the attribute is moved to the relationship between the two (or 
more) entities identifying it. 
Relationship attributes may occur with an ER diagram containing any 

cardinality, but one will most of en fnd relationship attributes in the 
binary, M:N model. We now need to revisit our methodology to add a 
guideline for the attributes of a relationship: 

Step 6. State the exact nature of the relationships in structured 
English from all sides, for example, if a relationship is A:B::1:M, 
then there is a relationship from A to B, 1 to Many, and from B 
back to A, Many to 1. 

And, we add: 

Step 6a. Examine the list of attributes and determine whether 
any of them need to be identified by two (or more) entities. If 
so, place the attribute on the appropriate relationship joining 
the two entities.

 Te grammar to describe the attribute of a relationship is discussed next. 
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FIGURE 8.1 
M:N Relationship Showing a Relationship Attribute 

8.2.1 The Attributes 

For atomic attributes,  att(j): . . . (same as in previous chapters) 
For composite attributes, att(j): . . . (same as in previous chapters) 
For multivalued attributes, att(j): . . . (same as in previous chapters) 
For attributes of relationships att(j): 

For the relationship between  ENTITY1 and ENTITY2, we will record 
an att(j). T e att(j) depends on both entities ENTITY1 and ENTITY2 
for identif cation. 
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EXAMPLE 8.1 
For the relationship between the aaaaaaa entity and the aaaaaa entity, 
we will record a aaaaa attribute. The aaaaa attribute depends on both 
aaaaaaa and aaaaaa entities for identifi cation. 

8.3  RELATIONSHIPS DEVELOPING INTO ENTITIES: 
THE M:N RELATIONSHIP REVISITED 

We previously defned the M:N relationship and ofen noted that an attri-
bute appears that should really be associated with the relationship and not 
with one entity. Te example was  aaaaa, which would clearly not f t with 
either the aaaaaaa or the aaaaaa entity. In a sense, it appears the 
relationship has itself taken on an “entity quality.” 
 Tere are two options in depicting this relationship-attribute situation. 

One option is to leave the attribute where it is, as we have shown it, on 
the relationship. If the number of attributes is small (one or two), then the 
sense of the diagram will still be intact, and the grammar representing the 
diagram will be understandable to the user. 
 Te other option for relationship attributes would be to make 

the relationship an entity and tie both of the “identifying enti-
ties” to it. Tis option is shown in  Figure 8.2 . In this fgure, the mid-
dle entity, aaaaaaaaaaaaaa, is depicted as weak because 
aaaaaaaaaaaaaa depends entirely on the aaaaaaa and 
aaaaaa entities. Note, the participations are always full between the 
new, weak “intersection entity” and the relationship joining it to the 
strong owners. Why? Because the weak entity  must have a corresponding 
strong entity, or it would not be there. Te participation on the strong 
relationship side (between aaaaaaa and aaaa [short for relationship 
1] or between aaaaaa and aaaa [again, short for relationship 2]) can 
be partial or full depending on whether it was partial or full originally. 
What would a partial aaaaaaaaaaa connection mean? It would indi-
cate that classes existed in the database that are not ofered, and hence 
there are no students in them. 
Now, with a aaaaaaaaaaaaaa entity (an intersecting entity), our gram-

matical description of this intersecting entity would be as discussed next. 
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FIGURE 8.2 
M:N Relationship Tat Has Been Replaced with by 1:M Relationships 

8.3.1 The Entity

 Tis database records data about aaaaaaaaaaaaaa combinations: 
aaaaaaaaaaaaaa. For each aaaaaaaaaaaaaa in the database, 
we record a  aaaaa. 
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8.3.1.1 The Attributes

 For each aaaaaaaaaaaaaa combination, there will be one and 
only one aaaaa. Te value for  aaaaa will not be subdivided. 

8.3.1.2 The Keys 

(d) Intersecting entity: Te key of the intersection entity will consist of 
the concatenation of the foreign keys of the owner entities. 

In the aaaaaaaaaaaaaa example, the intersection entity will con-
tain a aaaaaaaaaa and a  aaaaaaaaa—both foreign keys; hence, the key 
of this entity will be aaaaaaaaaaAaAaaaaaaaaa (the plus sign here means 
concatenation). Both attributes are necessary to identify a unique row in 
the database. 
 Te last statement is very close (and for a user, it is hoped to be indistin-

guishable) from the key statements found in the “attribute on a relation-
ship” grammar given: 

For the relationship between aaaaaaa and aaaaaa, we will 
record a  aaaaa. T e aaaaa depends on both entities aaaaaaa and 
aaaaaa for identif cation. 

8.4 MORE ENTITIES AND RELATIONSHIPS 

In the handling of a database, we have to model the information pre-
sented. We will likely have situations calling for more than two entities 
and more than one binary relationship. Again, a binary relationship is 
a relationship between two entities. (In  Chapter 9, we look at ternary 
and higher relationship combinations.) Tis section deals with situa-
tions for which the information about the database indicates that we 
must expand our diagrams with more entities, but all the connections 
will be binary. 

8.4.1 More Than Two Entities 

Let us again reconsider the aaaaaaaaaaaaaa ER diagram (Figure 
8.1). If this database were oriented toward a college, the courses would  
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have instructors, and the instructors would be related to the courses. We 
may add aaaaaaaaaa to our database per our methodology steps 4 
and 5, which say: 

Step 4. If another entity is appropriate, draw the second entity  
with its attributes. Repeat step 2 to see if this entity should be 
further split into more entities. 

Step 5. Connect entities with relationships (one or more) if rela-
tionships exist. 

If we added instructors to  Figure 8.1, we arrive at  Figure 8.3 (attri-
butes other than the primary keys are intentionally lef of to unclutter 
the diagram). Te relationship between aaaaaaaaaa and aaaaaa 
is teach; instructors teach many courses, and a course is taught by an 
instructor. Te participation would be determined by the actual situa-
tion, but we will choose one for our example. Stated more precisely, we 
would say it as follows: 

8.4.1.1 Pattern 4—x:y::1:M, From the 1 Side, Partial Participation 

Short version: An instructor may teach many courses. 

which actually means: 

Longer version: An instructor, but not necessarily all instructors (recorded 
in the database), may teach many (one or more) courses. Some instruc-
tors may not teach courses. 

8.4.1.2 Pattern 1—x:y::M:1, From the M Side, Full Participation 

Short: Courses must be taught by instructors. 

 which means: 

Long: Courses, recorded in the database, must be taught by one and only 
one instructor. No course is taught by more than one instructor. 

In this diagram ( Figure 8.3 ), the aaaaaaaaaa entity is related 
to the aaaaaa entity. Tere could be a relationship between the 
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FIGURE 8.3 
An ER Diagram (with Only Primary Keys) Showing a aaaaaaaaaaaaaaa 
aaaaaaaaaaADatabase. 

aaaaaaaaaa and aaaaaaa entities, but the relationships in  Figure 
8.3  are assumed to be the only ones that exist. One could argue the other 
possible relationships are  advisor, mentor, counselor, coach , etc., 
but remember that we are modeling only what exists and not what might 



  

 
 

  

  
 

     
 
 
 

  
    

      
 

  
 
 

  
  

    

 

  

Further Extensions for ER Diagrams • 209 

be. We assume the diagram represents the information given by a user to 
an analysist and only the information given. 

8.4.2 Adding More Attributes That Evolve into Entities 

Now, consider adding a building to each of the entities. Students live in 
buildings (dorms), courses are taught in buildings (classrooms and labs), 
and instructors have ofces in buildings. “Building” may be added as an 
attribute of each of the three entities and not considered as an entity unto 
itself. Why is it not an entity? At this stage, we have not expressed the 
desire to record information about buildings. If buildings (dorm rooms, 
classrooms, ofce rooms) were considered as attribute items for appro-
priate entities, then we would have the ER diagram as in Figure 8.4. 
Now, we have added buildings to our database (Figure 8.4). Suppose 

we evolve yet again to where we now decide that we want to record more 
information about  buildings—or put another way, we want to make  
aaaaaaaa an entity. We would then have to connect other entities to 
aaaaaaaa with appropriate relationships. Such a design is depicted in  
Figure 8.5  (only key attributes are shown). Whether we begin with the idea 
of aaaaaaaa as an entity or evolve to it by starting with aaaaaaaa, 
aaaaaaa, and aaaaaaaaaaa, we need to constantly ask the ques-
tion, “Is this item in the ER diagram one we want to record information 
about or not?” Should this be an entity? In Figure 8.5, we have depicted 
aaaaaaaa as an entity with only key attributes. In the evolution of our 
database, we will add attributes to entities once the frame-like diagram is 
clear. For an embellished ER diagram with more attributes and cardinali-
ties, see  Figure 8.6. 
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FIGURE 8.4 
An ER Diagram (with Only Primary Keys) Showing a aaaaaaaaaaaaaaaaaaaaaaaaa 
Database with Building Attributes. 



  

   

 

Further Extensions for ER Diagrams • 211 

FIGURE 8.5 
ER Diagram (with Only Primary Keys) Showing a aaaaaaaaaaaaaaaaaaaaaaaaaa 
aaaaaaaa database 
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FIGURE 8.6 
ER Diagram Showing a aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa Database. 

Checkpoint 8.1 

1. In Figure 8.6, why is aaaaaaaa an entity and not an attribute of 
another entity? 

2. Why is the  aaaaaaaaaaa attribute attached to the  lives_in 
relationship rather than the aaaaaaa entity? 

3. What will make you decide whether an attribute should be 
connected to aaaaaaa or aaaaaaa or on the relationship con-
necting aaaaaaa and aaaaaaa? 

4. Why are all the lines leaving aaaaaaaa (on  Figure 8.6) single 
lines (partial participation)? 

5. According to Figure 8.6, does a student have to enroll in a course? 
6. According to Figure 8.6, how many courses can an instructor teach? 
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7. According to Figure 8.6, does an instructor have to teach a course? 
8. According to Figure 8.6, does a course have to be taught by an 

instructor? 
9. According to Figure 8.6, a course can be taught by how many 
instructors? 

8.5  MORE EVOLUTION OF THE DATABASE 

Let us reconsider the ER diagram in Figure 8.6. As the diagram is ana-
lyzed, the user may ask: Why is a  aaaaaaaaaaa attribute not included in 
the cla ss relationship? Why is there not an A AAaaAaaaaaa for the  officeaa 
relationship? Tere may be several reasons for the omission: 

(a) Tis information was not mentioned in the analysis stage. 
(b) Te data is not necessary (there may be only one classroom per build-

ing, or ofce numbers may not be recorded for advisors). 
(c) It was an oversight, and the data should be added. 

Suppose now it is decided  aaaaaaaaaaa is important for all the relation-
ships or entities. Suppose we want to identify the room number associated 
with instructors and buildings, courses and buildings, and students and 
buildings. We might “evolve” the diagram to Figure 8.7. 
In Figure 8.7, we have room number as a relationship attribute. In this 

case, we have also added information attached to  aaaaaaaaa aaaaa 
aaaaaaaAaaaaaaaaaaAaaaaaaaaaaaAaaaaaaaaaaaAandAaaaAaaA. 

8.6 ATTRIBUTES THAT EVOLVE INTO ENTITIES 

In this section, we illustrate one more time the idea to model “what is” and 
not necessarily “what might be.” Also, we again see how an attribute might 
become an entity. Suppose in the design process, you are given some data by 
a user and told to design the database. Suppose the following is suggested: 
Here, you have a course name, a course number, credit hours, an ins-

tructor, and a book. Te beginning ER diagram  might look like  Figure 8.8 . 
Why “might look like .  .  .”? Te answer lies in eliciting correct require-
ments from our user. 
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FIGURE 8.7 
ER Diagram Showing a aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa Database 
with room_number Added to the Relationships Where Needed. 

If all the information ever to be recorded about this data were men-
tioned, then this single-entity ER diagram could describe part of the data-
base. However, one could realistically argue things we have described as 
attributes could themselves be entities. Both the instructor and the book 
should be candidates for being diagrammed as entities if the envisioned 
database called for it. We have already concluded instructor should be an 
entity. 
Suppose we adjust the database to include more information about 

instructors. If this were the case, we might want to go beyond recording 
the  aaaaaaaaaaaaa and  aaaaaaaaaaaaaaa and include such attributes as the 
aaaaaaaaaaaaA aaaaaaaaaaA, aaaaaaaaaa, the  aaaaaa where the instructor 
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FIGURE 8.8 
COURSE Entity with Attributes. 

received the terminal degree. With the additional information about the 
aaaaaaaaaa, the part of the ER diagram with aaaaaaaaaa and 
COURSE would have two entities and would look like  Figure 8.9. 
In  Figure 8.9, we have depicted the  aaaaaaaaaa entity as weak 

because of the dependence on aaaaaa. Also, it is presumed instructor 
names may not be unique. If the instructor were identifed uniquely with 
an attribute like  aaaaaaaaaaaaa or aaaaaaaaaaaaaaa (Social Security num-
ber) and instructors could exist independent of course, then the entity 
could become strong and would look like  Figure 8.10. Te point of this 
section is to show an entity is not an entity just because one might want 
to record information “someday.” Tere would have to be some planned 
intent to include the data that would be identifed by the entity. Further, 
the defnition of weak or strong entity would depend on the information 
provided. Te user should be asked: how will instructors be uniquely 
identif ed? 
Finally, if no information about instructors were ever planned, then 

Figure 8.8 could well describe the database. We will leave as an exercise 
the extension of Figure 8.10 to include aaaa as an entity. 
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FIGURE 8.9 
ER Diagram of the aaaaaaaaaaaaaaaaa Database with aaaaaaaaaa as a Weak 
Entity. 

8.7 RECURSIVE RELATIONSHIPS 

In a recursive relationship, the same entity participates more than once in 
diferent roles. Recursive relationships are also sometimes called  unary 
relationships. 
Consider a human resources department in a company. Personnel are 

likely to have an employee number, a name, and so on. In addition to exist-
ing as an entity for all employees of an organization, there are relation-
ships between individuals of the entity set, personnel. Te most obvious 
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FIGURE 8.10 
ER Diagram of the aaaaaaaaaaaaaaaaa Database with aaaaaaaaaa as a Strong 
Entity. 

relationship is that of employee-supervisor. How would we depict the  
employee-supervisor relationship when we have only one entity? T e 
answer is shown in Figure 8.11. 
  Figure 8.11 shows the aaaaaaaaa entity with some attributes. T en, 

the relationship supervise is added and connected to aaaaaaaaa 
on both ends. Te cardinality of the relationship is 1:N with some employ-
ee’s supervisor supervising many other employees and employees hav-
ing one supervisor. We use partial participation from the supervisor side 
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FIGURE 8.11 
A Classic Recursive Relationship: aaaaaaaaaaaaaaaaaaa 

as not all personnel are supervisors—an employee may supervise many 
other employees. Te participation of supervised employee is also partial. 
Although most employees are supervised by one supervisor, some employee 
will be at the top of the hierarchy with no supervisor. In recursive relation-
ships, we are representing a hierarchy. All hierarchies have a top spot with 
no “supervision” (as far as the database is concerned). All hierarchies are 
always partial-partial. 
So, when a relationship between individuals arises within the same 

entity set, it would be improper to have two entities since most of the  
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information in the entities is basically the same. If we created two entities, 
we would have redundancy in the database. Using the example given, if 
we used two diferent entities rather than a recursive relationship, then an 
employee would be recorded in two dif erent places. 

8.7.1  Recursive Relationships and Structural Constraints 

Recursive relationships can only have partial participation, but the cardi-
nality can be one to one, one to many, and many to many. Full participa-
tion in a recursive relationship would mean every instance of an entity 
participates in a relationship with itself, which would not make sense. 
Next, we look at some examples of cardinalities as interpreted in recur-

sive relationships using our human resources database example. 

8.7.1.1 One-to-One Recursive Relationship (Partial 
Participation on Both Sides) 

Figure 8.12 presents an example of an entity,  aaaaaaaaa, related to 
itself through a  married_to relationship. Tis means a person in this 
database may be married to one other person in this same database. In 
this example, we have a relationship that is not a hierarchy. 
Some instances of this relationship are shown in Figure 8.13. From 

Figure 8.13, we can see that Seema is married to Dev Anand, Arpan is 
married to Rekha, and so on. 

FIGURE 8.12 
One-to-One Recursive Relationship (Partial Participation on Both Sides). 
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FIGURE 8.13 
Instances of One-to-One Recursive Relationship (Partial Participation on Both Sides). 

8.7.1.2 One-to-Many Recursive Relationship 
(Partial Participation on Both Sides)

 Te one-to-many recursive relationship (partial participation on both 
sides) is the most common recursive relationship cardinality. An example 
of this relationship may be if one employee may supervise many other 
employees (as shown in Figure 8.14). As we mentioned, this is a hierarchi-
cal relationship and is always partial-partial. 
Instances of this relationship are shown in Figure 8.15. From Figure 8.15, 

we can see Tom Smith supervises Sudip Bagui and Tim Vaney, Rishi 
Kapoor supervises Mala Saha and Korak Gupta, Korak Gupta supervises 
Roop Mukerjee, and so on. 

8.7.1.3 Many-to-Many Recursive Relationship 
(Partial on Both Sides) 

In the example of the many-to-many recursive relationship (partial on 
both sides), we could say courses may be prerequisites to zero or more 
other courses. Tis relationship is depicted in  Figure 8.16. Te sense of 
prerequisite here is not hierarchical, but more like a situation for which 
there are many interrelated courses. 
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FIGURE 8.14 
One-to-Many Recursive Relationship (Partial Participation on Both Sides). 

FIGURE 8.15 
Instances of One-to-Many Recursive Relationship (Partial Participation on Both Sides). 
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FIGURE 8.16 
Many-to-Many Recursive Relationship (Partial Participation on Both Sides). 

8.8 MULTIPLE RELATIONSHIPS 

So far, we have mostly discussed two entities with one relationship.  
Tis section discusses how two entities can have more than one binary 
relationship. 
Consider a diagram with two entities: aaaaaaa and aaaaaaa. 

Suppose we have no other entities in the database. Suppose further the 
aaaaaaa entity has the following attributes:  aaaaAaAAaaaaaaaaAaaAaAAaaaaaa 
aaaa, and  aaaaaaaaaaa from which the student graduated. T e aaaaaaa 
entity could have the following attributes:  aaaaAaA AaaaaA (Social Security 
number), aaaaaaaaaaAaA AaaAAaaaaaaaaaA. In developing the diagram, we 
fnd two distinct verbs to describe the connection between aaaaaaa 
and aaaaaaa. aaaaaaaa are  instructed by aaaaaaa, and aaaaaaa 
advise aaaaaaaa. Tere are two distinct relationships we need to add to 
our diagram:  instruct and  advise. Each distinct relationship is given its 
own diamond. Te ER diagram for this situation is shown in Figure 8.17A. 
In this diagram, all relationships are arbitrarily shown as partial; that is, 

there will be some faculty who do not advise students, and some students 
who are not instructed by faculty. In constructing ER diagrams, one has 
to include however many distinct relationships exist. It would be incorrect 
to try to make a relationship do “double duty” and stand for two dif erent 
relationship ideas. 



  

 
     

   
  

  
     

  

     

  
 

Further Extensions for ER Diagrams • 223 

FIGURE 8.17A 
ER Diagram with Two Entities and Two Relationships 

In this example, an embellishment might include intersection data for 
the  instruct relationship (a aaaaa in a course, for example). Intersection 
data for the  advise relationship could be aaaaaaaaaaaaaAaAAaaaaaaaaaaaa, 
and so on, as shown in Figure 8.17B . 
 Te placing of relationships in the ER diagram is covered in our ER 

design methodology in step 5, which we redef ne here: 
 Te original step 5 was: 

Step 5. Connect entities with relationships as they are elicited. 
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FIGURE 8.17B 
ER Diagram with Two entities and Two Relationships and Some Intersection Attributes. 

We may add to this guideline that if multiple relationships are present, 
they are added to the diagram; however, this is likely redundant, so we will 
simply append the phrase (one or more): 

Step 5. Connect entities with relationships (one or more) as rela-
tionships are elicited. 

8.9  THE DERIVED OR REDUNDANT RELATIONSHIP 

Many authors describe a redundant or derived relationship arising in a 
relationship “loop” as in  Figure 8.18. Te loop notion comes from the 
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FIGURE 8.18 
ER Diagram Showing a aaaaaaaaaaaaaaaaaaaaaaaaa Database with a “Redundant” 
Relationship 

pictorial idea that the lines form a closed graph (which is more like a rect-
angle, but we are going to call it a loop). Te idea of redundancy is since 
students take courses and each course is taught by an instructor, you do 
not need a  taught_by relationship because you can get that information 
without the extra relationship. If such a relationship exists, then it should 
be excised, but there are caveats. 
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First, one has to be sure the redundant relationship is truly redundant. 
If the added relation were advised_by instead of taught_by, then the 
relationship should stay because it has a completely diferent sense than 
taught_by. 
Second, if the relationship loop is present, it may mean only one of the 

two redundant relationships should be kept, and the semantics should 
point to which one. In Figure 8.18, the aaaaaaaaaa is more likely  
related to a aaaaaa than to a aaaaaaa. So, the better choice of which 
relationship to keep would be the original one: teach. A designer might 
have included the taught_by relationship f rst, only later to include the 
teach relationship. Ten, by examining the diagram for loops, one could 
deduce taught_by was redundant.
 Tird, one or both relationships may have an intersection attribute to 

suggest which relationship (or both) should be kept. In Figure 8.19, we 
included the  aaaa attribute, which was put with the  teach relationship as 
an instructor teaches a course at a particular time. 
 Te idea of derived or redundant relationships causes us to suggest one 

more step in our methodology: 

Step 6b. Examine the diagram for loops that might indicate redun-
dant relationships. If a relationship is truly redundant, excise 
the redundant relationship. 
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FIGURE 8.19 
ER Diagram Showing a aaaaaaaaaaaaaaaaaaaaaaaaa Database with a “Redundant” 
Relationship and a Time Attribute 

Checkpoint 8.2 

1. What is a recursive relationship? 
2. What would you look for if you are trying to see if a relationship 

is recursive? 
3. What kinds of structural constraints can recursive relationships 

have? 
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4. Can recursive relationships have full participation? Why or why 
not? 

5. How is the recursive relationship denoted diagrammatically in 
the Chen-like ER model? 

6. Can the same two entities have more than one relationship? 
7. How would you determine if a relationship is redundant? 

8.10 OPTIONAL: AN ALTERNATIVE ER 
NOTATION FOR SPECIFYING STRUCTURAL 
CONSTRAINTS ON RELATIONSHIPS 

We call Section 8.10 an “optional section” because it adds information to 
the ER diagram; however, the information added is not necessary to map 
the diagram to a functional database. Some may fnd this section usefully 
descriptive; others may fnd it unwarranted. 
So far, we have discussed cardinality ratios in terms of their upper bounds 

(the maximum cardinality), shown by the M or N in the ER diagrams 
(shown in this and previous chapters). You will recall (from  Chapter 6) 
cardinality is a rough measure of the number of entity instances in one 
entity set that can be related to instances in another entity set. 
In this section, we describe an alternative ER notation for specifying  

structural constraints on relationships. Tis notation will associate a pair 
of numbers (min, max) with each structural constraint of a relationship. 
T is min and  max may provide more information about the entities and 
how they are related.
 T e min is the minimum number of instances in one entity set related to 

an instance of another entity. T e min can be between zero and  max , the 
maximum. If the  min is zero, it implies every instance of an entity does 
not have to participate in the relationship. If min is zero it implies partial 
participation. If the  min is greater than zero, it implies full participation. 
We now present an ER diagram with (min, max) in place of 1 and M. 
First, let us start with the recursive relationship shown in Figure 8.20. 
 T e (min, max) of (0, 1) means each person in the aaaaaaaaa entity 

may or may not be married (shown by the zero for the  min) and can only 
be married to at most one other person (shown by the  max). 
Next, look at Figure 8.21. From this fgure, we can say a student may 

not be advised by any faculty member and may be advised by up to two 



  

    

  
 

Further Extensions for ER Diagrams • 229 

FIGURE 8.20 
Recursive Relationship with (min, max ) Ratios. 

FIGURE 8.21 
ER Diagram Showing an Alternative ER Notation for Specifying Structural Constraints. 
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faculty members (shown by the minimum of zero and maximum of 
two). A faculty member may advise between 0 and 30 students and may 
instruct between 0 and 40 students. And a student must be instructed 
by one faculty member and can be instructed by up to two faculty mem-
bers in this database. With the min/max notation, it is optional (albeit 
redundant) to keep the single-/double-line participation constraint. 
Since the single-/double-line notation is so common, we suggest keep-
ing it. 

Checkpoint 8.3 (Optional) 

1. What lower bound of cardinality does full participation imply? 
2. What does a  min/max ratio of (1, 1) between two entities imply? 
3. What kind of participation ratio (full participation or partial 

participation) does a  min/max ratio of (0, 1) imply? 

8.11 REVIEW OF THE METHODOLOGY 

To review, our methodology for designing ER diagrams has now evolved to: 

8.11.1 ER Design Methodology 

Step 1. Select one primary entity from the database requirements 
description and show attributes to be recorded for that entity. 
Label keys if appropriate and show some sample data. 

Step 2. Use structured English for entities, attributes, and keys 
to describe the elicited database. 

Step 3. Examine attributes in the existing (primary) entities (pos-
sibly with user assistance) to find out if information about one 
of the entities is to be recorded. 

(We change “primary” to “existing” because we redo step 3 as we add new 
entities.) 

Step 3a. If information about an attribute is needed, then make the 
attribute an entity, and then 

Step 3b. Define the relationship back to the original entity. 
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Step 4. If another entity is appropriate, draw the second entity  
with its attributes. Repeat steps 2 and 3 to see if this entity 
should be further split into more entities. 

Step 5. Connect entities with relationships (one or more) if rela-
tionships exist. 

Step 6. State the exact nature of the relationships in structured English 
from all sides. For example, if a relationship is A:B::1:M, then there 
is a relationship from A(1) to B(M) and from B(M) back to A(1). 

Step 6a. Examine the list of attributes and determine whether any 
of them need to be identified by two (or more) entities. If so, 
place the attribute on an appropriate relationship that joins the 
two entities. 

Step 6b. Examine the diagram for loops that might indicate redun-
dant relationships. If a relationship is truly redundant, excise 
the redundant relationship. 

Step 7. Show some sample data. 
Step 8. Present the “as designed” database to the user complete 

with the English for entities, attributes, keys, and relationships. 
Refine the diagram as necessary.

 Te grammar to describe our entities, attributes, and keys has evolved 
as discussed next. 

8.11.2 The Entity

 Tis database records data about aaaaaa. For each aaaaaa in the data-
base, we record att(1), att(2), att(3), . . . att(n). 

8.11.2.1 The Attributes 

For atomic attributes,  att(j):
 For each aaaaaa, there will be one and only one  att(j). Te value for 

att(j) will not be subdivided. 
For composite attributes,  att(j):
 For each aaaaaa, we will record att(j), which is composed of x, y, z, . . . . 

(x, y, z)  are the component parts of att(j). 
For multivalued attributes,  att(j): 
 For each aaaaaa, we will record att(j ) ’s. Tere may be more than one 

att(j) recorded for each aaaaaa. 
For attributes of relationships, att(j): 
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For the relationship between aaaaaaa and aaaaaaa, we will record 
a(n) att(j). T e att(j) depends on both entities aaaaaaa and 
aaaaaaa for identif cation. 

8.11.2.2 The Keys 

For the key(s): 

(a) More than one candidate key (strong entity):
  For each aaaaaa, we will have the following candidate keys:  att(j), 

att(k), . . . (where j, k are candidate key attributes). 
(b) One candidate key (strong entity):

  For each aaaaaa, we will have the following primary key: att(j) 
(c) No candidate keys (perhaps a weak entity):

  For each aaaaaa, we do not assume any attribute will be unique 
enough to identify individual entities. 

(d) No candidate keys (perhaps an intersecting entity):
  For each aaaaaa, we do not assume any attribute will be unique 

enough to identify individual entities. 

8.12 MAPPING RULES FOR RECURSIVE 
RELATIONSHIPS 

Recursive relationships are binary 1:1, 1:N, or M:N relationships. We dis-
cussed the mapping rules for these types of relationships in Chapter 6. 
Normally, the cardinality is 1:N. 
In Chapter 6, the mapping rule was discussed for two entities. If there 

is only one entity (as in a recursive relationship), the rules basically stay 
the same, but the single entity is viewed as two entities, aaaaaaaa and 
aaaaaaaa. Te primary key is re-recorded in the same table with a dif-
ferent connotation or role. Two types of mapping rules can be developed 
to map recursive entities. 

Mapping Rule 12—Mapping 1:N recursive relationships. Re-include 
the primary key of the table with the recursive relationship in the 
same table, giving it some other role name. 

For example, Figure 8.11 will be mapped to 
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aaaaaaaaaaAAaaaaaAaAAaaaaaAaAAaaaaaAaAAAaaaaaaaaaaaAaAAaaaaaaaaaA

 Te aaaaaaaaaaa is the primary key of the aaaaaaaaa relation. Te 
aaaaaaaa is also an aaaaaaaaaaa, but its role and its connotation are dif-
ferent. Table 8.1 provides some sample data. 

Mapping Rule 13—Mapping M:N recursive relationships. Create a 
separate table for the relationship (as in mapping rule 5). 

Suppose we consider the course-prerequisite recursion where courses 
have many prerequisites, and a course may be a prerequisite for many 
courses. Here, the simplest thing to do is to create a separate table just for 
the relationship. Table 8.2 shows an example of a recursive relationship. 

Checkpoint 8.4 

1. Map the recursive relationship shown in Figure 8.14 to a rela-
tional database and show some sample data. 

2. If Figure 8.14 was an M:N relationship, how would you map this 
recursive relationship to a relational database? Show the map-
ping with some sample data. 

TABLE 8.1 

Sample Data for aaaaaaaaa in Figure 8.11. 
fname lname minit employee_id super_id 

Richard Earp W 8945 9090 
Boris Yelsen 9090 null 
Helga Hogan H 3841 9090 
Sudip Bagui K 8767 9090 
Tina Tanner 5050 8945 

TABLE 8.2 

Mapping Recursive Relationship of Figure 8.16. 

Course Prerequisite 

COP2222 COP1111 
COP2223 COP1111 
COP3333 COP2222 
COP1111 null 
COP2222 COP1112 
COP1112 COP1111 
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8.13 CHAPTER SUMMARY

 Tis chapter looked at diferent aspects of binary relationships in ER dia-
grams and refned several steps in the ER design methodology. T e ref n-
ing of the ER design methodology means a continuous assessment and 
reassessment of the ER diagram drawn afer discussion with the users. 
Te idea that relationships could have attributes, how attributes evolve 
into entities, recursive relationships, and derived and redundant relation-
ships was discussed with examples and diagrams. Te ER design meth-
odology steps were refned to include all of this information into the new 
and evolving methodology. Toward the end of the chapter, an alternative 
ER notation for specifying structural constraints on relationships was pre-
sented. On completing this chapter, the reader or database creator should 
be able to efciently design a database with binary relationships. T e next 
chapter deals with ternary and other higher-order relationships. 

CHAPTER 8 EXERCISES 

In each of the following exercises, the admonition to “construct an ER dia-
gram” implies not only the diagram but also the structured grammatical 
description of the diagram. 

Exercise 8.1

 Defne and state in precise terms the cardinality and participation in 
Figure 8.6, the student/course/instructor/building database. Discuss the 
structural constraints of Figure 8.6. What are the participations? What are 
the cardinalities? Under which circumstances would the ones depicted be 
correct or incorrect? 

Exercise 8.2 

Consider the following data: horse name, race, owner, odds at post, post 
position, date of race, order of f nish, year to date earnings, owner name 
and address. Construct an ER diagram and use structured grammar to 
rationalize your constraints. 
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Exercise 8.3 

In the chapter, we described a database with two entities, aaaaaa and 
aaaaaaaaaa (refer to  Figure 8.10). Book was lef as an attribute of  
aaaaaa. Extend the database to include aaaa as an entity. Attributes 
of aaaa might include  aaaaAaaaaaaAaaaaaaaAaaaaaaAaaaaaaaaAaaaaaaaaaA. 

Exercise 8.4 

Refer to Figure 8.7. Change Figure 8.7  to include the following informa-
tion: One building can have a maximum of 99 students living in it. A stu-
dent has to enroll in at least one class and can enroll in a maximum of f ve 
classes. A class has to enroll at least 5 students and can enroll a maximum 
of 35 students. An instructor may or may not teach a class and can teach 
up to three classes. A course must have one instructor teaching it, and only 
one instructor can teach a particular course. An instructor may or may not 
have an ofce and can have up to two ofces. A building may or may not have 
an ofce and can have up to 15 ofces. A course has to be of ered in one 
classroom and can only be ofered in one classroom. 

CASE STUDY 

West Florida Mall (continued) 

So far in our case study, we have developed the major entities and relation-
ships and mapped these to a relational database (with some sample data). 
Ten, on reviewing step 7, which says: 

Step 7. Present the “as designed” database to the user complete 
with the English for entities, attributes, keys, and relationships. 
Refine the diagram as necessary. 

Suppose we got some additional input from the user: 

An employee can also be a department manager, and a department 
manager can manage at most one department. We must store infor-
mation on the department manager: the name, Social Security num-
ber, which store he or she is working for, and which department he 
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or she is working for. A department manager supervises at least one 
employee and may manage several employees. 

On reviewing these additional specifcations, we can see we have a 
recursive relationship developing since an employee can be a department 
manager supervising other employees. 
So, using mapping rule 12, we will reinclude the primary key of the 

aaaaaaaa entity in itself, giving us the following aaaaaaaa relation: 

aaaaaaaaaaaaaaAaAAAaaaaAaAAaaaaAaAAaaaaAaAAaa 

And, with some sample data as shown Table 8.3. 
Tis recursive relationship is also shown in Figure 8.22. 
So, in summary our relational database has now developed to (without 

the data) 

aaaa 
AaaaaA AaaaaaaaA 

aaaaa 
AaaaaA AaaaaaA AaaaaA AaaaaaaaaaA AaaaaaaA AaaaaaaA 

aaaaa 
AaaaaaaA AaaaaaaaAA AaaaaaAaaaaaaAA AAaaaaaaaaaaAA 

aaaaaaaaaaaaa 
AAAaaaaaaAAA AAaaaaaaaAA AAaaaaaaAA 
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TABLE 8.3 

Sample Data for aaaaaaaa. 
ename essn dnum snum dm_ssn 

Kaitlyn 987-754-9865 501 1 276-263-9182 
Fred 276-263-9182 502 1 null 
Katie 982-928-2726 503 1 987-754-9865 
Seema 837-937-9373 501 1 276-263-9182 
. 
. 
. 



  

      

    

  

aaaaaaaaaa 
AAaaaaaAA AAAaaaaAAA AAAaaaaAAA 

aaaaaaaa 
AAaaaaaAA AAAaaaaAAA AAaaaaAA AAaaaaaaAA AAaaaaAA 

We continue the development of this case study at the end of the next chapter. 
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FIGURE 8.22 
ER Diagram of West Florida Mall Developed So Far. 
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9 
Ternary and Higher-Order ER Diagrams 

9.1 INTRODUCTION 

All relationships we have dealt with so far have been binary relationships. 
Although binary relationships seem natural to most of us, in reality it is 
sometimes necessary to connect three or more entities. If a relationship 
connects three entities, it is called a  ternary or 3-ary relationship. If a rela-
tionship connects more than three entities (n entities), it is called an n-ary 
relationship, where  n equals the number of entities participating in the rela-
tionship. T e n-ary relationships (n ≥ 3) are also referred to as higher-order 
relationships. 
In this chapter, we consider relationships to connect three or more enti-

ties. First, we look at ternary (3-ary) relationships arising for three main 
reasons: 

(a) If we have intersection attributes requiring three diferent entities to 
identify an intersection attribute 

(b) If we have a relationship of a relationship 
(c) If we are reverse engineering 

Since we discuss reverse engineering in Chapter 11, we do not discuss 
the development of ternary relationships from reverse engineering in this 
chapter. 
In this chapter, we frst discuss how intersection attributes create ternary 

relationships and then look at structural constraints. Next, we discuss how 
ternary and other  n-ary relationships do not preclude binary relationships 
with the same entities and how some ternary diagrams may be resolved 
into binary relationships. Te development of ternary relationships from 
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relationships of relationships is also introduced. Step 6 of the entity-rela-
tionship (ER) design methodology is redef ned in this chapter to include 
ternary and other higher-order relationships. 

9.2 BINARY OR TERNARY RELATIONSHIP? 

Ternary relationships are required when binary relationships are not suf-
fcient to accurately describe the semantics of an association among three 
entities. In this section, we explain the diference between a binary and a 
ternary relationship with the help of an example and show how an inter-
section attribute necessitates a ternary relationship. 
Where binary relationships exist between entities, these relationships 

have structural constraints (cardinality and participation). Further, 
we found attributes of relationships were also possible. In particular, we 
found the M:N relationship ofen spawned an attribute we called an inter-
section attribute (recall the aaaaaaaaaaaaa M:N relationship and the 
intersection attribute  aaaaa as shown in Figure 8.1). In the binary rela-
tionship case, we made the point that an attribute like aaaaa would infer 
an M:N binary relationship must exist.
 Te usual case where  n-ary relationships arise is where there exists 

data that must be related to more than two entities. Consider this example: 
You have a database for a company containing the entities aaaaaaa, 
aaaaaaaa, and aaaaaaaa. Te usual relationships might be 
aaaaaaaaaaaaaaaa; the company buys products from a supplier— 
a normal binary relationship. Te intersection attribute for aaaaaaaa 
aaaaaaaa is aaaaaaaaaaaaaaa (as shown in Figure 9.1A). Now, consider 
the aaaaaaaa entity and the customer buys products. If all custom-
ers buy products irrespective of supplier, you have a simple, binary rela-
tionship between aaaaaaaa and aaaaaaa. For the aaaaaaaaa 
aaaaaaa relationship, the intersection attribute is aaaaaaaaaaaa (as 
shown in Figure 9.1B). 
Some sample data for  Figure 9.1A would be as shown in Table 9.1. 
Some sample data for  Figure 9.1B would be as shown in Table 9.2. 
Now consider a diferent scenario. Suppose the customer buys products, 

but the price depends not only on the product but also on the supplier. 
Suppose you needed a customerID, a productID, and a supplierIDA to 
identify a price. You then have an attribute depending on three entities; 
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FIGURE 9.1A 
Binary Relationship between aaaaaaa and aaaaaaaa and an Intersection Attribute, 
aaaaaaaaaaaaaaa. 

FIGURE 9.1B 
Binary Relationship between aaaaaaa and aaaaaaaa and an Intersection Attribute, 
aaaaaaaaaaaa. 
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TABLE 9.1 

Sample Data for  Figure 9.1A. 

productID supplierID wholesale_price 

Beans Acme Bean Co 1.4 
Beans Baker Bean Co 1.57 
Carrots Joe’s Carrots 0.89 

TABLE 9.2 

Sample Data for  Figure 9.1B. 

customerID productID retail_price 

Jones Beans 2.67 
Smith Beans 2.67 
Jones Carrots 1.57 

FIGURE 9.2 
ER Diagram (with Only Primary Keys) Showing a T ree-Way Relationship. 

hence, you have a relationship between three entities (a ternary relation-
ship) with an intersection attribute,  aaaaa. Tis situation is depicted in
 Figure 9.2 . 
Figure 9.2  represents the entities aaaaaaa, aaaaaaaa, and 

aaaaaaaa and a relationship,  buy, among all three entities, shown 
by a single relationship diamond attached to all three entities. 
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TABLE 9.3 

Sample Data for  Figure 9.2. 

customerID productID supplierID price 

Jones Beans Acme 2.65 
Jones Beans Baker 2.77 
Jones Carrots Joe’s 1.57 

Some sample data for  Figure 9.2  would be as shown in Table 9.3. 
 Tis ternary case is more realistic as customers generally pay dif erent 

prices for the same product by diferent manufacturers or suppliers. For 
diferent suppliers, one may also assume diferent prices for a product at 
diferent points in time. Also, for customers, one may assume some items 
are bought on sale, some not. Another intersection attribute (in  Figure 9.2) 
could be  aaaa, which could be the date of the sale of a product to a cus-
tomer supplied by a specif c supplier. 
Next, we look at the structural constraints of ternary relationships. 

9.3 STRUCTURAL CONSTRAINTS FOR 
TERNARY RELATIONSHIPS 

Ternary relationships can have the following types of structural con-
straints: x:y:z where x, y and/or z each may be 1 or “M.” “M” for each x, 
y or z need not be the same letter. Examples: 1:1:1, 1:M:N, M1:M2:M3, 
M:1:N, etc. Each relationship may be full or partial participation on each 
one of the sides. Following is an example of the M1:M2:M3 relationship 
with partial participation on all sides. 

9.3.1 Many to Many to Many (M1:M2:M3) 

Figure 9.3  shows an example of a M1:M2:M3 relationship using the three 
entities aaaaaaa, aaaaaaaa, and aaaaaaaa, all with partial par-
ticipation. T is fgure shows many customers may buy many products 
from many suppliers, at dif erent prices. 
Instances of this relationship can be illustrated as shown in Figure 9.4. 
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FIGURE 9.3 
ER Diagram Showing a Ternary Many-to-Many-to-Many Relationship (Partial Participation 
on All Sides). 

FIGURE 9.4 
Instances of a ternary many-to-many-to-many relationship for aaaaaaaaaaaaaaaaa 
aaaaaaaaA 
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Checkpoint 9.1 

1. What is a ternary relationship? 
2. What is an n -ary relationship? 
3. What are higher-order relationships? 
4. Using the three entities presented (aaaaaaa, aaaaaaaa, 

and aaaaaaaa), draw an ER diagram that depicts the follow-
ing: A customer must buy one and only one product from a sup-
plier at a particular price on a particular date. 

5. Using the three entities presented (aaaaaaa, aaaaaaaa, 
and aaaaaaaa), draw an ER diagram depicting the follow-
ing: A supplier must supply many products to many customers at 
diferent prices on dif erent dates. 

6. Tink of some more intersection attributes for the aaaaaaa, 
aaaaaaaa, and aaaaaaaa ternary example presented in
 Figure 9.3 . 

7. What situations might create each of the following structural 
constraints? 
a. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa, partial par-

ticipation on all sides 
b. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa, partial par-

ticipation on all sides 
c. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa, full participa-

tion on all sides 

9.4 AN EXAMPLE OF AN N-ARY RELATIONSHIP

 An n-ary relationship describes the association among  n entities. For 
our ternary example, we said the price was dependent on a aaaaaaaaA 
aaaaaaaaa and aaaaaaaa. If we have a situation for which the price 
is dependent on a aaaaaaaaAaaaaaaaaaAaaaaaaaaa as well as 
aaaaaa then price is dependent on four entities; hence, it is an  n -ary 
(in this case, a 4-ary) relationship. In an n-ary (or, in this case, 4-ary)  
relationship, a single relationship diamond connects the  n (4) entities, 
as shown in Figure 9.5. Te intersection attribute is aaaaa. (More non-
intersection attributes on the entities could occur but were not included 
in the diagram.) 
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FIGURE 9.5 
ER Diagram Showing  n -ary Relationship 

9.5 N-ARY RELATIONSHIPS DO NOT PRECLUDE 
BINARY RELATIONSHIPS 

Just because there is a ternary relationship does not mean binary rela-
tionships among the entities may not exist. Using the example of 
aaaaaaaaaaAaaaaaaaa and aaaaaaaaa suppose retail vendors 
and suppliers of products have a special relationship not involving cus-
tomers, such as wholesaling with an entirely diferent price structure. T is 
binary relationship may be shown separately from, and in addition to, 
the ternary relationship. See  Figure 9.6  for a basic version of this two-way 
(binary) relationship and three-way (ternary) relationship ER diagram in 
the same database. 
Figure 9.6 tells us we have a binary relationship between aaaaaaa 

and aaaaaaa with all aaaaaaaa and aaaaaaa participating. 
Both the aaaaaa and the aaaaaaaa buy the aaaaaaaa but in 
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FIGURE 9.6 
ER Diagram (with Only Primary Keys) Showing a Tree-Way and a Two-Way Relationship. 

the aaaaaaaaaaaaaa binary relationship, the action is wholesale 
buying; hence, the relationship is labeled aaaaaaaaaaaaaa aaaa  and does not 
involve the customer. We changed the ternary relationship to read aaaaaaa 
aaaaaaa to distinguish the two relationships. 

9.6 METHODOLOGY AND GRAMMAR 
FOR THE N-ARY RELATIONSHIP 

We need to revisit step 6 in the ER design methodology to cover the pos-
sibility of the n-ary relationship. Te old version was: 
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Step 6. State the exact nature of the relationships in structured 
English from all sides, for example, if a relationship is A:B::1:M, 
then there is a relationship from A to B, 1 to Many, and from B 
back to A, Many to 1. 

We add the following sentence to step 6: 

For ternary and higher-order (n-ary) relationships, state the relation-
ship in structured English, being careful to mention all entities for 
the n-ary relationship. State the structural constraints as they exist.

 Te grammar for the  n-ary relationship must involve all the entities linked 
to it. Terefore, a suitable informal sentence would go something like this: 

aaaaaaa Relationship (from/to/by) aaaaaaa (and ) (from/to/by) 
aaaaaaa. It is understood that attribute will necessitate naming all 
n entities to identify it. 

Here, if we choose some combination for Entity1, . . . Entityn , this process 
resolves into

 Entity1:aaaaaaaa
 Relationship: aaaaaa 
Relationship attribute:  aaaaaaaaaaaa

 Entity2: aaaaaaa
 Entity3: aaaaaa 
aaaaaaaaa buy aaaaaaaa from aaaaaaaa It is understood 
aaaaaaaaaaaa will necessitate referencing all three entities to identify it. 

With a binary relationship, we have to state two relationships. One 
would think with ternary relationships, we would be bound to state three. 
Since the relationship attribute has already been stated, let us look at the 
other possibilities: 

Suppose

 Entity1: aaaaaaa
 Entity2: aaaaaaaa 
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 Entity3: aaaaaa 
aaaaaaaa are bought by aaaaaaaaa from aaaaaaaa 

In the informal version of the statement from the diagram, little infor-
mation is gained by repetition. It is suggested other combinations be tried; 
however, in the  informal statement, it seems likely one statement, inferred 
from the semantics of the situation, would sufce to informally declare the 
nature of the relationship. 

9.6.1 A More Exact Grammar 

A more exact grammar for the  n-ary relationship would be an extension 
of that developed for the binary relationship. Unlike the informal case, 
in a more formal grammatical presentation, it would be necessary to 
make three statements for a ternary relationship, one starting with each 
entity. In the binary relationship, M:N full participation case, we used the 
description of the relationship given next. 

9.6.1.1 Pattern 3—M:N, From the M Side, Full Participation 

Short: x must be related to many y  . 

which actually means 

Long: x, recorded in the database, must be related to many (one or more) 
y. No x is related to a non- y (or) Non-x are not related to a  y . (T e 
negative will depend on the sense of the statement.) 

We could generalize the structural constraint patterns to the pattern 
given next. 

9.6.1.2 Pattern 3—k:M, from the k Side, Full 
Participation (k = 1 or N) 

Short: Same as in Section 9.6.1.1. 
Long: Same as in Section 9.6.1.1. 

For the  n-ary relationship, we extend the notation of the generalized state-
ment using the Boolean operator “and” as shown next. 
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9.6.1.3 Pattern 5 (n-ary)—x:y:z::a:b:c, From the 
a Side, Full/Partial Participation 

Short: x must/may be related to many y and many z  . 

 Te “must” represents full participation; “may” represents a partial one. 
T e a cardinality will not matter. T e b and  c force us to say “one” or 
“many” in the statement. So, for example, for  x as full: 

Long: x , recorded in the database, must be related to 
b = m [many (one or more)] y 
b = 1 one and only one  y 

and(or other appropriate linking word [from, by, to , . . .]) 

c = m [many (one or more)] z 
c = 1 one and only one  z 

No x is related to more than one  z  . 
No x is related to more than one  y  . 

EXAMPLE 9.1 
For aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa full participation 
all around: 

Short: aaaaaaaaa must buy many aaaaaaaa from many 
aaaaaaaa 

Long: aaaaaaaaaa recorded in the database, must buy many (one or 
more) aaaaaaaa from many (one or more) aaaaaaaa 

Other grammatical expressions are derived similarly. 

Products, recorded in the database, must be bought by many (one or 
more) customers from many (one or more) vendors. 

Vendors, recorded in the database, must sell many (one or more) prod-
ucts to many (one or more) customers. 

A negative could be:No customer (in this database) buys products from 
nonvendors. 

As with the binary cases, the negative statements would be optional, if 
they make sense. 
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9.6.2 Grammar in a Partial Participation, Ternary 
Relationship with an M1:1:M2 Relationship 

Let us consider  Figure 9.7 . In this fgure, we are trying to represent a 
database about a graduation ceremony with some students and some fac-
ulty attending. Roughly, we are trying to say some aaaaaaaa attend a 
given aaaaaaaaaa with some aaaaaaa; some aaaaaaa attend a 
aaaaaaaaaa with some aaaaaaaa, and all aaaaaaaaaas are 
attended by some aaaaaaaa and some aaaaaaa. T e intersection 
attribute is  aaaaaaaaaaaaaaaaaa. 
Here, we have partial participation on the M cardinality relationships 

and a one-relationship with full participation. Using the grammar pre-
sented, we have this outcome: 

aaaaaaaaaaaaaaaaaaaaaaaaaa ::M1:1:M2 
Short: Students may attend one graduation with many faculty. 

FIGURE 9.7 
ER Diagram (with Only Primary Keys) Showing Tree-Way Relationship with Partial 
Participations and a One-Relationship 



 

      
  

      
  

  

  

 

   
 
 
 

   
 

  

 

  

 
 

 
     

  
   

   
 

a aa

a aa

a aa

252 • Database Design Using ER Diagrams 

Long: Students, recorded in the database, may attend (b = 1) one and 
only one graduation 

with 
(c = m) [many (one or more)] faculty. 

No student attends more than one graduation [with many faculty]. 

We put the [with many faculty] in square brackets because it is not really 
needed to make sense of the diagram. 
Similarly: 

Faculty, recorded in the database, may attend one graduation with 
many students. Some faculty do not attend graduation [with many 
students]. Graduations must be attended by some students and some 
faculty. No graduation takes place without some students and some 
faculty. 

9.7 TERNARY RELATIONSHIPS FROM RELATIONSHIP-
RELATIONSHIP SITUATIONS 

Another scenario for which ternary relationships become necessary is 
if a scenario develops resulting in a relationship of a relationship. Chen-
like ER diagrams do not allow relationships of relationships; there-
fore, to represent this situation correctly we need to develop a ternary 
relationship. 
For example, let us start with two entities: aaaaaaaaaaaaaa and 

aaaaaaaaaa. We can initially relate the two entities as shown in Figure 
9.8A. A aaaaaaaaaaaaaa may review many aaaaaaaaaaa. 
At a later stage, if some aaaaaaaaaa results in a aaaa afer being 

reviewed, this calls for a relationship of a relationship, as shown in Figure 
9.8B. Tis relationship of a relationship becomes necessary here because 
the aaaaaaaaaaaaaa, a aaaaaaaaaa, and aaaaaaaaaa taken together 
results-in a aaaa, as shown in Figure 9.8C. 
In  Figure 9.8C, the aaaaaaaaaaaaaa, the a aaaaaaaaaa relationship, and 

aaaaaaaaaa taken together are like creating a higher-level aggregate 
class composed of aaaaaaaaaaaaaa, a aaaaaaaaaa, and aaaaaaaaaa. 
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FIGURE 9.8A  
A Binary Relationship between aaaaaaaaaaaaaa and aaaaaaaaaa. 

Tis aggregate class (of the two entities and a relationship) then needs to 
be related to aaaa, as shown in Figure 9.8C. 
Since we cannot show a relationship of a relationship to represent 

this situation, we need to create a weak entity  aaaaaa and relate it 
to aaaaaaaaaaaaaaaA aaaaaaaaaa, and aaaa as shown in
 Figure 9.8D . T e relationship aaa connects aaaaaaaaaaaaaaaA 
aaaaaaaaaa, and aaaaaa. Tis review may result in a aaaa (as 
shown in Figure 9.8D). 
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FIGURE 9.8B 
A Relationship of a Relationship. 

In Figure 9.8D, we give priority to the weak aaaaaa entity because 
without a review, there is no book; the manuscript and the publisher 
must both contribute to the review. If we tried to connect the book to 
the manuscript without the publisher, we would not depict the real 
situation. 

9.8 N-ARY RELATIONSHIPS THAT MAY BE 
RESOLVED INTO BINARY RELATIONSHIPS 

Just because three entities are related does not necessarily imply a ternary 
relationship. In this section, we show how some ternary relationships can 
and cannot be resolved into binary relationships. 
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FIGURE 9.8C 
A Relationship of a Relationship with a Higher-Level Aggregate Class Composed of 
aaaaaaaaaaaaaaaAa aaaaaaaaaa and aaaaaaaaaa. 

Just as the binary M:N relationship may be decomposed into two 1:M 
relationships, so may many n-ary relationships be decomposed. First, note 
the decomposition of the M:N into two 1:M relationships in Figure 9.9. 
Te idea is to make the relationship an entity and hence form two simpler 
binary relationships. 
Next, let us look again at Figure 9.7. If we decompose Figure 9.7 into 

three binary relationships, we have Figure 9.10. In Figure 9.10, the new 
entity aaaaaaaaaa is weak and depends on the three entities 
aaaaaaaaAaaaaaaa and aaaaaaaaaa for its existence. Te sense 
of aaaaaaaaaaa would be a roll of attendees for a aaaaaaaaaa 
ceremony event. 
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FIGURE 9.8D 
A Relationship of a Relationship Resolved into a Ternary Relationship. 
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FIGURE 9.9 
ER Diagram of an M:N Relationship Replaced with Two 1:M Relationships. 
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FIGURE 9.10 
ER Diagram (with Only Primary Keys) Showing a Tree-Way Relationship “Decomposed” 
into Tree Binary Relationships. 

Checkpoint 9.2 

1. Can all ternary relationships be expressed in the form of binary 
relationships? Explain. 

2. Come up with some attributes and entities of a relationship you 
think could be a ternary relationship. Can this relationship be 
expressed in the form of a binary relationship? 
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9.9 MAPPING N-ARY RELATIONSHIPS 
TO A RELATIONAL DATABASE 

In this section, we develop mapping rules to map n-ary relationships to a 
relational database. 

Mapping Rule 14—Mapping n-ary relationships. For each n-ary rela-
tionship, create a new relation. In the new relation, include the 
keys of the connected entities and any attributes of the relation-
ship. Make the keys of the connected entities the concatenated pri-
mary key of the new relation. 

For example, refer to Figure 9.2; you have a ternary relationship called 
aaaaaa relating aaaaaaaaA aaaaaaaa, and aaaaaaaa. Tere is an 
intersection attribute, price. Te mapped relations would be: 

aaaaaaaaaaAAaaaaaaaaaaAaaaaaaaaaaaAaaaaaaaaaaAa 
aaaaaaaaaaaaaaaaaAaAaAaAaaA 
aaaaaaaaaaaaaaaaaaaAaAAaAaAaaA 
aaaaaaaaaAaaaaaaaaaaAaAaAaAaaA 

And, some sample data would as shown in Tables 9.4–9.7. 

TABLE 9.4 

Sample Data for aaa in Figure 9.2. 
AaaaaaAA AaaaaaaaaaAA AaaaaaaaaaaAA AaaaaaaaaaaAA 
$87.10 TAG1 F1 PENS 
$83.98 TAG2 G25 MOB 
$95.25 TAG3 G20 DEL 
$99.10 TAG4 F4 GULF 

TABLE 9.5 

Sample Data for aaaaaaa 
in Figure 9.2. 

AaaaaaaaaaAA AaAaAAaA 

TAG1 

TAG2 

TAG3 

. . . 
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TABLE 9.6 

Sample Data for aaaaaaaa 
in Figure 9.2. 

AaaaaaaaaaaAA AaAaAAaA 

F1 

G25 

G20 

. . . 

TABLE 9.7 

Sample Data for aaaaaaaa 
in Figure 9.2. 

AaaaaaaaaaaAA AaAaAAaA 

PENS 

MOB 

DEL 

. . . 

Checkpoint 9.3 

1. Could Figure  9.5  be  described  in  the  form  of  binary  relation-
ships? Discuss. 

2. What mapping rules would you follow to map Figure 9.5? 
3. Map Figure 9.5 to a relational database and show some sample 

data. 

9.10 REVIEW OF THE METHODOLOGY 

Our ER design methodology has now fnally evolved to the following 
presentation: 

9.10.1 ER Design Methodology 

Step 1. Select one primary entity from the database requirements 
description and show the attributes to be recorded for that 
entity. Label keys if appropriate and show some sample data. 

Step 2. Use structured English for entities, attributes, and keys to 
describe the elicited database. 
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Step 3. Examine attributes in the existing entities (possibly with 
user assistance) to find out if information about one of the enti-
ties is to be recorded. 

(We change primary to existing because we redo step 3 as we add new  
entities.) 

Step 3a. If information about an attribute is needed, then make the 
attribute an entity, and then 

Step 3b. Define the relationship back to the original entity. 
Step 4. If another entity is appropriate, draw the second entity  

with its attributes. Repeat steps 2 and 3 to see if this entity 
should be further split into more entities. 

Step 5. Connect entities with relationships (one or more) if rela-
tionships exist. 

Step 6. State the exact nature of the relationships in structured English 
from all sides, for example, if a relationship is A:B::1:M, then there 
is a relationship from A(1) to B(M) and from B(M) back to A(1). 

For ternary and higher-order ( n-ary) relationships, state the rela-
tionship in structured English being careful to mention all enti-
ties for the n-ary relationship. State the structural constraints as 
they exist. 

Step 6a. Examine the list of attributes and determine whether any of 
them need to be identified by two (or more) entities. If so, place the 
attribute on an appropriate relationship joining the two entities. 

Step 6b. Examine the diagram for loops indicating redundant rela-
tionships. If a relationship is truly redundant, excise the redun-
dant relationship. 

Step 7. Show some sample data. 
Step 8. Present the “as designed” database to the user complete 

with the English for entities, attributes, keys, and relationships. 
Refine the diagram as necessary. 

9.11 CHAPTER SUMMARY 

Binary relationships are the most commonly occurring relationships. 
Some ER diagram notations do not have expressions for ternary or other 
higher-order relationships; that is, everything is expressed in terms of a 
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binary relationship. In this chapter, we showed how the need for ternary 
relationships comes about from unique situations. For example, intersec-
tion attributes arise needing all three entities taken together for their iden-
tifcation. Ternary relationships can also be developed through reverse 
engineering, and this is discussed in Chapter 11. Also, in this chapter we 
discussed the structural constraints of ternary relationships and their 
grammar in detail and showed how some ternary or n -ary relationships 
may be resolved into binary relationships. T e fnal section of this chapter 
discussed mapping rules for  n- ary relationships. 

CHAPTER 9 EXERCISES 

Exercise 9.1 

In Chapter 8, we described a database with two entities, aaaaaa and 
aaaaaaaaaa. “Book” was lef as an attribute of aaaaaa. Extend the 
database to include book as an entity. Attributes of book might include 
book title, author, price, edition, and publisher. Explore the relationships 
that might exist here: use “in” or “by,” “write,” “teach,” and so on. Draw 
an ER diagram with at least two relationships, one of them ternary. What 
would be some attributes of the relationships? 

Exercise 9.2 

Construct an ER diagram for a broker, a security, and a buyer. Include 
in the diagram the price of the security, the commission paid, the broker 
name and address, the buyer name and address, and the security exchange, 
symbol, and price. Include in the diagram the number of shares of the 
security held by a buyer (you may choose to include this by broker or not). 

Exercise 9.3 

Using three entities—aaaaaaaaaaaA aaaaa, and aaaa—draw an 
ER diagram to depict the following: Each aaaaa in a aaaa has one 
aaaaaaaaaa, but each aaaaaaaaaa in a aaaa may have many 
aaaaaes, and each aaaaaaaaaa of a aaaaa occupy many aaaas. 
Include the cardinalities in the diagram. 
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Exercise 9.4 

Come up with an ER diagram with a ternary relationship. Draw the ER 
diagram and write out it’s cardinalities. Can this ER diagram also be 
drawn out as binary relationships? Why or why not? 
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10 
The Enhanced Entity-
Relationship (EER) Model 

10.1 INTRODUCTION 

In the frst several chapters of this book, we presented the entity-relation-
ship (ER) diagram as a conceptual database tool. Te approach we took 
in developing an ER diagram was to model reality for a user. Although 
we worked on the basics of the ER diagram, there are situations for which 
the basic model fails to completely describe the reality of the data to be 
stored. With the increase in the types of database applications, the basic 
concepts of ER modeling (as originally developed by Chen) were not suf-
fcient to represent the requirements of more complex applications like 
generalizations and specializations (class hierarchies). An ER model sup-
porting these additional semantic concepts is called the  enhanced entity-
relationship (EER) model (Elmasri and Navathe, 2016). In this chapter, we 
discuss generalizations and specializations in the EER model and develop 
a methodology and grammar for this extension. We also discuss shared 
subclasses and categories or union types. We present a methodology to 
map the EER diagram to a relational database. 

10.2 WHAT IS A GENERALIZATION OR 
SPECIALIZATION?

 Te EER model includes all the concepts of the original ER model and 
additional concepts of generalizations/specializations (class hierarchies). 
Generalizations and specializations are associated with the idea of super-
classes, subclasses, and attribute inheritance. As an example of a class 
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hierarchy, suppose we have this aaaaaaaa entity within a database for 
a store selling sports equipment: 

aaaaaaaaaaaaaaaaaaaaaaaaAaAAaaaaAaAAaaaaaaaAaA 

Now, suppose the database evolves to a situation for which we want to 
keep information pertinent to specifc sports for some customers: 

aaaaaAaaaaaaaaaaaaaaaaAAaaaaaaaaAaAAaaaaaaaaaaaaaaaaaaa 
aaaaaaaaaAaaaaaaaaaaaaaaaaAAaaaaaaaaAaAAaaaaaaaaaaaaaaaaaaA

 T e aaaa and aaaaaaaa entities are subclasses (specializations) within 
the aaaaaaaa (a generalization). Tis example illustrates a hierarchy 
in which aaaaaaaa is at the top of the class hierarchy and the specif c 
sports are  subclasses. 
In an object-oriented setting, we might designate the entities like this: 

aaaaaaaaaAaaaaaaaaaaaaaaaAaAAaaaaAaAAaaaaaaaAa 
aaaaaaaaaaaaaaA aAA aaaaaaaaaA aaaaaaaaaaaaaaaaaaA 
aaaaaaaaaaaaaaaaaaaaaaaaaaaAaaaaaaaaaaaaaaaaaAa

 Te inference in object-oriented programming is aaaa, which is a sub-
class of aaaaaaaa. Although not specif cally stated, aaaaaaaa. 
aaaa inherits all the attributes of aaaaaaaa plus has attributes perti-
nent to aaaa. Te example is one of specialization—the thinking process 
started with a class, aaaaaaaa, and then specialized to specif c sports. 
 Te idea of classes in a database infers the ability to describe subclasses 

and superclasses with inheritance features. 
As an example of a generalization, suppose we have a aaaaaaa entity 

containing information about students. But suppose we wanted to store 
information about all the people at an institution—not only students, but 
also staf and faculty. We might think of a superclass called aaaaaa 
containing a subclass for aaaaaaa, another subclass for aaaaa, and yet 
another subclass for aaaaaaa. Clearly, information about each of these 
subclasses of aaaaaa contains information pertinent to that subclass. 
Yet, the aaaaaa superclass entity would contain information common 
to all of these subclasses. aaaaaa may contain a  aaaaAaAAaaaaaaa, and 
aaaaaAaaaaaaA. When the aaaaa subclass was defned, it would inherit 
those attributes of the superclass and def ne more attributes pertinent to 
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aaaaa. Te superclass in a database is called a generalization, and the sub-
classes (aaaaaaaaAaaaaa, and aaaaaaa) are called specializations. 
Te concept of classes includes the use of simple attributes, as we have 

seen. In object-oriented programming, the concept of a class also includes 
actions performed by members of the class. As with data typing, databases 
tend to focus more on attributes than procedural action. 

10.3 VARIANTS 

One way programmers in the past solved the problem of specializations 
was to create variants. Variants are record pieces varying according to 
other parts of the record. To illustrate variants and their use in ER dia-
grams, consider this problem: 
Suppose we have an entity with values varying according to “the situ-

ation.” For example, suppose we are modeling student-athletes, and each 
athlete plays some sport. We would, of course, record information about 
the student or athlete—a name, a unique identifer like a student number, 
and perhaps some other information. But then, we would like to record 
some information about the sport the student-athlete may play. Let us sup-
pose we have an aaaaaaa table (Table 10.1) with this type of data. 
Te aaaa attribute has diferent values for diferent sports. Tese diferent 

values are called variants. While the introduction of variants in records 
seems to solve a problem of representing data, it causes database problems 
with storage and retrieval. In a database, one expects all the information 
in a column of a table to be consistent. Student numbers might contain 
nine digits; hence, all values in the aaaaaaaaaa column would contain a 
nine-digit number. With variants, this is not the case. Te aaaaaaa table 
contains inconsistent columnar information in the aaaa column. Tis vari-
ant problem in a database has been solved in various ways over the years. 

TABLE 10.1 

aaaaaaa Table. 
aaaaaaa aaaaaaaAaaaaaaaaaaAA a aa aAaaaaaAA AaaaaAAAaaaaaaaAA aa AaaaaaAA a aaaa 

Baker 123456789 . . . tennis 220, state rank 14 
Adams 123456788 . . . football tackle, neck brace 
Jones 123455676 . . . golf handicap 3 
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A solution to the problem of variants in records and varying attributes 
in entities in the ER diagrams is to excise the variant and reference it back 
to the primary key of the “parent” information piece. We attack the prob-
lem in this way: 
In ER diagrams, we recognize we are storing information about two dif-

ferent, but related, things: a generalization called  aaaaaaas, who have 
a aaaaAaA Aaa, and so on, and specializations, which are  aaaaaa (ten-
nis, football, golf, etc.), each with its own diferent attributes. Since we 
are storing information about two things, why not create an entity called 
aaaaaa and then relate the aaaaaaa to the aaaaaa entity? One 
aaaaaa entity would not work because the aaaaaa entity would be 
too general; we would want to store diferent information about dif erent, 
specifc sports. Furthermore, we want to store information about a sport 
as it pertains to each individual student-athlete. 
Why then would we not create a series of weak entities—one for each 

sport—depending on the aaaaaaa? Te answer is we could do this, but 
there is a better way to look at this problem, which, as it turns out, will  
result in the same database as using a weak entity/relationship but gives 
us an alternative way to present the ER information with more expressive 
diagrams to include the concept of inheritance. 

10.4 EXAMPLES OF GENERALIZATIONS 
OR SPECIALIZATIONS 

Generalizations and specializations are categorizations of entities for 
which the specialization entity may result from generalizations contain-
ing variants. Tese variants are most easily handled by removing the vari-
ant from the generalization, treating it as a subclass entity, and leaving 
the original, “fxed part” of the entity as a superclass or parent type. If we 
referred to the superclass as a parent class, we would call the variant parts 
the subclasses, the child classes. 
Pursuing the parent-child superclass/subclass idea a bit further, we can 

imagine the child class inheriting the characteristics of the parent class. 
Inheritance in this context means the child class will have defned in it 
whatever attributes are defned in the parent class. In a relational database, 
the tying of the child to the parent (hence placing parent and child infor-
mation together) is done using table combination operators called  joins. 
In our aaaaaa example, we would consider the aaaaaaa as a parent 
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class and aaaaaa as a child class so when we defne information about a 
sport, it is done in the context of maintaining the possibility of inheriting 
information from the parent, aaaaaaa, via a join operation. 
If we were designing the database for student-athletes and recognized that 

we would want to record a aaaa, a personal identif er (aaaa), aaaaaaa , and 
so on, we could be starting with the generalization (or parent or superclass). 
Ten, we would decide to record a player in a sport and some information 
about the sport itself. Te player-sport is said to be a specialization of the 
aaaaaaa class. Tis design approach may be characterized as top down. 
If we had been designing the database and started with sports, we might 

have had a aaaaaa entity, a aaaaaaaa entity, and so on for each ath-
lete, only to recognize these entities may be generalized into an aaaaaaa 
entity (a superclass) with individual sports as subclass entities. T is design 
approach might be characterized as bottom up. A generalization relation-
ship specifes several types of entities with certain common attributes can 
be generalized into a higher-level entity class, a generic or superclass entity. 
Either way (bottom up or top down), we end up with one entity being a 

superclass (a parent) and the other being a subclass (a child) of the parent. 
Whether one needs to specialize or generalize in design depends on where 
one recognizes the problem. 
To illustrate how we might handle this generalization-specialization, 

parent-child class situation, suppose we have defned our entity, aaaaaaa, 
like this: 

 Entity: aaaaaaa
 Attributes: aaaaaAaaaaaAaaaaaaaaAaaaaaaaAaaaaaaaAaaaaaa. 

 Te ER diagram for this entity is simple and straightforward. T en, in 
the course of database design, we decide to add information about sports 
the athletes play. We might attempt to draw a diagram like  Figure 10.1 
with a variant  sports f ag. 
What is wrong with Figure 10.1? Te problem is we have attributes with 

attributes with attributes. sports f ag is not a composite attribute—it does 
not have component parts. So, instead of creating attributes with attri-
butes, we will create entities for each specifc sport and then relate these 
entities back to the aaaaaaa. 
Now, refer to Figure 10.2. Here, we created weak entities for each 

sport rather than use attributes of attributes. We must make the sports 
weak entities because they have no primary key per se—they depend on 
aaaaaaa. Tis diagram still does not tell the whole story because sports 
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FIGURE 10.1 
T e aaaaaaa with an Attempt to Add a Variant Attribute. 

are not just weak entities, but rather they are in a sense “choices.” If the 
sports were simply weak entities, you would expect all superclass entities 
to be related to each subclass. Tis is not really the case. Plus, we want to 
honor the concept of inheritance. 
 Te process of specialization is intended as a process by which the sub-

class inherits all the properties of the superclass. In EER terminology, the 
aaaaaaa entity is called a superclass, and the SPORTS entities are called 
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FIGURE 10.2 
T e aaaaaaa Shown as a Strong-Weak Relationship Variant Attribute. 

subclasses. Te attributes like  aaaaaaaa may be termed  specif c attributes 
as they are specifc to the particular subclass. 
 Te sports entities,  specializations, are depicted in the EER scheme as 

illustrated in Figure 10.3. In Figure 10.3, we made three sports entities 
unto themselves—information pieces we will store information about. 
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FIGURE 10.3 
aaaaaaa with Superclass/Subclass Overlap Relationship. 

First, in the aaaaaaa entity, we include an attribute called  aaaaa. 
aaaaa is called a def ning predicate as it defnes our specialization(s). To 
this point, we have assumed athletes play one sport, and the one sport has 
variant information in it. If an athlete were to play multiple sports, then 
the defning predicate must be multivalued. Referring to Figure 10.3, the 
defning predicate may be written on the line to join the aaaaaaa entity 
to the circle with an o in it. Te circle with an o describes an “overlapping” 
constraint. Overlapping means the subclass entities joined to the super-
class may overlap; that is, a superclass entity may contain more than one 
subclass or specialization for a given aaaaaaa. Te overlap (o) in Figure 
10.3 means an athlete may participate in more than one sport. 
If there were a  d in the circle (in place of the  o) in Figure 10.3, then the enti-

ties would not overlap—they would be  disjoint. A d would indicate athletes 
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FIGURE 10.4 
An Ofce Database with Specialization Entities, Full Participation, and Disjoint Relationship. 

would participate in only one sport; that is, the athletes would play only golf, 
only tennis, or only football (but not any of the two together). If this were 
the case, then the small o would be replaced by a  d, and  aaaaa, the def ning 
predicate, would be single valued. As a fnal note on this diagram, the par-
ticipation of the superclass in the subclasses is optional. Tere is a single line 
joining the o/d designation meaning an athlete  may participate in a sport— 
some athletes (or potential athletes) do not participate in a sport or sports. 
An example of a disjoint constraint is shown in Figure 10.4. According 

to Figure 10.4, all the furniture in the database is a chair, a desk, or a table. 
In this case, there is no sense of overlapping subclasses. Tere is a full 
participation designation from the aaaaaaaaa entity to the o/d circle. 
Each piece of furniture must participate in a subclass. Contrast this to the 
partial participation in the aaaaaaa example. Te disjoint constraint 
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specifes if the subclasses of a generalization are disjoint, then an entity 
may be a member of only one of the subclasses or specializations. Further, 
the defning predicate for disjoint subclasses will be single valued. 
In Figure 10.4, the  name of the specialization is the  name of the entity 

itself. If this is not the case, then the defning predicate may be repeated in 
the diagram for clarity. 
Figure 10.3 shows a subclass symbol (a) between the predicate-def ned 

entities and the disjoint/overlapping (o/d) constraint circle. “Tennis,” 
“Golf,” and “Football” belong to the def ning predicate “Sport.” T e enti-
ties aaaaaa,Aaaaa, and aaaaaaaa are subclasses of aaaaaaa. T e 
subclass symbol on each line connecting a subclass to the circle indicates 
the direction of the superclass/subclass or parent-child, inheritance rela-
tionship. In Figure 10.3, the subclass aaaaaa,Aaaaa, or aaaaaaaa 
(the specializations) would inherit from the parent, aaaaaaa. 

Checkpoint 10.1 

1. What is a specialization? Give an example of a specialization. 
2. What is a generalization? Give an example of a generalization. 
3. What is a disjoint constraint? What symbol shows the disjoint 

constraint in EER diagrams? 
4. What is an overlapping constraint? What symbol shows the over-

lapping constraint in EER diagrams? 
5. What does the subclass symbol signify? 
6. Why would you create a generalization/specialization relation-

ship rather than creating a “weak entity”? 
7. How does “inheritance” play into the superclass/subclass rela-
tionship? Discuss. 

8. What is the diference between a generalization entity and regu-
lar entity as described in the previous chapters? 

10.5 METHODOLOGY AND GRAMMAR 
FOR GENERALIZATION/ 
SPECIALIZATION RELATIONSHIPS 

We need to revisit step 6 in the ER design methodology to include gener-
alization/specialization relationships. Te previous version of step 6 was: 
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Step 6. State the exact nature of the relationships in structured 
English from all sides; for example, if a relationship is A:B::1:M, 
then there is a relationship from A to B, 1 to Many, and from B 
back to A, Many to 1. 

For ternary and higher-order (n-ary) relationships, state the rela-
tionship in structured English, being careful to mention all enti-
ties for the n-ary relationship. State the structural constraints as 
they exist. 

We add the following sentence to step 6: 

For specialization/generalization relationships, state the relation-
ship in structured English, being careful to mention all entities 
(subclasses or specializations). State the structural constraints 
as they exist.

 Te grammar we propose for specialization/generalization relationships 
is similar to what we used in weak relationships. We add to the grammar 
to include the participation and the overlapping/disjoint (o/d) constraints: 
 Te grammatical description for weak entities was: 

For each  weak entity, we do not assume any attribute will be unique 
enough to identify individual entities. Since the  weak entity does not 
have a candidate key, each  weak entity will be identifed by key(s) 
belonging to the  strong entity. 

In the case of the subclasses of aaaaaaa, a frst attempt to describe the 
subclass identifed by a superclass becomes: 

For each sport, we do not assume any sport attribute will be unique 
enough to identify individual sport entities. Since sport does not 
have a candidate key, each sport will be identifed by inheriting 
key(s) belonging to aaaaaaa. 

So, a more complete EER diagram grammatical pattern would say: 

For each  specialization, we do not assume any attribute will be unique 
enough to identify individual entities. Since the  specialization does 
not have a candidate key, each  specialization will be identif ed by 
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key(s) inherited from the  generalization. Further, specializations 
overlap [or are disjoint]. [Explain the overlapping/disjoint situation.] 
Te individual specialization is identifed by a def ning predicate, 
attribute name, which will be contained in generalization. If the spe-
cializations overlap, the defning predicate will be multivalued. 

For  Figure 10.3, the pattern becomes: 

For each sport, we do not assume any attribute will be unique enough to 
identify individual entities. Since the sport does not have a candidate 
key, each sport will be identifed by key(s) inherited from aaaaaaa. 
Further, the sports overlap. Athletes may play more than one sport. 
Te individual sport is identifed by a defning predicate attribute, 
aaaaa, which will be contained in aaaaaaa. Since a person may play 
more than one sport, the defning predicate is a multivalued attribute. 
Te sports we will record are aaaa,Aaaaaaa, and aaaaaaaa. 

10.6 MAPPING RULES FOR GENERALIZATIONS 
AND SPECIALIZATIONS 

In this section, we present mapping rules to map generalizations and spe-
cializations to relational databases. Generalizations and specializations 
can be mapped in several diferent ways, and rules to map generaliza-
tions and specializations to a relational database depend on several factors 
(Elmasri and Navathe, 2016): 

(a) Te total/partial constraints of the generalization/specialization 
relationships 

(b) Te overlapping/disjoint constraints of the generalization/special-
ization relationships 

(c) Te number of attributes on the specializations 
(d) Whether the specializations are predicate def ned 
(e) How many specializations exist 

Table 10.2 provides a summary of the mapping rules for mapping gener-
alizations and specializations and the situations in which they work best. 
Mapping rules 15 and 16 create multiple relations, and mapping rules 17 
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TABLE 10.2 

Where Each Mapping Rule Works Best. 

  Mapping Rule    Relations Created    Works Best with 

Mapping rule 15 Multiple • Total or partial participation 
• Disjoint or overlapping relationships 

 Mapping rule 16  Multiple • Disjoint relationships 
• Total participation 

Mapping rule 17 Single • Only disjoint relationships 
• Can be total or partial participation 
• Not many attributes on specialization 
• Single type attribute 

Mapping rule 18 Single • Better for overlapping relationships but can be 
used for disjoint relationships 

• Many type felds—one for each subclass 

and 18 create single relations. In each case, there are relational database 
trade-ofs with regard to the result. 
In the next few sections, we explain each of the mapping rules and the 

resulting trade-of s. 

10.6.1 Mapping Rule 15 
As per  Table 10.2, mapping rule 15 works well for either disjoint or over-
lapping scenarios. Tis rule would also work well if the specializations  
have many attributes. 

Mapping Rule 15—Mapping generalizations and specializations with 
disjoint or overlapping subclasses and with total or partial par-
ticipation constraints (with few or many attributes on the special-
izations). For each generalization/specialization entity situation, 
create one relation (table) for the generalization entity (if you have 
not done so already per the prior steps) and create one relation 
(table) for each specialization. Add the attributes for each entity 
to their respective relations. Include the primary key of the gener-
alization entity in the specialization relations. Te primary key of 
the specialization relations will be the same as the primary key of 
the generalization relation. 

So, using mapping rule 15, we create a separate table for the generaliza-
tion (superclass) as well as for each of the specializations (subclasses). Refer to 



 

   
 

   
     
   
  

    
 

 

 

    

    
 

    

A

A
A

A

Figure 10.3. Te generalization/specialization relationship between aaaa 
aaaa and aaaaaa, aaaa, and aaaaaaaa would be mapped as follows: 

aaaaaaaaAaaaaaAaaaaaaaAaaaaaAaaaaaaaAaaaaaaAaAAaaaaaaaAa 
aaaaaaaaaaaAaAaaaaaaaaaaaaaa 
aaaaaaaaaAaAAaaaaaaaaAaA 
aaaaaaaaaAaaaaAaAaaaaaaaaAa

 Since aaaaaaa in Figure 10.3 contains a multivalued attribute, aaaa 
aaaa now becomes 

aaaaaaaaaAaaaaAaAaaaaaaaAaaaaaAaaaaaaaAaaaaaaAaA

 and 

Aaaaaaaaaaaaaa aAAaaaaaAaaaaaa

 Te key of the generalization entity aaaa is added to the specialization 
entities aaaaaa, aaaa, and aaaaaaaa as the primary key. And, since 
ATHLETE in Figure 10.3 contains a multivalued attribute, aaaaaaaa 
aaaaaAmaps the multivalued attribute. 
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TABLE 10.3 

Sample Data for aaaaaaa in Figure 10.3. 
AaaaaAa AaaaaaaAAa aa AaaaaAA AaaaaaaAA AaaaaaaAA a aaaaa aaaaaa aaaaaa AaaaaaAA 

239–92–0983 140 Kumar M 5.95 golf 
398–08–0928 200 Kelvin M 6.02 football 
322–00–1234 135 Sarah F 5.6 tennis 
873–97–9877 165 Arjun M 6.01 golf 
876–09–9873 145 Deesha F 5.5 tennis, golf 

TABLE 10.4 

Sample Data for aaaaaaaa in Figure 10.3. 
a aaaaaaa aaaa aaaaaa aaaaaaaaaa a aaaa aaaaaa aaaaaa 

239-92-0983 140 Kumar M 5.95 
398-08-0928 200 Kelvin M 6.02 
322-00-1234 135 Sarah F 5.6 
873-97-9877 165 Arjun M 6.01 
876-09-9873 145 Deesha F 5.5 
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Showing some sample data, the table would look like Table 10.3. 
which would resolve to Tables 10.4–10.8. 

TABLE 10.5 

Sample Data for aaaaaaaaaaaaaA 
in Figure 10.3. 

AaaaaAa aAaaaaaAAa 

239-92-0983 golf 
398-08-0928 football 
322-00-1234 tennis 
873-97-9877 golf 
876-09-9873 tennis 
876-09-9873 golf 

TABLE 10.6 

Sample Data for aaaaaa in 
Figure 10.3. 

AaaaaAa AaaaaaaaaaaaaaAAaaaa aaaa 

322-00-1234 23 
876-09-9873 47 

TABLE 10.7 

Sample Data for aaaa in 
Figure 10.3. 

AaaaaAa aaaaaaaaAaaaaaaaaAA 

239-92-0983 3 
873-97-9877 1 

TABLE 10.8 

Sample Data for aaaaaaaa in
 Figure 10.3. 

AaaaaAa aaa aaaaAaaaaaaaaA 

398-08-0928 tackle 
239-92-0983 quarterback 
398-08-0928 full back 
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   Te only difculty with this mapping is that it generates tables some-
what atypical in a relational database. In an ordinary relational database, 
one expects a table with a joining attribute. Here, the  joining attribute is 
a table  name rather than an attribute value. If the o/d constraint were d 
(disjoint), then the  sport defning predicate would be single valued, the 
original aaaaaaa table would have only one value for  sport, and the 
decomposition of aaaaaaa into aaaaaaaa and aaaaaaaaaaaaaA 
would be unnecessary. 

10.6.2 Mapping Rule 16 

Mapping rule 16 works best with disjoint subclasses and when the rela-
tionship is total between the generalization and specializations. 

Mapping Rule 16—Mapping generalizations and specializations with 
disjoint relationship constraints and total participation between 
generalizations and specializations. Create a separate (subclass) 
relation for each specialization entity. Include the attributes for 
each specialization entity in their respective subclass relations. Also 
include the primary key and other attributes of the generalization 
entity in all the subclass relations. Te primary key of the subclass 
relations will be the primary key of the generalization entity. 

To illustrate this rule, we map  Figure 10.4 as follows: 

aaaaaaaaaaaaaaaaaaa aaAAaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaa 
aaaaa 

aaaaaaaaaaaaaaaaaa aaAAaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaa 
aaaaaaaa 

aaaaaaaaaaaaaaaaaaa aaAAaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaa 
aaaaaa aaaaaaaaaaa 

Using this mapping rule 16, we create separate relations for each sub-
class, but we do not have a separate relation for the superclass entity. T is 
rule works best with the disjoint relationship scenario in which the num-
ber of subclasses is very small and fxed. If this rule were used in the  
overlap relationship scenario, it would create redundancy in the database 
since all the attributes from the generalization entity would be rerecorded 
several times over. In the tables presented, we included the attribute 
aaaaaaaaaaaaaa, which is redundant to the  name of the table itself. T is 
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was done to mirror the diagram and should be excised to produce the 
following: 

aaaaaaaaaaaaaaaaaaa aaAAaaaaaa aaaaaaaaaaaaaaaa aaaaa 
aaaaaaaaaaaaaaaaaa aaAAaaaaaa aaaaaaaaaaaaaaaa aaaaaaaa 
aaaaaaaaaaaaaaaaaaa aaAAaaaaaa aaaaaaaaaaaaaaaa aaaaaa aaaaaaaaaaa 

Also, this is a good rule to use if the subclasses have too many attributes. 

10.6.3 Mapping Rule 17 

Although mapping rule 17 will work for both total and partial participa-
tion, it will work only for disjoint relationships and, 

(a) If the specializations do not have many attributes 
(b) If the specializations are predicate def ned 

Using this mapping rule, if the specializations have many attributes, then 
this mapping will create many null values. And, if mapping rule 17 were used 
with overlapping relationships, redundancy would be created in the database. 

Mapping Rule 17—Mapping generalizations and specializations with 
disjoint relationships, total or partial participation constraints, 
and predicate defned with single type attributes. Create a single 
relation to include the attributes of the generalization (superclass) 
as well as the attributes of the specializations (subclasses) in one 
relation. Te primary key of the relation will be the primary key 
of the generalization (superclass). 

In  Figure 10.4, if we assume aaaaaaaaaaaaaa is the def ning predicate, 
for example, a condition of membership is specifed on aaaaaaaaaaA aaaaAA 
as follows: aaaaaaaaaaaaaa aAaaaaaaaa then this is a defning predicate of 
this specialization. In the EER diagram, the predicate-defned subclass is 
shown by writing the predicate condition next to the arc connecting the 
subclass to the relationship constraint circle. Also, the def ning predicate 
name is placed on the arc from the superclass to the relationship constraint 
circle. So, we would map  Figure 10.4 as per mapping rule 17 as follows: 

aaaaaaaaaaAaaaaaaaaaaaaaAAaaAAaaaaaAaAAaaaaaaaaaaaaaaaAaAAaaaaaaaaaa 
aaaaAaAAaaaaAaAAaaaaaaaAaAAaaaaaAaAAaaaaaaaaaaAa 
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 Tis mapping rule will generate nulls for the nonparticipating attributes. 
For example, chairs do not have drawers; hence, if the furniture type is “chair,” 
there will be a null for the  drawers attribute. Nulls are generally undesir-
able. Tere is a trade-of in the relational database here because on one hand 
nulls may be tolerated to reduce the number of tables, but the purist approach 
would dictate each furniture type to have its own table per mapping rule 15 
or 16. Also, while this table confguration looks plausible, it is not in the third 
normal form (3NF) and hence represents another database trade-of . 

10.6.4 Mapping Rule 18 

Mapping rule 18 will work for overlapping relationships but can also be 
used for disjoint relationships. Tis mapping rule again uses the predicate 
or fag for each specialization and assumes such predicates or f ags are 
unique to the specialization. Tis rule would be used if there were numer-
ous overlaps within each generalization. 

Mapping Rule 18—Mapping overlapping relationships and general-
izations/specializations with more than one f ag. Create a single 
relation to include the attributes of the generalization (superclass) 
and the attributes of the specializations (subclasses) and the sub-
class f ag. Te primary key of the relation is the primary key of the 
superclass. 

With disjoint relationships, mapping rule 18 would create many null  
values when the entity is not a member of a particular specialization (sub-
class). Hence, this rule works best if there are many overlaps. Tis rule is 
also not recommended if the subclasses have many attributes since this 
will also cause many null values when these subclasses are not be used. 
So, mapping  Figure 10.3 as per mapping rule 18 and using f ag predi-

cates, we would have: 

aaaaaaaaaaaaa aaaaaaAaAAaaaaAaAAaaaaaaAaAAaaaaaaAaAAaaaaaAaAAaaAaaaAaaaaaa 
aaaaaaaaAaaAaaAaAAaaaaaaaaAaAAaAAaaAaAAaaaaaaaaAa 

Again, the problem with this arrangement is the resulting table is not in 
3NF. Tere are clearly transitive functional dependencies in the table with 
aaAaaAaAaaaaaaaaaaaaaAAaaaAAaaAaaAaAaaaaaaaa and so forth. A normaliza-
tion of this table would also generate the result as per mapping rule 15. 
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Checkpoint 10.2 

1. How are the mapping rules for generalizations/specializations 
diferent from the mapping rules for weak entities? 

2. Would it be wise to map  Figure 10.3 using mapping rule 17? Why 
or why not? 

3. Which mapping rules are good to use if there are too many attri-
butes on the subclasses? 

4. Which mapping rule or rules will not work well for overlapping 
subclasses? 

5. When would you create an overlapping relationship? 
6. When would you create a disjoint relationship? 
7. Does mapping rule 15 create relations in 3NF? Discuss. 
8. Does mapping rule 16 create relations in 3NF? Discuss. 

10.7 SUBCLASSES OF SUBCLASSES 

So far in this chapter, we have presented scenarios of one generalization 
class—only one superclass. Tis superclass has had one or more sub-
classes. Te subclasses could have one or more attributes. It is possible 
for subclasses to have subclasses and for there to be more than one set of 
subclasses. Here, we give examples of a specialization hierarchy, a special-
ization lattice, and shared subclass parents. 
Subclasses of subclasses are shown in Figure 10.5. In Figure 10.5, the 

subclasses aaaaa and aaaaaaaaaaaa are “part of” or “subclasses” 
of aaaaaaaa. aaaaa and aaaaaaaaaaaa would inherit attri-
butes from aaaaaaaa, which would inherit attributes from aaaaaaa. 
(To simplify the EER diagram, attributes of the subclasses in the foot-
ball tree are omitted.) So, of the athletes, some athletes play football, and 
of those who play football, some play football as a hobby, and some are 
professionals. Every instance of aaaaa will inherit from the subclass 
aaaaaaaa; likewise, every instance of aaaaaaaaaaaa will also 
inherit from aaaaaaaa. In this case, every subclass is inheriting from 
only one other subclass. When a subclass inherits from only one subclass, 
that is, if a subclass has only one subclass as a parent, it is referred to as a 
specialization hierarchy. Figure 10.5 shows a specialization hierarchy with 
aaaaaaaa as an example. 
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FIGURE 10.5 
Specialization Hierarchy. 

Another possible EER diagram could have more than one set of special-
izations. Suppose we have an athlete who plays various sports but is also 
viewed as having professional or hobbyist specializations. Also suppose  
both sets of subclasses are overlapping. If a subclass has more than one 
subclass as its parent, it is referred to as a specialization lattice.  Figure 10.6 
illustrates such a specialization lattice. In Figure 10.6, we have the subclass 
aaaaaaaaaaaaAaaaaaaaaAaaaaaa inheriting information from 
both the aaaaaaaa subclass and the aaaaaaaaaaaa aaaaaaaa. 
A shared subclass is a subclass with more than one subclass for its parents. 

aaaaaaaaaaaaAaaaaaaaaAaaaaaa is a subclass of aaaaaaaa as 
well as aaaaaaaaaaaa and hence inherits from multiple subclasses. Every 
instance of a shared subclass inherits all the attributes of all its superclasses. 
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FIGURE 10.6 
Specialization Lattice, Shared Subclass. 

10.7.1 Mapping Rule 19 

We present mapping rule 19 to map shared subclasses. 

Mapping Rule 19—Mapping shared subclasses. In general, the same 
criteria used to determine which rule would be best for mapping 
generalizations and specializations can be applied to mapping 
shared subclasses. However, the rule generating the best database 
is usually mapping rule 15. 

As an example of applying mapping rule 15, consider the mapping of
 Figure 10.6 : 

aaaaaaaaaaaaa aaaaaaAa aaaaAaAAaaaaaaAaAAaaaaaaAaAAaaaaaaaaaaaaaaaaaaaA 
aAaaaAaA 
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aaaaaaaaaaaa aaaaaaaaaaaaaa 
aaaaaaaaaa aaaaaaaaAaA 
aaaaaaaaaaaaaa aaaaaaaaa 
aaaaaaaaaaaaaaaaaa aaaaaa aAaAaaA 
aaaaaaaaaaAaAAaaaaaaAaaaaaaAaAaAaAaaA 
aaaaaaaaaaaaaaaaaaaaaaaaaaaa aAaaaaa aaaaaAaAaAaaA 

Here, we used mapping rule 15 to map Figure 10.6. In other cases, it could 
be appropriate to use one of the other mapping rules, 16–18. An important 
thing to note is that, since a shared subclass ultimately has only one super-
class, the subclasses maintain the same key attribute. Also in this mapping 
there are multivalued attributes, which necessitates normalization for a 
relational database. To normalize these tables, there would have to be two 
more tables to deal with the multivalued predicates: 

aaaaaaaaaaaaa aaaaaaa aaaaa aaaaaaa aaaaaaa AaaaaaaaaaaaaaaaaaaaA 
aAaaaAaA

 Becomes: 

aaaaaaaaaaaaaa aaaaaaa aaaaa aaaaaaa aaaaaaa 
aaaaaaaAaaaaaaaaaaa aaaaaa 
aaaaaaaAaaaaaaAaaaaAaAAaaaaaaaaaaAaAaaAa 

10.8 CATEGORIES OR UNION TYPES

 Tus far in this chapter, we presented examples with one superclass and 
several subclasses. Suppose the design of the database results in several 
superclasses, and a subclass inherits from the superclasses. Each superclass 
is an entity unto itself. When a subclass has more than one superclass from 
which it may inherit, it is referred to as a category or union type. Tis is 
diferent from the previous section because here we are discussing inherit-
ing from more than one superclass as opposed to more than one subclass. 
Whereas a shared subclass always has only one superclass in its hier-

archy, a category or union type can have more than one superclass. 
A category or union type will inherit information from any one of the 
superclasses; hence, the term union  is  used to describe the combination 
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of information from whichever superclasses are the parents. Symbolically, 
we show the union type with a u in the circle connecting the subclasses 
to its superclasses, as shown in Figure 10.7A. Usually, the superclasses will 
have diferent keys since they are diferent entities, but there may also be 
scenarios for which a category or union type could inherit from two super-
classes with the same type key. For example, if we have a superclass called 
aaaaaaa, another superclass called aaaaaaa, and a subclass (category 
or union type) aaaaaa, as shown in Figure 10.7A, the aaaaaa cat-
egory can be a subset of the union of the superclasses, aaaaaaa and 
aaaaaaa, and inherit the same key, aaa. 
  Figure 10.7A  says: 

A player may be a  student or faculty member. 

A category or union type inherits all the attributes of the class or classes 
to which it belongs. So, if a player belongs to the aaaaaaa class (super-
class), it inherits all the attributes of the  aaaaaaa entity type. If it belongs 

FIGURE 10.7A 
A Category or Union Type with Same Primary Keys (Partial Participation) 
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FIGURE 10.7B 
A Category or Union Type with the Same Primary Keys (Full or Total Participation). 

to the aaaaaaa class (superclass), it inherits all the attributes of the 
aaaaaaa entity type. 
As another example of a union in an ER diagram, consider  Figure 

10.8A. Here, we have a bill payer, but the payer may come from several 
superclasses. aaaaa could inherit data from aaaaaaaaA aaaaaaaa 
aaaaaaaaa, or aaaaaaaaaaaaaaaaaaaaaaa. 

10.8.1 Participation Ratios in Categories or Union Types 

Categories or union types can also have participation constraints. Re-
consider Figure 10.7A. Te category or union type aaaaaa has par-
tial participation (single lines) from the circle with the  u to the subclass 
aaaaaa. Tis partial participation would imply that aaaaaa may or 
may not include student or faculty. Tere would be faculty and students 
who are not players. 
If a category such as aaaaaa has full participation, as shown in Figure 

10.7B, this would imply the category (or union type or subclass) aaaaaa 
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FIGURE 10.7C 
Full Participation between aaaaaaa and aaaaaa. 

FIGURE 10.8A 
A Category or Union Type with Diferent Primary Keys (with Partial Participation). 
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holds at least one entity from the union of its superclasses aaaaaaa and 
aaaaaaa. Figure 10.7B  implies aaaaaa includes at least one aaaaaaa 
or aaaaaaa. Tis diagram represents one specif c school. Further, this 
database is probably used to track players and not meant to track everyone 
in the school. Te diagram simply says we have a database of players, all of 
whom belong to either the aaaaaaa or aaaaaaa entity. 
If there were double lines going from the aaaaaaa to the circle con-

taining the  u, as shown in Figure 10.7C, the player entity would include 
every faculty member, but not every student. 
In Figure 10.8B, there is full participation between PAYOR and 

the superclasses aaaaaaa, aaaaaaaaaaaaaaaaa, and aaaaaa 
aaaaaaaaaaaaaaaaa. All payors are identifed as parented by one 
of the superclasses. aaaaa would contain appropriate information in 
aaaaaaa, aaaaaaaaaaaaaaaaa, and aaaaaaaaaaaaaaaaaa 
aaaaa by inheritance. 

FIGURE 10.8B 
A Category or Union Type with Diferent Primary Keys (with Full or Total Participation). 
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10.8.2 Mapping Categories or Union Types When 
Superclasses Have the Same Primary Keys 

When subclasses are inheriting from superclasses with the same primary 
key, as shown in Figure 10.7B, the mapping becomes simple since this pri-
mary key is included in the subclass relation. We present mapping rule 20 
to map categories or union types when superclasses have the same pri-
mary key. 

Mapping Rule 20—Mapping categories or union types when super-
classes have the same primary keys. Create a new relation for 
the subclass (or union type) and include the primary key of the 
superclass (or superclasses) in the subclass (or union type) as the 
primary key. Include the other attributes of the subclass in this 
relation. Create separate relations for each of the other super-
classes. and map them as you would map regular entities. 

Figure 10.7a  would map to: 

aaaaaaaaaaaa aaaaa aaaaaaaa 
aaaaaaaaaaaa aaaaa aaaaaaaa aaaaa 
aaaaaaaaaaa aaaaa aaaaaa 

10.8.3 Mapping Categories or Union Types When 
Superclasses Have Different Primary Keys 

Since superclasses are generally diferent entity types, superclasses gener-
ally have diferent primary keys. For example, see  Figures 10.8A  and  10.8B . 
If the superclasses have diferent primary keys, we would need to create a 
common key between the superclasses. Tis common key is referred to as 
the  surrogate key. 
We present mapping rule 21 to map categories or union types when the 

superclasses have diferent primary keys. 

Mapping Rule 21—Mapping categories or union types when the super-
classes have diferent primary keys. Create a new relation for the 
subclass (or union type) and create a surrogate key for this rela-
tion. Te surrogate key will be the primary key for this relation. 
Include any other attributes of this subclass into this relation. 
Create separate relations for each of the superclasses and map 
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them as you would map regular entities. Add the surrogate key to 
the superclass relations as a foreign key. 

Figure 10.8A would map to 

aaaaaaa aaaaaaaaaaaaaaaaaAaaaaaaaa aaaaaaaaa 
aaaaaaaaaaaa aaaaa aaaaaaaaa 
aaaaaaaaaaaaaaaaaaaaaaaaaaAaAaaaaa aaaaaaaa aaaaaaaaa 
aaaaaaAaaaaaaaaa aaaaaaaaaaaa aaaaAa 

In this mapping, aaaaaaaa is the surrogate key. 

Checkpoint 10.3 

1. Figure 10.7A says, “A player may be a student or a faculty.” We 
show this as a union. Could we have shown this as a disjoint rela-
tionship? Discuss. 

2. What is the diference between a disjoint relationship and a union? 
3. How would you map a category or union type with the same keys 

on the superclasses? 
4. How would you map a category or union type with diferent keys 

on the superclasses? 
5. When would you create a generalization/specialization rela-

tionship, and when would you create a category or union type? 
Explain with examples. 

6. A shared subclass inherits attributes from ________________? 
7. A category or union type inherits attributes from __________? 
8. What is the diference between a shared subclass and category or 

union type? 

10.9 FINAL ER DESIGN METHODOLOGY

 Our fnal ER design methodology has fnally evolved to the presentation 
discussed next. 



  

   

    

  
    

  
    

 
  

        
 

   
  

      
    

 
   

   
   

    
 

   
   

 
   

    
 

   
    

  
   

   
 

   
     

Te Enhanced Entity-Relationship (EER) Model • 293 

10.9.1 ER Design Methodology 

Step 1. Select one primary entity from the database requirements 
description and show attributes to be recorded for that entity. 
Label keys if appropriate and show some sample data. 

Step 2. Use structured English for entities, attributes, and keys to 
describe the elicited database. 

Step 3. Examine attributes in the existing entities (possibly with 
user assistance) to find out if information about one of the enti-
ties is to be recorded. 

(We change primary to existing because we redo step 3 as we add new  
entities.) 

Step 3a. If information about an attribute is needed, then make the 
attribute an entity, and then 

Step 3b. Define the relationship back to the original entity. 
Step 4. If another entity is appropriate, draw the second entity with 

its attributes. Repeat steps 2 and 3 to see if this entity should be 
further split into more entities. 

Step 5. Connect entities with relationships (one or more) if rela-
tionships exist. 

Step 6. State the exact nature of the relationships in structured English 
from all sides; for example, if a relationship is A:B::1:M, then there 
is a relationship from A(1) to B(M) and from B(M) back to A(1). 

For ternary and higher-order (n-ary) relationships, state the relation-
ship in structured English, being careful to mention all entities for 
the n-ary relationship. State the structural constraints as they exist. 

For specialization/generalization relationships, state the relationship in 
structured English, being careful to mention all entities (subclasses 
or specializations). State the structural constraints as they exist. 

Step 6a. Examine the list of attributes and determine whether any of 
them need to be identified by two (or more) entities. If so, place the 
attribute on an appropriate relationship that joins the two entities. 

Step 6b. Examine the diagram for loops that might indicate redun-
dant relationships. If a relationship is truly redundant, excise 
the redundant relationship. 

Step 7. Show some sample data. 
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Step 8. Present the “as designed” database to the user complete 
with the English for entities, attributes, keys, and relationships. 
Refine the diagram as necessary. 

10.10 CHAPTER SUMMARY 

In this chapter, we have described the concepts of generalizations and  
specializations, overlapping and disjoint relationships, shared subclasses 
and categories or union types. Tis chapter approached EER diagrams 
as discussed by Elmasri and Navathe (2016) and  Connolly, Begg, and 
Strachan (1998). Some authors (e.g., Sanders, 1995) use a close variation of 
this model and call the specialization/generalization relationship an “IsA” 
relationship.
 Tis chapter also concluded the development of the EER design meth-

odology and mapping EER diagrams into a relational database. 

CHAPTER 10 EXERCISES 

Exercise 10.1 

Draw an ER diagram for a library for an entity called library holdings. 
Include as attributes the call number, name of book, author(s), location in 
library. Add a defning predicate of holding type and draw in the disjoint, 
partial specializations of journals and reference books, with journals hav-
ing the attribute renewal date and reference books the attribute checkout 
constraints. Map this to a relational database and show some sample data. 

Exercise 10.2 

Draw an ER diagram for computers at a school. Each computer is identi-
fed by an ID number, make, model, date acquired, and location. Each 
computer is categorized as a student computer or a staf computer. If it is 
a student computer, an attribute is hours available. If it is a staf computer, 
an attribute is responsible party (owner, if you will). Map this to a rela-
tional database and show some sample data. 
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Exercise 10.3 

Present an EER diagram that has a union type, a disjoint relationship, and an 
overlapping relationship. Also include shared subclasses with dif erent keys. 
Include primary keys and a minimal set of attributes and fnally map this to a 
relational database. Write out the structured English to explain your diagram. 

CASE STUDY 

West Florida Mall (continued) 

So far in our case study, we have developed the major entities and relation-
ships and mapped these to a relational database (with some sample data). 
Ten, on reviewing step 7, which says: 

Step 7. Present the “as designed” database to the user complete 
with the English for entities, attributes, keys, and relationships. 
Refine the diagram as necessary. 

Suppose we obtained some additional input from the user: 

A aaaaaa may be an owner, employee, or manager. For each aaaaaa, 
we will record the aaaaAaAaAaaaaaAaaaaaaaaAaaaaaaAaAAaaaaaaa, and  aaaaaA 
aaaaaaA. 

On reviewing these additional specifcations, we came up with one new 
entity, aaaaaa. 
Now, repeating step 2 for aaaaaa, we obtain the information as 

described next. 

The Entity

 Tis database records data about a aaaaaa. 

 For each aaaaaa in the database, we record a person’s name (aaaaa), 
person’s Social Security number (aaaa), person’s phone ( aaaaaa), 
and person’s address (aaaa). 

The Attributes for  PERSON

 For each aaaaaa, there will be one and only one  aaaaa (person’s 
name). Te value for  aaaaa will not be subdivided. 
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 For each aaaaaa, there will be one and only one  aaaa (person’s 
Social Security number). Te value for  aaaa will not be subdivided. 

 For each aaaaaa, there will be one and only one  aaaaaa (person’s 
phone). Te value for  aaaaaa will not be subdivided. 

 For each aaaaaa, there will be one and only one  aaaa (person’s
 address ). Te value for  aaaa will not be subdivided. 

The Keys

 For each aaaaaa, we will assume that the  aaaa will be unique. 
 Tese entities have been added to the diagram in Figure 10.9. 
Using step 6 to determine the structural constraints of relationships, we 

obtain the following: 

FIGURE 10.9 
Final ER Diagram of West Florida Mall. 
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As shown in Figure 10.9, there is a disjoint relationship between aaaaaa 
and aaaaaaaaaaaaa, aaaaa, and aaaaaaaa. 

Tis means a person may be an owner, store manager, or an employee (a 
disjoint generalization/specialization relationship). 
To map this relationship, we would normally have: 

 Because aaaaaa has the felds  of  Social  Security  number  (aaaa), 
name (aaaaa), address (aaaa), and phone number (aaaaaa) and may 
be an  owner,  store  manager,  or  an  employee  (a  disjoint)  generalization/ 
specialization relationship, we removed some of the attributes from the 
original entities. For example, in the aaaaaaaa entity, we no longer 
need to keep the aaaaa feld since this can be obtained from aaaaaa 
as long as we have the ssno of the employee. Also, because aaaa is actu-
ally the same feld as aaaa in aaaaaaaa, aaAaAaaa in aaaaa, and 
aaaaaa in aaaaaaaaaaaaa, we do not need to include aaaa in 
aaaaaaaa, aaaaa, or aaaaaaaaaaaaa again. 
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So, in summary, our relational database would fnally develop to (with-
out the data): 

aaaa 
AaaaaAA AaaaaaaaAA 

aaaaa 
AaaaaAA AaaaaaAA AaaaaAA AaaaaaaaaaAA AaaaaaaAA AAaaaaaaAA 

aaaaa 
AaaaaaaAA A AaaaaaaAAaaaaa 

AaaaaaaaaaaA 
AAaaaaaAA AAAaaaaAAA AAaaaaAA 

AaaaaaaaaA 
AaaaaAA AaaaaAA AaaaaAA AaaAaAaaaAA 

aaaaaa 
AaaaaAA AaaaaaAA AaaaaAA AaaaaaaAA 

AaaaaaAaaaaaaaA 
AaaaaaaAA aAaAaAAaAaAaA

 Tis ends our case study. 
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11 
Relational Mapping and Reverse 
Engineering ER/EER Diagrams 

11.1 INTRODUCTION 

Throughout this book, we have developed rules for mapping entity-
relationship (ER) and enhanced entity-relationship (EER) diagrams 
to a relational database. In this chapter, we present a summary of the 
mapping rules and then discuss reverse engineering—starting with 
the database and working backward to an ER/EER diagram. We of en 
fnd databases exist without an ER/EER diagram to accompany them. 
Te ER/EER diagram is documentation—just as computer programs  
require documentation, so do databases. Terefore, we have included a 
chapter on reverse engineering. As we did previously, for reverse engi-
neering we present a series of steps to develop an ER/EER diagram from 
tables and data. 

11.2 STEPS USED TO MAP ER/EER DIAGRAMS 
TO RELATIONAL DATABASES 

In this section, we present a summary of the steps we have developed 
to map an ER/EER diagram to a relational database. In following these 
steps, the resulting relational tables should be close to the third normal 
form (3NF). Tese rules do not preclude the usual exercise of checking 
the resulting database to be absolutely sure it is normalized. If databases 
are not normalized, redundancy will likely be present. As much as pos-
sible, the steps should be followed in the order presented to promote 
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correct mapping to result in tables as close to 3NF as possible. Here are 
the steps: 

Step 1: Map all the strong entities in the ER diagram. 

We start with mapping rule 1 to map strong entities: 

Mapping Rule 1—Mapping strong entities. Develop a new table (rela-
tion) for each strong entity and make the indicated key of the 
strong entity the primary key of the table. If more than one can-
didate key is indicated on the ER diagram, choose one for the pri-
mary key. 

Next, we have to check the mapping of the attributes in the strong entity. 
Since the mapping rules are diferent for atomic attributes, composite 
attributes, and multivalued attributes, we present each of the mapping 
rules separately. First is the mapping rule for mapping atomic attributes: 

Mapping Rule 2—Mapping atomic attributes. For entities with atomic 
attributes, map the entities to a table and form columns for each 
atomic attribute. 

In a relational database, all columns have to be atomic. If we have non-
atomic attributes on our diagram, we must make them atomic for map-
ping to the relational database. 
For composite attributes, we achieve atomicity by recording only the 

component parts of the attribute. Our next mapping rule concerns com-
posite attributes. 

Mapping Rule 3—Mapping composite attributes. For entities with 
composite attributes, map entities to a table and form columns of 
each elementary (atomic) part of the composite attribute. 

 Te mapping rule for multivalued attributes is: 

Mapping Rule 4—Mapping multivalued attributes. Form a separate 
table for the multivalued attribute. Record a row for each value of 
the multivalued attribute together with the key from the original 
table. Te key of the new table will be the concatenation of the 
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multivalued attribute plus the key of the owner entity. Remove the 
multivalued attribute from the original table. 

At the end of this step, all the strong entities should be mapped. 

Step 2. Map all the weak entities in the ER diagram. 

For weak entities, we use mapping rule 11. 

Mapping Rule 11—Mapping weak entities. Develop a new table (rela-
tion) for each weak entity. As is the case with the strong entity, 
include any atomic attributes from the weak entity in the table. 
If there is a composite attribute, include only the atomic parts of 
the composite attribute and be sure to qualify the atomic parts 
in order not to lose information. To relate the weak entity to its  
owner, include the primary key of the owner entity in the weak 
entity table. Te primary key of the weak entity table will be the 
partial key in the weak entity concatenated to the primary key of 
the owner entity. 

If the weak entity owns other weak entities, then the weak 
entity connected to the strong entity must be mapped f rst. T e 
key of the weak owner entity has to be defned before the “weaker” 
entity (the one furthest from the strong entity) can be mapped. 

 Af er the strong entities are mapped (as per step 1), it is important for 
the weak entities to be mapped next since the key of the weak entity is the 
key of the strong (owner) entity plus the partial key of the weak entity. 
Once all the strong entities and weak entities have been mapped, the 

next step is to map the relationships. 

Step 3. Map the relationships.

 Te relationships can be mapped in any order. It is most convenient to 
begin by mapping binary M:N relationships. At this point, we should have 
tables for all the strong and weak entities. Te next section involves add-
ing attributes to these tables or creating new tables to house relationships. 

Mapping Rule 5—Mapping M:N relationships. For each M:N rela-
tionship, create a new table (relation) with the primary keys of 
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each of the two entities (owner entities) that are being related in 
the M:N relationship. Te primary key of this new table will be 
the concatenated keys of the owner entities. Include any attributes 
that the M:N relationship may have in this new table. 

Next, we will map the binary 1:1 relationships. Mapping 1:M or 1:1 rela-
tionships depends on participation constraints. Most of the rules that fol-
low involve either: 

(a) Adding an attribute (a foreign key) to a table created by a previous 
mapping rule 

(b) Adding a new table in a process similar to mapping M:N relationships 

Mapping Rule 6—Mapping binary 1:1 relationships when one side 
of the relationship has full participation and the other has par-
tial participation. When one of the sides of the relationship has 
full participation and the other has partial participation, then 
store the primary key of the side with the partial participation 
constraint on the side with the full participation constraint; this 
attribute is a foreign key (it is not underlined). Include any attri-
butes on the relationship in the same table to which the key was 
added. 

Mapping Rule 7—Mapping binary 1:1 relationships when both sides 
have partial participation constraints. 

When both sides have partial participation constraints in binary 1:1 
relationships, the relationships can be mapped in one of two ways: 

 Option 1: 

Mapping Rule 7A. Select either one of the tables to store the key of 
the other as a foreign key. 

 Tis choice depends on semantics. Perhaps a safer choice for mapping 
this type of relationship is rule 7B: 

 Option 2: 

Mapping Rule 7B. Depending on semantics, you can create a new 
table to house the relationship that would contain the key of the 
two related entities. 
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Mapping Rule 8—Mapping binary 1:1 relationships when both sides 
have full participation constraints. Use the semantics of the rela-
tionship to select which of the tables should contain the key of the 
other. If this choice is unclear, then use mapping rule 7B: create a 
separate table to house the relationship. 

Now that the M:N relationships and binary 1:1 relationships have been 
mapped, the next step will be to map the common binary 1:N relationships. 

Mapping Rule 9—Mapping binary 1:N relationships when the N side 
has full participation. Include the key of the entity on the 1 side of 
the relationship as a foreign key on the N side. 

Mapping Rule 10—Mapping binary 1:N relationships when the N side 
has partial participation. Tis situation would be handled just 
like a binary M:N relationship with a separate table for the rela-
tionship. Te key of the new table would consist of a concatenation 
of the keys of the related entities. Include any attributes on the 
relationship on this new table. 

Partial participation is a problem because it leads to null values. If we 
put the key from the 1 side into the N-side table and if the participation is 
partial (not every row on the N side has a relationship to the 1 side), then 
there will be nulls in the database when it is populated. Terefore, it is bet-
ter to create a separate table for the 1:N relationship and avoid nulls. 
Finally, on the subject of 1:N relationships, we should look at Figure 8.2, 

where an M:N relationship was converted into two 1:N relationships. T e 
result of converting the M:N into two 1:N relationships will result in the 
same set of tables from 1:N mappings. 
Our next step would be to map recursive relationships. 

Mapping Rule 12—Mapping 1:N recursive relationships. Reinclude 
the primary key of the table with the recursive relationship in the 
same table, giving it some other role name. 

Mapping Rule 13—Mapping M:N recursive relationships. Create a 
separate table for the relationship (as in mapping rule 5). 

We will use mapping rule 14 to map  n -ary relationships. 

Mapping Rule 14—Mapping n-ary relationships. For each  n -ary 
relationship, create a new table. In the new table, include the keys 
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of the connected entities and any attributes of the relationship. 
Make the keys of the connected entities the concatenated primary 
key of the new table. 

Next, we map the EER diagram. 

Step 4. Mapping generalizations/specializations. 
Mapping Rule 15—Mapping generalizations and specializations 

with disjoint or overlapping subclasses and with total or partial 
participation constraints (with few or many attributes on the spe-
cializations). For each generalization/specialization entity situa-
tion, create one table for the generalization entity (if you have not 
done so already per the previous steps) and create one table for 
each specialization. Add the attributes for each specialization to 
their respective tables (relations). Include the primary key of the 
generalization entity in the specialization tables. Te primary key 
of the specialization tables will be the same primary key as the 
generalization table. 

Mapping Rule 16—Mapping generalizations and specializations with 
disjoint relationship constraints and total participation between 
generalizations and specializations. Create a separate (subclass) 
table for each specialization entity. Include the attributes for 
each specialization entity in their respective subclass tables. Also 
include the primary key and other attributes of the generalization 
entity in all the subclass tables. Te primary key of the subclass 
tables will be the primary key of the generalization entity. 

Mapping Rule 17—Mapping generalizations and specializations with 
disjoint relationships, total or partial participation constraints, 
and predicate defned with single type attributes. Create a single 
table that includes the attributes of the generalization (superclass) 
as well as the attributes of the specializations (subclasses). T e pri-
mary key of the table will be the primary key of the generalization 
(superclass). 

Mapping Rule 18—Mapping overlapping relationships and general-
izations/specializations with more than one f ag. Create a single 
table that includes the attributes of the generalization (superclass) 
and the attributes of the specializations or subclasses (including 
the subclass f ags). Te primary key of the table is the primary key 
of the superclass. 
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Mapping Rule 19—Mapping shared subclasses. Te same criteria 
used to determine which rule would be best for mapping gener-
alizations and specializations can be applied to mapping shared 
subclasses. Tat is, any of the mapping rules 15–18 can be used to 
map a shared subclass. 

Mapping Rule 20—Mapping categories or union types when super-
classes have same primary keys. Create a new table for the subclass 
(or union type) and include the primary key of the superclass (or 
superclasses) in the subclass (or union type) as the primary key. 
Include the other attributes (if any) of the subclass in this table. 
Create separate tables for each of the other superclasses and map 
them as you would map regular entities. 

Mapping Rule 21—Mapping categories or union types when the 
superclasses have diferent primary keys. Create a new table for 
the subclass (or union type). Create a surrogate key for this table. 
Tis will be the primary key for this table. Include any other 
attributes (if any) of this subclass in this table. Create separate  
tables for each of the superclasses and map them as you would 
map regular entities. Include the surrogate key in the superclass 
tables as a foreign key. 

Checkpoint 11.1 

1. What is the frst mapping rule? 
2. Why is it good to frst map strong entities and then map the weak 

entities? 
3. What would you map afer you map the weak entities? 
4. How would you map weak entities of weak entities? 
5. While mapping a binary 1:N relationship when the N side has full 

participation, why do we include the key of the 1 side of the table 
in the N side of the table? What would be wrong if we included 
the key of the N side of the table in the 1 side of the table? 

6. Why would it be reasonable to map a 1:N binary relationship 
with partial participation on the N side like an M:N relationship? 

If the rules are followed, the resulting relational database should be at 
or close to 3NF. Te next phase of mapping is “checking your work” by 
reviewing the table to be sure you are at least in 3NF (refer to Chapter 3). 
In brief, checking for 3NF consists of the following steps: 
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1. 1NF—Check that there are no nonatomic attributes in any table. 
Nonatomic attributes were dealt with in mapping rule 3 for compos-
ite attributes and mapping rule 4 for multivalued attributes. 

2. 2NF—Check that all attributes in all tables depend on the full pri-
mary key. Ask yourself, “Will I always get the same value for attri-
bute Y when I have value X when X is the primary key?” X in this 
case could be a concatenated key, and you would be looking for par-
tial dependencies. 

3. 3NF—Check for situations for which an attribute is in a table, but 
that attribute is better def ned by some attribute that is not the pri-
mary key. Recall that if the primary key in a table is X and X → YZW, 
then if Z → W is clearer than X → W, you likely have a transitive 
dependency and you would need to normalize. 

11.3 REVERSE ENGINEERING 

Having developed a methodology to develop ER/EER diagrams and map 
them to a relational database, we now turn our attention to the reverse 
engineering problem—the issue of taking a relational database and devis-
ing an ER/EER diagram. Ofen, in real-world situations, we f nd ourselves 
with a database and have no diagram to show how it was developed. T ere 
are several reasons why a reverse engineered diagram (RED) paradigm is 
useful.
 Te reversed engineered diagram provides us with a grammatical and 

diagrammatic description of the database. Ofen people use databases but 
do not understand them because there is no “big picture.” By reverse engi-
neering from the data and tables to the diagram, we can more easily express 
the meaning of the database in words. By having the ER/EER diagram of 
the relational database and the grammatical expression of the diagram, we 
can embellish the database and maintain meaning. Te ER diagram can 
also aid greatly in the development of queries on the database. 
While the expression reverse engineering might imply we reverse the 

steps to create a diagram, we have found it easier to repeat the steps from 
the top (more or less) to discover which diagram could have been used to 
create the relational database. Te process of reverse engineering is most 
easily approached by fnding strong entities and then f lling in the other 
parts of the database. Tere is one caveat here in that the steps presented 
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assume the database is in 3NF. If it is not in 3NF, then reverse engineering 
may aid in discovering why redundancy exists in the database and hence 
suggest some changes. 
With ER diagrams and the elucidation process, we proposed drawing 

the diagram, adding English descriptions, and presenting the result to 
the user. Here, afer this process of reverse engineering is completed, it is 
expected that the resulting diagram would be accompanied by an English 
version and presented to the users as well. Te sense of this reverse engi-
neering process is much like the original elucidation in that one proceeds 
and checks with users to be sure the analysts have it correct. Te rules are 
provided as a guideline to move from no ER diagram to a more complete, 
documented database. Te following rules are not to be considered rigid 
but rather a starting point toward “negotiating” a documented database. 
It is likely the ER diagram will evolve, the database may change, and the 
users will govern the fnal product. For example, superclasses and sub-
classes can be mapped in several ways. It may be discovered that another 
mapping may have been better than the existing one. With no original ER 
diagram, many scenarios are possible once the big picture is presented. 
We suggest the following rules to afect reverse engineering (Figure 11.1). 

11.3.1 Reverse Engineering Rule 1. Develop Strong Entities 

For tables with a one-attribute key, draw a strong entity R for that table and 
include all the attributes of that table in the entity R on the ER diagram. 
For example, if you have a table R( aaAaaAaaAaaAa), a is the key. Create a strong 

entity called R and show  aaAaaAaaAaAa and  a as attributes with a as the key. 

FIGURE 11.1 
Reverse Engineering Strong Entities. 
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a 
AaA AaAA AAaAA AAaAA AAaAA 

11.3.2 Reverse Engineering Rule 2. Look for 
1:1 and 1:N (1:x) Relationships 

As second, third, and additional strong entities are discovered, look for 
foreign keys in the tables. Excise the foreign keys from the previous entity 
diagram and create a relationship between the entities. Finding foreign 
keys in a strong entity most likely indicates a 1:x relationship (and x is 
most likely N). 
For example, suppose you have two tables that are strong entities. 

Suppose you have R as in the previous section and another table, S, S(aAaA 
aaAa). a is the key of S. Now, you observe that the key of S, attribute a, is 
also in table R. a is a foreign key in R. For the purpose of creating an ER 
diagram, remove a from the diagram for R and connect R and S by a 1:N or 
1:1 relationship. Te side with the foreign key will be the N side of a 1:N 
relationship (see Figure 11.2A). 
Here is another example of this situation: 

A database has a list of items ordered by some customer: 
ITEM(aaaaaaaAaAaaaaaaaaaaaaAaaaaaaAaaaaaaaaA). 

And, you have another table for orders like this: 
ORDER(aaaaaaaaAaAaaaaaAaaaaaaaaaaa).

 Te aaaaaaaa in the ITEM table is a foreign key since it is the key of 
the ORDER table. In this example, we assume aaaaaaa is a unique 
identifer for the ITEM table. Te ER diagram for this database is 
illustrated in Figure 11.2B. 

In all cases of relationships, we must determine the cardinality and the 
participation constraints from the semantics of the database as well as 
the data itself. Sometimes the way the tables are formed gives a clue. For 
example, reverting to the R and S tables, if the R and S tables are as the case 
suggests, then it is likely the relationship is N:1, with the N side being R 
since R contained a, a foreign key. Te data can be examined to determine 
the number of child entries occurring with parent entries that would indi-
cate partial or full participation. Looking for nulls in the data is another 
clue to indicating the cardinality and participation constraints. We must 
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FIGURE 11.2A 
Reverse Engineering 1:N Relationships. 
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FIGURE 11.2B 
Another Example of Reverse Engineering 1:N Relationships. 
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use the word indicate because only the true (albeit unknown) semantics 
and the data itself would “prove” the full/partial participation. 

11.3.3 Reverse Engineering Rule 2a. Check for 
Attributes of the 1:x Relationship 

In the ER diagram, if a foreign key is excised from an entity R because 
it is the key of S, you have to check to see whether any of the remaining 
attributes in R should stay with the entity R. Or should they be placed on a 
relationship RS, or be placed with S? Since step 2 is reverse mapping a 1:x 
relationship, it may be that an attribute from the 1:x relationship itself was 
placed with the foreign key when the original ER diagram was mapped, or 
that an attribute was on the relationship itself. 
You have to judge where a remaining attribute is more likely to belong. If 

it is likely the attribute was defned by the key of an entity, put the attribute 
with the entity containing the key. If the attribute requires both keys for its 
identity, the attribute should be placed on the relationship RS. 

EXAMPLE 11.2 
In the case discussed, we removed  d from R in the ER diagram because 
d was the key of S. Suppose after we create S, we determine that e only 
makes sense if we define it in terms of both  a and  d, the keys of R and S. 
This would imply that e was an intersection attribute on the relationship 
between R and S and hence would be depicted as such, as shown in 
Figure 11.3A. 

Reconsider the ORDER database example. If, in our ORDER database, the 
items_ordered were uniquely identifi ed by item_no, but the situation was 
that items were ordered repeatedly, then the date attribute would have to be 
identifi ed by both the  item_no and the  order_no. In this case,  Figure 11.2B 
would become  Figure 11.3B. 

 Tis concludes the reverse mapping of obviously strong tables. We now 
look for weak tables and multivalued attributes. 

11.3.4 Reverse Engineering Rule 3. Look for Weak 
Entities and Multivalued Attributes 

Examine the tables for any concatenated keys to see whether they contain 
any of the keys of the strong entities. If they do, this could indicate a weak 
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FIGURE 11.3A 
Reverse Engineering a Relationship Attribute. 
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FIGURE 11.3B 
Reverse Engineering 1:N Relationships with Relationship Attributes. 
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entity, a multivalued attribute, or a table resulting from M:N or higher-
order relationship. Which of these it is may depend on non-key attributes. 

11.3.5 Reverse Engineering Rule 3a. Checking for Weak Entities 

If there is a table in which there are attributes other than the concate-
nated key (which consists of a foreign key from a strong entity and another 
attribute—the partial key), then you probably have a weak entity. 
For example, if you have a table: 

 SKILL(aaaaaaaAaaaaaaaaaaAaAaaaaaaaaaaaAaa) 

 Te concatenated key is aaaaaa and  aaaaaaaaaa. Here,  aaaaaa is a for-
eign key, and  aaaaaaaaaa is not; hence, aaaaaaaaaa would likely be a partial 
key of a weak entity. Why a weak entity? Tis is because there is another 
attribute, aaaaaaaaaaaAaa, which means we are storing information about 
skills for that employee. Here,  aaaaaaaaaa is not a unique identifer for the 
information presented. 
Place the weak entity on the ER diagram along with a relationship to 

its owner entity (Figure 11.4). Te relationship is likely to be 1:N::strong 
(owner):weak(dependent)::partial:full. Examine the attributes in the weak 
entity to determine whether they would have come from the weak entity 
or the relationship between the weak entity and its owner. Here, SKILL 
is the weak entity,  aaaaaaaaaAa is the partial key, and  aaaaaaaaaaaAaa is an 
attribute of the weak entity SKILL. 

11.3.6 Reverse Engineering Rule 3b. Checking 
for Multivalued Attributes

 If 

(a) Tere are no other attributes other than a concatenated key in a table. 
(b) Part of the key is a foreign key from a strong entity. 
(c) Te other attribute is not a foreign key. 

then it is likely this a multivalued attribute situation. T e multivalued 
attribute would have been connected to the strong entity referenced by 
the foreign key. Place the multivalued attribute on the entity to which it 
belongs as a multivalued attribute (Figure 11.5). 
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FIGURE 11.4 
Reverse Engineering Weak Entities. 

FIGURE 11.5 
Reverse Engineering Multivalued Attributes. 

For example, if we have the table: 

INSTRUCTOR (aaaaAaAAaaaaaa) 

Here, we have a concatenated key and no other attributes. Since aaaa is 
likely the key of another entity, (say) PERSON and since aaaaaa is not a 



 

  

  
 

    
  

 

    

  
 
 
 
 
 

    
 

  

   
               

   
 

 

    

 

316 • Database Design Using ER Diagrams 

likely key, then  aaaaaa must be a multivalued attribute. Why not a weak 
entity? If it were a weak entity, there would probably be more attributes— 
for example, we would be recording information about the  degrees for that 
person, but we are not doing so in this case. 

11.3.7 Reverse Engineering Rule 4. Check for 
M:N and n-ary Relationships 

Examine the database tables with concatenated keys for multiple occur-
rences of primary keys. 

11.3.8 Reverse Engineering Rule 4a. Check for the Binary Case 

If there are two foreign keys in the concatenated key of a table, this is likely to 
be a table that occurred because of an M:N relationship. In the multivalued 
attribute case given, only one of the concatenated key attributes was deemed 
to be a foreign key. If the two foreign keys occur along with other attributes 
in a table, it is even more than likely that an M:N relationship exists. Place 
an M:N relationship between the two owner entities with foreign keys and 
include other attributes as relationship attributes (Figure 11.6). 
For example, suppose you discover a table called PURCHASE that looks 

like this: 

 PURCHASE ( aaaaaaaaaaAaaaaaaa, aaaaa) 

 Suppose aaaaaaaaa is the primary key of an entity called VENDOR, and 
aaaaaAaaA is the key of an entity called PART. PARTS are purchased from
 VENDORS. Tese two foreign keys (primary keys of other entities) are a 
clear message this is a table formed from an M:N relationship. It is possible 
the cardinality could be 1:x, but the M:N relationship is most likely; the 
relationship can be deduced from the data. If, for example, there are mul-
tiple occurrences of parts for vendors and multiple vendors for parts, this 
is an M:N relationship. If for every part there are several vendors, but every 
vendor supplies only one part, then this would be VENDOR:PART::N:1. 

11.3.9 Reverse Engineering Rule 4b. Check for the  n-ary Case 

If there are more than two foreign keys in a table participating as the con-
catenated primary key of the table, this is likely a table occurring because 
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FIGURE 11.6 
Reverse Engineering M:N Relationship. 

of an n-ary relationship. Tere may well be other attributes in the table 
with three or more foreign keys. Place an n-ary relationship (n = number 
of foreign keys) between the  n entities with foreign keys and include other 
attributes as relationship attributes. 
For example, if you have the table: 

 PURCHASE ( aaaaaaaaaaAaaaaaaaaAaaaaaaa, aaaaa) 

 Te three foreign keys aaaaaaaaaaAaaaaaaa, and  aaaaaaa imply a ter-
nary relationship. Te attribute  aaaaa is likely an intersection attribute on 
the relationship. In this case, we would say all three keys would be neces-
sary to identify a  aaaaa, as shown in Figure 11.7. 
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FIGURE 11.7 
Reverse Engineering the  n -ary Case. 

11.3.10 Reverse Engineering Rule 5. Check for 
Generalization/Specialization Relationships

 Tere are several situations to indicate a generalization/specialization 
relationship. From Chapter 10 we recall there are a number of ways a given 
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EER diagram with generalization/specialization characteristics can be 
mapped to a relational database. 

11.3.11 Reverse Engineering Rule 5a. Check for 
Generalization/Specialization Relationships 
with Disjoint or Overlap Relationships with 
Total or Partial Participation Constraints 

If the primary key of a larger table with a one-attribute primary key 
appears on other (probably smaller) tables as a one-attribute primary key, 
there is probably a generalization/specialization relationship. However, 
this could also be a category or union type relationship—refer to reverse 
engineering rule 7 for reverse engineering the category or union type 
relationships. Te larger table is most likely a superclass, so make this a 
strong entity/superclass (with the primary key). Te smaller tables are the 
subclasses. Te subclass entities will not have a primary key in the EER 
diagram but will be shown as overlapping or disjoint subclasses. 
For example, if we had the following set of tables in a database: 

 M (m, a, b, c, f) 
 N (m, d, n) 
 O (m, o) 
 P (m, p, e) 

we can see  a is the primary key in all the tables. Since M is the larger table, 
it is probably the superclass and N, O, P are subclasses to inherit from M. 
Tis set of tables would map to Figure 11.8. 
Next, we should try to determine if the subclasses are disjoint or over-

lapping. We do this by looking at the data. If the primary key appears on 
one subclass table at a time, that is, if a record or object appears to be in 
only one table at a time, then this is probably a disjoint relationship. So we 
would place a  d in the circle joining the superclass entity to the subclass 
entities. If the primary key appears on more than one subclass table at a 
time; that is, if a record or object appears to be in more than one subclass 
table simultaneously, then this is probably an overlapping subclass situ-
ation. So, we would place an o on the circle joining the superclass entity to 
the subclass entities. If the subclasses overlap, then a multivalued attribute 
will be necessary in the superclass entity. 
To try to determine if the relationship is total or partial, we need to exam-

ine some data. If every primary key (or object or record) in the superclass 
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FIGURE 11.8 
Reverse Engineering a Generalization/Specialization Relationship. 

table appears on at least one of the subclass tables, this is probably a total 
participation subclass/superclass relationship. But, if every primary key 
(or object or record) in the superclass table does not appear on at least one 
of the subclass tables, this is likely a partial participation relationship. 

11.3.12 Reverse Engineering Rule 5b. Check for Disjoint 
Generalization/Specialization Relationships 
with Single-Predicate-Defined Attributes 

If there is a single large table appearing to have predicate-def ned attributes 
and values or nulls corresponding to the predicate-defned attributes, this 
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is probably a disjoint generalization/specialization relationship with a 
predicate-defned attribute on the superclass. Te superclass entity will 
have the primary key and the attributes are not predicate def ned. T e sub-
classes will contain the attributes corresponding to the predicate-def ned 
attributes. 

11.3.13 Reverse Engineering Rule 5c. Check for 
Overlap Generalization/Specialization 
Relationship with More Than One Flag 

In the case of the overlap generalization/specialization relationship with 
more than one f ag, f ags are defning predicates. If there is a single large 
table appearing to have more than one fag and several values correspond-
ing to the fags, it is probably an overlapping generalization/specialization 
relationship. Te superclass entity will be the large table with the primary 
key and the attributes do not correspond to f ags. Te subclass entities will 
be composed of the attributes corresponding to the respective f ags. 

11.3.14 Reverse Engineering Rule 6. Check 
for Shared Subclasses 

To determine whether there are shared subclass entities, we need to follow 
reverse engineering rules 5a–5c, and we need data to help us determine 
if the subclasses are actually shared. If from the data we observe that the 
attributes have been inherited from more than one subclass, this would 
suggest that this is a shared subclass entity. Te shared subclass entity 
would have one primary key inherited from its subclasses. 

11.3.15 Reverse Engineering Rule 7. Check 
for Categories or Union Types 

If the primary key of a table appears on other tables as a primary key, there 
could be a category or union type of relationship in which the superclass 
entities have the same primary key (but this could also be a generaliza-
tion/specialization relationship; see reverse engineering rule 5a). In this 
case, it might be difcult to decipher which are the superclasses in the cat-
egory or union types. We might need the data to help us see which tables 
are inheriting from which tables; this will help us determine which are the 
superclasses and which are the subclasses. 
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If the primary key of a table appears on other tables as a foreign key, 
there could be a category or union type of relationship in which the super-
classes have diferent primary keys; hence, a surrogate key was created, 
which was included in the other superclass tables as the foreign key. In this 
case, the superclasses would be the tables containing the surrogate key as 
the foreign key—these superclasses would have their own primary keys. 
Te table containing the surrogate key as the primary key would be the 
category or union type. 

Checkpoint 11.2 

1. What hints would you look for to determine if a relationship is 
ternary? 

2. What hints would you look for when you are trying to determine 
whether tables have weak entities and multivalued attributes 
included in them? 

3. What hints would you look for to determine if there is a general-
ization/specialization relationship? 

4. What hints would help you determine if a shared subclass 
exists? 

5. What hints would help you determine if a category or union type 
of relationship exists? 

6. Why is reverse engineering important? 

11.4 CHAPTER SUMMARY 

In this chapter, we presented a summary of the mapping rules (rules 
used to map ER and EER diagrams to relational databases) we devel-
oped throughout the book and then discussed and developed a set of 
rules for reverse engineering to ER and EER diagrams from a rela-
tional database. 
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CHAPTER 11 EXERCISES 

Exercise 11.1 

Come up with an ER diagram for the following relational database: 

 R (a, b, c, d, w) 
 S (d, e, f) 
 T (c, g, h) 
 U (c, d, j) 
 V (d, k) 
 W (aAaAaaAAaAaAa) 
 X (AaaAaaAaAaAa) 
 Y (a, o, s, t) 

Exercise 11.2 

Come up with an ER diagram for the following relational database: 

 A (a, d) 
 B (b, e, f, g) 
 C (c, i, j, a, b) 
 CL (c, l) 
 AB (a, b, h) 
 M (b, m, o, n) 
 P (b, m, p, r, q) 
 ABC (a, b, c, t) 

Exercise 11.3 

Come up with an EER diagram for the following relational database: 

 A (a, b, o, s, t) 
 C (a, c) 
 D (a, d) 
 E (a, e) 
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Exercise 11.4 

Come up with an EER diagram for the following database: 

 A (a, d, e, f, n) 
 B (b , g, h, n) 
 C (c, i, j, n) 
 D (n) 

BIBLIOGRAPHY 

Elmasri, R., and Navathe, S.B. (2016).  Fundamentals of Database Systems. Redwood City, 
CA: Benjamin Cummings. 



  
 

  

 
    

  
 
 

 
 

  

  

  
 

 
  

 
 

 
 

12 
A Brief Overview of the Barker/ 
Oracle-Like Model 

12.1 INTRODUCTION

 Tere are many variations of entity-relationship ER diagrams. One such 
model was introduced by Richard Barker (1990). Te Barker model was 
adopted and modifed slightly by the Oracle Corporation. In this chapter, 
we introduce the conventions used in the Barker/Oracle-like model as it 
applies to our ER Design Methodology. We depict major concepts of the 
ER diagrams of both Barker and Oracle. Our combined Barker/Oracle-
like model is not meant as a primer on the “pure model” of either party, 
but the transition to the ER diagram of Barker or Oracle will be minor. 
As you read this chapter, please understand that our attempt to discuss 

the Barker, Oracle, or some other model is not to champion “their model” 
versus the one presented in this book. Te point of models like these is to 
elicit how users view their data and then map whatever model is used to a 
relational database. An analyst may want to present several models to make 
clear what the user wants and needs. Terefore, this chapter is looking at 
the same problem from a slightly dif erent angle to shed light on what is 
needed. 
Why are we interested in the Barker/Oracle-like model? And why pres-

ent it here? Te Barker/Oracle-like model is common; it is used of en in 
Oracle literature. Te pedantic problem with the Barker/Oracle-like model 
is one must understand relational database theory fully to understand why 
the Barker/Oracle-like model is done the way it is. We present the Barker/ 
Oracle-like model here because the way it unfolds is a bit diferent from the 
Chen-like model. Te Chen-like model focuses on modeling data, whereas 
the Barker/Oracle-like model adapts the data to the relational database 
concurrently with the design. 
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 Terefore, the ER design methodology for the Barker/Oracle-like model 
will develop diferently from the Chen-like model. Further, the Barker/ 
Oracle-like model will not have some of the conventions used in the Chen-
like model. For example, the Barker/Oracle-like model does not directly 
use the concept of composite attributes, multivalued attributes, or weak 
entities, but it handles these concepts immediately in light of the rela-
tional model. Since the Barker/Oracle-like model is so close to the relational 
model at the beginning, the mapping rules are trivial—the mapping 
takes place in the diagram itself. 

12.2 A FIRST “ENTITY-ONLY” ER DIAGRAM: 
AN ENTITY WITH ATTRIBUTES 

We start with developing a frst, “entity-only” ER diagram in the Barker/ 
Oracle-like model. To recap our example used previously in the book, 
we have chosen a “primary” entity from a student information database: 
STUDENT. A student is something we want to store information about 
(the defnition of an entity). For the moment, we do not concern ourselves 
with any other entities. 
What are some initial attributes we used in the STUDENT entity? A stu-

dent has a  aaaaaAaaaaaaaaAaaaaaaaAaaaaaAaaaaaa, and  aaaaa. We have 
picked fve attributes for the entity STUDENT and have chosen a generic 
label for each:  aaaaaAaaaaaaaaAaaaaaaaAaaaaa, and  aaaaa. 
We begin our venture into the Barker/Oracle-like model with Figure 12.1A. 

A Barker/Oracle-like model uses sof boxes for entities (with the entity name 
in capital letters), and there is a line separating the entity name from the 
attributes (and the attribute names are in small letters). A Barker/Oracle-like 

FIGURE 12.1A 
Barker/Oracle-like Notation of ER Diagram with One Entity and Five Attributes. 
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FIGURE 12.1B 
Barker/Oracle-like Notation of ER Diagram with One Entity and Five Attributes with  
Datatypes Added. 

model does not place the attributes in ovals (as the Chen-like model does) but 
lists the attributes below the entity name, as shown in Figure 12.1A. 
Figure 12.1B  shows an ER diagram with one entity STUDENT, and the 

attributes aaaaaAaaaaaaaaAaaaaaaaAaaaaa, and  aaaaa. In the Oracle-like 
version of the Barker/Oracle-like ER diagram, the datatype is also listed 
( Figure 12.1B ). 

12.3 ATTRIBUTES IN THE BARKER/ORACLE-LIKE MODEL 

All attributes in a Barker/Oracle-like model are considered simple or 
atomic as in relational databases. Te Barker/Oracle-like model does not 
have the concept of composite attributes. So, our Barker/Oracle-like adap-
tation will show parts of the composite attributes using a dot (.) notation, 
as shown in Figure 12.2. 

12.3.1 Optional versus Mandatory Attributes 

When designing a database, it is necessary to know whether an entity may 
contain an unknown value for an attribute. For example, in the STUDENT 
entity (shown in Figure 12.1), suppose the aaaaaaa were optional. In other 
words, if data were recorded for a student on a paper data entry form, we 
could demand the person fll out  aaaa and  aaaaaaaAaaaaaa but allow the 
person to leave the aaaaaaa blank (i.e., unknown). We would say  aaaa 
and  aaaaaaaAaaaaaa were “mandatory” and  aaaaaaa was “optional.” 
A missing value is called a  null. Hence, the mandatory attribute is said to 

be not null. Not null means in no occasion would there be an instance of the 
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FIGURE 12.2 
Barker/Oracle-like Notation of an ER Diagram with a Composite Attribute: aaaa. 

FIGURE 12.3 
Barker/Oracle-like Notation of an ER Diagram with a Primary Key or Unique Identif er 
Attribute and Optional and Mandatory Attributes. 

entity existing without knowing the value of this mandatory attribute. In 
the Barker/Oracle-like ER model, we will show the optional attribute with-
out the not null depiction and the mandatory attribute by adding the phrase 
not null to the description (as shown in Figure 12.3). A mandatory attribute 
could be a key, but it is not necessarily a key. Mandatory and optional attri-
butes are usually not indicated explicitly in the Chen-like model. 
In our Barker model, the primary key has a # in front of the name of the 

attribute (as shown in Figure 12.3). A primary key has to be a mandatory 
attribute in a relational database, but again, all mandatory attributes here 
are not necessarily unique identif ers. 

Checkpoint 12.1 

1. What do mandatory attributes (in the Barker/Oracle-like model) 
translate into in the Chen-like model? Discuss with examples. 
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2. What do optional attributes (in the Barker/Oracle-like model) 
translate into in the Chen-like model? Discuss with examples. 

3. How are the primary keys shown diagrammatically in the Barker/ 
Oracle-like model? 

12.4 RELATIONSHIPS IN THE BARKER/ 
ORACLE-LIKE MODEL 

In the Barker/Oracle-like model, a relationship is represented by a line 
joining two entities. In this model, there is no diamond denoting the 
relationship as we saw in the Chen-like model. The relationship phrase 
for each end of a relationship is placed near the appropriate entity-
end in lowercase, as shown in Figure 12.4. In this model, from the 
STUDENT entity to the SCHOOL entity we would informally state the 
relationship as:

  STUDENT s attend  SCHOOL S. 

And, from the other direction, from the SCHOOL entity to the STUDENT 
entity, we would say,

  SCHOOL S are attend ed by  STUDENT S. 

12.5 STRUCTURAL CONSTRAINTS IN THE 
BARKER/ORACLE-LIKE MODEL 

In the Barker/Oracle-like notation, the cardinality of 1 is shown by a single 
line leading to the entity. In Figure 12.5, a single line joins the two entities, 
so this is a 1:1 relationship between the STUDENT and AUTOMOBILE. 
Tis means one student may be related to one and only one automobile, 
and one automobile can be related to one and only one student.
 Te dashed line leading to an entity signif es optional (partial) partici-

pation of an entity in a relationship. In Figure 12.5, the STUDENT entity 
is participating optionally in the relationship, but the AUTOMOBILE 
entity is not participating optionally (the latter relationship is mandatory). 
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FIGURE 12.4 
Barker/Oracle-like Notation of the STUDENT Entity with a Relationship to the SCHOOL 
Entity. 

An enhanced grammar from the STUDENT entity to the AUTO-
MOBILE entity would be:

 A  STUDENT  may drive one and only one  AUTOMOBILE. 

And, from the AUTOMOBILE entity to the STUDENT entity it would be: 

 An  AUTOMOBILE must be driven by one and only one  STUDENT. 

A continuous (solid) line coming from the AUTOMOBILE entity (as 
shown in Figure 12.5) signifes mandatory (full) participation of that 
entity in a relationship. A dashed line coming from the STUDENT entity 
(as shown in Figure 12.5) signifes optional (partial) participation. 
As another example, refer to Figure 12.6. 
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FIGURE 12.5 
A 1:1 Relationship in the Barker/Oracle-like Notation. 

  STUDENT s must occupy  DORM s, but a  DORM may be occupied by 
many  STUDENT s. 

A cardinality of M (many) is shown by a “crow’s-foot” structure lead-
ing to the respective entity.  Figure 12.6  is an example of a 1:M relation-
ship between DORM and STUDENT. Te exact grammar for  Figure 12.6 
would be: 

A  DORM may be occupied by zero or more STUDENTs.

 and

 A  STUDENT  must occupy one and only one  DORM. 
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FIGURE 12.6 
A 1:M Relationship in the Barker/Oracle-like Notation 

Checkpoint 12.2 

1. How is the optional relationship shown diagrammatically in the 
Barker/Oracle-like model? 

2. How is the many relationship shown diagrammatically in the 
Barker/Oracle-like model? 

3. Show the following using the Barker/Oracle-like notation: 

a. A movie theater must show many movies, and movies must be 
shown in a movie theater. 

b. A movie theater may show many movies, and movies may be 
shown in a movie theater. 

12.6 DEALING WITH THE CONCEPT OF THE WEAK 
ENTITY IN THE BARKER/ORACLE-LIKE MODEL

 Te Barker or Oracle-like models do not have a concept of the “weak 
entity,” and the weak entity notation is also not used in Oracle literature. 



 

  
 
 

       
 

 

   

    
 

 
   

 

  

   
 

Overview of Barker/Oracle-like Model • 333 

FIGURE 12.7
 Unique Identifer (to Include a Weak Entity-Relationship) Shown by Placing a Bar Across 
the Contributing Relationship Line(s). 

We extend the concept of the unique identifer in a relationship to include 
the weak entity. In the Barker/Oracle-like model, the unique identif er in 
a relationship may be diagrammatically shown by a bar cutting across 
the contributing relationship, as shown in Figure 12.7. In Figure 12.7, to 
uniquely identify a dependent, one needs the employee’s Social Security 
number. Tis means the DEPENDENT entity cannot independently stand 
on its own and hence is a weak entity. However, here the weak entity would 
be mapped as per the mapping rules discussed in Chapter 7. 

12.7 DEALING WITH THE CONCEPT OF MULTIVALUED 
ATTRIBUTES IN THE BARKER/ORACLE-LIKE MODEL

 Te Barker or Oracle-like models do not have the concept of the “multi-
valued” attribute. Multivalued attributes can be shown as in Figure 12.8, 
which shows a student may have attended many schools. 
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FIGURE 12.8
 Te Multivalued Attribute and Te Foreign Key. 

In the Barker/Oracle-like model, the foreign key is shown in the appro-
priate entity, whereas in the Chen-like model, foreign keys may not be 
“discovered” until the database is mapped and normalized. In this model, 
a foreign key is identifed with an asterisk (*) in front of the attribute (see 



 

   

   

  
  
  
  
  

   

   

  

  
  
  
  
  
  
  
  
  

     
      

  

   
 

    
 
 

   
 

AAAAA a AAAAAAAAA AAAA

AAAAA AAAA AAAAAa a a AAAAA

Overview of Barker/Oracle-like Model • 335 

TABLE 12.1 

Sample Data for aaaaaaa in Figure 12.8. 
aaaaa aaaaaAaaaaaaaAAAaaaaaAA a 

Sumona Gupta 111 Mirabelle Circle, Pensacola, FL 
Tom Smith 198 Palace Drive, Mobile, AL 
Tony Jones 329 Becker Place, Montgomery, AL 
Sita Pal 987 Twin Lane, North Canton, OH 
Neetu Singh 109 Bombay Blvd, Calicut, CA 

TABLE 12.2 

Sample Data for aaaaaa in Figure 12.8. 
aaaaaAaaaaaAA a a aAaaaaaaA 

Sumona Gupta Ferry Pass Elementary 

Sumona Gupta PCA 
Sumona Gupta Pensacola High 
Tom Smith Mobile Middle School 
Tom Smith St. Johns 
Tony Jones Montgomery Elementary 
Tony Jones Montgomery Middle 
Tony Jones Montgomery High 
Sita Pal Tagore Primary School 
Sita Pal Nehru Secondary School 

Figure  12.8).  An  instance  of  this  database  shown  in Figure  12.8  is  pre-
sented in Tables 12.1 and 12.2. 

Checkpoint 12.3 

1. Does the Barker-like model or the Oracle-like model have the 
concept of the weak entity? Discuss. 

2. Show the following using the Barker/Oracle-like notation: For 
a student, we are trying to store the student’s name, address, 
phone, books (that is, books the student borrows from the 
library). Map this to a relational database and show some sam-
ple data. 

3. Does the Barker/Oracle-like notation have the concept of the 
multivalued attribute? Discuss. 
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12.8 TREATMENT OF FOREIGN KEYS 

In the original Barker model, foreign keys were not marked but now an 
asterisk is used to identify a foreign key. In the Oracle model, foreign 
keys are included in the respective relations. For example, Figure 12.9 
says:

 A  STUDENT  may drive one and only one  AUTOMOBILE. 

 And,

 An  AUTOMOBILE must be driven by one and only one  STUDENT. 

   Te primary key from the STUDENT relation (the 1 side), aaaaaaaA 
aaaaaaA, is included in the AUTOMOBILE relation (the N side). In our 
Barker/Oracle-like model, we precede the foreign key with an asterisk (as 
shown in Figure 12.9). 

12.9 RECURSIVE RELATIONSHIPS IN THE 
BARKER/ORACLE-LIKE MODEL 

Recursive relationships in the Barker/Oracle-like model are drawn as 
shown in Figure 12.10 . Again, the dotted line in the relationship shows 
an optional relationship; the solid line would show a mandatory relation-
ship; a “crow’s-foot” would show a many relationship. T e relationships 
are named as shown. 
  Figure 12.10  shows an  EMPLOYEE may supervise other  EMPLOYEE s, 

and an EMPLOYEE may be  supervised by one and only one supervisor 
EMPLOYEE. Note the foreign key  aaaaaaaaa in the EMPLOYEE relation. 

12.10 MAPPING M:N RELATIONSHIPS 

Finally, we discuss one important aspect treated diferently in the Barker/ 
Oracle-like model: the M:N relationship. In the Barker/Oracle-like model, 
all M:N relationships are resolved into two 1:M relationships with an 
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FIGURE 12.9 
Barker/Oracle-like Notation Showing Foreign Key. 

intersection entity in the middle. In the Chen-like model, the M:N may be 
presented as two 1:M relationships. 
Figure 12.11  is an example of an M:N relationship in the Chen-like format. 

In the Barker/Oracle-like model, this would be shown as in Figure 12.12. 
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FIGURE 12.10 
Barker/Oracle-like Notation Recursive Relationship. 

FIGURE 12.11 
An ER Diagram of an M:N Relationship in the Chen-like Model. 
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FIGURE 12.12 
Barker/Oracle-like Notation of an M:N Relationship Broken into Two 1:M Relationships. 
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Checkpoint 12.4 

1. How are recursive relationships shown in the Barker/Oracle-like 
model? 

2. Why is it difcult to show M:N relationships in the Barker/ 
Oracle-like model? 

3. How are the foreign keys treated in the Barker/Oracle-like 
model? 

12.11 CHAPTER SUMMARY

 Tis chapter briefy discussed some of the main features of the Barker/ 
Oracle-like model. Te one-entity diagram with attributes was pre-
sented. Te idea of optional versus mandatory attributes was discussed. 
Relationships and structural constraints were briefy discussed in the 
context of the Barker/Oracle-like model. Although the Barker/Oracle-
like notation does not use the concept of the weak entity and multivalued 
attributes, we showed how these concepts can be shown diagrammati-
cally in the Barker/Oracle-like notation. An example of the depiction of 
the recursive relationship in the Barker/Oracle-like model is illustrated. 
Finally, the chapter showed how to map an M:N relationship into two 1:M 
relationships. Mapping rules were also discussed in the context of the 
Barker/Oracle-like notation 

CHAPTER 12 EXERCISES 

Exercise 12.1 

Redraw Figure 8.17a  using the Barker/Oracle notation. Map this to a rela-
tional database and show some sample data. 

Exercise 12.1 

Redraw Figure 8.7  using the Barker/Oracle notation. Map this to a rela-
tional database and show some sample data. 
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Glossary

    Attribute: Data pertaining to an entity. For example, if an entity is  
EMPLOYEE, attributes of the entity might be aaaaaAaaaaaaaaA 
aaaaaaaaAaA

  Binary relationship: A relationship between two entities. 
  Candidate key: An attribute or set of attributes that uniquely identif es 

individual occurrences of an entity type (uniquely identifes a row 
in a relational table). 

  Cardinality ratio: Describes the number of one entity that is related 
to another entity. Example: A dorm room may have many 
occupants; the cardinality of DORM to OCCUPANT is one to 
many (1:M)

  Category: A subclass of a superclass from which the subclass may inherit 
attributes of the superclass; also referred to as union type of super-
class to subclass. 

  Composite attribute: An attribute composed of multiple components,  
each with an independent existence. Example: the composite 
attribute  aaaa is usually stored as a aaaaaaAaaaaA aaaaaaaaaaA 
aaaaaaa. T e name. is called a “qualif er.”

  Database: A shared collection of logically associated or related data. 
Degree of a relationship: Te number of participating entities in a 

relationship.
  Derived attribute: An attribute where a value is calculated or derived 

from other data. Example: A aaaaaaaa.aaa is derived from A
  Entity: “Something” in the real world that is of importance to a user and 

that needs to be represented in a database so that information 
about the entity may be recorded. An entity may have a physical 
existence (such as a student or building) or it may have conceptual 
existence (such as a course).

  Entity set: A collection of all entities of a particular entity type. 
  Entity type: A set of entities of the same type. 
First normal form (1NF): A table arrangement whereby the domain of all 

attributes in the table must include only atomic (simple, indivis-
ible) values. 
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  Foreign key: An attribute referring to a primary key of another table. A 
foreign key is how relationships are implemented in relational 
databases.

  Full participation: All of one entity set participates in a relationship. 
  Functional dependency: A relationship between two attributes in a rela-

tion. Attribute Y is functionally dependent on attribute X if attri-
bute X identifes attribute Y. For every unique value of X, the same 
value of Y will always be found.

  Generalization: Te process of minimizing the diferences between enti-
ties by identifying their common features and removing the com-
mon features into a superclass entity. 

  Hierarchical model: All data are arranged in a top-down fashion. All 
relationships have the cardinality one to many (1:M).

  Identifying owner: Te strong entity (the owner) on which a weak entity 
is dependent.

  Identifying relationship: A relationship of a strong/weak entity where by 
the weak entity is identifed by the owner entity. 

  Key: An attribute that uniquely identifes a row of a table. 
  Mandatory relationship: All of one entity set  must participate in a rela-

tionship. Also known as full participation. 
  Many to many: Many rows in one table are related to many rows in another 

table. Example: Many CUSTOMERs buy many PRODUCTs. Such 
a relationship ofen has intersection data such as price or date sold. 

  Many to one: Many rows of one table can be related to one only one row 
of another table. Example: Many PATIENTs are  examined by one
 DOCTOR or many  STUDENT s attend one  SCHOOL . 

  Mapping: Te process of taking an agreed-to conceptual model (the ER dia-
gram) and creating tables in a database based on the ER diagram. 

  Multivalued attribute: An attribute that may have multiple values for a 
single entity. 

  One to many: A relationship where one row of a table can be related to 
more than one row in another table. Example: An EMPLOYEE 
may  have many  DEPENDENT s.

  One to one: A relationship where one row of a table can be related to only 
one row of another table. Example: An EMPLOYEE possesses 
one ID_CARD.

  Optional participation: A relationship structural constraint specifying a 
relation may exist. Example: A PERSON may be a fan of a base-
ball  TEAM . 
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Participation constraint (also known as optionality): Determines whether 
all or some of an entity occurrence is related to another entity. 
Example: A  CUSTOMER in a restaurant may buy  WINE .

  Primary key: A unique identifer for a row in a table in a relational data-
base; a selected candidate key of an entity. 

  Recursive relationship: A relationship among entities in the same class. 
Example: An EMPLOYEE is supervise d by another  EMPLOYEE . 

  Relation: A populated table containing single-value entries and no dupli-
cate rows. Te meaning of the columns is the same in every row, 
and the order of the rows and columns is immaterial, but once 
fxed never changes.

  Relationship: An association between entities. 
  Reverse engineering: Te process of going from relational tables to a logi-

cal model (or ER diagram). A backward mapping process used for 
documenting an existing database. 

  Second normal form: A relation that is in frst normal form and in which 
each non-key attribute is fully functionally dependent on the pri-
mary key.

  Shared subclass: A subclass of a superclass where the shared subclasses all 
inherit the same attributes from the superclass and locally def ned 
attributes are shared as well. 

  Simple attribute: Attribute that will always be composed of a single value.
  Specialization: Te process of maximizing the diferences between mem-

bers of a superclass entity by identifying their distinguishing 
characteristics. 

  Specialization hierarchy: A subclass inheriting from only one superclass. 
  Specialization lattice: A subclass having more than one subclass as its  

parent. 
  Strong entity: An entity that is not dependent on another entity for its 

existence. 
  Structural constraints: Constraints indicate how many of one entity are 

related to another entity (as in one or more) and whether the enti-
ties may or must have a relationship. Te cardinality ratio and 
participation constraints taken together are called, “structural 
constraints.”

  Subclass: An entity type that has a distinct role and is also a member of a 
superclass. 

  Superclass: An entity type that includes distinct subclasses that are  
required to be represented in a data model. 
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  Table: Same as “relation” except that a relation is a populated table; A table 
is a tabular view of data that may be used to hold one or more col-
umns of data; an implementation of an entity. 

  Tird normal form: A relation that is in second normal form and in  
which no non-key attribute is functionally dependent on another 
non-key attribute (that is, there are no transitive dependencies in 
the relation).

  Union type: A subclass having more than one superclass from which it 
may inherit; also referred to as a category. 

  Unique identif er: Any combination of attributes or relationships that 
serves to uniquely identify an occurrence of an entity (a row in 
a table). 

  Waterfall model: A series of steps in sofware development where each 
step in the process is not repeated once agreed upon. T e process 
fows one way.

  Weak entity: An entity that is dependent on some other entity for its  
existence. 
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participation, mandatory and optional, 

329–331 
recursive relationships, 336 
 relationships, 329 
structural constraints, 329–332
 summary, 340 
weak entity, concept of, 332–333 

 BCNF (Boyce–Codd normal form),  65 – 67  
 binary relationships 

mapping to relational database, 
159–168, 302–303, see also mapping 
binary relationships to relational 
database 

new entity, 109 
patterns of,  see patterns of binary 

relationships 
in reverse engineering, 308–311, 316 
second entity, 114 
structural constraints, 172 
and ternary relationships, 240, 

246–247, 254–258
 birthdate attribute,  80 
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bottom up design approach,  269 
 Boyce–Codd normal form (BCNF),  65 – 67  

candidate key, as unique identifer,  84 ,  98
 cardinality 

in Barker/Oracle-like model, 329, 331 
 maximum, 228 
one-to-many relationship, 26–27 
ratio of relationship, 129–134 
in reverse engineering, 308 
structural constraints, 26–27 
in weak and strong entities, 184 

 cardinality ratio,  129–134  
 case study 

design extensions for ER diagrams 
with binary relationships, 235–237 

design of ER diagram, 100–104 
design of ER diagram, beyond f rst 

entity, 120–128 
enhanced entity relationship (EER) 

model, 295–298 
 relationships/structural constraints, 

172–178 
weak entities, 194–199 

 categories or union types,  286 – 292  
 def ned, 286–287 
inheritance of attributes, 286–288 
mapping when superclasses have 

diferent primary keys, 291–292, 
305 

mapping when superclasses have same 
primary keys, 291, 305 

participation ratios, 288–290 
in reverse engineering, 321–322 

 Chen, P. P.,  73 ,  76
 Chen-like model 

cardinality of relationship, 133, 135, 
137 

compared with Barker/Oracle-like 
model, 325–326 

ER diagram, 76–79, 84, see also ER 
diagrams 

multivalued attribute, 84 
relationship for new entity, 109, 114 
relationships of relationships, 252 
 unique identif ers, 84 
weak entities, 182 

child class, in parent-child hierarchical 
relationship,  20 – 25 ,  268 – 269  

 class hierarchies,  265 – 267  
 COBOL,  16 – 17
 columns,  35 ,  94
 composite attributes,  80 – 81 

in Barker/Oracle-like model, 327 
in Chen-like model, 84 
 defnition of, 80–81 
grammar for, 88 
mapping to relational database, 96, 

300
 concatenated key,  41 ,  49 ,  67
 concatenation,  41 ,  206  
 conceptual model,  72
 coral rings,  26 

D 

 data
 def ned, 1 
 inconsistent, 34
 related, 7 
storage and retrieval, 11–12 

 data and data models,  11 – 32  
 customer f le, 12 
customer records, 12–13 
database models, 19–28, see also 

database models 
database systems, 17–18 
 felds of data, 12–13 
 fle design, 12–13 
 fles, records, and data items, 11–14 
foreign key, 21 
history, moving from 3 × 5 cards to 

computers, 14–19 
 key, 13 
network model, 18, 28–30 
relational model, 31
 sequential f les, 16–17 
 sofware packages, 16
 summary, 32

 database
 def ned, 1 
 def nitions, 73–75 

database, building of, with sof ware 
engineering process,  1 – 10

 analyst, 4 
building a database, 2 
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description of sof ware engineering 
process, 3–7, see also sof ware 
engineering process 

design of database, 5, 9 
elucidation, 4, 5 
entity relationship diagrams 

and sof ware engineering 
life cycle, 7–9 

 exercises, 10 
requirements for database, 5, 8, 75
 specifcation of database, 5, 8–9 
 summary, 9 
 systems, 17–18 
user, 4, 7–8, 74 
waterfall model, 3–4 

 database  models ,  19 – 28 , see also  models
 cardinality, 26–27 
hierarchical model, 18, 20–28, see also 

hierarchical models 
logical models, 18, 31 
network model, 18, 28–30 
relational model, 31,  see also relational 

databases 
relationship terminology, 26–27 

 database systems,  17 – 18
 data modeling schema,  71 – 72  
 decomposition,  40 ,  50 , 65 ,  254 – 258  
 decomposition rule,  60 – 61
 defning predicate,  272 – 274 ,  320 – 321  
degree of relationship,  111
 delete anomaly,  49
 derived attribute,  82 ,  88
 derived relationship,  224 – 228  
design approaches, top down and bottom 

up,  269  
design methodology steps 

EER model, 274–275, 292–294 
ER diagram, 75, 88, 92–94 
ER diagram, beyond frst entity, 111, 

118–119 
ER diagram with binary relationships, 

extensions in design, 202, 207, 223, 
226, 230–232, 235

 relationships/structural constraints, 
extending, 146–147, 154–158, 172, 
176 

ternary and higher-order ER diagrams, 
248, 260–261 

weak entities, 189–190, 195 

 disjoint constraint,  272 – 274 
in mapping generalizations or 

specializations, 277, 280–282, 304 
in reverse engineering, 319–321 

double augmentation rule,  64 

E 

EER model, see enhanced entity 
relationship (EER) model 

 elementary attribute,  81
 elucidation,  4 , 5 
English descriptions,  see  grammar 

descriptions 
enhanced entity-relationship (EER) 

model,  265 – 298  
case study, 295–298 
categories or union types, 286–292, 

see also categories or union types 
 def ned, 265 
design approaches: top down and 

bottom up, 269 
ER design methodology, 274–275, 

292–294 
 exercises, 294–295 
generalizations or specializations, see 

generalizations or specializations 
grammar for, 275–276 
subclasses of subclasses, 283–286
 summary, 294 

 entity(ies) 
adding more than two, 206–209 
 defned, in database, 73–75 
entity sets, 73–74 
generalizations (broad entities), 74
 instance, 74 
integrity constraint, 49 
owner (identifying), 180, 182, 184–186
 primary, 74–75 
regular (strong), 84, 179 
relationship between entities, 73, 74 
relationships developing into, 

204–206 
specializations (narrow entities), 74
 strong, see strong entities 
that evolve from attributes, 209–213, 

214–216
 weak, see weak entities

 entity integrity constraint,  49 ,  54 
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“entity-only” ER diagrams with attributes, 
 76 – 79 ,  326 – 327  

 entity-relationship (ER) diagram,  71 – 105  
attributes in f rst “entity-only” 

diagram, 76–79 
attribute types and properties, 79–86 
case study, 100–104 
Chen-like model, 76–79, 84
 database def nitions, 73–75 
data modeling schema, 71–72 
description of, 72 
ER design methodology, 75, 88, 92–94 
 exercises, 99–100 
grammar for, 87–94 
mapping to relational database, 94–98 
 sofware engineering life cycle and, 3, 

7–9
 summary, 99 

entity-relationship (ER) diagram, beyond 
frst entity,  107 – 128  

attribute or relationship?, 117–119 
binary relationship, 111, 114 
case study, 120–128 
changing attribute to an entity, 108 
 defning a relationship for new entity, 

109–111
 defning of second entity, 112–116 
ER design methodology, 111, 118–119
 exercises, 119–120 
existence of relationship, 117 
grammar for, 112, 115 
mapping to relational database, 124–128
 summary, 119 

entity-relationship (ER) diagrams with 
binary relationships, extensions in 
design,  201 – 238  

alternative ER notation to specify 
structural constraints on 
relationships, 228–230 

attributes that evolve into entities, 
adding more, 209–213, 214–216 

case study, 235–237 
derived or redundant relationship, 

224–228 
ER design methodology, 202, 207, 223, 

226, 230–232, 235
 exercises, 234–235 
grammar for, 203–204, 206, 231–232 

mapping rules for recursive 
relationships, 232–233 

more than two entities, 206–209 
multiple relationships, 206–208, 

222–224 
recursive relationships, 216–222, 

see also recursive Relationships 
relationship attributes, 201–204, 213 
relationships developing into entities, 

204–206
 summary, 234 

 equijoin operation,  57 – 59
 ER diagrams

 basic, see entity-relationship (ER) 
diagram

 beyond frst entity,  see entity-
relationship (ER) diagram, beyond 
f rst entity 

with binary relationships, see entity-
relationship (ER) diagrams with 
binary relationships, extensions in 
design 

enhanced ER model, see enhanced 
entity-relationship (EER) model 

reverse engineering, see reverse 
engineering from relational 
database to ER/EER diagram 

ternary and higher-order,  see ternary 
and higher-order ER diagrams

 exercises 
Barker/Oracle-like model, 340–341 
data, databases, and sof ware 

engineering process, 10 
design extensions for ER diagrams 

with binary relationships, 234–235 
design of ER diagram, 99–100 
design of ER diagram, beyond f rst 

entity, 119–120 
enhanced ER model, 294–295 
relational model and functional 

dependencies, 68–69 
 relationships/structural constraints, 

168–172 
reverse engineering and relational 

mapping, 322–324 
ternary and higher-order ER diagrams, 

262–263 
weak entities, 194 
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F 

 FD, see  functional dependency
 felds of data,  12, 72 
 fles,  12 ,  72

 sequential, 16–17 
 fling systems in early computer days,  17
 frst normal form (1NF),  35 ,  40 – 43 ,  306  
 foreign key 

in Barker/Oracle-like model, 334, 336 
 defned, 21, 41 
in intersection entity, 206 
in reverse engineering, 308, 314, 

316–317
 full optionality/participation,  26 ,  135  
full participation, see also  participation 

constraints 
constraints, 135, 137, 153 
mapping rules, see mapping binary 

relationships to relational database 
pattern of grammar for, 139, 140, 

150–151, 152 
in ternary relationships, 249–250 

functional dependencies (FD),  see also 
relational model and functional 
dependencies

 defnition of, 38–39 
and normal forms, 31 
partial dependency, 49 
 ref exive, 45 
transitive dependency, 55

 functional dependency rules,  59 – 65  
augmentation rule, 60, 64 
decomposition rule, 60–61 
double augmentation rule, 64 
 refexive rule, 60 
subset rule, 61 
transitive rule, 61 
union rule, 61 

G 

 generalizations, see also  superclasses
 defnition of, 74, 265–267 
 superclasses, 265–267

 generalizations or specializations,  265 – 283
 defnition of, 74, 265–267 
ER design methodology, 274–275, 

292–294 

examples of, 266, 268–274 
grammar for relationships, 275–276 
join operations, 268–269 
mapping rules, 276–282, 304 
in reverse engineering, 318–321 
 variants, 267–268

 glossary,  343 – 347  
 grammar descriptions 

for EER model, 275–276 
for entities and relationships, 112, 115 
for entity, 87–94 
for extensions in design of ER 

diagrams, 203–204, 206, 231–232
 for n-ary relationships (ternary and 

higher-order), 247–252 
for relationships and cardinality, 

135–147 
for weak entities, 190–191 

 group attribute,  80 , see also  composite 
attributes 

H 

 heirarchy, specialization,  283  
 hierarchical models,  18 ,  20 – 28 

drawbacks of, 27–28 
with linked lists, 24–26 
multiple-child pointer, 22–23 
one-to-many relationships, 26, 27 
parent-child relationship, 20–24 
parent pointer, 23 
structural constraints, 26

 hierarchies, class,  265 – 267  
hierarchies in recursive relationships, 219, 

 220  
 higher-order relationships,  239 , see also 

ternary and higher-order ER 
diagrams 

I 

 identifying entity/owner entity,  180 ,  182 , 
 184 – 186

 inheritance of attributes,  265 – 266 ,  270 , 
 286 – 288

 insert anomaly,  49 
instance of an entity,  74
 intersection attribute,  202 ,  226 ,  240 ,  242  
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J 

 joining attribute,  280  
 join operations,  268 – 269  

K 

 keys,  13 ,  82 – 86 
candidate, 84, 98 
concatenated, 41, 49, 67 
 foreign, see foreign key 
grammar for, 88 
minimal, 59, 64–65 
partial, 182, 191 
 primary, see primary key 
 surrogate, 291 
as unique identif er, 74

 lattice, specialization,  284  
 lef-hand side (LHS), 46 
life cycle of sofware engineering,  3 – 7 , 

7 – 9  
 linked lists,  24 – 26 ,  28 ,  30 

M 

magnetic media for data storage, 15,  17
 mandatory participation,  26 ,  135 ,

 329 – 330 
 many-to-many relationships 

in Barker/Oracle-like model, 336–340 
cardinality in relationships, 130, 131, 

151–153
 defned, 26, 28 
mapping to relational database, 160, 

301–302 
in recursive relationships, 220 

 many-to-many-to-many relationship,
 243 – 245

 many-to-one relationship,  28 ,  130 ,  131 , 
 150 – 151

 mapping,  72 , see also  reverse engineering 
rules  

in Barker/Oracle-like model, 
336–340 

steps to map ER/EER diagrams to 
relational databases, 299–306 

mapping binary relationships to relational 
database,  159 – 168  

rule 5, binary M:N relationships, 160, 
301–302 

rule 6, 1:1, one side has full 
participation, other side has partial 
participation, 161, 302 

rule 7, 1:1, both sides have partial 
participation, 163, 302 

rule 7A, store the key, 163, 302 
rule 7B, create new table for the key, 

164, 302 
rule 8, 1:1, both sides have full 

participation, 166, 303 
rule 9, 1:N, N side has full 

participation, 167, 303 
rule 10, 1:N, N side has partial 

participation, 168, 303 
mapping entity diagram to relational 

database,  94 – 98 ,  102 – 103  
rule 1, strong entities, 94–95, 300 
rule 2, atomic attributes, 95–96, 300 
rule 3, composite attributes, 96–97, 300 
rule 4, multivalued attributes, 97–98, 

102–103, 300 
mapping generalizations and specializations 

to relational database,  276 – 282 
rule 15, 277–280, 304 
rule 16, 280–281, 304 
rule 17, 281–282, 304 
rule 18, 282, 304 

 mapping n-ary relationships to relational 
database 

rule 14, 259–260, 303–304 
mapping recursive relationships to 

relational database 
rule 12, 1:N, 232, 303 
rule 13, M:N, 233, 303 

mapping shared subclasses to relational 
database 

rule 19, 285–286, 305 
mapping superclasses, categories or union 

types 
rule 20, same primary keys, 291, 305 
rule 21, diferent primary keys, 

291–292, 305 
mapping weak entities to relational 

database 
rule 11, 191–192, 301 
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 MCP (multiple-child pointer),  22 – 23 ,  28
 minimal key,  59 ,  64 – 65 
min/max notation,  228 – 230  
 models

 Barker/Oracle-like, see Barker/Oracle-
like model 

 Chen-like, see Chen-like model 
 database, see database models
 ER, see ER diagrams
 relational, see relational model and 

functional dependencies
 waterfall, 3–4 

 multiple-child pointer (MCP),  22 – 23 ,  28
 multivalued attributes 

Chen-like model, 84 
concept of, in Barker/Oracle-like 

model, 333–335
 entity-relationship diagram, 

81–82, 84 
grammar for, 88 
mapping to relational database, 97–98, 

102–103, 300–301 
in reverse engineering, 311–314 

N 

n -ary relationships,  239 , see also 
ternary and higher-order 
ER diagrams 

negative statements, in grammar, 139,  140, 
 141 ,  250  

 network model,  18 ,  28 – 30 
many-to-many relationship, 28 
repeating group, 29 

 nonatomic attributes,  34 ,  96 ,  306  
 normal forms,  31

 frst (1NF), 35, 40–43, 306 
second normal form (2NF), 44–52, 

306 
third normal form (3NF), 52–56, 282, 

299–300, 305–306 
normalization of tables,  286 
 normalized databases,  299  
 null

 attributes, 282 
 f elds, 13 
many nulls, 118 
and not null, in Barker/Oracle-like 

model, 327–328 

O 

 object-oriented programming,  266 – 267  
 one-to-many relationship 

in Barker/Oracle-like model, 331 
cardinality in relationships, 130, 132, 

147–150
 defned, 26, 27 
mapping to relational database, 

167–168, 303 
in recursive relationships, 219–220 
in reverse engineering, 308–311 

 one-to-one relationship 
cardinality in relationships, 130, 131, 133 
mapping to relational database, 

161–166, 302–303 
in recursive relationships, 219 
in reverse engineering, 308 

optionality constraints, partial or full,  26, 
 135  

 optional participation,  135 ,  149 ,  329 – 330  
 Oracle Corporation,  325  
 overlapping relationships

 constraint def ned, 272 
mapping rule, 282, 304 
in reverse engineering, 319–320, 321 

 owner entity/identifying entity,  180 ,  182 , 
 184 – 186 

P 

parent-child relationship in hierarchical 
model,  20 – 25 ,  268 – 269  

 partial dependency,  49
 partial keys,  182 ,  191  
 partial optionality/participation,  26 ,  135  
 partial participation,  135  

mapping rules, see mapping binary 
relationships to relational database 

and null values, 303 
pattern of grammar for, 139, 140, 148, 

152–153 
in recursive relationships, 219 
in ternary relationships, 243, 251–252 

 participation constraints,  129 ,  134 – 135  
in Barker/Oracle-like model, 329–330 
for categories or union types, 288–290 
full, 135, see also full participation 
partial, 135,  see also partial participation 
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in reverse engineering, 308, 319–320 
for weak entities, 182 

 patterns of binary relationships,  138 – 147  
pattern 1, 139, 141–142, 150–151, 

158–159, 207 
pattern 2, 139–140, 142–143, 149–150 
pattern 3, 140, 143–144, 151, 152, 159, 

249 
pattern 4, 140–141, 144–146, 148–149, 

152–153, 207 
pattern 5, 250 

 pointers,  27 ,  30
 predicate defned,  272 – 274 ,  320 – 321  
 primary entity,  74 – 75
 primary key 

in Barker/Oracle-like model, 328 
candidate key as, 84 
in categories or union types, 291–292 
 defning in R, 40 
foreign key, 21 
in functional dependency, 38, 46 
mapping rule, 94–95 
of weak entities, 179, 186, 190, 191 

 punched cards,  15 ,  16 

R 

 records,  12 ,  73
 recursive relationships,  111 ,  216 – 222 

in Barker/Oracle-like model, 336 
hierarchy, 219, 220 
 many-to-many, 220 
mapping rules, 232–233, 303 
 one-to-many, 220 
 one-to-one, 219 
partial participation of, 219 
structural constraints and, 219 

RED (reverse engineered diagram),  306 
 redundancy,  18 ,  53
 redundant relationship,  224 – 228  
 refexive functional dependencies,  45
 refexive rule,  60
 regular (strong) entities,  84 ,  179  
 related data, 7 
 relational calculus,  57
 relational databases,  2 ,  11 ,  33 – 36 , 

see also  mapping  
mapping generalizations or 

specializations, 276–282 

 mapping n-ary relationships to, 259–260 
mapping of entity diagram to, 94–98, 

102–103 
mapping recursive relationships, 

232–233 
mapping relationships to, 159–168 
mapping weak entities to, 191–193 
and sets, 36–38 
steps used to map ER/EER diagrams 

to, 299–306 
 relational  mapping ,  299 – 306 , see also

 mapping  
 exercises, 323–324
 summary, 322 

relational model and functional 
dependencies,  31 ,  33 – 69 

Boyce–Codd normal form, 65–67 
equijoin operation, 57–59 
 examples, 61–64 
 exercises, 68–69 
 frst normal form, 40–43 
functional dependency, 59–65,  see also 

functional dependencies (FD) 
fundamentals of relational database, 

33–36 
second normal form, 44–52 
sets of attributes, 60
 summary, 68 
third normal form, 52–56 
two-dimensional tables, 33–34, 42

 relations,  37
 relationship attributes,  201 – 204 ,  213  
 relationships 

in Barker/Oracle-like model, 329 
binary, 111, 114, see also binary 

relationship 
cardinality ratio, 129–134 
 defnition of, 73, 74 
degree of, 111 
derived (redundant), 224–228 
developed into entities, 204–206 
grammar for, 112 
 higher-order, 239 
multiple, with two entities, 222–224
 optionality, 26
 recursive, see recursive relationship 
of relationships (ternary), 252–254 
unclear if possibly is attribute, 117–119 
unclear situations, 117 
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relationships, cardinality ratio of,  26
 many-to-many, see many-to-many 

relationships 
many-to-one, 28, 130, 131, 150–151 
 one-to-many, see one-to-many 

relationship 
 one-to-one, see one-to-one 

relationship 
 relationships/structural constraints, 

extending,  129 – 178  
cardinality ratio of relationship, 129–134 
case study, 172–178 
ER design methodology, 146–147, 

154–158, 172, 176 
examples of other relationships, 

147–153
 exercises, 168–172 
 fnal example, 153–159 
grammar for, 135–147 
mapping relationships to relational 

database, 159–168, see also mapping 
binary relationships to relational 
database 

participation constraints (full/partial), 
134–135 

patterns of binary relationships, 
138–146, see also patterns of binary 
relationships 

 summary, 168 
 repeating group,  29 ,  35 ,  40 
reverse engineered diagram (RED), 306 
reverse engineering from relational 

database to ER/EER diagram,
 306 – 322  

 exercises, 323–324 
to model a database, 72 
 steps, see reverse engineering rules 
 summary, 322 

 reverse engineering rules,  306 – 322  
rule 1: strong entities, 307 
rule 2: 1:1 and 1:N (1:x) relationships, 

308–311 
rule 2a: attributes of 1:x relationship, 

311 
rule 3: weak entities and multivalued 

attributes, 311–314 
rule 3a: weak entities, 314 
rule 3b: multivalued attributes, 

314–316 

rule 4: M:N and  n -ary relationships, 
316 

rule 4a: binary case, 316 
rule 4b:  n-ary case, 316–318 
rule 5: generalization/specialization 

relationships, 318–319 
rule 5a: relationships with disjoint or 

overlap relationships, 319–320 
rule 5b: disjoint relationships with 

single-predicate-def ned attributes, 
320–321 

rule 5c: overlap relationships with 
more than one f ag, 321 

rule 6: shared subclasses, 321 
rule 7: categories or union types, 

321–322
 rows,  37 – 38 ,  94 

S 

 schema,  72
 SE, see  sofware engineering process 
 second normal form (2NF),  44 – 52

 anomalies, 48–49 
mapping diagrams to database, 306 
non-2NF to 2NF, 49–52 

 semantic models,  71 , 72 
 sets 

of attributes, 60
 of fles (entity sets), 73–74 
and relational databases, 36–38 

 shared subclasses
 def ned, 284 
mapping generalizations and 

specializations, 285, 305 
in reverse engineering, 321 
superclass in hierarchy, 286 

simple attributes,  see atomic (simple) 
attributes

 Social Security Number (SSN),  38 ,  80 ,  84
 sofware engineering life cycle in entity-

relationship diagrams,  7 – 9  
 sofware engineering process,  3 – 7  

design of database, 5, 9 
 development, 6 
implementation and user testing, 6 
 maintenance, 6 
requirements (elucidation), 5, 8, 75 
retirement of sof ware, 6–7 
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 specifcation (with feedback), 4, 5, 
8–9, 75

 sofware packages, 16
 specialization hierarchy,  283  
 specialization lattice,  284  
 specializations, see also  generalizations or 

specializations ;  Subclasses  
 defnition of, 74, 265–267 
examples of, 266, 268–274 
mapping rules, 276–282 
 subclasses, 265–267
 variants, 267–268

 specifc attributes,  271 
SQL (Structured Query Language), 57
 SSN (Social Security Number),  38 ,  80 ,  84
 strong entities,  84 – 85 

mapping into relational database, 
94–95, 300 

in reverse engineering, 307 
weak entities and, 179–184 

structural constraints, see also
 relationships/structural constraints, 
extending  

alternative notation to specify, on 
relationships, 228–230 

in Barker/Oracle-like model, 329–332 
binary relationships, 240 
cardinality and optionality, 26–27 
cardinality and participation, 129 
 def ned, 129 
recursive relationships and, 219 
for ternary relationships, 243–245 
and weak entities, 184 

Structured Query Language (SQL), 57
 subclasses

 defned as specializations, 265–267 
example in database design, 268–270 
inheritance of attributes, 266, 270 
in reverse engineering, 319–320 
 shared, see shared subclasses 

 subclasses of subclasses,  283 – 286  
mapping rule, 285–286 
shared subclass, 284 
specialization hierarchy, 283 
specialization lattice, 284 

 subset rule,  61
 superclasses 

category or union type and, 286–287 
 defned as generalizations, 265, 267 
example in database design, 268–270 

inheritance of attributes, 266 
mapping rules, 291–292, 305 
in reverse engineering, 321–322 

 surrogate key,  291  

T 

 tables
 description, 33–35 
joins, combination operations, 268–269 
normalization of, 286 
two-dimensional, 33–34, 42 

ternary and higher-order ER diagrams, 
 239 – 263  

binary or ternary relationship?, 
240–243 

ER design methodology, 248, 260–261 
 exercises, 262–263 
grammar for  n -ary relationships, 

247–252
 mapping n-ary relationships to 

relational database, 259–260, 
303–304 

n-ary relationship, 239 
n-ary relationship, example of, 245 
n-ary relationships and binary 

relationships, 246–247 
n-ary relationships resolving into 

binary relationships, 254–258 
in reverse engineering, 316–318 
structural constraints, 243–245
 summary, 261–262 
ternary relationships from 

relationship-relationship situations, 
252–254 

 third normal form (3NF),  52 – 56 ,  282 , 
 299 – 300 ,  305 – 306

 3-ary relationships,  239 , see also  ternary 
and higher-order ER diagrams 

top down design approach,  269 
 transitive dependency,  55
 transitive rule,  61
 tuples,  94
 two-dimensional tables,  33 – 34 ,  42 ,  94 
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 unary relationships,  216 , see also  recursive 
relationships  

 union rule,  61 



     
 

 
  
 
 

  
 
 

    
 

   

   

   

 
 

 
 

 
 

  
 

 
  

 
 
  

 
 

 
 

  
 

 
 

  
  

V 

Index •  357 

union type,  see categories or union types 
 unique identif er 

attributes as, 79 
in Barker/Oracle-like model, 332–333 
candidate key as, 84–85 
Chen-like ER model, 84 
 key, 74 
primary key as, 84 
strong entities and, 179 

 update anomaly,  48 – 49
 users,  4 ,  7 – 8  

 VARCHAR,  45
 variants,  267 – 268  

W 

 waterfall model,  3 – 4  
 weak entities,  84 ,  179 – 200  

case study, 194–199 

concept of, in Barker/Oracle-like 
model, 332–333 

connected to other weak entities, 
186–188 

ER design methodology, 189–190, 
195

 exercises, 194 
 in generalizations/specializations, 

269–270 
grammar for, 190–191 
identifying/owner entity, 180, 182, 

184–186 
mapping to relational database, 

191–193, 301 
in relationship of relationship, 

253 
in reverse engineering, 

311–314 
strong and weak entities, 

179–184 
structural constraints, 184
 summary, 193   
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